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Measuring the Cosmic Shear in Fourier Space

Jun Zhang⋆

Department of Astronomy, University of California, Berkeley, CA 94720, USA

5 February 2008

ABSTRACT

We propose to measure the weak cosmic shear using the spatial derivatives of
the galaxy surface brightness field. The measurement should be carried out in Fourier
space, in which the point spread function (PSF) can be transformed to a desired form
with multiplications, and the spatial derivatives can be easily measured. This method
is mathematically well defined regardless of the galaxy morphology and the form of
the PSF, and involves simple procedures of image processing. Furthermore, with high
resolution galaxy images, this approach allows one to probe the shape distortions of
galaxy substructures, which can potentially provide much more independent shear
measurements than the ellipticities of the whole galaxy. We demonstrate the efficiency
of this method using computer-generated mock galaxy images.

Key words: cosmology: theory - weak lensing

1 INTRODUCTION

The coherent distortions of background galaxy im-
ages by the intervening metric perturbations provide
us a direct probe of the large scale mass distribu-
tion (see reviews by Bartelmann & Schneider 2001;
Wittman 2002; Refregier 2003). Recently, several
groups have claimed positive detections of the weak
lensing effect and obtained useful constraints on the
cosmological model (Bacon et al. 2000; Kaiser et al.
2000; van Waerbeke et al. 2000; Wittman et al. 2000;
Maoli et al. 2001; Rhodes et al. 2001; van Waerbeke et al.
2001; Hoekstra et al. 2002; Refregier et al. 2002;
Bacon et al. 2003; Brown et al. 2003; Hamana et al.
2003; Jarvis et al. 2003; Rhodes et al. 2004; Heymans et al.
2005; Massey et al. 2005; van Waerbeke et al. 2005; Dahle
2006; Hetterscheidt et al. 2006; Hoekstra et al. 2006;
Jarvis et al. 2006; Schrabback et al. 2006; Semboloni et al.
2006). In future weak lensing observations (e.g. VST-
KIDS, DES1, VISTA darkCAM, Pan-STARRS2, LSST3,
DUNE, SNAP4, JDEM5), if the photometric redshift can
be well calibrated, we will be able to study the dark
energy properties (its abundance and equation of state)

⋆ E-mail:jzhang@astro.berkeley.edu
1 see www.darkenergysurvey.org
2 see pan-starrs.ifa.hawaii.edu
3 see www.lsst.org
4 see snap.lbl.gov
5 see destiny.asu.edu

using the redshift dependence of the shear fields (Hu
2002; Abazajian & Dodelson 2003; Jain & Taylor 2003;
Bernstein & Jain 2004; Hu & Jain 2004; Song & Knox 2004;
Takada & Jain 2004; Takada & White 2004; Ishak 2005;
Simpson & Bridle 2005; Zhang et al. 2005; Hannestad et al.
2006; Schimd et al. 2006; Taylor et al. 2006; Zhan 2006). By
constraining the growth factor of the mass perturbation and
the geometrical distance as functions of redshift separately,
weak lensing provides a consistency check of the cosmologi-
cal model (Kratochvil et al. 2004; Simpson & Bridle 2005;
Zhang et al. 2005; Knox et al. 2006), and opens a window
for testing alternative gravity theories (Acquaviva et al.
2004; Song 2005; Ishak et al. 2006).

An important and challenging job in weak lensing
is to measure the weak cosmic shear (of order a few
percent) from the shapes (or ellipticities) of the background
galaxy images, which have large intrinsic variations. The
existing methods are all based on convoluting the galaxy
images with some weighting functions, and are called
the INTEGRAL methods hereafter (see Tyson et al.
1990; Bonnet & Mellier 1995; Kaiser et al. 1995;
Luppino & Kaiser 1997; Hoekstra et al. 1998; Rhodes et al.
2000; Kaiser 2000; Bridle et al. 2001; Bernstein & Jarvis
2002; Refregier & Bacon 2003; Massey & Refregier 2005;
Kuijken 2006; Nakajima & Bernstein 2006). The INTE-
GRAL methods typically have disadvantages in three
aspects: 1. since the galaxy images are smeared by the PSF
(either instrumental or environmental), the INTEGRAL
methods involve at least two folds of convolutions, the math
of which is complicated; 2. the details of the methods are
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2 Jun Zhang

often sensitive to the galaxy morphology and the form of the
PSF; 3. the shear information from the shape distortions of
galaxy substructures is not considered. Strictly speaking,
the shapelets method (see, e.g. ,Refregier 2003) may not
be called an INTEGRAL method, because the galaxy
weighting functions form a complete set of orthonormal
shapelets which have very convenient mathematical prop-
erties. It also has the potential of measuring the cosmic
shears on galaxy substructures. However, since this method
requires calibrations of the intrinsic distributions of the
shapelet coefficients, it has strong dependence on the galaxy
morphology.

In this paper, we propose to use the spatial derivatives
of the galaxy surface brightness field to measure the cosmic
shear. This method was first used by Seljak and Zaldar-
riaga (1999) on CMB lensing. We generalize their analysis
by including the PSF and carrying out the measurement
in Fourier space. This approach is well defined regardless
of the galaxy morphology and the form of the PSF, and
involves simple image processing procedures. Given a high
image resolution, the method can potentially probe the cos-
mic shear from galaxy substructures, greatly suppressing the
shape noise.

We begin by introducing the method in §2. In §3,
this approach is shown to work well on different types of
computer-generated mock galaxy images with general forms
of PSF. A brief summary is given in §4.

2 THE METHOD

We derive the relation between the cosmic shear and the spa-
tial derivatives of the galaxy surface brightness field without
a PSF in §2.1. In the presence of an isotropic Gaussian PSF,
the relation is modified and shown in §2.2. In §2.3, Fourier
transformation is introduced not only to simplify the mea-
surement of the spatial derivatives, but also to deal with
general forms of PSF.

2.1 Without the PSF

The surface brightness on the image plane fI(~θ
I) and on the

source plane fS(~θS) (~θI and ~θS are the position angles on
the image and source plane respectively) are related through
a simple relation:

fI(~θ
I) = fS(~θS) (1)

~θI = A~θS

where Aij = δij + Φij , and Φij = ∂δθI
i /∂θS

j are the spatial
derivatives of the lensing deflection angle, which can be ex-
pressed in terms of the convergence κ = (Φxx + Φyy)/2 and
the two shear components γ1 = (Φxx−Φyy)/2 and γ2 = Φxy .
Using eq.[1], we get:

∂fI

∂θI
i

=
∂θS

j

∂θI
i

∂fS

∂θS
j

(2)

= (δij − Φij)
∂fS

∂θS
j

where we have implicitly assumed that Φij is small, which
is true for weak lensing. Assuming the original surface
brightness field fS is isotropic on the source plane, the

quadratic combinations of the derivatives of the lensed
image provide a direct measure of the shear components
(Seljak & Zaldarriaga 1999):

1

2

〈(∂xfI)
2 − (∂yfI)

2〉

〈(∂xfI)2 + (∂yfI)2〉
= −γ1 (3)

〈∂xfI∂yfI〉

〈(∂xfI)2 + (∂yfI)2〉
= −γ2

where the averages are taken over the whole galaxy.

2.2 With an Isotropic Gaussian PSF

The presence of PSF brings both advantages and disadvan-
tages. On the positive side, the PSF smooths out the galaxy
surface brightness field, which is originally not differentiable
due to structures on arbitrarily small scales. On the other
hand, the convolution of the galaxy image with the PSF
leads to a nontrivial modification to eq.[3], the form of which
is calculated in this section. For simplicity, we assume the
PSF is isotropic and Gaussian. General forms of PSF will
be discussed in §2.3.

The observed galaxy surface brightness distribution fO

is related to fI via:

fO(~θ) =

∫

d2~θIWβ(~θ − ~θI)fI(~θ
I) (4)

where Wβ is the Gaussian PSF with scale length β:

Wβ(~θ) =
1

2πβ2
exp

(

−
|~θ|2

2β2

)

(5)

Using eq.[1] to replace fI with fS and ~θI with ~θS in eq.[4],
we get:

fO(~θ) = |det(A)|

∫

d2~θSWβ(~θ − A~θS)fS(~θS) (6)

or equivalently:

fO(A~θ) = |det(A)|

∫

d2~θSWβ[A(~θ − ~θS)]fS(~θS) (7)

.
= |det(A)|

∫

d2~θSfS(~θS)Wβ(~θ − ~θS)

×
[

1 − (~θ − ~θS) · (A − I) · (~θ − ~θS)/β2
]

where I is the 2 × 2 unitary matrix. Note that the second
part of eq.[7] is a result of Taylor expansion of the term

Wβ[A(~θ − ~θS)] due to the small amplitudes of the lensing
components Φij . For convenience, let us define:

FS(~θ) =

∫

d2~θSfS(~θS)Wβ(~θ − ~θS) (8)

which is the surface brightness field we would observe in
absence of lensing. Eq.[7] can then be re-written as:

fO(A~θ)

|det(A)|
= (1 − Φxx − Φyy)FS(~θ) (9)

− β2

(

Φxx
∂2FS

∂θ2
x

+ 2Φxy
∂2FS

∂θx∂θy
+ Φyy

∂2FS

∂θ2
y

)

Let ~θO = A~θ, then:

∂fO(~θO)

∂θO
i

= (A−1)ij
∂fO(A~θ)

∂θj
(10)
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Using eq.[9] and eq.[10], it is not hard to express the deriva-
tives of fO in terms of the derivatives of FS :

∂xfO

|det(A)|
= (1 − 2Φxx − Φyy)Fx − ΦxyFy (11)

− β2(ΦxxFxxx + 2ΦxyFxxy + ΦyyFxyy)

∂yfO

|det(A)|
= (1 − Φxx − 2Φyy)Fy − ΦxyFx

− β2(ΦyyFyyy + 2ΦxyFxyy + ΦxxFxxy)

where

Fi1···in
=

∂nFS

∂θi1 · · · ∂θin

(12)

Note that we have implicitly assumed that the spatial fluc-
tuation of the cosmic shear is negligible on galactic scales.
Assuming the distribution of FS is isotropic, we obtain the
following relation between the shear components and the
spatial derivatives of the surface brightness field:

1

2

〈(∂xfO)2 − (∂yfO)2〉

〈(∂xfO)2 + (∂yfO)2〉 + ∆
= −γ1 (13)

〈∂xfO∂yfO〉

〈(∂xfO)2 + (∂yfO)2〉 + ∆
= −γ2

where

∆ =
β2

2
〈~∇fO · ~∇(∇2fO)〉 (14)

The derivation of eq.[13] and eq.[14] is shown in the
appendix. Note that in the limit when the galaxy image
is very smooth over the scale length β, the correction ∆
approaches zero, eq.[13] then reduces to eq.[3].

2.3 Fourier Transform and General PSF

For the method to become useful, there are at least two
remaining issues to be addressed: 1. how to measure the
spatial derivatives of the surface brightness field; 2. how to
deal with other forms of the PSF. It turns out that Fourier
transformation provides a solution to both problems.

Since convolutions in real space correspond to multipli-
cations in Fourier space, one can easily transform the PSF
to a desired form (an isotropic Gaussian form in our case)
by multiplying the Fourier modes of the observed image
with the ratios between the Fourier modes of the desired
PSF and those of the original PSF (known from calibra-
tions with stars). This operation is usually well defined if
the scale length of the desired PSF is larger than that of the
original PSF. Moreover, it turns out that for the purpose of
measuring the cosmic shear, one does not need to transform
the new image back to real space, because the derivatives of
the surface brightness field can be more easily measured in
Fourier space.

As an example, we show how to measure quantities such
as 〈|~∇f |2〉, where f is the surface brightness field of interest.
First of all, the distribution f in real space should be sam-
pled with an interval ∆θ which is a few times less than the
size of the PSF to avoid translating high frequency power
into the frequency range determined by the sampling resolu-
tion through discrete Fourier transform (Press et al. 1992).
In other words, the galaxy image should be “oversampled” to
avoid aliasing power from small scales in the discrete Fourier

transform. For undersampled images, one can smooth the
images with an additional large enough PSF, which can be
treated as a part of the PSF from the instrumentation, and
therefore does not affect our discussion below. Similarly, to
avoid such aliasing power at low frequency, the box size for
the Fourier transform should be a few times larger than the
image size. Given this setup, the Fourier transform of the
image is defined as:

f̃(li, lj) = ∆θ2

N−1
∑

m=0

N−1
∑

n=0

f(θm, θn) exp [i(θmli + θnlj)] (15)

where

θm(n) = m(n) × ∆θ, m(n) = 0, 1, ..., N − 1 (16)

li(j) = i(j) × ∆l, i(j) = −N/2, .., N/2

∆l = 2π/(N∆θ)

N is the box size, chosen to be a power of 2 for the Fast
Fourier Transform. It is now straightforward to show that
〈|~∇f |2〉 can be expressed as the sum over the Fourier modes
weighted by the wave numbers:

N−1
∑

m=0

N−1
∑

n=0

|~∇f(θm, θn)|2 (17)

=
1

N2∆θ4

N/2
∑

i=−N/2

N/2
∑

j=−N/2

|f̃(li, lj)|
2(l2i + l2j )

Eq.[17] gives exactly the quantity 〈|~∇f |2〉 multiplied by the
number of bright pixels covered by the galaxy, because the
dark pixels have no contributions6. Similarly, we can calcu-
late the other terms in eq.[13] in Fourier space. Note that
for the purpose of obtaining γ1 and γ2, it is not necessary
to calculate the number of bright pixels because it appears
in both the nominator and the denominator in eq.[13].

3 THE TEST

This section is organized as follows: in §3.1, we test the
method using mock regular galaxies smeared by different
forms of PSF; in §3.2, using mock irregular galaxies gen-
erated by 2-D random walks, we further demonstrate the
usefulness of this approach on galaxies with a different mor-
phology, and explore the possibility of suppressing the shape
noise in the shear measurements by including the informa-
tion from galaxy substructures.

3.1 With Mock Regular Galaxies

Each regular galaxy in our simulation contains a
thin circular disk with an exponential profile and
a co-axial de Vaucouleurs-type spheroidal component
(de Vaucouleurs et al. 1991). When viewed face-on, the sur-
face brightness distribution (before lensing and smearing by
the PSF) of the galaxy can be parameterized as:

6 In the presence of noise, extra procedures may be required to
clean the galaxy map before the Fourier transform. We shall dis-
cuss this in a future paper.

c© 2006 RAS, MNRAS 000, 1–7
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Figure 1. Two PSF models used in the simulations of §3.1. The
contours mark 3.2%, 6.3%, 12.5%, 25%, and 50% of the peak

intensity. The left and right one correspond to W
(1)
r and W

(2)
r

(rotated by certain angles) in eq.[19] respectively.

f(r) = exp(−r/rd) + fs/d exp
[

−(r/rs)
1

4

]

(18)

where r is the distance to the galaxy center, rd(rs) is the
scale length of the disk(spheroid), and fs/d determines the
relative importance of the spheroid. The overall luminosity
of the galaxy is only important in the presence of noise,
which will be discussed in a future paper.

Our simulation box is 128×128. We choose rd to be 1/32
of the box size of the simulation, rs = rd/2, and fs/d = 1.
Note that changing these particular numbers does not af-
fect our main conclusions. Once the galaxy’s face-on image
is generated, it is projected onto the source plane with a
random inclination angle along a random direction perpen-
dicular to the line of sight7.

The projected galaxy image is subsequently distorted
by a constant cosmic shear and smeared by the PSF in real
space. We consider two PSF models given by the following
forms rotated by certain angles (shown in Fig.1):

W (1)
r (x, y) ∝ exp

[

−(|x − y| + |x + y|)2/(8r2)
]

(19)

W (2)
r (x, y) ∝ exp

[

−(x2 + 0.8y2)/(2r2)
]

where r is the scale length, which is equal to six times
the grid size, comparable to the galaxy size. The shear
components (γ1, γ2) are chosen to be (−0.012, 0.035),

(−0.032,−0.005), (0.01, 0.02) for W
(1)
r , and (0.015,−0.024),

(0.05, 0.01), (−0.04,−0.04) for W
(2)
r .

To measure the cosmic shear, we follow the procedures
described in §2.3. The desired PSF has an isotropic Gaus-
sian form with a scale length about 4/3 times that of the
original PSF. The results are plotted in Fig.2. The results
are consistent within 1σ error regardless of the form of the
PSF.

3.2 With Mock Irregular Galaxies

Our irregular galaxies are generated using 2-D random
walks. The random walk starts from the center of the simu-
lation box for 20000 steps, each of which is equal to the grid

7 The intrinsic flattening parameter q of the spheroid part is set
to one for simplicity.

Figure 2. The measured values of (γ1, γ2) (averaged over 10000
mock regular galaxies) are plotted as red (from galaxies smoothed

by W
(1)
r ) and blue (from galaxies smoothed by W

(2)
r ) dots with

(small) 1σ error bars. The centers of the black crosses are the

input values of (γ1, γ2). Note that to be general, W
(1)
r and W

(2)
r in

the simulations have been rotated by certain angles with respect
to their definitions in eq.[19].

size of the simulation box (which is now 1024× 1024). Once
the distance from the center is more than 1/6 of the box
size, the walk starts from the center again to finish the rest
of the steps. The surface brightness of the galaxy is equal
to the density of the trajectories. Note that these galaxies
naturally have abundant substructures, which are useful not
only for further testing the method, but also for illustrating
how much lensing information may be contained in the sub-
structures. We caution that our random-walk-type galaxies
are not based on any physical models, therefore they do not
necessarily mimic observed irregular galaxies. In a future pa-
per, more realistic galaxy models will be adopted to study
this topic.

For the purpose of this section, we smooth the galaxies
directly with the isotropic Gaussian PSF of different scale
lengths, which correspond to different angular resolutions.
The scale length β (defined in eq.[5]) is chosen to be 1/256,
1/128, 1/64, and 1/32 of the box size (roughly correspond-
ing to 1/85, 1/43, 1/21, and 1/10 of the galaxy size). Fig.3
shows typical images of our irregular galaxy under these
four different angular resolutions. For convenience, we plot
the minimum β as unity in the figures of this section.

The shear component γ2 is set to zero, and γ1 is fixed
at 0.03. After averaging over 10000 irregular galaxies, we
find that the measured γ1 is 0.0324 ± 0.0029 for β = 8,
0.0301 ± 0.0022 for β = 4, 0.0291 ± 0.0015 for β = 2, and
0.0293 ± 0.0010 for β = 1. More interestingly, as shown in
Fig.4, the statistical error bar is found to decrease signifi-
cantly when the angular resolution is increased. This is fur-
ther illustrated in Fig.5, which shows an approximate power-

c© 2006 RAS, MNRAS 000, 1–7
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Figure 3. Sample images showing our mock irregular galaxies
generated using 2-D random walks under four different angular
resolutions.

law relation between the measured variance of γ1 and β, the
exponent of which is close to one. Note that as the angular
resolution increases, one gets additional information on the
cosmic shears from the galaxy substructures. If we naively
assume that each bright pixel on the galaxy map provides
an independent measurement of the cosmic shear, we ex-
pect the variance of the measured cosmic shear to scale as
the inverse of the number of the bright pixels, or βd, where
d is the Hausdorff dimension of the galaxy image (Hausdorff
1919). Since the Hausdorff dimension of our random-walk-
generated irregular galaxies is 2 (Falconer 1986), the vari-
ance of γ1 should scale as β2, which is not too far from
what we have observed in our numerical experiments. In re-
ality, substructures generated by the 2-D random walks are
correlated at some unknown level, therefore, the observed
exponent indicated in Fig.5 is less than the Hausdorff di-
mension.

4 SUMMARY

We have presented a simple approach of measuring the weak
cosmic shear using the spatial derivatives of the galaxy sur-
face brightness field. The measurement should be carried out
in Fourier space, in which it is easy to evaluate the spatial
derivatives and to transform the PSF to a desired form. The
accuracy of the method is demonstrated using computer-
generated mock regular and irregular galaxies. We find no
systematic errors on the measured shear components in the
numerical experiments.

Given high image resolutions, this new method may re-
duce the shape noise in the shear measurement significantly,
because it takes into account the shape information on the
galaxy substructures. Using the mock irregular galaxies gen-

Figure 4. The probability distribution functions (PDF) of the
measured γ1 for four different image resolutions. The plots are all
generated using 10000 mock irregular galaxies. The peak of the
PDF is fixed at 1 in each plot.

Figure 5. The variance of γ1 for four different values of β.

erated by 2-D random walks, we have shown that the vari-
ance of the measured shear is indeed suppressed by a large
factor when the image resolution is increased. This exam-
ple encourages us to test this method on real galaxies of
a wide range of morphology classes in a future paper by
joining the Shear TEsting programme (Heymans et al. 2006;
Massey et al. 2006), the results of which may be useful for

c© 2006 RAS, MNRAS 000, 1–7
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optimizing the signal to noise ratio in shear measurements
and planning future weak lensing survey.
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APPENDIX – RELATING THE COSMIC

SHEARS WITH THE SPATIAL DERIVATIVES

OF THE SURFACE BRIGHTNESS FIELD

From eq.[11], we have:

1

|det(A)|2

[

(∂xfO)2 − (∂yfO)2
]

(20)

= (1 − 6κ)(F 2
x − F 2

y ) − 2γ1(F
2
x + F 2

y )

− β2
[

2κΠ1 + γ1(Λ + Υ1) + γ2(Υ2 − Λ̃)
]

and

2

|det(A)|2
∂xfO∂yfO (21)

= 2(1 − 6κ)FxFy − 2γ2(F
2
x + F 2

y )

− β2
[

2κΠ2 + γ1(Λ̃ + Υ2) + γ2(Λ − Υ1)
]

where

Λ = FxFxxx + FxFxyy + FyFxxy + FyFyyy (22)

Λ̃ = FyFxxx + FyFxyy − FxFxxy − FxFyyy

Π1 = FxFxxx + FxFxyy − FyFxxy − FyFyyy

Π2 = FxFxxy + FxFyyy + FyFxyy + FyFxxx

Υ1 = FxFxxx − 3FxFxyy − 3FyFxxy + FyFyyy

Υ2 = FyFxxx − 3FyFxyy + 3FxFxxy − FxFyyy

Note that according to the definitions in eq.[22], Λ is a
scalar, Λ̃ is a pseudo scalar, Π1 + iΠ2 is a spin-2 field, and
Υ1 + iΥ2 is a spin-4 field. If the intrinsic surface brightness
distribution is isotropic, the spatial averages of Λ̃, Π1, Π2,
Υ1, and Υ2 must vanish. As a result of this, we have:

1

2
〈(∂xfO)2 − (∂yfO)2〉 (23)

= −γ1

(

〈F 2
x + F 2

y 〉 +
β2

2
〈Λ〉

)

〈∂xfO∂yfO〉

= −γ2

(

〈F 2
x + F 2

y 〉 +
β2

2
〈Λ〉

)

We have neglected the factor |det(A)| which is equal to unity
to the 0th order. Using the fact that Λ = ~∇FS · ~∇(∇2FS),
and FS = fO to the 0th order, it is now straightforward to
prove eq.[13].
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