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Behavioral/Cognitive

Contextual Expectations Shape Cortical Reinstatement of
Sensory Representations

Alex Clarke,1 Jordan Crivelli-Decker,2,3 and Charan Ranganath2,3
1Department of Psychology, University of Cambridge, Cambridge CB2 3EB, United Kingdom, 2Center for Neuroscience, University of California,
Davis, California 95618, and 3Department of Psychology, University of California, Davis, California 95616

When making a turn at a familiar intersection, we know what items and landmarks will come into view. These perceptual
expectations, or predictions, come from our knowledge of the context; however, it is unclear how memory and perceptual
systems interact to support the prediction and reactivation of sensory details in cortex. To address this, human participants
learned the spatial layout of animals positioned in a cross maze. During fMRI, participants of both sexes navigated between
animals to reach a target, and in the process saw a predictable sequence of five animal images. Critically, to isolate activity
patterns related to item predictions, rather than bottom-up inputs, one-fourth of trials ended early, with a blank screen pre-
sented instead. Using multivariate pattern similarity analysis, we reveal that activity patterns in early visual cortex, posterior
medial regions, and the posterior hippocampus showed greater similarity when seeing the same item compared with different
items. Further, item effects in posterior hippocampus were specific to the sequence context. Critically, activity patterns associ-
ated with seeing an item in visual cortex and posterior medial cortex, were also related to activity patterns when an item was
expected, but omitted, suggesting sequence predictions were reinstated in these regions. Finally, multivariate connectivity
showed that patterns in the posterior hippocampus at one position in the sequence were related to patterns in early visual
cortex and posterior medial cortex at a later position. Together, our results support the idea that hippocampal representa-
tions facilitate sensory processing by modulating visual cortical activity in anticipation of expected items.

Key words: context memory; hippocampus; mnemonic; prediction; top-down modulation

Significance Statement

Our visual world is a series of connected events, where we can predict what we might see next based on our recent past.
Understanding the neural circuitry and mechanisms of the perceptual and memory systems that support these expecta-
tions is fundamental to revealing how we perceive and act in our world. Using brain imaging, we studied what happens
when we expect to see specific visual items, and how such expectations relate to top-down memory signals. We find
both visual and memory systems reflect item predictions, and moreover, we show that hippocampal activity supports
predictions of future expected items. This demonstrates that the hippocampus acts to predict upcoming items, and
reinstates such predictions in cortex.

Introduction
Our knowledge of how the world is structured has a powerful
influence on our perceptions (Bar, 2004; Oliva and Torralba,

2007; Summerfield and Egner, 2009), allowing predictions of
future states we may encounter (Bar, 2009; Eichenbaum and Fortin,
2009). Perceptual expectations, or predictions, take different forms,
with one distinction being between predictions dependent on
temporal continuity (e.g., a train moving from one location to
another as it is driven), and predictions relating to upcoming
items that are not in view. This latter form of perceptual expecta-
tion must depend on coordinated responses between perceptual
and contextual memory systems; however, the neural mechanisms
of how memory systems might predict and reactivate perceptual
details in cortex is elusive.

Expecting to see a specific visual stimulus generates responses
in early visual cortex that resembles activity when perceiving the
same stimulus (Kok et al., 2012, 2014), even if the expected item
is never shown (Eagleman and Dragoi, 2012). To make accurate
predictions requires we have encountered similar situations and
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learned what is likely to occur next. Statistical learning approaches
suggest that we acquire knowledge about how the world is struc-
tured through repeated experiences (Schapiro et al., 2017; Sherman
et al., 2020), with this information used to guide predictions of
future states (Stachenfeld et al., 2017; Turk-Browne, 2019; Barron
et al., 2020). In humans, the hippocampus represents predictions
of future states (Eichenbaum and Fortin, 2009; Brown et al., 2016),
suggesting that it might be a primary source of top-down predic-
tions to reactivate expected sensory details. This is supported by
recent evidence from Kok and Turk-Browne (2018), who showed
that hippocampal responses reflected the expected stimulus fol-
lowing a predictive auditory cue, while visual regions reflected the
perceived stimulus. Such studies are beginning to reveal how
memory and perceptual systems support prediction and per-
ception, highlighting the hippocampal top-down effects on cor-
tex. While learned prior contexts must guide the prediction of
future states, direct empirical support for such a contextually de-
pendent hippocampal-cortical interaction remains limited.

Beyond primary sensory regions and the hippocampus, a net-
work of posterior brain regions are implicated in item and con-
text-based reactivations, including the parahippocampal cortex
(PHC), precuneus/posterior cingulate cortex, and angular gyrus
(Bar and Aminoff, 2003; Lee and Kuhl, 2016; Livne and Bar,
2016; Jonker et al., 2018; Caplette et al., 2020). This posterior
medial (PM) network (Ranganath and Ritchey, 2012; Ritchey
and Cooper, 2020) displays connectivity with the posterior hip-
pocampus (Barnett et al., 2019, 2021). In contrast, the anterior
hippocampus displays connectivity with an anterior temporal (AT)
network, including the perirhinal cortex (PRC), temporal pole,
amygdala, and orbitofrontal cortex, linked to item and object in-
formation (Ranganath and Ritchey, 2012; Ritchey and Cooper,

2020). The differing connectivity profiles of anterior and poste-
rior hippocampus are linked to differential functional properties
(Poppenk et al., 2013), leading us to predict that contextually
driven reactivations will be present in the posterior hippocampus
and PM network, with the reactivation of sensory details in pri-
mary visual cortex. A further unexplored question is how the
hippocampus, PM network, and visual cortex interact to sup-
port the prediction and reactivation of sensory patterns.

To explore these issues, we conducted an fMRI study where
participants navigated through a learned space and saw predict-
able sequences of objects (see Fig. 1A,B). Critically, one-fourth of
the sequence trials terminated early, where a specific item was
expected, but instead a blank screen was presented. Using pattern
similarity (PS) analysis, we ask (1) which regions represent item
information, (2) are item representations specific to the sequence
context, and (3) do these regions also represent information
about expected items, even if not shown. To test how the hippo-
campus interacts with other regions, we used multivariate repre-
sentational connectivity (Kriegeskorte et al., 2008; Anzellotti and
Coutanche, 2018; Pillet et al., 2020) to test whether the represen-
tational structure in the hippocampus at one point in the sequence
related to a later point in the sequence, providing evidence that
hippocampal representations support the reactivation of expected
future activity patterns in cortex.

Materials and Methods
Participants
Thirty healthy individuals participated in the study. All participants had
normal or corrected-to-normal vision and were right-handed. Data
from 1 participant were excluded because of technical complications
with the fMRI scanner, 1 subject was excluded because of incomplete

Figure 1. Experimental design and analysis. A, Participants learned the spatial layout of 9 animals in two distinct zoos. B, During fMRI, participants navigated between 2 animals, seeing a
predictable sequence of images. In one-fourth of trials, the sequence ended early where a specific item was expected, but instead a blank screen was shown. C, Item effects were established
by comparing activity patterns when seeing the same item in the same sequence and same zoo (red arrow), with patterns for different items within the same sequence context and zoo (gray
arrows). D, Sequence effects were established by comparing activity patterns between the same items seen in the same sequence, against patterns when the same item was seen in a differ-
ence sequence, while controlling for position (Position 4 only used) and zoo. E, Item expectation effects were established by comparing activity patterns between the blank period (catch trial)
and the item that was expected given the sequence context (red arrow), against activity patterns for different blank and seen items (gray arrows).
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behavioral data, 2 subjects were excluded because of poor behavioral
performance in the scanner (defined as falling below trained criterion,
85% correct, in the scanner), and 1 subject was removed from the scan-
ner before the experiment was completed. Before data analysis, to ensure
data quality, we conducted a univariate analysis to look at motor and vis-
ual activation during the task compared with an implicit baseline. Two
subjects showed little to no activation in these regions and were excluded
from further analysis. This resulted in 23 participants reported here
(11 male, 12 female, all right-handed). Written informed consent was
obtained from each participant before the experiment, and the study
was approved by the Institutional Review Board at the University of
California, Davis.

Experimental design
Stimuli. The stimuli consisted of nine common animal images. Each

animal was represented by a color photograph, presented in isolation on
a gray background. The nine animals were positioned into a cross maze
with two animals per arm and one in the central location, creating the
first zoo called “San Francisco Zoo.” A second zoo was created, “San
Diego Zoo,” by mirror-reversing and rotating 90 degrees counterclock-
wise one zoo map to create the other. Therefore, both zoos contained the
same animals with the same transitional structure but a different global
layout (see Fig. 1A).

Training. Participants initially underwent a training session to learn
the animals and their locations within the two zoos. To achieve this, par-
ticipants completed map construction, exploration, and navigation trials
for one zoo, with the process then repeated for the second (zoo order
counterbalanced across participants). During map construction, partici-
pants were shown the zoo layout and asked to arrange the animal images
shown on screen into the correct positions. During exploration, partici-
pants were shown the animal at the center of the maze and were free
to move up/down/left/right to see how moving in different directions
resulted in seeing a different animal. After making nine moves, the ex-
ploration reset to the center animal to begin again. Exploration contin-
ued until each animal was seen at least 4 times. Next, participants
navigated between positions in the maze. They were shown a cue image
indicating a start and a goal animal, followed by seeing the start animal.
The participant had to select the correct moves to reach the goal animal.
Start and goal animals were always located at the end points of an arm,
and participants had a maximum of four moves. If participants did not
reach criterion during navigation, they repeated map construction and
navigation. After completing training with one zoo, the procedure was
repeated with the second zoo. After successfully completing training
with both zoos, participants completed a final navigation task, including
trials from both zoos and presented with the same structure and timings
of the fMRI navigation task (see below). All training and navigation tasks
were presented using Psychtoolbox and MATLAB.

fMRI. During fMRI scanning, participants performed the navigation
task for both zoos in a blocked fashion across six scanning runs. In each
run, participants were told which zoo they were in and completed eight
navigation trials for one zoo before switching to the other zoo. A naviga-
tion trial consisted of seeing a cue screen showing the start and goal ani-
mal for 3 s, followed by a blank screen for 3 s. The start animal was then
displayed for 2 s followed by a 3 s blank screen. After a response, the rel-
evant animal was shown for 2 s followed by a 3 s blank screen, with the
process continuing for a maximum of four moves. After four responses
were made, the participant was shown a feedback screen. The participant
was required to make their response within 2 s of the animal appearing;
otherwise, the move was judged as incorrect and they were shown a text
screen indicating “wrong move” for 2 s followed by a 3 s blank screen,
and the animal was shown again.

Participants competed navigation trials for the 12 possible start and
goal animal combinations in each zoo, with each navigation trial being
repeated 3 times, resulting in 72 full navigation trials. A total of 24 catch
navigation trials were included where each navigation trial was termi-
nated early, after the third animal (the central animal if correct responses
were made), and instead of seeing the fourth animal, participants saw an
additional blank screen lasting 6 s before a new trial began. The order of
zoos was counterbalanced both across runs and between participants.

Scanning acquisition
MRI data were acquired on a 3T Siemens Skyra MRI using a 32-channel
head coil. Anatomical images were collected using a T1-weighted MPRAGE
pulse sequence image (TR=1800 ms; TE=29.6ms; flip angle = 7 degrees;
1 mm3 isotropic voxels; 208 axial slices, TR= 2100 ms, TE = 2.98ms,
FOV= 256 mm). Functional images were collected with a multiband
gradient EPI sequence (TR=1222ms; TE=24ms; flip angle = 67 degrees;
matrix = 64� 64, FOV=192 mm; multiband factor = 2; 3 mm3 isotropic
spatial resolution).

Data preprocessing
Preprocessing used SPM12 (https://www.fil.ion.ucl.ac.uk/spm/). Functional
images underwent slice time correction, spatial realignment, and smoothing
using a 4 mm FWHM Gaussian kernel. To detect fast motion events, the
ART repair toolbox (Mazaika et al., 2009) was used. These spike events were
used as nuisance variables within the GLMs. Single-item b images were
obtained by running a separate GLM for each object (LSS model) (Mumford
et al., 2012). For each GLM, the item of interest was entered as a single
regressor with 1 event, with an additional regressor for all other events.
All events were modeled as a 2 s boxcar and convolved with a canonical
HRF. Additional regressors were included for each spike event identi-
fied, 12 motion regressors (6 for realignment and 6 for the derivatives of
each of the realignment parameters), and a drift term using a 128 s cutoff.
This resulted in five b images per full navigation trial (e.g., zebra, chicken,
rabbit, horse, tiger) and four b images for each catch navigation trial (e.g.,
zebra, chicken, rabbit, omitted item).

PS analysis
ROI PS.Our initial analysis focused on anatomic ROIs in early visual

cortex and the hippocampus, both of which are suggested to support
sensory expectations and predictions (e.g., Hindy et al., 2016; Kok and
Turk-Browne, 2018). A V1/V2 region was created from the functional
atlas of visual cortex developed by Rosenke et al. (2021), where V1 and
V2 were combined into a single region, and inverse normalized to native
space. Probablistic maps of the hippocampal head, body, and tail were
obtained from the multistudy group template (Yushkevich et al., 2015).
These maps were warped to MNI space using DARTEL and thresholded
at 0.5. The resulting maps were then reverse normalized to each partici-
pant’s native space using Advanced Normalization Tools. The anterior
hippocampus was defined as the hippocampal head, and the posterior
hippocampus as the combined body and tail sections. This division
closely follows recommended anterior–posterior divisions (Poppenk
et al., 2013). An additional set of ROIs were tested, with the PRC and
PHC defined from the multistudy group template (Yushkevich et al.,
2015), and the temporal pole and posterior medial cortex (PMC; com-
bined precuneus and posterior cingulate cortex) were generated using
FreeSurfer (version 6) and warped to each participants native space.

PS was used to test three issues, whether regions represented: (1) the
currently viewed item, (2) the item in a specific sequence context, and
(3) the item that was expected but never shown. Our analyses focused on
the item in Position 4 of the sequence context, first because Position 4
items are always preceded by the same image in all sequences (i.e., a
rabbit), meaning any impact of the preceding item on voxel patterns
because of autocorrelation is controlled for. Second, one-fourth of
Position 4 trials were omitted with the trial ending early, allowing us
to study the impact of expectations through these catch trials. Third,
Position 4 is also situated after a key decision point (Position 3), where it
is possible to see multiple different animals following the central item
(the rabbit), with the decision made at this point determines the next
image. Therefore, Position 4 allows us to both examine item-level effects
while controlling for autocorrelation and recent visual effects, and pre-
dictive effects generated from the central decision point.

For item effects, we contrasted PS based on repetitions of the same
Position 4 item against when the items were different (see Fig. 1C). In
order to control for sequence effects, PS was restricted to trials from the
same sequence context and zoo, meaning that we are asking whether the
items are dissociable within a specific sequence (although this does not
control for the position within the sequence). Same-item PS was calcu-
lated between all possible pairs of the same item-sequence-zoo items and
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averaged. Different-item PS was calculated between pairs of items that
were not the same but were from the same sequence context and zoo,
before being averaged.

Item expectation effects were tested in the ROIs showing significant
item effects, and were based on PS between the expected-but-omitted b
image and the b image of trials where the same item was seen. All omit-
ted items were at Position 4 (see Fig. 1E). Specifically, PS was calculated
between each omitted item and the Position 4 trials where the same item
was seen. To do this, PS was first calculated between an item and an
omitted item where they are matched for item, sequence context, and
zoo, before calculating PS values when items are matched for item, but
not sequence context and/or zoo. This results in four PS values, which
are averaged to give an overall PS between an item and when an item
was expected but omitted. Importantly, this value includes PS values
containing all visual histories that converge on that Position 4 item.
Baseline PS values were calculated when the item and omitted item were
because of different items, which will also have different visual histories.
This ensures that expectation effects are matched for the past items in
the sequence, as all item expectation PS values will include data with all
sequence histories.

In order to test for effects of sequence context (see Fig. 1D), first, PS
was calculated using the Position 4 items between pairs of trials that
shared the same item, sequence context and zoo. Then we calculated PS
when pairs of items shared the same item and same sequence, but from
the other zoo. These PS values were then averaged across the two zoos
giving a PS reflecting the same items in the same sequence. These PS val-
ues were contrasted with PS for the same items when in a different
sequence (averaged across zoo). We chose to average the PS values across
the two zoos because here we are interested in sequence-level contexts,
and not potential global zoo differences, meaning that our analyses
focused on differences between the sequences without considering
the two zoos (additional control analyses show no significant or mar-
ginal effects of zoo on sequence effects).

All PS values were calculated between pairs of items using Pearson’s
correlation, excluding items where an incorrect response was made, and
excluding pairs of trials that occurred in the same scanning run (Mumford
et al., 2012). PS was calculated using all gray matter voxels within each ROI.

Multivariate connectivity. We used a measure based on representa-
tional connectivity analysis (Kriegeskorte et al., 2008; Anzellotti and
Coutanche, 2018; Pillet et al., 2020), an approach where PS in one
region is correlated with PS in another region. However, here we adapted
this approach to assess connectivity both between regions and from differ-
ent positions in the sequence. This allowed us to test the degree to which
PS in one region related to PS in another region at a different position in
the trial. Here, we tested whether PS in the hippocampus at Position 3 in
the sequence was related to PS at Position 4 in cortical regions that showed
item expectation effects. To do this, we used a partial correlation analysis,
whereby hippocampal PS from Position 3 was correlated with
Position 4 PS from a second region, while controlling for PS from
the second region at Position 3. The analysis tells us whether past
information in the hippocampus can explain future information in
cortex, over and above that explained by past information in that
same cortical region. Our analysis focused on PS between trials
from the same sequence context, and same zoo (excluding across
sequence/zoo PS), and only included PS values calculated between tri-
als in different scanning runs.

Statistical analysis
PS values for item, sequence context, and expectation effects were calcu-
lated for each participant and each ROI, and tested using paired-samples
t tests or one-sample t test against zero. An FDR correction was applied
to p values to control for the number of ROIs tested. Multivariate con-
nectivity was calculated for each participant and tested using a one-sam-
ple t test against zero. In addition to this frequentist approach, we
analyzed all contrasts using Bayesian one- or two-sample t tests in JASP
(version 0.14.1), where the null was defined as an RSA effect of 0, with a
Cauchy prior width set to 0.707. Bayes factors are reported, indicating
the ratio of evidence supporting our hypothesis compared with the null
hypothesis.

Results
Behavioral learning and task performance
The experiment was conducted in two parts: a pre-fMRI learning
session and a sequence navigation task during fMRI. During the
pre-fMRI session, participants were required to learn the identities
and locations of 9 different animals in two related zoos (Fig. 1A).
During the fMRI scanning session, participants completed six runs
of navigation trials, where each run consisted of blocks of eight
trials from each zoo. In each zoo, there were 12 different naviga-
tion trials, with each full sequence of five animal items being
repeated 3 times. As the same animals were found in both zoos,
with the same transitions, identical visual sequences were seen
in both zoos. During scanning, participants showed a high level
of performance for both zoos (San Francisco: mean = 94.3%,
SD = 6%; San Diego: mean= 95.0%, SD= 5%) with no statistical
differences seen between them (t(22) = 1.11, p= 0.28). This high
level of performance indicates that the sequences were well known;
therefore, participants would be able to predict what animal was to
appear next because of the sequence context (although they were
not instructed to do this).

Item, sequence, and expectation effects in the early visual
cortex and hippocampus
Our initial analysis of the fMRI data focused on the early visual
cortex and the hippocampus, both of which are suggested to sup-
port sensory expectations and predictions (e.g., Hindy et al., 2016;
Kok and Turk-Browne, 2018). Using multivariate PS analysis, we
tested the extent to which these regions represented information
about: (1) the currently viewed item, (2) the specific sequence con-
text, and (3) the next item that was expected in the sequence.

We first determined whether early visual cortex and the
hippocampus were sensitive to information about the currently
viewed item. To do this, we contrasted voxel PS for repetitions of
the same item and compared this with PS between different
items (Fig. 1C). In order to control for sequence effects, PS was
restricted to trials from the same sequence context and zoo,
meaning that we are asking whether the items are dissociable
within a specific sequence context. Significant item effects were
seen in V1/V2 (mean= 0.052, t(22) = 5.26, p, 0.0001; BF10 =
1720, indicating very strong evidence for an item effect) and the
posterior hippocampus (mean = 0.011, t(22) = 2.02, p = 0.042;
BF10 = 2.3, anecdotal evidence for an item effect), but not
the anterior hippocampus (mean= 0.010, t(22) = 1.37, p= 0.09;
BF10 = 0.9, anecdotal evidence for the null hypothesis; Fig. 2A).

These item-level representations may reflect the visual appear-
ance of the object; however, given past research showing that the
hippocampus is sensitive to contextual sequence information
(Ezzyat and Davachi, 2014; Hsieh et al., 2014), we next asked
whether these item effects were dissociable across the different
sequence contexts. We compared PS between the same items in
the same sequence, to PS for the same items when found in differ-
ent sequences. As our analysis only included items in Position 4,
and PS is calculated between same items pairs, any differences we
see are driven purely by information pertaining to the sequence
context, and not by visual details of item or temporal order.
Significant sequence effects were found in the posterior hippo-
campus, where patterns were more similar for same items from
the same sequence (mean= 0.041) compared with same items
across different sequences (mean= 0.030; t(22) = 2.52, p=0.0196;
BF10 = 3.1, moderate evidence for sequence effects). No signifi-
cant sequence effects were observed in V1/V2 (t(22)=1.81, p=0.085;
BF10 = 0.96, anecdotal evidence for the null hypothesis) or the
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anterior hippocampus (t(22) = 1.22, p= 0.23; BF10 = 0.42, anec-
dotal evidence for the null hypothesis), although our analyses
also do not support the absence of a sequence effect in these
regions. These results show that the posterior hippocampus not
only represents information about the current item, but that these
representations are further reflective of the specific sequence con-
text the item occurred in.

In the above analysis, we characterized representations of pre-
sented objects within a learned sequence. In well-learned sequen-
ces, upcoming items are known, and according to predictive
models of perception, being able to predict upcoming items
should impact neural processing by generating expectations
about what is about to happen (Bar, 2004; Trapp and Bar, 2015;
de Lange et al., 2018; Turk-Browne, 2019). To test this hypothesis,
we focused our next analyses on catch trials (see Fig. 1D), in which
each sequence was terminated early, such that, after Position 3, a
blank screen was shown for 6 s, followed by the onset of the next
navigation trial. In other words, on every catch trial, there was no
motor response or external visual stimulation, and the preceding
image was matched for all sequences. Thus, any representational
content during a catch trial would be expected to be driven by
memory-driven predictions in the absence of bottom-up input.

To test whether the regions that were sensitive to perceived
items also carried information about expected items in the ab-
sence of sensory input, we assessed PS between presented items
and activity when an item was expected but omitted from the
sequence. PS was calculated between items and the catch trials
when they were the same item, and compared with when the pre-
sented and catch trials were different (Fig. 1D). Significant item
expectation effects were seen in V1/V2 (mean=0.008, t(22) = 2.25,
p=0.037; BF10 = 3.3, moderate evidence for expectation effects)
but not the posterior hippocampus (mean= 0.002, t(22) = 0.58,
p= 0.19; BF10 = 0.51, anecdotal evidence for the null; Fig. 2C).
Our analyses clearly show that activity patterns in early visual
regions are not only shaped by the bottom-up visual input, but
that contextually predicted item information is reactivated which
matches the expected visual input.

Together, our analysis of early visual cortex and the hippo-
campus reveals that, while item information is present in both
regions, item representations in the posterior hippocampus were
further modulated by the sequence the item was in, and in early
visual cortex there was evidence of item patterns being reacti-
vated when they were expected but failed to appear.

Item and expectation effects in the posterior medial cortex
As discussed earlier, a wider network of regions beyond the hip-
pocampus have been implicated in memory-guided predictions
and contextual reactivations (Bar and Aminoff, 2003; Lee and
Kuhl, 2016; Livne and Bar, 2016; Jonker et al., 2018; Caplette
et al., 2020; Long and Kuhl, 2021). The PM network is function-
ally connected to the posterior hippocampus, and associated with
reactivation of contextually relevant object information, while the
AT network is connected to the anterior hippocampus and is
thought to represent item information (Ranganath and Ritchey,
2012). As such, we next repeated our analysis of item, sequence,
and expectation effects across regions in the PM network, PHC,
PMC (precuneus/posterior cingulate cortex), and the angular
gyrus, and the AT network, the temporal pole and PRC.

Item effects were calculated by comparing PS between same-
item pairs with PS for different item pairs, within the same
sequence context. Significant item effects were seen in PMC
(mean=0.026, t(22) = 3.11, p=0.0128; BF10 = 17.3, strong evi-
dence for an item effect) and the PHC (mean=0.016, t(22) = 2.80,
p= 0.013; BF10 = 9.5, moderate/strong evidence for an item effect),
but not the angular gyrus (mean = 0.010, t(22) = 1.44, p = 0.10;
BF10 = 0.98, anecdotal evidence for a null effect), temporal
pole (mean = 0.11, t(22) = 1.74, p = 0.080; BF10 = 1.5, anecdotal
evidence for an item effect), or PRC (mean = 0.005, t(22) = 0.95,
p = 0.17; BF10 = 0.5, anecdotal evidence for a null effect; Fig. 3A).
This suggests that, in addition to the early visual cortex and poste-
rior hippocampus, regions of the PM network (the PMC and
PHC) also represent the currently viewed item during navigation.

We next asked whether these regions represented the same
items in a distinct manner across sequence contexts by comparing
PS for same-item pairs from the same sequence, against same-
item pairs across different sequences. This analysis revealed no
significant sequence effects (all p values. 0.05; angular gyrus,
temporal pole, and PRC show BF10 , 0.3, moderate evidence
for the null). Finally, we tested whether the regions that showed
item effects also showed effects of expected items in the absence
of bottom-up visual input by comparing PS for when items and
catch trials were the same item, to when the presented and
catch trials were different. Significant item expectation effects
were in the PMC (mean= 0.016, t(22) = 2.96, p= 0.0187; BF10 =
11.6, strong evidence for an expectation effect) but not the PHC
(mean =�0.001, t(22) = 0.27, p= 0.46; BF10 = 0.18, moderate evi-
dence for the null; Fig. 3B). Additional exploratory analyses

Figure 2. PS results for early visual cortex and the hippocampus. A, Item effects showing difference in PS between same item pairs and different item pairs. FDR correction applied to p values.
B, Sequence effects showing changes in PS for same item pairs in the same sequences compared with seeing the same item in different sequences. C, Item expectation effects showing the difference
in PS when the same item was omitted or seen, and when the omitted and seen items were different. FDR correction applied to p values. Error bars indicate 95% CIs around the mean.
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across the remaining regions showed an item expectation effect
in the angular gyrus (mean=0.012, t(22) =2.70, p=0.0187; BF10=7,
moderate evidence for an expectation effect), but not temporal pole
(mean= 0.001, t= 0.10, p= 0.459; BF10 = 0.24, moderate evidence
for the null) or PRC (mean = �0.001, t = �0.26, p = 0.459;
BF10 = 0.18, moderate evidence for the null; Fig. 3B).

Overall, our data point to a representation of the current item
in a network of regions in early visual, PM, and the posterior hip-
pocampus, with item representations in the posterior hippocam-
pus being further specific to the sequence context. Crucially,
representations in early visual cortex and the PMC reflect the
expected item in the absence of any bottom-up input, suggesting
they are a site of top-down effects based on contextual expecta-
tions. While our results primarily point to effects in the primary
visual cortex, posterior medial cortex, and posterior hippocam-
pus, we cannot rule out item and expectation effects in other
regions, given our Bayesian analysis largely does not support the
null hypothesis, meaning that we cannot make any conclusions
about the presence or absence of item or expectation effects in
other regions.

Hippocampal and cortical interactions support reactivation
An important question arising from our results is as follows: by
what mechanism are visual details of the items being reactivated
in early visual cortex and PMC? Motivated by the role of the hip-
pocampus in representing sequence knowledge, cortical reinstate-
ment, and the prediction of future states (Eichenbaum and Fortin,
2009; Hindy et al., 2016; Stachenfeld et al., 2017; Turk-Browne,
2019; Kok et al., 2020), we next tested the hypothesis that hippo-
campal pattern information related to future information states
in visual cortex and PMC, regions showing item expectation
effects, which may suggest that the hippocampus supports the
prediction and reactivation of sensory patterns in cortex. We
reasoned that, if this is the case, the fidelity of a hippocampal
sequence representations at one state (as indexed by PS across
same-sequence pairs) should be predictive of the fidelity of the
cortical sequence representation at the next position. We focused
on Position 3 in the sequence, as this is a critical decision point
where one must choose among three possible states. Thus, we
expected that hippocampal predictions about future states may
be enhanced at this decision point (Johnson and Redish, 2007;
Singer and Frank, 2009; Pfeiffer and Foster, 2013). If so, repre-
sentations in the hippocampus at Position 3 should share infor-
mation with the patterns in cortex at Position 4, where item
representations and expectation effects are seen (Fig. 4A).

To test this, we used a multivariate connectivity approach
based on representational connectivity analysis (Kriegeskorte
et al., 2008; Anzellotti and Coutanche, 2018; Pillet et al., 2020).
Representational connectivity analysis asks whether PS in one
region is correlated with PS in another region, with a significant
correlation indicating cortical representations are shared between
the regions (Pillet et al., 2020). Here, we adapt this approach to
assess connectivity between regions and from different positions
in the sequence. We first calculated hippocampal PS between
same sequence pairs at Position 3, which is the central decision
point in the sequence (where all items are rabbits; Fig. 4B). We
next calculated PS in cortical ROIs, V1/V2 and PMC, in same
sequence trial pairs at Position 4. These ROIs were specifically
chosen as they showed item expectation effects, suggesting that
they are a target for item reactivation. In order to ensure that any
connectivity between the hippocampus at Position 3 and cortex
at Position 4 was not because of overall shared information
between Position 3 and Position 4, we further controlled for the
influence of Position 3PS from the same cortical region using
partial correlation. This analysis thus allows us to ask whether in-
formation in the hippocampus at Position 3 is related to cortical
information at the next point in the sequence, over and above
what Position 3 cortical responses could account for. We find
significant partial correlations between Position 3 representations
in posterior hippocampus and Position 4 representations in
V1/V2 (mean pxy = 0.089, t(22) = 4.51, p, 0.0001; BF10 = 355,
very strong evidence for an effect) and PMC (mean pxy = 0.063,
t(22) = 2.77, p=0.0056; BF10 = 8.9, moderate/strong evidence for an
effect; Fig. 4C). These results show that hippocampal responses
reflect information about the upcoming states that later emerge in
early visual and PMC, and is consistent with a predictive role of
the hippocampus in supporting cortical reinstatement of expected
future items. As an additional exploratory analysis, we further
tested for relationships between PS at Position 3 in the posterior
hippocampus and the PMAT regions at Position 4. This revealed
no additional significant relationships for PHC (p = 0.0604),
angular gyrus (p = 0.0792), temporal pole (p = 0.0922), or PRC
(p = 0.2468).

Discussion
Here we asked how the hippocampus, PM network, and early
visual cortex interact to support the prediction and reactivation
of sensory details in cortex. Our results revealed that the hippo-
campus, posterior medial cortex, and early visual regions work

Figure 3. PS results for regions of the PM and AT networks. A, Item effects showing difference in PS between same item pairs and different item pairs. FDR correction applied to p values. B, Item
expectation effects showing the difference in PS when the same item was omitted or seen, and when the omitted and seen items were different. Error bars indicate 95% CIs around
the mean. ANG = angular gyrus, TPole = temporal pole.
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together to represent, predict, and reactivate sensory details of
future events. After learning the locations of animals within a
cross maze structure, participants moved through the maze dur-
ing fMRI, seeing predictable sequences of images. Importantly,
in our paradigm, one-fourth of the sequences ended early, mean-
ing that the next image in the sequence was expected but not
shown, allowing us to investigate the nature of top-down expect-
ations in the absence of visual input. PS analysis revealed com-
plementary roles for the hippocampus and neocortical areas.
Specifically, the posterior hippocampus carried information about
items and sequence contexts, whereas visual cortical areas carried
information about the currently processed item, as well as item
expectations. Furthermore, we found that the fidelity of hippo-
campal PS predicted subsequent item-specific representations in
early visual cortex and the PMC. These findings show that hip-
pocampal representations are used to generate expectations of
future inputs via top-down modulation to the neocortex.

Our analysis of item effects contrasted same item and differ-
ent item trials while controlling for sequence context and zoo.
However, by controlling these factors, the position of the item in
the sequence is not controlled for. In relation to our findings of
item effects in V1/V2 and PMC, it is unlikely that position drives
these effects because we find item expectation effects in these
same regions in an analysis which does control for position effects
(item expectation effects can only be studied at Position 4). In terms
of the posterior hippocampus, while it is possible position informa-
tion could contribute to item effects, we find this unlikely given that
we do find sequence effects in this region (in a contrast that controls
position) and previous similar paradigms have found the hippo-
campus represents item-in-sequence information and not solely
position information (Hsieh et al., 2014). Importantly, as our analy-
sis of multivariate connectivity assesses PS across positions, and
item expectation effects control for position, our main findings are
not limited by any potential impact of position on our item effects.

Hippocampal memories guide the reactivation of upcoming
sensory details
Using multivariate connectivity, we tested whether the represen-
tational similarity structure of the hippocampus related to repre-
sentational similarity in V1/V2 and PMC, with the inference
being that correlated states between regions indicate that repre-
sentations are shared between the regions (Pillet et al., 2020).
Importantly, we calculated multivariate connectivity between the
hippocampus at Position 3 in the sequence (a rabbit image in all
sequences) and V1/V2 and PMC at Position 4, meaning that, in
addition to testing for shared representations across regions, we
further tested the idea that information is shared between past
hippocampal responses and future cortical responses. We observed
a significant relationship between the posterior hippocampus at
Position 3 with both V1/V2 and PMC at Position 4. These results
argue that the hippocampus is a top-down source of predictive
effects. This effect cannot be driven by a concurrent strong repre-
sentation of the current item in both regions, as our analysis con-
trols for effects in the cortical regions at Position 3. This means
there is some element of representational similarity in the hippo-
campus at Position 3 that can explain future representational
similarity seen at Position 4 in cortex, over and above that
explained by the cortical regions at Position 3 themselves. These
results align with the view that hippocampal memories guide
prediction of upcoming sensory events.

How might these predictive effects come about? One line of
research to illustrate the link between the hippocampus and pre-
diction is that of statistical learning. Studies of statistical learning
argue that the hippocampus enables us to learn the structure of
our environment, which can then be used to predict upcoming
events and help guide behavior (Schapiro et al., 2014; Kourtzi
and Welchman, 2019; Turk-Browne, 2019; Sherman et al., 2020).
Human fMRI data indeed point to the hippocampus for repre-
senting the temporal order of learned object sequences (Hsieh

Figure 4. Cross region and position multivariate connectivity. Ai, Participants navigate the sequence up to Position 3, the central decision point of the cross-maze. Aii, From here, it is possible to
see 3 different animals, 1 of which is the correct next item for this sequence. Aiii, If hippocampal (HPC) representations are predictive of future states, then the hippocampal representation at Position
3 will also contain some information about the correct future state (Position 4). If so, representations in the hippocampus at Position 3 should share information with the patterns in cortex at Position
4, where item representations and expectation effects are seen. This is tested using multivariate connectivity. B, First, posterior hippocampal activity patterns are extracted for each rabbit item
(Position 3) for each repetition of each sequence. PS is calculated between each repetition of the same-sequence pairs, resulting in a correlation vector, analogous to an unwrapped representational
similarity matrix, but limited to same-sequence pairs. Following this, similarity is calculated between same sequence/item-pairs at Position 4 for repetitions from the same sequence taken from a second
region (e.g., V1/V2), producing a second similarity vector. Multivariate connectivity is calculated as the partial correlation between the two similarity vectors from the two regions/positions while controlling
for the similarity of Region 2 at Position 3. C, Posterior hippocampus was significantly correlated with later similarity patterns in V1/V2 and PMC. Error bars indicate 95% CI around the mean.
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et al., 2014) and for predicting future states during navigation in
learned environments (Brown et al., 2016). Further, hippocampal
place cells have been shown to reactivate prospective future loca-
tions along a navigational path, a phenomenon termed preplay
(Johnson and Redish, 2007; Lisman and Redish, 2009). Together
with our results, this points to a mechanism whereby the hippo-
campus is engaged in predicting upcoming events, through rein-
stating learned details.

This leads to a question of why we did not directly observe
item expectation effects in the hippocampus yet found evidence
that hippocampal patterns at Position 3 related to future cortical
patterns at Position 4. Previous research might indicate that hip-
pocampal patterns reflect the expected stimulus, despite it being
omitted, during a tasks where a cue is explicitly predictive of
a specific shape (Kok et al., 2020). Additionally, when learning
such statistical regularities, the hippocampus has been shown to
represent the upcoming predictions over the current input
(Sherman and Turk-Browne, 2020). Our analyses focused pri-
marily on items during the navigation period of the trial, which
was preceded by a cue indicating the sequence identity. Using
the same data as reported here, Crivelli-Decker et al. (2021) did
indeed show that hippocampal patterns during the cue indicated
the identity of the following (or expected) sequence. This shows
that the hippocampus is representing predictions of future states
in the current data, in agreement with our representational con-
nectivity analysis. However, the lack of expectation effects in the
hippocampus could suggest that the dynamics of hippocampal
and cortical interactions might shift between a cue-item pre-
diction paradigm and our more complex navigation paradigm
involving multiple items in succession.

Learning paradigms have further been used to reveal the
instantiation of visual predictions, where after learning sequences
of visual gratings, the orientation of an expected grating can be
decoded from early visual cortex (Luft et al., 2015). In conjunc-
tion with our data, these studies point to the hippocampus being
a source of top-down modulation on early visual regions.
Predictions about upcoming items could be reactivated in the
hippocampus, through pattern completion (McClelland et al.,
1995), with information about the expected sensory details then
reactivated in cortex. In humans, evidence is emerging linking
hippocampal pattern completion to visual predictions (Hindy
et al., 2016; Kok and Turk-Browne, 2018). For example, Hindy
et al. (2016) used fMRI after participants learned cue-response-
outcome associations. Using multivariate classifiers trained on
either the full association or the outcome alone, and applied to
cue-response trials, they showed that hippocampal subfields
CA1 and CA2/3DG contained information about the full
sequence of associations, while V1 and V2 contained informa-
tion about the expected perceptual outcome. Further, Hindy et
al. (2016) showed that hippocampal sequence decoding was
related to visual cortex outcome decoding. These results parallel
our hippocampal sequence effects and early visual cortex item
expectation effects. However, much of the previous evidence
focused only on the hippocampus and visual cortex, while pre-
diction was also part of the task. Here, participants navigated
through learned environments and saw sequences of objects dur-
ing a task that does not emphasize prediction. This allowed us to
establish the top-down nature of hippocampal representations
with visual cortex, extending past research by showing top-down
effects in contextually sensitive posterior medial cortex, and dur-
ing a task that involved goal-directed navigation, rather than
cue-outcome predictions. This last point suggests critical evi-
dence that such predictive processes are engaged during more

natural behaviors. Our data further add to a broad literature
highlighting a top-down modulatory role of the human hippo-
campus on visual cortex, and beyond, during memory-guided
behaviors, such as retrieval (Bosch et al., 2014; Staresina and
Wimber, 2019; Barron et al., 2020), navigation (Sherrill et al.,
2013; Watrous and Ekstrom, 2014; Bridge et al., 2017), and
attention (Stokes et al., 2012; Aly and Turk-Browne, 2016a,b;
Günseli and Aly, 2020).

Predicted sensory details are reactivated in early visual and
PM cortex
A critical question we addressed was whether regions repre-
sented expected items in the absence of any bottom-up input,
finding that both V1/V2 and the PMC showed item expectation
effects. This was possible because of our catch trials, where after
Position 3 in the sequence, the final two items were omitted and
replaced by a blank screen. This meant that we could evaluate
representations of what was expected but did not appear. Such
expectation effects require the retrieval of sequence information
based on learned experiences, and the reactivation of the expected
sensory patterns.

Previous studies have reported the reactivation of expected
sensory details in primary visual regions for abstract stimuli
(Alink et al., 2010; Eagleman and Dragoi, 2012; Kok et al., 2012,
2014), with our results showing that this generalizes to complex
meaningful items. Going beyond these studies, we revealed item
expectation effects outside of primary visual cortex: in the PMC.
The design of our study did not permit us to dissociate between
visual and PMC representations, although the extant literature
speaks to this issue. For example, recent fMRI research shows
that the PMC becomes more engaged when item predictions can
be made from a preceding visual scene. Caplette et al. (2020)
showed visual scenes followed by objects that were either predict-
able given general knowledge about a scene (e.g., a beachball is
consistent with a beach scene) or the object was not predictable.
They showed increased precuneus activity for predictable objects,
suggesting that the precuneus is integrating information about the
contextual predictions and the object. In our paradigm, like the
early visual cortex, the PMC showed expectation effects when an
item was expected but never shown. Such expectation effects in the
PMC have also been observed during speech (Scharinger et al.,
2016). Such findings suggest that the PMC might play a role in
prediction that transcends sensory modalities, consistent with
the idea that PMC representations may be relatively abstract or
semantic in nature (Ranganath and Ritchey, 2012).

We also observed an item expectation effect in the angular
gyrus. Past research indicates lateral parietal regions, such as angular
gyrus, may preferentially represent retrieved content from memory
in contrast to perceived stimulus details (Lee and Kuhl, 2016;
Xiao et al., 2017; Favila et al., 2018). Our data suggest that this
may extend to the expectations and memory-guided predictions
elicited by our study, where angular gyrus expectation effects
were present, and not item effects. One limitation of our approach
is that we examine expectation effects through the relationship
between seen and catch trials, requiring some shared information
between them. However, it is possible that expectation-related
reactivations could be reflected by a transformation of the original
perceptual experience, as might be the case for episodic memory
reactivation (Xiao et al., 2017). How, and if, memory-guided reac-
tivations reflect transformed states of the initial perceptual experi-
ence remains a key issue to be explored (Favila et al., 2020).

Item expectation effects are driven by the differentiation of
activity patterns to different expected animals. Several lines of
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evidence show that when an item is highly predictable, there is
an increase in stimulus decoding and decrease in activity magni-
tude (Alink et al., 2010; Kok et al., 2012). The stimulus-specific
nature of our expectation effects, observed without the occluding
impact of a stimulus, is consistent with models where predictions
result in a sharpening of neural representations, resulting in
reduced BOLD signals following top-down constraints (de Lange
et al., 2018). In our study, the reactivated patterns were specific
enough to distinguish between different expected animal images,
yet what is less clear is the level of detail and nature of informa-
tion that was reactivated. As we hypothesize above, it is likely
that low-level visual details are reactivated in early visual areas,
and higher-level visual, semantic and contextual signals in the
PMC.

Recent research has shown that hippocampal predictions
when specific stimuli are expected depend on the complexity of
the stimulus. Kok et al. (2020) have shown that, while hippo-
campal responses contained information about the expected
stimuli when they were abstract perceptual shapes, it did not
do so when the expected items were orientation gratings. They
suggest that, as with other regions within the MTL, stimulus
complexity interacts with function. In our study, we also find
evidence for a predictive function of the hippocampus with
sequences of complex meaningful images, shown through our
connectivity analysis, although we find no evidence for item
expectation effects in the hippocampus. However, other recent
evidence using the same dataset shows that the hippocampus does
reflect future goals when the sequence is cued (Crivelli-Decker
et al., 2021). Therefore, it will be important to determine how
hippocampal predictions operate as a function of task state and
stimulus complexity. Importantly, although expectation effects
are often also seen in early sensory regions, participants in our
paradigm know the exact stimulus that will appear. In real life
situations, there can be much more uncertainty about what will
be seen. In these cases, predictions might not be related to a
specific perceptual stimulus, and instead they might be more
conceptual in nature, with expectation effects limited to higher-
level regions, such as the posterior ventral temporal cortex. These
more general contextual predictions are indeed claimed to con-
strain responses in posterior ventral temporal cortex, where pre-
dictions (or perceptual hypotheses) generated in the orbitofrontal
cortex constrain activity in posterior regions (Trapp and Bar,
2015). This raises the important questions of how real-world con-
textual predictions and predictions of varying specificity modulate
the strength and mechanism of hippocampal guided predictions.

It is long established that our past experiences impact our cur-
rent perceptions. The current study provides novel insights into
the mechanisms of how top-down expectations can influence the
visual processing of objects. The current results advance our
understanding of how the hippocampus and posterior cortical
regions work together to support perceptual expectations and
predictions of future states based on learned sequence contexts.
Further, our results help to bridge between research on the corti-
cal manifestation of expectations, and research on predictive and
contextual representations in the hippocampus.
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