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ARTICLE OPEN

Food authentication from shotgun sequencing reads with an
application on high protein powders
Niina Haiminen 1,2, Stefan Edlund 1,3, David Chambliss 1,3, Mark Kunitomi1,3, Bart C. Weimer 1,4,
Balasubramanian Ganesan 1,5,6,7, Robert Baker1,5,7, Peter Markwell1,5,7, Matthew Davis1,3, B. Carol Huang1,4, Nguyet Kong 1,4,
Robert J. Prill1,3, Carl H. Marlowe1,8, André Quintanar1,9, Sophie Pierre1,9, Geraud Dubois1,3, James H. Kaufman 1,3,
Laxmi Parida 1,2 and Kristen L. Beck 1,3

Here we propose that using shotgun sequencing to examine food leads to accurate authentication of ingredients and detection of
contaminants. To demonstrate this, we developed a bioinformatic pipeline, FASER (Food Authentication from SEquencing Reads),
designed to resolve the relative composition of mixtures of eukaryotic species using RNA or DNA sequencing. Our comprehensive
database includes >6000 plants and animals that may be present in food. FASER accurately identified eukaryotic species with 0.4%
median absolute difference between observed and expected proportions on sequence data from various sources including sausage
meat, plants, and fish. FASER was applied to 31 high protein powder raw factory ingredient total RNA samples. The samples mostly
contained the expected source ingredient, chicken, while three samples unexpectedly contained pork and beef. Our results
demonstrate that DNA/RNA sequencing of food ingredients, combined with a robust analysis, can be used to find contaminants
and authenticate food ingredients in a single assay.

npj Science of Food            (2019) 3:24 ; https://doi.org/10.1038/s41538-019-0056-6

INTRODUCTION
Food ingredient authentication is important for preventing cross
contamination, food fraud, and protecting food quality at each
step in the supply chain. Accurate testing can improve consumer
safety and protect public health. Ingredient authentication
enables the manufacturer to detect variation and adulteration so
that the consumer receives a product that matches written
product specifications, is free of contaminants, and is safe to
consume. Manufacturing equipment cross-contact and human
errors are some of the reasons contributing to unintentional
contamination in the food supply chain.1 In addition, food fraud
does occur such as the 2013 discovery of undeclared horse meat
in European meat products.2 Ingredients may be substituted for
similar alternatives due to low cost or limited availability.
There is a growing effort to detect contaminants before an item

enters the human food chain by leveraging molecular methods.3–5

DNA barcoding, PCR, and related targeted molecular methods for
food authentication detect species across the plant and animal
kingdoms. Many of these techniques focus on detecting specific
signatures such as ribosomal RNA (rRNA), cytochrome c oxidase I
(COI), or maturase K (matK) genes. Example use cases of these
methods include food and wildlife forensic applications,6 authen-
tication of plant food products,7 and identification of frequently
mislabeled fish species8 and herbal supplements.9 Targeted gene
sequencing and PCR methods may work well for testing known
ingredients; however, many food products undergo a deviation
from the physical form of their original food source and the final
product cannot be assumed to contain only the starting material
or only expected contaminants. Testing for tens or hundreds of

potentially present species in a complex food matrix is not a
practical approach. While PCR tests targeting multiple species are
available, for example in direct-multiplex PCR for simultaneous
pork, lamb, chicken, ostrich meat, horse meat and beef testing,10

primer design and unexpected cross-reactivity with other
potential matrix species are some of the challenges associated
with such tests.11 A recent review on molecular methods for food
authentication3 discusses the associated challenges in sample
preparation, targeted amplification and analysis for use in food
testing. Speranskaya et al. noted the challenges with existing
approaches for food authentication and discussed prospects of
using high-throughput sequencing for testing the composition of
food products.12

High-throughput nucleic acid sequencing, combined with
robust bioinformatic analysis, has the potential to replace or
augment current tests for verifying food ingredient composition
by detecting contaminants without prior assumptions of the
expected content. This includes detection of eukaryotic species
present in trace amounts (e.g., at concentrations <1% of the total
composition). Other efforts in the space of food authentication by
shotgun metagenomics include the All-Food-Seq pipeline4 and
recent research on identifying species in herbal mixtures.13 In
addition to the food matrix composition, metagenomic sequen-
cing importantly yields a snapshot of the microbial content and
possible pathogens.
We hypothesized that metagenomics will overcome the

limitations of other molecular methods to provide an accurate
method to simultaneously detect multiple contaminants. Use of
metagenomic sequencing to authenticate complex food types is a
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new approach that requires bioinformatic best practices to be
developed. To advance this approach, public metagenome
sequences and custom simulated in silico food sequence datasets
were examined to develop and calibrate a food authentication
pipeline that produces accurate eukaryotic species identification
and relative quantification from high-throughput metagenomic
sequencing reads, across plant and animal sources. This approach
has many applications that include adulteration and hazard
detection, quality control, e.g., when working with new suppliers,
and detection of anomalous samples which could indicate an
issue in the food supply chain.
In this paper, we describe a food matrix authentication

bioinformatic pipeline, Food Authentication from SEquencing
Reads (FASER), for use with high-throughput total DNA or RNA
sequencing and demonstrate its applicability for use in food
(Fig. 1). One key component of the pipeline is a comprehensive
stand-alone BLAST14 search index built on a whole genome
reference collection containing 6,160 unique plant and vertebrate
organisms (158 GB total size), which enables accurate species
assignment directly from sequencing data. Together the database
and bioinformatic analysis steps allow relative quantification of
single and multi-ingredient samples across diverse plant and
animal species. We applied FASER to 11 experimental and 5 in
silico datasets with expected compositions and demonstrated
accuracy achieving a 0.4% median absolute difference between
observed and expected relative proportions of the true positive
species. On average, the observed combined relative proportion
of true positive species per sample was over 99%. We demon-
strated that utilizing as few as 150,000 paired end (100–150 bp
length) sequencing reads was sufficient to achieve this accuracy
on both in silico simulated sequence mixtures and publicly
available experimental data. To further improve detection of low
abundance components, the number of reads used in the analysis
was increased to ~500,000 for authenticating food samples from
raw sausage meat and protein powders. To examine the use of
this approach in the food supply chain, we applied FASER to a
collection of 31 raw factory ingredient high protein powder
samples using total RNA sequencing. We observed the eukaryotic
food ingredient to be poultry in most cases as expected, with the
unexpected observation of pork and beef in three samples.
Collectively, this work provides a sensitive and accurate untar-
geted method to detect contamination directly from total DNA or
RNA sequencing.

RESULTS
To test the accuracy of the pipeline across a diverse set of
ingredient types and sequencing methods, validation was done
using 5 simulated and 11 experimentally sequenced datasets of
expected composition. Among these sequenced datasets were
four preliminary factory ingredient samples: two biological
samples for which both RNA and DNA sequencing was completed.
The pipeline was additionally applied to 31 commercial raw
material samples of a high protein powder factory ingredient to

test the authentication of food ingredients and detection of
contaminants.

Determining the number of reads required for species detection
Choosing the number of reads to be sequenced for a specimen
occurs upstream of the FASER pipeline and is typically limited by
sequencing cost. Our underlying assumption is that due to
laboratory costs associated with sequencing, the number of
sequenced reads is desired to be as low as possible, while still
enabling detection of species that are present above a desired
threshold, e.g., above 1% of the sample total. The time and cost of
bioinformatics processing is low (in the order of hours for data
analyzed in this paper) compared with sequencing more reads of
a sample, or sequencing replicates of the same sample. Details on
the compute environment and timing of the FASER pipeline are
included in Supplementary Methods.
In order to identify a breadth of eukaryotic species without prior

knowledge of the expected ingredient(s), a large reference
database containing the appropriate representative sequences
must be used; however, querying millions of sequencing reads (as
is common in a single sequencing run output) against such a
database will be very slow and may not be necessary for food
matrix authentication. In the All-Food-Seq pipeline, Ripp et al.4

used subsets of 500,000 reads (from 16 million sequenced reads)
for food matrix authentication. We ultimately chose to use a
similar number of reads, but also demonstrated using a
mathematic model how subsampling reads for increased speed
of matrix authentication affects the species detection capability
and accuracy.
The modeled read subsampling and probability of species

detection capability are illustrated in Fig. 2. For a dataset with 300
million reads, such as the high protein powder dataset analyzed in
this paper, 450,000 reads represent 0.15% of the total sequencing
information available from a sample. Based on Eq. (1), this
subsample size supports detection of at least 100 sequencing
reads from any species with frequency as low as 0.032% in the full
sample with high probability (P ≥ 0.9999), thus allowing for
sensitive detection of constituent species. Supported by this
calculation for species detection, we analyzed 0.15% of the
sequencing reads for the high protein powder samples, resulting
in a similar number of reads as Ripp et al.4 We found that fewer
reads were sufficient to test both the species detection hypothesis
as well as to quantify the species proportions in the in silico
datasets and in single ingredient public datasets. Thus, as few as
150,000 reads for the simulated datasets (Fig. 3, Tables 1 and 2)
and the single ingredient datasets (Table 3) was used to test the
detection and accuracy limits of the pipeline on low pass
sequencing data.

Parameter calibration and optimization
We examined the BLAST-matching parameter settings to test the
hypothesis that metagenome sequencing data can be used to
identify matrix members via a BLAST search. Similar sensitivity was

Quality 
control and 

read sampling

Read 
alignment 
against DB

Promiscuous 
hit filtering

Read 
taxonomic 
assignment

Species 
rela�ve 

quan�fica�on

Species-level
propor�ons

Blast database 
of 6,160 

organisms 
(158 GB)

Fig. 1 Pipeline applied to food sample sequencing data to determine matrix species and their relative proportions. In the taxonomic
assignment step with exemplary diagram, reads are placed on the lowest common ancestor (LCA) of the nodes that they hit, in case of
multiple hits per read. In the relative quantification step the read counts at internal nodes are re-assigned to the species at the leaf nodes
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observed with e-value parameters of 10−10 and 10−40 (Table 1).
The 10−40 threshold yielded fewer false positive hits in simulated
testing as compared with 10−10 while improving computational
efficiency due to a smaller output size without compromising the
results. Therefore, this BLAST parameter was chosen for further
use in this study.
We considered that if the vast majority of the alignments

assigned to species S are equally good to one or more other
species, then the reads aligning with S may actually come from
other species causing a false positive result. Accordingly, we
developed a downstream promiscuity filtering process to further
reduce the number of false positive species. The promiscuity
filtering of taxa improved accuracy for Bos taurus (cattle) (Table 2)
in the case where phylogenetically similar species may occur in

the database, such as Bos mutus (wild yak), Bos indicus (zebu),
Bubalus bubalis (water buffalo), and Bison bison (bison). With
promiscuity filtering, only alignments to B. taurus were reported,
consequently increasing the relative frequency of B. taurus in the
results from 92.55 to 100% (matching the expected composition).
In addition, we found that the required minimum threshold of
10% unique alignments specifically allowed unique identification
of each species and allowed more reads to be unambiguously
assigned to a species.

Accuracy evaluation with in silico simulated data
Three in silico constructed datasets were evaluated using known
compositions of (i) single food sources, (ii) only microbes, and (iii)
complex microbiomes with plants, animals, and microbes to
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Fig. 2 Illustration of the minimum size of a subsample to obtain a desired limit of detection. The required number of reads is shown as a
function of frequency of species S (in the full sample). In this example with a total number of N= 300 million reads, we desire with high
probability P (here P ≥ 0.9999) to have limit of detection at least L= 100 sampled reads coming from species S when S is present. For example,
when frequency of S is 0.1% (x= 0.001), a subsample of 141,499 reads from the total 300 million reads is required (marked with a square).
When frequency is S is 2% (x= 0.02), fewer than 10,000 reads are required (marked with a circle)
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separately to accommodate different scales. Details regarding the input genomes are given in Supplementary Table 6
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examine the accuracy of matrix authentication from sequencing
data. These datasets were all processed with FASER without a
priori assumptions of the samples’ content.
In the first simulated experiment, datasets were generated to

model common food ingredient species related to the collection
of 31 high protein powder samples (see the section ‘High protein
powder factory ingredient sample collection and sequencing’).
The product specifications indicated that the ingredient’s primary
animal source was chicken (Gallus gallus). However, other livestock
species could be unintentionally present due to challenges in the
supply chain. To mimic this situation, we simulated and analyzed
reads from three common livestock species—chicken (G. gallus),
beef (B. taurus), and pork (Sus scrofa) (Table 1). Overall, fidelity
between the reference genome and simulated reads was
achieved. However, a small fraction (<0.1%) of the simulated
reads were observed to better match other genomes than the
originating one. This small amount of false positive hits suggested
that low levels of false positive hits matching turkey (Meleagris
gallopavo) and quail (Coturnix japonica) may be expected in results
on chicken samples (as well as false positive water buffalo and
sheep hits on beef samples). This simulated experiment’s results
demonstrated FASER achieved >99.9% detection capability of the
expected species content in each case.
In the second simulated experiment, we tested the assumption

that microbial reads do not interfere with matrix species
identification, as they are expected to be a minor proportion of
the total reads compared with matrix reads in food samples. We
examined the rate with which microbial reads were falsely
assigned to eukaryotic plant and animal genomes. For this we
used simulated reads from a microbial reference genome
database (NCBI RefSeq Complete,15 ~7800 microbial genomes)
and processed them with FASER. From 150,000 simulated micro-
bial reads, 204 (0.14%) were assigned to a matrix species. Chiru
(Pantholops hodgsonii) was identified by 0.04% of the total input
reads and was the largest proportion of false positive matrix
content reported from the microbial content. No other matrix

species had more than 50 BLAST alignments assigned. We further
confirmed that with 300 and 450 K simulated microbial reads the
observed matrix species hits had the same low rate (0.14%). Based
on these results, when microbial reads comprised a minor
proportion of the total sequencing reads (e.g., <1%), the expected
false positives from microbes was <0.0014%.
In the third simulated experiment, FASER was evaluated on two

in silico food microbiomes where the matrix content was
constructed from multiple sources e.g., chicken (G. gallus), pork
(S. scrofa), and soy (Glycine max) with the microbiome represent-
ing 0.11–0.19% of total sequences. The tests were designed to
model realistic food microbiomes and evaluation of the data

Table 1. Food matrix authentication results from 150,000 simulated reads of single species food matrix samples from (A) chicken (Gallus gallus), (B)
pork (Sus scrofa), (C) beef (Bos taurus)

Taxon name Common name TaxId FASER: 10−40 hits 10−10 hits FASER: % Assignment with 10−40 % Assignment with 10−10

A: Species assignment of simulated chicken food matrix

Gallus gallus Chicken 9031 116,085 119,994 99.98% 99.98%

Meleagris gallopavo Turkey 9103 11 18 0.01% 0.01%

Coturnix japonica Japanese quail 93934 7 9 0.01% 0.01%

Anser cygnoides Swan goose 8845 0 1 0.00% 0.00%

Total 116,103 120,022

B: Species assignment of simulated pork food matrix

Sus scrofa Pork 9823 107,075 115,178 100.00% 100.00%

Orcinus orca Killer whale 9733 0 1 0.00% 0.00%

Total 107,075 115,179

C: Species assignment of simulated beef food matrix

Bos taurus Beef 9913 114,699 117,906 99.91% 99.88%

Bubalus bubalis Water buffalo 89462 85 121 0.07% 0.10%

P. hodgsonii Tibetan antelope 59538 10 13 0.01% 0.01%

Capra hircus Goat 9925 5 9 0.00% 0.01%

Ovis aries Sheep 9940 0 3 0.00% 0.00%

Total 114,799 118,052

Paired-end reads were simulated from the respective genomes listed in Supplemental File 3 (highlighted in blue). Blast e-value thresholds 10−40 and 10−10

were applied; 10−40 is used in the FASER pipeline. The number of read hits are shown as well as the percentage of simulated reads that were assigned to the
listed species

Table 2. Novel BLAST promiscuous hit filtering on 1000 paired-end
simulated Bos taurus reads

With
promiscuity filter

Without filter

Species name Common name Observed% Observed%

Bos taurus Beef 100.00% 92.55%

Bubalus bubalis Water buffalo – 2.21%

Bos mutus Wild yak – 1.86%

Bos indicus Zebu – 1.51%

Bison bison Bison – 1.28%

Ovis aries Sheep – 0.23%

Pantholops
hodgsonii

Chiru – 0.23%

Capra hircus Goat – 0.12%

Number of reads
with hits

784 859

Left: after filtering, right: before filtering
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demonstrated the accuracy of FASER (Fig. 3, details of the
simulation are given in the section ‘Constructing simulated
datasets’). The median absolute difference was 0.84% between
the expected and observed proportions for each input species. In
order to compare the expected and observed compositions, we
used the χ2 test. The test showed no significant difference (P ≥
0.99; data not shown) between the expected and observed
species compositions indicating that FASER indeed accurately
identified the expected contents.

Accuracy evaluation on single species sequencing data
The accuracy of species assignment was tested on real mRNA
sequencing data from single species experiments retrieved from
NCBI Sequence Read Archive (SRA)16 (chicken (G. gallus) embryo,
pork (S. scrofa) ovary, tuna (Thunnus albacares) muscle, carp
(Cyprinus carpio) spleen, rice (Oryza sativa) root, and maize (Zea
mays) leaf tissues; see Supplementary Table 1 for dataset
information). For all datasets, >96% of the species-matching reads
identified the expected matrix species (Table 3) and there were no
false positive species representing >0.5% of the reads except in
carp spleen and chicken embryo.
A small fraction of chicken embryonic mRNA reads matched to

turkey (1.02%) and quail (0.43%), as was also detected in the
simulated data experiments (Table 1). Note that the chicken
sequences were directly sampled from fertilized eggs and had no
turkey or quail RNA present. This demonstrated that the real data
results closely matched the in silico observations, thus validating
the simulation framework for modeling real sequencing data.
In the carp spleen sample, 3.26% of the reads were assigned

among three other fish species in the genus Sinocyclocheilus that
belongs to the same family as carp, Cyprinidae. In addition, in the
tuna sample, the expected species was T. albacares (yellowfin
tuna), but FASER reported 99.8% T. orientalis (bluefin tuna). The
analysis was correct in assigning tuna but was unable to
differentiate yellowfin from bluefin as only bluefin tuna was
present in the BLAST database. The carp and tuna results highlight
the need for a diverse reference database that includes the
relevant species of interest to achieve the most accurate
identification. Overall the results in Table 3 demonstrated high
accuracy, 0.36% median absolute difference of observed from
expected species content, and agreed with the observations from
simulated data. The difference between all expected vs. observed
values was not significant (χ2 test P ≥ 0.99; data not shown),
indicating FASER accurately identified the expected contents.

Accuracy evaluation on a complex food metagenome of known
composition
The closest pipeline for food metagenomes analysis found in the
literature is All-Food-Seq.4 This pipeline was published with an
application on DNA metagenome reads from a raw sausage
mixture, matched against a small reference database (19
genomes, Table S1 in Ripp et al.4). The sausage contained a
known composition, by weight in grams: 55% sheep, 35% beef,
9% pork, and 1% horse meat. In addition to the raw meats, the
sausage mixture also contained material from 11 plant species at
trace amounts to test the pipeline’s ability to detect low
abundance contaminants. The highest divergence from the target
proportion observed by All-Food-Seq was for pork (−1.79%).
We analyzed all the available 409,616 paired reads (MiSeq

dataset SRR1745838 from NCBI) to compare FASER with All-Food-
Seq on the same input data. FASER correctly identified the main
ingredients and their relative proportions: sheep, beef, and pork,
and additionally found 1% horse meat, with a median absolute
difference of 0.44% (Table 4). The highest divergence from the
target proportion in our analysis was also pork (−2.25%), followed
by beef (+0.44%). Of unexpected matrix components, we
observed goat reads at 1.83%. Goat was not included in theTa
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database used for All-Food-Seq; therefore, not present in their
results and a false positive in this analysis. The simulated testing
supported a small fraction of cattle (Table 1) and sheep reads
(Supplementary Table 2) matching goat better than the originat-
ing genomes.
Since the All-Food-Seq publication reported results on plant

contaminants only at family level, we compared them with FASER
results after summing up the counts at family level (Supplemen-
tary Table 3). In addition, we present the plant content at species
level directly. FASER detected 6/8 of the low abundance plant
contaminants at family level. For the remaining two families, the
All-Food-Seq pipeline detected only 1 and 3 reads, out of the total
409,616 paired reads. FASER detected more walnut and fewer
mustard reads while other family-level counts were comparable to
All-Food-Seq. FASER detected 6/11 of the low abundance plants at
species level, providing increased taxonomic resolution in
contaminant detection compared with All-Food-Seq results at
family level. For example, in the family Fabaceae (legumes), FASER
accurately detected 10-fold more lupine than soybean
species reads.

Summary of accuracy evaluation
In summary of the above described validation work, we applied
FASER to eleven experimental (Tables 3 and 4) and five in silico
validation datasets (Fig. 3 and Table 1) representing single and
mixed ingredient foods with expected compositions and demon-
strated accuracy achieving a 0.4% median absolute difference
between observed and expected relative proportions of the true
positive species (mean 1.0%, std. 1.4%, min. 0.0%, max. 5.9%). On
average, the combined relative content of true positive species
proportions per sample was over 99% (mean 99.1%, std. 1.3%,
min. 96.4%, max. 100.0%), and the median number of false
positive species observed was 1 (when considering species with
relative proportions >0.1%). Comparing all expected vs. observed
values by the χ2 statistic, no significant differences (P ≥ 0.99) were
observed across all detected species.

Authentication of ingredients in high protein powder sequencing
data
With the robust results from multiple in silico and public dataset
analyses, we progressed to analyze high protein powder samples
obtained from the food supply chain to examine ingredients that
were labeled to be from a single animal source.
FASER was first applied to four preliminary samples: paired DNA

and total RNA sequenced from the same biological samples, to
test the pipeline consistency across different types of sequencing.
The samples were collected from raw factory ingredients that
were stated to contain chicken and beef high protein powders

(Supplementary Table 4): MBMB-03 RNA and MFMB-08 DNA for
poultry meal, MFMB-02 RNA and MFMB-06 DNA for meat and
bone meal. Both the DNA and RNA samples were found to contain
>99% of the expected ingredient for chicken meal and meat and
bone meal, with RNA yielding 0.2% fewer false positive hits than
DNA (Table 3).
A set of 31 high protein powder samples (MFMB-04 and MFMB-

17 through MFMB-99) derived from poultry were subsequently
used for deep total RNA sequencing with >300 million reads per
sample. These sequences were then examined to determine the
ingredient composition and detect possible contamination in a
single analysis to replicate an industrial use case. Using the
developed sequencing approach and analysis pipeline we
observed that in 28 of 31 samples 99.7–99.9% of the species-
assigned sequence alignments matched chicken, the stated
ingredient source (Fig. 4 and Supplementary Data). Sequence
alignments matching other avian species were detected
(0.08–0.26% assigned to turkey and quail) in all samples, which
was expected based on the results from in silico simulations
(Table 1) and chicken embryo sequencing data (Table 3),
suggesting that conserved sequence content may account for
the assignments to the other avian species.
In three high protein powder samples—MFMB-04, MFMB-20,

and MFMB-38—pork and beef were detected in addition to the
labeled chicken ingredient. The highest proportions were
detected in sample MFMB-04, 7.7% pork (Sus scrofa) and 9.0%
beef (Bos taurus). We further confirmed the presence of chicken as
well as the presence of the observed contaminants beef and pork
in an additional analysis using Bowtie 2 to align the RNA
sequencing reads to chicken, bovine, and pig genomes. For this
analysis we examined reads from three chicken-only samples and
the three contaminated samples (Table 5). For MFMB-04, we found
that 6.1% of the alignments were exclusive to the pig genome,
8.8% were exclusive to the bovine genome, and 79.2% were
exclusive to the chicken genome (the remaining 5.9% of
sequences aligned to more than one genome). The distribution
of these reads confirmed contamination from beef and pork,
supporting the matrix relative quantification obtained with FASER
(Fig. 4). By leveraging an additional targeted analysis with highly
specific alignment settings, three eukaryotic genomes were
confirmed to be present in the samples. Thus, the authentication
pipeline reported the expected ingredient and unexpected
contaminants in real factory ingredients.

DISCUSSION
Bridging the gap between current targeted tests, such as PCR or
ELISA,17 and high-throughput sequencing for use in regular
testing processes and standards is an emerging challenge for

Table 4. FASER results on experimental food mixture

Species name Common name BLAST hits count Observed Expected Observed− expected

Ovis aries Sheep 149,726 54.07% 54.49% −0.42%

Bos taurus Beef 97,224 35.11% 34.67% 0.44%

Sus scrofa Pork 18,459 6.67% 8.92% −2.25%

Equus caballus Horse 3048 1.10% 0.99% 0.11%

Capra hircus Goat 5068 1.83% 0% 1.83%

Bubalus bubalis Water buffalo 1930 0.70% 0% 0.70%

Pantholops hodgsonii Tibetan antelope 1132 0.41% 0% 0.41%

Total ALL species (incl. those not listed here) 276,912 99.88% 99.068%

Accuracy evaluation of FASER on DNA data from All-Food-Seq raw sausage meat mixture experiment. Percentages for expected (based on ingredient weights)
vs. observed (based on fraction of species-level BLAST hits) are shown. Species with at least 100 hits are included in the table. The remaining 0.932% expected
content is from plants (see Supplementary Table 3)
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the food industry. Current molecular methods for detecting food
contamination include restriction fragment length polymorphism
(PCR-RFLP), random amplified PCR, multiplex-PCR, DNA hybridiza-
tion, and DNA barcoding.3 Each of these methods have short-
comings that include quantification accuracy, amplification bias,
the necessity of prior knowledge of a contaminant for use with a
pre-defined target sequence for primer development, and
experimental inactivity due to common food additives and
secondary metabolites.3 Analytical fingerprinting techniques such
as mass spectrometry18 and chromatography19 are also being
explored for food authentication, with their associated challenges
including the expense of building and curating databases of
reference materials.20

As the food industry continues to evolve and evaluates more
advanced molecular methods, shotgun metagenome and whole
genome sequencing of food and pathogens are becoming more
widely adopted. These approaches provide deeper information
than targeted tests in a single analysis and are becoming accepted
for use in food safety settings with early caution as the
implications of finding unexpected observations may be false
positive estimations based on limited sequence information.4,5,21

In this study, we used data from total RNA sequencing of factory

ingredients to examine whether multiple food contaminants can
be detected in a single analysis with high accuracy.
In order to bring sequencing technology into standard

analytical methods for food, it needs to provide robust and
actionable information that is anchored in accuracy and detection
limits that are reasonable for the industry. Accuracy of data
analytics is of the utmost importance because use of inaccurate
results could lead to incorrect conclusions and harm consumer
safety or initiate unnecessary regulatory action. Bioinformatic
accuracy of food matrix authentication and microbial profiling
continue to hinge on the completeness of existing reference
databases and proper calibration of existing and new tools against
this type of data. Comprehensive use of improved public
reference data and careful bioinformatics for interpreting the
sequence data are both required for accurate validation of food
matrix composition.
In highly processed commercial food products, observed matrix

species’ DNA content linearly correlates with the mass of that
species.22 This shows promise for translating the resulting
sequencing read proportions into ingredient weight proportions
in a food sample. Normalization by genome size or using an
experimentally determined normalizing factor per species may be
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Fig. 4 Raw high protein powder (poultry meal) samples’ FASER results showing unexpected non-chicken components. a Percentage of
expected content (chicken). b Percentage of unexpected content showing species with relative proportion >0.1% of total matrix composition.
Content from Bos taurus (beef ) and Sus scrofa (pork) is detected for samples MFMB-04, MFMB-20, and MFMB-38

Table 5. High protein powder sequences mapping to observed source genomes

MFMB-04 MFMB-20 MFMB-38 MFMB-39 MFMB-83 MFMB-95

TOTAL concordant hits 952,168 965,429 967,969 960,505 977,856 974,453

TOTAL exclusive hits % 94.10% 95.74% 96.23% 95.32% 92.72% 93.30%

Chicken exclusive hits % 79.19% 94.36% 95.24% 95.29% 92.67% 93.26%

Pork exclusive hits % 6.09% 0.42% 0.71% 0.02% 0.03% 0.02%

Beef exclusive hits % 8.82% 0.96% 0.29% 0.01% 0.03% 0.02%

Confirmation of poultry meal contamination by read mapping to genomes from each observed food matrix source (chicken, pork, beef ) from three matrix-
contaminated (MFMB-04, MFMB-20, MFMB-38) and three chicken-only (MFMB-39, MFMB-83, MFMB-95) high protein powder (poultry meal) samples. Exclusive
hits mapped to only one of the three genomes. Numbers in bold indicate increased contaminant mapping rates compared with chicken-only samples
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required to accurately quantify ingredient proportions in complex
food samples. Encouragingly, relative DNA contents per ingredient
directly match their content by weight in the example of the raw
sausage meat calibration data provided by All-Food-Seq
publication.4

Here, we define a matrix authentication pipeline, FASER, that is
motivated by applications in food safety yet is relevant and useful
for any intact eukaryotic matrix signal where the sample
composition may be unknown or requires confirmation. With such
pipelines, automated testing for food composition as well as
detection of contaminants and adulterants becomes feasible. The
ability to detect expected food ingredients and unexpected
content depends on a comprehensive database. The reference
used in this paper contained over 6,000 plant and animal
sequences. The pipeline achieved relative quantification of single
and multi-ingredient samples with 0.4% median absolute differ-
ence between observed and expected species relative proportions
when tested with 16 simulated and experimental datasets. In each
dataset, the sum of the true positive species’ proportion was >96%
(Tables 1, 3 and 4, and Fig. 3). The expected vs. observed
compositions were also similar according to the χ2 statistic. The
observed low abundance false positives, such as turkey and quail
in chicken data and goat in the sausage mixture, could be
explained by conserved content between the sequenced genome
and others in the database, deviation of the sequenced genotype
from the reference genome, as well as sequencing errors. False
positive species identification could be further reduced by post-
processing the sequence reads assigned to minority components.
One approach would be to contrast the observed relative
abundance against expected relative abundance from simulated
and experimental benchmarks derived from the most abundant
species (such as those presented in Tables 1 and 3).
In this proof-of-concept study we developed a pipeline for food

authentication from shotgun sequencing data, tested it on various
tissue types from experimental public studies, and applied it on
raw high protein powders. While FASER could be applied on any
food, agricultural, supply chain or environmental sample, appro-
priate benchmarking and validation of the sequencing approach
with the respective sample type should first be considered.
Additional calibration studies of high-throughput sequencing of
food, such as the sausage experiment,4 would yield valuable
insights into the overall applicability of this approach. Authenti-
cating other types of food sources beyond those tested here could
involve challenges in nucleic acid extraction and sequencing, the
availability of relevant reference genomes, and in separating
signals from food matrix species with similar sequence content.
When analyzing real food data with the FASER pipeline, the

discovery of unexpected content in a collection of 31 raw high
protein powder samples highlights the detection power of
sequencing food samples (Fig. 4). These observations also
highlight the real risk of inadvertent cross contamination in the
food supply. This information would not be readily detected using
traditional testing methods such as macronutrient profiling or
targeted molecular tests. In ongoing work we are examining the
microbial content of the 31 samples whose eukaryotic composi-
tion was analyzed here. Achieving species-level accuracy is critical
for food safety and quality as it will enable detection of
contaminants even if present in trace quantities. We demon-
strated these abilities with public raw sausage meat data4 with a
known composition, detecting 6 out of 11 of added very low
abundance plant species (some with expected quantities of
0.003% of total sample) (Supplementary Table 3).
We showed how food matrix components from mixed plant

and animal origins can be identified and quantified using short
sequencing reads in the few hundreds of thousands range. This is
in agreement with suggested practices by the All-Food-Seq
publication where <500,000 paired sequencing reads were used
to identify species in the sausage data.4 Compared with All-Food-

Seq, FASER employed a more comprehensive database (19 vs.
6,160 eukaryotes) and reported results at species level in a single
analysis across the entire species collection without prior knowl-
edge of the expected ingredients or contaminants (Table 4). All-
Food-Seq only reported family-level results for the low abundance
plants included in the sausage calibration experiment, while
FASER reported species-level proportions. In addition, FASER
automatically handled reads aligning to multiple taxa using a
known taxonomy, unlike All-Food-Seq that required manually
defining related sequence groups on a case-by-case basis.
Taken together, these results support the utility of FASER as a

robust pipeline for eukaryotic species identification that enables
simultaneous detection of multiple contaminants and authentica-
tion of ingredients from food nucleotide sequencing. This work
provides a process to accurately evaluate nucleic acid sequencing
data for confirmation and identification of matrix components.
This serves as a key step towards bridging the gap between
targeted tests that require prior knowledge of the contaminant
and the successful integration of shotgun sequencing in
standardized food safety testing procedures where any contam-
ination can be identified. A risk management model is a natural
usage and next step for this work.

METHODS
High protein powder factory ingredient sample collection and
sequencing
Two sets of preliminary samples of paired DNA and total RNA of high
protein powder factory ingredients were sampled and sequenced from
poultry meal and meat and bone meal. Subsequently, high protein powder
factory ingredient samples were collected and total RNA sequenced from
31 raw poultry meal samples. The total sequence collection thus consists of
35 samples (Supplementary Table 4).
High protein powder (HPP, 2.5 kg) samples were collected from a train

car in Reno, NV between April 2015 and February 2016 in four batches and
shipped to the Weimer lab at the University of California, Davis (Davis, CA).
Each HPP sample was composed of five subsamples from random
locations within the train car prior to shipment. On the day of arrival
0.2 g of powder was added to 2mL of Trizol LS (Ambion by Life
Technology, Carlsbad, CA). After complete mixing, the samples were used
to extract total RNA as described by Chen et al.23 and total DNA as
described elsewhere.24–29 Total RNA purity (A260/230 and A260/280 ratios ≥
1.8) and integrity were confirmed with Nanodrop (Nanodrop Technologies,
Wilmington, DE, USA) and BioAnalyzer RNA Kit (Agilent Technologies Inc.,
Santa Clara, CA, USA).23 Subsequently, cDNA was constructed using RNA
(4–15 µg total input) and SuperScript Double Stranded cDNA Synthesis kit
(Invitrogen, Catalog no. 11917-020, Life Technology, Carlsbad, CA).
Sequencing libraries using HyperPrep Plus (Kapa BioSystems, Wilming-

ton, MA, USA) cDNA were constructed as described previously23,30,31 with
an insert size between 300 and 400 bp. Library quantification was done
using qPCR (Library Quantification kit catalog #KK4824, Illumina, San
Diego, CA) prior to submission for sequencing at BGI@UC Davis
(Sacramento, CA). The Illumina HiSeq 4000 (San Diego, CA) was used with
150 paired-end chemistry for each sample except the following: HiSeq
2000 with 100 paired-end chemistry was used for the four preliminary
samples, and HiSeq 3000 with 150 paired-end chemistry was used for
MFMB-04 and MFMB-17. All of the sequences generated in this study are
available via the 100 K Pathogen Genome Project BioProject
(PRJNA186441) (see Supplementary Table 4 for a complete list of accession
numbers for each sample).

Constructing a comprehensive database of plants and animals
Sequences from NCBI’s RefSeq 81 genomic collection15 representing
vertebrates and plants were downloaded on March 13, 2017. Organisms
labeled “vertebrate_mammalian”, “vertebrate_other”, and “plants” within
the NCBI RefSeq collection were selected, at that time comprising
11,623,393 sequences from 6160 unique organisms (taxonomic identi-
fiers).15 In addition, we identified as missing from RefSeq and subsequently
added genome assemblies of three major food organisms (tuna, barley,
wheat) and two potential food contaminants (cockroach, drain fly) to the
plant and animal database (from NCBI or Ensemble databases; details in
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Supplementary Table 5). Per the standard approach recommended in the
BLAST manual32, we replaced (hard masked) low complexity regions in the
reference database with a non-ACGT character using dustmasker33 (v1.0.0
with default parameters). This curated collection of sequences (matrix
authentication database) was then used to create a BLAST (v2.6.0)
nucleotide database for food ingredient authentication and contamination
detection.

Determining the number of reads required for accurate species
identification
To identify trace components of a food matrix, deep sequencing is
required. To improve system performance, a random subsample of reads
can accelerate detection of dominant components. We used random
subsamples both to accelerate ingredient authentication and contaminant
detection, and to establish quantitatively the number of reads required for
accurate identification of minority components. To quantify the minimum
number of reads necessary to achieve a desired limit of detection, we
computed the probability of species detection from a hypergeometric
probability distribution based on a mathematical model of read sampling.
The hypergeometric distribution is a discrete probability distribution that
describes the probability of k successes in n draws, without replacement,
from a finite population of size N that contains exactly K successes, wherein
each draw is either a success or a failure. The minimum required read
sampling rate can be derived from the distribution as follows.
For a fixed total read count N (e.g., 300 million), the probability P that

species S with frequency f(S) in the full sample has at least r reads in a
subsample of n (reads) is shown below in Eq. (1):

P � 1�
Xr�1

k¼0

K

k

� �
N � K

n� k

� �

N

n

� � (1)

where K= N·f(S) is the number of reads originating from S in the full
sample. This equation can also be used to compute P′ as the probability of
having at most r− 1 reads from S among the sampled reads: P′ ≥ (1 – P). A
desired limit of detection L for calling species S present—e.g., L= 100 reads
(or L= 0.1% of the sampled reads) is needed to define a sufficient read
sampling depth, along with the desired probability of success in correctly
calling S present or absent.

Sequencing data analysis with the FASER pipeline
This section describes the steps of the FASER pipeline, outlined in Fig. 1, in
additional detail. Prior to the matrix analysis, Illumina Universal adapters
were removed and reads were trimmed using TrimGalore34 (v0.5.0) with a
minimum read length parameter 50 bp. The resulting reads were filtered
using Kraken35 (v1.0), with a custom database built from the PhiX genome
(NCBI Reference Sequence: NC_001422.1). Removal of PhiX content is
suggested as it is a common contaminant in Illumina sequencing data.36

Trimmed non-PhiX reads were used in subsequent analysis.The BLAST14

(v2.6.0) search criteria applied were 95% identity over 50% of query length,
with e-value threshold of 10−40. The projection algorithm by MEGAN CE
authors was applied to summarize the read counts at species level.37 The
promiscuity filtering involves performing two post-processing steps before
reporting the BLAST hits:

(1) Retain only those BLAST hits per read that have the highest
bit score.

(2) Identify and remove taxa S where <10% of BLAST hits are unique to
S, i.e., >90% of the hits to S also hit other taxa.

Taxonomic labeling from the NCBI RefSeq catalog15 was added to the
BLAST hits prior to the filtering, with a custom script. After BLAST
alignment and custom filtering of promiscuous hits, the remaining hits
were filtered to remove non-concordantly paired hits. A hit was
determined to be concordant if the left and right paired-end read align
against the same database reference sequence, and if the distance
between the alignments was at most 1 Mbp allowing concordant reads
spanning intron junctions. Further details describing the memory-efficient
algorithm for determining concordant pairs are included in Supplementary
Methods.

Constructing simulated datasets
Two simulated food mixtures were created for simulation and testing
(Supplementary Table 6). Simulated food mixture 1 comprised of nine
eukaryotic animal species with the following number of reads randomly
sampled from the respective genomes: 200,000 beef (Bos taurus),
200,000 salmon (Salmo salar), 100,000 goat (Capra hircus), 100,000 lamb
(Ovis aries), 100,000 black rockcod (Notothenia coriiceps), 100,000 chicken
(Gallus gallus), 1000 duck (Anas platyrhynchos), 100 horse (Equus caballus),
100 rat (Rattus norvegicus), totaling 801,200 matrix synthetic reads.
Simulated food mixture 2 contained a mix of randomly sampled plant,
animal, and insect synthetic reads that totaled 14.21 M sequence reads:
5 M soybean (Glycine max), 4 M rice (Oryza sativa), 3 M potato (Solanum
tuberosum), 2 M corn (Zea mays), 200,000 rat (Rattus norvegicus), 10,000
drain fly (Clogmia albipunctata). In addition, both simulated food mixtures
included microbial sequence synthetic reads generated from each of 15
different microbial species: 100 reads per microbe for simulated food
mixture 1 and 1000 reads per microbe for simulated food mixture 2.
Genomic read simulations were done using DWGSIM38 (v0.1.11) with
simulated sequencing errors using the following parameters: read length
(l)= 150, base error rate (e)= 0.005, outer distance between the two ends
of a read pair (d)= 500, rate of mutations (r)= 0.001, fraction of indels
(R)= 0.15, probability an indel is extended (X)= 0.3. The details of the
chicken (G. gallus), bovine (B. taurus), and pork (S. scrofa) genomes used in
simulations of single ingredient food sources are in Supplementary Table 7.
Single genome read simulation was performed using DWGSIM with
simulated sequencing errors using the same parameters as listed above
except r, R, and X were 0 indicating no mutations were added with respect
to the reference genomes in these single ingredient simulations.

Evaluating accuracy of the results
We evaluated the accuracy of FASER species relative quantification in cases
where the underlying composition was known. We used median absolute
difference to measure the difference between observed and expected
species relative proportions. For each true positive species, absolute
difference of observed proportion from known proportion was computed.
For each false positive species, difference of observed proportion from
zero was computed. Median of the absolute differences for true and false
positive species in the sample was then computed and reported. The
proportion of species-classified reads matching true positive species was
computed as the sum of the proportions of all the true positive species in a
sample. In the case of tuna sample discussed in the section ‘Accuracy
evaluation on single species sequencing data’, the statistics were
computed using the species that was present in the database.
In order to compare the differences between all observed vs. expected

values for the different matrices to assess accuracy, we used a (one-sided)
Pearson’s chi-square test of independence to compare the two sets of
values within each matrix. Expected values were derived from known
compositions of the eukaryotic matrix and observed values were estimated
from FASER results, as explained above. The χ2 statistic was estimated
according to the formula:

χ2 ¼
X

observed� expectedð Þ2=expected

This χ2 statistic was compared against a table39 of χ2 values and degrees
of freedom (calculated as the product of one less each, the numbers of
rows and columns) to assess similarity between observed and expected
values. Statistically significant differences were assigned at α= 0.05.

Read alignment to chicken, cattle, pig reference genomes
Read alignment to specific food matrix genomes was accomplished using
Bowtie 240 (v2.3.4.2) against chicken, cattle, and pig genomes individually
(without masking low complexity regions) using sub-sampled 1 million
reads per dataset (after trimming and PhiX removal as previously
described). Bowtie 2 was configured with default parameters in very-
sensitive-local mode and considering the primary alignment only. The
“proper pair” SAM flag was used to filter the resulting alignments. The
number of concordant paired reads aligning to only one genome
(exclusive alignments) were determined by a custom command line script.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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