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Metamaterials based on plasmonic nanoshells and loss-compensation 
using fluorescent dye molecules and quantum dots 

 
Salvatore Campione and Filippo Capolino* 

Dept. of Electrical Engineering and Computer Science, University of California, Irvine, CA 92697-
2625, USA  

ABSTRACT   

Composite materials based on plasmonic nanoparticles allow building metamaterials with very large effective 
permittivity (positive or negative) or ε-near-zero; moreover, if clustered or combined with other nanoparticles, it is 
possible to generate also effective magnetic permeability (positive or negative), and an ad-hoc design would result in the 
generation of double negative materials, and therefore backward wave propagation. However, losses are usually 
significant and affect the metamaterial performance. In this work, we report on the possibility of adopting fluorescent 
dye molecules or quantum dots, optically pumped, embedded into the dielectric cores of the employed nanoshell 
particles, and provide loss-compensation in ordered 3D periodic arrays at optical frequencies. Each spherical nanoshell is 
modeled as an electric dipole. We consider nanoparticles with gold and silver shells. We then find the modes with 
complex wavenumber in the metamaterial, and describe the composite material in terms of homogenized effective 
material parameters (refractive index and permittivity). Furthermore, in case of loss-compensation, we compare the 
results obtained from modal analysis with the ones computed by using two different homogenization methods: (i) 
Maxwell Garnett homogenization theory and (ii) Nicholson-Ross-Weir retrieval method. We show the design of two ε-
near-zero metamaterials with low losses by simulating gain material made of dyes or quantum dots with realistic 
parameters. A brief discussion about the employment of the two kinds of active gain materials adopted here is given in 
the end. 

Keywords: loss-compensation, mode analysis, metamaterials, plasmonic nanoshells, homogenization theory. 
 

1. INTRODUCTION AND STATEMENT OF THE PROBLEM 
Periodic arrays of plasmonic nanoparticles in three dimensions (3D) are examples of metamaterials at optical 
frequencies. These arrays can be employed to guide backward modes, and create artificial dielectrics, narrow band 
absorption, artificial magnetism, quasi-dark modes. Here we focus on 3D periodic arrays, which can be represented by 
effective parameters, such as permittivity and refractive index, under certain circumstances of polarization and 
excitation. This effective medium representation allows for the design of interesting properties at specific frequency 
bands, such as ε-near-zero (ENZ) metamaterials, useful for cloaking applications [1] and singularity-driven nonlinear 
phenomena [2], guiding waves, etc. However, losses are usually found to be significantly large and affect the 
metamaterial performance, thus loss-mitigation mechanisms are inherently required to overcome this issue. A possible 
solution involves the use of active photonic materials, such as fluorescent dye molecules (DMs) and quantum dots 
(QDs): the gain experienced through the emission of an active medium is capable of counteracting the metamaterial 
absorption losses. The usage of the gain medium with metamaterials can provide a larger effective gain than when used 
alone, due to the strong local field enhancement inside the metamaterials [3-4]. 

In this paper, we provide the analysis of loss-compensated metamaterials at optical frequencies by using DMs and QDs, 
in order to compare their performance. In particular, we consider 3D periodic arrays of nanoshells as in Fig. 1, designing 
two loss-compensated ENZ composite materials (one with each kind of gain material). We compare the results obtained 
from (i) modal analysis (Mode-SDA) with the ones computed by using (ii) Maxwell Garnett (MG) homogenization 
theory and (iii) Nicholson-Ross-Weir (NRW) retrieval method. 
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Recently, optical loss compensation has been experimentally observed in [5-6] by using Coumarin C500 and Rhodamine 
6G fluorescent DMs inside the dielectric shells of randomly dispersed nanoshell particles. Note that fluorescent DMs 
have low emitting and absorption cross sections with respect to other active materials (e.g., QDs) and high 
concentrations of DMs may diminish the overall compensation due to fluorescence quenching and/or other non-radiative 
phenomena. Homogenized effective parameters of metamaterials made of nanoshells have been simulated in [7] by 
artificially setting the imaginary part of the dielectric core to fixed ideal loss/gain conditions, and in [8] by using QDs 
emitting in the near-infrared. In [9], it has been shown that the fluorophore IR800 has enhanced properties when adjacent 
to metallic nanoparticles such as nanoshells and nanorods, showing the potential for contrast enhancement in 
fluorescence-based bioimaging. Similarly, in [10], an emission enhancement of Ruby DMs inside the dielectric core of 
randomly dispersed nanoshell particles has been observed with respect to the case in absence of the metallic shell. 
Theoretical estimations using realistic parameters of fluorescent DMs in 3D periodic arrays of nanoshells have been 
analyzed in [11] (and references therein). Loss-compensation has also been shown in [12] using the fishnet structure by 
using epoxy doped with Rhodamine 800 fluorescent DMs, where the experimental results, along with numerical 
simulations, directly demonstrated that the proposed sample had mitigated losses.  

Here, as already shown in [11], each nanoshell is modeled as a single electric dipole, using the single dipole 
approximation (SDA) [13-15], and the metal permittivity for the two employed metals is described as in Appendix A. 
We compute the modes following the procedure described in [14,16]. Then, for transverse polarization (with respect to 
the mode traveling direction), we treat the metamaterial as a homogenized medium, and study loss-mitigation 
techniques. 

The structure of the paper is as follows. The formulation to perform modal analysis in periodic arrays of nanoparticles is 
summarized in Sec. 2. The dispersion diagrams for the modes in case of transverse polarization in 3D periodic arrays of 
nanoshells are reported in Sec. 3 (gain is not considered to be present in this section). Then, in Sec. 4, we report three 
possible methods to retrieve the effective parameters of the analyzed composite material. We describe loss-compensation 
techniques in an ENZ frequency band by using DMs or QDs in Sec. 5. Conclusions are in Sec. 6. The employed metal 
permittivities are described as in Appendix A. The DM and QD permittivities are described in Appendix B. 

 
Fig. 1. 3D periodic array of nanoshells embedded in a homogeneous medium with permittivity hε . The core 
radius is 1r , with permittivity 1ε ; the shell outer radius is 2r , with permittivity 2ε ; a, b and c are the periodicities 
along x-, y- and z-direction, respectively. The two active gain materials in the cores considered here are 
fluorescent dye molecules and quantum dots.  

2. MODE ANALYSIS IN PERIODIC ARRAYS OF NANOPARTICLES 
The aim of this section is to briefly describe the formulation adopted to perform mode analysis in periodic arrays of 
nanoparticles. A more detailed formulation and explanation is in [14-18]. Notice that the formulation outlined here is 
general, and is adopted in the following sections to characterize particular array cases. The monochromatic time 
harmonic convention, ( )exp i tω− , is assumed and is therefore suppressed hereafter. Bold letters refer to vector 
quantities, a bar under a bold letter refers to dyadic quantities and a caret on top of a bold letter refers to unit vectors. 

Proc. of SPIE Vol. 8269  82691E-2



 

 

According to SDA, each plasmonic nanoparticle at optical frequencies acts as a single electric dipole and can be 
described by its induced electric dipole moment 

                                                                     loc ,ee=p α E       (1) 

where eeα  is the electric polarizability tensor of the nanoparticle, and locE  is the local field acting on it [14-15]. For 
isotropic nanoparticles (e.g., spherical), the polarizability tensor eeα  degenerates into a diagonal matrix with entrance 

eeα .  For nanoshells, and according to Mie theory [13,19], it follows that  

                                        0 1 2 2 1 2
ee 1 2 2 1 2 23

1 2 2 1 2

6 ( ) ( )
, ( ) ( )

( ) ( )
hi kr A m kr B

A m kr C m kr
kr A m kr Bk

π ε ε ψ ψ
α ψ χ

ξ ξ
′− ′ ′= = −
′−                           

(2) 

and 

                                     

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 1 2 1 1 1 1 1 1 2 1 1 1 1
1 2 2 1 2 2

2 1 2 1 1 1 1 1 1 2 1 1 1 1
( ) ( ), ,

m m kr m kr m m kr m kr
B m kr C m kr C

m m kr m kr m m kr m kr
ψ ψ ψ ψ

ψ χ
χ ψ χ ψ

′ ′−
= − =

′ ′−      
(3) 

with ( ) ( ) ρρρρρρψ cos/sin11 −== j , ( ) ( ) ( ) ( )1
1 1 / 1 ih i e ρξ ρ ρ ρ ρ= = − −  and ( ) ( )1 1 cos / sinyχ ρ ρ ρ ρ ρ ρ= − = +  the 

Riccati-Bessel functions [20] (a prime denotes a derivative with respect to the argument), hε  is the relative permittivity 

of the host medium, 0 0/h hk c kω ε ε= =  is the host wavenumber, where 0k  denotes the free space wavenumber, 0c  

the speed of light, 0ε  is the free space absolute permittivity and 1 1 / hm ε ε= , 2 2 / hm ε ε=  are the core and shell 
relative refractive indexes, with 1ε  the relative permittivity of the core (of internal radius 1r ), and 2ε  the relative 
permittivity of the shell (of external radius 2r ). The relative permittivity of the two metals employed here is modeled as 
outlined in Appendix A.  

Consider now a periodic array of nanoparticles, immersed in a homogeneous background, with relative permittivity hε , 
for which each nanoparticle is placed at positions 0n n= +r r d , where 1 2 3, , 0, 1, 2,...,n n n n≡ = ± ±  is a triple index, 
and 1 2 3ˆ ˆ ˆn n a n b n c= + +d x y z  in 3D periodic arrays, 0 0 0 0ˆ ˆ ˆx y z= + +r x y z , and a, b and c are the 3D periodicities along x-
, y- and z-direction, respectively. Suppose that the array is either excited or a mode (a periodic field) is present, with 
wavevector B ˆ ˆ ˆx y zk k k= + +k x y z . Consequently, each nanoparticle will have a dipole moment equal to B

0
ni

n e ⋅= k dp p . 

Then, the local field acting in absence of excitation on a nanosphere at position 0 =r 0  is given by 

                                                                  ( ) ( )loc
0 B 0 0 B 0, , , ,∞= ⋅E r k G r r k p

(
      (4) 

which represents the electric field produced by all the nanoparticles but the one at position 0r , and ( )0 0 B, ,∞G r r k
(

 
represents the regularized periodic dyadic Green’s function (GF). The computation of this GF for 1D periodic arrays can 
be found in [17], in [21] for 2D periodic arrays, and in [16] for 3D periodic arrays. We have found very convenient to 
use the Ewald method to represent the periodic GF in periodic structures. The Ewald method allows for a very rapid 
convergence of the GF series representation, and analytic continuation into the complex Bk  wavenumber domain, 
which is required when searching for complex wavenumbers.  
Substituting then the expression for the local field given in (4) into (1), it follows that 

                                                                      ( )0 ee 0 0 B 0, , ,α ∞= ⋅p G r r k p
(

      (5) 

which leads to the linear system 

                                                            ( ) ( ) ( )B 0 B ee 0 0 B, , , .α ∞⋅ = = −A k p 0 A k I G r r k
(

                    (6) 
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The properties of ( )BA k  can be found in [16-18]. The mode dispersion analysis in the periodic array is then obtained 
by computing the complex Bk  of the homogeneous linear system in (6), or, in other words, by solving 

                                                                 ( )Bdet 0=⎡ ⎤⎣ ⎦A k                      (7) 

for complex Bk . 

3. MODE DISPERSION DIAGRAMS FOR 3D PERIODIC ARRAYS OF NANOSHELLS 
We study here the two structures reported in Table 1, where Structure I has nanoparticles with gold shells and cores with 
DMs, and Structure II silver shells with QD cores. The parameters have been designed keeping in mind the objective of 
an ENZ composite material with low losses around 430 THz (see details in Sec. 5), which corresponds to a free space 
wavelength of 698 nm. The choice of gold in the first case and silver in the second one is an authors’ choice; other 
designs may provide with results similar to the shown ones. Note also the need of designing two different structures 
because of the following reason: large concentrations of DMs are needed to provide enough gain, thus Structure I needs 
to have nanoshells’ cores to contain them, and each nanoparticles has a diameter of 70 nm. Conversely, small QDs of 
nanometer size already provide sufficient gain, therefore much smaller dimensions for Structure II need to be designed, 
and each nanoparticle has a diameter of just 10 nm.  

Table 1. Parameters of the two analyzed 3D periodic arrays of nanoshells to achieve ENZ behavior around 430 
THz. 

Structure Metal 
shell 

Gain 
material 

core 

Core 
radius 

1r [ ]nm  

Outer shell 
radius 
2r [ ]nm  

Core 
permittivity 

1ε  

Shell 
permittivity 

2ε  

hε  , ,a b c
[ ]nm  

I Gold Dye 
molecules 

30  35  gε (Sec. 5.1) mε (Appendix A) 2.25 100 

II Silver Quantum 
dots 

4  5  QDε (Sec. 5.2) mε (Appendix A) 2.25 15 

       
Fig. 2. Dispersion diagram, obtained by solving (7), for both the real and the imaginary part of the wavenumber 

z z zk iβ α= +  versus the host wavenumber k for transverse polarization, using the nanoshell Mie polarizability in 
(2), for (a) Structure I and (b) Structure II, in absence of gain. 

The dispersion diagrams for the two proposed structures in absence of gain (i.e., transparent condition, that is 1 2.25ε =  
for Structure I and 1 5.9ε =  for Structure II) are shown in Fig. 2 for both the real (solid blue curve) and the imaginary 
(dashed red curve) parts of the wavenumber z z zk iβ α= +  of the “dominant” mode (i.e., the one that contributes most to 
the field in the array, see [16] for a detailed study in a 3D periodic array of plasmonic nanospheres) with respect to the 
host wavenumber k  in the case of transverse polarization. We assume 0x yk k= = , i.e, propagation along the z 
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direction only. In each graph, only the mode with 0zα ≥ , i.e., the one with power flow toward the positive z-direction, 
is shown (for reference  we report also the light line z kβ =  as the dashed-dotted black curve). This mode follows a 
typical dispersion curve which is almost straight at low frequencies corresponding to an effective medium slightly denser 
than the host medium with small attenuation; then, increasing the frequency, the dispersion curve bends exhibiting large 
phase constant. Further increasing frequency, it experiences a bandgap with a strong attenuation; finally, at higher 
frequencies it reenters a propagation band with small attenuation. Note however that other modes with attenuation 
constant larger than the one shown here are present, but not reported here since they dramatically decay as z kα >> . 

4. EFFECTIVE PARAMETERS OF HOMOGENIZED MEDIA 
The aim of this section is to summarize the three methods that are used in Sec. 5 to retrieve the effective parameters of 
homogenized media: modal analysis (Mode-SDA), Maxwell Garnett (MG) and Nicholson-Ross-Weir (NRW) retrieval 
method. Note that both Mode-SDA and MG use the nanoshells’ Mie polarizability in (2). 

4.1 Mode analysis (Mode-SDA) 

Assume that it is possible to compute the modes that could be excited in a specific composite slab (as proposed in Sec. 
2), and that furthermore this could be treated as a homogeneous material. The effective refractive index can be then 
computed as 

                              

eff
0

zk
n

k
=

                               

(8) 

where zk  is the complex wavenumber of the “dominant” mode (as the one shown in Fig. 2 for the 3D periodic array of 
nanoshells in Sec. 3) computed from modal analysis (i.e., by solving (7)), and 0k  is the free space wavenumber. 
Moreover, at plasmonic frequencies, for this kind of composite materials, magnetic effects are negligible, thus one can 
compute the effective relative permittivity as 2

eff effnε ≈  with good approximation.

 

 

4.2 Maxwell Garnett (MG) 

In general, Maxwell Garnett theory [22-24] can be applied to retrieve the relative effective permittivity of a composite 
medium as 

            

eff 3
1 1

0 ee
0

1
6 3

h
h

D h
h

kN i

ε
ε ε

ε ε α
πε ε

− −

= +
⎡ ⎤

+ −⎢ ⎥
⎣ ⎦

                              

(9) 

where /D NN f V= , with f  the volume filling fraction of the mixture, NV  is the volume of each inclusion (the 

nanoparticle). Note that in (9) the dipolar radiative loss term ( )3 / 6ik π−  has been subtracted, to account for the 
cancellation of scattering losses in a periodic metamaterial [25], whereas the procedure leading to the electric 
polarizability in Sec. 2 includes all radiation losses. More details about Maxwell Garnett homogenization theory can be 
found in [26-29].    

4.3 Nicolson-Ross-Weir (NRW) 

Transmission and reflection coefficients for a stack of layers are here used to retrieve the effective refractive index of the 
composite material by using the Nicholson-Ross-Weir (NRW) method [30-35]. Treating the composite slab as a uniform 
continuous medium with same thickness t, according to NRW, the complex effective refractive index can be retrieved by  

                             

2 2
1

eff
0 0

1cos
2 2 ,

R T
T qn

k t k t
π

− ⎛ ⎞− +
⎜ ⎟⎜ ⎟
⎝ ⎠= ± +                      (10) 

where R and T are the complex reflection and transmission coefficients, q  is an integer to be determined, and t Nc=  is 
the equivalent thickness of the metamaterial sample,  with N  denoting the number of layers and c  the separation 
between two contiguous layers. We address the reader to [33-34] for guidelines on how to choose q and +/- in (10). As in 
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Sec. 4.1, we recall that at plasmonic frequencies the magnetic effects are negligible, thus one can compute the effective 
relative permittivity as 2

eff effnε ≈  with good approximation.

 

 

We analyze propagation for Structure I in Table 1 made of 4 layers of nanoshells stacked along the z-direction (in 
presence of gain in the nanoshell cores as described in Sec. 5.1), by using (i) HFSS and (ii) the SDA with the Mie 
polarizability in (2). The stack is illuminated by a normally incident plane wave traveling toward +z, and the magnitude 
of transmission T and reflection R of the stack are shown in Fig. 3, together with the absorption 2 21A T R= − − . 
Results in Fig. 3 show good agreement between the HFSS full-wave simulation and the SDA theoretical results. In the 
evaluation of the SDA results we have used the Ewald representation of the dyadic GF for 2D periodic arrays reported in 
[21]. 

 
Fig. 3. Magnitude of transmission T, reflection R and absorption A coefficients for a stack of 4 layers of Structure 
I in Table 1 (only a transverse cut in the xz plane of a 3D array is shown), in presence of gain as in Sec. 5.1. 
Results obtained by using the SDA and HFSS are in agreement. 

5. EFFECTIVE ΕNZ FREQUENCY BAND IN 3D PERIODIC ARRAYS OF NANOSHELLS 
IN PRESENCE OF LOSS-COMPENSATION 

The aim of this section is to alleviate propagation losses in a frequency region in which the real part of epsilon is close to 
zero (either negative or positive), by using either fluorescent DMs or QDs. Results are compared by using the three 
analysis methods outlined in Sec. 4. In this section, the results retrieved using the NRW method are based on reflection 
and transmission coefficients computed by HFSS. 

5.1 Fluorescent dye molecules (DMs) 

In this subsection, we assume that Rhodamine 800 dye molecules are dispersed into the dielectric core of the nanoshells. 
We assume here that the collection of the fluorescent dyes within the core can be approximated as an effective 
homogeneous material (modeled with relative permittivity gε , see also Appendix B) with gain that electrodynamically 
interacts with the metal nanoparticle (i.e., quenching effect and other non-radiative phenomena within the core, whose 
effects increase for increasing molecular concentration, that usually lead to a reduction of the gain in the system, are not 
taken into account).  

Gain materials are described by using  the same four energy level system formulation as in [11], that at stationary regime 
provides (plotted in Appendix B) 

( )
( )

21 10 pump 0
2 2

32 21 10 pump 0
,

1
e

g r
e e

N
i

τ τσ
ε ε

τ τ τ εω ω ω ω

− Γ
= +

+ + + Γ+ Δ −
    (11) 

where  2.25rε =  is the relative permittivity of the dielectric hosting the DMs, 2e efω π= , with center emission 
frequency 422 THzef =  (711 nm), wavelength linewidth is 26.7 nmeλΔ = , and consequently 2e efω πΔ = Δ , with 

frequency linewidth 2
0 / 15.9 THze e ef c λ λΔ = Δ = . The pumping wavelength (between level 0 and level 3) is 680 nm 
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(441 THz), and the decay rate from level 2 to level 1 is 211/τ , with 21 500 psτ = , 32 10 100 fsτ τ= = . The coupling 

constant is 7 21.71 10  C /kgeσ
−= × . We set the density of dye molecules as 18 3

0 6 10  cmN −= ×  corresponding to about a 
concentration of 10 mM  (which corresponds to a high concentration value) and the pumping rate to be 

9 1
pump 6.5 10  s−Γ = × . 

We study here Structure I in Table 1 in presence of gain. We are interested in alleviating propagation losses in an ENZ 
frequency region. The effective refractive index and relative permittivity are shown in Figs. 4 and 5. 

 
Fig. 4. (a) Real part and (b) imaginary part of the effective refractive index around the ENZ frequency band for 
Structure I in presence of gain computed in three different ways: by mode analysis (Mode-SDA); by Maxwell 
Garnett, by using the polarizability in (2) (MG); and by Nicholson-Ross-Weir (NRW) method based on HFSS 
results. 

  
Fig. 5. (a) Real part and (b) imaginary part of the effective relative permittivity around the ENZ frequency band 
for Structure I in presence of gain computed in three different ways: by mode analysis (Mode-SDA); by Maxwell 
Garnett, by using the polarizability in (2) (MG); and by Nicholson-Ross-Weir (NRW) method based on HFSS 
results. 

Notice how the Mode-SDA and NRW results in Figs. 4 and 5 are in good agreement with each other. The result 
computed using MG provides less accurate values because field retardation effects between nanoparticle interactions are 
not included. Notice that with NRW the zero crossing of the real part of the effective relative permittivity happens at a 
frequency slightly lower than the one predicted by the Mode-SDA: however, this can be adjusted by performing a fine-
tuning of the nanoshells volume filling fraction, as proposed in [8]. Note also how the effIm ε⎡ ⎤⎣ ⎦  around 422 THz in the 
loss-compensated case is very small in value (close to zero). Indeed, we have performed an HFSS simulation for the 
same array in absence of losses (not reported), and by using the NRW result, we have observed a reduction of the 
extinction coefficient effIm n⎡ ⎤⎣ ⎦  from 0.33 to 43.5 10−×  at 422 THzf ≈ , in the ENZ frequency band. The figure of merit 

eff effRe / Imn n⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ in presence and in absence of loss-compensation is shown in Fig. 6, obtained from NRW result, and it 
shows clearly higher values in the case of loss-compensation. 
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Fig. 6. Figure of merit eff effRe / Imn n⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  for Structure I, obtained from NRW result, with and without gain. 

5.2 Quantum dots 

In this subsection, we assume that an InP/ZnS QD with the physical dimensions as in [36] constitutes the core of each 
nanoshell. The QD dielectric function in presence of gain, assumed to be homogeneous, is calculated using the 
formalism in [36-37] as 

     QD 2 2 ,
2

b
e

S
i

ε ε
ω ω ωγ

= +
− +

                  (12) 

with the realistic data taken from [36]: background dielectric constant 5 9b .ε = , emission at 444 THzef ≈ , broadening 
parameter 12 17 59 10 s.γ −≈ × , and 4 eS sfπ= , with transition strength 131 38 10 rad/s s .≈ ×  (see also Appendix B).  

We study here Structure II in Table 1 in presence of gain. We then focus again on an ENZ frequency band and the 
effective refractive index and relative permittivity are shown in Figs. 7 and 8. 

   
Fig. 7. (a) Real part and (b) imaginary part of the effective refractive index around the ENZ frequency band for 
Structure II in presence of gain computed in three different ways: by mode analysis (Mode-SDA); by Maxwell 
Garnett, by using the polarizability in (2) (MG); and by Nicholson-Ross-Weir (NRW) method based on HFSS 
results. 

The three methods provide with results in good agreement with each other. Note the resonant behavior of the 
real part introduced by the presence of the QD, which also is the reason of the negative peak in the imaginary 
part. Two interesting regions can be analyzed, one with effIm 0ε <⎡ ⎤⎣ ⎦   (i.e., gain) and one with effIm 0ε >⎡ ⎤⎣ ⎦  (i.e., 
loss-compensation). A negative effIm ε⎡ ⎤⎣ ⎦  is observed between about 440 – 446 THz, which means that 
amplification is present in the system. Instabilities and overall gain should be further studied in the future. 
However, this result shows over-compensation capabilities, thus opening up possibility to efficient loss-
compensated designs. A positive effIm ε⎡ ⎤⎣ ⎦  is observed in the frequency range 436.5 – 440 THz, where the real 
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part is negative around the value –3.5, and in the range 446 – 460 THz, where the real part is close to zero 
(between –0.3 and 0). 

  
Fig. 8. (a) Real part and (b) imaginary part of the effective relative permittivity around the ENZ frequency band 
for Structure II in presence of gain computed in three different ways: by mode analysis (Mode-SDA); by Maxwell 
Garnett, by using the polarizability in (2) (MG); and by Nicholson-Ross-Weir (NRW) method based on HFSS 
results. 

6. CONCLUSION 
We have studied the modal dispersion diagrams in 3D periodic arrays of nanoshells for transverse polarization with 
respect to the direction of propagation. Under this polarization, we have embedded an active gain material made of either 
fluorescent dye molecules or quantum dots into the nanoshell cores. By using realistic parameters to model their 
permittivity versus frequency, we have designed two ENZ metamaterials with loss-compensation mechanisms around 
430 THz. In the case of dye molecules, we have been able to reduce the extinction coefficient [ ]effIm n  from 0.33 to 

43.5 10−× , according to the NRW result based on HFSS full-wave simulation. In the case of quantum dots, we have 
observed loss-compensation and even amplification (i.e., over-compensation capabilities) thus opening up possibility to 
efficient loss-compensated designs or possible lasing systems using composite materials. The results shown in this paper 
demonstrate the possibility to obtain ENZ metamaterials with virtually zero losses in specific frequency bands.  

APPENDIX A: HOW TO MODEL THE METAL PERMITTIVITY AT OPTICAL FREQUENCIES 

The relative permittivity of the metal can be analytically modeled using several equations to match the experimental 
results provided by Johnson and Christy in [38].  

One of these equations is the Drude model  

                                                                 
( )

2
p

m i
ω

ε ε
ω ω γ∞= −

+
        (13) 

where ∞ε  is a high-frequency fitting parameter, pω  is the plasma frequency of the metal (expressed in rad/s) and γ  is 

the damping factor (expressed in 1s− ). In general, the Drude model provides a reasonably accurate description of the 
dielectric properties of the metal across the infrared and optical frequency ranges (focus of this paper). For some 
frequency bands, this model underestimates the metal absorption, and the effect of interband transitions should be taken 
into account in the metal permittivity response [39]. 

The adopted Drude parameters to model gold and silver as in (13) are reported in Table 2.  
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Table 2. Drude model parameters for gold and silver. 

Metal ε∞  pω [ ]rad/s  γ [ ]1/s  

Gold 9.5  161.36 10×  141.05 10×  

Silver 5  161.37 10×  1227.3 10×  

The real and imaginary parts of the relative permittivity computed with (13) for gold and silver using the parameters in 
Table 2 are compared with the experimental results provided by Johnson and Christy in [38] in Figs. 9 and 10 in a 
frequency band of interest to this paper. Note that for gold the real part is well modeled in the entire frequency range; as 
previously mentioned, instead, the model underestimates the imaginary part for increasing frequency. However, the ENZ 
frequency band under analysis in Sec. 5.1 is in the range 400 – 440 THz, so we can assume that the gold behavior is well 
modeled by the Drude model. Regarding silver, instead, the Drude model roughly approximates the experimental results 
across the frequency range 400 – 500 THz used in Sec. 5.2. Therefore, in this paper we use (13) to model the gold 
permittivity, and an interpolation of the experimental data in [38] to model the silver permittivity. 

  
Fig. 9. (a) Real and (b) imaginary part of the permittivity of gold retrieved using (13) with the parameters in Table 
2, compared to the experimental results in [38]. 

  
Fig. 10. As in Fig. 9, for silver. 

APPENDIX B: BRIEF DISCUSSION ON FLUORESCENT DYE MOLECULES AND QUANTUM 
DOTS 

We report in Fig. 11 the real and the imaginary parts of the relative permittivity of DMs in (11) and QDs in (12). Note 
that QDs have a more pronounced and narrower resonance than DMs: this means that QDs strongly modify the 
metamaterial behavior with respect to the case without gain. Also, DMs provide less gain (as dictated by the 
smaller Im ε⎡ ⎤⎣ ⎦ ).  
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Fig. 11. (a) Real and (b) imaginary part of the permittivity describing the two active gain materials employed in 
this paper.  

ACKNOWLEDGEMENT 

The authors acknowledge partial support from the National Science Foundation (NSF)-CMMI award 1101074. The 
authors also thank Ansys for providing HFSS. 

REFERENCES 

[1] M. G. Silveirinha, A. Alu, B. Edwards, and N. Engheta, "Overview of theory and applications of epsilon-near-
zero materials," URSI General Assembly, Chicago, IL (2008). 

[2] M. A. Vincenti, D. d. Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second and third harmonic 
generation at ε-near-zero crossing points,” Physical Review A, 84, 063826 (2011). 

[3] D. J. Bergman, and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: 
Quantum generation of coherent surface plasmons in nanosystems,” Physical Review Letters, 90(2), 027402 
(2003). 

[4] M. I. Stockman, “Spasers explained,” Nature Photonics, 2(6), 327-329 (2008). 
[5] G. Strangi, A. De Luca, S. Ravaine, M. Ferrie, and R. Bartolino, “Gain induced optical transparency in 

metamaterials,” Applied Physics Letters, 98(25), 251912 (2011). 
[6] A. De Luca, M. P. Grzelczak, I. Pastoriza-Santos, L. M. Liz-Marzán, M. La Deda, M. Striccoli, and G. Strangi, 

“Dispersed and encapsulated gain medium in plasmonic nanoparticles: a multipronged approach to mitigate 
optical losses,” ACS Nano, 5(7), 5823-5829 (2011). 

[7] J. A. Gordon, and R. W. Ziolkowski, “CNP optical metamaterials,” Optics Express, 16(9), 6692-6716 (2008). 
[8] A. Ciattoni, R. Marinelli, C. Rizza, and E. Palange, “|ε|-near-zero materials in the near-infrared,” 

arxiv:1107.5540 (2011). 
[9] R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au 

nanostructures: nanoshells and nanorods,” ACS Nano, 3(3), 744-752 (2009). 
[10] J. Zhang, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “Dye-labeled silver nanoshell−bright particle,” The 

Journal of Physical Chemistry B, 110(18), 8986-8991 (2006). 
[11] S. Campione, M. Albani, and F. Capolino, “Complex modes and near-zero permittivity in 3D arrays of 

plasmonic nanoshells: loss compensation using gain [Invited],” Opt. Mater. Express, 1(6), 1077-1089 (2011). 
[12] S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, and V. M. Shalaev, “Loss-free and 

active optical negative-index metamaterials,” Nature, 466(7307), 735-738 (2010). 
[13] C. F. Bohren, and D. R. Huffman, [Absorption and Scattering of Light by Small Particles] Wiley, New York 

(1983). 
[14] S. Steshenko, and F. Capolino, “Single dipole approximation for modeling collections of nanoscatterers,” in 

[Theory and Phenomena of Metamaterials], F. Capolino, ed., CRC Press, Boca Raton, FL, Chapter 8 (2009). 
[15] S. Campione, and F. Capolino, “Linear and Planar Periodic Arrays of Metallic Nanospheres: Fabrication, 

Optical Properties and Applications,” in [Selected Topics in Metamaterials and Photonic Crystals], A. 

Proc. of SPIE Vol. 8269  82691E-11



 

 

Andreone, A. Cusano, A. Cutolo and V. Galdi, eds., World Scientific Publishing, Hackensack, NJ, Chapter 5 
(2011). 

[16] S. Campione, S. Steshenko, M. Albani, and F. Capolino, “Complex modes and effective refractive index in 3D 
periodic arrays of plasmonic nanospheres,” Optics Express, 19(27), 26027-26043 (2011). 

[17] S. Campione, S. Steshenko, and F. Capolino, “Bound and leaky modes in chains of plasmonic nanospheres,” 
Optics Express, 19(19), 18345-18363 (2011). 

[18] A. L. Fructos, S. Campione, F. Capolino, and F. Mesa, “Characterization of complex plasmonic modes in two-
dimensional periodic arrays of plasmonic nanospheres,” Journal of the Optical Society of America B, 28(6), 
1446-1458 (2011). 

[19] S. Campione, S. Pan, S. A. Hosseini, C. Guclu, and F. Capolino, “Electromagnetic metamaterials as artificial 
composite structures,” in [Handbook of Nanoscience, Engineering, and Technology], W. A. Goddard III, D. 
Brenner, S. E. Lyshevski, and G. J. Iafrate, eds., CRC Press, Boca Raton, FL, Chapter 21 (in print, 2012). 

[20] M. Abramowitz, and I. A. Stegun, [Handbook of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables] Dover Publications, New York (1965). 

[21] S. Steshenko, F. Capolino, P. Alitalo, and S. Tretyakov, “Effective model and investigation of the near-field 
enhancement and subwavelength imaging properties of multilayer arrays of plasmonic nanospheres,” Physical 
Review E, 84(1), 016607 (2011). 

[22] A. Sihvola, [Electromagnetic Mixing Formulas and Applications] IEEE Publishing, London (1999). 
[23] A. Sihvola, “Mixing rules,” in [Theory and Phenomena of Metamaterials], F. Capolino, ed., CRC Press, Boca 

Raton, FL, Chapter 9 (2009). 
[24] V. Yannopapas, and A. Moroz, “Negative refractive index metamaterials from inherently non-magnetic 

materials for deep infrared to terahertz frequency ranges,” Journal of Physics: Condensed Matter, 17(25), 3717 
(2005). 

[25] S. Tretyakov, [Analytical Modeling in Applied Electromagnetics] Artech House, Boston (2003). 
[26] W. T. Doyle, “Optical properties of a suspension of metal spheres,” Physical Review B, 39(14), 9852 (1989). 
[27] R. Ruppin, “Evaluation of extended Maxwell-Garnett theories,” Optics Communications, 182(4-6), 273-279 

(2000). 
[28] L. Lewin, “The electrical constants of a material loaded with spherical particles,” Journal of the Institution of 

Electrical Engineers. III. Radio and Communication Engineering, 94(27), 65-6868 (1947). 
[29] A. Lakhtakia, and W. S. Weiglhofer, “Maxwell-Garnett estimates of the effective properties of a general-class 

of discrete random composites,” Acta Crystallographica Section A, 49, 266-269 (1993). 
[30] A. M. Nicolson, and G. F. Ross, “Measurement of the intrinsic properties of materials by time-domain 

techniques,” IEEE Transactions on Instrumentation and Measurement, 19(4), 377-382 (1970). 
[31] W. B. Weir, “Automatic measurement of complex dielectric constant and permeability at microwave 

frequencies,” Proceedings of the IEEE, 62(1), 33-36 (1974). 
[32] A. H. Boughriet, C. Legrand, and A. Chapoton, “Noniterative stable transmission/reflection method for low-

loss material complex permittivity determination,” IEEE Transactions on Microwave Theory and Techniques, 
45(1), 52-57 (1997). 

[33] D. R. Smith, S. Schultz, P. Markoscaron, and C. M. Soukoulis, “Determination of effective permittivity and 
permeability of metamaterials from reflection and transmission coefficients,” Physical Review B, 65(19), 
195104 (2002). 

[34] C. R. Simovski, “On the extraction of local material parameters of metamaterials from experimental or 
simulated data,” in [Theory and Phenomena of Metamaterials], F. Capolino, ed., CRC Press, Boca Raton, FL, 
Chapter 11 (2009). 

[35] S. A. Ramakrishna, and T. M. Grzegorczyk, [Physics and Applications of Negative Refractive Index Materials] 
CRC Press and SPIE Press, Boca Raton, FL (2009). 

[36] P. Holmstrom, L. Thylen, and A. Bratkovsky, “Composite metal/quantum-dot nanoparticle-array waveguides 
with compensated loss,” Applied Physics Letters, 97(7), 073110 (2010). 

[37] P. Holmstrom, L. Thylen, and A. Bratkovsky, “Dielectric function of quantum dots in the strong confinement 
regime,” Journal of Applied Physics, 107(6), 064307-7 (2010). 

[38] P. B. Johnson, and R. W. Christy, “Optical constants of the noble metals,” Physical Review B, 6(12), 4370 
(1972). 

[39] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-
cavity optoelectronic devices,” Applied Optics, 37(22), 5271-5283 (1998). 

Proc. of SPIE Vol. 8269  82691E-12




