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The precise measurement of the spectrum of protons, the most abundant component of

the cosmic radiation, is necessary to understand the source and acceleration of cosmic

rays in the Milky Way. This work reports the measurement of the cosmic ray proton

fluxes with kinetic energies from 40 GeV to 100 TeV, with two and a half years of data

recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time an

experiment directly measures the cosmic ray protons up to ∼ 100 TeV with a high

statistics. The measured spectrum confirms the spectral hardening found by previous

experiments and reveals a softening at ∼ 13.6 TeV, with the spectral index changing

from ∼ 2.60 to ∼ 2.85. Our result suggests the existence of a new spectral feature of

cosmic rays at energies lower than the so-called knee, and sheds new light on the origin

of Galactic cosmic rays.

Introduction

It is widely believed that the remnants of explosive stars in the Milky Way may play a substantial role

in producing energetic cosmic ray (CR) particles (1, 2). The energy spectra of CRs are expected to be

single power-laws (PLs) until the energies exceed the maximum acceleration limits of the sources, based

on the conventional Fermi acceleration models (3). The diffusive transportation of CRs in the interstellar

turbulent magnetic field results in a softening of the accelerated spectrum, by again a power-law form (for

rigidities above a few tens of GV) according to the Boron-to-Carbon ratio (4). This general picture of CR

production and propagation has been supported by measurements of CR energy spectra and composition

ratios, as well as diffuse γ-rays (5).

However, such a simple picture has been challenged by some recent high-precision measurements.

Remarkable spectral hardenings of the energy spectra of CRs were revealed in the ATIC (6, 7), CREAM

(8, 9), PAMELA (10), and AMS-02 (11) observations. The spectral hardenings suggest extensions of

the traditional CR source injection, acceleration, and/or propagation processes, e.g., refs. (12–14). The
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spectral behaviors of CRs at higher energies (>TeV) are essential to understand the nature of the spectral

hardenings, as well as the origin and propagation of CRs. Moreover, the extension of the spectra to PeV

energies according to the power-law indices measured at sub-TeV energies seems to be in conflict with

the all-particle spectrum of CRs (15). Such a puzzle may be solved if a significant spectral softening

presents well below the so-called knee at several PeV. The precise measurements of the energy spectra

of CRs above TeV are thus motivated by the test of potential new spectral features. Interestingly, the

recent CREAM and NUCLEON data show hints that the energy spectra of CR nuclei may become softer

above rigidities of 10 ∼ 20 TV (16, 17). However, the result of the proton plus helium spectrum from

the air shower experiment ARGO-YBJ shows a single power-law form for energies between 3 and 300

TeV (18). The CREAM result is mainly limited by its low statistics. The NUCLEON data, with again

a relatively low statistics at energies above tens TeV, also suffer from sizeable systematic uncertainties

that need to be properly included. The indirect measurements, on the other hand, suffer from poor

composition resolution. Although the magnetic spectrometers can measure CRs very accurately, they

are unable to reach energies well beyond TeV in the foreseeable future. Therefore, the calorimeter-based

direct measurement experiments, with high statistics up to ∼ 100 TeV and well-controlled systematic

uncertainties, are most suitable to solve the above problems.

Results

In this work we present the measurement of the proton spectrum with the Dark Matter Particle Explorer

(DAMPE; also known as “Wukong” in China). DAMPE is a calorimetric-type, satellite-borne detector

for observations of high energy electrons, γ-rays, and CRs (19, 20). From top to bottom, the instru-

ment consists of a Plastic Scintillator strip Detector (PSD (21)), a Silicon-Tungsten tracKer-converter

(STK (22)), a bismuth germanate BGO imaging calorimeter (23), and a NeUtron Detector (NUD (24)).

The PSD measures the charge of incident particles, and serves as an anti-coincidence detector for γ-rays.

The STK reconstructs the trajectory and also measures the charge of the particles. The BGO calorimeter
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measures the energy and trajectory of incident particles, and provides effective electron/hadron discrimi-

nation based on the shower images. The NUD provides additional electron/hadron discrimination. These

four sub-detectors enable good measurements of the charge (|Z|) with a resolution (Gaussian standard

deviation) of about 0.06e and 0.04e for the PSD (25) and the STK respectively, the arrival direction with

an angular resolution of better than 0.5◦ above 5 GeV, the energy with a resolution of higher than 1.5%

for> 10 GeV electrons/photons (26) and about 25% ∼ 35% for protons up to 10 TeV (20), and the iden-

tification of incoming particles with a proton rejection capability of about 3× 104 when keeping 90% of

electrons (26). The DAMPE detector was launched into a 500-km Sun-synchronous orbit on December

17, 2015. The on-orbit calibration results demonstrate that DAMPE operates stably in space (27).

The data used in this work cover the first 30 months of operation of DAMPE, from January 1, 2016

to June 30, 2018. The fraction of live time is about 75.73% after excluding the time when the satellite

passes the South Atlantic Anomaly region, the instrument dead time, the time for on-orbit calibration, and

the period between September 9, 2017 and September 13, 2017 during which a big solar flare occurred

and may have affected the baseline of the detector. Protons are selected using the charge measured by

the PSD (see the Materials and Methods for details about the event selection). Figure 1 illustrates the

reconstructed PSD charge spectra for low-Z nuclei for deposited energies of 447−562 GeV (left panel),

4.47 − 5.62 TeV (middle panel), and 20 − 63 TeV (right panel), together with the Monte Carlo (MC)

simulations of protons and helium nuclei with GEANT v4.10.03 (28). Note that small corrections from

the reconstructed charge to the true particle charge (25) have not been applied in this work. The proton

and helium peaks are clearly separated in this plot. The contamination of the proton sample due to helium

nuclei is found to be less than 1% for deposited energies below 10 TeV and about 5% around 50 TeV, as

an effect of the energy-dependent charge selection (see the Materials and Methods). Given the excellent

electron-proton discrimination capability of DAMPE (26), the contamination due to residual electrons is

estimated to be about 0.05% in the whole energy range analyzed in this work.

The proton spectrum in the energy range from 40 GeV to 100 TeV is shown in Figure 2 and tabulated
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in Table 1. Error bars represent the 1σ statistical uncertainties of the DAMPE measurements, and the

shaded bands show the systematic uncertainties associated with the analysis procedure (inner band) and

the total systematic uncertainties including those from the hadronic models (outer band). Previous mea-

surements by space detectors PAMELA (10) and AMS-02 (11), and balloon-borne detectors ATIC-2 (7),

CREAM (16), and NUCLEON (17) are overlaid for comparison. The DAMPE spectrum is consistent

with those of PAMELA and AMS-02. At higher energies, our results are also consistent with that of

CREAM, ATIC-2, and NUCLEON when the systematic uncertainties are taken into account.

Discussion

The features of the proton spectrum measured by DAMPE in the energy range from 40 GeV to 100 TeV

give fundamental information about the origin and propagation of Galactic CRs. A spectral hardening

at a few hundred GeV energies is shown in our data, in agreement with that of PAMELA (10) and

AMS-02 (11). As discussed in several papers (Ref. (29) and references therein) the hardening can be

due to either details of the acceleration mechanism, effects in the propagation in the Milky Way, or the

contribution of a new population of CRs (e.g. a nearby source). Furthermore, the DAMPE measurement

gives, for the first time, a strong evidence of a softening at about 10 TeV. It is worth reminding that a

maximum of the large-scale anisotropy has been observed just at that energy (see e.g., Ref. (29,30)). We

fit the spectrum with energies between 1 TeV and 100 TeV with a single power-law model and a smoothly

broken power-law model respectively, and find that the smoothly broken power-law model is favored at

the 4.7σ confidence level compared with the single power-law one (see the Materials and Methods for

details of the fit). For the smoothly broken power-law model fit, the break energy is 13.6+4.1
−4.8 TeV, the

spectral index below the break energy is 2.60±0.01, and the change of the spectral index above the break

energy is −0.25 ± 0.07. Results recently published by CREAM (16) and NUCLEON (17) experiments

also indicate a spectral softening at rigidities of ∼ 10 TV. However, these results are limited by low

statistics or the lack of careful studies of systematic uncertainties.
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The spectral hardening and softening are not compatible with the paradigm of a unique power-law

spectrum up to the all-particle knee at PeV energies, thus implying a deep revision of CR modeling in

the Galaxy. For instance the 10 TeV softening might be due to the exhaustion of the contribution of a

given CR population. Either a local source on top of a power-law background (31), or various types of

sources (32) can be compatible with this scenario. It should be noted that, the spectral softening should

not correspond to the knee of protons; otherwise the expected all-particle spectrum would under-shoot

the observational data, either for mass-dependent or charge-dependent knees of various species (15).

Therefore, the current DAMPE measurement of the proton spectrum, together with other measurements

from the space and groundbased experiments, puts a severe constraint on the models of Galactic CRs.

Materials and Methods

MC simulations

Extensive MC simulations are carried out to estimate the selection efficiencies, background contami-

nations, as well as the energy response matrix of hadronic cascades in the detector (in particular, the

BGO calorimeter). The GEANT v4.10.03 (28) is adopted for these simulations. There are two typical

hadronic interaction models in the GEANT simulation tool, the QGSP FTFP BERT and FTFP BERT

models. Comparisons of the shower development (longitude and transverse distributions) between sim-

ulations and the beam-test and on-orbit data show that the FTFP BERT model matches better with the

data. Therefore we adopt the FTFP BERT model as the benchmark one of the MC simulations for

incident energies less than 100 TeV. For higher energies we employ the FLUKA tool which links the

DPMJET model for the simulation (33). The FLUKA based results are also used as a cross check and an

estimate of the systematic uncertainties of the hadronic interaction models through comparing with the

GEANT results.

An isotropic flux withE−1.0 spectrum is generated for the detector simulation. We simulated protons,

helium nuclei, and electrons in this analysis. After the charge selection, heavier nuclei are negligible for
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the proton analysis. In the analysis, the spectra are re-weighted to E−2.7 for protons and helium nuclei,

and to E−3.15 for electrons. The final proton spectrum we measured is not exactly the same as E−2.7.

However, changing the re-weight spectrum with indices from 2.5 to 3.1 has little influence on the results.

Proton event selection

The events with energy deposit in the BGO calorimeter larger than 20 GeV are selected in this analysis

in order to suppress the effect of the geomagnetic rigidity cutoff. The detailed event selection method is

described as follows.

• Pre-selection

DAMPE has four different triggers implemented on orbit: the Unbiased trigger, the Minimum

Ionizing Particle (MIP) trigger, the Low-Energy (LE) trigger, and the High-Energy (HE) trigger

(20). The events are required to satisfy the HE trigger condition to guarantee that the shower

development starts before or at the top of the calorimeter. We further require that there are one or

more hits in each sub-layer of the PSD and at least one good track (defined below) in the STK.

To check the MC trigger efficiency with the flight data, the events with coincidence of signals

from the first two BGO layers, tagged as unbiased triggers, are used. The unbiased trigger events

are pre-scaled by 1/512 at low latitudes (≤ 20◦) and 1/2048 at high latitudes. The HE trigger

efficiency is estimated as εtrigger =
NHE|Unb

NUnb
, where NUnb is the number of events which pass the

unbiased trigger condition and the proton selection (without the requirement of the HE trigger),

and NHE|Unb is the number of events which further pass the HE trigger.

• Track selection

The track reconstruction algorithm may give more than one track due to the back-scattering par-

ticles. Here we define the “good” track as that the track has at least 4 hits in both the xz and yz

layers, the reduced χ2 value of the fit is smaller than 25, and the angular deviation from the BGO

shower axis is within 5◦. In the presence of multiple good tracks in the STK, we select the “best”
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one through a combined assessment of the length of the track and the match between the candidate

track and the shower axis in the calorimeter. Specifically, the selected tracks are required to be

the longest among all the good tracks, among which the one closest to the shower axis is finally

selected. We then apply the geometry cut on the selected track, which is required to pass through

all the sub-layers of the PSD and the calorimeter from top to bottom.

To validate the STK track efficiency, we select a proton sample based on the BGO-reconstructed

tracks. The track efficiency is estimated as the ratio of the number of events passing the above

STK track selection to the total number of events.

• Charge selection

The ionization energy loss in the PSD is employed to measure the charge of the incoming parti-

cle. The charge is measured independently by the two PSD layers, which are averaged to get the

final value. The measured charge is corrected for the path length of the particle in the PSD bars

using the track information. The PSD and STK alignments are performed to maximally profit the

charge reconstruction capabilities of the detector (34, 35). The charge measurements of the MC

simulations show an energy-dependent difference from that of the flight data, due primarily to the

back-scattering particles. To reduce the effect on the charge selection efficiency and the Helium

background estimate, we apply energy-dependent corrections of the charge measurements for the

MC simulations. We first parameterize the charge distributions of protons and helium nuclei in

different deposited energy bins with a Landau-Gaussian convolution function, and fit the function

to the flight data and MC data separately. Then the MC charges are shifted and shrinked according

to the best-fitting parameters to match with the flight data. Proton candidates are selected through

a cut of the PSD charge. This cut depends on the BGO deposited energy (Edep) as

0.6 + 0.05 · log(Edep/10 GeV) ≤ ZPSD ≤ 1.8 + 0.002 · log4(Edep/10 GeV). (1)

Note that this charge selection follows generally the logarithmic dependence of the ionization
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energy loss in the PSD with particle energy. It enables us to have a very small contamination from

Helium, i.e., less than 1% for deposited energies below 10 TeV and about 5% around 50 TeV.

However, this selection results in an energy-dependent selection efficiency for protons, ranging

from 94% for incident energies of 0.5 TeV to about 75% above 50 TeV. The charge selection

efficiency for protons as a function of incident energy, derived from the GEANT4 FTFP BERT MC

simulations, is shown in Figure 3(a). This efficiency is used in deriving the effective acceptance

shown in Figure 3(d).

The MC charge selection efficiency of each layer of the PSD is also validated by the flight data. For

instance, to estimate the efficiency of the first PSD layer, we use the second PSD layer and the first

STK layer measurements of the charge to select the sample, and calculate how many of the events

have correct charge measurement in the first PSD layer. The differences between MC simulations

and the flight data are adopted as systematic uncertainties of the charge selection efficiencies.

Background estimate

The background for protons includes mis-identified helium nuclei and a tiny fraction of electrons. The

electrons are rejected thanks to different developments between hadronic showers and electromagnetic

ones in the BGO calorimeter. The fraction of residual electrons in the proton sample is estimated to be

about 0.05% for deposited energies larger than 20 GeV, using the template fit of the shower morphology

parameter (ζ as defined in Ref. (26)). Helium nuclei are the main source of background for protons. We

employ the template fit of the PSD charge spectra to estimate the helium backgrounds. The templates

are built based on MC simulations (see Figure 1). The fraction of helium contamination as a function

of deposited energy in the BGO calorimeter is shown in Figure 3(b). It is . 1% for deposited energies

below 10 TeV, and increases up to ∼ 5% around 50 TeV.
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Energy measurement and spectral deconvolution

The energy of an incident particle is measured by the BGO calorimeter. Due to the limited thickness

of the BGO calorimeter (∼ 1.6 nuclear interaction length) and the missing energy due to muon and

neutrino components in hadronic showers, the energy measurements of CR nuclei are biased with some

uncertainties. Therefore MC simulations are required to estimate the energy response of the calorimeter.

The energy resolution for protons is found to be about 25% ∼ 35% for incident energies from 100 GeV

to 10 TeV (20). The linear region of the energy measurement can extend to incident energies of ∼ 100

TeV, thanks to the maximum reachable energy of 4 TeV for the dynode-2 readout device of each BGO

bar (20). For very few highest energy events, the saturation of the maximum energy deposited BGO

bar has been corrected based on the simulated transverse shower profile. The Engineering Qualification

Model of DAMPE was extensively tested using test beams at the European Organization for Nuclear

Research (CERN) in 2014-2015 (36, 37). The test beam momenta are 5, 10, 150, and 400 GeV/c,

respectively. The comparison between the test beam data and MC simulations shows a good agreement

with each other (20). The on-orbit calibration of the energy measurement is done by means of the MIP

signals in each BGO crystal (27).

A deconvolution of the measured energy distribution into the incident energy distribution is applied.

The number of events in the i-th deposited energy bin, Ndep,i, can be obtained via the sum of number of

events Ninc,j in all the incident energy bins weighted by the energy response matrix

Ndep,i =
∑
j

MijNinc,j , (2)

where Mij is the probability that an event in the jth incident energy bin is detected in the i-th deposited

energy bin. We use MC simulations to derive the energy response matrix, applying the same selections

as described above. Figure 3(c) shows the energy response matrix for different incident energies, for

the FTFP BERT model. The color represents the relative probability that a proton with Einc deposits

Edep energy in the calorimeter. Eq. (2) is solved with a Bayesian method to derive the incident event
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distribution (38).

Acceptance and absolute flux

The effective acceptance is defined as the product of the geometric factor and selection efficiencies

(including energy, trigger, track, and charge selections). The effective acceptance for the i-th incident

energy bin is calculated as

Aeff,i = Agen ×
Npass,i

Ngen,i
, (3)

where Agen is the geometrical factor of the MC generation sphere, Ngen,i and Npass,i are the numbers

of generated events and those passing the selections. All efficiencies and the effective acceptance are

obtained via the MC simulations. For the selection efficiencies, we have compared the MC simulations

and the flight data with selected control samples (see the previous “Proton event selection” section), and

the differences are adopted as an estimate of the systematic uncertainties of the effective acceptance.

Figure 3(d) shows the effective acceptance as a function of incident energy.

The absolute proton flux F in the incident energy bin [Ei, Ei + ∆Ei] is then

F (Ei, Ei + ∆Ei) =
Ninc,i

∆Ei Aeff,i Texp
, (4)

where ∆Ei is the width of the energy bin and Texp is the exposure time.

Systematic uncertainties

Several types of systematic uncertainties are investigated in this analysis, including the event selection,

the background subtraction, the spectral deconvolution procedure, and the energy response. The sys-

tematic uncertainties related with the event selection are estimated through comparisons between MC

simulations and the flight data. The total uncertainty of the selection efficiencies is

σsel =
√
σ2

trigger + σ2
track + σ2

charge ≈ 4.7%, (5)

where σtrigger ≈ 2.5%, σtrack ≈ 3.5%, and σcharge ≈ 1.8% are the corresponding systematic uncertain-

ties of the trigger, track selection, and charge selection efficiencies.
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The uncertainties due to the spectral deconvolution are estimated to be . 1%, through re-generation

of the response matrix and varying the spectral index from 2.5 to 3.1 when re-weighting the simula-

tion data. The systematic uncertainties due to the Helium background subtraction are estimated through

varying the charge selection condition Eq. (1) by ±10%, and repeating the analysis. The background

subtraction gives ∼ 0.1% systematic uncertainties below 40 TeV and increases to ∼ 5% at higher ener-

gies. The above systematic uncertainties are added in quadrature to give the total systematic uncertainties

associated with the analysis procedure (σana as given in Table 1).

The uncertainties of the fluxes due to different hadronic interaction models are estimated to be about

7% for energies less than 400 GeV via comparisons of the HE trigger efficiency and the energy deposit

fraction between the 400 GeV test beam data and the GEANT FTFP BERT simulation. Note that the 5

and 10 GeV test beam data are out of the interested energy range of the current study, and the 150 GeV

test beam is limited by statistics and thus not used. For higher energies, we use the difference between

the GEANT FTFP BERT model and the FLUKA model to estimate such systematic uncertainties, which

vary from 7% to 10%. A further check of the DPMJET model with the CRMC (39) interface gives

negligible difference compared with the FLUKA model. Finally, the uncertainties associated with the

absolute energy scale are about 2% (40), which are not corrected in this work.

Figure 4 summarizes the energy-dependent relative uncertainties of the proton fluxes. The statistical

uncertainties refer to the Possion fluctuations of the detected numbers of events in each deposited energy

bin. To get the statistical uncertainties of the unfolded proton fluxes, an error propagation from the

detected events to the unfolded fluxes is necessary in order to properly take into account the bin-by-bin

migration due to the unfolding procedure (38). To obtain a proper estimate of the full error propagation,

we run toy-MC simulations to generate fake observations in each deposited energy bin following the

Poisson distribution, and get the proton fluxes through the unfolding procedure. The root-mean-squares

of the resulting proton fluxes are taken as the 1σ statistical uncertainties. We find that the systematic

uncertainties due to the hadronic interaction models dominate in the whole energy range. The STK track
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efficiency uncertainties are the sub-dominant ones. In Table 1 the statistical uncertainties, the systematic

one associated with the analysis procedure (added quadratically), and the systematic ones due to hadronic

models are presented separately.

Comparison of different spectral models

To quantify the spectral behaviors of the proton spectrum, we use a power-law (PL) function

F (E) = F0

(
E

TeV

)−γ
(6)

or a smoothly broken power-law (SBPL) one

F (E) = F0

(
E

TeV

)−γ [
1 +

(
E

Eb

)s]∆γ/s

(7)

to fit the data.

We first focus on the high-energy part of the spectrum from 1 TeV to 100 TeV. To properly account for

the systematic uncertainties, we adopt a set of independent nuisance parameters wj , which are multiplied

on the input model (41). The χ2 function is defined as

χ2 =

17∑
i=8

[
F (Ei)S(Ei; w)− Fi

σstat,i

]2

+

m∑
j=1

(
1− wj
σ̃sys,j

)2

, (8)

where Ei, Fi and σstat,i are the median energy, flux and statistical uncertainty of the measurement in the

ith energy bin, F (Ei) is the model predicted flux in corresponding energy bin, S(Ei; w) is a piecewise

function defined by its value wj in corresponding energy range covered by the jth nuisance parameter,

and σ̃sys,j =
√
σ2

ana + σ2
had/F is the relative systematic uncertainty of the data in such an energy range.

The last term in the right-hand-side is a Gaussian prior of the nuisance parameters. The energy range

of [1, 100] TeV is logarithmically divided into m pieces. According to the energy-dependence of the

systematic uncertainties in our work (Figure 5), we adopt m = 4 in the energy band of the fit which

corresponds to 2 nuisance parameters per decade of energies.

The fit to the PL model gives χ2/dof = 28.6/4, where dof means the number of degree-of-freedom.

For the SBPL model, we fix the smoothness parameter s to be 5.0 due to a lack of good constraint on

14



it, and get χ2/dof = 2.5/2. The results differ little for different values of s. The reduction of the χ2

value is about 26.1 for two more free parameters, suggesting a significance of ∼ 4.7σ in favor of the

SBPL model compared with the PL model. The fit of the SBPL model gives F0 = (8.68+0.50
−0.45) × 10−5

GeV−1 m−2 s−1 sr−1, γ = 2.60± 0.01, Eb = 13.6+4.1
−4.8 TeV, and ∆γ = −0.25± 0.07. The comparison

of the best-fit result (solid line) with the data is shown in Figure 5. We also test the fitting with m = 3

(or 5), and find that the fitting parameters change very little, while the significance in favor of the SBPL

model becomes 6.9σ (or 4.2σ).

We also fit the low energy part of the spectrum from 100 GeV to 6.3 TeV using the SBPL model to

address the spectral hardening feature. Again 4 nuisance parameters are assumed, and s is fixed to be

5.0 which is close to that obtained by fitting the AMS-02 spectrum (11). The fitting model parameters

are F0 = (7.58+0.36
−0.31) × 10−5 GeV−1 m−2 s−1 sr−1, γ = 2.772 ± 0.002, Eb = 0.48 ± 0.01 TeV,

∆γ = 0.173 ± 0.007. As comparisons, the fit to the PAMELA data gives (10) Eb = 0.232+0.035
−0.030 TeV,

γ = 2.850±0.016, and ∆γ = 0.18±0.06, and the fit to the AMS-02 spectrum gives (11)Eb = 0.34+0.09
−0.05

TeV, γ = 2.849+0.006
−0.005, and ∆γ = 0.133+0.056

−0.037, respectively. Our low-energy spectrum is slightly harder

than that measured by PAMELA and AMS-02. The break energy inferred from the DAMPE data is

roughly consistent with that of AMS-02, but is slightly higher than that of PAMELA. The ∆γ values of

these three results are consistent with each other. Nevertheless, we should note that the fitting functions

and energy ranges adopted in Refs. (10, 11) are not exactly the same as those in our work, and the

comparison of the detailed numbers should be done with caution.

Note added: During the final stage for the publication of this paper, the CALET collaboration re-

ported new measurements of the proton spectrum from 50 GeV to 10 TeV and confirmed the spec-

tral hardening feature found by other measurements (42). The lack of measurements above 10 TeV of

CALET, however, hampers a crosscheck of our main finding.
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Figure 1: The combined signal spectra of PSD for protons and helium nuclei. The left panel is
for BGO deposited energies between 447 GeV and 562 GeV, the middle panel is for BGO deposited
energies of 4.47− 5.62 TeV, and the right panel is for BGO deposited energies between 20 TeV and 63
TeV. The on-orbit data (black) are shown, together with the best-fit templates of simulations of protons
(blue), helium nuclei (green), and their sum (red). The vertical dashed lines show the cuts to select proton
candidates in this deposited energy range.
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Table 1. Fluxes of CR protons measured with DAMPE, together with 1σ statistical and systematic
uncertainties. The systematic uncertainties include those associated with the analysis procedure σana

(e.g., the event selection, the background subtraction, and the spectral deconvolution), and the energy
responses due to different hadronic models σhad.

〈E〉 Emin Emax F ± σstat ± σana ± σhad

(GeV) (GeV) (GeV) (GeV−1m−2s−1sr−1)
49.8 39.8 63.1 (2.97± 0.00± 0.14± 0.20)× 10−1

78.9 63.1 100.0 (8.43± 0.00± 0.40± 0.56)× 10−2

125.1 100.0 158.5 (2.38± 0.00± 0.11± 0.16)× 10−2

198.3 158.5 251.2 (6.64± 0.00± 0.31± 0.44)× 10−3

314.3 251.2 398.1 (1.89± 0.00± 0.09± 0.12)× 10−3

498.1 398.1 631.0 (5.39± 0.01± 0.25± 0.36)× 10−4

789.5 631.0 1000 (1.60± 0.00± 0.07± 0.11)× 10−4

1251 1000 1585 (4.81± 0.01± 0.23± 0.33)× 10−5

1983 1585 2512 (1.45± 0.01± 0.07± 0.13)× 10−5

3143 2512 3981 (4.45± 0.02± 0.21± 0.44)× 10−6

4981 3981 6310 (1.36± 0.01± 0.06± 0.13)× 10−6

7895 6310 10000 (4.06± 0.04± 0.19± 0.40)× 10−7

12512 10000 15849 (1.20± 0.02± 0.06± 0.12)× 10−7

19830 15849 25119 (3.35± 0.07± 0.17± 0.33)× 10−8

31429 25119 39811 (9.03± 0.26± 0.48± 0.89)× 10−9

49812 39811 63096 (2.47± 0.11± 0.15± 0.24)× 10−9

78946 63096 100000 (6.50± 0.40± 0.50± 0.64)× 10−10
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Figure 2: Proton spectrum from 40 GeV to 100 TeV measured with DAMPE (red filled dots). The
red error bars show the statistical uncertainties, the inner shaded band shows the estimated systematic
uncertainties due to the analysis procedure, and the outer band shows the total systematic uncertainties
including also those from the hadronic models. The other direct measurements by PAMELA (10) (green
stars), AMS-02 (11) (blue squares), ATIC-2 (7) (cyan diamonds), CREAM I+III (16) (magenta circles),
and NUCLEON KLEM (17) are shown for comparison. For the PAMELA data, a −3.2% correction of
the absolute fluxes has been included (43, 44). The error bars of PAMELA and AMS-02 data include
both statistical and systematic uncertainties added in quadrature. For ATIC, CREAM, and NUCLEON
data only statistical uncertainties are shown.
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Figure 3: Some key information for the proton spectrum measurement. (a) The charge selection
efficiency of protons versus incident energies for the GEANT FTFP BERT model. (b) The fraction of
helium (red open circles) and electron (blue filled dots) backgrounds in the proton candidate events as a
function of deposited energy. (c) Probability distribution of deposited energies in the BGO calorimeter
for different incident energies, for the GEANT FTFP BERT model. The color represents the fraction of
events in each energy bin. (d) Effective acceptance of protons versus incident energies for the GEANT
FTFP BERT model.
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Figure 4: Statistical and systematic uncertainties of the proton flux measurements.
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Figure 5: Comparison between the best-fitting of the proton spectrum from 1 TeV to 100 TeV with
the smoothly broken power-law function (solid line) and the DAMPE data.
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