
UNIVERSITY OF CALIFORNIA
Santa Barbara

Data-driven Graph Analysis

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Qingyun Liu

Committee in Charge:

Professor Ben Y. Zhao, Co-Chair

Professor Haitao Zheng, Co-Chair

Professor Xifeng Yan

September 2017

The Dissertation of
Qingyun Liu is approved:

Professor Xifeng Yan

Professor Haitao Zheng, Co-Chair

Professor Ben Y. Zhao, Co-Chair

March 2017

Data-driven Graph Analysis

Copyright © 2017

by

Qingyun Liu

iii

To my beloved

grandparents, parents, husband and close friends

Thanks for your love, warm hugs, support and company.

iv

Acknowledgements

My most sincere thanks go to my advisors, Prof. Ben Y. Zhao and Prof.
Haitao Zheng. I greatly appreciate their efforts for mentoring me throughout the
challenging PhD program. It is not often that one has the luck to find advisors
that are always there for their students’ needs, either in research or in life. I
could always get timely and helpful feedbacks and advice from them. Sometimes
they gave me direct advices on technical or editorial issues to help me avoid
obvious roadblocks from their rich academic experience. And in most times, they
tried to train me into an independent researcher, where they gave me guidance,
encouragement and also freedom to think in my own way. I especially want to
express my gratitude for being granted freedom in choosing research directions,
where I could give trials in different topics and pursue what I am really fond of.
Their continuous guidance, care and support were essential to the completion of
my Ph.D. study. I have learnt innumerable lessons and gained great experience
both academically and in life, which are valuable in both my career and life in
general.

I also want to give my earnest gratitude to my Ph.D. committee member Prof.
Xifeng Yan, for his guidance through my Ph.D. program. Prof. Xifeng Yan served
on my MAE (Major Area Exam), Ph.D. proposal and Ph.D. defense committee,
and gave me great advice and feedbacks.

I benefitted a lot from my four internships at different research labs and com-
panies. I collaborated with Dr. Matti Hiltunen, Dr. Abhinav Srivastava and Dr.
Yu Jin at AT&T Labs Research for a traffic monitoring project, worked on adver-
tisement in online social networks with Dr. Smriti Bhagat and Dr. Anmol Sheth
at Technicolor Research Center, tracked lateral movements across computers with
Dr. Jay Stokes and Dr. Weidong Cui at Microsoft Research, and mentored by Dr.
Li Yu and Dr. Junfeng Pan in the Feed Ads Ranking Team in Facebook. It was
amazing experiences to work on such great projects with both interesting topics
and big impact. I also felt quite lucky to work with such outstanding researchers
and learnt from them. Especially I want to thank Dr. Jay Stokes, who is such
a nice and kind person and always so pleasant to talk with. And he provided
such enormous help for my project to get bigger impact in both application and
publication.

My sincere thanks also go to all the members of our great SAND laboratory. I
have enjoyed my Ph.D. life with you all, and greatly appreciate the collaboration
with Shiliang Tang, Xiaohan Zhao, Xinyi Zhang and Megan McQueen. Thanks for
our discussion and debates on research projects, which most of the ideas flourished.
Thanks for working together towards the same goals, for being aside to share the
joy when papers were accepted, and for encouraging each other when projects

v

did not go well. I am also grateful for other former and current lab members,
from whom I have learnt a lot: Ana Nika, Xia Zhou, Gang Wang, Yibo Zhu,
Zengbin Zhang, Christo Wilson, Alessandra Sala, Bimal Wiswanath, Bolun Wang,
Lin Zhou, Tianyi Wang, Yanzi Zhu, Zhijing Li, Yuanshun Yao, Zhujun Xiao,
Yun Zhao, Jenna Cryan, Divya Sambasivan, Pritha D.N., Sujaya Maiyya, Kirti
Bhandari and Abhay Chennagiri. Thanks for your encouragement, sharing my joy
and sadness, and most of all, made my Ph.D. experience full of valuable memories.

I am also always thankful for all my collaborators. It is so lucky to have the
chance to work with those outstanding researchers. I would like to thank Dr.
Walter Willinger, Dr. Scott Counts, Dr. Apurv Jain and Xiao Wang, and also
collaborators at my undergraduate study: Dr. Bin Cui, Dr. Junjie Yao and Zijun
Xue.

Finally, and most importantly, I would like to express my special thanks to
my intimate relationships. Thanks for my beloved grandparents Yunjin and Hao,
you have taught me what is love. I will love and miss you forever. Thanks to my
parents Lu and Jin , for your endless care, support and always being there for me.
And Xin, my dear husband, I have always felt so lucky to have met you. We have
walked down so many roads, seen so many views, and shared so many feelings.
With your company, I do not feel alone in the journey of life. Also, I want to
sincerely thank Isa for giving me the key to explore the world outside and inside,
for letting me into a much broader, mysterious, amazingly beautiful world that
I have ever seen. I also want to thank myself, for being brave enough to make
mistakes and explore different possibilities in life, being acute enough to learn from
the past and others’ experiences, be persistent enough for the continuous efforts
to learn about myself and life, and gradually become who I am. And finally, my
closest friends, thanks for giving me the chance to share my life with you, and to
let me accompany your journey. Thank you all, for letting me feel the richest and
luckiest person in the world.

vi

Curriculum Vitæ

Qingyun Liu

Education

2012-2017 Ph.D. in Computer Science
University of California, Santa Barbara, USA
2012-2016 Master of Science in Computer Science
University of California, Santa Barbara, USA
2008-2012 Bachelor of Science in Information Science and Technology
Peking University, Beijing, China

Field of Study

Major Field Computer Science with Prof. Ben Y. Zhao and Prof. Haitao Zheng.

Professional Experience

09/2012-03/2017 Research Assistant, University of California, Santa Barbara.
06/2016-09/2016 Software Intern, Facebook, Menlo Park, CA.
06/2015-08/2015 Research Intern, Microsoft Research, Redmond, WA.
06/2014-09/2014 Research Intern, Technicolor Research Center, Los Altos, CA.
06/2013-08/2013 Research Intern, AT&T Labs Research, Florham Park, NJ.

Publications

ICWSM’17 Shiliang Tang, Qingyun Liu, Megan McQueen, Scott Counts, Apurv
Jain, Haitao Zheng, and Ben Y.Zhao. “Echo Chambers in Investment Discussion
Boards. ” International AAAI Conference on Web and Social Media, May 2017.
IMC’16 Qingyun Liu, Shiliang Tang, Xinyi Zhang, Xiaohan Zhao, Ben Y.Zhao,
and Haitao Zheng. “Network Growth and Link Prediction Through an Empirical
Lens. ” In Proceedings of Internet Measurement Conference, November 2016.
ToMPECS’16 Qingyun Liu, Xiaohan Zhao, Walter Willinger, Xiao Wang, Ben
Y.Zhao, and Haitao Zheng. “Self-similarity in Social Network Dynamics. ” ACM
Transactions on Modeling and Performance Evaluation of Computing Systems,
November 2016.
COSN’15 Xiaohan Zhao, Qingyun Liu, Haitao Zheng, and Ben Y.Zhao. “To-
wards Graph Watermarks.” In Proceedings of ACM Conference on Online Social
Networks, November 2015.

vii

ICDE’12 Junjie Yao, Bin Cui, Zijun Xue, and Qingyun Liu. “Provenance-based
Indexing Support in Micro-blog Platforms.” In Proceedings of IEEE International
Conference on Data Engineering, April 2012.
submitted Qingyun Liu, Shiliang Tang, Megan McQueen, Scott Counts, Apurv
Jain, Haitao Zheng, and Ben Y.Zhao. “Herd Behavior and Inefficiency in Stock
Markets. ”
submitted Qingyun Liu, Jack W. Stokes, Rob Mead, Tim Burrell, Ian Hellen,
John Lambert, Andrey Marochko and Weidong Cui. “LATTE: Tracking Malicious
Lateral Movement Across a Computer Network. ”

Patent

09/2012-03/2017 Bin Cui, Junjie Yao, Hongzhi Yin, and Qingyun Liu. “A lan-
guage model based expert recommendation method.” China, Patent Number
102495860, October 2013.

viii

Abstract

Data-driven Graph Analysis

Qingyun Liu

The ever-expanding demands for network utilities today have greatly changed

people’s lives. We are all around by various networks, from Internet, social net-

works, to World Wide Web. Graphs are fundamental abstraction for networks,

which set the basis to systematically analyze and understand networks. Analyzing

graphs is critical to provide insights on the fundamental process that drive the

evolution of networks, and the essence for many real world applications, e.g., so-

cial recommendations. Despite years of research in graph analysis, there has been

little opportunity to study graphs from an empirical perspective. Prior studies are

often limited by the size and granularity of public available datasets, which can-

not accurately capture real graph complexity. In recent years, things are changing

with the proliferation of online social networks (OSNs), which provides access to

large traces of network dynamics.

In this dissertation, we take the opportunity by OSNs and seek to understand-

ing graphs from a data-driven perspective. Following this goal, we address several

graph problems which are of high impact, and also with great challenges in terms

of scalability, high level of graph dynamics and privacy. We use empirical large-

ix

scale datasets to study new graph topics, step back to reassess how far we have

come in analyzing fundamental graph problems, and also investigate how we can

improve by leveraging real graph datasets.

Specifically, we first work on how to analyze and model graph dynamics, and

we focus on the perspective of self-similar properties. Self-similarity is a fun-

damental property which defines hard limits on network modeling. Our work

identifies the presence of self-similarity in the time dynamics of social graphs, and

we incorporate the findings into a complete graph evolutionary model that can

accurately capture key properties from both temporal and structural aspects. We

validate our model against network dynamics in two real large-scale graphs, and

show that it produced desired properties in both temporal patterns and graph

structural features.

In our second work, we step back and reassess the space of the fundamental

graph problem, i.e., link prediction. Link prediction is the problem of predicting

formation of new edges on a given graph, and applies to networking in numerous

contexts. We perform an empirical study using different large traces of network

growth to reassess the predictive power of current proposals, and augment them

by leverage graph dynamic data.

Finally, we are concerned with graph privacy issues, i.e., how to securely share

large-scale datasets to trusted collaborators without data leakage. Current tools

x

can provide limited protection, and we provide a new alternative in the form of

graph watermarks. Graph watermarks are small graphs tailor-made for a given

graph dataset, which are difficult to remove, and serve to associate to a particular

user. In this work, we identify the goals and requirements of a graph water-

mark system, propose our basic and improved implementation, and evaluate the

effectiveness and efficiency on various large graphs.

In summary, our research work demonstrates that data-driven graph analysis

provides great insights, and is key to better understanding graph properties. We

have addressed important graph problems in terms of scalability, high level of

graph dynamics and graph privacy, and validated our proposals on large-scale

real graphs.

xi

Contents

Curriculum Vitae vii

Abstract ix

List of Figures xv

List of Tables xx

1 Introduction 1
1.1 Dissertation Overview . 5
1.2 Analyzing and modeling graph dynamics 6
1.3 Reassessing current status of link prediction 7
1.4 Secure graph sharing system . 9
1.5 Contributions . 10
1.6 Thesis organization . 14

2 Analyzing and Modeling Graph Dynamics 17
2.1 Introduction . 17
2.2 Background and Datasets . 23
2.3 Preliminary Analysis . 28

2.3.1 Experiment Setup . 29
2.3.2 Measurement Results . 31
2.3.3 The Reliability of our H Estimates 34
2.3.4 Summary of Observations 35

2.4 Wavelet-based Analysis . 36
2.4.1 The Wavelet Method . 36
2.4.2 Measurement Results . 37
2.4.3 Analysis Without Sampling 42

xii

2.4.4 Summary . 43
2.5 Validation via Facebook Dataset 43
2.6 A Model of Network Dynamics 48

2.6.1 The Temporal Component 48
2.6.2 The Spatial Component 52

2.7 Model Validation . 57
2.7.1 Validating the Temporal Component 57
2.7.2 Validating the Spatial Component 64
2.7.3 Facebook Results . 70
2.7.4 Summary . 71

2.8 Related Work . 72
2.8.1 Self-similarity Measurements and Models. 72
2.8.2 Graph Models . 73

2.9 Summary . 75

3 Reassessing Current Status of Link Prediction 78
3.1 Introduction . 78
3.2 Background: Link Prediction . 84
3.3 Datasets and Methodology . 87

3.3.1 Datasets . 87
3.3.2 Methodology . 90

3.4 Metric-Based Prediction . 94
3.4.1 Experimental Setup . 95
3.4.2 Metric-based Prediction Accuracy 96
3.4.3 Choosing Metric-based Algorithms 103
3.4.4 Sources of Low Prediction Accuracy 105

3.5 Classification-based Prediction . 108
3.5.1 Evaluation Configuration 109
3.5.2 Link Prediction Accuracy 113
3.5.3 Comparing to Metric-based Algorithms 115

3.6 Improving Link Prediction . 118
3.6.1 Temporal Properties on Edge Creation 119
3.6.2 Temporal Filtering . 122
3.6.3 Comparing to Other Temporal Methods 124

3.7 Related Work . 126
3.8 Summary and Discussion . 128

4 Secure Graph Sharing System 130
4.1 Introduction . 130
4.2 Background and Related Work . 134

xiii

4.3 Goals and Attack Models . 137
4.4 Basic Watermark Design . 141

4.4.1 Watermark Embedding . 142
4.4.2 Watermark Extraction . 148

4.5 Fundamental Properties . 152
4.5.1 Watermark Uniqueness . 153
4.5.2 Watermark Detectability 156

4.6 More Robust Watermarks . 168
4.6.1 Attacks on Watermarks 168
4.6.2 Improving Robustness against Attacks 170
4.6.3 Impact on Watermark Uniqueness 175

4.7 Experimental Evaluation . 177
4.7.1 Graph Distortion from Watermarks 179
4.7.2 Robustness against Attacks 181
4.7.3 Computational Efficiency 186

4.8 Summary . 189

5 Conclusion 191
5.1 Conclusion . 192
5.2 Lessons . 194
5.3 Future Work . 199

5.3.1 Studying More Categories of Graphs 199
5.3.2 Securely Sharing Graphs 201
5.3.3 User Studies in Graph Analysis 203

Bibliography 204

xiv

List of Figures

2.1 Daily edge growth in Renren. 27
2.2 Daily edge growth in Facebook. 27
2.3 Edge growth in sampled dataset of Renren, in terms of the number
of new edges created per second. It shows a clear diurnal pattern. . . . 32
2.4 Variance analysis of sampled dataset of Renren: the slope changes
greatly when m>104 seconds (≈ 3 hours), preventing direct analysis on
self-similarity. 32
2.5 R/S analysis of sampled dataset of Renren: H estimation is beyond
range of self-similarity, and data shape changes significantly for n>104

seconds (≈ 3 hours). 32
2.6 An example of edge growth of a randomly chosen 3-hour segment
in the sampled dataset of Renren. It is highly bursty, appears stationary
and suggests further exploration for self-similar scaling behavior. 33
2.7 Estimates of H by both Variance and R/S analysis on disjoint 3-
hour segments in the sampled dataset of Renren, where 98%+ of H
estimates fall within (0.5,1). 33
2.8 An example of poor line fitting in variance analysis, which has poor
R2=0.0458. This is also confirmed by the inset which displays the raw
edge growth during the corresponding time period, and shows a clearly
non-stationary event. 34
2.9 Wavelet analysis on data segments with segment length = 3
hours (sampled dataset of Renren). 38
2.10 Wavelet analysis on data segments with segment length = 6
hours (sampled dataset of Renren). 38
2.11 Wavelet analysis on data segments with segment length = 9
hours (sampled dataset of Renren). 38
2.12 Wavelet analysis on data segments with segment length = 12
hours (sampled dataset of Renren). 38

xv

2.13 Examples of abnormal segments in terms of level shift, where the
red dot boxes show the unusual edge creation events (sampled dataset
of Renren). 41
2.14 Examples of abnormal segments in terms of momentary outage,
where the red dot boxes show the unusual edge creation events (sampled
dataset of Renren). 41
2.15 Examples of abnormal segments in terms of ramp up/down,
where the red dot boxes show the unusual edge creation events (sampled
dataset of Renren). 41
2.16 TheH-estimates of all the disjoint 3-hour segments between Septem-
ber - December 2007 of the Renren dataset, after performing wavelet
analysis on the entire dataset without sampling (full Renren). The re-
sults align with those with sampling (labeled as “sampled dataset of
Renren” in caption). 42
2.17 An example of edge growth of a randomly chosen 3-week data
(Facebook). 44
2.18 Variance analysis on the entire data: doubtable fitting with curves
around 103 units (Facebook). 45
2.19 R/S analysis on the entire data: doubtable fitting since the shape
changes greatly after 103 units (Facebook). 45
2.20 Wavelet analysis on data segments with segment length = 3.5
days (Facebook). 46
2.21 Wavelet analysis on data segments with segment length = 5
days (Facebook). 46
2.22 Wavelet analysis on data segments with segment length = 7
days (Facebook). 46
2.23 CCDF of # of edges created per user in Dec. 2007 in Renren dataset. 50
2.24 An example of edge growth of a randomly chosen 3-hour segment
in the synthetic self-similar module (Renren). 60
2.25 Variance analysis of synthetic self-similar module: H estimation =
0.67, and in good linear fitting (Renren). 60
2.26 R/S analysis of synthetic self-similar module: H estimation = 0.63,
and in good linear fitting (Renren). 60
2.27 The synthetic non-stationary module (red curve) well captured the
smoothed diurnal pattern in the original dataset (blue curve) (Renren). 61
2.28 Synthetic trace by our temporal component (red) vs. original edge
creation process (blue) (Renren). 61
2.29 Variance analysis of the entire synthetic trace: like the original
data, slope also changes for m>104 seconds (≈ 3 hours) (Renren). . . . 61

xvi

2.30 R/S analysis of the entire synthetic trace: like the original data, H-
estimate is beyond the self-similar range, and data shape changes n>104

seconds (≈ 3 hours) (Renren). 61
2.31 Wavelet analysis on 3-hour segments of synthetic trace. Like the
original data, the vast majority of segments have estimated H within
(0.5,1) (Renren). 62
2.32 Network growth of the synthetic trace generated by the temporal
component vs. the original data (Renren). 63
2.33 Fitting of network growth with the network edge growth function
F (n) (Renren). 65
2.34 Average path length on generated synthetic graphs and the orig-
inal Renren graph. Include two time periods from the very beginning
to December 11, 2006 and in January - February, 2007 (to avoid the
one-time merge event in Renren with another OSN). (Original: Renren
graph; Spatial Component: graph generated by our spatial component;
PA: graph generated by the preferential attachment model; Forest Fire:
graph generated by the Forest Fire model). 67
2.35 Average Clustering Coefficient on generated synthetic graphs
and the original Renren graph. Include two time periods from the very
beginning to December 11, 2006 and in January - February, 2007 (to
avoid the one-time merge event in Renren with another OSN). (Origi-
nal: Renren graph; Spatial Component: graph generated by our spatial
component; PA: graph generated by the preferential attachment model;
Forest Fire: graph generated by the Forest Fire model). 68

3.1 Daily new nodes and edges in the three networks. 89
3.2 Average node degree. 90
3.3 Average path length. 90
3.4 Average clustering coefficient. 90
3.5 Link prediction performance for Renren dataset. 99
3.6 Link prediction performance for Facebook dataset. 99
3.7 Link prediction performance for YouTube dataset. From Fig-
ure 3.5 to Figure 3.7 we show accuracy ratio of all metric-based predic-
tion algorithms. We omit the results of CN, AA and RA because they
perform similarly (slightly worse) than their Local Naive Bayes versions,
i.e. BCN, BAA and BRA. The results for Katzlr in Renren and YouTube
are capped to 65M and 5.5M edges due to computation complexity. . . 99
3.8 Visualization of classification results on choosing the best metric-
based algorithm. 103
3.9 Degree distribution of nodes in predicted edges (Renren, 55M edges). 106

xvii

3.10 CDF of node idle time in predicted edges (Renren, 55M edges). . 108
3.11 Accuracy ratio of four classifiers with undersampling ratio θ 1:1
and 1:50 (Facebook, 345K edges). 112
3.12 Performance of classification-based prediction as a function of the
under-sampling ratio θ used during classifier training. 114
3.13 Comparing the prediction performance of metric- and classification-
based prediction algorithms. 115
3.14 The relationship between top similarity metrics and top SVM fea-
tures, shown as the total normalized SVM coefficient of top N similarity
metrics, N=1,2,...,14. 117
3.15 CDF of active node idle time in a Renren snapshot. 120
3.16 CDF of new edges created in the past 7 days by a node in a Renren
snapshot. 121
3.17 CDF of CN time gap of positive and negative node pairs in a Renren
snapshot. 121
3.18 Our proposed temporal filtering method outperforms time-based
models. 125

4.1 Embedding graph watermarks. Ω is a secret random generator seed
produced using the secure graph key and user’s private key. 137
4.2 Extracting graph watermarks. Ωi is a secret random generator seed
produced using the secure graph key and the private key of user i. . . . 138
4.3 Robustness of basic design against single attacker model, LA. . . . 183
4.4 Robustness of the basic design against single attacker model, Flickr. 183
4.5 Distortion caused by single attacker model in the basic design, LA. 183
4.6 Distortion caused by single attacker model in the basic design, Flickr. 183
4.7 Robustness of the improved design against single attacker model,
LA. 184
4.8 Robustness of the improved design against single attacker model,
Flickr. 184
4.9 Distortion caused by single attacker model in the improved design,
LA. 184
4.10 Distortion caused by single attacker model in the improved design,
Flickr. 184
4.11 Robustness of the improved design against collusion attacker model,
LA. 185
4.12 Robustness of the improved design against collusion attacker model,
Flickr. 185
4.13 Distortion caused by collusion attacker model in the improved de-
sign, LA. 185

xviii

4.14 Distortion caused by collusion attacker model in the improved de-
sign, Flickr. 185

xix

List of Tables

2.1 Statistics of the two OSN datasets, with the start/end date of the
traces, the granularity of time stamps in the traces, the total count of
nodes that have been involved in edge creation, and the total count of
edges that have been newly created in the traces. 26
2.2 Statistics of wavelet analysis on 3-hour segments with start time
shifts. (sampled dataset of Renren) . 39
2.3 Statistics of wavelet analysis on 3.5-day segments with start time
shifts (Facebook). 47
2.4 Statistics of the original graph and the synthetic graph generated
by our spatial component for Renren dataset. The 2006 graphs are
built before December 12, 2006; the 2007 graphs are built for January -
February, 2007. 64
2.5 Statistics of the original Facebook graph, the synthetic graph gen-
erated by our spatial component, by the Forest Fire model and by the
Preferential Attachment model. Path length and clustering coefficient
(CC) do not consider multiple edges between node pairs. All standard
deviations are less than 4%. Columns 2-4 refer to averaged results for
intermediate graph snapshots, Columns 5-8 refer to the final graph snap-
shot (Facebook). 71

3.1 Summary of link prediction algorithms, with details listed in Ta-
ble 3.3. 85
3.2 Statistics of the three OSN datasets. 88
3.3 The 14 metric-based algorithms used for our study. Notations:
given graph G =< V,E >, u and v are two graph nodes, Γ(u) denotes
the neighbors of node u, deg(u) represents the node degree of u. 93
3.4 Best possible absolute accuracy (%) of all prediction methods on
each dataset. 97

xx

3.5 Ratio of predicted and actual created edges that involve 0.1% most
frequently predicted nodes (Renren snapshot with 55M edges). 107
3.6 Data instances for evaluating classification algorithms. 111
3.7 Parameters of the temporal filters. 123
3.8 Ratio of accuracy values after filtering vs. before filtering for all
metric-based and classification methods. Bold value in each row is the
maximum improvement for that network; “-” means the accuracy before
filtering is “0”. *Ratio in Renren is 1:5000. 123

4.1 Statistics of 48 of today’s network graphs. k is the watermark size. 158
4.2 Suitability of watermarking for 48 of today’s network graphs, deter-
mined by comparing their node degree distribution [Nmin(G), Nmax(G)]
and k-node subgraph density [Dmin(k), Dmax(k)] to those of the em-
bedded watermark graphs. 35 out of these 48 graphs are suitable for
watermarking. 160
4.3 Size and density of subgraph on nodes with degree > (k + 1)/2
in each graph. Size is the number of subgraph nodes, and density is
quantified as average edges each node having inside the subgraph. . . 164
4.4 Upper bound of L for the 35 network graphs. 178
4.5 Percentage of modified nodes/edges after embedding 5 watermarks
into a graph and dK-2 Deviation. 181
4.6 The efficiency of the watermarking system, including watermark
embedding time on one server, the extraction time on one server and
the parallel extraction time across 10 servers. 187

xxi

Chapter 1

Introduction

The proliferation of networks have changed people’s lives today more than

ever before [73, 134]. There are ever-expanding demands for network utilities,

from technology networks like the Internet and telephone networks, social net-

works like Twitter and Facebook where people share their everyday life, infor-

mation networks like World Wide Web, to even biological networks like neural

networks. As fundamental abstraction for networks, graphs model the connec-

tions in a network and set the basis to systematically analyze and understand

networks. Graphs are applicable to various of networks, and many of today’s

datasets are captured in large dynamic graphs. Such datasets can include maps

of autonomous systems in the Internet, social networks representing billions of

1

Introduction Chapter 1

friendships, connected records of patent citations, and interaction of proteins in

personal health care.

Analyzing graphs is critical to provide insights on the fundamental process

that drive the evolution of networks, and the basis for many real world applica-

tions. For example, studying dynamic social graphs is key to accurately predicting

resource needs and system behavior in online social networks, and important for

various applications including system design, resource allocation, anomaly de-

tection, demand forecasting and advertising [29, 62, 131]. Another prominent

example is that graph analysis has set the foundation for social recommendation

systems [53, 89], which is widely used in social networks and applications, e.g.,

ranging from Facebook, Twitter and LinkedIn, to photo sharing on Instagram and

Pinterest, personal streaming on Periscope and Q&A sites like Quora.

Despite years of research in this space and hundreds of or maybe even thou-

sands of publications [7, 10, 11, 17, 22, 31, 39, 53, 62, 89, 90, 91, 109, 111, 129,

130, 133, 150, 153] (only a small subset of which is cited in this dissertation),

there has been little opportunity to study graphs from an empirical perspective,

and prior studies are often hampered by limitations in the size and granularity of

public available datasets, which cannot accurately capture real graph complexity.

For example, most work in graph dynamics study graphs via static snapshots,

which capture graph dynamics only at discrete points in time, and lack time in-

2

Introduction Chapter 1
formation about events that occur between snapshots. Even for those that have

analyzed graph traces in more fine granularity, they are often limited to moder-

ate sized networks like co-authorship studies and patent citation graphs, which

scale up to around 20K nodes and 200K edges [15, 130]. In contrast, graph algo-

rithms/systemsdeveloped using and validated by these datasets are often targeting

dynamic networks that are two or more orders of magnitude larger, with millions

or billions of nodes and billions of edges [161].

Thankfully, things are changing with the arrival of network traces from on-

line social networks (OSNs). We are taking advantage of this opportunity and

availability to large traces of network dynamics to understand graphs from a

data-driven perspective. We can use empirical datasets to study new graph top-

ics, step back and reassess how far we have come in analyzing certain problems,

and also investigate how we can improve by leveraging real graph datasets. At the

same time, we are also faced with great challenges, since real large graph traces

may have quite different properties. We list three primary challenges as follows:

1. Scalability. Many current graph tools have too high computational complex-

ity to be scaled to empirical graphs [32, 119, 142], since they are developed

or validated by small or moderate sized graphs. How can we adapt them or

design new graph tools that are applicable to graphs with millions or billions

of nodes is quite challenging.

3

Introduction Chapter 1

2. High level of dynamics. Real graph traces often have high volume of dy-

namics, which prior studies have seldom dealt with. For example, Facebook

has over 890 million login events and 4.5 billion likes every day [59], and

Instagram has more than 80 million photos uploaded daily and 3.5 billion

daily likes [118]. We need to understand and model such dynamics.

3. Graph privacy. There are huge concerns for graph privacy [14, 91, 107] since

graph topology may represent very sensitive information from real world,

e.g., users’ social relationship or even the strength of such relationship. It

is a difficult and necessary task to fight against potential data leakage.

4

Introduction Chapter 1

1.1 Dissertation Overview

Motivated by the new opportunities and challenges by large-scale empirical

graph datasets, I have focused on graph research from data-driven perspective,

and formalized the following statement of this dissertation:

Using large traces of network dynamics, we can build graph tools to

meet challenges from scalability, dynamics, and data privacy.

Driven by this statement, we have tackled problems from three aspects. First,

we work on how to analyze and model detailed graph dynamics, and we focus on

the perspective of self-similar properties. Self-similarity is a fundamental property

which defines hard limits on network modeling [75]. Our work identifies the pres-

ence of self-similarity in the time dynamics of social graphs, and we incorporate

the findings into a complete graph evolutionary model that can accurately capture

key properties from both temporal and structural aspects. Second, we step back

and reassess the space of the fundamental graph problem, i.e., link prediction.

Link prediction is the problem of predicting formation of new edges on a given

graph, and applies to networking in numerous contexts [68, 70, 53]. We perform

an empirical study using large traces of network growth to reassess the predictive

power of current proposals, and augment them by leverage dynamic data. Finally,

we are concerned with graph privacy issues, i.e., how to securely share large-scale

datasets to trusted collaborators without data leakage. Current tools [91, 54, 128]

5

Introduction Chapter 1

can provide limited protection, and we provide a new alternative in the form of

graph watermarks. Graph watermarks are small graphs tailor-made for a given

graph dataset, which are difficult to remove, and serve to associate to a particular

user. In this work, we identify the goals and requirements of a graph watermark

system, propose our implementation, and evaluate the effectiveness and efficiency

on various large graphs.

In the following, we briefly describe works included in this dissertation.

1.2 Analyzing and modeling graph dynamics

Analyzing and modeling social network dynamics are key to accurately predict-

ing resource needs and system behavior in online social networks. The presence

of statistical scaling properties, i.e., self-similarity, is critical for determining how

to model network dynamics. Self-similarity refers to the invariance behavior of a

time series under rescalings, i.e., the relative variance or volatility of traffic traces

stays similar across different time scales [20, 75]. It is a fundamental statistical

property which defines hard limits on traditional network models like Poisson [75].

In this work, we study the role that self-similarity scaling plays in a social

network edge creation (i.e., links created between users) process, through analysis

of two detailed, time-stamped traces, a 199 million edge trace over two years in

the Renren social network, and 876K interactions in a four year trace of Facebook.

6

Introduction Chapter 1

We find that traditional R/S and Variance methods are unsuitable for measuring

self-similarity in real traces of social graphs. Using the more advanced tool, i.e.,

wavelet-based analysis, we find that the edge creation process in both networks is

consistent with self-similarity scaling, once we account for periodic user activity

that makes edge creation process non-stationary.

Using these findings, we build a complete model of social network dynam-

ics that combines temporal and spatial components. Specifically, the temporal

behavior of our model reflects self-similar scaling properties, and accounts for cer-

tain deterministic non-stationary features. The spatial side accounts for observed

long-term graph properties, such as graph distance shrinkage and local decluster-

ing. We validate our model against network dynamics in Renren and Facebook

datasets, and show that it succeeds in producing desired properties in both tem-

poral patterns and graph structural features.

1.3 Reassessing current status of link prediction

In this work, we seek to understand current status of fundamental graph prob-

lem, i.e., link prediction. Link prediction is the problem to of predicting formation

of new edges on a given graph. It is a fundamental problem that applies to net-

working in numerous contexts, and has tons of applications [68, 70, 53]. However,

there has been little opportunity to study various link prediction proposals from

7

Introduction Chapter 1

an empirical perspective due to the limitation of publicly available datasets. Until

recently, validation of algorithms have been hampered by limitations in the size

and realism of empirical datasets. More specifically, such public datasets are of-

ten limited to co-authorship studies and patent citation graphs, moderate sized

networks that lack dynamic details [15, 130]. In contrast, algorithms developed

using and validated by these datasets are targeting dynamic networks that are

many orders of magnitude larger, and much more dynamic [161].

With our access to several large, detailed traces of dynamics in online social

networks (Facebook, Renren, YouTube), we seek to revisit and reassess the value

and accuracy of current prediction methods. Our goals are to understand the ab-

solute and comparative accuracy of existing prediction algorithms, and to develop

techniques to improve them using insights from analysis of network dynamics.

We implement and evaluate 18 link prediction algorithms, labeled as either

“metric-based” (those that predict potential links using a single similarity or prox-

imity metric) or “classification-based” (those that use machine learning classifiers

with multiple metrics as input features). Despite poor performance in absolute

terms, SVM classifiers consistently perform the best across all our traces. Its ac-

curacy is occasionally matched by metric-based algorithms, but never consistently

across datasets.

8

Introduction Chapter 1

Finally, we dig sources for overall low accuracy of today’s prediction algo-

rithms, and use our observations of network dynamics to build “filters” that dra-

matically reduce the search space for link candidates. Augmenting current algo-

rithms with our filters dramatically improves prediction accuracy across all traces

and algorithms, even for algorithms that were already designed to capture network

dynamics [37].

1.4 Secure graph sharing system

From network topologies to online social networks, many of today’s most sensi-

tive datasets are captured in large graphs. A significant challenge facing the data

owners is how to share sensitive graphs with collaborators or authorized users, e.g.,

ISP’s network topology graphs with a third party networking equipment vendor.

Current tools like building strong access control mechanisms, or modifying data

to reduce the impact of potential leakages [91, 54, 128] can provide limited node

or edge privacy, but significantly modify the graph reducing its utility.

In this work, we propose a new alternative in the form of graph watermarks.

Graph watermarks are small graphs tailor-made for a given graph dataset, which

are difficult to remove, and serve to associate to a particular user. When a data

owner wants to share her graph with multiple users, she first generates a special

subgraph, i.e., a graph watermark, for each user. She then embeds each watermark

9

Introduction Chapter 1

into the original graph to get a watermarked graph separately, and distributes

this graph to the corresponding user. If any watermarked graph is leaked, data

owner uses the original graph to extract the embedded watermark, and identify

who is responsible for the leakage. Then data owner can use this proof to seek

potential damages against that user. Knowing the existence of such a way to

track for responsibility, users would be more cautious with the shared data. Our

graph watermarks serve both as a deterrent against data leakage and a method

of recourse after a leak.

We provide robust schemes for embedding and extracting watermarks, and use

analysis and experiments on large real graphs to show that they are unique and

difficult to forge. We study the robustness of graph watermarks against both single

and powerful colluding attacker models, then propose and evaluate mechanisms

to dramatically improve resilience.

1.5 Contributions

In this dissertation, the key contribution is to carry out data-driven graph

analysis from large-scale real datasets, where we have built graph tools to meet

challenges from scalability, dynamics, and data privacy. We have provided novel

algorithms, models, and systems to capture properties of large-scale real graphs,

guided by our measurements. We have also revisited and evaluated the current

10

Introduction Chapter 1

status of fundamental graph problem to understand how far existing work has

gone in this area. Besides, we have verified our solutions using rigorous theoretical

analysis, experiments on a range of big real graphs and detailed simulations. In

the following, we list our detailed contributions.

Novel Algorithms, Models and System Designs. We have designed

novel algorithms/models/systems to address the key challenges from data-driven

graph analysis on big real graphs. In Chapter 2, when we try to explore the ex-

istence of self-similarity property, we explored different detection algorithms and

identified a reliable tool for dynamic social graphs. Based on our findings, we

have proposed a novel dynamic graph model, which combines a temporal com-

ponent that accounts for “when” and “how many” edges are created, and also a

spatial component that captures “where” those edges are distributed. This is the

first model to comprehensively capture the evolutionary dynamics of graphs from

different aspects at fine granularity. Also, in Chapter 3, after we have evaluated

the predictive power of existing link prediction algorithms and studied the causes

for overall low prediction, we have provided “temporal filters” that can greatly

improve the prediction, by pruning the search space for potential links. And in

Chapter 4, to securely share graphs, we have overcome the limitations of current

solutions by providing a new alternative in terms of graph watermarks. We are

the first to identify the goals and requirements of a graph watermark system. We

11

Introduction Chapter 1

have also described an initial design that efficiently embeds watermarks into and

extracts out of large graphs, and with low distortion of the graph data.

Identifying Fundamental Challenges/Limitations. We have revisited

the fundamental graph problem, i.e., link prediction, and explored the existence

of fundamental statistical property in graph dynamics, i.e., self-similarity. We

have identified some fundamental/practical challenges faced by those problems.

In Chapter 3, we are the first to evaluate existing link prediction solutions from

an empirical angel, i.e., on large-scale dynamic graph traces. We have found the

overall low predictive power of all existing solutions, and dug sources of such low

prediction accuracy from both structural and temporal aspects. We have found

that one fundamental contributing factor is that current prediction algorithms take

a purely static approach to network analysis, and do not take in account temporal

patterns exhibited by an evolving network. In Chapter 2, we have proved when

detecting self-similar property on real traces in social graph dynamics, how tradi-

tional tools produce inconclusive results because of the underlying deterministic

trends by human behaviors. We have also validated the suitability of a more

advanced and robust tool in such scenario.

Theoretical and Experimental Validation. We have validated our pro-

posed solutions using theoretical analysis, experiments on various large-scale graph

datasets, and also simulated attacks if needed. In Chapter 2, both our measure-

12

Introduction Chapter 1

ment for the existence of self-similarity property, and our proposed model for

graph dynamics are based on two large-scale datasets: Renren, with 200M edges

and 11M nodes at the end of the trace, and Facebook, with 877K edges and 47K

nodes over a four-year period. By showing that our model produces dynamic

traces that match key properties of the two original traces, we have proved that

our model provides a practical method for generating realistic traces and has filled

an existing void in this research community. In Chapter 3, we have applied our

proposed “temporal filter” to existing solutions, and tested on different large-scale

graphs, including Renren, Facebook and YouTube. We show that by leveraging

temporal information on network dynamics using our filters, we can effectively

improve link prediction accuracy. And we have also confirmed the generality of

our filtering method. In Chapter 4, we have provided a strict theoretical proof of

uniqueness of graph watermarks, showing that it is extremely difficult for attack-

ers to forge watermarks. We have also tested the suitability of watermarking to 48

of today’s real network graphs, which represent vastly different types of networks

and a wide range of structural topologies with size ranging from 10K nodes and

39K edges, to 5M nodes and 48M edges. Results support our assertion that our

watermarking mechanism is applicable to most of today’s network graphs with

low detection risk. Besides applicability, we have also validated our watermark

13

Introduction Chapter 1

system in terms of robustness agains attacks, distortion, uniqueness, and efficiency

on several larger network graphs.

1.6 Thesis organization

The rest part of this dissertation is organized as follows:

In Chapter 2, we elaborate our efforts to analyze and model graph dynamics.

Following the background and description of datasets, we carry out preliminary

analysis with two traditional tools to detect the existence of self-similarity. From

the initial analysis, we find the edge creation process in social graphs display a

typical periodical pattern in user activity, and potential self-similarity properties

at certain time scales. However, because of the existence of periodical patterns,

both traditional tools fail to provide reliable detection results. We then apply

a more rigorous method to systematically study potential self-similar properties,

and validate its obvious existence over smaller time scales and fading away at

larger time scales. Motivated by the self-similarity analysis, we next seek to build

a complete model of graph dynamics. We propose a model with two components:

a temporal component that produces a sequence of time-stamped events defining

when and how many new edges are formed in a given time interval, and a spatial

component defining where in the graph these new edge creations take place. Fi-

nally, we validate the proposed model on different datasets, where we calibrate the

14

Introduction Chapter 1

model using real data and use it to generate synthetic dynamics graphs, and then

compare these synthetic graphs to the original data in terms of both temporal

and spatial properties.

In Chapter 3, we present our work on revisiting the fundamental graph prob-

lem, i.e., link prediction. We first introduce different categories of link prediction

algorithms: metric-based and classification-based algorithms. We then present two

key questions we want to ask in our efforts to study this problem, our proposed

graph sequence based framework for evaluation, and 18 implemented algorithms.

The empirical evaluation begins with metric-based prediction algorithms, where

we seek to understand their prediction accuracy, and they key factors that lead

to prediction errors. Later we evaluate classification-based algorithms in practi-

cal scenarios and compare their results to metric-based algorithms. Finally, we

improve existing algorithms by integrating them with dynamic network analysis,

where we propose temporal filters to drastically reduce the search space for link

candidates. Our proposed solution can even augment algorithms that are already

designed to capture network dynamics.

In Chapter 4, we introduce the design of graph watermark system. To set

the context for the design, we first introduce the framework of graph watermark

systems, define the attack models we target, and use them to guide our design

goals. We then describe in details the basic design, which seeks to embed and

15

Introduction Chapter 1

extract watermarks on graphs to achieve watermark uniqueness while minimizing

distortion on graph structure. Later we present detailed analysis on two funda-

mental properties: watermark uniqueness, where each watermark must be unique

to the corresponding user, and watermark detectability, where the presence of a

watermark should not be easily detectable by external users. Because in prac-

tice, attackers can seek to detect or destroy watermarked graphs, we propose

advanced features to defend against corresponding attacks. We finally use real

network graphs to evaluate the performance of the graph watermarking system in

terms of key metrics: false positives, graph distortion, watermark robustness, and

computational efficiency.

Finally in Chapter 5, we conclude the dissertation with future directions.

16

Chapter 2

Analyzing and Modeling Graph

Dynamics

2.1 Introduction

1 Studying graph dynamics, i.e. graph evolution including detailed timings of

when nodes arrive and edges are created, is important for many network appli-

cations, from system design, resource allocation, anomaly detection, to demand

forecasting. Prior studies of graph dynamics are typically based on randomized,

generative graph models that produce sequences of events leading to an observed
1 ©ACM, (2016). This is the authors version of the work. It is posted here by permission of

ACM for your personal use. Not for redistribution. The abbreviated version of content in this
chapter was published in Journal ACM Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS) [93], http://doi.acm.org/10.1145/2994142.2342440.

17

Analyzing and Modeling Graph Dynamics Chapter 2

network structure [65, 84, 10, 9, 109, 155]. Focusing primarily on producing a

graph with some desired structural properties, they do not model or match the

sequence of dynamic events that lead to that structure. With the proliferation of

online social networks (OSNs) and thus access to real, large-scale traces of graph

evolution, there are increasing number of literature in analyzing and modeling

social graphs [133, 153, 62, 130, 39, 31, 22]. However, graph dynamics are still

poorly understood. Current methods often study them via static snapshots, which

capture graph dynamics only at discrete points in time, and lack time information

about events that occur between snapshots.

Our work seeks to address this need by studying detailed dynamics in “time-

stamped” traces of network growth. While most/all existing work analyze and

model dynamics using logical clocks, we examine the relationship between net-

work dynamics and real physical clock time. Specifically, the use of physical time

allows us to tackle two significant challenges in the modeling of network dynam-

ics. First, physical time allows us to determine if social network dynamics exhibit

self-similarity, an invariance of behavior at different time scales. Self-similarity

is a fundamental statistical property, that if discovered, defines hard limits on

how such dynamics can be modeled using traditional means, e.g. Poisson. Its

detection in contexts such as network traffic and web traffic has led to significant

shifts in how such datasets were analyzed and modeled.

18

Analyzing and Modeling Graph Dynamics Chapter 2

Second, analysis of a physical time trace allows us to build a model of OSN

dynamics that captures not only structural properties of the network, but also

the sequence of dynamic events leading to that structure. This type of dynamic

graph model would address several practical OSN problems. First, the research

community has repeatedly expressed a need for real dynamic graph traces. Using a

real trace for calibration, our model can generate “realistic” dynamic graphs with

a complete list of time-stamped network events. Next, our model can be used

to perform “interpolation,” i.e. construct complete dynamic graph traces that

approximate the continuous network evolution between successive static snapshots

of OSNs. Finally, our model can be used to detect abnormal events (attacks or

changes in user behavior) in real networks, i.e. events that disrupt expected

network dynamics.

In this chapter, we perform an empirical study of network dynamics by examin-

ing of network events over multiple years. For this Our work relies on two detailed,

time-stamped traces of social networks, the Renren dataset [161] (complete, time-

stamped trace of 199 million social links over 2 years) and the Facebook wall post

dataset [72] (876K wall posts between users over 4 years in a Facebook regional

network). To the best of our knowledge, these are the only datasets available

today with sufficient granularity and event frequency to provide accurate analysis

on network dynamics and self-similarity.

19

Analyzing and Modeling Graph Dynamics Chapter 2

Self-similarity based Network Analysis. Self-similarity refers to the in-

variance behavior of a time series under rescalings, i.e. the relative variance or

volatility of traffic traces stays similar across different time scales2. Successful

detection of self-similar properties is a very meaningful result (for network model-

ing), because it defines fundamental limits on how such datasets can be modeled

using traditional means. Due to its very different statistical properties, e.g. signif-

icantly higher burstiness, self-similar traffic cannot be easily captured or modeled

by popular traffic models. In recent years, self-similarity has been found and led

to changes in data modeling in variety of contexts, including local network traf-

fic, wide-area network traffic, file system accesses, disk-level I/O, messaging and

email communications and web traffic requests [75, 115, 36, 50, 122, 44, 126, 41].

In each case, the discovery of self-similar scaling properties led to a noteworthy

shift in how such datasets were analyzed and modeled.

It is challenging to detect and quantify self-similar scaling properties in real

network traces in a statistically rigorous manner. This is partially due to the likely

presence of patterns (e.g. deterministic trends and diurnal or weekly cycles) that

introduce non-stationarity. The edge creation process may be consistent with self-

similar scaling over time scales ranging from seconds to hours. But patterns like
2Self-similarity can be used to describe scale invariance of certain properties of an object in

space and/or time. In this paper, we adopt the temporal meaning, i.e. self-similarity along the
time dimension.

20

Analyzing and Modeling Graph Dynamics Chapter 2

diurnal or weekly user cycles likely dominate over larger time scales like days and

weeks, and need to be accounted for before any self-similarity analysis. Intuitively,

we seek to not only detect self-similar scaling properties in edge creation process,

but also determine time scales where self-similarity is visible and can be quantified.

Thus we use a range of techniques including R/S analysis, the variance fitting

method, and a wavelet-based method. And our analysis focuses on edge creation,

mainly because an exploratory analysis of the Renren data revealed no particular

structure underlying the observed node creation events.

A Model of Social Network Edge Dynamics. We incorporate the find-

ings from our self-similarity analysis into a complete evolutionary network model,

including a temporal component that determines “when” new edge creations occur

in time, and a spatial component that specifies “where” these new edges form.

Together, this model produces a sequence of time-stamped events that uniquely

define the formation and evolution of a social network or graph in time and space.

By tuning a small number of parameters, our model can be calibrated to “fit”

traces of measured graph dynamics exhibiting self-similar properties. We vali-

date the model by comparing the model-generated edge creations to that of the

real data (Renren and Facebook). Our results on both datasets show that the

synthetic edge creation matches both the self-similar scaling behavior and the di-

urnal patterns exhibited by the real data. Furthermore, successive snapshots of

21

Analyzing and Modeling Graph Dynamics Chapter 2

the graph structure generated by our model match the corresponding snapshots

of the original data on a variety of metrics, including average path length and

average clustering coefficient.

We summarize our five key contributions in this chapter as follows:

First, we find that Renren’s edge creation process is non-stationary over long-

term periods. Even after removing the impact of node arrivals, traditional R/S

and variance methods still produce inconclusive results on self-similar scaling.

Thus, the two methods are unsuitable for measuring self-similarity in real traces

in social networks. (see Section 2.3)

Second, by applying the more robust wavelet-based method for examining

self-similarity, we find the edge creation process in Renren does exhibit properties

consistent with self-similarity over time scales ranging from seconds to hours. We

find the wavelet-based method to be highly robust detecting self-similarity in the

presence of non-stationary trends. (see Section 2.4)

Third, We cross-validate our observations by repeating the above analyses on

the Facebook wall post dataset, and confirm that it exhibits similar self-similarity

properties observed from the Renren dataset. (see Section 2.5)

Forth, we propose a detailed model of social network dynamics that captures

both the temporal properties of graph dynamics, in terms of self-similar scaling

and deterministic non-stationary periodic patterns like diurnal or weekly cycles

22

Analyzing and Modeling Graph Dynamics Chapter 2

of user activity, and its spatial properties, including long-term graph distance

shrinkage and reduction in local clustering. (see Section 2.6)

Finally, we validate our model by showing that it produces dynamic traces

that match key properties of the original Renren and Facebook datasets, both

temporally and spatially. Thus, by providing a practical method for generating

realistic traces of time-stamped network events, our model fills an existing void in

the research community. (see Section 2.7)

To the best of our knowledge, our work is the first to empirically study the

presence of self-similarity in the time dynamics of online social networks (OSNs).

Our findings highlight that instead of traditional Poisson models, the dynamics of

real-world networks such as Renren social graph can often be adequately captured

by a combination of a non-stationary component, e.g. long-term deterministic

trends, and a stationary component, e.g. self-similar process. We believe that

our model is the first to explicitly account for both temporal and spatial features

in network dynamics and addresses an urgent need for accurate models of graph

dynamics.

2.2 Background and Datasets

In this section, we introduce briefly the notion of self-similarity, and describe

the Renren and Facebook dataset used in our study.

23

Analyzing and Modeling Graph Dynamics Chapter 2

Self-similarity. For a time process, self-similarity refers to an invariance be-

havior, where certain statistical properties are similar under appropriately rescaled

versions of the process [20, 75, 35]. Self-similarity has been observed in a variety

of contexts in computing systems and networks, including web traffic [36], file

system accesses [50], and traffic in both wide area networks [115] and local Ether-

net networks [75]. For self-similar traffic, the aggregation of many bursty sources

remains bursty across a wide range of time scales. This behavior is quite different

from conventional Poisson processes that tend to produce traffic that smoothes

out when observed over large time scales. While self-similarity can also be asso-

ciated with geometry and describe the invariance in hierarchical structures [136],

this work focuses on the temporal domain3.

To formally define self-similarity, let X = {Xi : i = 1, 2, ...} be a covariance

stationary stochastic process whose autocorrelation function r(k) ∝ k−β (0 <

β < 1) as k → ∞. For each integer m (m > 0), we form a new process X(m)

representing the averaged values of X over disjoint blocks of size m. That is, the

jth element of X(m) is:

X
(m)
j =

1

m
(X(j−1)m+1 +X(j−1)m+2 + ...+Xjm), j = 1, 2, ... (2.1)

3Throughout the paper we refer to temporal self-similarity as self-similarity.

24

Analyzing and Modeling Graph Dynamics Chapter 2

If X is self-similar, then r(m)(k), the autocorrelation function of X(m), should

satisfy [50, 75]:

r(m)(k) = r(k), or r(m)(k)→ r(k), m→∞. (2.2)

An effective and commonly used metric to detect the existence or quantify the

degree of self-similarity is the Hurst parameter H, measurable in multiple ways [5,

75]. Intuitively, H helps to capture the “burstiness” of a covariance stationary

process, where a higherH corresponds to a process with more pronounced “bursts”,

i.e. large observations have a tendency to be followed by large observations, and

small observations by small ones. Formally, H = 1−β/2, where β is defined by the

process X’s autocorrelation function r(k) ∝ k−β. A process exhibits self-similarity

if H falls in the range of (0.5, 1).

Ideally, the finite-dimensional distributions of a self-similar process should stay

invariant across all time scales. In reality, this property often exists at smaller

time scales, but breaks down at large time scales due to non-stationary patterns

and finite datasets [46, 50]. For example, diurnal user activity breaks stationarity

and interferes with self-similarity at time scales larger than a few hours. Thus,

analyzing for self-similarity requires determining the range of time scales over

which it is visible [5, 46, 50].

Datasets. An Online Social Network (OSN) is an online platform to build

social relations among people who share similar interests, opinions or have real-

25

Analyzing and Modeling Graph Dynamics Chapter 2

Graph Trace Start Date Trace End Date Granularity # of Nodes # of Edges

Renren (Non-sampled) [161] 11/21/05 12/31/07 Seconds 10,572,832 199,564,006

Facebook (New Orleans) [72] 09/14/04 01/22/09 Seconds 46,952 876,993

Table 2.1: Statistics of the two OSN datasets, with the start/end date of the traces, the
granularity of time stamps in the traces, the total count of nodes that have been involved in

edge creation, and the total count of edges that have been newly created in the traces.

life connections4. While many have diverse features, they typically share features

that allow individuals to construct an own page or profile, and build connection

with other users, e.g., friending others. When modeling OSNs, an individual user

is usually regarded as a “node”, while the relationship between a pair of users as

an “edge”, or a “link”.

Our analysis is based on OSNs: Facebook and Renren, where our work is

the first to empirically study the presence of self-similarity in the time dynamics

of OSNs. Facebook is the world’s most popular online social network with over

1.5 billion users5, while Renren is the Chinese version of Facebook, the largest

and oldest OSN in China with more than 220 million users [62]. For both sites,

a registered user can create her profile, add other users as “friends”, and post

messages on others’ wall (called “wall posts”), an area on each user’s own profile

where others (usually friends) can make comments.
4https://en.wikipedia.org/wiki/Social_networking_service
5https://en.wikipedia.org/wiki/Facebook.

26

Analyzing and Modeling Graph Dynamics Chapter 2

10
1

10
4

10
7

0 200 400 600 800

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time (Day)

Figure 2.1: Daily edge growth in Renren.

1

10
2

10
4

0 400 800 1200 1600

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time (Day)

Figure 2.2: Daily edge growth in Facebook.

We show the summarized statistics of the two datasets in Table 3.2. The first

and primary is an anonymized dataset from Renren [161], with a detailed time-

stamped (down to the second) trace of the creation of all nodes (10,572,832) and

all edges (199,564,006) over a 25-month period from Nov. 21, 2005 (the launch of

Renren) to Dec. 31, 2007. Here an edge is created when two users become friends.

To the best of our knowledge, this is one of the largest time-stamped datasets on

social network evolution studied to date.

Figure 2.1 plots the daily edge growth of the Renren social network, where

data points represent the number of new edges created on each day. This plot

shows that the dataset covers both the initial explosive growth (from day 1 to

around day 200) and the stabilized evolution of the Renren network [161]. Note

the unusually large spike on day 386 (Dec. 12, 2006). This is the result of a

merging event - Renren merged with 5Q, its largest Chinese competitor at that

time. The network doubled in size in a single day, growing from 624K users and

8.2M links to 1.3M users with 11.2M links. Given it is a one-time event, we

27

Analyzing and Modeling Graph Dynamics Chapter 2

exclude it from our analysis, and focus in our study on continuous data segments

before or after the merge.

The second dataset is the Facebook wall post dataset6 [72]. It contains wall

posts produced by users from the Facebook New Orleans regional network, i.e.

46, 952 users and 876, 993 posts created over a four-year period from Sep. 14th,

2004 till Jan. 22nd, 2009. Each post is also time-stamped to the granularity

of a second. Like [153], we consider each wall post as an edge representing an

interaction between two users. Figure 3.6 plots the daily edge growth of the

Facebook social network. Like Renren, this dataset also covers periods where

edge creation events increase significantly at the beginning, and then stabilize

(around day 750). Compared to Renren, this dataset is much more sparse.

2.3 Preliminary Analysis

Our goal is to determine if Renren and Facebook’s network evolution display

any property consistent with self-similarity, and if so, over what range of time

scales. For clarity we first describe our analysis for Renren, which we repeat on the

Facebook dataset in Section 2.5. Our analysis focuses on the edge creation process,

since initial analysis showed no particular structure underlying the observed node

creation events. The key challenge we face is how to identify and isolate the
6http://konect.uni-koblenz.de/networks/facebook-wosn-wall

28

Analyzing and Modeling Graph Dynamics Chapter 2

impact of non-stationary patterns in the edge creation data. As a first step, we

limit the impact of new node arrivals on edge creation, by focusing our analysis

on edges created between members of a fixed user population. We remove this

restriction and extend our analysis for all edge creation events in Section 2.4.3.

Next, we start by briefly describing how we sample the original dataset by

removing certain node arrival and other obvious non-stationary events. We then

discuss the methods for detecting self-similarity, our initial analytical findings and

key insights.

2.3.1 Experiment Setup

Data Sampling. We begin our analysis with a conservatively sampled sub-

set of our data to remove obvious non-stationary factors that may impede any

direct analysis of self-similar scaling property. Specifically, we limit our sample

to include only existing users as of December 1, 2007, and study all edge creation

events between them during December 2007, i.e. days 741 to 771. This sampling

eliminates three factors. First, by studying only edges created between members

of a fixed user population, we minimize the impact of new node arrivals. Second,

this month avoids the abnormal expansion of new edges around day 386 as a result

of the one-time merge event of two social networks (Renren and 5Q). Finally, this

time period is sufficiently late in the history of Renren that it avoids the initial

29

Analyzing and Modeling Graph Dynamics Chapter 2

exponential network growth experienced by most social networks [161]. This data

sample represents a stable growth period in Renren, which contains 18, 714, 712

edges created between 6, 219, 531 existing users. In the following we refer to this

sampled dataset as “sampled dataset of Renren” to differ from the entire dataset

without sampling as “full Renren”.

Estimating H. The two most popular (and simple) methods to estimate H

are variance analysis and R/S analysis [46, 50, 75]. Our initial analysis efforts

consist of applying these two methods in addition to directly visualizing the raw

data.

Variance fitting method [75, 115] analyzes the decaying behavior of variances

of the aggregated processes X(m) introduced earlier, with m the block size. From

Equation 2.2 in Section 2.2, a self-similar process X satisfies:

log(V ar(X(m))) ∝ −β log(m),m→∞ (2.3)

where β = 2(1 − H). Thus by linearly fitting the plot of log(V ar(X(m))) versus

log(m), this method can estimate β and then H = 1− β/2.

R/S analysis computes H by measuring how apparent the variability of a time

series changes with the length of the time-period being considered, which can be

formally captured by the R/S statistic [50, 75]. To compute H, it divides the

process X into blocks of size n, and computes the corresponding R/S statistic

30

Analyzing and Modeling Graph Dynamics Chapter 2

R(n)/S(n). Because there is

E[R(n)/S(n)] ∝ nH , , n→∞ (2.4)

for self-similar processes [50], H is estimated using the slope of log(E[R(n)/S(n)])

versus log(n).

2.3.2 Measurement Results

We now present the results using three heuristics: visualization of raw data,

variance analysis and R/S analysis.

A Long-term Diurnal Pattern. Figure 2.3 visualizes the edge creation

process by plotting the number of new edges created in each second over the

one month (Day 741-771). We can clearly observe a diurnal pattern in the edge

creation process. This non-stationary behavior precludes any direct analysis of

self-similarity. We confirm this from the results of the variance and R/S analysis.

Figure 2.4 plots the values of log(V ar(X(m))) against log(m). The curve maintains

a linear shape until m reaches 104 seconds (≈ 3 hours), and then its slope changes

significantly. Similarly, Figure 2.5 plots in log-log scale individual R/S statistics

as a function of the block size n (in seconds). The red straight line shows the best

linear fit and its slope results in an H-estimate of H = 1.19, clearly outside the

allowed range of (0.5 < H < 1).

31

Analyzing and Modeling Graph Dynamics Chapter 2

 0

 10

 20

 30

 40

741 751 761 771

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time(Day)

Figure 2.3: Edge growth in sampled dataset of Renren, in terms of the number of new edges
created per second. It shows a clear diurnal pattern.

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6

lo
g
(V

a
r(

X
(m

)))

log(m)

Figure 2.4: Variance analysis of sampled
dataset of Renren: the slope changes greatly
when m>104 seconds (≈ 3 hours), preventing

direct analysis on self-similarity.

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

lo
g
(R

/S
)

log(n)

H estimation = 1.19

value
fitting
y=x
y=0.5x

Figure 2.5: R/S analysis of sampled dataset
of Renren: H estimation is beyond range of

self-similarity, and data shape changes
significantly for n>104 seconds (≈ 3 hours).

The appearance of such a pronounced diurnal pattern has a direct impact on

subsequent efforts to model our dataset. It suggests that models should include a

component that accounts for this expected user-generated periodic behavior.

Self-similar Fluctuations. An interesting observation from Figure 2.3 is

that the fluctuations on top of the diurnal component display a bursty behavior.

Similarly, Figure 2.4 and 2.5 show that the curve only starts to lose its line shape

when m or n exceeds 104 seconds (≈ 3 hours). Figure 2.6 shows the edge creation

events of a randomly chosen 3-hour segment (6pm-9pm, December 16, 2007). It is

32

Analyzing and Modeling Graph Dynamics Chapter 2

0

10

20

30

0 1 2 3

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time(Hour)

Figure 2.6: An example of edge growth of a
randomly chosen 3-hour segment in the

sampled dataset of Renren. It is highly bursty,
appears stationary and suggests further

exploration for self-similar scaling behavior.

0

0.5

1.0

 0 50 100 150 200 250

H
 V

a
lu

e

Segment Index(Segment Length = 3 Hours)

Variance Analysis
R/S Analysis

Figure 2.7: Estimates of H by both
Variance and R/S analysis on disjoint 3-hour
segments in the sampled dataset of Renren,

where 98%+ of H estimates fall within (0.5,1).

highly bursty, appears stationary and could therefore exhibit self-similar scaling

behavior. Together, these observations suggest that over time scales not signifi-

cantly impacted by the observed diurnal patterns (i.e. a few hours and below),

the edge creation process may be consistent with self-similar scaling behavior.

We confirm this intuition by performing variance and R/S analysis on each 3-

hour log segment and computing its H value. Figure 2.7 plots the results over the

entire month as 248 disjoint 3-hour segments. H estimates based on the variance

analysis method vary across segments, with a mean of 0.89 and variance of 0.01,

while R/S analysis remains stable, with mean of 0.68 and variance 0.001. For both

methods, overwhelming majority of segments (98.4% for variance, 99.5% for R/S)

estimate H within (0.5 < H < 1). These results suggest that the Renren edge

creation process exhibits self-similarity over time scales ranging from seconds to

hours.

33

Analyzing and Modeling Graph Dynamics Chapter 2

2.3.3 The Reliability of our H Estimates

In our analysis, we encountered potential issues regarding the reliability of

H-estimates using the variance and R/S analysis methods. For some segments,

the methods produced poorly-fitting linear regression lines, which in turn resulted

in highly questionable estimates of H. Figure 2.8 shows an example of such a

“problematic” segment (6-9am, December 6, 2007), where the line fitting is poor

via variance analysis. We also plot as an inset in the figure the raw edge growth

during the time period, which shows a clearly non-stationary event. We further

study these events in Section 2.4.2.

 0

 0.4

 0.8

 1.2

 0 1 2 3 4

lo
g

(V
a

r(
X

(m
)))

log(m)

value
fitting

0

10

20

0 1 2 3

#
 o

f
E

d
g
e

s
 C

re
a

te
d

Time(Hour)

Figure 2.8: An example of poor line fitting in variance analysis, which has poor R2=0.0458.
This is also confirmed by the inset which displays the raw edge growth during the

corresponding time period, and shows a clearly non-stationary event.

To quantify the impact of such poor data fitting on the obtained H estimates,

we compute the coefficient of determination R2 for each segment. R2 measures

how well the observed data points are represented by a straight line. Like [50],

we use the criterion of R2 > 0.9 to indicate that the fitting is sufficiently good to

34

Analyzing and Modeling Graph Dynamics Chapter 2

provide a reliable H estimate. 38.3% of all segments have unreliable H estimates

by R/S analysis vs. 71.0% by variance analysis! Prior studies have reported

similar reliability issues [64, 141].

2.3.4 Summary of Observations

Our initial analysis led to three main findings. First, the Renren edge creation

displays a typical diurnal pattern in user activity that makes the process inherently

non-stationary, preventing a direct analysis of self-similarity. This suggests that

any accurate model of Renren’s edge creation process must include a component

that explicitly account for this periodic behavior. Second, local fluctuations on top

of the periodic component display behavior that indicates potential self-similarity.

Finally, we find that two commonly-used methods, i.e. variance and R/S analysis

methods, cannot provide reliable H-estimates for real data that displays non-

stationary patterns.

Thus, our next step is to avoid most of the encountered problems by applying

a more rigorous method for systematically analyzing data with potential scaling

behavior that has strong robustness properties with respect to underlying non-

stationary patterns, and results in H-estimates with known statistical properties

(e.g., confidence intervals).

35

Analyzing and Modeling Graph Dynamics Chapter 2

2.4 Wavelet-based Analysis

Following our initial analysis, in this section we apply a more rigorous wavelet-

based method to systematically study potential self-similar scaling behavior ex-

hibited by our dataset. This method has strong robustness against underlying

non-stationary patterns and can provide H-estimates with confidence intervals.

To this end, we first briefly introduce the wavelet method and then present our

findings.

2.4.1 The Wavelet Method

Estimation errors of the variance and R/S analysis methods can be attributed

to their “eyeballing” approach when attempting to identify self-similarity in highly

variable data. In contrast, the wavelet-based method offers a principled and rig-

orous analysis of a given dataset’s scaling property by isolating characteristics of

data via a combined scale-time presentation. In turn, it provides a more reliable

self-similarity analysis [5].

In short, wavelet-based analysis represents a process X by a sequence of sub-

spaces {Wj}j∈Z where Wj is at a finer scale than Wj−1 (Wj ⊂ Wj−1). This way,

it can reveal detailed properties of X at different time scales. If X is self-similar,

36

Analyzing and Modeling Graph Dynamics Chapter 2

its projection on the Wj subspace Γj, satisfies:

E[Γj] ∼ |2−jv0|1−2H (2.5)

Here 2−jv0 represents the reference frequency of the jth subspace Wj while v0 is

the reference frequency of the root subspace W0. One can estimate the Hurst

parameter H by plotting E[Γj] vs. j on a log-log scale and applying linear regres-

sion.

We estimate H using the wavelet software developed [5] for self-similarity anal-

ysis. By carefully choosing the number of vanishing moments N that controls v0,

the tool can systematically detect and remove the impact of various types of de-

terministic trends in the dataset. Furthermore, it also relies on known theoretical

properties of the resulting H-estimate to provide confidence interval (CI) for H.

In the analysis of our dataset, we choose the value of N that produces both a

good fit and the smallest confidence interval.

2.4.2 Measurement Results

We seek to confirm and substantiate our preliminary results that show prop-

erties consistent with self-similar scaling in our Renren dataset. We divide our

sampled dataset into disjointed segments of lengths between 3 and 12 hours and

apply the wavelet-based analysis to each segment. In our analysis, we refer to a

segment as “abnormal” if its H estimate (including its 95% confidence interval)

37

Analyzing and Modeling Graph Dynamics Chapter 2

0

0.5

1.0

1.5

2.0

 0 50 100 150 200 250

H
 V

a
lu

e

Segment Index

Figure 2.9: Wavelet analysis on data
segments with segment length = 3 hours

(sampled dataset of Renren).

0

0.5

1.0

1.5

2.0

 0 20 40 60 80 100 120

H
 V

a
lu

e

Segment Index

Figure 2.10: Wavelet analysis on data
segments with segment length = 6 hours

(sampled dataset of Renren).

0

0.5

1.0

1.5

 0 10 20 30 40 50 60 70 80

H
 V

a
lu

e

of Segments

Figure 2.11: Wavelet analysis on data
segments with segment length = 9 hours

(sampled dataset of Renren).

0

0.5

1.0

1.5

2.0

 0 10 20 30 40 50 60

H
 V

a
lu

e

Segment Index

Figure 2.12: Wavelet analysis on data
segments with segment length = 12 hours

(sampled dataset of Renren).

does not completely fall within the self-similar range (0.5, 1). Our analysis leads

to two key findings.

Self-similarity Over Time Scales from Seconds to Hours. Our analysis

confirms that over time scales ranging from seconds to a few hours, Renren’s

edge creation process exhibit properties consistent with self-similar scaling. As

an example, Figure 2.9 shows the H-estimates with their 95% confidence interval

for all 248 3-hour long segments. Only 5 segments are abnormal, while the rest

38

Analyzing and Modeling Graph Dynamics Chapter 2

Start Time Shift
Normal Segments Abnormal Segment

H mean H variance Portion

0 hour 0.631 0.002 2.02%

1 hour 0.633 0.002 2.43%

2 hours 0.629 0.002 2.02%

Table 2.2: Statistics of wavelet analysis on 3-hour segments with start time shifts. (sampled
dataset of Renren)

(98%) consistently produces H-estimates within (0.5, 1), and tightly clustered

around H = 0.63.

To examine the robustness of our results, we check different segment compo-

sitions by shifting the start time of each segment by 0, 1, and 2 hours separately.

From the summarized results in Table 2.2, we notice the stability in the mean

(0.63) and variance (0.002) of H-estimates for normal segments, and also the por-

tion of segments deemed abnormal (2.02% ∼ 2.43%) These results provide further

evidence that Renren’s edge creation process behaves properties consistent with

self-similar scaling over time scales from seconds to a few hours.

Scaling Behavior over Larger Time Scales. We observe that the num-

ber of abnormal segments increases as the segment size increases. Figure 2.10

to Figure 2.12 plot the H-estimates across all segments for segment lengths of

39

Analyzing and Modeling Graph Dynamics Chapter 2

6, 9 and 12 hours. The ratio of abnormal segments increases to 8.1% for 6-hour

segments, and up to 32.3% for 12-hour ones. It confirms our earlier conclusion

that the properties consistent with self-similar scaling weaken in Renren’s edge

creation process, when viewed over larger time scales. This phenomenon is per-

haps due to the presence of harder-to-account-for non-stationary patterns, such

as heteroscedasticity (i.e. edge creation in Renren is more variable during peak

hours than during low hours).

Patterns of Abnormal Segments. We also wish to understand patterns and

potential causes for the observed abnormal segments. We find that these abnormal

segments are randomly distributed across days, and within a day, around 60% of

them appear during 6pm-9pm when Renren users are most active (the number of

edges created account for 23% of the whole day).

We also find that abnormal segments are caused by sudden changes in the

edge growth process. Based on the edge growth patterns, we are able to clas-

sify abnormal segments into three types, shown in Figure 2.13 to Figure 2.15.

These include level shift, where the volume of edge growth suddenly increases (or

decreases), momentary drop where the growth experiences a short period of ex-

tremely low activity, and ramp up/down where the edge activity quickly increases

or decreases in the segment.

40

Analyzing and Modeling Graph Dynamics Chapter 2

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time (Second)

Figure 2.13: Examples of abnormal
segments in terms of level shift, where the
red dot boxes show the unusual edge creation

events (sampled dataset of Renren).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time (Second)

Figure 2.14: Examples of abnormal segments
in terms of momentary outage, where the
red dot boxes show the unusual edge creation

events (sampled dataset of Renren).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 2000 4000 6000 8000 10000

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time (Second)

Figure 2.15: Examples of abnormal segments in terms of ramp up/down, where the red
dot boxes show the unusual edge creation events (sampled dataset of Renren).

Our collaborators at Renren have confirmed that while per hour identification

is difficult, it is possible that at least some of these abnormal events match changes

to the site and its features. Intuitively, level shifts and momentary drops might

be caused by new features or localized failures, and ramp up/down events might

correspond to ad promotions to increase user membership. We are working with

Renren to further confirm this.

41

Analyzing and Modeling Graph Dynamics Chapter 2

0

0.5

1.0

1.5

2.0

 0 100 200 300 400 500 600 700 800 900

H
 V

a
lu

e

Segment Index (Segment Length = 3 Hours)

Sep. Oct. Nov. Dec.

Figure 2.16: The H-estimates of all the disjoint 3-hour segments between September -
December 2007 of the Renren dataset, after performing wavelet analysis on the entire dataset

without sampling (full Renren). The results align with those with sampling (labeled as
“sampled dataset of Renren” in caption).

2.4.3 Analysis Without Sampling

Finally, we expand our analysis to consider the full, unsampled dataset. This

is to examine whether the observed property consistent with self-similar scaling

on the sampled data still present after including new nodes with rapid (and non-

stationary) edge growth.

We first consider the complete dataset from the month of December 2007. In-

terestingly, 97% of the 3-hour segments produce H estimates within the self-similar

range, with mean H = 0.65. We show detailed H estimates in Figure 2.16, which

are highly consistent with our prior analysis on the sampled dataset (Figure 2.9).

The only minor difference is two additional abnormal segments, possibly caused

by non-stationary edge growth of the new nodes.

Next, we examine all edge events in the year of 2007. Again, we get consistent

results: H-estimates of 97% of the 3-hour segments fall into the self-similar range,

with mean H = 0.64. Figure 2.16 shows H-estimates for September-December

42

Analyzing and Modeling Graph Dynamics Chapter 2

2007 (due to the space limit), which are representative of all other months. To-

gether, these results suggest with high possibility, that the same self-similar prop-

erty is present consistently throughout time. These results also confirm the high

reliability of the wavelet method in self-similarity detection.

2.4.4 Summary

We apply the more reliable and accurate wavelet method to detect self-similarity

at different time scales in Renren’s edge creation process. The outcomes confirm

prior observations from R/S and variance results, with high confidence, that the

property consistent with self-similar scaling lasts to several hours. This property

also holds for our full, unsampled dataset (after the network merge).

2.5 Validation via Facebook Dataset

One reasonable question is whether our results are strongly biased by our choice

of dataset, i.e. property consistent with self-similarity is only present in Renren

network. Here, we validate our findings using the Facebook wall post dataset [72].

Recall that for self-similar property to be detectable, a dataset must cover tem-

poral events in fine granularity and have sufficient event frequency to provide

43

Analyzing and Modeling Graph Dynamics Chapter 2

4

8

0 1 2 3

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time (Week)

Figure 2.17: An example of edge growth of a randomly chosen 3-week data (Facebook).

meaningful statistics. To our knowledge, the Facebook wall post dataset [72] is

the only dataset aside from our Renren dataset that meets these requirements.

As Figure 3.6 shows, like Renren, the number of edge creations in Facebook

dataset increases significantly at the beginning and stabilizes around day 750. To

eliminate the impact of this obvious non-stationary increasing trend, we focus

on the edge creation process after day 750 (for a total duration of 841 days).

Compared to Renren, this dataset is much more sparse, and per-second level

analysis does not show any meaningful statistics (only 1.15% of non-zero data

points). Thus we enlarge the time unit for analysis to 120 seconds, where the

resulting ratio of non-zero data points (61.18%) is comparable to that of Renren

(61.46%).

Following analysis in Section 2.3 and Section 2.4, we start by visualizing the

raw data in Facebook dataset, and then apply the variance, R/S and wavelet

analysis methods to see whether any property consistent with self-similar scaling

exists across the whole time range. Figure 2.17 shows a random sample of three

44

Analyzing and Modeling Graph Dynamics Chapter 2

-1.5

-1

-0.5

 0

 0.5

 0 1 2 3 4 5 6

lo
g
(V

a
r(

X
(m

)))

log(m)

value
fitting

Figure 2.18: Variance analysis on the entire
data: doubtable fitting with curves around

103 units (Facebook).

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

lo
g
(R

/S
)

log(n)

value
fitting

Figure 2.19: R/S analysis on the entire data:
doubtable fitting since the shape changes

greatly after 103 units (Facebook).

successive weeks (from day 762 - day 782) in the edge creation process, which

displays a clear weekly pattern. Similarly, this obvious non-stationary behavior

precludes any direct analysis on self-similarity. We also confirm this using the R/S

and variance analysis methods, where three successive weeks random the estimated

H values are 0.5779 and 0.8940 respectively. Although these H-estimates are

within the self-similar range (0.5, 1), Figure 2.18 and 2.19 show that the two

methods have poor data fitting, resulting in unreliable estimations on H. On

the other hand, the wavelet analysis produces a H value of 1.11, indicating that

there is no property consistent with self-similarity across the entire time range.

Together, all these results suggest over the time scale up to years, we cannot

reliably detect self-similarity properties in Facebook dataset.

Next, we explore whether the dataset displays self-similar scaling properties on

shorter time scales. We split the entire dataset into fixed size segments of length

varying between 1 to 7 days, and apply the wavelet analysis to each segment.

45

Analyzing and Modeling Graph Dynamics Chapter 2

0

0.5

1.0

1.5

2.0

 0 50 100 150 200 250

H
 V

a
lu

e

Segment Index

Figure 2.20: Wavelet analysis on data
segments with segment length = 3.5 days

(Facebook).

0

0.5

1.0

1.5

2.0

 0 20 40 60 80 100 120 140 160

H
 V

a
lu

e

Segment Index

Figure 2.21: Wavelet analysis on data
segments with segment length = 5 days

(Facebook).

0

0.5

1.0

1.5

2.0

 0 20 40 60 80 100 120

H
 V

a
lu

e

Segment Index

Figure 2.22: Wavelet analysis on data segments with segment length = 7 days
(Facebook).

Figure 2.20 to Figure 2.22 plot the H-estimates with their 95% CI at segment

length of 3.5 days, 5 days and 7 days respectively.

We obtain two key observations. First, we observe strong self-similarity prop-

erties over the time scale between minutes and days. Figure 2.20 shows that

98.35% of 3.5-day segments have H values with 95% CI falling into range (0.5, 1),

centered around H = 0.61. And by shifting start times of segments, the consistent

results in Table 2.3 further confirm this observation.

Second, the portion of abnormal segments (whose H estimates are out of

(0.5, 1)) increases with segment length, i.e. 1.65% for 3.5 days, 5.95% for 5 days

46

Analyzing and Modeling Graph Dynamics Chapter 2

Start Time Shift
Normal Segments Abnormal Segment

H mean H variance Portion

0 day 0.612 0.001 1.65%

1 day 0.611 0.001 2.07%

2 days 0.611 0.001 2.07%

3 days 0.613 0.001 3.32%

Table 2.3: Statistics of wavelet analysis on 3.5-day segments with start time shifts
(Facebook).

and 26.45% for 7 days. A detailed analysis on the dataset shows that this is

mostly caused by a weekly pattern (as shown in Figure 2.17) of user activities

which dominates at larger time scales.

In summary, our results on the Facebook dataset align very well with our

observations from the Renren dataset. Due to the existence of non-stationary

patterns introduced by human behaviors, e.g. diurnal or weekly user activities,

properties consistent with self-similar scaling exist, but only hold over certain time

ranges, and gradually weaken at larger time scales.

47

Analyzing and Modeling Graph Dynamics Chapter 2

2.6 A Model of Network Dynamics

Motivated by our self-similarity analysis of Renren and Facebook’s edge cre-

ation process, we next seek to build a complete model of social network dynamics.

Our proposed model includes two components: a temporal component that pro-

duces a sequence of time-stamped events defining when and how many new edges

are formed in a given time interval, and a spatial component defining where in the

graph these new edge creations take place (i.e. which nodes are involved). Ideally,

the model should produce synthetic dynamic graphs whose edge creation will dis-

play deterministic non-stationary periodic patterns (e.g. diurnal or weekly user

activities) and properties consistent with self-similarity, and whose graph struc-

tural changes match those observed from the original data and account for key

spatial properties, e.g. graph densification, path shrinkage and local decluster-

ing [161]. Next, we explain the model in detail and provide validation in Section

2.7.

2.6.1 The Temporal Component

Our analysis in Section 2.3, Section 2.4 and Section 2.5 show that for both

Renren and Facebook datasets, the edge creation process displays a combination

of deterministic non-stationary periodic patterns, i.e. diurnal or weekly user ac-

tivities, and property consistent with self-similarity. These observations motivate

48

Analyzing and Modeling Graph Dynamics Chapter 2

designing the temporal component of our model as a combination of two sub-

modules: a non-stationary module that captures the predictable cycles in user

activities, e.g. daily or weekly cycles, and a self-similar module that parsimo-

niously accounts for the inherent burstiness in user edge creations over certain

time scales, e.g. from seconds to a few hours.

The Self-Similar Module. Prior work has demonstrated two effective meth-

ods for producing self-similar traffic. The first method aggregates many ON/OFF

processes and under certain conditions, the superposition process displays a self-

similar scaling [152, 50]. In particular, this construction requires statistical knowl-

edge of the ON and OFF periods and assumes that either of those periods are

modeled by a heavy-tailed distributions. The second method is based on the

M |G|∞ queuing model [35, 151]. Here, each source arrives according to a Poisson

process, and the distribution of its active time is assumed to be heavy-tailed, e.g.

the Pareto distribution. During its active time, each source is assumed to operate

at a constant rate. Then the resulting count process {Nt, t = 0, 1, 2, ...}, where

Nt is the number of active sources at time t, is self-similar. In other words, by

multiplexing sources with Poisson arrivals and heavy-tailed active times, one can

produce a self-similar process.

Examining our two datasets in more detail shows that the M |G|∞-based

method provides an intuitive way and a good fit for modeling edge creation. For

49

Analyzing and Modeling Graph Dynamics Chapter 2

1e-6

1e-4

1e-2

1

 1 10 100 1000 10000

C
C

D
F

of edges created per node

Figure 2.23: CCDF of # of edges created per user in Dec. 2007 in Renren dataset.

one, we observe that over time, the number of edges created per user follows a

heavy-tailed distribution. For example, Figure 2.23 plots the distribution of the

number of edges created per Renren user during December 2007, which can be

approximated as a heavy-tailed pattern. Moreover, assuming each user creates

edges at a constant rate, the active time of a user is directly proportional to the

number of edges that user created. This in turn implies that each user’s active

time also follows a heavy-tailed distribution, consistent with the M |G|∞-based

construction of self-similar processes.

Based on this intuition, we build the self-similar module based on a standard

M |G|∞ process [35]. Users arrive according to a Poisson process with rate λ.

Upon arrival, each user independently starts its active time duration Ti (seconds)

chosen from a Pareto distribution:

P (X > x) = (
xm
x

)α, x ≥ xm, 1 < α < 2 (2.6)

50

Analyzing and Modeling Graph Dynamics Chapter 2

Assuming that each user creates edges at a constant rate γ/s, we can calculate the

total expected number of edges created by user i by Ti · γ. Since an edge creation

involves two users, we derive the number of edges St created at time t from the

number of active users Nt:

St = γ ·Nt/2 (2.7)

The time series {St, t = 0s, 1s, 2s, ...} defines the self-similar module of the tem-

poral component of our model.

The Non-stationary Module. We extract the deterministic non-stationary

periodic component by subtracting the self-similar component from the original

edge creation process. Suppose the number of original edge creation is Ot at time

t. Then the subtraction produces a process:

Ut = Ot − St, t = 0s, 1s, 2s, ... (2.8)

Next we apply a sliding window over Ut to obtain a smooth deterministic process

and then fit it with a periodic function, i.e. Sine, to produceDt, the non-stationary

module of the temporal component of our model.

Integrating the Two Modules. We combine St and Dt and obtain our

targeted edge creation process Et:

Et = St +Dt, t = 0s, 1s, 2s, ... (2.9)

51

Analyzing and Modeling Graph Dynamics Chapter 2

Since the non-stationary periodic component Dt may generate negative values,

we set a minimum for the sum to be 0. Note that we designed this temporal

component to describe new edge creations aggregated across all the users.

Importantly, this temporal component only generates timestamps of new edges

(in terms of the total number of edges created in each second), but does not

associate any of these new edges to specific users. In other words, the temporal

component will produce the total number of edges created in each second, but

will not predict which nodes created these edges. This is because we design the

temporal component to specifically capture the edge dynamics aggregated across

all the users, i.e. property consistent with self-similar scaling and deterministic

non-stationary periodic user patterns. The actual distribution or mapping of edge

events across users is performed by the spatial component of our model, which we

will describe in Section 2.6.2.

2.6.2 The Spatial Component

To determine where each new edge is created as part of the overall network

evolution process, we first highlight two key observations made by our prior anal-

ysis on the Renren network [161]. First, after an initial bursty growth phase, new

edge creation was dominated by existing nodes (>80%). This empirical result

diverges from generative models, which assume that new node arrivals drive edge

52

Analyzing and Modeling Graph Dynamics Chapter 2

creation regardless of network size. Second, we observe three structural proper-

ties over time: graph densification, distance shrinkage, and high but decreasing

clustering coefficient (CC). Existing graph models [9, 10, 25, 84] capture only a

subset of them.

Intuition. We consider a stable social network in a state of ongoing growth7.

After a fast initial period of explosive growth, the arrival rate of new users becomes

relatively small compared to existing users. At this point, continuous friend dis-

covery between existing users dwarfs the initial bursts of edge creations triggered

by new user arrivals. Therefore, in our model, we use interarrival gaps between

new users as iterations to drive the formation of new edges between existing users.

With these in mind, our model will focus on the creation of edges between

existing users following the arrival of each new user. Specifically, we assume a

new user ui creates an edge before the arrival of the next user ui+1, and after this

edge creation ui immediately becomes an “existing user.” We hypothesize that

existing users are often introduced to groups of friends, either discovering the

presence of an offline friend (and other mutual friends), or creating new groups

of friends via common interests or social applications. To capture this intuition,

in each iteration, our model selects two existing nodes u and v at random, and

connects u repeatedly to multiple users in v’s neighborhood. Here v can be an
7Note that our model explicitly targets the ongoing growth phase of a social network. We

leave the measurement, analysis, and modeling of a network in decline for future work.

53

Analyzing and Modeling Graph Dynamics Chapter 2
existing friend of u or a previously unknown “stranger.” The continuous formation

of random connections between existing users shrinks average path lengths and

lowers clustering coefficient by building shortcuts between nodes, while connecting

friends of friends slows the rate of declustering.

Model Details. The spatial component is strongly dependent on the temporal

component to determine the maximum number of edges created in any iteration

(i.e. between two node arrivals). Let F (n) represent the number of edges in the

network when the network contains n nodes. Then F (i + 1) − F (i) represents

the total number of edges created between the arrivals of ui and ui+1. With the

knowledge of node arrival time statistics, i.e. ti and ti+1, we can estimate the total

number of edges k created between ti and ti+1 as k = F (i+ 1)−F (i) =
∑ti+1

t=ti
Et.

Specifically, our proposed edge formation process is defined as follows. We

drive the process using a parameter p, which defines the probability a node is

selected in the recursive edge creation process between existing nodes.

Algorithm 2.1 Spatial Component of Network Growth.

1. When a new node ui joins the network, k = F (i+ 1)− F (i).

54

Analyzing and Modeling Graph Dynamics Chapter 2

2. Edge creation by the new node: The new node ui randomly select an

existing node uj to connect. Set k = k − 1. Now ui becomes an existing

node.

3. Edge creation between existing nodes: Randomly select two existing

nodes u and v. If they are not connected, connect them and set k = k − 1.

Then u starts steps (a)-(c) to connect neighbors of v and repeat them until

all the required edges have been created (i.e. k = 0) or there are no more

nodes to connect. Each time an edge is created, set k = k − 1.

(a) Generate a random number x following the geometric distribution with

mean (1− p)−1.

(b) Randomly select neighbors of v that do not connect u until reaching

any of the three situations:

i. x neighbors are selected;

ii. no more edges need to be created, i.e. k=0;

iii. all available neighbors of v are selected. Let R={r1, r2, . . . } be

the set of selected nodes.

(c) For each node ri ∈ R, u connects ri and repeats steps (a)-(b) on ri.

4. If more edges need to be created (k 6= 0), repeat step (3).

55

Analyzing and Modeling Graph Dynamics Chapter 2

Comparison to Existing Models. The existing model most similar to

our new model is the Forest Fire model [84], which simulates network growth

by creating edges between each new node to a set of existing nodes. A new

node joining the network randomly connects to an existing node and some of its

neighbors; this repeats across the network, like a fire burning through a forest.

This “burning process” and our recursive edge creation process between existing

nodes both act to produce high clustering coefficient, by recursively connecting to

neighbors of neighbors.

Three key differences separate our model from Forest Fire. First, our model

captures the observation that existing nodes drive edge creation in a stable growth

network. Second, our model produces decreasing clustering coefficient by connect-

ing pairs of random existing nodes. Forest Fire does not capture this property

because it always forms close triangles in each node’s neighborhood, leading to rel-

atively high clustering coefficient unlikely to decrease over time. Third, our model

can be accurately calibrated to the observed dynamics of an existing network

trace, by incorporating the network growth function from the temporal model.

This additional flexibility makes it more attractive for generating realistic dy-

namic network traces.

56

Analyzing and Modeling Graph Dynamics Chapter 2

2.7 Model Validation

Having described our proposed model for network edge dynamics in Sec-

tion 2.6, we next validate the proposed network dynamic model. We calibrate

the model using real data and use it to generate synthetic dynamic graphs, and

then compare these synthetic graphs to the original data in terms of both temporal

and spatial properties.

Since the temporal and spatial components are complementary and operate

at different scales, we validate them sequentially to examine their contributions

to network evolution. Because the output of the temporal component is used as

an input to the spatial component, the validation on the spatial component also

serves as validation of the complete model with both components.

Our validation results on the Renren and Facebook datasets lead to the same

observations. For brevity, we present the Renren results in detail in Section 2.7.1

and 2.7.2, and summarize the Facebook results briefly in Section 2.7.3.

2.7.1 Validating the Temporal Component

Our validation is first based on the Renren dataset of the month of Decem-

ber 2007, the same datasets used in our self-similarity analysis (Section 2.3 and

Section 2.4). We leave the validation of Facebook dataset to Section 2.7.3.

57

Analyzing and Modeling Graph Dynamics Chapter 2

To validate our model, we first describe how we calibrate the model using the

Renren dataset. As explained in Section 2.6.1, the temporal component consists

of two sub-modules: a self-similar module (i.e. stationary stochastic process) and

a non-stationary module (i.e. non-stationary deterministic function).

Calibrating the Self-Similar Module. We construct the self-similar module

according to the M |G|∞ model described earlier. That is, nodes arrive according

to a Poisson process with rate λ, and the length of each node’s active time is

chosen independently from a Pareto distribution with parameters α and xm.

Consider the Renren edge creation data collected in December 2007 where

7, 246, 621 nodes have created edges. We estimate the corresponding value of rate

λ in the Poisson process of this period by the average active node count per second,

i.e. λ ≈ 2.7/s.

To derive the active time (in seconds) statistics, we leverage a proven relation-

ship between H and α [35, 75]: H = (3 − α)/2. Since our measured H-estimate

for the December 2007 data is around 0.65, we set α = 1.7.

Finally, assuming a node creates edges at a constant rate of 1/s, the average

number of edges created per node is then equal to the average active time across

all the nodes, which can be calculated as the mean of the Pareto distribution, i.e.

xm ∗ α/(α − 1). By measuring the average edges created per node in December

2007, we get xm ≈ 3.2.

58

Analyzing and Modeling Graph Dynamics Chapter 2

Using the M |G|∞-based method with λ = 2.7/s, α = 1.7 and xm = 3.2, we

generate a synthetic trace that represents the edge creation process contributed

by the self-similar module. Figure 2.24 plots a randomly chosen 3-hour segment

in the synthetic trace, which displays burstiness similar to the original data. By

applying the earlier-described R/S, variance and wavelet analysis methods, we

get H-estimates 0.68, 0.63 (both with a good line fitting) and 0.69 (with the 95%

confidence interval 0.0099), respectively. The graphical fitting in Figure 2.25 and

Figure 2.26 show that both variance analysis and R/S method have good fit. All

these validate that the resulting trace is indeed consistent with the designed-for

self-similar scaling behavior (i.e. H = 0.65).

Calibrating the Non-stationary Module. To calibrate the non-stationary

module, we first subtract the synthetic trace generated by the self-similar module

from the original edge creation data. We then apply a sliding window (with a

window size of 1 hour and a step size of 1 second) to smooth the subtraction result

over time. One sample of the smoothed data (for December 2007) is shown by

the blue curve in Figure 2.27, displaying a daily pattern with almost 0 mean. The

blue curve is well-fitted by the sine function: 9.70 sin(7.27 · 10−5 t+ 3.56)− 0.003,

shown as the red curve.

Validation Results. We sum the synthetic traces produced by the above two

sub-modules to build a single synthetic edge creation trace, and then compare this

59

Analyzing and Modeling Graph Dynamics Chapter 2

 0

 5

 10

 15

 20

 25

0 1 2 3

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time(Hour)

Figure 2.24: An example of edge growth of a randomly chosen 3-hour segment in the
synthetic self-similar module (Renren).

-3

-2

-1

 0

 1

 2

 0 1 2 3 4 5 6

lo
g
(V

a
r(

X
(m

)))

log(m)

H estimation = 0.6322

value
fitting

Figure 2.25: Variance analysis of synthetic
self-similar module: H estimation = 0.67, and

in good linear fitting (Renren).

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

lo
g
(R

/S
)

log(n)

H estimation = 0.6784

value
fitting

Figure 2.26: R/S analysis of synthetic
self-similar module: H estimation = 0.63, and

in good linear fitting (Renren).

combined trace to the original data. Repeating the process 5 times produces very

consistent outcomes, e.g. the total edge counts are similar, with an average ratio

between the synthetic and the original trace of 1.007 and variance < 10−6. Fig-

ure 2.28 plots a sample of one synthetic trace together with the original trace (for

December 2007) and illustrates that the synthetic data displays diurnal patterns

similar to the original data.

We further compare the synthetic and original traces by performing on the

synthetic trace the same self-similarity analysis that we applied in Section 2.3

and Section 2.4 on the original trace. Figures 2.29 (variance analysis) and 2.30

60

Analyzing and Modeling Graph Dynamics Chapter 2

-20

-10

 0

 10

 20

 30

 40

741 751 761 771

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time(Day)

original data
sine fitting

Figure 2.27: The synthetic non-stationary
module (red curve) well captured the

smoothed diurnal pattern in the original
dataset (blue curve) (Renren).

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

741 751 761 771

#
 o

f
E

d
g
e
s
 C

re
a
te

d

Time(Day)

original data
synthetic data

Figure 2.28: Synthetic trace by our
temporal component (red) vs. original edge

creation process (blue) (Renren).

-3

-2

-1

 0

 1

 2

 0 1 2 3 4 5 6

lo
g
(V

a
r(

X
(m

)))

log(m)

Figure 2.29: Variance analysis of the entire
synthetic trace: like the original data, slope
also changes for m>104 seconds (≈ 3 hours)

(Renren).

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6

lo
g
(R

/S
)

log(n)

H estimation = 1.2454

value
fitting
y=x
y=0.5x

Figure 2.30: R/S analysis of the entire
synthetic trace: like the original data,

H-estimate is beyond the self-similar range,
and data shape changes n>104 seconds (≈ 3

hours) (Renren).

(R/S analysis) demonstrate that the synthetic trace exhibits the very same issues

that plagued our preliminary analysis of the original data; e.g. scaling behavior

changes drastically for time scales larger than a few hours, H estimation is outside

the theoretical range (0.5, 1.0), and thus non-stationary diurnal patterns prevent

a direct scaling analysis of the data.

Next we apply the wavelet-based analysis method to examine the self-similar

nature of the synthetic trace over 3-hour segments. Figure 2.31 plots the resulting

61

Analyzing and Modeling Graph Dynamics Chapter 2

0

0.5

1.0

1.5

2.0

 0 50 100 150 200 250

H
 V

a
lu

e
Segment Index

Figure 2.31: Wavelet analysis on 3-hour segments of synthetic trace. Like the original data,
the vast majority of segments have estimated H within (0.5,1) (Renren).

H-estimates for each segment with 95% CI. We see that the H-estimates for the

synthetic trace also fall consistently between (0.5, 1) with an exception of 4.03%,

which closely matches the 3% exception seen from the original data. The average

H value for the synthetic trace is around 0.75, again similar to that of the original

trace (mean H = 0.65) as shown in Figure 2.9. Finally, we evaluate the robustness

of our results by shifting the starting time of each segment by 0, 1, and 2 hours

separately, and find both the abnormal segment ratios and H estimates remain

stable (we omit the results for brevity). Thus we conclude that the original trace

and the synthetic traces are qualitatively and quantitatively similar.

Together, these results demonstrate that the temporal component of our model

can accurately capture the diurnal patterns and self-similar scaling behavior dis-

played by the original Renren data. Furthermore, the contributions of the two

sub-modules illustrate why and how the presence of deterministic non-stationary

62

Analyzing and Modeling Graph Dynamics Chapter 2

170M

180M

190M

200M

9.6M 9.8M 10M 10.2M 10.4M 10.6M
#
 o

f
E

d
g
e
s

of Nodes

Avg. Deg = 35.91
Avg. Deg = 37.75

Original
Synthetic

Figure 2.32: Network growth of the synthetic trace generated by the temporal component vs.
the original data (Renren).

periodic trends like diurnal user activity patterns impacts any direct scaling anal-

ysis of such non-stationary data.

Connecting the Temporal and Spatial Components. Recall that the

spatial component of our model uses the temporal component to compute the

number of edges created between each pair of node arrivals. As a result, we need

to be able to accurately estimate the arrival time of each node. From our ex-

ploratory analysis, we noticed no specific properties of the node arrival process

other than that it is largely consistent with a Poisson process with rate λnew, where

λnew is estimated as the average number of new node arrivals per second.8 Fig-

ure 2.32 shows that our solution can accurately predict the network edge growth

in December 2007.
8This is analogous to the observation in [115] that while packet arrivals in network traffic

appear better modeled using self-similar processes, Poisson effectively captures user session
arrivals.

63

Analyzing and Modeling Graph Dynamics Chapter 2

Graph # of Nodes # of Edges Avg. Deg Avg. path Avg. CC

2006 Original 624,364 8,258,266 26.45 4.16 0.159

2006 Synthetic 624,364 8,721,927 27.93 4.46 0.183

2007 Original 1,751,146 18,203,520 20.79 4.87 0.156

2007 Synthetic 1,751,146 18,305,972 20.9 4.84 0.161

Table 2.4: Statistics of the original graph and the synthetic graph generated by our spatial
component for Renren dataset. The 2006 graphs are built before December 12, 2006; the 2007

graphs are built for January - February, 2007.

2.7.2 Validating the Spatial Component

Next, we validate our spatial component. Ideally, we would calibrate the

model using the entire Renren dataset (from November 21, 2005 to December

31, 2007) and produce synthetic traces for the entire 25-month period. However,

using the entire dataset is impractical for two reasons. First, due to the size

of the network at the end of the 25-month period (i.e. 10.6M nodes and 199M

edges), the calibration process would be computationally prohibitive. Second, the

merge event on December 12, 2006 introduced significant changes to the network,

impacting any analysis of the network’s dynamics.

As a viable practical alternative, we use two subsets of the Renren data for

validation. The first segment (referred to as 2006 Original) covers the period from

the launch of the network (November 21, 2005) till right before the merge event

64

Analyzing and Modeling Graph Dynamics Chapter 2

0M

4M

8M

12M

16M

20M

0M 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M

#
 o

f
E

d
g

e
s

of Nodes

Generated by F(n)=1.5*10
-16

*n
4
-2*10

-10
*n

3
-8.5*10

-5
*n

2
+2.8*n+176

Nov. 21, 2005 -Dec. 11, 2006

Generated by the temporal component

Jan-Feb. 2007

Original
Synthetic

Figure 2.33: Fitting of network growth with the network edge growth function F (n)
(Renren).

(December 11, 2006). The corresponding last snapshot of the graph includes

624K nodes and 8M edges. This represents the “early” period of the network.

The second segment (2007 Original) covers the first two months of 2007, with

the snapshot on December 31, 2006 as the initial graph, and its last snapshot

has 1.75M nodes and 18M edges. This represents the “stable growth” period of

the network. Table 2.4 summarizes the observed network statistics for the two

segments.

Spatial Component Calibration. We calibrate the component for the two

segments separately. As discussed in Section 2.6.2, the spatial component has two

parameters: network edge growth function F (n) and node selection probability p.

For the 2007 segment, we derive F (n) from the temporal component. For the 2006

segment, however, we have to manually fit the network growth by a polynomial

function. This is because our measurement shows that in 2006 the network is

65

Analyzing and Modeling Graph Dynamics Chapter 2

not stable and large enough to display significant temporal patterns. Figure 2.33

shows the F (n) estimation results for both segments, which closely match the

original data.

Next, we follow the methodology by [127] to determine p. We generate a series

of synthetic graphs with p varying between (0.1, 0.9), and choose the best p value

that produces graphs with network distance and clustering coefficient most similar

to the original data. The resulting p values are different for the two segments: 0.7

for the 2006 segment and 0.5 for the 2007 segment.

Validation Results. Using the calibrated component, we generate syn-

thetic dynamic graphs for the two data segments. As shown in Table 2.4, the

synthetic graphs statistically match the original graphs in the corresponding last

snapshot, in term of average degree, average path length and average clustering

coefficient (CC). The emphasis of our validation is to understand whether syn-

thetic graphs display the three dynamic properties observed from the Renren social

network [161]: graph densification, average path length shrinkage and decreasing

clustering coefficient.

Using the network growth function F (n), Figure 2.33 confirms that the syn-

thetic graphs can accurately capture the densification property. Thus in the fol-

lowing, we focus on evaluating dynamics of average path length and average clus-

tering coefficient in synthetic graphs. As a reference, we also include the results

66

Analyzing and Modeling Graph Dynamics Chapter 2

 3

 4

 5

0M 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M

A
v
g

.
P

a
th

 L
e

n
g

th

of Nodes

Nov. 21, 2005 -Dec. 11, 2006

Jan-Feb. 2007

Forest Fire
Spatial Component

Original
PA

Figure 2.34: Average path length on generated synthetic graphs and the original Renren
graph. Include two time periods from the very beginning to December 11, 2006 and in January
- February, 2007 (to avoid the one-time merge event in Renren with another OSN). (Original:
Renren graph; Spatial Component: graph generated by our spatial component; PA: graph
generated by the preferential attachment model; Forest Fire: graph generated by the Forest

Fire model).

using the Preferential Attachment model [17], which is the most popular static

graph model, and the Forest Fire model [84]9.

We repeated our experiments five times for all three models, and obtained con-

sistent results, with the variance across all runs at least three orders of magnitude

smaller than the average value. Thus for brevity we only show the result for a

single run.

Average Path Length Evolution: Figure 2.34 plots the average path length over

time using our spatial component, the Preferential Attachment model, the Forest

Fire model and the original data. For the 2006 segment, our spatial component
9Following a similar procedure described by [127], we modify the Forest Fire model to produce

undirected graphs by creating undirected edges and allowing the “burning” process to proceed in
both directions of an edge. To calibrate the model, i.e. determining the burning probability p,
we sample values between (0, 1) to find the best fit p where the corresponding synthetic graphs
match the original graph the most in terms of network distance and clustering coefficient.

67

Analyzing and Modeling Graph Dynamics Chapter 2

 0

 0.1

 0.2

 0.3

 0.4

0M 0.2M 0.4M 0.6M 0.8M 1M 1.2M 1.4M 1.6M 1.8M

A
v
g

.
C

C

of Nodes

Nov. 21, 2005 -Dec. 11, 2006 Jan-Feb. 2007

Forest Fire
Spatial Component

Original
PA

Figure 2.35: Average Clustering Coefficient on generated synthetic graphs and the
original Renren graph. Include two time periods from the very beginning to December 11,
2006 and in January - February, 2007 (to avoid the one-time merge event in Renren with

another OSN). (Original: Renren graph; Spatial Component: graph generated by our spatial
component; PA: graph generated by the preferential attachment model; Forest Fire: graph

generated by the Forest Fire model).

displays the most similar pattern to the original data, where the path length

decreases first and then increases slightly, while the Preferential Attachment and

Forest Fire models produce increasing path length. For the 2007 segment, while

all four graphs display a decreasing pattern over time, our spatial component is

the closest to the original graph. In this segment, behaviors of the Preferential

Attachment and Forest Fire models change because the snapshot of the original

data on December 31, 2006 is used as the initial graph, removing the long-term

impact of preferential attachment [161] that produces increasing average path

length over time.

Average Clustering Coefficient Evolution: Figure 2.35 plots the results for

the average clustering coefficient from the three models and the original data. For

the 2006 segment, only our spatial component behaves similarly to the original

68

Analyzing and Modeling Graph Dynamics Chapter 2

data, with an average clustering coefficient in (0.15, 0.22), while that of the Pref-

erential Attachment model stays closely to 0 and the Forest Fire model remains

above 0.4. For the 2007 segment, again our spatial component produces nearly

identical value of the original data, while the results of the Preferential Attach-

ment and Forest Fire model deviate largely. Together, these results confirm three

key findings. First, our spatial component can accurately capture the significant

local connectivity and the slowly decreasing clustering coefficient. Second, the

Preferential Attachment model is unable to maintain high clustering coefficient

over time, even when growing from a highly clustered graph. Finally, as indicated

by our earlier analysis, the Forest Fire model produces relatively high cluster-

ing coefficient, unable to capture the key properties of Renren such as decreasing

clustering coefficient.

Summary of Results. Our validation confirms that the spatial component

can accurately capture key dynamic features observed in Renren dataset. Since

our 2007 synthetic trace takes input from the temporal component of our model,

the spatial component validation also provides an overall validation of our pro-

posed model.

69

Analyzing and Modeling Graph Dynamics Chapter 2

2.7.3 Facebook Results

We now briefly summarize how we validate our model using the Facebook

dataset, since the methodology is very similar to what is applied to the Renren

dataset. Like Renren, our results on Facebook datasets also strongly validate the

effectiveness of our model.

First, we validate the temporal component by calibrating the self-similar mod-

ule and the non-stationary module, and then producing a synthetic edge creation

trace (repeated 5 times). The total edge count matches the original data, i.e.

the average ratio between the original and synthetic traces is 1.05 with variance

< 10−5. The wavelet-based analysis on the synthetic traces leads to results consis-

tent with that of the original trace. Specifically, for 3-day segments, H estimates

with 95% CI fall between (0.5, 1) with an exception of < 1%. The exception ratio

(the portion of abnormal segments whose H estimates are out of (0.5,1)) grows

to 25% for 15-day segments, and 100% for 20-day segments.

Second, the spatial component for Facebook is slightly different from that of

Renren because Facebook wall posts can lead to multiple edges between a node

pair (while Renren only has one per node pair). Thus we modify our model, as well

as the Forest Fire and Preferential Attachment models, to allow duplicated edges.

We grow the three models from 0 node to the total number of nodes 46, 952 in the

Facebook dataset. We compare the synthetic traces generated by the three models

70

Analyzing and Modeling Graph Dynamics Chapter 2

Graph
Avg. Avg. Avg. Final avg. Final avg. Final Final

Degree Path length CC Degree Path length CC # of Edges

Facebook Original 32.293 5.760 0.101 37.357 5.630 0.108 876,993

Synthetic (our model) 32.508 3.650 0.122 37.545 3.645 0.118 881,415

Forest Fire 70.273 3.836 0.469 69.509 4.030 0.446 1,631,792

Preferential Attachment 35.960 2.890 0.012 35.986 2.996 0.006 844,812

Table 2.5: Statistics of the original Facebook graph, the synthetic graph generated by our
spatial component, by the Forest Fire model and by the Preferential Attachment model. Path
length and clustering coefficient (CC) do not consider multiple edges between node pairs. All
standard deviations are less than 4%. Columns 2-4 refer to averaged results for intermediate

graph snapshots, Columns 5-8 refer to the final graph snapshot (Facebook).

and the original data (see Table 2.5). Again, our results show that our model can

accurately capture the growth of the Facebook trace. Its average node degree

and clustering coefficient, for both intermediate and final snapshots, are almost

identical to the original data, while the Forest Fire and Preferential Attachment

models produce large deviations.

2.7.4 Summary

Our results on the Renren and Facebook datasets consistently show that our

model can successfully capture both the temporal properties of graph dynamics,

in terms of self-similar scaling and deterministic non-stationary trends in terms of

periodic patterns, and its spatial properties observed, including long-term graph

distance shrinkage and reduction in local clustering.

71

Analyzing and Modeling Graph Dynamics Chapter 2

2.8 Related Work

2.8.1 Self-similarity Measurements and Models.

Self-similarity describes the phenomenon where a property is preserved with

respect to scaling in space and/or time. If an object is self-similar, its parts, when

magnified, resemble the shape of the whole [114]. Previous works have studied

structural self-similarity in networks [51, 136], i.e. the scale-invariance properties

of physical structures of a graph (e.g. node degree or community size distribution)

under coarse-graining of vertices. Our work differs by studying self-similar scaling

properties on time dynamics, i.e. “temporal” self-similarity, which has not been

studied in social networks.

Self-similarity Measurements. Temporal self-similarity describes the scal-

ing properties of certain statistics (e.g., variance, R/S, wavelet coefficients, finite-

dimensional distributions) of a time series when computed at different time scales [114].

It has been detected in diverse contexts such as ecology, life sciences and stock mar-

kets [44], and was first introduced to network traffic for the purpose of modeling

the bursty characteristics observed in Ethernet LAN traffic [76, 75]. Later stud-

ies show self-similarity has also been observed in other network traffic scenarios,

including wide-area traffic [115], world wide web traffic [36], disk-level I/O [122],

HTTP traffic traces [41], variable-bit-rate video [21, 46], blog posts [48], mes-

72

Analyzing and Modeling Graph Dynamics Chapter 2

sages [126] and emails [44] in communication networks. Note that these empirical

studies show that in practice, self-similar property is typically observed over a

finite range of time scales [5, 46, 50], and is difficult to discern at both very small

and very large time scales.

Self-similarity Models. Generally speaking, there are two classes of self-

similar models. The first are purely mathematical models, e.g. fractional Gaus-

sian noise [100], fractional Brownian motion (FBM) [100], fractional ARIMA pro-

cesses [61] and b-model [149]. They are strictly descriptive and cannot explain

the root cause underlying the formation of self-similarity. The second class seeks

to provide physical reasons behind self-similarity. Inspired by the renewal reward

process in economics [140], the superposition of many ON/OFF sources [152, 50]

captures the observed self-similar nature of Ethernet LAN traffic, if the durations

of the ON- or OFF-periods have a heavy-tailed distribution. TheM |G|∞ queuing

model [35, 115, 114], where sources arrive according to a Poisson process and each

source is active for a duration that is described by a heavy-tailed distribution, can

also successfully explain self-similar phenomena.

2.8.2 Graph Models

In general, graph models can be classified as static graph models or dynamic

graph models.

73

Analyzing and Modeling Graph Dynamics Chapter 2

Static Models. We further classify static models into three sets. One set

includes feature-driven models designed to capture one or more static graph fea-

tures, e.g. small-world [150], power-law degree distribution [17, 60], and high

clustering coefficients [60]. A second set includes intent-driven models that try

to explain the underlying process of graph formation. Nearest neighbor mod-

els [145, 38, 143], Random walk models [24, 145] and copying models [71, 145]

belong to this set. Finally, a third set of models generates graphs based on graph

structural statistics instead of graph features. Kronecker graphs [80] apply Kro-

necker multiplication to generate graphs similar to real graphs. The dK-series

model [99] uses subgraph degree distributions to capture increasingly detailed

representations of graph structures. Finally, [127] proposes a general technique to

produce “realistic” synthetic graphs by calibrating graph models using real graphs.

Dynamic Models. In contrast, dynamic models aim to capture dynamic

features of graphs. [18] modifies preferential attachment model to capture graph

densification. [84] proposes a Forest Fire model to capture both graph densifi-

cation and diameter shrinking properties in networks. Later models [101, 155]

captures similar properties. The dynamic copying model captures the property of

decreasing clustering coefficients, but not the power-law degree distribution [25].

Based on graph structure statistics, [10] proposes a 3D Kronecker model. [9] is

a model based on random typing statistics to capture several graph dynamic fea-

74

Analyzing and Modeling Graph Dynamics Chapter 2

tures. Unlike our work, [9] is not modeled after empirical data of graph dynamics.

[78] designs a model of network evolution, but focuses on reproducing desired

structural properties in the final snapshot. Finally, [109] tries to include captur-

ing the network harshness into the model, i.e., how likely a node will be lost, but

also cares about the final structural statistics only.

2.9 Summary

Starting from the exploration of self-similarity properties, which is critical of

determining how to model graph dynamics, our work in this chapter takes a con-

crete step towards studying the detailed dynamics of social networks. We focus

on “ time-stamped” traces of network growth, i.e., network includes detailed tim-

ings of when nodes arrive and edges are created. By performing empirical studies

of network dynamics over two detailed, time-stamped traces of social networks

over multiple years, i.e., Renren dataset and Facebook wall post dataset, we have

detected that the edge creation process in both networks does perform properties

consistent with self-similar scaling. We have also quantified that such properties

hold from seconds to hours, and gradually weaken at larger time scales due to the

existence of non-stationary patterns introduced by human behaviors, e.g., diurnal

or weekly user activities.

75

Analyzing and Modeling Graph Dynamics Chapter 2

Specifically, we find that edge creation process in the two OSNs is non-stationary

over long-term periods, and the two traditional techniques for self-similarity de-

tection, i.e., R/S and variance methods, produce inconclusive results and are un-

suitable for measuring self-similarity in real traces in social networks. By applying

the more robust wavelet-based method against underlying non-stationary trends,

we find the edge creation process in both network traces does exhibit properties

consistent with self-similarity over time scales ranging from seconds to hours.

We leverage this new result to propose a comprehensive model of graph dy-

namics, including a temporal component that defines when and how many new

edges are formed across all the users, and a spatial component that defines where

in the graph new edges form. Our temporal component captures the coexistence of

long-term non-stationary periodic structure, e.g. diurnal or weekly patterns, and

properties consistent with self-similarity at shorter time scales, while our spatial

component is a dynamic graph model that simulates edge creation process driven

primarily by existing users, and captures graph densification, shrinking network

diameter, and decreasing local clustering.

Our detailed validation efforts on both datasets consistently show that our

model accurately captures both the temporal properties of graph dynamics, in

terms of self-similar scaling and certain deterministic non-stationary features, and

also many key dynamic structural properties of the two social graphs over time.

76

Analyzing and Modeling Graph Dynamics Chapter 2

By providing such a practical method for generating a realistic sequence of

time-stamped events that uniquely define the formation and evolution of a social

network in time and space, our model fills an existing void in network dynamics,

and addresses an urgent need for accurate models that account for both temporal

and spatial features in network dynamics.

77

Chapter 3

Reassessing Current Status of Link

Prediction

3.1 Introduction

1 The access to real, large-scale traces of network dynamics brings us great

opportunity to rethink about some fundamental graph problems. Have they been

well addressed, or how far have we come in understanding them in real-world

scenario? What lessons can we draw from the successes (and failures) of current

studies? Can we improve them by leveraging more data? In this dissertation, we
1 ©ACM, (2016). This is the authors version of the work. It is posted here by

permission of ACM for your personal use. Not for redistribution. Abbreviated version
of content in this chapter can be found in paper “Network Growth and Link Prediction
Through an Empirical Lens” [92], Proceedings of the ACM Internet Measurement Conference
(IMC’16),http://doi.acm.org/10.1145/2987443.2987452.

78

Reassessing Current Status of Link Prediction Chapter 3

focus on the link prediction problem, i.e., the problem of predicting formation of

new edges on a given network.

Link prediction is a fundamental problem that applies to networking in nu-

merous contexts, including the Internet, the web, and online social networks. The

sheer number of studies, including proposals for algorithms and models [7, 11, 32,

52, 53, 69, 89, 90, 95, 110, 111, 120, 142, 148], underscores the importance of the

problem to a variety of applications, ranging from resource allocation in online

services to offline efforts in counter-intelligence and counter-terrorism [68, 70].

As a technical problem, the efficacy of link prediction is generally not well

understood. Today, link prediction algorithms are the basis for social recommen-

dations in a wide range of social networks and applications, ranging from Facebook

and Pinterest to personal streaming on Periscope and Q&A sites like Quora. The

success of these sites and the sheer volume of prior literature lead many to be-

lieve the problem is well addressed. Only evidence to the contrary comes from

anecdotes of failed recommendations that trigger potential privacy concerns [58].

Despite years of research in this space and hundreds of publications (only a

small subset of which is cited here), there has been little opportunity to study these

proposals from an empirical perspective. Until recently, public datasets of network

dynamics have been limited to co-authorship studies and patent citation graphs,

moderate sized networks which scale up to 20K nodes and 200K edges [15, 130]. In

79

Reassessing Current Status of Link Prediction Chapter 3

contrast, algorithms developed using and validated by these datasets are targeting

dynamic networks that are two or more orders of magnitude larger, with millions

or billions of nodes and billions of edges [161].

Thankfully, things are changing with the arrival of network traces from online

social networks (OSNs). We are taking advantage of this opportunity (and avail-

ability to large traces of network dynamics) to step back and reassess the space

of link prediction algorithms from an empirical perspective. We are motivated by

questions such as:

• How far have we come in understanding network growth and predicting the un-

derlying processes that drive it? How far do we have to go?

• What lessons can we draw from the successes (and failures) of existing algo-

rithms?

• Can we improve existing approaches by leveraging more data, e.g. detailed tem-

poral network history?

In this work, we perform an empirical study using large traces of network

growth from three large OSNs, Facebook, Renren (Facebook equivalent in China),

and YouTube. In each case, detailed timestamps capture the time when specific

edges were created between nodes (users) in the network. To the best of our

knowledge, these are the only publicly available datasets suitable for this study,

both sufficiently large and with sufficiently detailed timestamps to capture graph

80

Reassessing Current Status of Link Prediction Chapter 3

dynamics. These traces cover substantial subsets of users in each network, and

in the case of Renren, the entire user population at a time when the network

included 10 million users. We discretize these traces into numerous temporal

snapshots, and use them to drive the evaluation of 18 representative link prediction

algorithms. Finally, we use our lessons and observations from analyzing these

network dynamics to build “filters” that help prune the set of candidate nodes for

edge creation. By applying these filters before link prediction, we can reduce the

search space and focus on regions of likely growth.

To better understand and compare results across prediction algorithms, we

classify them into two groups. First, Metric-based prediction algorithms define

specific metrics that can be computed for all potential links, where a potential

link with a higher score on the metric indicates a higher probability of formation.

For our analysis, we implemented 14 distinct metrics that had scalable algorithms

in existing literature. In contrast, classification-based prediction algorithms uti-

lize machine learning classifiers that take multiple metrics as input features, and

produce a prediction of likelihood of formation for each potential link. Some

methods produce a detailed probability while others produce a binary result. Ex-

periments in our study cover support vector machines (SVM), logistic regression,

naive Bayesian networks, and random forests, each using all 14 metrics as in-

81

Reassessing Current Status of Link Prediction Chapter 3

put features. Our experiments show that more complex techniques, e.g. larger

ensemble methods do not produce noticeable improvements in accuracy.

As our first result, we find that link prediction performance remains poor in

absolute terms. Correctly predicting link formation within some timeframe is

difficult, and the problem only grows harder, as each new node brings ∼N more

potential links to a network of size N . Second, we find that for each of our traces,

metric-based prediction algorithms vary significantly in accuracy. In each case, a

small subset of metric-based predictors do as well as (and occasionally outperform)

the most accurate machine learning based classifier (SVM in all cases). We note

that while a few metrics perform consistently well, no single metric predictor

consistently performs as well as SVM across all networks. Instead, there appears

to be a strong correlation between network structure and the relative success

of specific metric-based algorithms. Machine learning methods do well in part

because they automatically adjust weights across different metrics, emphasizing

those that match the targeted network without a priori knowledge of its structure.

Without such knowledge, we can either achieve “good” accuracy by choosing a

consistently strong metric, or achieve “near optimal” accuracy by using a ML

classifier (at the cost of higher computational and training costs).

Finally, we revisit existing prediction algorithms with the goal of augmenting

them by leveraging knowledge of past network dynamics. Our insight is to provide

82

Reassessing Current Status of Link Prediction Chapter 3

“temporal filters” that significantly reduce the set of potential new links, reduc-

ing the search space and computational cost, while focusing predictors on more

probable link candidates. Our filters are focused around trends in node activity

and potential link d istances, both patterns observed in this and prior studies of

network dynamics. Applying these filters produce very encouraging results, in

many cases effectively doubling the predictive power of both metric-based and

classifier-based algorithms. Not only do these filters outperform recent methods

leveraging temporal information, but they can be combined with temporal meth-

ods to provide even better results.

In this chapter, we make three key contributions. First, we carry out a compre-

hensive analysis of a wide range of link prediction algorithms, studying not only

their performance but also possible causes of low prediction accuracy. We apply

decision tree classifiers to identify the best metric-based algorithms for different

networks.

Second, we compare the two categories of link prediction methods, i.e. metric-

based and classification methods, study their cost versus accuracy tradeoffs, and

identify strategies for choosing between them.

Finally, we leverage insights from analysis of network growth to design filters

that improve prediction accuracy by dramatically reducing the search space. In

our tests, these filters significantly improve prediction power across all methods.

83

Reassessing Current Status of Link Prediction Chapter 3

Further, they outperform recent proposals that integrate temporal information,

and can be combined with them to produce even better results.

3.2 Background: Link Prediction

Link prediction identifies new edges that will likely form in the near future, by

analyzing the structure of the current network [89]. Given a graph Gt =<Vt, Et>

observed at time t, it seeks to predict new edges to be created between nodes Vt

at time t′ (t′ > t).2 Note that we focus on predicting future links at some time

t, which is different from the detection of missing links, where given a partially

observed graph, it identifies link status for unobserved pair of nodes [66, 103].

Existing link prediction algorithms naturally fall into two categories, which we

refer to as metric- and classification-based. We list and classify all of the known

popular prediction algorithms in Table 3.1, which are algorithms we focus on in

this work, and their details will be introduced later in Table 3.3.

Metric-based algorithms estimate the likelihood of future connectivity between

unconnected nodes, by generating a numeric score based on some graph-based

heuristic [89] or models [32, 120]. All potential node pairs are sorted by score to

determine the most likely future edges.
2This is the most common form of link prediction. It does not consider edges created by new

nodes who join after t, which is referred to as the cold start link prediction problem [77], nor
edges that might disappear after their creation.

84

Reassessing Current Status of Link Prediction Chapter 3

Metric-Based Prediction Classification-Based Prediction

Heuristics Learning Models e.g., SVM,

e.g., CN, JC, AA, RA, Probabilistic Matrix/Tensor Logistic Regression,

LP, SP, PA, Katz, Models Based Naive Bayes,

LRW, PPR e.g., BCN, BAA, BRA e.g., Rescal Random Forest

Table 3.1: Summary of link prediction algorithms, with details listed in Table 3.3.

In contrast, classification-based algorithms treat link prediction as a classifi-

cation problem [11]. Using scores by metric-based algorithms and maybe other

information as training features, these classifiers then “separates” the node pairs

that will likely connect in the near future from those that will not. Some classifiers

also produce a granular similarity score, which can be used to rank node pairs.

Next, we describe these two categories of algorithms in detail and highlight

their differences.

Metric-based Prediction. Metric-based link prediction algorithms quantify

and rank node pairs by their likelihood of forming new edges, based on specific

metrics that capture similarity or proximity between nodes [89]. For simplicity,

we refer to the entire group as “similarity metrics,” and further divide them into

heuristics, or more complicated learning models, as shown in Table 3.1.

Many popular metric-based algorithms are heuristics based on common intu-

itions of graph formation [89], e.g., two currently unlinked nodes with the most

85

Reassessing Current Status of Link Prediction Chapter 3

commonly connected nodes are most likely to link in the future. Those hypothe-

ses are driven by graph structural properties and do not require metadata. They

generally focus either on node neighborhood information, where they capture

properties of the common neighborhood between nodes of 2-hop distance, e.g.

Common Neighbors [110] and Adamic Adar Index [7], or on path properties such

as shortest path length [69].

Link prediction can also be performed by inferring the likelihood of two nodes

forming an edge based on learning models. One way is to use probabilistic models

calibrated by measurements on Gt. For example, [32, 52] assume a specific under-

lying structure of hierarchies or communities exists in the graph Gt, and model

parameters are estimated using maximum likelihood.

Another approach is to extend the field of relational learning to link predic-

tion [142, 148]. However, these underlying models either do not scale to large

graphs (due to complexity in parameter learning) or rely on special conditions

that do not generalize to common networks such as social networks [148]). Only

the local naive Bayes model [95] meets the needs of large, generalized graphs.

Other metrics use matrix (tensor) techniques on matrix representations of

graphs. They capture node similarity in a latent space, defined by different mod-

els [111, 120]. Among them, only Rescal [111] has been shown empirically to scale

to large graphs of millions of nodes.

86

Reassessing Current Status of Link Prediction Chapter 3

Classification-based Prediction. While metric-based algorithms are known

for their simplicity [89], performance can vary significantly depending on the spe-

cific similarity metric used. Existing work has shown the best metric varies across

datasets and there is no unified solution [89, 90].

The alternative is what we call classification-based methods. Instead of using

a certain similarity metric, one can build automated classifiers to explore multiple

similarity features [90]. Compared to single metrics, classifiers face the challenge

of high computational complexity, (e.g. feature selection and training), especially

for massive OSNs [53].

3.3 Datasets and Methodology

We now describe the datasets used for our study and our experimental method-

ology.

3.3.1 Datasets

Our study uses large traces of dynamic network growth from three different

networks, Renren, Facebook, and YouTube. As far as we know, these are the

only publicly available large-scale datasets suitable for this study, which have

87

Reassessing Current Status of Link Prediction Chapter 3

Graph
Trace Start Trace End Time Snapshot # of

Date Nodes Edges Date Nodes Edges Granularity Delta (k) Snapshots

Facebook
09/05/06 48,969 339,098 01/21/09 63,731 817,090 Seconds 15K 31

(New Orleans) [147]

YouTube
02/09/07 1,406,188 3,466,440 07/23/07 3,223,589 9,376,594 Days 250K 21

(Snowball Crawl) [105]

Renren
01/01/07 1,413,731 13,616,792 12/31/07 10,572,832 199,564,006 Seconds 10M 17

(Non-sampled) [161]

Table 3.2: Statistics of the three OSN datasets.

sufficiently detailed timestamps to capture graph dynamics, i.e., the time when

each edge (link) was created between nodes (users).

The Renren [161] data includes creation of every edge in the entire Renren net-

work during a period of over 2 years (from its first edge, to 10 million users, 199

million edges when the trace ends). The Facebook trace [147] includes edges cre-

ated in the New Orleans regional network over 2+ years. The YouTube trace [105]

includes edges recorded from daily snowball crawls of a user community that grew

from 1 million to 3 million users over a period of 5 months. To avoid disruptions

from external events, i.e., the network policy changes in Youtube, and a one-time

network merge event for Renren (Renren merged with its largest competitor in

December 2006), we use continuous subtraces that do not include the external

events in question. Statistics on all three traces are summarized in Table 3.2.

We show each network’s daily growth in nodes and edges in Figure 3.1.

88

Reassessing Current Status of Link Prediction Chapter 3

 1

 10

 100

 1000

 10000

 0 100 200 300 400 500 600 700 800 900

C
o
u
n
t

Day

Facebook

edges
nodes

 1000

 10000

 100000

 0 20 40 60 80 100 120 140

C
o
u
n
t

Day

YouTube

edges
nodes

1000

10000

100000

1000000

10000000

 0 100 200 300 400

C
o
u
n
t

Day

Renren

edges
nodes

Figure 3.1: Daily new nodes and edges in the three networks.

While the three networks all continue on exponential growth trajectories (Face-

book has a number of 49K users at the beginning while the other two has 1.4M

users), we see Renren is on a much faster growing pace. This is because both the

Facebook and YouTube datasets are sampled networks, i.e., Facebook dataset is

a regional network and YouTube dataset depicts the growth of a user community.

Figures 3.2-3.4 provide a quick look at the change in basic network properties over

its evolution, including average node degree, path length, and clustering coeffi-

cient. Unsurprisingly, average node degree for all three networks grows over time.

In comparison, Renren and Facebook are much denser than YouTube. Unsurpris-

ingly, networks grow and densify over time, and their average path length shrinks.

YouTube has the largest path length due to its sparsity.

89

Reassessing Current Status of Link Prediction Chapter 3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500 600 700 800 900

A
v
e
ra

g
e
 N

o
d
e
 D

e
g
re

e

Day

Renren
Facebook
YouTube

Figure 3.2: Average node degree.

 4

 4.5

 5

 5.5

 6

 0 100 200 300 400 500 600 700 800 900

A
v
e
ra

g
e
 P

a
th

 L
e
n
g
th

Day

YouTube
Renren

Facebook

Figure 3.3: Average path length.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 100 200 300 400 500 600 700 800 900A
v
g
.
C

lu
s
te

ri
n
g
 C

o
e
ff
ic

ie
n
t

Day

Renren
Facebook
YouTube

Figure 3.4: Average clustering coefficient.

3.3.2 Methodology

Existing link prediction studies focus on predicting edges between two static

snapshots [89, 11, 45], and most do not capture the evolution of fast growing

networks such as OSNs like Facebook, LinkedIn and Renren. In contrast, our

work seeks to answer two key questions:

Q1: Can existing algorithms accurately predict the continuous edge (or link)

growth of today’s large, dynamic, online social networks?

Q2: Can we utilize temporal network data to improve prediction accuracy?

Evaluating Link Prediction on Graph Sequences. To answer these

questions, we apply a sequence-based framework to evaluate existing link prediction

90

Reassessing Current Status of Link Prediction Chapter 3

algorithms as the network grows. We process each dataset to generate a sequence

of graph snapshots (G1, G2, ..., GT) while keeping the number of new edges created

in each snapshot constant. We refer to this number as the snapshot delta.

We run each algorithm in every graph snapshot Gt−1(1 < t ≤ T) to predict

new edges (among existing nodes) that will appear in the next snapshot Gt, and

compare them to the ground truth, i.e. the actual new edges found in Gt. We

choose the snapshot delta value to ensure sufficient number of snapshots for anal-

ysis (> 15) while ensuring duration between two successive snapshots is not too

long (< 2 weeks). Specific values and the resulting number of snapshots for each

dataset are listed in Table 3.2.

To address Q1, we evaluate 14 different metric-based algorithms that can scale

to our large datasets, and 4 widely used classification-based algorithms. For each

algorithm, we study its prediction accuracy as the network grows and identify

potential causes for any loss of accuracy.

We answer Q2 by analyzing the temporal properties in edge creation to identify

and utilize trends as additional metrics to improve prediction accuracy.

Implementing Metric-based Algorithms. We first cover 10 most popular

heuristics: Common Neighbors (CN), Jaccard’s Coefficient (JC), Adamic/Adar

Index (AA), Resource Allocation Index (RA), which focus on capturing proper-

ties of the common neighborhood between nodes of 2-hop distance; Preferential

91

Reassessing Current Status of Link Prediction Chapter 3

Attachment (PA), which is based on node degree; Local Path (LP), Local Ran-

dom Walk (LRW), Shortest Path (SP), Personalized PageRank (PPR), and Katz,

which are driven by path properties. We also include 1 tensor-based algorithm,

i.e., Rescal [111], which works by condensing the interaction among nodes into a

latent space. And finally we implement 3 probabilistic algorithms [95], which ac-

count for different roles by different common neighboring nodes between node

pairs, i.e., Local Naive Bayes based Common Neighbors (BCN), Local Naive

Bayes based Adamic Adar (BAA), and Local Naive Bayes based Resource Al-

location (BRA). These cover the metric-based approaches (see Table 3.1), and we

summarize their detailed implementation in Table 3.3.

We also fine-tune our implementation by identifying the best parameters and

approximation methods (if any) based on results of our own experiments and

from prior studies. Specifically, LP requires a weight parameter ε for 3-hop paths,

and ε = 0.0001 provides the highest accuracy. For PPR, we configure the restart

probability α = 0.15 as suggested by prior work [16]. For Katz, we set β =

0.001 as suggested by [6], and implement two approximation methods: low rank

approximation (Katzlr) [6] and scalable proximity estimation (Katzsc) [137]. Our

experiments in §3.4 show that while more accurate than Katzsc, Katzlr does not

scale to larger networks, since it computes Katz score for all candidate node pairs3.
3Even using 8 machines with 192GB memory each, calculating Katzlr for a Renren snapshot

with 185M edges takes 27 days.

92

Reassessing Current Status of Link Prediction Chapter 3

Metric-based Algorithms Precise Formulation

CN (Common Neighbors) [110] |Γ(u) ∩ Γ(v)|

JC (Jaccard’s Coefficient) [89] |Γ(u)∩Γ(v)|
|Γ(u)∪Γ(v)|

AA (Adamic/Adar) [7]
∑

w∈Γ(u)∩Γ(v)
1

log(deg(w))

RA (Resource Allocation) [165]
∑

w∈Γ(u)∩Γ(v)
1

deg(w)

|Γ(u) ∩ Γ(v)| log(s) +
∑

w∈Γ(u)∩Γ(v) log(Rw),

BCN [95] where s = |V |(|V |−1)
2|E| − 1,Rw =

N4w+1

N∧w+1

N4u (N∧u): # of triangles (non-triangles) involving u.

BAA [95]
∑

w∈Γ(u)∩Γ(v)
1

log(deg(w))
(log(s) + log(Rw))

BRA [95]
∑

w∈Γ(u)∩Γ(v)
1

deg(w)
(log(s) + log(Rw))

Katz [67]

∑∞
l=1 β

l · |paths<l>u,v |

where β > 0, paths<l>u,v : all l-hop paths between u andv

LP (Local Path) [165] |paths<2>
u,v |+ ε · |paths<3>

u,v |

πu,v + πv,u

PPR (Personalized PageRank) [16] where πu,v: probability of a random walk

from u to v with a restart probability α ∈ [0, 1]

LRW (Local Random Walk) [94]

deg(u)
2|E| πuv(m) + deg(v)

2|E| πvu(m)

where πuv(m): probability from u to v after m steps

SP (Shortest Path) # of hops on shortest path between u and v

PA (Preferential Attachment) [17] deg(u) · deg(v)

XRXT (u, v) +XRXT (v, u)

Rescal [111] where adjacent matrix A ≈ XRXT

X: a |V | × r matrix, R: a r × r matrix

Table 3.3: The 14 metric-based algorithms used for our study. Notations: given graph
G =< V,E >, u and v are two graph nodes, Γ(u) denotes the neighbors of node u, deg(u)

represents the node degree of u.

93

Reassessing Current Status of Link Prediction Chapter 3

Thus for Renren and YouTube, we terminate the Katzlr experiments at snapshots

of 65M edges and 5.5M edges, respectively.

In terms of computation cost, the local metrics (CN, JC, AA, RA, BAA,

BCN, BRA) are easy to compute since we only need to compute each node’s 2-

hop neighbors. PA is also fast because one can optimize the implementation to

only consider top-K node pairs. Even for our largest Renren graph, the computa-

tion for the above eight metrics finishes within a few minutes (we run the C++

implementation on 10 standard servers, each with 8 cores and 192GB RAM). The

next three metrics (LRW, PPR and LP) take a few hours to compute because

LRW and PPR require random walk computation while LP requires reaching 3-

hop neighbors. Finally, the most complex metrics (Rescal, Katz and SP) take a

few days to complete since they require node embedding. We also note that for

the classifier-based methods, the computation complexity is dominated by feature

calculation, i.e. computing the above similarity metrics.

3.4 Metric-Based Prediction

Our empirical evaluation begins with metric-based prediction algorithms. We

seek to understand their prediction accuracy, and the key factors that lead to

prediction errors.

94

Reassessing Current Status of Link Prediction Chapter 3

3.4.1 Experimental Setup

Given a sequence of snapshots {G1, G2, ..., GT}, we predict the new edges to

appear in Gt based on observed Gt−1. For each of the 14 metric-based algorithms,

we compute the similarity metric score for each unconnected node pair, and select

the top k node pairs with the highest score. While the choice of k may affect

prediction accuracy, we use the ground truth value, i.e. k equals the number of

new edges among Vt−1 nodes appeared in Gt but not in Gt−1. This allows us to

focus on the effectiveness of similarity metrics. As a baseline for comparison, we

also implement a random prediction algorithm, which uniform-randomly picks k

unconnected node pairs from Vt−1 as the predicted new edges in Gt.

Performance Metrics. We follow the established practice of evaluating each

link prediction algorithm by comparing results to those from random prediction,

i.e. in terms of the factor improvement over random [89]. Specifically, given a

similarity metric M , let EM
t represent the set of correctly predicted node pairs

that become connected in Gt, i.e. the overlap between the predicted top k node

pairs to connect and those that actually connect in Gt. Let ER
t be the set of

correctly predicted edges using random prediction, with an expected size of |ER
t |.

Thus the performance metric is the improvement factor or accuracy ratio [89]:

|EM
t |/|ER

t | (3.1)

95

Reassessing Current Status of Link Prediction Chapter 3

If the ratio is larger than 1, prediction using metric M is more accurate than

random prediction (by predicting k edges). Note that we choose to use accuracy

ratio rather than the area under the receiver operating characteristic curve (AUC)

because AUC evaluates link prediction performance according to the entire list of

the predicted node pairs [97], while our goal is to evaluate the accuracy of top k

predicted node pairs. This allows us to focus on examining the effectiveness of

similarity metrics.

3.4.2 Metric-based Prediction Accuracy

Absolute Prediction Accuracy. We start by first looking at the raw pre-

diction accuracy results in absolute terms, i.e. ratio of correctly predicted edges

that match real new edges. For each consecutive pair of snapshots Gt−1 and Gt,

we apply each prediction algorithm on Gt−1 generate the next k links likely to

form, and compute the overlap in the result with the k links actually formed in

Gt:

|EM
t |/k (3.2)

Prediction accuracy was quite low across the board, for all algorithms on all

snapshots across all of our datasets. To highlight these accuracy results, we show

in Table 3.4 the highest absolute accuracy results obtained by each algorithm over

any snapshot pair across our datasets.

96

Reassessing Current Status of Link Prediction Chapter 3

Network JC BCN BAA BRA LP LRW PPR SP Katzlr Katzsc Rescal PA

Renren 1.72 2.40 3.22 3.52 1.75 1.06 2.44 0.053 0.82 0.018 0.091 0.0068

Facebook 1.21 6.17 6.82 4.43 5.53 2.11 1.06 0.10 9.41 1.85 4.45 0.21

YouTube 0.22 0.59 0.53 0.44 0.60 0.58 0.23 0.0021 0.98 1.44 1.75 0.38

Table 3.4: Best possible absolute accuracy (%) of all prediction methods on each dataset.

It is clear to see that in absolute terms, link prediction performs poorly in

practice. While some methods consistently do better than others, the best they

can do is accuracy in the single digits in percentages, e.g. 5–6%. The best results

tend to come from the Facebook dataset, likely because it’s significantly smaller

(33 times fewer nodes) than the Youtube and Renren datasets. The single best

result is Katzlr, which reaches 9.41% on Facebook, but fails to reach even 1%

on the larger datasets. Note that our definition of “accuracy” is loose, in that it

only requires a predicted link to appear within some range of k new links (see

Table 3.2), where k represents all links created in a time period ranging from one

week (YouTube) to four weeks (Renren).

These numbers are likely to be significantly lower for real networks, which

contain orders of magnitude more nodes (and therefore many orders of magnitude

more potential new links) than our datasets, e.g. Facebook, WhatsApp, Pinterest

etc. While our results are limited by reliance on only network structure (existing

links), these results highlight the fact that link prediction is far from a solved

97

Reassessing Current Status of Link Prediction Chapter 3

problem. These results explain why link prediction literature typically uses the

accuracy ratio [89], which compares results to a purely random algorithm. We

will use the accuracy ratio metric for the rest of our analysis.

Accuracy Ratio Results. We present prediction results of our 14 metric-

based algorithms from Figure 3.5 to Figure 3.7, as the accuracy ratio over the

sequence of snapshots for each OSN (marked by their total edge count). We omit

the results of CN, AA and RA because they perform similarly (slightly worse)

than their Local Naive Bayes versions, i.e. BCN, BAA and BRA. We include two

implementations of Katz: Katzlr and Katzsc, where Katzlr almost consistently

outperforms Katzsc, but is difficult to scale on Renren and Youtube. For the rest

of the paper we only show analysis of Katzlr and refer to it as Katz.

We make two key observations from Figure 3.5 to Figure 3.7. First, as ex-

pected, all metric-based algorithms outperform random prediction over each en-

tire sequence of snapshots. The largest improvement on accuracy ratio is more

than 100,000 times for Renren and YouTube, and 6000 for Facebook. A major

contributor to this magnitude of differential is the large network sizes, where the

accuracy of random prediction quickly decreases as network size grows, resulting

in a much higher accuracy ratio.

Second, while the best algorithm varies across the three networks, there are

algorithms, i.e.,SP and PA, which consistently perform poorly. SP gives all 2-

98

Reassessing Current Status of Link Prediction Chapter 3

1

10

100

1000

10000

100000

35M 65M 95M 125M155M185M

A
c
c
u
ra

c
y
 R

a
ti
o

Gt Edge Count

Renren

BRA
BAA
BCN
JC
PPR
LP
LRW
Katzlr
Rescal
SP
Katzsc
PA

Figure 3.5: Link prediction performance for
Renren dataset.

10

100

1000

10000

360k 465k 570k 675k 780k

A
c
c
u
ra

c
y
 R

a
ti
o

Gt Edge Count

Facebook

Katzlr
BRA
BAA
BCN
LP
Rescal
LRW
Katzsc
JC
PPR
PA
SP

Figure 3.6: Link prediction performance for
Facebook dataset.

100

1000

10000

100000

1000000

4.5M 5.5M 6.5M 7.5M 8.5M

A
c
c
u
ra

c
y
 R

a
ti
o

Gt Edge Count

YouTube

Rescal
Katzlr
Katzsc
BCN
LP
BAA
BRA
LRW
PA
PPR
JC
SP

Figure 3.7: Link prediction performance for YouTube dataset. From Figure 3.5 to
Figure 3.7 we show accuracy ratio of all metric-based prediction algorithms. We omit the
results of CN, AA and RA because they perform similarly (slightly worse) than their Local

Naive Bayes versions, i.e. BCN, BAA and BRA. The results for Katzlr in Renren and
YouTube are capped to 65M and 5.5M edges due to computation complexity.

99

Reassessing Current Status of Link Prediction Chapter 3

hop node pairs the highest score, thus its prediction is actually random choice

over all such pairs. PA tries to capture “the rich get richer” property, which is not

dominant in friendship creation networks (i.e., Renren and Facebook), where joint

efforts from both users are required [161]. PA achieves marginally better accuracy

ratio in YouTube, which is more of a subscription network where popular users

attract more followers.

Impact of Network Structures. As mentioned before, Renren and Face-

book are more similar in underlying structures since they are both traditional

social networks. Our results from Figure 3.5 to Figure 3.7 align with this obser-

vation that top algorithms are similar on Renren and Facebook, i.e., both include

common neighbor based algorithms BRA, BAA and BCN. Renren is slightly dif-

ferent from Facebook in that it is a non-sampled graph, and therefore captures

higher connectivity between nodes compared to the subsampled regional network

in Facebook. Thus Katz is hard to scale on Renren and JC and PPR perform

much better. JC and PPR prefer pairs with both low degree nodes, which are

usually inactive (more in Section 3.4.4) and are most common in the early phase

of our Facebook trace, and decrease as the Facebook network grows over time.

We can see their clearly increasing accuracy ratio in Figure 3.6.

In contrast, YouTube is more of a subscription network, where many super

nodes with extremely high degrees remain super active in link creation. Thus

100

Reassessing Current Status of Link Prediction Chapter 3

YouTube has much higher node heterogeneity and lower network assortativity.

We find that more than 40% new edges involve the top 0.1% nodes with highest

degrees in YouTube, while only less than 3% for Facebook and Renren. Also,

among edges created by super nodes, most are low degree nodes (80% with degree

< 20). We confirm this by measuring the assortativity for each network. It stays

consistently negative for YouTube, and generally positive for the other two.

The difference in network structures produces significantly different link pre-

diction results in YouTube. Because they prefer node pairs with both high degrees,

BRA, BAA and BCN do not rank highly amongst metrics (note that the y-axis

from Figure 3.5 to Figure 3.7 is in logscale). PPR and JC perform very poorly

because most nodes have very low degree (∼80% nodes with degree ≤ 3). The out-

performer is Rescal, which achieves extremely good performance. Rescal works by

condensing the interaction among nodes into a much smaller latent space, where

it models the interaction between latent components instead, and assigns nodes

corresponding weights for each latent component. Intuitively, super nodes are

critical in many roles thus have much higher weights, leading to a higher final

score. Our results also confirm that super nodes are weighted extremely highly

while the rest share similar weights. In this way Rescal best captures the negative

assortativity in YouTube.

101

Reassessing Current Status of Link Prediction Chapter 3

Correlation of Accuracy with 2-hop Edge Ratio. We observe that most

algorithms increase in accuracy ratio with network growth, but only for Renren

and YouTube, not Facebook. Our analysis shows that this could be explained by

a dependence on link creation between 2-hop neighbors, i.e. λ2, the percentage of

2-hop node pairs in Gt−1 who form edges in Gt. A plot of λ2 shows that it increases

with network growth in Renren/YouTube, but decreases (after a matching spike)

in Facebook. This is explained by the trend towards “densification” over time [81].

This is disrupted in the Facebook trace, because subsampling over the regional

network breaks an increasing number of cross-regional edges as the network grows.

We compute the average Pearson correlation of the top-performing 6 metrics for

each graph to λ2. The results are 0.95 for Renren, 0.83 for YouTube and 0.81 for

Facebook.

Summary. Our results produce two key takeaways. First, the underlying net-

work structure heavily impact prediction accuracy of metric-based algorithms (in

terms of accuracy ratio). The more similar network structures in Renren and Face-

book (links in which are both the abstraction of friendship between users, while

YouTube is more of a subscription network) means their prediction results show

consistent relative performance. Second, prediction accuracy of most metric-based

algorithms strongly correlate with the ratio of 2-hop edges in network evolution,

because their predictions are dominated by 2-hop edges.

102

Reassessing Current Status of Link Prediction Chapter 3

Degree

Standard

Deviation

Median

Degree
Rescal

Katz BRA, RA

> 60.3 ≤ 60.3

≤ 8 > 8

Figure 3.8: Visualization of classification results on choosing the best metric-based algorithm.

3.4.3 Choosing Metric-based Algorithms

Since network structures heavily impact the performance of metric-based al-

gorithms, a natural question is: “given a network, can one predict the best link

prediction algorithm?” And similarly: “given an algorithm, can we characterize

the kind of networks on which it provides the most accurate link prediction?”

We answer the first question by training a multi-class classifier (decision tree),

where the input features are the network properties and each class represents a

(winning) link prediction algorithm (14 classes in total). We treat each graph

snapshot as a data point, and create 69 data points across our three datasets.

We consider the following features (computed from each snapshot): node count,

edge count, node degree distribution (average, standard deviation, x-percentile),

clustering coefficient, average path length, and network assortativity.

Figure 3.8 shows the resulting decision tree, where Rescal, Katz and BRA

(RA) are among the best performing algorithms (consistent with Figure 3.5 to

103

Reassessing Current Status of Link Prediction Chapter 3
Figure 3.7). We see that the heterogeneity of node degrees in the network (cap-

tured as degree standard deviation) is the highest impact feature. It specifies that

networks with high node degree heterogeneity should use Rescal, which aligns

with our analysis in Section 3.4.2 that Rescal prefers node pairs with higher de-

gree heterogeneity. The next factor is the median node degree where lower values

(≤8) marks Katz due to its limited scalability and higher values points to BRA

(RA) which prefer high-degree node pairs.

Note that this result is not meant as a definitive guide to choosing link pre-

diction approaches for different types of graphs. Our training set for the decision

tree is relatively small, and only covers three distinct types of networks. A more

“robust” result would require data from a wide range of networks with varying

characteristics, with even more snapshots per network. We only use the results

here to demonstrate general trends between key features, which are consistent

with our detailed experimental results (Figure 3.5 to Figure 3.7).

To answer the second question, we train a binary classifier (decision tree) for

each algorithm where the inputs are the same set of network properties. We

consider an algorithm to provide “good” prediction (i.e. positive) if its prediction

accuracy ratio is within 90% of the optimal algorithm. The classification results

are shown as below: (we omit algorithms for which there are few or no positive

results):

104

Reassessing Current Status of Link Prediction Chapter 3

• Rescal: standard deviation of node degree> 60.3

• Katz: # of edges≤ 4.5M

• BRA (RA): median node degree> 7

The results are consistent: Rescal is best for networks with high node degree

heterogeneity, Katz is suitable for networks of limited scale and BRA (RA) is best

for high-density networks.

Summary of Observations. We train classifiers to explore the correlation

between the networks and metric-based link prediction algorithms. While we are

limited to our three large network traces, we believe our results do provide some

insights on today’s metric-based link prediction algorithms:

• On sparse and small networks, Katz is a good choice.

• On dense and large networks, BRA (RA) performs well.

• On networks with high node heterogeneity, Rescal is likely the best solution.

3.4.4 Sources of Low Prediction Accuracy

While metric-based prediction largely outperforms random prediction, accu-

racy is still low in absolute terms. For example, the best similarity metric (BRA)

on Renren boosts prediction accuracy over random prediction by more than 40,000

times (at 55M edges). Yet it only achieves 3% accuracy when predicting the next

105

Reassessing Current Status of Link Prediction Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120 140

C
D

F

Degree

JC
PPR
Truth
BRA
BAA
BCN
LRW

LP
Katz

Rescal

Figure 3.9: Degree distribution of nodes in predicted edges (Renren, 55M edges).

edge. To understand the key reasons behind such low accuracy, we investigate

both structural and temporal aspects of each metric-based algorithm, with the

exceptions of PA and SP, the worst performing metrics which we discussed in Sec-

tion 3.4.2. We later take our findings into account when designing complementary

prediction mechanisms in Section 3.6. Our analysis shows consistency over time

and across networks. For brevity we focus our discussion on a sample of results

(Renren, 55M edges).

Structural factors. We notice that all these similarity metrics are strongly

biased by node degree. Figure 3.9 plots the degree distribution of nodes associated

with the predicted edges (by each metric) and the ground truth distribution. We

see that PPR and JC are heavily biased towards low-degree nodes, while the rest

focus more on high-degree nodes. Such bias often comes from the construction of

the similarity metric. Take for example BCN (and CN). In a small-world network,

106

Reassessing Current Status of Link Prediction Chapter 3

Metric Predicted Edges Real Edges

Rescal 99.5% 0.5%

LRW 66.7% 0.6%

Katz 39.7% 0.6%

LP 33.3% 0.5%

BCN 24.2% 0.5%

BAA 16.4% 0.5%

BRA 4.7% 0.8%

Table 3.5: Ratio of predicted and actual created edges that involve 0.1% most frequently
predicted nodes (Renren snapshot with 55M edges).

two nodes with high degree likely share more common neighbors, and are more

likely to be chosen by the common neighbor algorithm.

We also observe that for metrics biased towards high-degree nodes, their re-

sults are dominated by a small number of nodes. To illustrate this, we find the

0.1% nodes most frequently predicted to create a new edge, and show their ratio

of predicted and real edges in Table 3.5. We see that except for BRA, all other

similarity metrics overpredict the involvement of a small group of nodes in edge

creation. It makes sense that the worst offender, Rescal, is much better suited

for a supernode-driven network like YouTube. There, its frequent link predic-

107

Reassessing Current Status of Link Prediction Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Idle Time (Days)

Truth
BAA
BCN
Katz
BRA

LP
LRW

Rescal
PPR

JC

Figure 3.10: CDF of node idle time in predicted edges (Renren, 55M edges).

tions around supernodes matches the network structure and produces much more

accurate results.

Temporal factors. Our analysis also shows that these metrics tend to predict

links between less active nodes. In particular, for each snapshot Gt, we measure

the idle time for a node v in Gt as the time gap between t and the most recent

time when v creates an edge. Figure 3.10 shows that the idle time of nodes in

predicted edges by all metrics are larger than that of ground truth, meaning that

they are all biased to nodes that are dormant recently, which are less likely to

form new edges.

3.5 Classification-based Prediction

Classification-based algorithms apply supervised learning to predict links using

multiple similarity metrics as features. The key challenge is how to scale to large

108

Reassessing Current Status of Link Prediction Chapter 3

OSNs, i.e. being able to predict edges among all possible node pairs. Prior

works limit the prediction coverage to a very small subset of node pairs [130,

137]. Another challenge is that social networks are highly sparse, translating

into highly “imbalanced” positive (connected) and negative (disconnected) subsets.

Prior work cites data imbalance as a major cause of low prediction accuracy [57].

In our 55M-edge Renren snapshot for example, the ratio of positive to negative

links is 1 : 179K, and decreases further as the network grows.

In this section, we evaluate classification-based link prediction in practical

scenarios, using our large OSN datasets with high data imbalance. To do so,

we develop a scalable measurement mechanism for implementing and evaluating

classification-based algorithms. We also study how they perform on imbalanced

data and compare their results to metric-based prediction algorithms.

3.5.1 Evaluation Configuration

Classification-based algorithms first train models (classifiers) using labeled

data and their corresponding features, then apply the trained classifiers to test

data to predict their labels. Link prediction only requires binary classification

(“+” for creating an edge and “-” for no edge).

The key challenge in evaluating these algorithms is how to train and make

prediction on all possible node pairs – this requires computing all the features for

109

Reassessing Current Status of Link Prediction Chapter 3

O(|V 2| − |E|) node pairs and making a classification decision (|V | and |E| the

graph node and edge count). Even for a “small” Renren snapshot (2.3M nodes,

25M edges), it takes 88 days to compute features!

Snowball Sampling. To address this challenge, we consider limiting our eval-

uation using snowball sampling [49], which has been shown to effectively reduce

computation cost while preserving network structure and statistical representa-

tivity.

Specifically, for a snapshot Gt−2 = {Vt−2, Et−2} we first randomly select a node

v as the seed, then run a breadth-first-search from node v until a fixed percentage

p of nodes are visited. These visited nodes V S
t−2 are the sampled nodes in snapshot

Gt−2. We repeat the process on the next snapshot Gt−1 = {Vt−1, Et−1} using the

same seed v, producing V S
t−1. The choice of sampling percentage p must balance

between computation cost and data representativity. We configure p based on

the network size. Since our Facebook network is reasonably small, p=100%. For

Renren and YouTube, p=2%.

Next, we apply common classification methods on these sampled node sets.

During the training process, we measure the similarity features of all node pairs

among V S
t−2 in Gt−2, labeling each node pair as either positive or negative depend-

ing on whether they are connected in Gt−1, and training a classifier using this

labeled set.

110

Reassessing Current Status of Link Prediction Chapter 3

Graph
Gt−2 Gt−1 Snowball

Nodes Edges Nodes Edges Sampling p

Facebook
small 49K 345K 49K 360K

100%
large 56K 600K 57K 615K

YouTube
small 1.63M 4M 1.74M 4.25M

2%
large 2.63M 7M 2.70M 7.25M

Renren
small 2.3M 25M 2.7M 30M

2%
large 6.2M 95M 6.7M 105M

Table 3.6: Data instances for evaluating classification algorithms.

In the testing process, we collect features between node pairs among V S
t−1 in

Gt−1, feed them into the trained classifier to compute prediction scores, and then

choose the top k node pairs with the highest scores as the new edges for the next

snapshot Gt = {Vt, Et}. As in Section 3.4, we set k to the actual number of

new edges created among node pairs in V S
t−1 for Gt, and use the accuracy ratio

to evaluate prediction accuracy. To minimize the impact of seeds, we randomly

select 5 nodes as seeds, repeat classification methods on them, and measure the

average and standard deviation of prediction accuracy ratios.

Given the computation complexity, we limit our evaluation to two instances

(listed in Table 3.6) of different sizes (small and large) for all three networks.

Again, because these instances produce highly consistent results and space con-

straints, we only discuss the results for the large networks.

111

Reassessing Current Status of Link Prediction Chapter 3

 0

 1000

 2000

 3000

 4000

RF NB LR SVM

A
c
c
u

ra
c
y
 R

a
ti
o

1:1
1:50

Figure 3.11: Accuracy ratio of four classifiers with undersampling ratio θ 1:1 and 1:50
(Facebook, 345K edges).

Features and Classifiers. We use scores from all 14 similarity metrics listed

in Table 3.3 as features, and experiment with 4 well-known classifiers: Support

Vector Machine (SVM), Logistic Regression, Naive Bayesian (NB), and Random

Forests (RF)4. We also considered but ultimately rejected Decision Trees, because

they can only produce binary recommendations, and are effectively subsumed by

Random Forests.

We ran experiments on a wide range of network snapshots, and found the clas-

sifiers were consistent in their relative performance. RF and NB always performed

poorly, and LR performed generally on par with SVM. In addition, we found that

SVM outperformed LR with imbalanced training sets, which has been also shown

in prior work [57]. Since our data is highly imbalanced, SVM’s results are uni-

formly the best of the bunch, and we use SVM results for the remainder of our
4We use the implementation in an open source library [116] with default parameters for all

classifiers in this paper.

112

Reassessing Current Status of Link Prediction Chapter 3

discussion. As an example of the relative accuracy results, we plot in Figure 3.11

prediction accuracy ratio for all 4 classifiers on a Facebook network snapshot of

345K edges.

3.5.2 Link Prediction Accuracy

To evaluate classification-based prediction, we must first understand the im-

pact of data imbalance within training sets. Recall that link formations in social

networks are extremely imbalanced, i.e. far fewer connected node pairs than

disconnected. This imbalance has been shown to contribute to classification er-

rors [57].

To deal with challenges from data imbalance, we apply the well-known under-

sampling technique to build training data: keeping all positive node pairs while

varying the number of negative node pairs [57]. Here positive(negative) node

pairs refer to those which will(not) connect in the prediction timeframe. Fig-

ure 3.12 plots prediction accuracy ratio while varying the under-sampling ratio,

θ=(# of positive node pairs : # of negative node pairs), from (1:1) to (1:10000)5.

For our three OSNs, the true (unsampled) positive vs. negative ratio is around

(1:100000). Note that existing classification-based prediction algorithms generally

use balanced node pairs, or a ratio of (1:1).
5We stop at (1:10000) for YouTube and Facebook and (1:5000) for Renren because this is

the largest training size we can support on our memory-heavy servers (192GB RAM each).

113

Reassessing Current Status of Link Prediction Chapter 3

 6000

 9000

 12000

 15000

1:1 1:10 1:100
1:1000

1:5000

A
c
c
u
ra

c
y
 R

a
ti
o

Undersampling Ratio (θ)

Renren

 2000

 2500

 3000

 3500

1:1 1:10 1:100
1:1000

1:10000

A
c
c
u
ra

c
y
 R

a
ti
o

Undersampling Ratio (θ)

Facebook

 0

 1000

 2000

 3000

 4000

 5000

1:1 1:10 1:100
1:1000

1:10000

A
c
c
u
ra

c
y
 R

a
ti
o

Undersampling Ratio (θ)

YouTube

Figure 3.12: Performance of classification-based prediction as a function of the
under-sampling ratio θ used during classifier training.

These results show that classification-based prediction algorithms are signifi-

cantly better than random prediction for all 5 sampling ratios. For Renren and

Facebook, accuracy ratio improves as the sampling ratio θ approaches the ac-

tual positive vs. negative ratio (1:100000). Compared to conventional balanced

sampling (1:1), a lower under-sampling ratio produces significantly more accurate

results, and improvements in accuracy ratio, and also the accuracy, can be as high

as a factor of 5.

The above results confirm the effectiveness of classification-based link pre-

diction. More importantly, we show that the performance of these algorithms

depends on the configuration of training data. Conventional methods of using

114

Reassessing Current Status of Link Prediction Chapter 3

1

10

100

1000

10000

100000

P
A

S
P

R
e
sca

l
L
R

W
L
P

C
N

A
A

B
C

N
K

a
tz

B
A

A
R

A
B

R
A

JC P
P

R

1
:1

1
:1

0
1
:1

0
0

1
:1

0
0
0

1
:5

0
0
0

A
c
c
u

ra
c
y
 R

a
ti
o

Renren

Metric-based
Classificaion 1

10

100

1000

10000

S
P

P
A

P
P

R
JC L
R

W
R

e
sca

l
L
P

C
N

B
C

N
A

A
B

A
A

R
A

B
R

A
K

a
tz

1
:1

1
:1

0
1
:1

0
0

1
:1

0
0
0

1
:1

0
0
0
0

A
c
c
u

ra
c
y
 R

a
ti
o

Facebook

Metric-based
Classification

1

10

100

1000

10000

JC S
P

P
P

R
P

A
L
R

W
R

A
K

a
tz

B
R

A
B

A
A

A
A

C
N

B
C

N
L
P

R
e
sca

l
1
:1

1
:1

0
1
:1

0
0

1
:1

0
0
0

1
:1

0
0
0
0

A
c
c
u

ra
c
y
 R

a
ti
o

YouTube

Metric-based
Classification

Figure 3.13: Comparing the prediction performance of metric- and classification-based
prediction algorithms.

balanced training data can lower prediction accuracy by as much as a factor of

5. To minimize such loss, we need to invest efforts on finding the right level of

undersampling ratio (θ).

3.5.3 Comparing to Metric-based Algorithms

For a fair comparison, we run the metric-based methods again on the same

sampled data (V S
t−1). We plot the accuracy ratio for each algorithm (blue circle

on the left) in Figure 3.13, and rank them in descending order from right to left.

We see that the top (most accurate) similarity metrics are generally consistent on

both the sampled data and the entire network (see Section 3.4) across different

115

Reassessing Current Status of Link Prediction Chapter 3

datasets. Also note that the test dataset V S
t−1 is smaller than Vt−1 and better

connected, the accuracy ratio of the metric-based algorithms is lower than results

previously shown in §3.4 (accuracy ratio is lower because random prediction does

better on this smaller dataset).

Comparing Accuracy. Figure 3.13 plots the accuracy ratio of SVM (red

cross on the right) and metric-based methods (blue circle on the left). With

a well-chosen θ, SVM consistently performs as well as, or outperforms the best

metric-based algorithms.

This outperformance stems from two factors: combining multiple similarity

metrics to broaden coverage, and using under-sampling to address the issue of

data imbalance. Overall, these results show that among existing algorithms, the

SVM classifier provides consistently strong results. However, we also note that

some similarity metrics, namely RA and BRA, provide consistently “good” results

across all of our networks. In scenarios where the computational or training costs

of SVMs were undesirable, RA and BRA provide reasonable alternatives with

much lower computational complexity.

Similarity Metric Ranking vs. SVM Feature Weight. We seek to un-

derstand whether a good similarity metric in the metric-based method (identified

from Figure 3.13) also becomes a dominant feature for the classification method.

For this we use the feature coefficient provided by SVM, where a larger abso-

116

Reassessing Current Status of Link Prediction Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

1 4 7 10 14

T
o

ta
l
C

o
e

ff
ic

ie
n

ts

Top N Metrics

Renren
Facebook

Youtube

Figure 3.14: The relationship between top similarity metrics and top SVM features, shown as
the total normalized SVM coefficient of top N similarity metrics, N=1,2,...,14.

lute value means the feature is more important. To make a fair comparison, we

normalize the coefficients (using absolute values) within each classifier.

We take two steps to study the relationship between top similarity metrics and

top SVM features. First, we directly compare the rankings of the two. For both

Renren and Facebook, the rankings are very similar between the similarity metrics

and SVM features, i.e. top similarity metrics are also top features in SVM. For

YouTube, the orders are less consistent, except that Rescal always ranks first.

Next, we study how top similarity metrics contribute to SVM by compar-

ing their feature coefficients. Specifically, for each graph we pick the top N

similarity metrics and calculate their total normalized SVM coefficients, where

N = 1, 2, ..., 14. Figure 3.14 presents the results for the large data instance listed

in Table 3.6 with the largest θ. Results of small data instances and other values

of θ are consistent and omitted for brevity.

117

Reassessing Current Status of Link Prediction Chapter 3

We see that for Renren and Facebook the similarity metrics make similar

contributions to the machine learning process. The top 6 similarity metrics have

a slightly higher weight than the rest. For YouTube, the top first similarity metric

(Rescal) and a lower ranked metric (Katz) are the key contributors while the rest

make similar contributions.

Together, these results suggest that in general the metric-based and classifier-

based methods share similar preferences on similarity metrics. But the classifier-

based methods can combine prediction power of multiple metrics to achieve a

higher accuracy and robustness across different datasets. Finally, the difference

between Renren/Facebook and YouTube aligns with our earlier observation that

as a subscription network YouTube’s link prediction pattern differs from those of

Renren and Facebook.

3.6 Improving Link Prediction

While our results show that today’s prediction algorithms significantly out-

perform random prediction, they are still limited in their prediction accuracy.

A fundamental contributing factor is that current prediction algorithms take a

purely static approach to network analysis, and do not take in account temporal

patterns exhibited by an evolving network. While recent studies seek to extend

link prediction to support dynamic networks, they either do not scale [130], or

118

Reassessing Current Status of Link Prediction Chapter 3

are restricted to single model or metric [144] where performance vary significantly

across datasets.

In this section, we improve existing link prediction algorithms by integrating

them with dynamic network analysis. Specifically, we identify key patterns on

network dynamics, and use them to build temporal filters that drastically reduce

the search space for link prediction. Our proposed filters effectively augment

existing link prediction algorithms, providing a significant boost in prediction

accuracy. This is even true for algorithms that were already designed to capture

network dynamics, e.g. [37].

3.6.1 Temporal Properties on Edge Creation

Using our dynamic OSN datasets, we investigate how different properties of

network dynamics affect edge creation. These include node activeness, neighbor-

hood structure evolution, neighborhood activeness, and arrival of common neigh-

bor. We conclude that node activity and arrival of common neighbor are the key

factors for all three networks, and thus we omit analysis for other explorations

here. We have consistent observations across different snapshots and over different

networks, and due to space limitation we only show figures for Renren snapshot

at 55M edges in this subsection. We will briefly summarize our observations for

other networks in the next subsection.

119

Reassessing Current Status of Link Prediction Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

Idle Time (Days)

Positive
Negative

Figure 3.15: CDF of active node idle time in a Renren snapshot.

Node Activeness. Intuitively, a node that has recently actively created edges

is more likely to create edges in the near future. We validate this by measuring

node activity on both positive and negative node pairs (i.e. those with edges

and those without). For each node pair, we mark the node with longer idle time

(defined in Section 3.4.4) as the inactive node and the other as the active node.

We measure activity by the idle time of the active node, the idle time of the

inactive node, and the number of edges created by the active node in the past d

days.

We found that for positive node pairs, i.e. those who will connect in the pre-

diction timeframe, the idle times of both active and inactive nodes are significantly

smaller. Figure 3.15 plots the CDF of the active node’s idle time for the Renren

snapshot at 55M edges. More than 90% of positive node pairs have <3 days idle

time while only 40% of negative pairs do so. This 3-day threshold can effectively

distinguish positive and negative node pairs. Similar patterns can be found when

comparing the inactive nodes’ idle times, with a 20-day idle threshold.

120

Reassessing Current Status of Link Prediction Chapter 3

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

C
D

F

New Edge Created in 7 days

Negative
Positive

Figure 3.16: CDF of new edges created in
the past 7 days by a node in a Renren

snapshot.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

CN Time Gap (Days)

Positive
Negative

Figure 3.17: CDF of CN time gap of positive
and negative node pairs in a Renren snapshot.

Furthermore, active nodes in positive node pairs tend to create more edges in

a recent time. Using the same Renren snapshot, Figure 3.16 shows the CDF of

new edges in the past week for both positive and negative sets. For more than

60% of positive node pairs, the active node creates more than 3 edges while only

20% of negative node pairs do so. This “3-edge in past 7 days” can also be used

to help identify potential new links.

Arrival of Common Neighbor. We show in Section 3.4 that most similarity

metrics focus on predicting edge formation between 2-hop neighbors. For these,

the recent arrivals of common neighbors can often trigger the completion of a

triad [167] and thus be critical in predicting edges.

We test this hypothesis by measuring, for each node pair, the gap between

the most recent time when they connect to a common neighbor and the current

snapshot time, referred to as the CN time gap. Our results show that the CN time

gap of positive set is much smaller than that of negative set. Figure 3.17 shows

121

Reassessing Current Status of Link Prediction Chapter 3

the result for the same Renren snapshot, where more than 60% of positive pairs

create their last common neighbors in the last 10 days, while 20% of negative

pairs do so.

3.6.2 Temporal Filtering

We propose to use these observations, which are consistent across networks,

to develop “temporal filters” to drastically reduce the search space of new links

by filtering out node pairs that are unlikely to create edges. Specifically, we

remove any potential node pair from the candidate list if it fails to meet any of

the following four criteria:

• Idle time of active nodes < dact days.

• Idle time of inactive nodes < dinact days.

• d-day new edges ≥ Enew.

• CN time gap < dCN . 6

Our threshold values are listed in Table 3.7, which hold across different snap-

shots for each corresponding network. While each parameter is network specific,

the methodology to discover them is general.

Prediction Accuracy after Filtering. We now present the improvement in

link prediction accuracy (in terms of accuracy ratio) after adding temporal filter-
6For node pairs beyond 2 hops, we do not apply this criterion.

122

Reassessing Current Status of Link Prediction Chapter 3

Graph
Node Idle Time d-day New Edges dCN

dact dinact d Enew

Facebook 15 40 21 2 40

YouTube 3 30 7 3 20

Renren 3 20 7 3 10

Table 3.7: Parameters of the temporal filters.

Network JC BCN BAA BRA LP LRW PPR SP Katz Rescal PA 1:1 1:10 1:100 1:1000 1:10000

Renren 2.2 5.8 4.1 2.3 9.7 3.2 1.7 14.9 1.5 2.4 - 1.9 1.9 1.8 1.8 1.8*

Facebook 5.7 1.2 1.2 1.4 1.3 1.3 5.3 4.4 1.3 1.2 2.1 1.3 1.4 1.5 1.3 1.2

YouTube - 1.2 1.2 1.2 1.2 1.1 3.1 15.7 1.5 1.1 1.2 2.2 2.2 2 1.2 1.1

Table 3.8: Ratio of accuracy values after filtering vs. before filtering for all metric-based and
classification methods. Bold value in each row is the maximum improvement for that network;

“-” means the accuracy before filtering is “0”. *Ratio in Renren is 1:5000.

ing. We experiment with the same data instances used to evaluate classification-

based algorithms (see Table 3.6) and present the result for the large instance.

Results from the smaller instance show even more significant benefits and are

omitted for brevity.

Table 3.8 lists the normalized improvement from applying the filter, i.e. the

accuracy ratio of prediction with filtering divided by the accuracy ratio of pre-

diction without filters. The improvement is quite significant for many cases, and

somewhat incremental for others. For classification-based algorithms, our filtering

123

Reassessing Current Status of Link Prediction Chapter 3

raises the accuracy by 10%∼120%. For metric-based algorithms, the gain can be

as much as a factor of 15.7.

We observe that filtering affects certain algorithms more than others. For

metric-based algorithms, applying temporal filters changes the “best” prediction

algorithm. For example in Facebook, JC was the weakest metric before the fil-

ters, but becomes the best metric after filtering. This is because temporal filters

effectively identify and remove the unlikely-to-connect node pairs, i.e. inactive,

low-degree nodes that JC is unable to identify.

3.6.3 Comparing to Other Temporal Methods

Recent works have exploited temporal information to improve prediction ac-

curacy [27, 37, 144]. We compare our filtering design with the time series based

prediction [37], a popular method that can also scale to our network datasets. For

each potential node pair, this method computes its similarity metrics at multiple

past time points, and aggregates these scores to produce a final score of the pair.

We implement two aggregation approaches, Moving Average (MA) and Linear

Regression (LR), shown by [37] as the two best approaches, and perform aggrega-

tion on equally spaced past time points (the space equals to the number of days

between Gt and Gt−1). We observe that MA consistently outperforms LR, and

thus omit the LR result for brevity.

124

Reassessing Current Status of Link Prediction Chapter 3

 0

 6000

 12000

 18000

 24000

S
P

P
A

R
e
sca

l
L
R

W
K

a
tz

L
P

C
N

B
C

N
A

A
B

A
A

R
A

B
R

A
P

P
R

JC

A
c
c
u

ra
c
y
 R

a
ti
o

Renren

Time Model w/ filter
Basic w/ filter
Time Model w/o filter
Basic w/o filter

 0

 1500

 3000

 4500

 6000

S
P

P
A

L
R

W
R

e
sca

l
L
P

C
N

B
C

N
A

A
B

A
A

P
P

R
K

a
tz

R
A

B
R

A
JC

A
c
c
u

ra
c
y
 R

a
ti
o

Facebook

Time Model w/ filter
Basic w/ filter
Time Model w/o filter
Basic w/o filter

 0

 2000

 4000

 6000

 8000

S
P

JC P
P

R
P

A
L
R

W
R

A
B

R
A

K
a
tz

B
A

A
A

A
B

C
N

C
N

L
P

R
e
sca

l

A
c
c
u

ra
c
y
 R

a
ti
o

YouTube

Time Model w/ filter
Basic w/ filter
Time Model w/o filter
Basic w/o filter

Figure 3.18: Our proposed temporal filtering method outperforms time-based models.

Similar to Section 3.6.2, we also present the result for the large instance for

each network in Table 3.6 and ignore the similar results from the smaller instance.

Figure 3.18 shows prediction accuracy ratio for original similarity metrics (marked

as Basic) and those enhanced with MA (marked as Time Model), both with and

without our filtering method. For each metric, our filtering consistently improves

the accuracy far more than the time series based prediction, especially for Renren

and Facebook. Furthermore, even after applying the time series based prediction,

our filter can still consistently improve prediction accuracy.

Summary. We show that by leveraging temporal information on network dy-

namics, we can effectively improve link prediction accuracy. Using these temporal

125

Reassessing Current Status of Link Prediction Chapter 3

filters, we can prune the set of candidate node pairs for edge creation, allowing

link prediction algorithms to focus on regions of likely growth. By comparing to

other temporal methods, we further confirm the effectiveness and generality of

our filtering method.

3.7 Related Work

We perform an in-depth study on two types of link prediction algorithms

(metric- and classification-based). Prior works have evaluated metric-based algo-

rithms using co-author networks [89], classification-based methods using balanced

data [11, 45], and both methods using a small subset of Twitter (155K nodes) [23].

Our work differs by studying both methods using datasets of large, dynamic on-

line social networks that recently became available. By discretizing these datasets

into numerous temporal snapshots, we study the evolution of link prediction over

fine time intervals, identify potential factors behind prediction errors, and propose

filters that improve prediction power for all algorithms.

Recent studies have leveraged temporal information for link prediction. The

key approach is to extend existing algorithms in the temporal domain, e.g. adding

a temporal dimension [6], assigning more weights to new links [135, 144], integrat-

ing graph structure information over time [37]. Another approach applies past

observations for prediction [27, 130], by identifying subgraphs that are similar to

126

Reassessing Current Status of Link Prediction Chapter 3

the target subgraph and use their time-evolving behaviors to help predict the tar-

get. Unfortunately, each of these methods suffers from at least one of the following

limitations:

• The proposed approach is of high complexity and cannot scale to large networks

• The proposed approach is limited to a single model/metric, whose performance

varies significantly across networks

• The proposed approach does not capture (and leverage) temporal patterns of

the network

In contrast, our approach not only provides a general and scalable link pre-

diction solution that supports a wide variety of similarity metrics, classifiers and

network graphs, but also utilizes insights of network evolution to boost prediction

accuracy and reduce complexity.

Finally, our work targets link prediction that only require graph topology infor-

mation, i.e. nodes and edges. Additional information, such as edge weights [96],

node connections on other social networks [106], and link direction [158], can im-

prove prediction performance. We plan to consider these factors in future work.

127

Reassessing Current Status of Link Prediction Chapter 3

3.8 Summary and Discussion

Using real traces of large dynamic networks, our work in this chapter takes

a concrete step towards objectively quantifying the predictive power of today’s

link prediction algorithms. By implementing a wide range of algorithms, we have

already identified concrete challenges and issues with multiple algorithms, from

high computational complexity that limits scalability, to binary classification re-

sults that lack granularity.

For metric-based approaches, we have shown the futility of some metrics (short-

est path) and validated the scalability of others, e.g. scalable Katz heuristics [137].

At the same time, we have shown that it is indeed possible to scale some classi-

fiers to large, multi-million node networks, and that classifiers such as SVMs can

produce consistently strong results.

More surprisingly, we find that the best metric-based predictors (vary across

different networks) perform on par with the most accurate classifier (SVM in all

cases), and we derive potential guidelines for choosing metrics based on network

structure. We also take a deeper look at current link prediction algorithms for the

source of low accuracy, in terms of both structural and temporal aspects. Further-

more, we provide “temporal filters” that can greatly improve prediction accuracy

(across different methods and networks) by leveraging knowledge of prior network

dynamics, even for predictors that have already integrated temporal information.

128

Reassessing Current Status of Link Prediction Chapter 3

Finally, our results underscore the fact that current prediction algorithms still

perform poorly at the fine granularity of individual link predictions, even with our

proposed temporal filters. While this confirms link prediction is still an unsolved

problem, it is important to calibrate expectations depending on specific applica-

tions. For example, while current algorithms focus primarily on predicting nearby

neighbors, a significant number of new links connect “distant” nodes. Overcoming

these empirical limitations requires a better understanding of underlying network

structures and dynamics.

This work only scratches the surface of a much larger problem space. Using

datasets from just three networks, we already observe significant variance in ac-

curacy for single metrics across different networks. Much more experimental and

analytical work is necessary before we can identify specific properties of each net-

work that make them more or less predictable by certain metrics. Our evaluation

is limited by our reliance on network structural data, whereas deployed link pre-

diction systems are likely to combine multiple information sources [53], e.g., user

profiles and behavioral data, which can boost prediction accuracy empirically.

129

Chapter 4

Secure Graph Sharing System

4.1 Introduction

1 Graphs are capable to capture many of today’s most sensitive datasets, in-

cluding maps of autonomous systems in the Internet, social networks representing

billions of friendships, or connected records of patent citations. Privacy concerns

rise as controlling access to these datasets is a difficult challenge. More specifi-

cally, it is often the case that owners of large graph datasets would like to share

access to them to a fixed set of entities without the data leaking into the public

domain. For example, an ISP may be required to share detailed network topology
1 ©ACM, (2015). This is the authors version of the work. It is posted here by permission

of ACM for your personal use. Not for redistribution. Abbreviated version of content in this
chapter can be found in “Towards Graph Watermarks” [162], Proceedings of the 2015 ACM on
Conference on Online Social Networks (IMC’15), http://doi.acm.org/10.1145/2817946.2817956.

130

Secure Graph Sharing System Chapter 4

graphs with a third party networking equipment vendor, with a strict agreement

that access to these sensitive graphs must be limited to authorized personnel only.

Similarly, a large social network like Facebook or LinkedIn may choose to share

portions of its social graph data with trusted academic collaborators, but clearly

want to prevent their leakage into the broader research community.

One option is to focus on building strong access control mechanisms to prevent

data leakage beyond authorized parties. Yet in most scenarios, including both

examples above, data owners cannot restrict physical access to the data, and have

limited control once the data is shared with the trusted collaborator. It is also

the case that no matter how well access control systems are designed, they are

never foolproof, and often fall prey to attacks on the human element, i.e. social

engineering. Another option is to modify portions of the data to reduce the impact

of potential data leakages. This has the downside of making the data inherently

noisy and inaccurate, and still can be overcome by data reconstruction or de-

anonymization attacks using external input [107]. Finally, these schemes are hard

to justify, in part because it is very difficult to quantify the level of protection

they provide.

In this chapter, we propose a new alternative in the form of graph watermarks.

Intuitively, watermarks are small, often imperceptible changes to data that are

difficult to remove, and serve to associate some metadata to a particular dataset.

131

Secure Graph Sharing System Chapter 4
They are used successfully today to limit data piracy by music vendors such as

Apple and Walmart, who embed a user’s personal information into a music file

at the time of purchase/download [13]. Should the purchased music be leaked

onto music sharing networks, it is easy for Apple to track down the user who

was responsible for the leak. In our context, graph watermarks work in a similar

way, by securely identifying a copy of a graph with its “authorized user.” Should

a shared graph dataset be leaked and discovered later in public domains (on

BitTorrent perhaps), the data owner can extract watermark from the leaked copy

and use it as proof to seek damages against the collaborator responsible for the

leak. While not a panacea, graph watermarks can provide additional level of

protection for data owners who want to or must share their data, and perhaps

encourage risk-averse data owners to share potentially sensitive graph data, e.g.

encourage LinkedIn to share social graphs with academic collaborators.

To be effective, a graph watermark system needs to provide several key prop-

erties:

• Graph watermarks should be relatively small compared to the graph dataset

itself. This has two direct consequences: the watermark will be difficult to

detect (and remove) by potential attackers, and adding the watermark to the

graph has minimal impact on the graph structure and its utility.

132

Secure Graph Sharing System Chapter 4

• Watermarks should be difficult to forge and should not occur naturally in graphs,

ensuring that the presence of a valid watermark can be securely associated with

some user, i.e. non-repudiation.

• Both the embedding and extraction of watermarks should be efficient, even for

extremely large graph datasets with billions of nodes and edges.

Since we also want to design a watermark system that works in any application

context involving graphs, we make no assumptions about the presence of meta-

data. Instead, our system must function for “barebones” graphs, i.e. symmetric,

unweighted graphs with no node labels or edge weights.

In this chapter, we present initial results of our efforts towards the design of

a scalable and robust graph watermark system. Highlights of our work can be

organized into the following key contributions.

First, we identify the goals and requirements of a graph watermark system.

We also describe an initial design of a graph watermark system that efficiently

embeds watermarks into and extracts them out of large graphs. Graph water-

marks are uniquely generated based on a user private key, a secure graph key, and

the graph they are applied to. We describe constraints on its applicability, and

identify examples of graphs where watermarks cannot achieve desirable levels of

key properties such as uniqueness.

133

Secure Graph Sharing System Chapter 4

Second, we provide a strict proof of uniqueness of graph watermarks, showing

that it is extremely difficult for attackers to forge watermarks.

Third, we evaluate our watermarks in term of distortion, uniqueness, and

efficiency on several large graph datasets.

Fourth, we identify two attack models, describe additional features to boost

robustness, and evaluate them under realistic conditions.

To the best of our knowledge, our work is the first practical proposal for

applying watermarks to graph data. We believe graph watermarks are a useful

tool suitable for a wide range of applications from tracking data leaks to data

authentication. Our work identifies the problem and defines an initial groundwork,

setting the stage for follow-up work to improve robustness against a range of

stronger attacks.

4.2 Background and Related Work

In this section, we provide background and related work on graph privacy and

watermark techniques in applications.

Graph Privacy. Graph privacy is a significant problem that has been mag-

nified by the arrival of large graphs containing sensitive data, e.g. online social

134

Secure Graph Sharing System Chapter 4

graphs or mobile call graphs. Recent studies [14, 107] show that deanonymization

attacks can defeat most common anonymization techniques.

A variety of solutions have been proposed, ranging from anonymization tools

that defend against specific structural attacks, or more attack-agnostic defenses.

To protect node- or edge-privacy against specific, known attacks, techniques utilize

variants of k-anonymization to produce structural redundancy at the granularity

of subgraphs, neighborhoods or single nodes [91, 164, 56, 168]. Alternatively, ran-

domization provides privacy protection by randomly adding, deleting, or switching

edges [54, 160]. Others partition the nodes and then describe the graph at the

level of partitions to avoid structural re-identification [55]. Finally, a different

approach is taken by producing model-driven synthetic graphs that replicate key

structural properties of the original graphs [128]. One extension of this work

utilizes differential privacy techniques to provide a tunable accuracy vs. privacy

tradeoff [129].

Our goals are quite different from prior work on graph anonymization, meant

to protect data before its public release. We are concerned with scenarios where

graph data is shared between its owner and groups of trusted collaborators, e.g.

third party network vendors analyzing an ISP’s network topology, or Facebook

sharing a graph with a group of academic researchers. The ideal goal in these

scenarios is to ensure the shared data does not leak into the wild. Once data is

135

Secure Graph Sharing System Chapter 4

shared with collaborators, reliable tools that can track leaked data back to its

source serve as an excellent deterrent. Watermarking techniques have addressed

similar problems in other contexts, and we briefly describe them here.

Background on Digital Watermarks. Watermarking is the process of

embedding specialized metadata into multimedia content [74]. The embedded

watermark is later extracted from the file and used to identify the source or owner

of the content. These systems include an embedding component and an extraction

component. The embedding component takes three inputs: a watermark, the

original data, and a key, aiming to embed the watermark with minimum impact

on the data. The key is used as a parameter to generate a unique watermark for

a specific user, and is kept confidential by the data owner. Extraction takes as

input the watermarked data, the key, and possibly a copy of the original data.

Extraction can directly produce the embedded watermark or a confidence measure

of whether it is present.

Watermarking is widely used today to protect intellectual property. Signifi-

cant work has been done in digital watermarking, particularly image watermark-

ing [138, 98, 19, 125, 156]. Watermark techniques [112, 113] have been studied

to protect the abuse of digital vector maps. Watermarks have also been used to

protect software copyrights [166, 33], by adding spurious execution paths in the

code that would not be triggered by normal inputs [146]. Moreover, watermark

136

Secure Graph Sharing System Chapter 4

Ω

Figure 4.1: Embedding graph watermarks. Ω is a secret random generator seed produced
using the secure graph key and user’s private key.

algorithms have been proposed for relational datasets [8, 88, 63]. Much of this has

focused on modifying numeric attributes of relations, using the primary key at-

tribute as an indicator of watermark locations, assuming that the primary key at-

tribute does not change. Finally, watermarks, in the form of minute changes, have

been applied to protect circuit designs in the semiconductor industry [117, 154].

4.3 Goals and Attack Models

To set the context for the design of our graph watermark system, we need to

first clearly define the attack models we target, and use them to guide our design

goals.

Graph watermarks at a glance. At a high level, we envision the graph

watermark process to be simple and lightweight, as pictured in Figure 4.1 and

Figure 4.2. Embedding a watermark involves overlaying the original graph dataset

137

Secure Graph Sharing System Chapter 4

Ω1

. . .

Ω2

Ω3
+

Search

. . .

Figure 4.2: Extracting graph watermarks. Ωi is a secret random generator seed produced
using the secure graph key and the private key of user i.

(G) with a small subgraph (W) generated using the original graph and a secret

random generator seed (Ω). Embedding the watermark simply means adding

or deleting edges between existing nodes in the original graph G, based on the

watermark subgraph W . Each authorized user i receives only a watermarked

graph customized for her, generated using a random seed Ωi securely associated

with her. The seed is generated through cooperation of her private key and a key

securely associated with the original graph.

If and when the owner detects a leaked version of the dataset, the owner takes

the leaked graph, and “extracts the watermark,” by iteratively producing all known

watermark subgraphs Wi associated with G and each of the seeds Ωi associated

with an authorized user. The “extraction” process is actually a matching process

where the data owner can conclusively identify the source of the leaked data, by

locating the matching Wi in the leaked graph.

138

Secure Graph Sharing System Chapter 4
In our model of potential attackers and threats, we assume that attackers have

access to the watermarked graph, but not the original G. Clearly, if an attacker

is able to obtain the unaltered G, then watermarks are no longer necessary.

Attack Models.

The attackers’ goal is to destroy or remove graph watermarks while preserving

the original graph. Watermarks are designed to protect the overall integrity of the

graph data. Thus we do not consider scenarios where the attackers sample the

graph or distort it significantly to remove the watermark. Under these constraints,

we consider two practical attack models below.

• Single Attacker Model. For a single attacker with access to one watermarked

graph, it will be extremely difficult to detect the embedded watermark. Without

the key associated with another user, forging a watermark is also impractical.

Instead, their best attack is to disrupt any potential watermarks by adding or

deleting nodes or edges.

• Collusion Attack Model. If multiple attackers join their efforts, they can recover

the original graph by comparing multiple watermarked graphs, identifying the

differences (i.e. watermarks), and removing them.

Design Goals. The attack models help us define the key characteristics

required for a graph watermarking system.

139

Secure Graph Sharing System Chapter 4

• Low distortion. The addition of watermarks should have a small impact on

overall structure of the original graph. This preserves the utility of the graph

datasets.

• Robust to modifications. Watermarks should be robust to modification attacks

on watermarked graphs, i.e. watermarks should remain detectable and ex-

tractable with high probability, even after the graph has been modified by an

attacker.

• Low false positives. It is extremely unlikely for our system to successfully identify

a valid watermark Wi in an unwatermarked graph or a graph watermarked by

Wj where i 6= j. When we embed a single watermark (Section 4.4), we also refer

to this property as watermark uniqueness.

Within the constraints defined above, designing a graph watermark system is

quite challenging, for several reasons. First, the subgraph that represents the wa-

termark must be relatively “unique,” i.e. it is highly unlikely to occur naturally,

or intentionally through forgery. A second, contrasting goal is that the watermark

should not change the underlying graph significantly (low distortion), or be easily

detected. Walking the fine line between this and properties of “uniqueness” likely

means we have to restrict the set of graphs which can be watermarked, i.e. for

some graphs, it will be impossible to find a hard to detect watermark that does

not occur easily in graphs. Finally, since any leaked graph can have all meta-

140

Secure Graph Sharing System Chapter 4
data stripped or modified, watermark embedding and extraction algorithms must

function without any labels or identifiers. Note that the problem of subgraph

matching is known to be NP-complete [34].

4.4 Basic Watermark Design

We now describe the basic design of our graph watermarking system. The basic

design seeks to embed and extract watermarks on graphs to achieve watermark

uniqueness while minimizing distortion on graph structure. Our design has two

key components:

• Watermark embedding: The data owner holds a graph key KG associated

with a graph G known only to her. Each user i generates its public-private

cryptographic key pair < Ki
pub, K

i
priv > through a standard public-key algo-

rithm [102], where Ki
pub is user i’s public key and Ki

priv is its corresponding

private key. To share the graph G with user i, the system combines input from

user i’s digital signatureKi
priv(T) and graph keyKG to form a random generator

seed Ωi, and use Ωi to generate a watermark graph Wi for graph G. The system

embedsWi into G by selecting and modifying a subgraph of G that contains the

same number of nodes as Wi. The resulting graph GWi is given to user i as the

watermarked graph.

141

Secure Graph Sharing System Chapter 4

• Watermark extraction: To identify the watermark in G′, we use Ωi to re-

generate Wi and then search for the existence of Wi within G′, for each user

i.

In this section, we focus on describing the detailed procedure of these two

components. We present detailed analysis on the two fundamental properties of

graph watermarks, i.e. uniqueness and detectability in Section 4.5.

4.4.1 Watermark Embedding

The most straightforward way to embed a watermark is to directly attach the

watermark graph to the original graph. That is, if Wi represents the watermark

graph for user i, and G represents the original graph, the embedding treats Wi

as an independent graph, and adds new edges to connect Wi to G. However,

this approach has two disadvantages. First, direct graph attachment makes it

easy for external attackers to identify and remove Wi from G without using graph

key KG and user i’s signature Ki
priv(T). New edges connecting Wi and G must

be carefully chosen to reduce the chance of detection, which is very challenging.

Second, attaching a (structurally different) subgraph Wi directly to a graph G

introduces larger structural distortions.

Instead, we propose an alternative approach that embeds the watermark graph

“in-band.” That is, the embedding process first selects k nodes (k is the number

142

Secure Graph Sharing System Chapter 4

of nodes inWi) from G and identifies S, the corresponding subgraph of G induced

by these k nodes. It then modifies S using Wi without affecting any other nodes

in G. Because the watermark graphWi is naturally connected with the rest of the

graph, both the risk of detection and amount of distortion induced on the original

graph G are significantly lower than those of the direct attachment approach.

We now describe the details of “in-band” watermark embedding, which consists

of four steps:

1. Generating a random generator seed Ωi from user i’s signature Ki
priv(T) and

graph key KG

2. Generating the watermark graph Wi from the seed Ωi

3. Selecting the placement of Wi on G by picking k nodes from G and identi-

fying the corresponding subgraph S induced by these k nodes

4. Embedding Wi into G by modifying S to match structure of Wi.

We introduce each step in details in the following paragraphs:

Step 1: Generating a random generator seed Ωi. To generate an

unforgettable watermarked graph, we form a random generator seed Ωi [47] using

user i’s signature Ki
priv(T) and graph key KG.

Suppose the system intends to generate a watermarked version of graph G at

time T to share with user i. We begin by first sending user i with the timestamp

143

Secure Graph Sharing System Chapter 4

T . User i responds with its signature Ki
priv(T), by encrypting the timestamp with

its private key Ki
priv. Before proceeding further, we validate Ki

priv(T) to ensure it

is from user i, by decrypting it with user i’s public key Ki
pub. If the timestamps

match, we combine the signature Ki
priv(T) and the graph key KG to form the

random generator seed Ωi for user i. A mismatch may indicate that user i is a

potential malicious user.

Note that Ωi cannot be formed alone by the data owner who only holds the

graph key KG, or by user i who only owns its private key Ki
priv. Thus, results

computed using Ωi, including the random graph Wi generated (Step 2) and the

choice of graph nodes to mark (Step 3), cannot be derived independently by the

data owner or identified by user i.

Step 2: Generating the watermark graph Wi. We generate Wi as an

Erdos-Renyi random graph with edge probability of p and node count k (k � n,

where n is the number of nodes in G). The random edge generator uses Ωi as the

seed [47]. The k nodes of Wi are ordered as {v1, v2, ..., vk}.

The key factor here is choosing the node count k and the edge probability p.

To ensure watermark uniqueness, Section 4.5.1 shows that the two parameters

must satisfy:

k ≥ (2 + δ) logq n (4.1)

where q = 1
max (p,1−p) , δ is a constant > 0.

144

Secure Graph Sharing System Chapter 4

Furthermore, it is easy to prove that p = 1
2
minimizes the node count k and

the average edge count p ·
(
k
2

)
of the watermark graph Wi. Intuitively, using a

compact watermark graph not only reduces the amount of distortion to G, but

also improves its robustness against malicious attacks. Thus, we configure p = 1
2

and therefore k = (2 + δ) log2 n. This produces a reasonably sized watermark

graph (k <100) even for extremely large graphs, e.g. the complete Facebook

social graph (∼1 billion nodes in 2014).

Step 3: Selecting the watermark placement on graph G. Next, we

identify k nodes fromG and its corresponding subgraph S to embed the watermark

graph. To ensure reliable extraction, we must choose these k nodes carefully,

meeting these two requirements. First, using Ωi generated in Step 1, the k nodes

must be chosen deterministically and remain distinguishable from the other nodes

of G. Second, the set of the k nodes chosen for different watermarks (or different

Ωi values) must be easily distinguishable from each other to reinforce watermark

uniqueness.

Our biggest challenge in meeting these requirements is that we cannot use

node IDs to distinguish nodes from each other. Node IDs or any type of metadata

can be easily altered or stripped by attackers before or after leaking G′, thereby

making extraction impossible.

145

Secure Graph Sharing System Chapter 4

We address this challenge by using local graph structure around each node

as its “label.” Specifically, we define a node structure description (NSD) as a

descriptive feature of each node. A node v’s NSD is represented by an array of

v’s sorted neighbor degrees. For example, if node v has three neighbors with node

degrees 2, 6, 4, respectively, then v’s NSD label is “2-4-6.” We then hash v’s NSD

label into a numerical value using a secure one-way hash e.g. SHA-1 [123], and

refer to the result as node v’s NSDhash.

Next, we use Ωi as the seed to randomly generate k hash values, and use each

as an index (e.g. using a mod function) to identify a node in G. It is possible

that multiple nodes have the same NSDhash, i.e. a collision. If this happens, we

resolve the collision by using Ωi again as an index into a sorted list of these nodes

with the same NSDhash. The nodes can be sorted by any deterministic order,

e.g. node IDs in the original graph. Note that this process is only required for

embedding (and not extraction), so any deterministic order chosen by the graph

owner will suffice.

At the end of this step, we obtain k ordered nodes from G, X = {x1, x2, ..., xk},

and the corresponding subgraph S = G[X] induced by the node set X on G.

Step 4: Embedding the watermark graph Wi into graph G. In this

step, we embed the watermark graph Wi by modifying the subgraph S = G[X] to

match Wi. Specifically, we match each (ranked) node in Wi, {v1, v2, ..., vk} with

146

Secure Graph Sharing System Chapter 4

the corresponding node in S (or X), {x1, x2, ..., xk}:

W → S, f(vi) = xi (4.2)

Once the nodes are mapped, we then apply an XOR operation on each edge of the

two graphs. That is, we consider the connection between (vi, vj) or (xi, xj) as one

bit, i.e. an edge between (vi, vj) or (xi, xj) means 1 and no edge between (vi, vj)

or (xi, xj) means 0. If an edge (vi, vj) exists in Wi, we modify the corresponding

edge value in S from (xi, xj) to (xi, xj)⊕ 1; and if no edge (vi, vj) exists in Wi, we

modify the edge value (xi, xj) to (xi, xj)⊕ 0. When the above edge modification

process ends, we also explicitly create edges between nodes xi and xi+1 to maintain

a connected subgraph. As a result, we transfer the subgraph S into SWi with the

watermark graph Wi embedded. The reason for choosing the XOR operation is

that it allows the same watermark to be embedded in the graph multiple times

(at multiple locations), thus reducing the risk of the watermark being detected

and destroyed by attacks such as frequent subgraph mining. We will discuss this

in more details in Section 4.6.

At the end of this step, we obtain a watermarked graph GWi for user i. Before

we distribute it to user i, we anonymize GWi by completely (randomly) reassigning

all node IDs. Such anonymization not only helps to protect user privacy, but

also minimizes the opportunity for colluding attackers with multiple watermarked

graphs to identify the embedded watermark (see Section 4.6).

147

Secure Graph Sharing System Chapter 4

4.4.2 Watermark Extraction

The watermark extraction process determines if a watermark graph Wi is em-

bedded in a target graph G′. If so, then G′ is a legitimate copy distributed to

user i. The extraction process faces two key challenges. First, the target graph

G′ can easily be modified by users/attackers during the graph distribution pro-

cess. In particular, all node IDs can be very different from that of the original

G. Thus extraction cannot rely on node IDs in G′. Second, identifying whether

a subgraph exists in a large graph is equivalent to a subgraph matching problem,

known to be NP-complete. To handle large graphs, we need a computationally

efficient algorithm.

Our design addresses these two challenges by leveraging knowledge on the

structure of the subgraph where the watermark was embedded. This eliminates

the dependency on node IDs while significantly reducing the search space during

the subgraph matching process. We describe our proposed design in detail below.

Step 1: Regenerating the watermark. The owner performs the extrac-

tion, and has access to the original graph G, graph key KG, and user’s signature

Ki
priv(T). For each user i, we combine its signature Ki

priv(T) and graph key KG

to form its random generator seed Ωi. Then, we follow step 2 − 4 described in

Section 4.4.1 to regenerate the watermark graph Wi, identify the k ordered nodes

148

Secure Graph Sharing System Chapter 4

from G and their NSD labels, and finally the modified subgraph SWi that was

placed on a “clean” version of the watermarked graph GWi .

Step 2: Identifying candidate watermark nodes on G′. Given the k

nodes X = {x1, x2, ..., xk} identified from the original graph G, in this step we

need to identify for each xj, a set of candidate nodes on the target graph G′ that

can potentially become xj. We accomplish this by identifying all the nodes on G′

whose NSD labels are the same of xj in the “clean” version of the watermarked

graph GWi . Since multiple nodes can have the same NSD label, this process will

very likely produce multiple candidates. To shrink the candidate list, we examine

the connectivity between candidate nodes of X on G′ and compare it to that

among X on GWi . If two nodes xm and xn are connected in GWi , we prune their

candidate node lists by removing any candidate node of xm that has no edge with

any candidate node of xn on G′ and vice versa. This pruning process dramatically

reduces the search space. After this step, we obtain for each xi the candidate node

list Ci on the target graph G′.

Step 3: Detecting watermark graph SWi on G′. Given the candidate

node list of each node in X, we now search for the existence of SWi on the target

graph G′. For this we apply a recursive algorithm to enumerate and prune the

combinations of the candidate sets, until we identify SWi or exhaust all the node

candidates. The detailed algorithm is listed below. In this algorithm, we use

149

Secure Graph Sharing System Chapter 4
a node list Y to record the nodes in G′ which we have already finalized as the

corresponding nodes in SWi , i.e. Y = {y1, y2, ..., ym} (m ≤ k). When the process

starts, Y = ∅, m = 0.

Algorithm 4.1 Recursive Algorithm for Detecting SWi on G′.

1. Function: SubgraphDetection(G′, SWi , {C1, C2, ..., Ck}, Y , m)

2. Input: Graph G′, watermark graph SWi , candidate node list Ci for each

node xi in X, identified node list Y = {y1, y2, ..., ym} (m < k)

3. Output: Identified node list Y = {y1, y2, ..., ym+1}

4. for each node c ∈ Cm+1 do:

(a) if c 6∈ Y and each edge (c, yt) in G′ (t = 1..m) is the same as the edge

(xm+1, xt) in SWi (t = 1..m) then

(b) Y = Y ∪ c, m = m+ 1

(c) if m == k then

(d) Return Y

(e) else

(f) SubgraphDetection(G′, SWi , {C1, C2, ..., Ck},Y , m)

(g) end if

150

Secure Graph Sharing System Chapter 4

(h) Y = Y \ c, m = m− 1

(i) end if

5. end for

6. Return Y

Discussion. The above design shows that our watermark extraction algorithm

simplifies the subgraph search problem by restricting it to a small number of

selected nodes from a graph, thus avoiding the NP-complete subgraph matching

problem.

To illustrate the efficiency of our algorithm, we now show an estimation of

the computational complexity. Assume that the number of candidates for each

watermark node xi is |Ci|, and the probability that an edge between node cim ∈

|Ci| and node cjn ∈ |Cj| is pij. Moreover, since we prove that the probability of an

edge between node xi and node xj is 1
2
in Section 4.5.1, the probability that the

connectivity between (cim, cjn) matches the connectivity between (xi, xj) is 1
2
·pij+

1
2
·(1−pij) = 1

2
. We can show that to identify a node list withm nodes in Algorithm

4.1, we need to match
(
m
2

)
node pairs. Thus, the probability to identify a node list

with m nodes is 1
2
(m2), and the expected number of node combinations is

∏m
i=1 |Ci|·

1
2
(m2). Thus, the computational complexity of Algorithm 4.1 is proportional to the

151

Secure Graph Sharing System Chapter 4

sum of node combinations at each step, i.e. O(
∑k

m=2

∏m
i=1 |Ci| ·

1
2
(m2)). Note that

we do not consider the fixed k − 1 edges between (xi−1, xi) for simplicity.

This result shows that as more nodes are identified in Algorithm 4.1, fewer

node combinations exists, which approximates to 0 (as shown in Section 4.5.1).

This means the major computation cost of our algorithm comes from the initial

few steps and is dominated by the size of their candidates. Note that we target

real graphs with very high level of node heterogeneity, e.g. small-world, power-law

or highly clustered graphs, which leads to small candidate size in most cases. In

other words, the computational complexity of our algorithm is low in real graphs.

In practice, our system can efficiently extract watermarks from real, million-node

graphs, and do so in a few minutes on a single commodity server (Section 4.7.3).

4.5 Fundamental Properties

Having described the basic watermark system, we now present detailed analysis

on its two fundamental properties: watermark uniqueness where each watermark

must be unique to the corresponding user, and watermark detectability where the

presence of a watermark should not be easily detectable by external users without

the knowledge of the seed Ωi associated with user i.

152

Secure Graph Sharing System Chapter 4
4.5.1 Watermark Uniqueness

As a proof of ownership, each embedded watermark should be unique for its

user. That is, given the original graph G and the seed Ωi associated with user i,

the embedded watermark graph SWi should not be isomorphic to any subgraph

of GWj (i 6= j) where GWj is the watermarked graph for user j. Meanwhile, SWi

should not be isomorphic to any subgraph of the original graph G. The following

proof shows that with high probability, our proposed graph watermark system

produces unique watermarks for any graph G.

Theorem 1. Given a graph G with n nodes, let k ≥ (2 + δ) log2 n for a constant

δ > 0. We apply the following process to create a watermarked graph GWi for user

i:

• We create k nodes, V = {v1, v2, ..., vk}, and generate a random graph Wi on V

with an edge probability of 1
2
.

• We randomly select k nodes, X = {x1, x2, ..., xk} from G, and identify the

subgraph corresponding to these k nodes S = G[X].

• Using Wi, we modify S as follows: we first map each node xi in X to a node vi

in V . Let e(u, v) = 1 denote an edge exists between node u and v and e(u, v) = 0

denote otherwise. We modify each e(xi, xj) in S to e(xi, xj)⊕ e(vi, vj). We then

153

Secure Graph Sharing System Chapter 4

explicitly connect nodes xi and xi+1, i.e. e(xi, xi+1) = 1. The resulting S now

becomes SWi, and the resulting G becomes GWi.

Let GWl denote a watermarked graph for user l (l 6= i), built using a different seed

Ωl.

Then with low probability, any subgraph of GWl or G is isomorphic to SWi.

Proof. We first show that with low probability, any subgraph of GWl is isomorphic

to SWi . Let Y = {y1, y2, ...yk} be a set of ordered nodes in GWl , where each yi

maps to a node xi in X. We define an event EY occurs if the subgraph GWl [Y] is

isomorphic to GWi [X] or SWi . Then the event E representing the fact that there

exists at least one subgraph on GWl that is isomorphic to SWi is the union of

events EY on all possible Y , i.e. E = ∪Y EY .

Next, we compute the probability of event E by those of individual event EY .

Specifically, we first show that the probability of an edge exists between node xi

and xj (j 6= i+ 1) in SWi = GWi [X] is 1
2
. This is because each edge in the random

graph Wi is independently generated with probability 1
2
. After performing the

XOR operation between Wi and S, the probability of an edge exists between xi

and xj (j 6= i+ 1) on Swi is:

1

2
· pij + (1− pij) ·

1

2
=

1

2
(4.3)

154

Secure Graph Sharing System Chapter 4

where pij is the probability that an edge exists between xi and xj on S. Thus the

result of XOR between Wi and S is also a random graph, and its edge generation

is independent of that in GWl , l 6= i. Furthermore, it is easy to show that our

design applies XOR operations on
(
k
2

)
− (k − 1) node pairs on the k nodes, and

each node pair has an edge with a probability of 1
2
. Thus, the probability of a

subgraph GWl [Y] being isomorphic to SWi is:

P (EY) =
1

2

(k2)−(k−1)

· β (4.4)

where β ≤ 1 is the probability that every (yi, yi+1) pair in GWl [Y] is connected.

Thus P (EY) ≤ 1
2
(k2)−(k−1).

Since E = ∪Y EY and there are less than nk possible sets of k ordered nodes in

GWl , we use the Union Bound to compute the probability of event E as follows:

P (E) < nk · P (EY) ≤ nk · 1

2

(k2)−(k−1)

= 2
k2

2+δ · 1

2

k2−3k
2

+1

=
1

2

δk2

2(2+δ)
− 3k

2
+1

(4.5)

The above equation shows that the probability P (E) reduces exponentially to 0

as k increases.

Finally, we can apply the same method to show that with low probability, any

subgraph of G is isomorphic to SWi . This is because the XOR operations between

Wi and S produce a random graph that is independent of G.

155

Secure Graph Sharing System Chapter 4

4.5.2 Watermark Detectability

In addition to providing uniqueness, a practical watermark design should also

offer low detectability, i.e., with low probability each watermark gets identified by

external users/attackers. This means that without knowing the seed Ωi associated

with user i,

the embedded watermark graph SWi should not be easily distinguishable from

the rest of the graph GWi . Therefore, the detectability would depend heavily on

the topology of the original graph G, i.e. a watermark graph can be well hidden

inside a graph GWi if its structural property is not too different from that of G.

In the following, we examine the detectability of watermarks in terms of a

graph’s suitability for watermarking. This is because directly quantifying the de-

tectability is not only highly computational expensive2, but also lacks a proper

metric. Instead, we cross-compare the key structural properties of SWi and G, and

define G as being suitable for watermarking if its structure properties are similar

to that of SWi , implying a low watermark detectability.

Suitability for Watermarking. To evaluate a graph’s suitability for wa-

termarks, we first study the key structural property of the embedded watermark

graph SWi . To guarantee watermark uniqueness and minimize distortion, the wa-
2Each embedded watermark graph is similar to a random graph with 1

2 edge probability.
Thus the detectability is low if certain subgraphs of G are also random graphs with similar edge
probabilities. Yet identifying these subgraphs (and the embedded watermark graph) on a large
graph incurs significant computation overhead.

156

Secure Graph Sharing System Chapter 4

termark graph SWi needs to be a random graph with an edge probability of 1
2
(ex-

cept for the fixed edges between xi, xi+1 node pairs), and include k = (2+δ) log2 n

nodes. Thus its average node degree is at least (k + 1)/2 and its average graph

density is (
(
k
2

)
+ k − 1)/2.

Given these properties of the embedded watermark, we note that watermark

node degree and density can be higher than those of many real-world graphs. In-

tuitively, to ensure low detectability of such a watermark graph, suitable graphs

should include a set of nodes (D) that are difficult to distinguish from the water-

mark nodes in term of node degree and subgraph density. Specifically, a suitable

graph dataset needs to contain a set of nodes D with degree comparable or higher

than the watermark graph node degree; and the density of the subgraph on D

is at least comparable to the watermark graph density. If these two properties

hold, the embedded watermark graph cannot be easily distinguished from D in

the graph, and therefore cannot be detected by attackers.

To capture the above intuition, we define that a graph G is suitable for wa-

termarking if its node degree and graph density satisfy the following two criteria.

First, the minimum and maximum node degree of G, denoted as Nmin(G) and

Nmax(G) respectively, need to satisfy Nmin(G) ≤ (k + 1)/2 ≤ Nmax(G). Second,

across all k-node subgraphs of G whose node degree expectation is greater than

(k + 1)/2, the minimum and maximum graph density need to satisfy Dmin(k) ≤

157

Secure Graph Sharing System Chapter 4

(
(
k
2

)
+k−1)/2 ≤ Dmax(k) 3. Together, these two criteria ensure that the embedded

watermark graph can be “well hidden” inside GWi .

Table 4.1: Statistics of 48 of today’s network graphs. k is the

watermark size.

Graph Category Graph # of Nodes # of Edges Avg. Deg. k

Facebook

Russia 97,134 289,324 6.0 39

L.A. 603,834 7,676,486 25.4 45

London 1,690,053 23,084,859 27.3 48

Epinions (1) 75,879 405,740 10.7 38

Slashdot (08/11/06) 77,360 507,833 13.1 38

Twitter 81,306 1,342,303 33.0 38

Other Slashdot (09/02/16) 81,867 497,672 12.2 38

Social Slashdot (09/02/21) 82,140 500,481 12.2 38

Networks Slashdot (09/02/22) 82,168 543,381 13.2 38

GPlus 107,614 12,238,285 227.5 39

Epinions (2) 131,828 711,496 10.8 40

Youtube 1,134,890 2,987,624 5.3 47

Pokec 1,632,803 22,301,964 27.3 48

Flickr 1,715,255 15,555,041 18.1 48

Livejournal 5,204,176 48,942,196 18.8 52

Citation Patents 23,133 93,468 8.1 34

3 To avoid computationally prohibitive subgraph enumeration, we apply a sampling method
to estimate them with full details in [163].

158

Secure Graph Sharing System Chapter 4

Networks ArXiv (Theo. Cit.) 27,770 352,304 25.4 34

ArXiv (Phy. Cit.) 34,546 420,899 24.4 35

ArXiv (Phy.) 12,008 118,505 19.7 32

Collaboration ArXiv (Astro) 18,772 198,080 21.1 33

Networks DBLP 317,080 1,049,866 6.6 43

ArXiv (Condense) 3,774,768 16,518,947 8.8 51

Communication Email (Enron) 36,692 183,831 10.0 35

Networks Email (Europe) 265,214 365,025 2.8 42

Wiki 2,394,385 4,659,565 3.9 49

Stanford 281,903 1,992,636 14.1 42

Web NotreDame 325,729 1,103,835 6.8 43

graphs BerkStan 685,230 6,649,470 19.4 45

Google 875,713 4,322,051 9.9 46

Location based Brightkite 58,228 214,078 7.4 37

OSNs Gowalla 196,591 950,327 9.7 41

Oregon (1) 11,174 23,409 4.2 31

AS Oregon(2) 11,461 32,730 5.7 32

Graphs CAIDA 26,475 53,381 4.0 34

Skitter 1,696,415 11,095,298 13.1 48

Gnutella (02/08/04) 10,876 39,994 7.4 31

Gnutella (02/08/25) 22,687 54,705 4.8 34

P2P networks Gnutella (02/08/24) 26,518 65,369 4.9 34

Gnutella (02/08/30) 36,682 88,328 4.8 35

159

Secure Graph Sharing System Chapter 4

Gnutella (02/08/31) 62,586 147,892 4.7 37

Amazon (03/03/02) 262,111 899,792 6.9 42

Amazon Amazon (2012) 334,863 925,872 5.5 43

Co-purchasing Amazon (03/03/12) 400,727 2,349,869 11.7 43

Networks Amazon (03/06/01) 403,394 2,443,408 12.1 43

Amazon (03/05/05) 410,236 2,439,437 11.9 43

Road Pennsylvania 1,088,092 1,541,898 2.8 47

Networks Texas 1,379,917 1,921,660 2.8 47

California 1,965,206 2,766,607 2.8 49

Table 4.2: Suitability of watermarking for 48 of today’s

network graphs, determined by comparing their node degree

distribution [Nmin(G), Nmax(G)] and k-node subgraph density

[Dmin(k), Dmax(k)] to those of the embedded watermark graphs.

35 out of these 48 graphs are suitable for watermarking.

Graph

Graph

Node Degree k-node Subgraph

Suitability
Criterion Density Criterion

Category (k + 1)/2
[Nmin(G),

Watermark
[Dmin(k),

Nmax(G)] Dmax(k)]

Facebook

Russia 20 [1, 748] 390 [45, 701] Yes

L.A. 23 [1, 2141] 517 [44, 975] Yes

London 24 [1, 1483] 588 [47, 1128] Yes

160

Secure Graph Sharing System Chapter 4

Epinions (1) 19 [1,3044] 370 [47,649] Yes

Slashdot (08/11/06) 19 [1, 2540] 370 [38, 668] Yes

Twitter 19 [1, 3383] 370 [44, 703] Yes

Other Slashdot (09/02/16) 19 [1, 2546] 370 [38, 669] Yes

Social Slashdot (09/02/21) 19 [1, 2548] 370 [38, 669] Yes

Networks Slashdot (09/02/22) 19 [1, 2553] 370 [38, 673] Yes

GPlus 20 [1, 20127] 389.5 [53, 741] Yes

Epinions (2) 20 [1, 3558] 409.5 [51, 780] Yes

Youtube 24 [1, 28754] 563.5 [47, 815] Yes

Pokec 24 [1, 14854] 587.5 [47, 979] Yes

Flickr 24 [1, 27236] 588 [51, 1128] Yes

Livejournal 26 [1, 15017] 689 [51, 1326] Yes

Citation Patents 17 [1, 280] 297 [37, 373] Yes

Networks ArXiv (Theo. Cit.) 17 [1, 2468] 297 [36, 534] Yes

ArXiv (Phy. Cit.) 18 [1, 846] 314.5 [36, 544] Yes

ArXiv (Phy.) 16 [1, 491] 263.5 [45, 496] Yes

Collaboration ArXiv (Astro) 17 [1, 504] 280 [37, 528] Yes

Networks DBLP 22 [1,343] 472.5 [43,903] Yes

ArXiv (Condense) 26 [1, 793] 663 [50,1063] Yes

Communication Email (Enron) 18 [1,1383] 314.5 [43,515] Yes

Networks Email (Europe) 21 [1,7636] 451 [74,683] Yes

Wiki 25 [1, 100029] 612 [65, 1066] Yes

Stanford 21 [1,38625] 451 [66,861] Yes

161

Secure Graph Sharing System Chapter 4

Web NotreDame 22 [1,10721] 472.5 [60,903] Yes

graphs BerkStan 23 [1,84230] 517 [79,990] Yes

Google 23 [1, 6332] 540 [72, 1033] Yes

Location based Brightkite 19 [1,1134] 351 [41,665] Yes

OSNs Gowalla 21 [1,14730] 430 [44,723] Yes

Oregon (1) 16 [1,2389] 247.5 [95,352] Yes

AS Oregon(2) 16 [1,2432] 263.5 [79,476] Yes

Graphs CAIDA 17 [1,2628] 297 [113,436] Yes

Skitter 24 [1, 35455] 588 [52, 1128] Yes

Gnutella (02/08/04) 16 [1,103] 247.5 [30,80] No

Gnutella (02/08/25) 17 [1,66] 297 [0,0] No

P2P networks Gnutella (02/08/24) 17 [1,355] 297 [0,44] No

Gnutella (02/08/30) 18 [1,55] 314.5 [35,70] No

Gnutella (02/08/31) 19 [1, 95] 351 [39,76] No

Amazon (03/03/02) 21 [1,420] 451 [88,132] No

Amazon Amazon (2012) 22 [1,549] 472.5 [0,0] No

Co-purchasing Amazon (03/03/12) 22 [1,2747] 472.5 [52,285] No

Networks Amazon (03/06/01) 22 [1, 2752] 473 [52, 333] No

Amazon (03/05/05) 22 [1,2760] 472.5 [50,333] No

Road Pennsylvania 24 [1,9] 563.5 [0,0] No

Networks Texas 24 [1,12] 563.5 [0,0] No

California 25 [1, 12] 612 [0, 0] No

162

Secure Graph Sharing System Chapter 4

Suitability of Real Graph Datasets. We measure the suitability of water-

marks in 48 real networks graphs. These graphs represent vastly different types

of networks and a wide range of structural topologies with size ranging from 10K

nodes and 39K edges to 5M nodes and 48M edges. These graphs represent vastly

different types of networks and a wide range of structural topologies. They in-

clude 3 social graphs generated from Facebook regional networks matching Russia,

L.A., and London [153]. They include 12 other graphs from online social net-

works, including Twitter [87], Youtube [157], Google+ [87], Slovakia Pokec [139],

Flickr [104], Livejournal [104], 2 snapshots from Epinions [121], and 4 snapshots

from Slashdot [86]. We also add 3 citation graphs from arXiv and U.S. Patents [81],

4 graphs capturing collaborations in arXiv [81] and DBLP [157], 3 communi-

cation graphs generated from 2 Email networks [85, 86] and Wiki Talk [83], 4

web graphs [79, 12], 2 location-based online social graphs from Brightkite and

Gowalla [30], 5 snapshots of P2P file sharing graph from Gnutella [85], 4 Inter-

net Autonomous System (AS) maps [81], 5 snapshots of Amazon co-purchasing

networks [82, 157], and 3 U.S. road graphs [79]. We list statistics of all graphs in

Table 4.1, and their corresponding watermark statistics in Table 4.2.

For all graphs, we use δ = 0.3 to ensure a 99.999% watermark uniqueness,

and list their watermark size k in Table 4.1. We also show the two above criteria:

163

Secure Graph Sharing System Chapter 4

node degree and k-node subgraph density in Table 4.2. If a graph satisfies both

criteria, our results will hold for any watermarks embedded on it.

We can make two observations from Table 4.2. First, 35 out of our 48 total

graphs are suitable for watermarking. Also note that graphs describing similar

networks are consistent in their suitability. For example, all 15 graphs from various

online social networks are suitable for watermarks! Second, all the 13 graphs

unsuitable for watermarks come from only 3 kinds of networks, i.e. copurchasing

networks, P2P networks, and Road networks. These results in each group are self

consistent. These results support our assertion that our proposed watermarking

mechanism is applicable to most of today’s network graphs with low detection risk.

In practice, the owner of a graph can apply the same mechanism to determine if

her graph is suitable for our watermark scheme.

Table 4.3: Size and density of subgraph on nodes with degree >

(k+1)/2 in each graph. Size is the number of subgraph nodes, and

density is quantified as average edges each node having inside the

subgraph.

Graph
Subgraph Watermark Graph

Suitability
Node # Avg. Deg. k Avg. Deg.

Russia 4,794 22.2 39 20.0 Yes

L.A. 196,174 49.2 45 23.0 Yes

164

Secure Graph Sharing System Chapter 4

London 562,075 56.1 48 24.5 Yes

Epinions (1) 7,083 68.7 38 19.5 Yes

Slashdot (08/11/06) 9,908 53.4 38 19.5 Yes

Twitter 34,014 60.5 38 19.5 Yes

Slashdot (09/02/16) 10,065 53.0 38 19.5 Yes

Slashdot (09/02/21) 10,105 53.2 38 19.5 Yes

Slashdot (09/02/22) 10,605 53.4 38 19.5 Yes

GPlus 68,828 347.1 39 20.0 Yes

Epinions (2) 10,363 83.5 40 20.5 Yes

Youtube 31,720 45.1 47 24.0 Yes

Pokec 564,001 53.0 48 24.5 Yes

Flickr 136,202 174.5 48 24.5 Yes

Livejournal 945,567 57.5 52 26.5 Yes

Patents 2,370 15.6 34 17.5 Yes

ArXiv (Theo. Cit.) 12,054 43.4 34 17.5 Yes

ArXiv (Phy. Cit.) 14,785 37.9 35 18.0 Yes

ArXiv (Phy.) 2,860 62.5 32 16.5 Yes

ArXiv (Astro) 6,536 42.9 33 17.0 Yes

DBLP 15,004 17.3 43 22.0 Yes

ArXiv (Condense) 178,455 16.0 51 26.0 Yes

Email (Enron) 3,481 48.2 35 18.0 Yes

Email (Europe) 1,779 44.0 42 21.5 Yes

Wiki Talk 21,253 83.1 49 25.0 Yes

Stanford 35,600 42.1 42 21.5 Yes

165

Secure Graph Sharing System Chapter 4

NotreDame 16,831 38.7 43 22.0 Yes

BerkStan 110,202 57.0 45 23.0 Yes

Google 55,431 14.8 46 23.5 Yes

Brightkite 4,586 30.8 37 19.0 Yes

Gowalla 17,946 39.3 41 21.0 Yes

Oregon (1) 264 17.1 31 16.0 Yes

Oregon(2) 579 31.0 32 16.5 Yes

CAIDA 575 16.0 34 17.5 Yes

Skitter 146,601 50.0 48 24.5 Yes

Gnutella (02/08/04) 796 5.2 31 16.0 No

Gnutella (02/08/25) 499 2.0 34 17.5 No

Gnutella (02/08/24) 709 2.7 34 17.5 No

Gnutella (02/08/30) 1,001 3.8 35 18.0 No

Gnutella (02/08/31) 1,276 3.6 37 19.0 No

Amazon (03/03/02) 3,727 2.8 42 21.5 No

Amazon (2012) 5,318 2.5 43 22.0 No

Amazon (03/03/12) 25,717 6.7 43 22.0 No

Amazon (03/06/01) 28,081 7.3 43 22.0 No

Amazon (03/05/05) 28,044 7.5 43 22.0 No

Pennsylvania 0 0 47 24.0 No

Texas 0 0 47 24.0 No

California 0 0 49 25.0 No

166

Secure Graph Sharing System Chapter 4

To understand key properties determining whether a graph is suitable for wa-

termarking, we measure various graph structural properties, including average

node degree, node degree distribution, clustering coefficient, average path length,

and assortativity. We also consider the size and density of subgraphs on nodes

with degree more than watermark minimum average degree (k + 1)/2. Our mea-

surement results show that the size and density of subgraphs on nodes with degree

> (k+ 1)/2 are the most important properties to determine suitability. Here, the

size of these subgraphs is the number of nodes in the subgraph, and the density

of the subgraph is measured as the average edges each node has inside the sub-

graph, i.e. average degree inside the subgraph. As shown in Table 4.3, unsuitable

graphs do not have subgraphs with density to comparable to watermarks, while

subgraphs with the desired density can be found in graphs deemed suitable. These

results are consistent with our intuition on quantifying suitability of watermarks.

Summary. Since the average watermark subgraph has high node degree and

density, a graph suitable for watermarking must include a set of nodes, whose

degree and subgraph density are comparable or even higher than watermark sub-

graphs. We propose two criteria targeting at node degree and subgraph density

respectively to quantify whether a graph is suitable for watermarking. We col-

lect a large set of available graph datasets and find 35 out of 48 real graphs are

suitable. We expect similar suitability results in other real network graphs.

167

Secure Graph Sharing System Chapter 4

4.6 More Robust Watermarks

Our basic design provides the fundamental building blocks of graph water-

marking with little consideration of external attacks. In practice, malicious users

can seek to detect or destroy watermarked graphs. Here, we first describe ex-

ternal attacks on watermarks, and then present advanced features that defend

against the attacks. Note that these improvement techniques aim to increase the

cost of attacks rather than disabling them completely. Finally, we re-evaluate the

watermark uniqueness of the advanced design.

4.6.1 Attacks on Watermarks

As discussed earlier, our attack model includes attacks trying to destroy water-

marks while preserving the topology of the original graph. Based on the number

of attackers, attacks on watermarks fall under our two models: single attacker

and colluding attackers. With access to only one watermarked graph, a single at-

tacker can modify nodes and/or edges in the graph to destroy watermarks. With

multiple watermarked graphs, colluding attackers can perform more sophisticated

attacks by cross-comparing these graphs to detect or remove watermarks.

Single Attacker Model. The naive edge attack is easiest to launch, and

tries to disrupt the watermark by randomly adding or removing edges on the

168

Secure Graph Sharing System Chapter 4

watermarked graph. For the attacker, there is a clear tradeoff between the severity

of the attack (number of edges or nodes modified), and the structural change or

distortion applied to the graph structure.

At first glance, this attack seems weak and unlikely to be a real threat. The

probability of the attacker modifying one edge or node in the embedded watermark

graph Wi is extremely low, given the relatively small size of Wi compared to the

graph. As shown later, however, this attack can be quite disruptive in practice.

By modifying a node ni or an edge connected to ni, the attack impacts all of

ni’s neighboring nodes, since their NSD labels will be modified. These NSD

label changes, while small, are enough to make locating nodes in the watermark

graph very difficult. This effect is exacerbated in social graphs that exhibit a

small world structure, since any change to a supernode’s degree will impact a

disproportionately large portion of nodes in the graph.

Some versions of this attack would either release a partial subgraph of the

watermarked graph, or merge multiple watermarked graphs. In both cases, this

destroys the embedded watermarks, but also significantly distorts the graphs and

reduces their usability. We do not consider these disruptive attacks in our study,

and target them for future work.

Collusion Attacks. By obtaining multiple watermarked graphs, an attacker

can compare these graphs to eliminate watermarks. Since we anonymize each

169

Secure Graph Sharing System Chapter 4

watermarked graph by randomly reassigning node IDs (see Section 4.4.1), attack-

ers cannot directly match individual nodes across graphs. To compare multiple

graphs, we apply the deanonymization methods proposed in [107, 108]. Specifi-

cally, we first match 1000 highest degree nodes between two graphs based on their

degree and neighborhood connectivity [108], and then start from these nodes

to find new mappings with the network structure and the previously mapped

nodes [107].

Using deanonymization techniques, attackers can then build a “clean” graph,

where an edge exists if it exists in the majority of the watermarked graphs. Since

embedded watermark graphs are likely embedded at different locations on each

graph, a majority vote approach effectively removes the contributions from wa-

termark subgraphs, leading to a graph that closely approximates the original G.

4.6.2 Improving Robustness against Attacks

The attacks discussed above can disrupt the watermark extraction process in

two ways. First, adding or deleting nodes/edges in G′ changes node degrees, and

therefore nodes’ NSD labels, thereby disrupting the identification of candidate

nodes during the second step of the extraction process; second, adding or deleting

nodes/edges inside the embedded watermark graph SWi can change the structure

of the watermark graph, making it difficult to identify during the third step of the

170

Secure Graph Sharing System Chapter 4

extraction process. To defend against these attacks, we propose five improvements

over the basic extraction design to produce an improved watermark generation

algorithm.

Improvements #1, #2: Addressing changes to node neighborhoods.

Extracting a watermark involves searching through nodes in G′ by their NSD

labels. By adding or deleting nodes/edges, attackers can effectively change NSD

labels across the graph. To address this, we propose two changes to the basic

extraction design.

First, we bucketize node degrees (with bucket size B) to reduce the sensitivity

of a node’s NSD label to its neighbors’ node degrees. For example, with B = 5, a

node with degree 9 will stay in the same bucket even if one of its edges has been

removed (reducing its node degree to 8).

Second, when selecting a watermark node’s candidate node list, we replace the

exact NSD label matching with the approximate NSD label matching. A match

is found if the overlap between two bucketized NSD labels exceeds a threshold θ.

For example, with θ = 50%, a node with bucketized NSD label “1-2-3-4” would

match a node with label “1-2-3” since the overlap is 75% > θ.

These changes clearly allow us to identify more candidates for each watermark

node, thus improving robustness against small local modifications. On the other

hand, more candidates lead to more computation during the subgraph matching

171

Secure Graph Sharing System Chapter 4

step (step 3 in Section 4.4.2). Such expansion, however, does not affect watermark

uniqueness and detectability, since they are unrelated to the size of candidate

pools.

Improvement #3, #4: Addressing changes to subgraph structure. Ran-

dom changes made to G′ may directly impact a node or edge in the embedded

watermark. To address this, we propose two techniques.

First, we add redundancy to watermarks by embedding the same watermark

graph Wi into m disjoint subgraphs S1, S2, ...Sm from the original graph G. This

greatly increases the probability of the owner locating at least one unmodified copy

of Wi during extraction, even in the presence of attacks that make significant

changes to nodes and edges in G′. Note that since we embed watermarks on

disjoint subgraphs, this does not affect watermark uniqueness 1 − P (E). While

embedding m watermarks will impact false positive, which is 1− (1− P (E))m.

Second, it is still possible that all the watermark graphs are “destroyed” by the

attacker and there are no matches in the extraction process. If this happens, we

replace the exact subgraph matching in the step 3 of the extraction process with

the approximate subgraph matching. That is, a subgraph matches the watermark

graph if the amount of edge difference between the two is less than a threshold

L. By relaxing the search criteria used in step 3 of the extraction process, this

technique allows us to identify “partially” damaged watermarks, thus again im-

172

Secure Graph Sharing System Chapter 4

proving robustness against attacks. However, it can also increase false positives in

watermark extraction, reducing watermark uniqueness. We show in Section 4.6.3

that the impact on watermark uniqueness can be tightly bounded by controlling

L.

Improvement #5: Addressing Collusion Attacks. Recall that for pow-

erful attackers able to match graphs at an individual node level, they can leverage

majority votes across multiple watermarked graphs to remove watermarks. To

defend against this, our insight is to embed watermarks that have some portion

of spatial overlap in the graph, such that those components will survive majority

votes over graphs.

We propose a hierarchical watermark embedding process to defend against

collusion attacks. To build watermarked graphs forM users, we uniform-randomly

divide the M users into 2 groups (a1 and a2) and associate each group with a

public-private key pair < Ka1
pub, K

a1
priv > or < Ka2

pub, K
a2
priv >, which is generated

and held by the data owner. We repeat this to randomly divide M users into

another 2 groups (b1 and b2) associated with group key pairs < Kb1
pub, K

b1
priv > and

< Kb2
pub, K

b2
priv > separately. After this step, each user is assigned to two groups 4.

For example, a user i is assigned to groups a1 and b2.
4More details about the group assignment are in [163].

173

Secure Graph Sharing System Chapter 4

For user i, we then follow step 2-4 in Section 4.4.1 to embed the two group wa-

termarks and its individual watermark. Specifically, by receiving user i’s signature

Ki
priv(T), we first generate three seeds: Ωi by combining Ki

priv(T) and KG, Ωa1 by

combining Ka1
priv and KG, and Ωb2 by combining Kb2

priv and KG, where KG is graph

key for graph G. With the two group seeds Ωa1 and Ωb2 , we generate and embed

two non-overlap group watermarks. Then we use user i’s individual seed Ωi to

embed an individual watermark without overlapping with either of the embedded

group watermarks. Note that because the group and individual watermarks are

generated with different seeds, this hierarchical embedding process does not affect

watermark uniqueness.

Under this design, a collusion attack can successfully destroy all the water-

marks only if the attacker can perfectly match each individual node, and the

majority of the graphs come from different groups. Otherwise, the majority vote

on raw edges will preserve the group watermark. We can compute the upper bound

of the attack success rate by Equation 4.6, i.e. the probability that the majority

of the graphs obtained by the attacker come from different groups:

λ(Ma, J) =

1− J
Ma∑

i=dMa+1
2
e

(
Ma

i

)
· (1

J
)i · (J − 1

J
)Ma−i

2

(4.6)

where Ma is the number of watermarked graphs obtained by the attacker and J

is the number of groups in each group partition. The above design chose J = 2

174

Secure Graph Sharing System Chapter 4

because it minimizes λ(Ma, J),∀Ma. Furthermore, whenMa is odd, λ(Ma, 2) = 0;

and whenMa is even, λ(Ma, 2) is at most 0.25 whenMa = 2. Note that in equation

(4.6) the operation (.)2 is due to the fact that we group the users twice into two

different group classes: a1, a2 and b1, b2. If we only perform the group partition

once (e.g. dividing the users into a1, a2), then λ(2, 2) = 0.5. In practice we can

further reduce λ by performing multiple rounds of group division (2 in the above

design) and adding more group watermarks.

Note that group watermarks contain much less information than single user

watermarks. In fact, the more robust a group watermark, the larger granularity

(and less precision) it will provide. Our proposed solution is to extend the system

by using additional “dimensions,” e.g. go beyond the two dimensions of a and b

mentioned above. Combining results from multiple dimensions will quickly narrow

down the set of potential users responsible for the leak. However, since a collud-

ing attack requires the involvement of multiple leakers, even identifying a single

leaker is insufficient. Developing a scheme to reliably detect multiple (ideally all)

colluding users is a topic for future work.

4.6.3 Impact on Watermark Uniqueness

To improve the robustness of our watermark system, we relax the subgraph

matching criteria from exact matching to approximate matching with at most L

175

Secure Graph Sharing System Chapter 4

edge difference. Such relaxation does not affect watermark detectability because

it does not change the embedding process. However, it may affect watermark

uniqueness, which we will analyze next.

Consider two watermarked graphs GWi and GWj that were independently gen-

erated for user i and j following the three steps defined in Theorem 1. Let SWi

and SWj represent the embedded watermark graph in GWi and GWj , respectively.

To examine the watermark uniqueness, we seek to compute the probability that

a subgraph in GWj differs from SWi by at most L edges.

Our analysis follows a similar structure of Theorem 1’s proof. Let EY denote

the event where a subgraph of GWj built on k nodes Y = {y1, y2, ..., yk} only

differs from SWi by ≤ L edges. Our goal is to calculate the probability of the

event E = ∪Y EY , which is the union on all combinations of k nodes.

We first compute the probability of individual EY . Recall that the edges be-

tween
(
k
2

)
− (k − 1) node pairs in SWi are generated randomly with probability 1

2

and are independent of GWj , while the rest k−1 edges (< xl, xl+1 >, l = 1...k−1)

are fixed. Thus we can show that the probability that a subgraph GWj [Y] differs

from SWi by h edges is upper bounded by 1
2

e−k+1 ·
(
e
h

)
where e =

(
k
2

)
. Therefore, we

can derive the probability of EY as P (EY) ≤ 1
2

e−k+1 ·
∑L

h=0

(
e
h

)
. And consequently,

we have Equation 4.7

176

Secure Graph Sharing System Chapter 4

P (E) ≤ nk · 1

2

e−k+1

·
L∑
h=0

(
e

h

)
(4.7)

where e =
(
k
2

)
, k = (2 + δ)log2n, and n is the node count of GWj .

Next, given the probability of uniqueness 1 − P (E), we compute the upper

bound on L to ensure 1 − P (E) ≥ 0.99999 for all the graphs in Table 4.1 except

Road graphs, Co-purchasing graphs, and P2P network graphs. Again we set

δ = 0.3. The result is listed in Table 4.4, where the maximum limit of L varies

between 0 and 12. In general, the larger the graph, the higher the upper bound

on L.

4.7 Experimental Evaluation

We use real network graphs to evaluate the performance of the graph wa-

termarking system in three key metrics: false positives, graph distortion and

watermark robustness. Having analytically quantified watermark uniqueness in

Section 4.5 and Section 4.6, we focus on examining graph distortion and water-

mark robustness while ensuring ≤ 0.001% false positive rate. We also study the

computational efficiency of the proposed watermark embedding and extraction

schemes.

177

Secure Graph Sharing System Chapter 4

Graph Oregon (1) Oregon (2) CAIDA
Email arXiv

(Enron) (Theo. Cit.)

L Bound 0 1 1 1 1

Graph
arXiv arXiv arXiv

Patent
Slashdot

(Phy. Cit.) (Phy.) (Astro) (08/11/06)

L Bound 1 1 1 2 3

Graph Twitter
Slashdot Slashdot Slashdot

Brightkite
(09/02/16) (09/02/21) (09/02/22)

L Bound 3 3 3 3 3

Graph Russia Epinions (1) Google+ Epinions (2) Standford

L Bound 4 4 4 5 5

Graph
Email

Gowalla BerkStand DBLP NorteDame
(Europe)

L Bound 5 5 6 7 7

Graph L.A. London Flickr Wiki Google

L Bound 8 8 8 8 8

Graph Skitter Youtube Pokec
arXiv

Livejournal
(Condense)

L Bound 8 9 9 11 12

Table 4.4: Upper bound of L for the 35 network graphs.

178

Secure Graph Sharing System Chapter 4
Experiment Setup. Given the large number of graph computations per data

point, we focus our experiments on two larger network graphs in Table 4.1, i.e.

the LA regional Facebook graph and the Flickr graph. The two graphs have very

different sizes and graph structures. To guarantee ≤ 0.001% false positives, we use

δ = 0.3, k = 45 for the LA graph, and δ = 0.3, k = 48 for the Flickr graph. For

our basic design, we generate 1 watermark per graph. For our advanced design,

we set L to 8, the degree bucket size to 10, and the NSD similarity threshold

to θ = 0.75. For each user, we embed 5 watermarks in its graph, 3 individual

watermarks and 2 group watermarks. We chose these settings because they work

well in practice. We leave the optimization of these parameters to future work.

Next, we present experimental results on graph distortion, robustness against

attacks, and computational efficiency.

4.7.1 Graph Distortion from Watermarks

We consider three metrics to measure graph distortion.

• Modifications to the raw graph.We count the number of nodes/ edges mod-

ified by embedding watermarks. More modifications to the graph introduce

higher distortion.

• dK-2 Deviation. dK-2 series, i.e., joint degree distributions, are an impor-

tant graph structural metric [128]. We quantify graph distortion using the nor-

179

Secure Graph Sharing System Chapter 4

malized Euclidean distance between the dK-2 series of the original and of the

watermarked graphs 5. Larger dK-2 deviation implies higher distortion to the

graph structure.

• Graph metrics with and without watermarks. We measure the widely

used graph metrics before and after the watermarking, including degree distri-

bution, assortativity (AS) [128], clustering coefficient (CC) [128], average path

length, and diameter. Large deviation in any of the metrics indicates large

distortion.

We have examined the distortion introduced by both the basic and advanced

designs. We only show the results of the advanced design because it adds more

watermarks and thus leads to higher distortion. For LA and Flickr graphs, we

generate 10 different watermarked graphs (using 10 different seeds) and present

the average result across these graphs. Because computing shortest paths on

the large graphs is highly computational intensive, we compute the average path

length and diameter among 1000 random nodes [153].

Table 4.5 shows the percentage of modified nodes/edges by watermarking.

Even after embedding 5 watermarks, the modification for both graphs is less

than 0.04%, implying little distortion on the watermarked graphs. This is further

confirmed by the average dK-2 distances.
5The Euclidean distance between dK-2 series is normalized by the number of tuples in the

dK-2 series.

180

Secure Graph Sharing System Chapter 4

Graph Nodes (%) Edges (%) dK-2 Deviation

Watermarked LA 0.037% 0.033% 0.0008

Watermarked Flickr 0.014% 0.019% 0.0001

Table 4.5: Percentage of modified nodes/edges after embedding 5 watermarks into a graph
and dK-2 Deviation.

We also compare the original and watermarked graphs using 5 graph met-

rics: AS, CC, degree distribution, average path length, and diameter. Similarly,

the metrics remain the same before and after watermarking, and we found no

difference between the statistical distributions of each metric in the graphs.

Together, this indicates that embedding watermarks produces negligible im-

pact on graph structure. Thus we believe watermarked graphs can replace the

originals in graph applications and produce (near-)identical results.

4.7.2 Robustness against Attacks

Next, we study the robustness of the watermarking system under the attacks.

For each of the two attacks discussed in Section 4.6.1, we vary the attack strength,

repeat each experiment 10 times, and examine the following two metrics:

• Robustness. In the single attacker model, the robustness is the ratio of graphs

from which we can successfully extract at least one of the 3 individual water-

marks. In the collusion attack, in addition to this ratio, we also measure the ratio

181

Secure Graph Sharing System Chapter 4

of graphs where we can extract at least one of the 5 watermarks (3 individual

+ 2 group watermarks).

• Cost of the attack. The normalized distortion on the attacked graphs. It

represents the dK-2 deviation between the attacked graphs and the original

graph, normalized by that between the “clean” watermarked graphs and the

original graph. If the normalized distortion is > 1, the attack introduces more

distortion than embedding watermarks.

Results on the Single Attacker Model. For the single attacker model,

we quantify the attack strength by the number of modified edges. The robustness

and the cost of the attack are measured as a function of the number of modified

edges.

We first evaluate the robustness of the basic watermark. Figure 4.3 and Fig-

ure 4.4 show that randomly modifying a small number of edges disrupted the

extraction process. For example, in LA, our basic design cannot recover the wa-

termark with 100% probability when we only modify 20 edges. In each case, at

least one of the nodes in the watermarks had a modified NSD label (one of its

neighbors’ degree changed), and it could not be located in the extraction process.

We show the distortion on the attacked graphs separately in Figure 4.5 and

Figure 4.6. As expected, the small number of modifications causes small distor-

tions in graph structures. Still in LA, when the robustness is 0, the distortion is

182

Secure Graph Sharing System Chapter 4

 0

 20

 40

 60

 80

 100

20 100 300 500

R
o

b
u

s
tn

e
s
s
 (

%
)

of modified edges

Figure 4.3: Robustness of basic design
against single attacker model, LA.

 0

 20

 40

 60

 80

 100

100 500 1000 2000

R
o

b
u

s
tn

e
s
s
 (

%
)

of modified edges

Figure 4.4: Robustness of the basic design
against single attacker model, Flickr.

 1

 2

 3

20 100 300 500

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

of modified edges

Figure 4.5: Distortion caused by single
attacker model in the basic design, LA.

 2

 4

 6

 8

 10

 12

 14

100 500 1000 2000

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

of modified edges

Figure 4.6: Distortion caused by single
attacker model in the basic design, Flickr.

around 3x more than that the watermarked graphs. Both results show that the

basic watermark scheme is easily disrupted by small, single user attacks.

Figure 4.7 and Figure 4.8 show that robustness of the improved scheme de-

creases with attack strength, since more edges are modified to “destroy” water-

marks. Like in Flickr, the system can handle attack strength up to 933K modified

edges, which is > 400x stronger than the maximum attack strength in the basic

design.

On the other hand, Figure 4.9 and Figure 4.10 show that the cost of these

attacks is large. For Flickr, with more than 1.4M modified edges, an attack leads

183

Secure Graph Sharing System Chapter 4

 0

 20

 40

 60

 80

 100

200000 400000 600000 800000

R
o

b
u

s
tn

e
s
s
 (

%
)

of modified edges

Figure 4.7: Robustness of the improved
design against single attacker model, LA.

 0

 20

 40

 60

 80

 100

400000 800000 1200000 1600000

R
o

b
u

s
tn

e
s
s
 (

%
)

of modified edges

Figure 4.8: Robustness of the improved
design against single attacker model, Flickr.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

200000 400000 600000 800000

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

of modified edges

Figure 4.9: Distortion caused by single
attacker model in the improved design, LA.

 0

 200

 400

 600

 800

400000 800000 1200000 1600000

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

of modified edges

Figure 4.10: Distortion caused by single
attacker model in the improved design, Flickr.

to 800x more distortions over that caused by embedding 5 watermarks. Our

improved watermark is highly robust against single user attacks.

Results on Collusion Attacks. To implement the collusion attack de-

scribed in Section 4.6.1, we first generate 10 watermarked graphs and randomly

pick Ma graphs from them as the graphs acquired by the attacker. We vary the

number of graphs obtained by the attacker Ma between 2 to 5. For each Ma value

we repeat the experiments 10 times and report the average value. Since basic wa-

termarks are easily disrupted by the collusion attack, we focus on the robustness

of the improved mechanisms.

184

Secure Graph Sharing System Chapter 4

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

R
o

b
u

s
tn

e
s
s
 (

%
)

of graphs

Indiv./Group Watermark
Individual Watermark

Figure 4.11: Robustness of the improved
design against collusion attacker model, LA.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

R
o

b
u

s
tn

e
s
s
 (

%
)

of graphs

Indiv./Group Watermark
Individual Watermark

Figure 4.12: Robustness of the improved
design against collusion attacker model,

Flickr.

 0

 5

 10

 15

 20

 1 2 3 4 5 6

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

of graphs

Figure 4.13: Distortion caused by collusion
attacker model in the improved design, LA.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5 6

N
o

rm
a

liz
e

d
 d

K
-2

 d
is

t.

of graphs

Figure 4.14: Distortion caused by collusion
attacker model in the improved design, Flickr.

Figure 4.11 and Figure 4.12 show the robustness of the watermarked LA and

Flickr graphs against the collusion attack. Figure 4.11 shows that in LA, by

applying majority votes on raw edges, the collusion attack can effectively remove

all 3 individual watermarks. However, the attack is ineffective in removing both

group watermarks: we can extract at least one group watermark in more than

60% of the attacked graphs. Here the robustness values deviate slightly from that

projected by Equation (4.6) because we limit the number of statistical sampling

to 10 runs. Unlike LA, Figure 4.12 plots that the collusion attack cannot remove

185

Secure Graph Sharing System Chapter 4

all the individual watermarks in Flickr when using 2 or 3 watermarked graphs.

This is because the deanonymization method causes a large portion of nodes

mismatched in Flickr (30% nodes). Finally, Figure 4.13 and Figure 4.14 show

that the collusion attacks also introduce larger distortions in graph structure.

These results show that even a powerful collusion attack is ineffective in re-

moving all embedded watermarks. Moreover, the potential inaccuracy of the

deanonymization method makes the attack even weaker in removing individual

watermarks. Of course, the attackers will eventually succeed in disrupting water-

marks if they are willing to modify and sacrifice the utility of the graph. While we

provide a robust defense against attackers with low level of tolerance for graph dis-

tortion, we hope follow-on work will develop more robust defenses against higher

distortion attacks.

4.7.3 Computational Efficiency

We measure the efficiency of embedding and extracting watermarks, including

the time to select candidates (step 2) and to identify watermarks (step 3). We

accelerate the extraction process by parallelizing the key steps across servers.

Specifically, in candidate selection, any available server is assigned an unchecked

watermark node to find its candidates. In watermark identification, each available

server will be assigned to search one watermark from one candidate of watermark

186

Secure Graph Sharing System Chapter 4

Graph Embedding (s)
Basic Extraction Improved Extraction

Single(s) Parallel (s) Single (s) Parallel (s)

LA 40 270 39 310 42

Flickr 80 767 195 776 197

Livejournal 695 2568 310 2605 317

Table 4.6: The efficiency of the watermarking system, including watermark embedding time
on one server, the extraction time on one server and the parallel extraction time across 10

servers.

node x1. When a watermark is found or no more candidates are unchecked, the

extraction process stops (for that user).

We perform measurements to quantify impact of parallelizing extraction over

a cluster. All system parameters are the same as previous tests, except that we

embed 1 watermark into a graph. We compare the improved watermark extraction

method to the basic extraction method. In addition to Flickr and LA graphs, we

also measure the efficiency on Livejournal graph [104], a larger graph with 5.2M

nodes, 49M edges. We parallelize watermark extraction across 10 servers, each

with 192GB RAM, and report the average times from 10 different watermarked

graphs.

Table 4.6 shows that our system is efficient in embedding and extracting wa-

termarks. Embedding one watermark into a graph is very fast, e.g. average

187

Secure Graph Sharing System Chapter 4

embedding time for the largest graph, Livejournal, is around 12 minutes. Even

using one server to extract watermarks, the computation time is small, e.g. 13

minutes in Flickr using both the basic and improved schemes. Time to identify

the watermark graph on the candidate subgraphs (step 3) is much less than the

time required to find candidates (step 2), which corresponds to 99% of total com-

putation time. Since finding candidates takes O(kn) computational complexity

and k = (2 + δ) log2 n, the complexity to extract a watermark from a real-world

graph is O(n log2 n). Here k is node number in the watermark graph and n is

nodes in the total graph.

Second, we find that distributed extraction produces good speedup, 8 over 10

servers for Livejournal and 7 for LA (for both extraction methods). The speedup

for Flickr is only around 4 using both methods, because one of the watermarked

graphs takes much longer time than others in finding candidates, 4x longer. With-

out this outlier, the average parallel extraction time on Flickr is around 2.5 minutes

for both methods, 5x faster than using single server.

Finally, there is no significant difference between computation time for the two

extraction methods.

188

Secure Graph Sharing System Chapter 4

4.8 Summary

In this chapter, we take a first step towards the design and implementation of

a robust graph watermarking system. Graph watermarks have the potential to

significantly impact the way graphs are shared and tracked. Our work identifies

the critical requirements of such a system, and provides an initial design that

targets the critical properties of uniqueness, robustness to attacks, and minimal

distortion to the graph structure. We also identify key attacks against graph wa-

termarks, and evaluate them against an improved design with additional features

for improved robustness under attack. Finally, we show the watermarking system

is efficient in both watermark embedding and watermark extraction.

Our evaluation shows that our initial watermarking system modifies very few

nodes and edges in a graph, i.e. less than 0.04% nodes and edges in a graph with

603K nodes and 7.6M edges. Results also demonstrate extremely low distortion,

i.e. the watermarked graphs are highly consistent with the original graph in all

graph metrics we considered. Empirical tests on several real, large graphs show

that our robustness features dramatically improved our resilience against both

single and multi-user collusion attacks. Finally, we show that the embedding

process and the extraction process are efficient, and the extraction process is

easily parallelized over a computing cluster.

189

Secure Graph Sharing System Chapter 4

While our proposed scheme achieves many of our initial goals, there is signif-

icant room for improvement and ongoing work. One focus is developing stronger

redundancy schemes to protect against attackers with a greater tolerance for graph

distortion, i.e. willing to make a greater number of node/edge changes. Another

is to develop alternate schemes that can recover more information about multiple

attackers in the colluding attack model. We will discuss more in Section 5.3 in

Chapter 5.

190

Chapter 5

Conclusion

In this dissertation, we have taken the new opportunities for graph analysis by

having access to large traces of graphs, and we have also faced the challenges from

scalability, dynamics, and data privacy. Our methodology is data-driven, where

in Chapter 2 we address problems that have been first considered, in Chapter 3 we

revisit fundamental graph problem, and in Chapter 4 we provide new alternatives

for existing problems. We believe that our methodology is general and can be

applied to both research in graph analysis, and also various other fields.

In this chapter, we summarize our work on data-driven graph analysis. We also

share what we have learnt and lessons through the research process, in the hope

that they may provide useful guidance for data-driven analysis or graph analysis.

Finally, we discuss future work to conclude the chapter.

191

Conclusion Chapter 5

5.1 Conclusion

Thanks to the proliferation of networks, having access to large traces of graphs

is becoming possible. Compare to graphs studied in prior research works, those

graphs may be several orders of magnitude larger, have much higher volumes

of dynamics, and represent much more private information. They are bringing

great opportunities as well as new challenges. In this dissertation, we look at

graph problems from a data-driven perspective, where we explore dynamic graph

analyzing and modeling in terms of absolute time, we revisit fundamental graph

problem and try to improve current solutions, and we provide new alternatives

to securely share graph datasets. In all the problems we have looked at, we

provide novel solutions and validate their effectiveness with various large-scale

graph datasets.

We first seek to analyze and model graph dynamics. Starting from the explo-

ration of self-similarity properties, which is critical of determining how to model

network dynamics, our work takes a concrete step towards studying the detailed

dynamics of social networks. We focus on “ time-stamped” traces of network

growth, i.e., network includes detailed timings of when nodes arrive and edges

are created. By performing empirical studies of network dynamics, we find that

the edge creation process in social graphs is consistent with self-similarity scaling,

once we account for periodic user activity that makes edge creation process non-

192

Conclusion Chapter 5

stationary. We leverage these findings to build a complete model of social network

dynamics that combines temporal and spatial components. Specifically, the tem-

poral behavior of our model reflects the coexistence of long-term non-stationary

periodic structure, e.g. diurnal or weekly patterns, and properties consistent with

self-similarity at shorter time scales. The spatial side accounts for a dynamic

graph model that simulates edge creation process driven primarily by existing

users, and captures graph densification, shrinking network diameter, and decreas-

ing local clustering. We validate our model against network dynamics in Renren

and Facebook datasets, and show that it succeeds in producing desired properties

in both temporal patterns and graph structural features.

We then revisit the fundamental graph problem, i.e., link prediction, from an

empirical perspective. We use different real traces of large dynamic networks,

and take a concrete step towards objectively quantifying the predictive power

of today’s link prediction algorithms. We implement 18 algorithms, including

both metric-based and classification-based approaches. We find that the best

metric-based predictors (vary across different networks) perform on par with the

most accurate classifier (SVM in all cases), and we derive potential guidelines

for choosing metrics based on network structure. We also take a deeper look at

current link prediction algorithms for the source of low accuracy, in terms of both

structural and temporal aspects. Furthermore, we provide “temporal filters” that

193

Conclusion Chapter 5

can greatly improve prediction accuracy (across different methods and networks)

by leveraging knowledge of prior network dynamics, even for predictors that have

already integrated temporal information.

Finally, we study graph privacy problems, i.e., how to securely share graph

datasets. We take a first step towards the design and implementation of a robust

graph watermarking system. Graph watermarks have the potential to significantly

impact the way graphs are shared and tracked. Our work identifies the critical

requirements of such a system, and provides an initial design that targets the

critical properties of uniqueness, robustness to attacks, and minimal distortion to

the graph structure. We also identify key attacks against graph watermarks, and

evaluate them against an improved design with additional features for improved

robustness under attack. Finally, we show the watermarking system is efficient in

both watermark embedding and watermark extraction.

5.2 Lessons

With the efforts to study graph problems from data-driven perspective, we

have accumulated rich experience and learned various lessons. In the following we

summarize these lessons.

194

Conclusion Chapter 5

Data-Driven Studies is Critical. Data-driven analysis is a very useful

tool in graph analysis, where it helps researchers understand what the real data

look like, clear confusions, and provide insights on how we should build mod-

els/systems/algorithms. It is especially powerful to correct invalid assumptions

with synthetic datasets that are often much smaller and less dynamic.

One prominent example is our revisit to link prediction problem (Chapter 3).

As the basis for social recommendations in a wide range of social networks and

applications, the link prediction problem is believed by many people to be well

solved due to the success of these social sites, and the large number of literature.

However, there has been little opportunity to study these link prediction proposals

from an empirical perspective. With the access to large traces of social graph

growth, we reassess this problem and find current link prediction performance

remains poor in absolute terms. We then take a deeper look for the source of low

accuracy, and propose an effective filtering mechanism that can greatly improve

prediction accuracy based on our insights from data.

Another example is analyzing and modeling social network dynamics (Chap-

ter 2). We start from understanding large-scale social network traces, from the

perspective of self-similarity. Using our findings from both temporal patterns and

graph structural features, we build a complete model which can more accurately

capture important properties in social network dynamics, compared to traditional

195

Conclusion Chapter 5

graph models that based on assumption that are likely invalid for large and dy-

namic graphs.

The findings and insights from empirical measurements and analysis can often

act as guidance when we try to design solution to meet challenges from real world

problems. They are powerful tools that are not only applicable in graph analysis,

but also useful in other research fields.

Tradeoffs Based on Priority of Goals. Designing algorithms and systems

for large-scale real graphs often face challenges from tradeoffs among different

goals, e.g., accuracy, scalability and robustness. The efforts to achieve all goals

usually fail because they often naturally conflict with each other. Then researchers

need to prioritize various goals, which is challenging and decisions should be made

based on specific application scenario.

For instance, in the design of graph watermark system (Chapter 4), we want

the system to have less distortion on graph structure, and also the watermarked

graph be robust against potential attacks. There inherently conflicts with each

other: strong robustness guarantee indicates more distortion of the graph, which

leads to low utility of graph structure, and vice versa. In a graph sharing scenario,

we think system robustness is preferred to guarantee graph privacy. So we add

a hierarchical watermark embedding process on the basic system design to fight

agains potential collusion attacks.

196

Conclusion Chapter 5

Also when we evaluate existing approaches for link prediction, we often face

the challenges from scalability versus prediction accuracy. A detailed example

is Katz, a widely used metric-based algorithm. Since Katz is proved to be not

scalable, we adopt two approximation methods, i.e., Katzlr [6] and Katzsc [137].

Katzlr has less approximation in mechanism, and almost consistently outperforms

Katzsc. However, it is difficult to scale on larger datasets such as Renren and

YouTube. As a result, from the empirical view we think Katzsc is better for larger

and denser graphs while Katzlr remains a good choice for smaller and sparser

graphs.

Emphasizing on one goal is usually at the cost of some other goals, and to

provide a reasonable priority list of goals requires a thorough understanding of

both the problem and the scenario. Often this is not an easy task, but it is a must

for elegant algorithm/system design.

Apply Lessons/Wisdom from Other Fields. Lessons and wisdom from

other research fields are often generic to inspire ideas in one’s focused area. To

make them more helpful, one needs to deeply understand his/her own problem,

the specific background, and identify new challenges, if any.

We have learned this lesson from detecting the existence of self-similarity in

dynamic graph analysis (Chapter 2). Before we start modeling, we are reminded

lessons from traffic modeling, where the discovery of self-similarity in traffic pro-

197

Conclusion Chapter 5

cess defines hard limits on how traffic dynamics can be models using traditional

means, e.g., Poisson models. Therefore, we start from the measurement of self-

similarity property using traditional tools by traffic modeling, i.e., Variance anal-

ysis and R/S analysis. However, we find both tools are unable to produce reliable

results because of underlying deterministic trends in the process, caused by hu-

man behaviors. We then apply a more advanced tool, i.e., wavelet analysis, to

fight against such underlying trends. This example shows how lessons from traf-

fic modeling inspired us, and how we need to face specific challenges from social

graphs.

In addition, we introduce the idea “watermark” into graph privacy since we

see watermarking technique is widely used to protect intellectual property, e.g.,

in digital watermarking, relational datasets, and there are lots of stories on how

they have successfully limited data piracy. Unlike digital or relational datasets

watermarking, graph watermarking is quite challenging. We cannot have any

labels or identifiers, and can work only on graph structures since any leaked graph

can have all metadata stripped. This requires us to deeply understand graph

structural properties.

198

Conclusion Chapter 5

5.3 Future Work

In this dissertation, we introduce our efforts for research in graphs from an em-

pirical lens. Looking forward, there are many interesting problems left unexplored

in broader graph contexts. In this section, we discuss three potential directions:

studying more categories of graphs, securely sharing graphs, and online user be-

havior analysis.

5.3.1 Studying More Categories of Graphs

As fundamental abstraction for networks, there are many different categories

of graphs. Many graph models and systems focus on ongoing networks and graph

structure only. While today’s complex networks continue to develop, there is

increasing need for research in more general topics for graphs. Here we target two

basic graph types: declining networks, and graphs with meta information.

Networks in decline. Unlike ongoing networks, which are growing and the

main focus in today’s research, networks in decline can be characterized as net-

works experiencing a sustained reduction in demand [40]. For example, according

to [1], in just three years (from 2009 to 2012), the former social network giant

MySpace has gone from around 20 million daily visitors to around 2 million. This

is not the only example. Social websites like Friendster and Orkut have also expe-

199

Conclusion Chapter 5

rienced great loss. Even Twitter is reported [4] to struggle with growing its user

base and face a fairly flat growth in the following several years. In those situation,

edges and nodes may disappear and reappear, and the whole networks may have

different properties in terms of both graph structures and temporal patterns. This

brings us new opportunities and challenges to revisit many graph problems. For

example, the measurement, analysis and modeling of dynamic traces in declining

networks, prediction for both appearing and disappearing links, etc.

Graphs with meta information. Graph meta information may include

node-related information like user profiles, and also edge-related information like

the type and strength of social links. Those are rich information which are of-

ten combined with network structural data in deployed systems/algorithms in

real world application. For example, Twitter’s user recommendation service WTF

(“Who to Follow”) [53] combines user profiles and behavioral data, shared in-

terests, common connections and other information sources to largely boost pre-

diction accuracy empirically. Also, there are research focuses on graphs with

additional information besides graph topology, such as edge weights [96], node

connections on other social networks [106], and link direction [158], they all prove

to have impact on graph problems. We plan to consider these factors in future

work, e.g., evaluate link prediction in graphs with meta data.

200

Conclusion Chapter 5

5.3.2 Securely Sharing Graphs

Graph sharing is critical to both the research community, where they can

have access to more real large graph datasets, and also the industry, where com-

panies can get cooperation chances for better facilities and be free from scan-

dals/lawsuits caused by graph leakage. A variety of solutions have been pro-

posed, ranging from anonymization tools that defend against specific attacks, like

k-anonymization [91, 168], or more attack-agnostic defense, like graph random-

ization [56], graph generalization [55], differential privacy [43] and cryptography

approaches [28]. However, most of the studies focus on static graphs, which fail

to meet challenges from high volume of dynamics from today’s network graphs.

Here we identify one future direction as securely sharing dynamic graphs. Also,

in our dissertation we provide initial work for applying watermarks to graph data,

which sets the stage for follow-up work.

Further exploring graph watermarks. One direction is to improve robust-

ness against a range of other attacks. For example, in the single attacker model,

there might be more disruptive attack versions. The attacker may either release

a partial subgraph of the watermarked graph, or merge multiple watermarked

graphs. In both cases, this destroys the embedded watermarks and how to defend

against them is an interesting topic. Another example is for the collusion attack.

Using our proposed hierarchical watermarking technique, we can combine results

201

Conclusion Chapter 5

from multiple dimensions and quickly narrow down the set of potential users re-

sponsible for the leak. However, since a colluding attack requires the involvement

of multiple leakers, even identifying a single leaker is insufficient. Developing a

scheme to reliably detect multiple (ideally all) colluding users is a topic for future

work.

Another potential problem is the optimization of parameters in our watermark

system. In the advanced design, we need to set degree bucket size, the NSD simi-

larity threshold, edge difference threshold L, and number of embedded individual

and group watermarks. We hope to give both experimental evaluation for different

parameter settings, and also theoretical proof for the accuracy boundary.

Sharing dynamic graphs. In dynamic network traces, there might be new

privacy breaches, e.g., information of the networks’ own formation, and dynamic

processes on top of networks like diffusion. We want to ask the following questions:

• What are the new challenges in dynamic graph sharing ?

• How do we quantify graph utility in terms of dynamic graphs ?

• Can current approaches be adapted for sharing dynamic graphs ?

• Can we propose new approaches by leveraging network dynamics ?

202

Conclusion Chapter 5

5.3.3 User Studies in Graph Analysis

Many network services are driven by user behaviors, e.g., Facebook has 1.79

Billion users in 2016 [3], and Google search has more than 2.2 Billion users [132]

who consume over 3.5 Billion searches per day [2]. To get a deeper understanding

of network graphs, especially social network graphs, analyzing online user behavior

is indispensable.

Most of current graph solutions are either based on assumptions, or measure-

ment results from networks, and lack insights for user inner motivations and latent

behaviors. Even those do focus on user behavior analysis, they often study from

an aggregate behavioral level in terms of graph structural changes [42, 124], still

deficient in direct understanding of motivations underlying behaviors. For ex-

ample, the link prediction problem itself is closely related to user motivations to

build connections, whereas most of current algorithms are based on graph struc-

tural intuitions, or classification methods. Doing user studies like surveys [159] or

interviews [26] will help us better understand this problem and ourselves.

203

Bibliography

[1] The social drop-off. Pingdom, June 2012. http://royal.pingdom.com/

2012/06/01/the-social-drop-off/.

[2] Google search statistics. Internet Live Stats, 2014. http://www.

internetlivestats.com/google-search-statistics/.

[3] Number of monthly active facebook users worldwide as of 3rd quarter 2016

(in millions). Statista, 2016. https://www.statista.com/statistics/

264810/number-of-monthly-active-facebook-users-worldwide/.

[4] Twitter’s share of us social network users is dropping. eMar-

keter, August 2016. https://www.emarketer.com/Article/

Twitters-Share-of-US-Social-Network-Users-Dropping/1014343/.

[5] Patrice Abry and Darryl Veitch. Wavelet analysis of long-range-dependent

traffic. IEEE TOIT, 44(1):2–15, 1998.

204

http://royal.pingdom.com/2012/06/01/the-social-drop-off/
http://royal.pingdom.com/2012/06/01/the-social-drop-off/
http://www.internetlivestats.com/google-search-statistics/
http://www.internetlivestats.com/google-search-statistics/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.statista.com/statistics/264810/number-of-monthly-active-facebook-users-worldwide/
https://www.emarketer.com/Article/Twitters-Share-of-US-Social-Network-Users-Dropping/1014343/
https://www.emarketer.com/Article/Twitters-Share-of-US-Social-Network-Users-Dropping/1014343/

Bibliography

[6] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. Link prediction on

evolving data using matrix and tensor factorizations. In Proc. of ICDMW,

2009.

[7] Lada A Adamic and Eytan Adar. Friends and neighbors on the web. Social

networks, 25(3):211–230, 2003.

[8] Rakesh Agrawal and Jerry Kiernan. Watermarking relational databases. In

Proc. of VLDB, 2002.

[9] L. Akoglu and C. Faloutsos. RTG: a recursive realistic graph generator using

random typing. In ECML PKDD, Sept. 2009.

[10] L. Akoglu, M. McGlohon, and C. Faloutsos. RTM: Laws and a recursive

generator for weighted time-evolving graphs. In Proc. of ICDM, 2008.

[11] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki.

Link prediction using supervised learning. In Proc. of SDM Workshop on

Link Analysis, Counter-terrorism and Security, 2006.

[12] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diam-

eter of the world-wide web. Nature, 401(6749):130–131, 1999.

[13] Michael Arrington. How "dirty" mp3 files are a back door into cloud drm.

TechCrunch, April 2010.

205

Bibliography

[14] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore art thou r3579x?:

anonymized social networks, hidden patterns, and structural steganography.

2007.

[15] L. Backstrom and J. Leskovec. Supervised random walks: predicting and

recommending links in social networks. In Proc. of WSDM, 2011.

[16] Ziv Bar-Yossef and Li-Tal Mashiach. Local approximation of pagerank and

reverse pagerank. In Proc. of CIKM, pages 279–288, 2008.

[17] A.L. Barabási and R. Albert. Emergence of scaling in random networks.

Science, 286(5439):509–512, 1999.

[18] A.L. Barabâsi, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vic-

sek. Evolution of the social network of scientific collaborations. Physica A:

Statistical Mechanics and its Applications, 311(3-4):590–614, 2002.

[19] W. Bender, D. Gruhl, N. Morimoto, and Aiguo Lu. Techniques for data

hiding. IBM systems journal, pages 313–336, 1996.

[20] J. Beran. Statistics for long-memory processes. Chapman & Hall/CRC,

1994.

206

Bibliography

[21] Jan Beran, Robert Sherman, Murad S Taqqu, and Walter Willinger. Long-

range dependence in variable-bit-rate video traffic. IEEE Transactions on

communications, 43(2/3/4):1566–1579, 1995.

[22] Bin Bi and Junghoo Cho. Modeling a retweet network via an adaptive

bayesian approach. In Proc. of WWW, 2016.

[23] Catherine A Bliss, Morgan R Frank, Christopher M Danforth, and Pe-

ter Sheridan Dodds. An evolutionary algorithm approach to link prediction

in dynamic social networks. Journal of Computational Science, 5(5):750–

764, 2014.

[24] A. Blum, T.H.H. Chan, and M.R. Rwebangira. A random-surfer web-graph

model. In Proc. of WAEE and WAAC, volume 123, 2006.

[25] Anthony Bonato, Noor Hadi, Paul Horn, Paweł Prałat, and Changping

Wang. A dynamic model for on-line social networks. Algorithms and Models

for the Web-Graph, 5427:127–142, 2009.

[26] Julia Ayumi Bopp, Elisa D Mekler, and Klaus Opwis. Negative emotion,

positive experience?: Emotionally moving moments in digital games. In

Proceedings of the 2016 CHI Conference on Human Factors in Computing

Systems, pages 2996–3006. ACM, 2016.

207

Bibliography

[27] Björn Bringmann, Michele Berlingerio, Francesco Bonchi, and Aristides Gio-

nis. Learning and predicting the evolution of social networks. IEEE Intel-

ligent Systems, 25(4):26–35, 2010.

[28] Barbara Carminati, Elena Ferrari, and Andrea Perego. Rule-based access

control for social networks. In OTM Confederated International Confer-

ences" On the Move to Meaningful Internet Systems", pages 1734–1744.

Springer, 2006.

[29] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization

in social networks. In Proc. of KDD, 2009.

[30] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. Friendship and mobility:

user movement in location-based social networks. In KDD, 2011.

[31] Yoon-Sik Cho, Greg Ver Steeg, Emilio Ferrara, and Aram Galstyan. Latent

space model for multi-modal social data. In Proc. of WWW, 2016.

[32] Aaron Clauset, Cristopher Moore, and M.E.J. Newman. Hierarchical struc-

ture and the prediction of missing links in networks. Nature, 453(7191):98–

101, 2008.

208

Bibliography

[33] Christian S. Collberg, Stephen G. Kobourov, Edward Carter, and Clark D.

Thomborson. Graph-based approaches to software watermarking. In WG,

2003.

[34] Stephen A Cook. The complexity of theorem-proving procedures. In STOC,

1971.

[35] D. Cox. Long-range dependence: A review. Statistics: An Appraisal, 1984.

[36] Mark E Crovella and Azer Bestavros. Self-similarity in world wide web

traffic: evidence and possible causes. IEEE/ACM TON, 1997.

[37] Paulo Ricardo da Silva Soares and R Bastos Cavalcante Prudencio. Time

series based link prediction. In Proc. of WCCI, 2012.

[38] J. Davidsen, H. Ebel, and S. Bornholdt. Emergence of a small world from lo-

cal interactions: Modeling acquaintance networks. Physical Review Letters,

88(12):128701, 2002.

[39] Pasquale De Meo, Emilio Ferrara, Giacomo Fiumara, and Alessandro

Provetti. On facebook, most ties are weak. Communications of the ACM,

57(11):78–84, 2014.

[40] Christopher Decker. Regulating networks in decline. Journal of Regulatory

Economics, 49(3):344–370, 2016.

209

Bibliography

[41] Yuhui Deng, Xiaohua Meng, and Jipeng Zhou. Self-similarity: Behind

workload reshaping and prediction. Future Generation Computer Systems,

28(2):350–357, 2012.

[42] Derek Doran. On the discovery of social roles in large scale social systems.

Social Network Analysis and Mining, 5(1):49, 2015.

[43] Cynthia Dwork. Differential privacy: A survey of results. In International

Conference on Theory and Applications of Models of Computation, pages

1–19. Springer, 2008.

[44] Zoltán Eisler, Imre Bartos, and János Kertész. Fluctuation scaling in com-

plex systems: Taylor’s law and beyond 1. Advances in Physics, 57(1):89–142,

2008.

[45] Michael Fire, Lena Tenenboim, Ofrit Lesser, et al. Link prediction in social

networks using computationally efficient topological features. In SocialCom,

2011.

[46] Mark W Garrett and Walter Willinger. Analysis, modeling and generation

of self-similar vbr video traffic. In Proc. of SIGCOMM, 1994.

[47] Edgar N Gilbert. Random graphs. The Annals of Mathematical Statistics,

pages 1141–1144, 1959.

210

Bibliography

[48] Michaela Goetz, Jure Leskovec, Mary McGlohon, and Christos Faloutsos.

Modeling blog dynamics. In ICWSM, 2009.

[49] Leo A Goodman. Snowball sampling. The annals of mathematical statistics,

pages 148–170, 1961.

[50] Steven D Gribble, Gurmeet Singh Manku, Drew Roselli, Eric A Brewer,

Timothy J Gibson, and Ethan L Miller. Self-similarity in file systems. In

Proc. of SIGMETRICS, 1998.

[51] Roger Guimera, Leon Danon, Albert Diaz-Guilera, Francesc Giralt, and

Alex Arenas. Self-similar community structure in a network of human in-

teractions. Physical review E, 68(6):065103, 2003.

[52] Roger Guimerà and Marta Sales-Pardo. Missing and spurious interactions

and the reconstruction of complex networks. Proc. of the National Academy

of Sciences, 106(52):22073–22078, 2009.

[53] Pankaj Gupta, Ashish Goel, Jimmy Lin, et al. Wtf: The who to follow

service at twitter. In Proc. of WWW, 2013.

[54] Sami Hanhijärvi, Gemma C. Garriga, and Kai Puolamäki. Randomization

techniques for graphs. In SDM, 2009.

211

Bibliography

[55] Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and PhilippWeis.

Resisting structural re-identification in anonymized social networks. 2008.

[56] Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth

Srivastava. Anonymizing social networks. Technical Report 07-19, UMass,

2007.

[57] Haibo He and Edwardo Garcia. Learning from imbalanced data. TKDE,

21(9):1263–1284, 2009.

[58] Kashmir Hill. Facebook recommended that this psychiatrist’s patients friend

each other. Fusion.net, August 2016. http://fusion.net/story/339018/

facebook-psychiatrist-privacy-problems/.

[59] Keven Ho. 41 up-to-date facebook facts and stats. Wish-

pond, 2014. http://blog.wishpond.com/post/115675435109/

40-up-to-date-facebook-facts-and-stats/.

[60] P. Holme and B.J. Kim. Growing scale-free networks with tunable clustering.

Physical Review E, 65(2):026107, 2002.

[61] Jonathan RM Hosking. Fractional differencing. Biometrika, 68(1):165–176,

1981.

212

http://fusion.net/story/339018/facebook-psychiatrist-privacy-problems/
http://fusion.net/story/339018/facebook-psychiatrist-privacy-problems/
http://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-stats/
http://blog.wishpond.com/post/115675435109/40-up-to-date-facebook-facts-and-stats/

Bibliography

[62] Jing Jiang, Christo Wilson, Xiao Wang, Peng Huang, Wenpeng Sha, Yafei

Dai, and Ben Y. Zhao. Understanding latent interactions in online social

networks. In Proc. of IMC, 2010.

[63] Muhammad Kamran et al. A robust, distortion minimizing technique for

watermarking relational databases using once-for-all usability constraints.

IEEE TKDE, 2012.

[64] Thomas Karagiannis, Michalis Faloutsos, and Rudolf H Riedi. Long-range

dependence: now you see it, now you don’t! In IEEE Globecom, 2002.

[65] David Karger and Matthias Ruhl. Find nearest neighbors in growth-

restricted metrics. In Proc. of STOC, 2002.

[66] Hisashi Kashima and Naoki Abe. A parameterized probabilistic model of

network evolution for supervised link prediction. In ICDM, 2006.

[67] Leo Katz. A new status index derived from sociometric analysis. Psychome-

trika, 18(1):39–43, 1953.

[68] Henry Kautz, Bart Selman, and Mehul Shah. Referral web: combining

social networks and collaborative filtering. Communications of the ACM,

40(3):63–65, 1997.

213

Bibliography

[69] Jon M Kleinberg. Navigation in a small world. Nature, 406(6798):845–845,

2000.

[70] Valdis E Krebs. Mapping networks of terrorist cells. Connections, 24(3):43–

52, 2002.

[71] R. Kumar, P. Raghavan, S. Rajagopalan, D. Sivakumar, A. Tomkins, and

E. Upfal. Stochastic models for the web graph. In Proc. of FOCS, pages

57–65, 2000.

[72] Jérôme Kunegis. Konect: the koblenz network collection. In Proc. of WWW

Companion, 2013.

[73] Tommy Landry. How social media has changed us: The good and the

bad. Return on Now, September 2014. http://returnonnow.com/2014/

09/how-social-media-has-changed-us-the-good-and-the-bad/.

[74] Sin-Joo Lee and Sung-Hwan Jung. A survey of watermarking techniques

applied to multimedia. In ISIE, 2001.

[75] Will E Leland, Murad S Taqqu, Walter Willinger, and Daniel V Wilson. On

the self-similar nature of ethernet traffic (extended version). IEEE/ACM

Transactions on networking, 2(1):1–15, 1994.

214

http://returnonnow.com/2014/09/how-social-media-has-changed-us-the-good-and-the-bad/
http://returnonnow.com/2014/09/how-social-media-has-changed-us-the-good-and-the-bad/

Bibliography

[76] Will E Leland and Daniel V Wilson. High time-resolution measurement

and analysis of LAN traffic: Implications for lan interconnection. In Proc.

of INFOCOM, 1991.

[77] Vincent Leroy, B Barla Cambazoglu, and Francesco Bonchi. Cold start link

prediction. In Proc. of KDD, 2010.

[78] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins. Microscopic evolu-

tion of social networks. In Proc. of KDD, 2008.

[79] J. Leskovec et al. Statistical properties of community structure in large

social and information networks. In WWW, 2008.

[80] J. Leskovec and C. Faloutsos. Scalable modeling of real graphs using kro-

necker multiplication. In Proc. of ICML, 2007.

[81] J. Leskovec, J. Kleinberg, and C. Faloutsos. Graphs over time: densification

laws, shrinking diameters and possible explanations. In Proc. of KDD, 2005.

[82] Jure Leskovec, Lada A. Adamic, and Bernardo A. Huberman. The dynamics

of viral marketing. TWEB, 2007.

[83] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. Predicting positive

and negative links in online social networks. In WWW, 2010.

215

Bibliography

[84] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time:

densification laws, shrinking diameters and possible explanations. In Proc.

of KDD, 2005.

[85] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:

Densification and shrinking diameters. TKDD, 2007.

[86] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney.

Community structure in large networks: Natural cluster sizes and the ab-

sence of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[87] Jure Leskovec and Julian J Mcauley. Learning to discover social circles in

ego networks. In Advances in neural information processing systems, pages

539–547, 2012.

[88] Yingjiu Li, Vipin Swarup, and Jajodia. Fingerprinting relational databases:

Schemes and specialties. IEEE TDSC, 2(1):34–45, 2005.

[89] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for

social networks. Journal of the American society for information science

and technology, 58(7):1019–1031, 2007.

[90] Ryan N Lichtenwalter, Jake T Lussier, and Nitesh V Chawla. New perspec-

tives and methods in link prediction. In Proc. of KDD, 2010.

216

Bibliography

[91] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs.

In SIGMOD, 2008.

[92] Qingyun Liu, Shiliang Tang, Xinyi Zhang, Xiaohan Zhao, Ben Y Zhao, and

Haitao Zheng. Network growth and link prediction through an empirical

lens. In Proc. of IMC, 2016.

[93] Qingyun Liu, Xiaohan Zhao, Walter Willinger, Xiao Wang, Ben Y Zhao,

and Haitao Zheng. Self-similarity in social network dynamics. ACM Trans-

actions on Modeling and Performance Evaluation of Computing Systems

(TOMPECS), 2(1):5, 2016.

[94] Weiping Liu and Linyuan Lü. Link prediction based on local random walk.

Europhysics Letters, 89(5):58007, 2010.

[95] Zhen Liu, Qian-Ming Zhang, Linyuan Lü, and Tao Zhou. Link predic-

tion in complex networks: A local naïve bayes model. Europhysics Letters,

96(4):48007, 2011.

[96] Linyuan Lü and Tao Zhou. Link prediction in weighted networks: The role

of weak ties. Europhysics Letters, 89(1):18001, 2010.

217

Bibliography

[97] Linyuan Lü and Tao Zhou. Link prediction in complex networks: A survey.

Physica A: Statistical Mechanics and its Applications, 390(6):1150–1170,

2011.

[98] Benoit M Macq and Jean-Jacques Quisquater. Cryptology for digital tv

broadcasting. Proceedings of the IEEE, pages 944–957, 1995.

[99] P. Mahadevan, D. Krioukov, K. Fall, and A. Vahdat. Systematic topol-

ogy analysis and generation using degree correlations. ACM SIGCOMM

Computer Communication Review, 36(4):135–146, 2006.

[100] B. B. Mandelbrot and J. W. van Ness. Fractional Brownian motions, frac-

tional noises and applications. SIAM Review, 10:422–437, 1968.

[101] M. McGlohon, L. Akoglu, and C. Faloutsos. Weighted graphs and discon-

nected components: patterns and a generator. In Proc. of KDD, 2008.

[102] Alfred J. Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of

Applied Cryptography. CRC Press, Inc., 1996.

[103] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix fac-

torization. In Proc. of ECML PKDD, 2011.

[104] A. Mislove, M. Marcon, K.P. Gummadi, P. Druschel, and B. Bhattacharjee.

Measurement and analysis of online social networks. In Proc. of IMC, 2007.

218

Bibliography

[105] Alan Mislove. Online Social Networks: Measurement, Analysis, and Appli-

cations to Distributed Information Systems. PhD thesis, Rice University,

Department of Computer Science, May 2009.

[106] Arvind Narayanan, Elaine Shi, and Benjamin IP Rubinstein. Link prediction

by de-anonymization: How we won the kaggle social network challenge. In

Proc. of IJCNN, 2011.

[107] Arvind Narayanan and Vitaly Shmatikov. De-anonymizing social networks.

In Proc. of IEEE S&P, May 2009.

[108] Arvind Narayanan and Vitaly Shmatikov. Link prediction by de-

anonymization: How we won the kaggle social network challenge. In Proc.

of IJCNN, 2011.

[109] Saket Navlakha, Christos Faloutsos, and Ziv Bar-Joseph. Massexodus: mod-

eling evolving networks in harsh environments. Data Mining and Knowledge

Discovery, 29(5):1211–1232, 2015.

[110] Mark EJ Newman. Clustering and preferential attachment in growing net-

works. Physical Review E, 64(2):025102, 2001.

219

Bibliography

[111] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way

model for collective learning on multi-relational data. In Proc. of ICML,

2011.

[112] Ryutarou Ohbuchi, Hiroo Ueda, and Endoh Shuh. Robust watermarking of

vector digital maps. In ICME, 2002.

[113] Ryutarou Ohbuchi, Hiroo Ueda, and Endoh Shuh. Watermarking 2d vector

maps in the mesh-spectral domain. In Shape Modeling International, 2003.

[114] Kihong Park and Walter Willinger. Self-similar network traffic and perfor-

mance evaluation. Wiley Online Library, 2000.

[115] Vern Paxson and Sally Floyd. Wide area traffic: the failure of poisson

modeling. IEEE/ACM Transactions on Networking (ToN), 3(3):226–244,

1995.

[116] F. Pedregosa, G. Varoquaux, A. Gramfort, et al. Scikit-learn: Machine

learning in Python. Journal of Machine Learning Research, 12:2825–2830,

2011.

[117] Gang Qu and Miodrag Potkonjak. Analysis of watermarking techniques for

graph coloring problem. In ICCAD, 1998.

220

Bibliography

[118] Christopher Ratcliff. 23 up-to-date stats and facts about instagram you need

to know. Search Engine Watch, April 2016. https://searchenginewatch.

com/2016/04/20/23-stats-and-facts-about-instagram/.

[119] Matthew J Rattigan, Marc Maier, and David Jensen. Using structure indices

for efficient approximation of network properties. In Proc, of KDD, 2006.

[120] Rudy Raymond and Hisashi Kashima. Fast and scalable algorithms for

semi-supervised link prediction on static and dynamic graphs. In Proc. of

ECML PKDD, 2010.

[121] Matthew Richardson, Rakesh Agrawal, and Pedro Domingos. Trust man-

agement for the semantic web. In The Semantic Web-ISWC 2003, pages

351–368. Springer, 2003.

[122] Alma Riska and Erik Riedel. Long-range dependence at the disk drive level.

In Proc. of QEST, 2006.

[123] Matthew J. B. Robshaw. MD2, MD4, MD5, SHA and other hash functions.

Technical Report TR-101, RSA Laboratories, 1995. v. 4.0.

[124] Daniel M Romero, Brian Uzzi, and Jon Kleinberg. Social networks under

stress. In Proceedings of the 25th International Conference on World Wide

221

https://searchenginewatch.com/2016/04/20/23-stats-and-facts-about-instagram/
https://searchenginewatch.com/2016/04/20/23-stats-and-facts-about-instagram/

Bibliography

Web, pages 9–20. International World Wide Web Conferences Steering Com-

mittee, 2016.

[125] J.J.K. O Ruanaidh, W.J. Dowling, and F.M. Boland. Phase watermarking

of digital images. In ICIP, 1996.

[126] Diego Rybski, Sergey V Buldyrev, Shlomo Havlin, Fredrik Liljeros, and

Hernán A Makse. Scaling laws of human interaction activity. PNAS,

106(31):12640–12645, 2009.

[127] A. Sala, L. Cao, C. Wilson, R. Zablit, H. Zheng, and B.Y. Zhao.

Measurement-calibrated graph models for social network experiments. 2010.

[128] Alessandra Sala, Lili Cao, Christo Wilson, Robert Zablit, Haitao Zheng,

and Ben Y. Zhao. Measurement-calibrated graph models for social network

experiments. 2010.

[129] Alessandra Sala, Xiaohan Zhao, Christo Wilson, Haitao Zheng, and Ben Y.

Zhao. Sharing graphs using differentially private graph models. In IMC,

2011.

[130] Purnamrita Sarkar, Deepayan Chakrabarti, and Michael Jordan. Nonpara-

metric link prediction in dynamic networks. Proc. of ICML, 2012.

222

Bibliography

[131] David Savage, Xiuzhen Zhang, Xinghuo Yu, Pauline Chou, and Qingmai

Wang. Anomaly detection in online social networks. Social Networks, 39:62–

70, 2014.

[132] Marc Schenker. New study suggests google plus’ ac-

tive usage may be much lower. Digital Trends, April

2015. http://www.digitaltrends.com/social-media/

study-suggests-far-fewer-active-google-plus-users-than-google-claims/.

[133] Fabian Schneider, Anja Feldmann, Balachander Krishnamurthy, and Wal-

ter Willinger. Understanding online social network usage from a network

perspective. In Proc. of IMC, 2009.

[134] Herb Scribner. 10 ways the internet has changed your life. Deseret

News, August 2014. http://www.deseretnews.com/article/865608397/

10-ways-the-Internet-has-changed-your-life.html/.

[135] Umang Sharan and Jennifer Neville. Exploiting time-varying relationships

in statistical relational models. In Proc. of WebKDD Workshop on Web

mining and social network analysis, 2007.

[136] Chaoming Song, Shlomo Havlin, and Hernan A Makse. Self-similarity of

complex networks. Nature, 433(7024):392–395, 2005.

223

http://www.digitaltrends.com/social-media/study-suggests-far-fewer-active-google-plus-users-than-google-claims/
http://www.digitaltrends.com/social-media/study-suggests-far-fewer-active-google-plus-users-than-google-claims/
http://www.deseretnews.com/article/865608397/10-ways-the-Internet-has-changed-your-life.html/
http://www.deseretnews.com/article/865608397/10-ways-the-Internet-has-changed-your-life.html/

Bibliography

[137] H.H. Song, T.W. Cho, V. Dave, Y. Zhang, and L. Qiu. Scalable proximity

estimation and link prediction in online social networks. In Proc. of IMC,

2009.

[138] Walton Steve. Information authentication for a slippery new age. Dr. Dobbs

Journal, pages 18–26, 1995.

[139] Lubos Takac and Michal Zabovsky. Data analysis in public social networks.

In International Scientific Conference AND International Workshop Present

Day Trends of Innovations, 2012.

[140] M. S. Taqqu and J. Levy. Using renewal processes to generate long-range

dependence and high variability. Dependence in Probability and Statistics,

pages 73– 89.

[141] Murad S Taqqu, Vadim Teverovsky, and Walter Willinger. Estimators for

long-range dependence: an empirical study. Fractals, 3(4):785–798, 1995.

[142] Ben Taskar, Ming-Fai Wong, Pieter Abbeel, and Daphne Koller. Link pre-

diction in relational data. In Proc. of NIPS, 2003.

[143] R. Toivonen, J.P. Onnela, J. Saramaki, J. Hyvonen, and K. Kaski. A

model for social networks. Physica A: Statistical and Theoretical Physics,

371(2):851–860, 2006.

224

Bibliography

[144] Tomasz Tylenda, Ralitsa Angelova, and Srikanta Bedathur. Towards time-

aware link prediction in evolving social networks. In Proc. of SNA-KDD,

2009.

[145] A. Vázquez. Growing network with local rules: Preferential attach-

ment, clustering hierarchy, and degree correlations. Physical Review E,

67(5):056104, 2003.

[146] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. A graph

theoretic approach to software watermarking. In Information Hiding, 2001.

[147] B. Viswanath, A. Mislove, M. Cha, and K.P. Gummadi. On the evolution

of user interaction in facebook. In Proc. of WOSN, 2009.

[148] C. Wang, V. Satuluri, and S. Parthasarathy. Local probabilistic models for

link prediction. In Proc. of ICDM, 2007.

[149] Mengzhi Wang, Tara Madhyastha, Ngai Hang Chan, Spiros Papadimitriou,

and Christos Faloutsos. Data mining meets performance evaluation: Fast

algorithms for modeling bursty traffic. In Proc. of ICDE, 2002.

[150] D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world’ networks.

Nature, 393(6684):440–442, 1998.

225

Bibliography

[151] Walter Willinger, Vern Paxson, and Murad S Taqqu. Self-similarity and

heavy tails: Structural modeling of network traffic. A practical guide to

heavy tails: statistical techniques and applications, 23:27–53, 1998.

[152] Walter Willinger, Murad S Taqqu, Robert Sherman, and Daniel V Wilson.

Self-similarity through high-variability: statistical analysis of ethernet lan

traffic at the source level. IEEE/ACM Transactions on Networking (ToN),

5(1):71–86, 1997.

[153] Christo Wilson, Bryce Boe, Alessandra Sala, Krishna P. N. Puttaswamy, and

Ben Y. Zhao. User interactions in social networks and their implications.

In Proc. of EuroSys, 2009.

[154] Greg Wolfe, Jennifer L. Wong, and Miodrag Potkonjak. Watermarking

graph partitioning solutions. In DAC, 2001.

[155] Hongke Xia and Xiang Hu. Fbm: A flexible random walk based generative

model for social network. Open Cybernetics & Systemics Journal, 9(1):280–

287, 2015.

[156] Xiang-Gen Xia, C. G. Boncelet, and G. R. Arce. A multiresolution water-

mark for digital images. In ICIP, 1997.

226

Bibliography

[157] Jaewon Yang and Jure Leskovec. Defining and evaluating network communi-

ties based on ground-truth. In Proceedings of the ACM SIGKDD Workshop

on Mining Data Semantics, page 3. ACM, 2012.

[158] Dawei Yin, Liangjie Hong, and Brian D Davison. Structural link analysis

and prediction in microblogs. In Proc. of CIKM, 2011.

[159] Ming Yin, Mary L Gray, Siddharth Suri, and Jennifer Wortman Vaughan.

The communication network within the crowd. In Proceedings of the 25th

International Conference on World Wide Web, pages 1293–1303. Interna-

tional World Wide Web Conferences Steering Committee, 2016.

[160] Xiaowei Ying and Xintao Wu. Randomizing social networks: a spectrum

preserving approach. In SDM, 2008.

[161] X. Zhao, A. Sala, C. Wilson, X. Wang, S. Gaito, H. Zheng, and B.Y. Zhao.

Multi-scale dynamics in a massive online social network. In Proc. of IMC,

2012.

[162] Xiaohan Zhao, Qingyun Liu, Haitao Zheng, and Ben Y Zhao. Towards

graph watermarks. In Proc. of COSN, 2015.

[163] Xiaohan Zhao, Qingyun Liu, Lin Zhou, Haitao Zheng, and Ben Y. Zhao.

Graph watermarks. Arxiv preprint arXiv:1506.00022, 2015.

227

Bibliography

[164] Bin Zhou et al. Preserving privacy in social networks against neighborhood

attacks. In Proc. of ICDE, 2008.

[165] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. Predicting missing links via

local information. European Physical Journal B, 71(4):623–630, 2009.

[166] William Zhu, Clark Thomborson, and Fei-Yue Wang. A survey of software

watermarking. In ISI. 2005.

[167] Matteo Zignani, Sabrina Gaito, Gian Paolo Rossi, Xiaohan Zhao, Haitao

Zheng, and Ben Y. Zhao. Link and triadic closure delay: Temporal metrics

for social network dynamics. In Proc. of ICWSM, 2014.

[168] Lei Zou, Lei Chen, and M. Tamer Özsu. K-automorphism: A general frame-

work for privacy preserving network publication. In VLDB, 2009.

228

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Dissertation Overview
	Analyzing and modeling graph dynamics
	Reassessing current status of link prediction
	Secure graph sharing system
	Contributions
	Thesis organization

	Analyzing and Modeling Graph Dynamics
	Introduction
	Background and Datasets
	Preliminary Analysis
	Experiment Setup
	Measurement Results
	The Reliability of our H Estimates
	Summary of Observations

	Wavelet-based Analysis
	The Wavelet Method
	Measurement Results
	Analysis Without Sampling
	Summary

	Validation via Facebook Dataset
	A Model of Network Dynamics
	The Temporal Component
	The Spatial Component

	Model Validation
	Validating the Temporal Component
	Validating the Spatial Component
	Facebook Results
	Summary

	Related Work
	Self-similarity Measurements and Models.
	Graph Models

	Summary

	Reassessing Current Status of Link Prediction
	Introduction
	Background: Link Prediction
	Datasets and Methodology
	Datasets
	Methodology

	Metric-Based Prediction
	Experimental Setup
	Metric-based Prediction Accuracy
	Choosing Metric-based Algorithms
	Sources of Low Prediction Accuracy

	Classification-based Prediction
	Evaluation Configuration
	Link Prediction Accuracy
	Comparing to Metric-based Algorithms

	Improving Link Prediction
	Temporal Properties on Edge Creation
	Temporal Filtering
	Comparing to Other Temporal Methods

	Related Work
	Summary and Discussion

	Secure Graph Sharing System
	Introduction
	Background and Related Work
	Goals and Attack Models
	Basic Watermark Design
	Watermark Embedding
	Watermark Extraction

	Fundamental Properties
	Watermark Uniqueness
	Watermark Detectability

	More Robust Watermarks
	Attacks on Watermarks
	Improving Robustness against Attacks
	Impact on Watermark Uniqueness

	Experimental Evaluation
	Graph Distortion from Watermarks
	Robustness against Attacks
	Computational Efficiency

	Summary

	Conclusion
	Conclusion
	Lessons
	Future Work
	Studying More Categories of Graphs
	Securely Sharing Graphs
	User Studies in Graph Analysis

	Bibliography

