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Abstract

In this work we expand upon the Tomographic Absorption Reconstruction and Density Inference Scheme
(TARDIS) in order to include multiple tracers while reconstructing matter density fields at Cosmic Noon (z ∼
2−3). In particular, we jointly reconstruct the underlying density field from simulated Lyα forest observations at
z ∼ 2.5 and an overlapping galaxy survey. We find that these data are synergistic, with the Lyman Alpha forest
providing reconstruction of low density regions and galaxy surveys tracing the density peaks. We find a more
accurate power spectra reconstruction going to higher scales when fitting these two data-sets simultaneously than
if using either one individually. When applied to cosmic web analysis, we find performing the joint analysis
is equivalent to a Lyman Alpha survey with significantly increased sight-line spacing. Since we reconstruct
the velocity field and matter field jointly, we demonstrate the ability to evolve the mock observed volume
further to z = 0, allowing us to create a rigorous definition of “proto-cluster" as regions which will evolve into
clusters. We apply our reconstructions to study protocluster structure and evolution, finding for realistic survey
parameters we can provide accurate mass estimates of the z ≈ 2 structures and their z = 0 fate.

Keywords: cosmology: observations — galaxies: high-redshift — intergalactic medium — quasars: absorption
lines — galaxies: halos — techniques: spectroscopic - methods: numerical

1. INTRODUCTION

Starting with the discovery by Gunn & Peterson (1965) of
the photo-ionized intergalactic medium (IGM), the absorp-
tion in the rest frame Lyα by intervening neutral hydrogen
in the spectra of luminous quasars, the so-called Lyα for-
est, has given crucial insights to the high redshift universe.
The power spectra of these fluctuations has been used to con-
strain exotic physics models (Viel et al. 2005, 2013) as well
as ΛCDM cosmology (Hernquist et al. 1996; Seljak et al.
2006; de Sainte Agathe et al. 2019), while individual fea-
tures of the Lyα flux1 have been used to constrain reioniza-
tion models (Becker et al. 2015; Fan et al. 2006) and find
cosmic structures (Wakker et al. 2015; Cai et al. 2017a).

In abstract, a sufficiently spatially dense collection of
quasars at high redshift could be used to reconstruct the
three dimensional map of the intergalactic medium, as first

bhorowitz@berkeley.edu

1 In this paper, the term ‘flux’ implicitly refers to the Lyα forest transmit-
ted flux.

discussed in Pichon et al. (2001) and Caucci et al. (2008).
However, the relative rarity of luminous quasars have made
making three dimensional maps of the flux field quite diffi-
cult (although see early attempts by Rollinde et al. 2003 and
D’Odorico et al. 2006). Recently, there has been increased
interest on tomographic reconstructions by also incorporat-
ing Lyα forest absorption features observed in UV-emitting
star-forming galaxies at z > 2, often referred to as ‘Lyman-
Break Galaxies’ (LBGs). The observed forest flux features
can be reconstructed in three dimensional space via a Wiener
filtering algorithm (Lee et al. 2014a) which can weight each
sight-line based on its noise characteristics and impose a
signal covariance based on the line of sight separations.

The ongoing COSMOS Lyman Alpha Mapping And To-
mographic Observations (CLAMATO) survey (Lee et al.
2018) has used 240 LBG sightlines covering a ∼ 600 square
arcmin footprint (a sightline density of 1455 deg−2), recon-
structing a 3D tomographic map of the 2.05 < z < 2.55 Lyα
forest. This has allowed the probing of the three-dimensional
(3D) structure of the optically thin IGM gas at z > 2 on
scales of several comoving Mpc. Another survey aimed at

mailto: bhorowitz@berkeley.edu
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IGM tomography is the Lyα Tomography IMACS Survey
(LATIS, Newman et al. 2020a), which has observed a wider
area than CLAMATO, albeit at slightly lower spatial sam-
pling.

Recently, Ravoux et al. (2020) carried out tomographic
Lyα forest reconstructions using data from the SDSS eBOSS
survey. As opposed to CLAMATO, which used sightlines
from both quasars and Lyman-break galaxies, the authors
used only quasar sightlines from eBOSS. This resulted in
a sightline density of 37 deg−2, but on a much larger foot-
print of 220 deg2. With a mean sightline separation of
13h−1 Mpc , the authors were unable to resolve individual
features of the cosmic web, but were able to identify large
protocluster candidates and voids.

The limited number of sight-lines within a given magni-
tude limit restricts the mean separation between sources and
therefore the scales which can be reconstructed accurately.
One possible approach to reconstruct smaller scales is to add
additional constraints on the reconstruction beyond the as-
sumed correlation function and spectroscopic noise proper-
ties used in direct Wiener Filtering. This was explored in
Horowitz et al. (2019a, , hereafter TARDIS-I), where the
authors created a dynamical forward model from the initial
density field (at z ∼ ∞) to the observed data. This was
then cast as a Bayesian inference problem and optimized us-
ing standard solvers. Applying this technique to mock cat-
alogs, TARDIS-I was found to outperform Wiener filtering
both in terms of flux map reconstruction and overall cosmic
web classification. However, as the Lyα flux saturates in ex-
tremely dense environments, there was significant residual
noise bias leading to an inability to accurately reconstruct
protoclusters in the observed volume. Porqueres et al. (2019)
utilized a Hamiltonian Monte Carlo solver with a strong cos-
mological prior to reconstruct the density field with a similar
forward model.

One possibility to improve Lyα forest reconstructions in
overdense small-scale regions is to use additional informa-
tion to jointly reconstruct the underlying density field. A nat-
ural choice for an additional probe is the observed 3D galaxy
field overlapping the reconstruction volume, much of which
will be collected incidental to any Lyα tomographic spectro-
scopic survey. These galaxy populations are expected to be
biased towards the more massive halos and provide a com-
plementary probe of the cosmic structures.

When incorporating both galaxies and Lyα flux within a
dynamic forward modelling framework, one would expect
synergy where both fields inform the reconstruction of each
other. When viewed within the peak-background split frame-
work (Sheth & Tormen 1999), we expect galaxies to fall
in dark matter halos which will collapse preferentially in
more dense environments (i.e. on the peak of long wave-
length modes). This would mean that the positions of galax-

ies should inform the positions of more diffuse structures (as
traced by the Lyα forest) and visa versa. Alternatively, within
a perturbation theory framework, one can view this as dy-
namical mode coupling (Jain & Bertschinger 1994; Crocce
& Scoccimarro 2006) which would allow one to infer the
relative power of longer wavelength modes based on obser-
vations of short wavelength modes (and visa versa).

This joint reconstruction takes on additional significance
due to upcoming surveys probing both the galaxy positions
and Lyα forest features over a wide sky area, including the
Subaru Prime Focus Spectrograph Subaru-PFS (PFS; Takada
et al. 2014a) and Maunakea Spectroscopic Explorer (MSE;
McConnachie et al. 2016). These telescopes are expected to
have IGM tomography programs similar in noise properties
and density to CLAMATO, but over a significantly wider area
of sky (∼ 50× in the case of PFS, or 12-15 deg2). The PFS
program in particular is planned to specifically target galaxies
in the coeval region with the tomography program in order
to study the interplay between galaxy properties and cosmic
structures (see the Appendix in Nagamine et al. 2020).

Farther into the future, thirty-meter class facilities such as
the Thirty Meter Telescope (TMT; Skidmore et al. 2015),
Giant Magellan Telescope (GMT; Johns et al. 2012), and
European Extremely Large Telescope (EELT; Evans et al.
2014), have the potential to drastically improve sensitivity for
faint background sources allowing for significant increases
in sight line density and probe spatial scales of ∼ 1 cMpc
and below (Japelj et al. 2019). The proposed 6.5m class
MegaMapper facility (Schlegel et al. 2019), on the other
hand, would push into the full-sky regime to obtain spec-
tra for ∼ 108 galaxies between z = 2 and z = 5 over a
hemisphere, which would immediately enable joint Lyα to-
mography and galaxy analysis over ∼Gpc volumes.

Performing this joint reconstruction within a forward mod-
eling framework has a number of significant advantages
for cosmological analysis. Assuming no primordial non-
gaussianity (as suggested in the latest Planck cosmologi-
cal analysis (Planck Collaboration et al. 2018)) the power-
spectrum of the initial density field should provide a loss-
less statistic, capturing all possible cosmological informa-
tion. The entire family of higher order correlations and topo-
logical measures (such as three-point functions, density peak
counts, voids, Minkowski functionals, etc.) arise due to grav-
itational evolution of a density field described by this primor-
dial power spectrum. This encapsulation of a wide variety of
cosmological probes has motivated a number of works in the
field (, e.g., Seljak et al. 2017; Modi et al. 2018).

Beyond cosmological analysis, reconstructions from the
Lyα forest and galaxy field data can help inform the galaxy
- cosmic structure relationship at high redshift. One of the
original goals of the CLAMATO survey was to map out pro-
toclusters and voids in their volume. Stark et al. (2015a)
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pointed out, using N-body simulations and mock Lyα for-
est data, that the properties of high-redshift protoclusters ob-
served with IGM tomography, such as their spatial extent,
can be linked to properties of their virialized z = 0 clus-
ter descendants (but see Cai et al. 2016, Cai et al. 2017b, and
Miller et al. 2019 for an alternative approach). This technique
was applied by Lee et al. (2016) to study a z ∼ 2.4 proto-
clusters detected in early CLAMATO data. However, accu-
rate initial density reconstructions from joint galaxy-Lyα for-
est data allow the possibility of directly modelling the grav-
itational evolution of individual observe high-redshift proto-
clusters all the way to z = 0 and the fate of their constituent
galaxies. Analogous techniques could also be used to study
the evolution of individual void regions detected in IGM to-
mographic maps (Stark et al. 2015b; Krolewski et al. 2018).

Direct comparisons between galaxy positions and their
Lyα forest environment have also been an active avenue for
investigation in recent years (Font-Ribera et al. 2013; Mukae
et al. 2017; Bielby et al. 2017; Momose et al. 2020a,b), in an
effort to use the Lyα forest flux as a proxy for the underly-
ing density field. The assumption of Lyα flux as a density
tracer is, however, often complicated by hydrodynamical and
radiative effects that can complicate the relationship between
matter density and Lyα flux, as well as the fact that it is an
exponential redshift-space tracer of the density field. Recon-
struction methods like TARDIS-I, on the other hand, offer
a way to compare galaxy properties with their surrounding
large-scale (>1 Mpc) environments as defined directly by the
matter density field. At the same time they also offer, at least
in principle, a framework to simultaneously explore uncer-
tainties in the flux-density mapping although we leave such
investigations to future work.

In this work, we explore the possibilities of a joint re-
construction between an overlapping Lyα forest and galaxy
spectroscopic survey within the forward modelling frame-
work. In Section 2 we summarizes additions and changes
to the technique described in (Horowitz et al. 2019a). In Sec-
tion 3, we explain our mock generation procedure, in par-
ticular how we populate the density field with galaxies. We
model our number densities and noise properties off of the
upcoming Prime Focus Spectrograph. In Section 4, we show
how the joint reconstructions improve the accuracy of the
recovered density field and cosmic web classifications. In
Appendix A, we demonstrate that our reconstruction quality
does not deteriorate appreciable when applied to mock cata-
logs including fully modeled hydrodynamical effects.

For our mock catalogs, we use the best fit cosmology from
Planck Collaboration et al. (2016).

2. METHODOLOGY

For a review of the optimization framework, see Horowitz
et al. (2019a, hereafter “TARDIS-I”), as well as more general

works (Seljak et al. 2017; Horowitz et al. 2019b). Here we
specify how we expand our model to include galaxy fields
and perform a joint optimization.

2.1. Joint Likelihood

The goal of our likelihood analysis is to maximize the com-
bined likelihood of a prior term, a galaxy field term, and a
Lyα term. This can be expressed as likelihood on the initial
density field, δi conditional on the observed flux, δF,obs, and
observed galaxy field, δg,obs. This can be expressed as the
sum of three individual log-likelihoods, a composite likeli-
hood (Lindsay 1988; Varin et al. 2011), as

Lcomb(δi|δg,obs, δLyα,obs) = Lprior(δi)

+Lgal(δi|δg,obs) + LLyα(δi|δLyα,obs). (1)

Here, we choose Lprior to enforce positivity of the power-
spectra band-powers, but we do not impose any strong cos-
mological constraint on the fields. In full generality, we could
also include a cross term between the galaxy field and the
Lyα forest field, for example if one expects strong feedback
effects where the galaxies effect the observed flux field. At
the scales of interest in this work (∼ 1h−1 Mpc ) there is no
indication of a strong proximity effect nearby galaxies, but
it could be included e.g. if known quasars are in the volume
(see Schmidt et al. 2019).

2.1.1. Lyα Likelihood

The Lyα likelihood term is a comparison between the ob-
served Lyα forest flux and the reconstructed flux. This re-
constructed flux is derived from the initial density field via
a four step process, which is identical to that in TARDIS-I.
The initial density field is evolved to the target redshift via
flowPM, a GPU implementation of the fastPM framework
(Feng et al. 2016) The evolved density is transformed to Lyα
optical depth, τ , via the fluctuating Gunn Peterson approxi-
mation, τ = Aδγ , with parameters A = 0.226 and γ = 1.5.
The optical depth is transformed to red-shift space using the
evolved velocity field at the target redshift. The optical depth
is transformed to flux, F = exp(−τ), and the observed lines
of sight are selected.

We can be expressed the log-likelihood in the Gaussian ap-
proximation as a chi-squared comparison of the observed flux
with our forward modelled flux

LLyα(δi|δLyα,obs) =
∑
n

(δLyα,obs(n)− δδLyα,rec(n))2

σobs(n)2
, (2)

where the sum over n is over all individual pixel data and
σobs(n) is a noise level estimate from the spectra data reduc-
tion. We could also in full generality include off-diagonal
elements in this likelihood to model additional effects such
as continuum fitting errors.
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2.1.2. Galaxy Likelihood

For the reconstruction we want to roughly take into ac-
count the mapping from density to galaxies. To fully model
this would require a differentiable (and fast) friends-of-
friends halo finder and a framework to deal with the stochas-
ticity of the galaxy population model. For simplicity, we will
instead use a linear and quadratic bias term to model our real
space galaxy field given the matter field at each step of the
reconstruction. We will work in Lagrangian space , i.e.

δg(x) = b1δL(x) + b22δ
2
L(x). (3)

The parameters b1 and b2 could be fit jointly, or calibrated via
fitting the biased matter power spectra at some fiducial cos-
mology to the observed galaxy field. In addition, one could
use a variant of Lagrangian halo bias estimators as explored
in Modi et al. (2017). In addition to this model, we explored a
more standard Eulerian bias scheme, but found better agree-
ment across a range of scales with a Lagrangian bias (see
Desjacques et al. 2018 for a thorough description of biasing
schemes).

In analogy with the flux field described in Section 2.1.1, we
convolve the galaxies with the peculiar velocity field to map
to redshift space for comparison with the data. Here we only
use objects with a spectroscopically confirmed redshift in our
likelihood, and assume no error on that redshift. In prac-
tice, galaxy redshift errors (. 100 km s−1 or . 1 h−1 Mpc )
from near-infrared spectroscopy are small compared to our
forward model particle resolution thus we expect it to have
minimal effect on our final reconstruction.

We can compare our reconstructed galaxy field to the true
galaxy field through a simple χ2 calculation with Poisson
error-bars derived from the mock observed number counts.
For a real survey, the noise covariance would also include
a sizable contribution from the selection function, derivable
from the spectrograph properties and survey strategy.

2.2. Changes to Optimization and Forward Model

We have also further optimized our reconstructions with
the following additional changes and refinements in compar-
ison with the method first presented in TARDIS-I.

1. Our code has been completely rewritten in TensorFlow,
allowing future easy integration with machine learning
techniques and allowing optimization to utilize Graph-
ical Processing Units (GPUs) for faster optimization.
The underlying optimization is still performed with
SciPy’s LBFGS implementation.

2. In order to implement our code on a GPU, we are us-
ing FlowPM Modi et al. (2020)2 for our dynamical for-
ward model. This is a version of FastPM (Feng et al.

2 https://github.com/modichirag/flowpm/tree/recon

Figure 1. Calibration of galaxy bias by adjusting parameters b1 and
b2 of the matter density field power spectra to match the observed
galaxy field power spectra. While agreement breaks down at small
scales, this is well below the ∼ 2.0h−1 Mpc scale of interest in
this work.

2016) written in TensorFlow to allow easy automatic
differentiation since the forward model is a composi-
tion of analytical functions.

3. We have adjusted our optimization to perform a multi-
scale optimization where at each step in the optimiza-
tion we smooth the resulting density field in steps, pro-
gressing from 5 Mpc/h smoothing to no smoothing.
This is inspired by work done in Modi et al. (2018).
The smoothing range we use was found through em-
pirical testing to give the most accurate reconstruction.

4. Changes in the reconstruction implementation have
significantly reduced reconstruction time, allowing us
to reconstruct larger volumes. In this work we ana-
lyze L = 128h−1 Mpc cubes as opposed to L =

64h−1 Mpc in Horowitz et al. (2019b), and each full
reconstruction takes approximately 10 minutes on a
single NVIDIA Tesla V-100 GPU3.

3. MOCK DATASETS

In this paper, we focus our reconstruction efforts on mock
survey data that simulate the planned Galaxy Evolution Sur-
vey to be carried out as part of a planned Subaru Strategic
Program (SSP) on the 8.2m Subaru Telescope’s upcoming
2400-fiber Prime Focus Spectrograph (Sugai et al. 2015).
The overall PFS Galaxy Evolution Survey is planned4 to

3 Memory considerations limit larger volumes at the same particle reso-
lution, but in practice large volumes can be reconstructed by concatenating
smaller subvolumes with overlap to reduce edge effects.

4 Note that while Takada et al. (2014b) outlines an early version of this
survey, it is no longer up-to-date and pre-dates the PFS IGM tomography
program.

https://github.com/modichirag/flowpm/tree/recon
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observe three separate extragalactic fields of ∼ 4 − 5 deg2

each, with multiple visits to build up ∼ 350, 000 medium-
resolution spectra (covering 380nm-1.25µm) over multiple
target classes ranging from 0.7 . z . 6. Of pertinence to us
are the IGM tomography background and foreground com-
ponents designed to cover the 2.2 < z < 2.7 redshift range5,
which we will aim to simulate in the subsequent mock recon-
structions.

For the density field reconstructions, we run high reso-
lution nbody simulations using a 10-step FastPM simula-
tion with a particle resolution of 2563 over a (128 Mpc/h)3

volume. FastPM has quickly become a standard tool for
large mock catalog generation (Modi et al. 2019a) and has
been demonstrated to reconstruct the statistical properties of
other simulation methods with sufficient stage number (Feng
et al. 2016). As we will not be studying small scale (.
500 kpc) features within individual galaxy halos, fastPM pro-
vides a straightforward tool which can be easily interfaced to
nbodykit to analyze the properties of group- and cluster-sized
halos.

To populate our simulation with galaxies, we use the
nbodykit friends-of-friends algorithm with linking length
0.2 and minimum particle number of 5 in order to find ha-
los. We then use the Zheng et al. (2007) halo occupancy
density model with α = 0.5 and σlogM = 0.40 to populate
the halos with galaxies using halotools (Hearin et al. 2017).
From this catalog we can then model a realistic survey by
uniformly down-sampling those galaxies, combining cen-
trals and satellites with equal weight, to match the expected
number density of our desired survey. We use the expected
number density from the ‘IGM foreground’ target class of the
Subaru PFS Galaxy Evolution Survey as our fiducial model,
which corresponds to a projected density of 1000 galaxies
per square degree coeval with the IGM tomography redshift
of 2.1 < z < 2.6. This is equivalent to a comoving number
density of ngal ≈ 4.5 × 10−4 h3 Mpc−3 within the redshift
range. Within our V = (128 h−1 Mpc )3 simulation volume,
we therefore assume a sample of 1000 foreground galaxies.

We then apply a redshift-space distortion along the line of
sight based on the velocity of the underlying halos plus veloc-
ity dispersion. Note that at high redshift the relative impact
of these distortions is small as most structure is still in the
early stage of collapse and has relatively small line of sight
velocity.

During our reconstruction we do not explicitly model in-
dividual galaxies but instead use them as a field. Computing
the power spectra of the observed galaxy field, we approxi-
mately match the shape and amplitude of the matter power
spectra with the choice of b1 = 0.301 and b2 = 1.05 (match-

5 See the Appendix in Nagamine et al. (2020) for more details on the PFS
IGM tomography program.

ing up to k ≈ 3.0 (h / Mpc)) for the matter field. We show
this comparison in Figure 1.

We infer the hydrogen Lyα optical depth for the tomog-
raphy using the Fluctuating Gunn Peterson Approximation
(FGPA), with T = T0(ρ/ρ̄)(γ−1) with slope γ = 1.6

(Horowitz et al. 2019a; Lee et al. 2015). This is then redshift
space distorted and exponentiated to generate the underlying
flux field. This approximation, as opposed to a fully hydro-
dynamical simulation, is justified in Appendix A where the
same reconstruction is performed on a hydrodynamical sim-
ulation. We do not use this field in this main work as we
have found that the reconstruction quality does not apprecia-
bly suffer when using the fully hydrodynamical simulations,
while the dark matter only n-body simulations allow direct
comparison to previous works.

We then compute the flux field from the optical depth,
F = exp(−τ). The flux field varies from 0 to 1, with 0
being complete absorption and 1 being complete transmis-
sion of the background spectrum. We select random X-Y
coordinate pairs, and take the flux along the Z-direction as
one mock skewer. We select 2700 such skewers within our
L = 128h−1 Mpc volume, in order to achieve the average
sightline separation of the proposed PFS IGM tomography
survey of ∼ 2.4 h−1 Mpc . Note that it may seem counter-
intuitive that the number of Lyα forest skewers outnumbers
the number of coeval galaxies (1000) within the same as-
sumed survey, but this is due to the fact that each Lyα for-
est sightline probes a redshift range of ∆z ∼ 0.4 − 0.5.
Therefore, within our simulation box which corresponds to
∆z = 0.14 along the line-of-sight, Lyα forest sampling
comes from a relatively wide range of background source
redshifts (see Lee et al. 2014b).

We follow the procedure detailed in Horowitz et al.
(2019a) to add pixel noise to each mock skewer. In sum-
mary, each skewer is assigned a Gaussian noise level, which
is constant across the skewer. To determine each skewer’s
noise level, we follow Stark et al. (2015a) and Krolewski
et al. (2018)), by drawing an S/N ratio from a power-
law distribution. Between a minimum and maximum S/N
(S/Nmin and S/Nmax), the distribution follows a power-
law: dnskewer/dS/N = S/Nα, with α = 2.7. To replicate
the noise properties of the Prime Focus Spectrograph, we
then assign a minimum/maximum S/N of S/Nmin = 2, and
S/Nmax = 10. Finally, we draw values for each pixel in
the skewer from a Gaussian distribution with a standard de-
viation equaling the noise level, and add those values to the
flux.

In order to model the error resulting from misfitting a back-
ground quasar or galaxy’s spectral flux continuum, we apply
the continuum error model of Krolewski et al. (2018) to the
mock skewers. The flux values within each skewer is offset
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Figure 2. Average z = 2.5 density field across a 10 h−1 Mpc slab projections through the y axis for the three reconstructions, with the true
density field for comparison. The joint reconstruction clearly yields a better match to the true density field than using the Lyα forest and galaxy
data individually. These density fields were smoothed at 2.0h−1 Mpc .

such that the final observed flux is

Fobs =
F

1 + δc
, (4)

with δc being a value drawn from a Gaussian distribution
with width

σc =
0.205

S/N
+ 0.015. (5)

We emphasize that this is a separate source of error from the
pixel noise; σc is added to the likelihood noise array σobs, but
is not included in the pixel noise level used to draw noise for
each pixel in a skewer.

4. RESULTS

We apply our updated TARDIS algorithm (hereafter
“TARDIS-II”), as described in Section 2 to the mock cata-
logs described in Section 3. We explore a number of different
properties of the reconstruction, both in terms of the mode
reconstruction properties as well as in terms of z = 2.4 cos-
mic web classification. Since we are solving for the initial
density fields that give rise to those structures, our recon-
struction also will give us the velocity field at z = 2.4 and
allow us to further evolve our particles to z = 0.0.

4.1. Density Reconstruction

We qualitatively show the matter density fields of our dif-
ferent reconstructions in Figure 2. Visually, the Lyα forest
reconstructions does a good job of recovering the filamen-
tary structures at close to mean density, but at overdensities
the amplitude of the recovered structures is inaccurate. This
is due to the known effect that the Lyα forest saturates at
relatively mild overdensities, therefore making overdensities
ill-constrained. The galaxy-only reconstructions, in contrast,
appear as peaks in the matter density field where galaxies
trace strong overdensities, but does not recover more average
densities and underdensities. The joint reconstructions using
both Lyα forest and galaxy information, on the other hand,
yields both a good recovery of the overdensities as well the
lower-density structures.

To assess the quality of our reconstructions, we first di-
rectly compare, on a cell-by-cell basis, the real space matter
density field between the simulated truth and our reconstruc-
tions for each data combination. This is shown in Figure 3.
The joint reconstruction has significantly less bias and vari-
ance in the recovered matter field than either individual re-
constructions. We can quantify the variance properties with
the Pearson correlation coefficients, finding [0.72, 0.56, 0.54]
for the joint, Lyα forest, and galaxy reconstructions respec-
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tively — a coefficient of 1 would indicate a perfect density
reconstruction. The density fields in the joint reconstructions
clearly have a more linear relationship with the true density
field.

To measure the quality of our reconstruction with the vari-
ety of datasets as a function of scale we use two-point statis-
tics to quantify the fields. We use the reconstructed auto
power spectra, PRR, and cross-correlation coefficient defined
in terms of the crosspower (PRT ) and auto-power (PTT for
the truth) as;

rc =
PRT√
PRRPTT

. (6)

We show the auto-power in Figure 4 and for the cross-
correlation coefficient in Figure 5. We find a compara-
ble agreement across a range of scales, with the joint data-
set having the best reconstruction across all scales, outper-
forming either probe individually. This suggests that there
is a synergistic reconstruction, where our dynamic forward
model is able to use the gravitational phase coupling infor-
mation to inform the final optimized field.

Because TARDIS-II chooses a random Gaussian random
field as its starting point, we expect to find some variance in
a reconstruction for a particular dataset. In order to quantify
the level of this variance, we run TARDIS-II 30 times on the
mock catalogs with a random starting point, and calculate the
cross-correlation coefficient for each run. We then consider
the maximum difference in rc across runs for each scale,
∆rc(k). For each individual probe, we find that ∆rc remains
at the ∼ 10−2 level across all scales. The joint dataset has
a ∆rc which is smaller than each individual probe, at the
∼ 5 · 10−3 level. This suggests that the joint reconstruction
has a synergistic effect for both reconstruction quality, and
reconstruction variance.

4.2. Cosmic Web Classification

For a quantitative comparison of the cosmic web recov-
ery in TARDIS-II, we use the eigenvalues and vectors of
the pseudo-deformation tensor as described in Lee & White
(2016); Krolewski et al. (2017) and inspired by work in Bond
et al. (1996); Hahn et al. (2007); Forero-Romero et al. (2009).
This tensor has a strong physical interpretation within the
Zel’dovich approximation (Zel’dovich 1970) and, while there
exist other cosmic web classification algorithms (see sum-
mary in Cautun et al. 2014), we choose to use the eigenvec-
tors/values of the deformation tensor since it provides a con-
tinuous field which can be compared easily point-wise. Un-
like past work, such as Lee & White (2016); Krolewski et al.
(2017), we will be working directly with the reconstructed
density field rather than in flux. All the density fields used in
our comparisons will be smoothed with a R = 2.0 h−1 Mpc

Gaussian kernel.

The (pseudo-)deformation tensor is the Hessian of the un-
derlying gravitational potential,

Dij =
∂2Φ

∂xi∂xj
, (7)

or equivalently in Fourier space in terms of the density field,
δk, as

D̃ij =
kikj
k2

δk. (8)

The eigenvectors of the deformation tensor relate to the
principle curvature axes of the density field at each point,
corresponding in the Zel’dovich approximation with the prin-
ciple inflow/outflow directions. The corresponding eigenval-
ues determine if the net flow is inward or outward. Points
with three eigenvalues above some nonzero threshold value
λth (as in Forero-Romero et al. 2009) are classified as nodes
(i.e. (proto)clusters), two values above λth are filaments, one
value above λth are sheets, and zero values above λth are
voids. The use of this thresh-hold value allows for the re-
scaling of the relative number of each cosmic web type and
allowing comparisons without an additional complication of
overall normalization. Note that we could use the recon-
structed velocity field to determine net inflow and outflow in
a more physically accurate sense (i.e. beyond the Zel’dovich
approximation), but keep the deformation tensor approach to
maintain ease of comparison with other works (such as the
Wiener filter). We follow past work (Lee & White 2016;
Krolewski et al. 2017; Horowitz et al. 2019a) and define our
threshhold value λth for each reconstruction such that the
voids occupy 21% of the total volume at z = 2.5 (see also
Cautun et al. (2014)).

We calculate the deformation tensor on each reconstructed
density field as well as the true density field, smoothed at 2.0
h−1 Mpc with a Gaussian kernel. We then choose a threshold
λth for each reconstruction in order to keep the void fraction
to 21%. We show the qualitative results of this analysis in
Figure 6 for a given slice through the reconstruction, where
one can see visually the improved reconstruction of cosmic
structure with the joint analysis. A quantitative volume over-
lap comparison is shown in the confusion matrix in Figure
7, as well as common misclassifications. When weighted
by volume type, we find agreement of [68%, 63%, 58%] for
exact match in classification for Joint, Lyman-α forest, and
Galaxy reconstructions, respectively. Significant misclassifi-
cation, defined as classifications off by more than one eigen-
value sign (i.e. nodes mistaken as a sheet or void), are rare
and comprise only [1.1%, 2.0%, 3.3%] fraction of the volume
for the joint, Lyα forest and galaxy reconstructions respec-
tively. This high-quality cosmic web reconstruction should
allow PFS to confidently study the variation of galaxy proper-
ties with respect to their cosmic web environment at z ∼ 2.5

(or lack thereof, e.g. Martizzi et al. 2019).
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Figure 3. Scatter plot showing the reconstructed densities in the simulation volume in comparison with the the true density in each grid cell.
The joint reconstruction clearly gives a more accurate and unbiased reconstruction of the density field compared with the Lyα and galaxy
reconstructions alone. All the densities have been smoothed on a 2 h−1 Mpc scale, which will be used for the later cosmic web analysis.

Table 1. Cosmic Web Recovery at z = 2.5 (Eulerian Comparison)

Mock Data
Pearson Coefficients Volume Overlap (%)

λ1 λ2 λ3 Node Filament Sheet Void

Joint 0.853 0.796 0.708 51 73 70 62
Lyα 0.771 0.718 0.613 46 70 65 58
Galaxy 0.746 0.635 0.518 37 58 58 58

10 1 100

k (h 1Mpc)

100

101

102

103

P(
k)

Joint
Ly  Forest
Galaxy
Truth

Figure 4. Power spectra of the reconstructed fields in comparison
to the true power spectra at z = 2.5. Note that while Lyα forest and
galaxies-only reconstructions have a significant excess of power at
mid/small scales, the joint analysis has only a mild excess.

In Horowitz et al. (2019a), we had studied the possibility
of tracking the trajectories of coeval z ∼ 2.5 galaxies to their
z = 0 environments. While we do not explicitly perform
the same analysis here, on the basis of the superior cosmic
web recovery of the joint reconstruction method we estimate

10 1 100

k [h Mpc 1]

10 1

100

r c
(k

)

Joint
Ly  Forest
Galaxy

Figure 5. Correlation coefficient defined in Equation 6, showing
agreement between the two fields as a function of scale at z = 2.5.
Complete agreement would correspond to an rc = 1. Each individ-
ual probe has a regime of scale with better reconstruction quality;
galaxies appear to reconstruct small scale features while Lyα forest
is able to reconstruct the largest modes.

that ∼ 50% of the z ∼ 2.5 galaxies can be predicted to their
correct z = 0 environment.
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Figure 6. Cosmic Web Structures from a single 1 h−1 Mpc slice through our volume. Dark blue indicates node, light blue indicates filament,
green indicates sheet, and yellow indicates void regions. Qualitatively, the joint reconstruction better reconstructs the topology of the web.
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Figure 7. Confusion matrix for cosmic structures; numbers on the diagonal the fraction of each true cosmic structure correctly identified by the
reconstruction, while those on the diagonal reflect the faction of each structure misidentified. The joint reconstruction appears to outperform
either field individually across all cosmic structure types.

We can also study the alignment of the reconstructed cos-
mic web with the true cosmic web via cell-by-cell com-
parison of the characteristic eigenvectors of the pseudo-
deformation tensor. Matching the direction of the eigenvec-
tors is particularly important for intrinsic alignment studies,
where the direction of the filament is oriented along ê3 (e.g.,
Forero-Romero et al. 2014). Figure 8 shows the dot product
between the true and reconstructed eigenvectors, finding that
the joint analysis provides substantial improvement in the

recovery of the eigenvectors. In ∼ 80% of the grid cells,
the recovered ê1 and ê3 are aligned to within cos θ > 0.9

of the true eigenvectors. This is comparable to the accuracy
forecasted by Krolewski et al. (2017) for a TMT-like Lyα
forest-only survey using Wiener filtering, although note that
in this paper we actually adopt smaller smoothing scales
(2 h−1 Mpc vs 4 h−1 Mpc ). Note that ê1 and ê3 has similar
recovery, which has been attributed to the primary orien-
tation for filaments and sheets respectively, while ê2 has a
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Figure 8. Cosine of the angle between the reconstructed eigenvectors and true eigenvectors of the density pseudo-deformation tensor. Random
orientations would correspond to the black dotted line, while complete agreement would correspond to all density in the far right bin (i.e.
cos θ = 1). The galaxy reconstructions perform considerably worse than the Lyα forest since it doesn’t properly recover filamentary structures,
but the joint reconstruction significantly outperforms either probe individually.

more ambiguous geometric interpretation and worse recov-
ery. This therefore bodes well for the ability of Subaru PFS
to constrain intrinsic alignments between the galaxies and
the underlying cosmic web during the ‘Cosmic Noon’ epoch
of z ∼ 2 − 3 (e.g., Codis et al. 2018), especially since
the survey will deliver both the Lyα forest sightlines and
foreground galaxy sample over a large volume.

4.3. Cluster and Protocluster Reconstruction

A common application of Lyα tomography is the study of
massive overdensities, such as galaxy (proto)clusters, at high
redshift (as highlighted in works such as Lee et al. 2018;
Mukae et al. 2020; Newman et al. 2020b; Ravoux et al.
2020). In this section we examine various statistics related
to the reconstruction characteristics of the TARDIS-II tech-
nique to our mock catalogs.

4.3.1. Cluster Reconstruction

Since we have no prior on the underlying matter power
spectrum, the lowest order statistic to check is the distri-
butional qualities of the reconstructed massive halos in the
form of a halo mass function. We use a friends-of-friends
halo finder on our resulting particle positions at z = 0 and
z = 2.5, with linking length of 0.2. In Figure 9, we show
the halo mass function for the three reconstructions in com-
parison to the truth. For the joint reconstruction we find the
mass function is consistent with the truth at M > 1012.5M�,
indicating very good agreement across a wide range of mass
scales of astrophysical and cosmological interest, while for
either galaxies or Lyα alone there are significant residual bi-
ases.

4.3.2. Protocluster identification and reconstruction

Although we are reconstructing the density and velocity
field using z = 2.5 mock observables, we can further evolve
the resulting fields to z = 0 to provide a rigorous definition of
“proto-cluster" as the progenitor of modern-day galaxy clus-
ters. In this case we will take any halo identified as a “cluster"
at z = 0.0 by our friends-of-friends halo-finder and identify
the corresponding particles at z = 2.5 to define our proto-
cluster region. We show projection plots of the most massive
halos in our reconstructions in Figure 11. These show the
z = 2.5 real-space dark matter density and redshift-space
flux fields, as well as the evolved z = 0.0 late time structure
of these clusters. To compare masses of individual identified
clusters at z ∼ 2.5 we need to match analogous structures
from our reconstructions and the simulated truth. While in
abstract it is possible to perform this analysis with the friends
of friends halo catalog used above, in practice there is some
uncertainty due to the variation in the sub-structure within
the halo causing slightly different halos to be identified (i.e.
one large halo in the mock could be identified as two adjacent
halos in the reconstruction, or vice-versa). To correct for this
effect, we calculate protocluster mass by summing over the
z = 2.5 particle number within ten times the halo radius
of each z = 0 halo (i.e. an adjusted spherical over-density
mass) at the z = 0 Eulerian position. The choice of this
radii was chosen to allow slight shifts in real-space position
between the reconstructed and true halo positions. We show
the protocluster mass recovery of the reconstruction in Fig-
ure 10. This indicates good agreement across a wide range of
masses with little residual bias except at the very high mass
end, which suffers from small-number statistics. This plot
could be roughly compared to Figure 9 in Lee et al. (2016),
which included additional calibrations to determine a “tomo-
graphic mass." They found roughly a factor 2 wider spread in
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Figure 9. Corresponding z = 2.5 halo mass functions for the three
reconstructions found via friends of friends halo finding. Black box
represents the true halo mass function, while error bars are Poisso-
nian. The joint reconstruction yields a halo mass function that is
consistent with the true distribution at M > 1012.5M�.

calculated cluster mass compared to our approach, although
this did not include the galaxy field information.

5. CONCLUSION

In this work we have demonstrated the possibility of jointly
reconstructing a density field from multiple disjoint tracers
using a maximum likelihood framework. By combining a
z ∼ 2.5 Lyα forest survey and an overlapping galaxy cata-
log that mock up the upcoming Subaru PFS Galaxy Evolu-
tion Survey, we have shown that it is possible to reconstruct
a more accurate 3D map than either one individually. We
attribute this reconstruction quality to the multi-scale prop-
erties of our different unique tracers. Throughout all metrics
we analyzed (power-spectra, cross-power, cosmic structure
classification, and halo mass function) we found the joint
optimization provides higher fidelity and less biased recon-
structions. In light of upcoming surveys with overlapping
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Figure 10. Comparison of the 5000 most massive identified z =
2.5 protoclusters in the joint reconstructed volume, as identified by
the predicted z = 0.0 cluster positions, with the corresponding vol-
ume in the true field. Note that this mass is spherical overdensity
mass, as opposed to FOF mass in Figure 9.

Lyα forest information and galaxy spectra, these joint anal-
yses seem like a promising way to extract the optimal infor-
mation.

In this work we use a simple biasing scheme to assign
galaxies to the density field in our forward model. A more
physical approach may be possible by using a more nuanced
differential model to identify halos, such as a neural network
as done in Modi et al. (2019b), and populate them accord-
ing to a halo occupancy density model. This latter step is
non trivial as it requires a differentiable stochastic model, but
work in this direction is ongoing. However, it is useful to
note that even with this extremely simple model we are able
to achieve surprisingly accurate reconstructions of the cos-
mic web despite the sparse number densities used. In addi-
tion, more accurate object-by-object bias estimates could be
extracted from spectra and photometry to better inform our
reconstructions within the current framework.

Alternatively, instead of foreword modeling the HOD
model, one could use a more nuanced biasing schemes such
as that done in Kitaura et al. (2019); Ata et al. (2020). In
these works a non-linear polynomial bias is used in La-
grangian space as well as a non-local tidal field bias encoded
in the displacement fields to map the galaxy tracers from
the Eulerian to the Lagrangian frame. As long as the bias
model is a differentiable function of the initial density field,
it could be included in TARDIS. While not implemented in
this work, it is also possible to jointly optimize for these bias
parameters while solving for the initial density field. Note
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(a) M0 = 7.3× 1014M� cluster

(b) M0 = 6.2× 1013M� cluster

Figure 11. Reconstructions of protocluster regions as identified by their predicted z = 0 particle locations, projected over a 20 h−1 Mpc box
in the line of sight direction. Clusters are categorized by their friends-of-friends halo mass at z = 0, M0, and the same Eulerian region of space
is displayed at z=2.5 in flux and density. In the top row, the positions of observed galaxies are shown as white dots and Lyα lines of sight are
shown as red crosses. (a); shows the most massive cluster in our mock volume, while (b) shows a more typical halo.

that this will likely introduce degeneracies which would re-
quire additional consideration, possibly including using a
sampling-based optimization method.

Similarly, we assume the Fluctuating Gunn Peterson Ap-
proximation to model the Lyα forest in our simulations,
which is known to break down in massive environments.
(Sorini et al. 2018) While we explore the impact of these
deviations briefly in Appendix A, finding the effect on cos-
mic structure reconstruction small, for more futuristic po-

tential surveys (i.e. TMT/GMT/EELT) it could be a sig-
nificant source of error. In addition, a more detailed study
of reconstructed cluster interiors would likely show signifi-
cant systematic deviations when assuming FGPA. Depend-
ing on the application, a more nuanced model could be im-
plemented to map from dark matter to hydrodynamical quan-
tities; higher order analytical approximations, gradient based
methods (Dai et al. 2018), or deep learning methods (i.e.
Thiele et al. (2020)).
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It is interesting to note that we are able to get high fidelity
reconstruction quality through using an “off the shelf" opti-
mization scheme within SciPy’s optimizer framework (Vir-
tanen et al. 2020). While in this work we did include an an-
nealing scheme which improved reconstruction of large scale
modes, this did not require any fine tuning to get satisfac-
tory reconstruction quality, and wasn’t used in TARDIS-I, the
earlier iteration of our algorithm. Related techniques using
Hamiltonian Monte Carlo for Lyα flux reconstruction have
also been developed (Porqueres et al. 2019, 2020) but this
approaches have significantly increased computational costs
and it is currently unclear what benefits there are compared
to an optimization approach for cosmic web recovery.

These reconstructions also provide a possible powerful
cosmological tool as we are reconstructing the initial density
field corresponding the observed region which should con-
tain all cosmological information. This aspect was a driving
motivator for earlier interest in such reconstructions (Seljak
et al. 2017), and would be possible to do with our reconstruc-
tions as well. Residual biases in Figure 4 could in theory be
removed and associated covariance calculated within a re-
sponse formalism (see Seljak et al. (2017); Horowitz et al.
(2019b)). We leave this potentially promising avenue to fu-
ture paper(s).

It is important to stress that the late time reconstructions
are constrained to follow statistical properties of ΛCDM
by nature of the forward model. For example, void den-
sity/velocity profiles would still be forced to follow the stan-
dard cosmological model. Deviations from this model (mas-
sive neutrinos, modified dark energy, etc.) would require al-
teration of the forward model. Either this deviation could be

parametrized and fit jointly, or the reconstructions could be
run separately with each model and the resulting likelihood
values compared.

An additional natural extension to this work would be the
inclusion of additional tracers beyond Lyα forest and spec-
troscopic galaxy surveys, such as photometric redshift cata-
logs and cosmic microwave background lensing. The latter
field could be of significant benefit, as the CMB lensing ker-
nel peaks at z ∼ 2.0 and it provides a direct probe of the
matter density field on large scales. Not only could this pro-
vide a field complementary to both galaxies and Lyα but it
could be used to directly calibrate galaxy biases within the
optimization.
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APPENDIX

A. HYDRODYNAMICAL EFFECTS

In the main body of the text we used the Flucuating Gunn Peterson Approximation for fast generation of mock catalogs and
in our reconstruction. However, as the name suggests, this is only an approximation which is known to break down in various
cosmic environments. In this section we briefly explore how well TARDIS performs on reconstructing density fields from Lyman
Alpha forests including observational effects. We focus on the z=2.5 density field reconstructions on the map level. To perform
this comparison, we will compare reconstruction quality using the full hydrodynamical flux field versus an FGPA transformed
dark matter field for two sets of hydrodynamical simulations; NyX and Illustrius. How hydrodynamical effects propagate to our
reconstruction quality can then be quantified by the degradation of each statistic.

In order to isolate the hydrodynamical effects arising from feedback processes vs those arising from only baryon pressure,
we use two different hydrodynamical simulations for the comparisons. The Nyx code (Almgren et al. 2013), which relies on
solving the evolution of a system of Lagrangian fluid elements coupled gravitationally to inviscid ideal fluid. The fluid evolution
is modeled using a finite volume representation in an Eulerian framework using adaptive mesh refinement. While this technique
allows accurate modeling of gas properties of diffuse structure (such as those which dominate the volume of Lyα studies), it
notably does not include feedback processes, such as AGN formation which could dominate at the centers of massive clusters.
We use a 100 Mpc/h sidelength box with particle resolution 40963 and choose our sightline and noise characteristics to match the
PFS-like survey in the main text.

Unlike Nyx, the Illustris simulation does include feedback from AGN and star formation. For this purpose, we adopt the
hydrodynamical Illustris simulation (Vogelsberger et al. 2014a,b; Genel et al. 2013; Sijacki et al. 2015), which employs the
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Table 2. Cosmic Web Recovery at z = 2.5 (Variation of Forward Model)

Mock Data
Pearson Coefficients Volume Overlap (%)

λ1 λ2 λ3 Node Filament Sheet Void

Nyx 0.754 0.692 0.573 43.4 63.5 64.7 53.1
FGPA 0.786 0.709 0.538 47.7 68.2 64.6 44.6

Table 3. Cosmic Web Recovery at z = 2.5 (Variation of Forward Model)

Mock Data
Pearson Coefficients Volume Overlap (%)

λ1 λ2 λ3 Node Filament Sheet Void

Illustris 0.739 0.689 0.595 42.4 62.3 63.9 47.7
FGPA 0.794 0.744 0.629 47.5 66.7 67.2 50.6

adeptive mesh refinement codeAREPO (Springel 2010). The AGN feedback prescription in Illustris produces too much heating,
which is able to remove small-scale structure in the gas (e.g., Genel et al. 2014; Park et al. 2018). Therefore, it should provide a
good test case here, since the difference from a non-feedback simulation such a Nyx would be relatively larger compared to other
simulations with more realistic feedback prescriptions (see e.g., Sorini et al. 2018, for a detailed comparison between the two).

The dark matter density field from Illustris was deposited onto a grid using the same cloud-in-cell algorithm adopted in Martizzi
et al. (2019) with 150 cells on a side and corresponding spatial resolution of 0.5 Mpc/h. We extracted skewers from the simulation
along the z-direction with a resolution of 1 km/s on a regular grid separated 0.5 Mpc/h in the x- and y-directions. The skewers
were generated using the fake_spectra package (Bird 2017), which is designed to work on moving mesh simulations like
Illustris to use the HI fraction directly from the simulation and takes into account the voronoi kernel adopted in AREPO. The
Illustris-1 simulation volume has a sidelength of 75 Mpc/h and initially 18203 particles, resulting in a gas mass resolution of
1.3× 106M� (Nelson et al. 2015).

To address how our reconstruction from quality degrades, we compare a reconstruction of using the hydrodynamical modelled
optical depth for mock generation to a reconstruction using the Fluctuating Gunn-Peterson Approximation on the corresponding
dark matter field for mock generation. This should allow us to compare in what sort of environments our approximate forward
model fails.

We show results for our reconstruction in terms of cosmic structure classifications for the nyx simulation mock in Table 2 and
for the Illustris simulation mock in Table 3, using the identical procedure as in the main text (i.e. comparable to Table 1). The
performance of the two models in this context are quite comparable, with only a slight reduction in cosmic web characterization
accuracy, justifying our use of the FGPA approximation in this context. In Figure 12 we show a comparison of the reconstructed
density error for both simulation mock catalog reconstructions. In the absence of the feedback processes (i.e. for the nyx
simulation), the reconstructed density error is nearly identical whether or not hydrodynamical effects are included. With feedback,
there is a slight skew in the reconstructed density, but still not sufficient to appreciably effect reconstructed cosmic structure.
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