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Atomic resolution imaging in transmission electron microscopy (TEM) and scanning TEM
(STEM) of light elements in electron-transparent materials has long been a challenge. Biomolecu-
lar materials, for example, are rapidly altered when illuminated with electrons. These issues have
driven the development of TEM and STEM techniques that enable the structural analysis of elec-
tron beam-sensitive and weakly scattering nano-materials. Here, we demonstrate such a technique,
STEM holography, capable of absolute phase and amplitude object wave measurement with respect
to a vacuum reference wave. We use an amplitude-dividing nanofabricated grating to prepare mul-
tiple spatially separated electron diffraction probe beams focused at the sample plane, such that one
beam transmits through the specimen while the others pass through vacuum. We raster-scan the
diffracted probes over the region of interest. We configure the post-specimen imaging system of the
microscope to diffraction mode, overlapping the probes to form an interference pattern at the de-
tector. Using a fast-readout, direct electron detector, we record and analyze the interference fringes
at each position in a 2D raster scan to reconstruct the complex transfer function of the specimen,
t(x). We apply this technique to image a standard target specimen consisting of gold nanoparticles
on a thin amorphous carbon substrate, and demonstrate 2.4 Å resolution phase images. We find
that STEM holography offers higher phase-contrast of the amorphous material while maintaining
Au atomic lattice resolution when compared with high angle annular dark field STEM.

INTRODUCTION

Phase contrast for low-atomic-number, beam-sensitive
materials has long been pursued in electron microscopy,
seeing the advent of multiple transmission electron mi-
croscopy (TEM) and scanning TEM (STEM) techniques
over the past 60+ years, including electron holography
or interferometry using both wavefront-dividing beam-
splitters [1–7] and amplitude-dividing beamsplitters [8–
14], ptychography [15–19], cryo-electron microscopy [19–
21], matched illumination and detector interferometry
[18, 22], differential phase contrast [23, 24], and more.
These techniques have benefited from the development
of technologies such as fast readout detectors and aber-
ration correctors that have driven imaging resolution of
STEM below 0.41 Å[25] and TEM below 0.43 Å[26].

Several decades ago, an interferometric technique
called STEM holography (STEMH) was initially devel-
oped as a phase contrast electron imaging technique [27–
30]. These arrangements used a charged biprism wire
to split an electron beam into two probes focused at the
specimen. With one beam transmitted through the speci-
men, the interference between the two was recorded. Due
to the slow throughput and limited geometries of detec-
tors at the time, STEMH was never widely implemented.
The recent advent of fast-readout direct electron detec-
tors enables STEMH as a practical imaging technique.
Additionally, advances in FIB fabrication technologies al-
lowed us to expand on this technique with the addition

of a static, nanofabricated, amplitude-dividing diffrac-
tion grating for use as probe-forming aperture and beam
splitter in a multiple-path-separated interferometer [14].
In this article, we provide such a demonstration.

Amplitude-dividing beamsplitters in the form of
nanofabricated electron diffraction gratings have been de-
veloped by multiple groups. In contrast to wavefront-
dividing beamsplitters such as electrostatic biprisms,
these diffraction gratings lower the coherence width re-
quirements of the beam, while also allowing for careful
shaping of the electron wave fronts phase and amplitude
structure [31–35]. They form symmetric profile probes
at the specimen plane (grating’s diffraction plane) that
are absent of any unwanted edge-diffraction artifacts, and
have one passive working part equal in size and shape to
conventional apertures, making them easily installable
into commercial electron microscopes. Additionally, al-
though many diffraction order probes are generated from
the grating, the diffraction efficiency of the grating can
be tuned to decrease the intensity in the higher orders
[14, 34].

Another technological advance that enables STEMH
is the advent of fast-readout direct electron detectors.
These detectors are capable of acquiring thousands of im-
ages in seconds and are sensitive to individual electrons.
Such a fast readout is necessary for any high resolution
4D-STEM imaging technique. In addition to a fast read-
out of 102 fps, the high detective quantum efficiency of
such detectors should allow for a decrease in the electron
dose seen by the specimen by at least two orders of mag-
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nitude [36]. STEMH combines the aforementioned direct
electron detector, amplitude-division diffraction gratings,
interference fringe phase reconstruction, and aberration
correction to provide quantitative phase contrast, includ-
ing the dc-component with respect to vacuum.

In this article, we provide the theoretical framework
for a three-beam, path-separated electron interferometer
with a phase imparted onto one or more paths. We then
provide two proof-of-principle STEMH images of Au on
C, with high-angle annular dark field (HAADF) images
for comparison. In HAADF STEM, the beam current is
focused to a sub-nanometer width and is scanned across
a field of view, dwelling at each location until a sufficient
number of high-angle scattering events have illuminated
an annulus detector, forming contrast. In STEMH, we
extract the phase contrast in these images from the data
using the aformentioned model, and find that the phase
structure calculated in the amorphous carbon region is
consistent with the thick-bonding theoretical model pro-
posed by Ricolleau et al. [37].

Sample

d

Pre-Specimen
Optics

Post-Specimen
Optics

Specimen
Plane

C3 Aperture
Plane

Image
Plane

Grating

−1 0 1
Diffraction

Orders

Figure 1. STEM holography electron optical setup.

EXPERIMENTAL SETUP

As illustrated in Fig. 1, the input plane wave electron
beam travels down the microscope column to the probe-
forming aperture, where a diffraction grating coherently
splits the electron beam into multiple diffraction orders
that are sharply peaked at the specimen plane, with tens
of nanometers spatial separation. The specimen is posi-
tioned such that all three diffraction probes, which we’ll

call probe+1, probe0, and probe−1 in the text, initially
pass through vacuum. These probes are then rastered
across the field of view along the same line as the diffrac-
tion pattern’s orientation using the scanning (deflection)
coils in the microscope. probe+1 interacts with the speci-
men while probe0 and probe−1 pass through vacuum, act-
ing as reference beams in three parallel interferometers.
An interference pattern is focused onto the detector, and
the fringes shift as the phase imparted onto the interact-
ing probe varies.

(a) (b)

(c) (d)

Figure 2. (a-d) Build-up of single electron events resulting in
interference fringes after (a) 0.0025 s, (b) 0.045 s, (c) 0.1425 s,
and (d) 0.2875 s. The FFT of each frame is shown in the inset
image. Note that frames with 0.0025 s exposure were used to
reconstruct the phase image shown in Figure 4.

As shown in Figure 2a, it is hard to make out interfer-
ence fringes from a single frame exposed to a beam cur-
rent of 0.041 nA. Increasing the detector’s exposure time
to acquire a greater number of events results in fringes
discernible to the human eye, as in Figures 2b-2d and 3.
Using a computer, however, we can resolve the fringes
in a single frame via a Fourier Transform, and so di-
rect electron detectors have decreased STEM convergent
beam electron diffraction (CBED) recording time, there-
fore decreasing the electron dose seen by the specimen.

We inserted a selected area aperture in an image plane
of the diffraction probes in order to reduce noise due
to unwanted high-angle scattering. This large aperture
only blocks high order diffraction probes (> 4th order)
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which are assumed to be negligible. The passed probes
are then recombined through the post specimen optics
and interfere in the image plane on the detector. The
phase information of each location on the specimen is
extracted by a post process described in the Theory and
Reconstruction section below.

We performed this experiment on TEAM I, an FEI
Titan 80-300 operated at 300 KeV in STEM mode with
both probe and image aberration correction and a semi-
angle of 30 mrad. A 50 um diameter, 200 nm pitch si-
nusoidal phase grating is positioned in the Condenser 3
aperture plane. We imaged a specimen consisting of Au
nanoparticles on a thin, amorphous carbon support. The
images shown in Figures 4b and 4f are reconstructed from
a 128 x 296 and 115 x 300 2D scan of 1920 x 1792 images,
forming two 4D data sets with a field of view of 11.1 nm
x 25.8 nm and 8.6 nm x 22.5 nm, respectively.

THEORY AND RECONSTRUCTION

The pre-specimen probe wavefunction is defined to be

ψi(x) = a(x− xp) =
∑

cnan (x− xp − nx0) (1)

where xp is the offset-position of our probe, an is the
phase and intensity distribution of the nth diffraction
order, cn is the complex amplitude of the nth diffrac-
tion order probe, and x0 is the real-space path separa-
tion of any one diffraction order probe from it’s nearest
neighbor. Note that the grating could, in principle, in-
corporate holographic designs [34] that produce different
phase and intensity distributions in each diffraction or-
der, such as vortex beams [32] or aberration-corrected
beams [38, 39]. In these experiments, we used a large,
straight grating within the aperture, encoding flat phase
structure in the probes such that each term in a(x− xp)
describes a sharply-peaked, symmetric function that only
differs by a linear phase, or an = a0.

Recall that the probes are scanning through space at
the specimen plane, which is why an offset-position of
the probe is needed here. We’ll use a specimen transfer
function t(x) resulting in a post-specimen wavefunction

ψf (x) = a(x− xp) · t(x), (2)

where t(x) is the object transmission function. The far
field interference pattern at the detector at probe position
xp is then

Ip(k) = |Ψf (k)|2p
=
(
A∗p(k)⊗ T ∗(k)

)
(Ap(k)⊗ T (k)) , (3)

where ⊗ represents convolution and ∗ represents complex
conjugate. We use lower-case and capitilized letters to
denote real versus reciprocal space variables, respectively.

Now lets make the assumption that there are only
three beams, or c|n|>1 = 0; n ∈ [−1, 0, 1], and that only
probe+1 interacts with the specimen with the other two
being reference beams passing through vacuum. Taking
the Fourier Transform of 3 results in five sharp peaks,
which are visible in insets to Figures 2a, 2b, 2c and 2d.

Ip(x) =I−2 (xp,x) +I−1 (xp,x) +

I0 (xp,x) +I+1 (xp,x) +I+2 (xp,x) (4)

Equation 4 is expanded into its full form in the ap-
pendix. We can extract the specimen’s transfer function
by integrating around one of the sharp peaks, along the
variable x, which would leave us with the transfer func-
tion of the scan position variable xp. We could do this
for each peak in Ip(x), which would give us redundant
information for peaks that include a signal from more
than one of the interferometers that includes the scan-
ning probe interacting with the specimen. For example,
if probe+1 is the interaction scanning probe, the object
transmission function information probed by the inter-
action scanning probe is encoded in fringes with spacing
k0 = 1

|x0| due to interference between the probe+1 and

probe0. This period corresponds to the −1- and +1- or-
der peaks in Ip(x), from which the transmission function
can be extracted.

This information is also encoded in fringes with spac-
ing k0 = 1

2|x0| due to interference between probe+1 and

probe−1, and can therefore be extracted from the −2-
and +2-order peaks in Ip(x). In summary, for a three
beam interferometer in which one first order diffraction
probe interacts with the specimen, the object transmis-
sion function information is stored in both the the first
and second orders, respectively, of the Fourier transform
of the interference fringe image.

A non-negligible +2-order diffraction probe probe+2

complicates this picture, and the −2 and +2 peaks in
Ip(x) also contain that information via interference with
probe0. Because the nanofabricated gratings are designed
such that cn>1 should be weak, we assume that it is neg-
ligible.

We can also make the assertion that the specimen func-
tion in vacuum is just 1, simplifying equation 4 even fur-
ther. Integrating around I+1 (xp,x) in equation 4, using
a0 (x) as a kernel, and noting that A0 (k) is a circular
aperture, we arrive at the solution.

∫
Ω(+x0)

a0 (x)I+1 (xp,x) dx

= c∗0c+1h (xp)⊗ t∗ (x0 + xp) (5)

where h (xp) = |a0 (xp)|2. The full derivation is provided
in both the appendix and another submitted manuscript
that provides a full treatment of the general theory of
STEMH [40].
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To summarize the numerical object wave reconstruc-
tion procedure:

1. At each probe position, take the Fourier transform
of the interference fringe pattern, resulting in equa-
tion (4).

2. Isolate a small (we used < 10 × 10 pix2) region
around a peak that contains the desired object wave
information, I+1 (xp,x).

3. Define a kernel a0(x) by taking the Fourier trans-
form of a reference image of the interference fringes,
i.e. an image when all three probes pass through
vacuum, and isolate a small region around the cen-
ter peak.

4. Multiply these two peaks and integrate, taking the
complex conjugate, equation (11).

5. Repeat for each pattern in the scan, i.e. each xp
value.

Phase-thickness relation

The specimen transfer function contains an amplitude
and phase, which can be used to calculate the thickness
of a specimen. For a non-magnetic specimen, the phase
imparted onto an electron wave-front is proportional to
the electrostatic potential projected through the bulk of
the specimen [14]. For amorphous materials, we may
consider only the mean inner potential, Vi. Thus,

φ = CEViT (xp) , (6)

where T (xp) is the thickness of the specimen for each
location in the scan, xp, CE = 2π

λ
e
E

E0+E
2E0+E , λ is the rel-

ativistic wavelength of the electron, 1.97 pm for E =
300 keV, where E is the kinetic energy of the electron,
E0 is the rest energy of the electron, and e is the electron
unit charge.

Phase uncertainty

The theory of phase detection uncertainty in electron
holography has been worked out in detail by Lichte et
al. and de Ruijter et al. [41, 42], whose work was exper-
imentally supported by Harscher and Lichte [43]. If we
only consider the counting statistics for the number of
electrons per unit area of the detector at any time (shot
noise), the standard deviation for detection of the phase
from interference fringes with visibility V = Imax−Imin

Imax+Imin
is

σφth
=

√
2

V2N
, (7)

where N is the number of electrons in the measurement
area.
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Figure 3. Mean interference fringes averaged over the scan
with the background subtracted. The inset shows a 1D profile
of the sum of fringes along the direction perpendicular to the
line trace shown.

Detectors will also contribute to the phase uncertainty,
and their contribution is typically characterized by a de-
tective quantum efficiency,

DQE =
(SNR)2

out(u)

(SNR)2
in(u)

, (8)

where (SNR)out(u) and (SNR)in(u) are signal-to-noise
ratios at the output and input of the detector as a func-
tion of spatial frequency, u [43]. TheDQE modifies equa-
tion 7 to be

σφth
= (DQE)

− 1
4

√
2

V2N
. (9)

For our experiment, the number of electrons per frame
was estimated by summing the intensity values in a frame
to be N ≈ 105 and we measured our fringe visibility
from Figure 3 to be V = 42.7% ± 4.8. The predicted
fringe visibility from an ideal three beam interferometer
depends on the phase imparted onto probe+1. The fringe
spacing at the camera was ≈ 0.38× fN , where fN is the
Nyquist frequency. At this spatial frequency, the Gatan
K2 Summit camera has a DQE ≈ 0.56 [36]. Using these
values, we plot the numerically calculated V and σφth

in
the appendix. The mean theoretical uncertainty in phase
measurement is σφth

< 15 mrad when probe+1 transmits
through a weak phase object.
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Figure 4. (a,e) Conventional annular dark field images of two different Au nanoparticles on thin C support. (b,f) Phase
reconstruction of the same regions using STEMH. (c-d) Corresponding Fourier Transforms of (a) and (b). (g-h) Selected line
traces from (e-f), highlighting the low atomic number material contrast seen using STEMH. The profiles are normalized to the
maximum value of each image after offsetting to a mean value of zero in vacuum. (i) Selected line trace from (b) along just
the carbon substrate, from which the thickness is calculated. (g-i) are plots of the mean along three line traces with the root
mean square of the the deviations shaded.

RESULTS

STEMH Phase Contrast

The STEMH phase reconstructions and HAADF im-
ages of two randomly oriented Au nanoparticles embed-
ded on a thin amorphous carbon film are shown in Fig-
ure 4. Compared to the HAADF image, STEMH al-
lows for a much higher contrast of the thin amorphous
carbon. Additionally, the dc-component of the phase is
reconstructed using STEMH, resulting in a comparable

signal with the HAADF, but with additional amorphous
carbon signal barely visible in the HAADF. Figure 4d
shows that under the experimental conditions we used,
STEMH has 0.24 nm resolution of the Au atomic lattice,
comparable to the HAADF resolution shown in 4c. No-
tice how the high frequency information between the two
techniques are comparable, whereas the STEMH recon-
struction contains much more low frequency information
because of the higher contrast on the carbon substrate.
Note that these scans were under-sampled in order to
achieve a large field of view and decrease both the scan
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time and file size. The achievable probe size for STEM is
sub-angstrom as discussed in the introduction, suggest-
ing that STEMH should be able to achieve even higher
resolution than we report.

Figures 4g - 4h shows selected line traces along the
carbon film and Au nanoparticles for both the STEMH
and HAADF signals. For comparison, the signals are
normalized to the maximum value of each image after
offsetting to a mean value of zero in vacuum. For 4h the
STEMH signal begins to rise earlier than the HAADF
due to the amorphous carbon preceding the Au nanopar-
ticles. In 4g, the two signals rise simultaneously because
the nanoparticle hangs off of the edge of the carbon.
However, the STEMH signal continues to rise around
7 nm, because unlike HAADF STEM the STEMH sig-
nal is sensitive to the carbon film lying beneath the Au
nanoparticle. This is due to STEMH’s phase contrast,
resulting in a gap between the two signals after 7 nm.

0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50

ra
d

Figure 5. Inset from center of Figure 4b in a carbon-only
region to enhance contrast.

The line trace in Figure 4b follows a path along the
amorphous carbon film and is plotted in 4i. The thick-
ness calculated from equation (6) is shown on the right
vertical axis. Interestingly, the carbon in Figures 4b and
4f, isolated in Figure 5, shows a string-like topography,
which seems to be consistent with a thick-bonding model
detailed by Ricolleau, et al. in 2013 [37].

We previously assumed that probe+2 was weak, or
c+2 < c+1

10 . This results in a phase signal < 1
10 the

probe+1 signal. Such a weak signal is present in Fig-
ures 4b and 4f in the form of a ‘shadow’ image of the
nanoparticle in vacuum, although it is weak enough to
be barely identifiable above the noise from the primary
signal on carbon.

As shown in the previous section, however, this sig-
nal is on the same order or larger than our theoretical
uncertainty, which is confirmed by our measurement of
uncertainty in the phase. Here, we measured the de-
viation from the mean for both a single line and an

area of 50 lines within the vacuum region of Figure 4b.
We found that for a single line, σφexp = 30 mrad and
σφexp = 35 mrad for an area of 50 lines. This differ-
ence can be attributed to scan noise. The increase in
noise between theory and experiment is consistent with
contributions due to higher order probes, and so future
consideration should be taken when designing gratings so
as to optimize the output SNR. Alternatively, a smaller
selected area aperture could be used to block higher or-
ders.

CONCLUSION

In this article, we demonstrated sub-nanometer reso-
lution electron phase imaging using STEMH, a multiple-
arm, path-separated interferometer with a phase im-
parted onto one or more paths. We measured a fringe
visibility of V = 42.7% experimental uncertainty in phase
measurement to be σφexp

≈ 0.03 rad. We then pro-
vided two 0.24 nm resolution phase-contrast images of
Au nanoparticles on a thin carbon substrate, with con-
ventional HAADF images for comparison.

STEMH provides quantitative phase contrast, includ-
ing the dc-component, which we utilized to analyze the
thickness of the carbon support. Recall that we used a
straight grating in this experiment to prepare sharply-
peaked, symmetric probes at the sample plane. Note,
however, that more complicated diffraction grating de-
signs can be used to holographically vary the complex
amplitude cn of the diffraction orders [22, 33–35], poten-
tially enabling more complicated electron-specimen in-
teractions with signals extractable via STEMH. Future
additions of faster readout detectors and different grat-
ing designs would further reduce the electron dose, po-
tentially allowing STEMH to image beam-sensitive, bio-
molecular materials at atomic resolution.
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APPENDIX

Full form of equation 4

Ip(x) =

+1∑
n=−1

|cnt (nx0 + xp)|2 + c∗−1c0
[
a∗−1 (x + 1x0) t∗ (x + xp)

]
⊗ [a0 (x + 1x0) t (x + 1x0 − xp)]

+c∗0c−1 [a∗0 (x− 1x0) t∗ (x− 1x0 + xp)]⊗ [a−1 (x− 1x0) t (x− xp)]

+c∗−1c+1

[
a∗−1 (x + 2x0) t∗ (x + 1x0 + xp)

]
⊗ [a+1 (x + 2x0) t (x + 1x0 − xp)]

+c∗+1c−1

[
a∗+1 (x− 2x0) t∗ (x− 1x0 + xp)

]
⊗ [a−1 (x− 2x0) t (x− 1x0 − xp)]

+c∗0c+1 [a∗0 (x + 1x0) t∗ (x + 1x0 + xp)]⊗ [a+1 (x + 1x0) t (x− xp)]

+c∗+1c0
[
a∗+1 (x− 1x0) t∗ (x + xp)

]
⊗ [a0 (x− 1x0) t (x− 1x0 − xp)] (10)

Collecting the `th peak terms a (x + `x0), we can write this in the simpler form seen in equation 4.

Derivation of transfer function reconstruction

Let’s integrate out the x variable around the +1 order peak in p(x), using a0 as a kernel.

∫
Ω(+x0)

a0 (x)I+1 (xp,x) dx =

∫
c∗0c+1a0 (x) [a∗0 (x) t∗ (x + 1x0 + xp)]⊗ a+1 (x) dx

Using the commutivity of convolutions :

=c∗0c+1

∫ ∫
a0 (x) a+1 (x− x′) [a∗0 (x′) t∗ (x′ + 1x0 + xp)] dxdx

′ (11)

Because an (x) is a symmetric function,
∫
a0 (x) a+1 (x− x′) dx = a∗0 (x)

′
?a+1 (x′) = a0 (−x′)⊗a+1 (x′) = a0 (x′)⊗

a+1 (x′). We can simplify this further using the convolution theorem, and noting that the circular aperture A0 (k) is
a top hat function:

Am (k) = A0 (k) =

{
1

πK2 |k| ≤ K
0 |k| > K

(12)

∫
Ω(+x0)

a0 (x)I+1 (xp,x) dx =c∗0c+1

∫ ∫
e−2πik·x′

A0 (k)A+1 (k) [a∗0 (x′) t∗ (x′ + 1x0 + xp)] dkdx
′

=c∗0c+1

∫ ∫
e−2πik·x′ |A0 (k)|2 [a∗0 (x′) t∗ (x′ + 1x0 + xp)] dkdx

′

=c∗0c+1

∫ ∫
e−2πik·x′

A0 (k) [a∗0 (x′) t∗ (x′ + 1x0 + xp)] dkdx
′

=c∗0c+1

∫
a0 (x′) [a∗0 (x′) t∗ (x′ + 1x0 + xp)] dx

′

=c∗0c+1

∫
|a0 (x′)|2t∗ (x′ + 1x0 + xp) dx

′

=c∗0c+1

(
|a0 (xp)|2

)∗
? t∗ (x0 + xp)

=c∗0c+1|a0 (−xp)|2 ⊗ t∗ (x0 + xp)

=c∗0c+1h (xp)⊗ t∗ (x0 + xp) (13)

Since a0 is symmetric, h (xp) = |a0 (xp)|2.
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Numerical calculation of σφth

For an ideal three beam interferometer, the three probes are of equal amplitude (cn ≈ 1√
3
). In the following

calculation, we simulated a phase grating with the following transmission function:

G (k) = exp

(
∆φ i

(
1 + cos

(
2π
d k
))

2

)
×A0(k), (14)

where ∆φ is the phase depth, a complex coefficient that determines the diffraction grating efficiency and wavefunction
amplitude loss, while d is the grating pitch. For the simulation, we used ∆φ = 2.869, which corresponds to diffraction
probe amplitudes of cn = 0.299, for n ∈ [−1, 0, 1]. The grating pitch was d = 160 nm and the diameter was 50 µm.
We then calculated the probe wavefunction and applied a phase to probe+1. We calculated the fringe visibility
from equation (15), which utilizes the fast Fourier transform of the fringe pattern. There are two fringe spacings,
and so equation (15) calculates the fringe visibility of the mth FFT peak, corresponding to the probe+1/probe−1

interferometer (m = 2) and the probe+1/probe0 interferometer (m = 1).

V =
Im +Im
I0

=
∆I

2〈I〉 (15)
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Figure 6. (a) The fringe visibility and (b) root-mean-squared uncertainty as a function of phase imparted onto probe+1 for
both m = 1 (red) and m = 2 (green).

As shown in Figure 6a, the fringe visibility V varies between 0 % and 91 %. This of course means that for a pure
phase grating, the phase uncertainty diverges at phi = `2π, where ` is an integer value. Realistically, these gratings
are not ideal phase gratings, and so the visibility is nonzero in vacuum. The corresponding phase uncertainty is shown
in Figure 6b. Since the phase information is measured in both interferometers, STEMH can utilize both signals to
decrease the phase uncertainty over a range of phase values.
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