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RESEARCH Open Access

Kinase profiling of liposarcomas using RNAi
and drug screening assays identified
druggable targets
Deepika Kanojia1*, Manoj Garg1, Jacqueline Martinez2, Anand M.T.1, Samuel B. Luty2, Ngan B. Doan3,
Jonathan W. Said3, Charles Forscher4, Jeffrey W. Tyner2 and H. Phillip Koeffler1,4,5

Abstract

Background: Liposarcoma, the most common soft tissue tumor, is understudied cancer, and limited progress has
been made in the treatment of metastatic disease. The Achilles heel of cancer often is their kinases that are excellent
therapeutic targets. However, very limited knowledge exists of therapeutic critical kinase targets in liposarcoma that
could be potentially used in disease management.

Methods: Large RNAi and small-molecule tyrosine kinase inhibitor screens were performed against the proliferative
capacity of liposarcoma cell lines of different subtypes. Each small molecule inhibitor was either FDA approved or in a
clinical trial.

Results: Screening assays identified several previously unrecognized targets including PTK2 and KIT in liposarcoma. We
also observed that ponatinib, multi-targeted tyrosine kinase inhibitor, was the most effective drug with anti-growth
effects against all cell lines. In vitro assays showed that ponatinib inhibited the clonogenic proliferation of liposarcoma,
and this anti-growth effect was associated with apoptosis and cell cycle arrest at the G0/G1 phase as well as a decrease
in the KIT signaling pathway. In addition, ponatinib inhibited in vivo growth of liposarcoma in a xenograft model.

Conclusions: Two large-scale kinase screenings identified novel liposarcoma targets and a FDA-approved inhibitor,
ponatinib with clear anti-liposarcoma activity highlighting its potential therapy for treatment of this deadly tumor.

Keywords: Liposarcoma, Ponatinib, Kinase inhibitor, Therapeutics

Background
Liposarcoma is a fat cell adult tumor with a high risk of
recurrence and metastasis. [1] It is the most common soft
tissue sarcoma with an incidence of 2.5 cases per million
population per year, accounting for approximately 17% of
all soft tissue sarcomas [1]. These tumors are slightly more
common in males than females. Classification of liposar-
comas by the World Health Organization [2] includes
well-differentiated liposarcoma, dedifferentiated liposar-
coma, myxoid liposarcoma, and pleomorphic liposarcoma
subtype. No definite causative factor has been identified
for these tumors. Surgery is the main modality of

successful treatment along with a combination of chemo-
therapy and radiation [3]. Prognosis for this cancer de-
pends primarily on the metastatic spread, disease site, and
histologic subtype, with 5-year disease-free survival ran-
ging from nearly 100% (well-differentiated) to 55% (pleo-
morphic) [4].
Trabectedin (Yondelis) gained US Food and Drug Ad-

ministration (FDA) approval in 2015 showing significant
improvement in progression-free survival for metastatic
liposarcoma [5]. Trabectedin binds in the minor groove
of DNA; it is an alkylating drug that induces DNA dam-
age resulting in the arrest of proliferation, differentiation,
and cell death; however, the detailed mechanism of ac-
tion is not known completely [6]. Studies have indicated
that myxoid liposarcomas are more sensitive to this drug
suggesting a subtype-specific anti-tumor effect [5, 7]. No
prospective therapeutic trials have assessed the response
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of therapy for each liposarcoma cohort. Clearly, a need
exists to identify relevant therapeutics effective in all
subtypes of liposarcoma.
Targeted therapy directed against tumor-specific mole-

cules has been successful in treating various tumors with
limited toxicities. Tyrosine kinases have emerged as im-
portant drug targets due to their critical role in growth
factor signaling [8]. Various tyrosine kinase inhibitors
such as imatinib [9], trastuzumab [10], sorafenib [11],
vemurafenib [12], and erlotinib [13] are already effect-
ively used in the clinic for many types of tumors. The
recent development of next-generation sequencing tech-
nology has improved our knowledge of cancer genetics
[14, 15]. Our previous study reported SNP-array copy
number analysis and whole exome sequencing of liposar-
coma patients and cell lines [14]. We found that
chromosome 12q is amplified in well-differentiated and
dedifferentiated cell lines [14]. Myxoid cell line MLS402
has the characteristic oncogenic fusion gene FUS-
DDIT3 [16]. Pleomorphic cell LiSa-2 has a 13q homozy-
gous deletion that includes the tumor suppressor RB1
gene, and SA-4 and SW872 cells have the common
BRAF oncogenic mutation (V600E) [14].
However, we could not predict kinase pathway depend-

encies in liposarcoma due to limited and non-recurrent
genetic alterations of the kinase genes in liposarcomas. To
identify kinase dependency, cell growth of 11 liposarcoma
cell lines of each different subtype were tested using both
RNAi-mediated knockdowns against 94 kinase genes as
well as a library of 120 drugs which are either US FDA
approved or in clinical trials; the majority of which are
kinase inhibitors. siRNA screening assay revealed PTK2
and KIT as important kinase genes required for survival of
liposarcoma cells. Further, drug studies identified the
multi-targeted tyrosine kinase inhibitor, ponatinib as a po-
tent therapeutic agent effective against different subtypes
of liposarcoma. This study lays the groundwork for a clin-
ical drug trial with ponatinib for patients with aggressive
metastatic liposarcoma.

Methods
Cell culture
Eleven human liposarcoma cell lines were used in the
study: SW872 (undifferentiated liposarcoma) was pur-
chased from American Tissue Type Culture Collection
(ATCC, Rockville, MD, USA); LP6 cells were provided
by Dr. Christopher DM Fletcher; SA-4 (liposarcoma)
cells were a kind gift from Ola Myklebost; LiSa-2 (meta-
static poorly differentiated pleomorphic liposarcoma)
was kindly provided by Dr. Moller [17]; and FU-DDLS-1
[18] and LPS141 [19] (dedifferentiated liposarcoma)
were gifts from Dr. Nishio and Dr. Fletcher, respectively.
GOT-3 [20] (recurrence of a myxoid variant of a well-
differentiated liposarcoma) and MLS-402 (myxoid

liposarcoma) [16] were generous gifts from Dr. Åman.
T778 and T1000 (recurrent well-differentiated liposar-
coma) were generously provided by Dr. Pedeutour. All
these liposarcoma cell lines were maintained in RPMI
medium supplemented with fetal bovine serum in a hu-
midified incubator at 37 °C with 5% CO2 [14]. STR pro-
filing was done on all the cell lines.

Small-interfering RNA screen
Liposarcoma cell lines were transfected with a siRNA
kinase library (including 94 kinase gene target) as de-
scribed earlier [21]. Liposarcoma cells were manually
transfected using electroporation technology with a pool
of four siRNAs targeting different regions of individual
kinase RNAs per well (Dharmacon) along with control
non-specific siRNAs. All transfections were performed
in triplicates, three times, and cell viability was assessed
using CellTiter 96 AQueous One Solution Cell Prolifera-
tion Assay (Promega). Cell viability values were calcu-
lated by normalizing to mean of non-specific siRNA
control values. Kinase genes were considered as a signifi-
cant target only the P value was less than 0.05, and mean
viability value was less than 70% of non-specific siRNA
control value.

Drug inhibitor screen
High-throughput drug inhibitor screen (using 120 drugs)
was performed as previously published [22]. List of
drugs used in the study provided are in Additional file 1:
Table S1A. Briefly, each drug was put in replicates in 96-
well plates, and 50,000 cells were added per well diluting
the drug to the final desired concentration. Cells were
treated with the drug for 3 days at 37 °C with 5% CO2,
and cell proliferation was measured with CellTiter 96
AQueous One Solution Cell Proliferation Assay (Pro-
mega). Wells without drug were set up as controls and
used to normalize the data. Previously published algo-
rithm was implemented to obtain automated IC50 calcu-
lations and identification of therapeutic target [22].

RNA interference
Human PTK2 and KIT gene-specific SMARTpool ON-
TARGETplus siRNA containing four pairs of siRNAs
including non-targeting control siRNA pool were pur-
chased from Dharmacon (CO, USA). LPS141 and
MLS402 cells were transfected with 20 nM PTK2 and
KIT siRNA pool, respectively, using Lipofectamine RNAi
Max according to the manufacturer’s protocol along
with non-targeting siRNA. Transfection efficiency was
around 80–90%. Cells were harvested for protein expres-
sion analysis 48 h after transfection.
We generated stable knockdown of PTK2 and KIT in

LPS141 and MLS402 cells, respectively, using gene-
specific short hairpin RNAs (shRNAs) and non-targeting
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shRNA in a lentiviral vector system [14]. Sequences of
shRNA used are listed in Additional file 1: Table S1B.
Knockdown cells were analyzed for protein inhibition by
western blotting and for cell proliferation by MTT assay.

Generation of knockout cell line using CRISPR/Cas9 vector
system
Short guide RNAs (sgRNAs) for CRISPR/Cas9 were de-
signed at BROAD sgRNA design website (https://portals.-
broadinstitute.org/gpp/public/analysis-tools/sgrna-design)
targeting PTK2 and KIT kinase genes along with sgRNA
targeting bacterial lacZ as control sgRNA. Sequences for
guide RNAs available in Additional file 1: Table S1B.
Complementary sgRNAs were annealed and cloned in
lentiCRISPRv2 vector (a gift from Feng Zhang: Addgene
plasmid # 52961) [23]. Lentiviral particles were prepared;
cells were infected, and after 24 h of infection, cells were
selected with puromycin (0.5 μg/ml) for 3–5 days [24].
After two additional weeks, cells were harvested and
analyzed for silencing of the target gene. This was
followed by analyzing cell viability at different time points
using MTTassay.

Rescue experiment
Full-length PTK2 cDNA clone without the 3′UTR was
generated in lentiviral pLX303 [25] (a gift from David
Root; Addgene plasmid # 25897) vector using pDONR223-
PTK2 vector [26] (gift from William Hahn and David Root;
Addgene plasmid # 23902) by Gateway cloning system.
Lentiviral particles expressing PTK2 cDNA were infected
in PTK2 shRNA3 knockdown LPS141 cells (shRNA di-
rected against 3′UTR of PTK2 gene) and selected with
blasticidin for a week. After selection, infected cells were
analyzed for protein expression and cell viability.
The coding region of KIT without the 3′UTR with a

GFP tag in pCMV6-AC-GFP vector was purchased from
OriGene (MD, USA). The vector expressing KIT-GFP
was transfected in KIT shRNA3 knockdown stable
MLS402 cells (shRNA directed against 3′UTR of KIT
gene) using Lipofectamine 2000 following manufac-
turer’s instructions. Cells were analyzed for protein ex-
pression and cell proliferation at 72 h after transfection.

Cell proliferation assay
Reduction in cell viability was measured by MTT cell
proliferation assay as previously described [14]. Briefly,
5000 cells per well were seeded in a 96-well plate and in-
cubated for 24 h. Serial dilutions of the drug were added
in triplicates to the cells along with control diluent and
incubated for 3 days at 37 °C with 5% CO2. MTT re-
agent (10 μl/well) was added and incubated for 2–4 h.
The reaction was stopped using 100 μl/well MTT stop
solution. Absorbance was measured at 570 nm.

Colony formation assay
Soft agar colony formation assays were used to study the
anchorage-independent growth of cells before and after
drug treatment as described earlier [14]. In brief, a base
agarose layer (0.8%) was prepared in a 24-well plate con-
taining different dilutions of ponatinib or control dilu-
ent. Cells were harvested, counted, and 1500 cells per
well resuspended in top agarose layer (0.5%) with ponati-
nib or diluent dilutions and layered on the base agarose
layer. After 10–30 days of culture, colonies were counted
using an inverted microscope.
Anchorage-dependent colony formation assays were

performed by seeding cells (2000 cells/well) in a 6-well
plate. After 24 h, media changed to media containing
different concentrations of the drug. Media was changed
twice a week, and colonies were allowed to grow for 10–
15 days. Colonies were washed with PBS, fixed with
methanol, stained with crystal violet, and quantified.

Western blotting
Cells (4 × 106) were seeded in a10-cm dish; after 24 h,
cells were treated with different drug concentrations for
different durations. After treatment, cells were harvested,
washed with ice-cold PBS, and lysates were prepared using
Protein Extraction Reagent (Thermo Scientific) containing
a protease inhibitor. Proteins were separated on SDS-
PAGE and transferred to polyvinylidene difluoride mem-
branes, which were further incubated with the indicated
antibodies, and detection was performed using Chemilu-
minescent HRP Substrate. List of antibodies used is pro-
vided in Additional file 1: Table S1C.

Cell cycle analysis
Cells were cultured with either ponatinib or diluent,
washed with ice-cold PBS and fixed in cold 70% ethanol
while vortexing, and washed in cold PBS. Propidium
iodide/RNase solution was added and analyzed by flow
cytometer.

Apoptosis assay
Cells were seeded overnight and treated with either
ponatinib or control diluent for 16 h. After treatment,
cells were collected, washed, and stained with Annexin
V-APC and Propidium iodide (BD Biosciences) accord-
ing to manufacturer’s instructions. Stained cells were an-
alyzed by flow cytometry.

In vivo xenograft tumor studies
All animal experiments were performed according to the
ethical regulations of Institutional Animal Care and Use
Committee of the National University of Singapore.
Male NOD SCID gamma mice (5–6 weeks old) were
transplanted with the liposarcoma cells. LPS141 cells
(2 × 106 cells per mice in 200 μl volume) combined with
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matrigel were subcutaneously injected into the flank of
the mice. After tumors reached about ~ 100 mm3, mice
were randomly divided into two groups of nine mice
each. Experimental cohort received oral ponatinib
(10 mg/kg), and control mice received diluent, both by
oral gavage. Drug treatment continued every day for
3 weeks. At the end of the experiment, mice were
sacrificed; tumors were dissected and weighed. Half of
each tumor was snap frozen, and the other half was
formalin fixed for immunohistochemical analysis.
Tumor tissues investigated for protein expression by
preparing tumor lysates using RIPA lysis buffer. After
bicinchoninic acid assay protein estimation, lysates

were analyzed by SDS-PAGE and western blotting
assays.

Immunohistochemical analysis
Immunohistochemistry was performed on sections from
the xenografts tumor tissue using the Ki-67 antibody as
described earlier [14].

Statistical analysis
Statistical significance was determined using the paired
two-tailed Student’s t test. A P value of ≤ 0.05 was con-
sidered statistically significant. All in vitro experiments

Fig. 1 Kinase siRNA screen of liposarcoma cell lines and kinase target validation. a Cell viability plot of LPS141 and MLS402 cells after 96 h post-
transfection with the siRNA library. Results represent mean values compared to non-specific control. Blue bars represent viability more than 70%
of control and P > 0.05. Red bars indicate viability less than 70% of control and P < 0.05. Black bars are non-specific pooled siRNA controls. b Validation
of PTK2 and KIT as target kinase using siRNA and shRNA knockdown in LPS141 and MLS402 cells. Cell viability evaluated by MTT assay at different time
points. Western blotting showed reduced protein levels of PTK2 and KIT after 72 h of siRNA transfection and shRNA infection. c Cell viability analysis at
different time points of PTK2 and KIT CRISPR knockout LPS141 and MLS402 cells, respectively, along with LacZ sgRNA knockout control cells. Western
blotting confirmed that CRISPR sgRNA1 and sgRNA2 significantly silenced protein expression in the respective cells compared to LacZ sgRNA
(α-tubulin, loading control). Experiments were done in triplicates, 3 times and shown as mean ± SE. *P value < 0.01
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were done three times in triplicates, and data expressed
as mean ± standard error.

Results
RNAi screen identified kinase targets in liposarcoma cells
Loss of function screening was performed using 11 lipo-
sarcoma cell lines against a tyrosine kinase siRNA library
(94 target genes) to identify targetable kinases. List of
siRNA target genes is provided in Additional file 1: Table
S1D. Liposarcoma cell lines of different subtypes were
assayed including well-differentiated: T449, T1000, T778,
and GOT3; dedifferentiated: LPS141, FU-DDLS-1, LP6,
and SA4; myxoid: MLS402; pleomorphic: LiSa-2; and
undifferentiated: SW872. Transfected cells received four
individual siRNA molecules against each kinase gene.
After 96 h of transfection, cell viability was assessed
using MTS assay, and data was normalized. Cell viability
was calculated as a mean percent normalized to non-
specific control wells for each of the kinase genes and
plotted as a bar graph (Fig. 1a and Additional file 1:
Table S1D). Kinase genes showing a significant reduction
in cell viability and proliferation are shown as red bars.
List of kinase targets sensitized by siRNAs that caused a
significant reduction in cell viability in at least one cell
line is provided in Table 1. Several kinases were

associated with the liposarcoma cell viability, and some
of them are subtype specific. Two kinase genes which
were the top hits and suppressed the growth of more
than one cell line are protein tyrosine kinase 2 (PTK2)
(LPS141, T778) and KIT (T449, GOT-3, and MLS402).
In further experiments, PTK2 and KIT were silenced in
LPS141 (dedifferentiated) and MLS402 (myxoid) cells,
respectively, using siRNA and shRNA separately (Fig. 1b).
Knockdown of PTK2 and KIT significantly reduced the
cell viability compared to controls as assessed using the
MTT assay (Fig. 1b). We also generated CRISPR-Cas9
mediated PTK2 and KIT gene knockout in LPS141 and
MLS402 cells, respectively, using two sgRNA against
each gene along with control LacZ sgRNA. Western
blotting analysis established inhibition of the expression
of the target protein in cells transfected with target
sgRNA1 and sgRNA2 compared to control LacZ sgRNA.
Significant growth reduction in kinase knockout cells
compared to control cells in both cell lines was observed
using MTT assay (Fig. 1c). In addition, we performed
rescue experiments. We generated stable liposarcoma
cell lines containing shRNA targeting 3′UTR of PTK2
and KIT gene and rescued these cells by expressing
cDNA of the respective protein (not containing 3′UTR
of these genes). Exogenous expression of PTK2 and KIT

Table 1 List of kinase targets identified in liposarcoma cell lines by high-throughput siRNA screening

Symbol Gene name Cell line (liposarcoma histotype)

EGFR Epidermal growth factor receptor SW872 (undifferentiated)

PTK2 Protein tyrosine kinase 2 (or focal adhesion kinase) LPS141 (dedifferentiated)

T778 (well-differentiated)

TXK Tyrosine-protein kinase LPS141 (dedifferentiated)

SYK Spleen tyrosine kinase LP6 (dedifferentiated)

FER FER (Fps/Fes related) tyrosine kinase SA4 (dedifferentiated)

KDR Kinase insert domain receptor SA4 (dedifferentiated)

KIT v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog T449 (well-differentiated)

MLS402 (myxoid)

GOT3 (well-differentiated)

PDGFRA Platelet-derived growth factor receptor, alpha polypeptide T449 (well-differentiated)

LiSa-2 (pleomorphic)

STYK1 Serine/threonine/tyrosine kinase 1 T778 (well-differentiated)

EPHA6 Ephrin type-A receptor 6 T778 (well-differentiated)

ROR1 Receptor tyrosine kinase-like orphan receptor 1 MLS402 (myxoid)

JAK1 Janus kinase 1 FU-DDLS-1 (dedifferentiated)

MATK Megakaryocyte-associated tyrosine kinase FU-DDLS-1 (dedifferentiated)

LiSa-2 (pleomorphic)

ROS1 ROS proto-oncogene 1, receptor tyrosine kinase FU-DDLS-1 (dedifferentiated)

MST1R Macrophage stimulating 1 receptor LiSa-2 (pleomorphic)

FLT3 Fms-related tyrosine kinase 3 T1000 (well-differentiated)

JAK2 Janus kinase 2 T1000 (well-differentiated)
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protein in PTK shRNA3-LPS141 and KIT shRNA3-
MLS402 cells, respectively, resulted in significant rescue
of cell proliferation signifying that inhibition of proli-
feration was specific to knockdown of target gene
(Additional file 1: Figure S1). These results further vali-
dated and strengthened the potential of PTK2 in dedif-
ferentiated liposarcoma and KIT in myxoid liposarcoma
as targetable kinases.

Small-molecule inhibitor screen of liposarcoma cells
In addition, a small-molecule inhibitor screen was per-
formed to identify kinase targets in liposarcoma cells. A li-
brary of small-molecule kinase inhibitors (120 drugs FDA
approved or in clinical trials) was tested for their anti-
proliferative activity against our panel of 11 liposarcoma
cell lines. Most of these drugs targeted kinases, and a
complete list is provided in Additional file 1: Table S1A.
Response to these small molecule inhibitors is shown as a
heat map (Fig. 2). Complete data containing IC50 values of
all drugs is provided in Additional file 1: Table S1A. Most

of the cell lines were highly sensitive to growth inhibition
by a proteasome inhibitor (Velcade), a protein kinase
inhibitor (Staurosporine), and Hsp90 inhibitors (17-AAG
and Elesclomol). PI3K, mTOR, and CDK inhibitors also
were potently cytotoxic against the liposarcoma cell lines.
Inhibitors targeting ERBB and MAPK family members
were inactive, hence ruling out therapeutically inhibiting
these signaling pathways in liposarcoma. Interestingly, the
myxoid liposarcoma cells (MLS402) showed a robust sen-
sitivity towards all four tested Aurora kinase inhibitors. In
contrast, the IGF-1R inhibitor NVP-ADW742 selectively
inhibited the growth of many well-differentiated/dediffer-
entiated liposarcomas suggesting possible subtype-specific
therapeutic targets.

Selection of receptor kinase inhibitors from the library
panel
Among the receptor tyrosine kinase inhibitors, ponatinib
(trade name Iclusig, previously AP24534), dasatinib, and
sunitinib (previously known as SU11248) were the most

Fig. 2 Heat map of sensitivity of liposarcoma cell lines to small molecule inhibitors. Liposarcoma cells are grouped according to histotypes
(UDLPS undifferentiated liposarcoma, WDLPS well-differentiated liposarcoma, DDLPS dedifferentiated liposarcoma, MLPS myxoid liposarcoma, and
PLPS pleomorphic liposarcoma), and inhibitors are grouped into related target families. Median IC50 values (0–10,000 nM) for every drug and each
cell line is represented from most sensitive (dark red) to most resistant (dark blue) as shown in color bars. Solid arrow demarks ponatinib
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potent drugs affecting the viability of liposarcoma cells
lines irrespective of subtypes (Fig. 3a), and each is FDA
approved for multiple other malignancies. These are
multi-targeted tyrosine kinase inhibitors affecting vari-
ous targets including BCR/ABL, KIT, SRC, VEGFR, and
FGFR (Fig. 3b). KIT is a common target of these three
inhibitors (Fig. 3b). Significantly, KIT was also a top hit
in our RNAi screen with the KIT siRNA prominently
inhibiting cell viability of three liposarcoma cell lines.
Taken together, the screening assays revealed and
highlighted KIT as an important and potentially drug-
gable kinase for liposarcoma therapy.
Furthermore, we validated the potent suppressive ef-

fects of the two KIT kinase inhibitors: ponatinib (IC50

range from 33 to 525 nM) and dasatinib (IC50 range
from 0.20–105 nM) against all the liposarcoma cell lines
(Fig. 3c, d). A recent phase 2 trial of dasatinib in patients

with advanced sarcoma (not specifically liposarcoma)
found that the drug had little clinical benefit [27]. There-
fore, we focused on ponatinib, which is an orally bioavail-
able, multi-targeted receptor tyrosine kinase inhibitor with
antiangiogenic and antineoplastic activities.

Effect of ponatinib on KIT signaling pathway and
liposarcoma proliferation
Ponatinib (16 h exposure) inhibited the phosphorylation
of KIT (Y719) and its downstream signaling molecules
including phosphorylation of AKT, ERK1/2, STAT3,
mTOR, and P70S6K in a dose-dependent fashion in ded-
ifferentiated (LPS141) and a myxoid (MLS402) cell lines
(Fig. 4a). Growth inhibitory effect of ponatinib against
these liposarcoma cells was confirmed using two add-
itional in vitro assays: foci formation (Fig. 4b) and clono-
genic growth in soft agar (Fig. 4c).

Fig. 3 Anti-proliferative effects of receptor tyrosine kinase inhibitors against liposarcoma cells. a Heat map of IC50 values of receptor tyrosine
kinase inhibitors arranged according to their cytotoxic efficacy (results derived from Fig. 1). Color bars indicate most sensitive (dark red) to most
resistant (dark blue) cell lines. b The table shows top three most potent inhibitors (ponatinib, dasatinib, and sunitinib) and their known primary
targets indicating KIT as a common target (highlighted in red). c Individual dose-response curves (MTT assay) of liposarcoma cell lines to dasatinib
and ponatinib at different concentrations for 3 days. Experiments were done in triplicates, repeated 3 times and represent the mean ± SE. d IC50
values were calculated from graphs shown in c
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Ponatinib caused cell cycle arrest and apoptosis of
liposarcoma cell lines
Ponatinib (16 h, 1000 nM) caused a decrease in S phase
and an increase in sub-G1 phase (apoptotic cells) in the
liposarcoma cells (Fig. 5a). Ponatinib induced a dose-
dependent decreased levels of cyclin D1, total CDK4,
and phosphorylated RB (Fig. 5b). In addition, apoptosis
measured by Annexin V/propidium iodide staining
showed that ponatinib caused a significant increase in
apoptotic liposarcoma cells compared to diluent control
(Fig. 5c). Also, ponatinib decreased levels of phosphory-
lated BAD, BCL-XL, and MCL-1 and increased the levels
of cleaved caspase 9 as well as proapoptotic BAX
(Fig. 5d). These results show that the anti-proliferative
activity of ponatinib was associated with cell cycle arrest
and apoptosis of the liposarcoma cells.

Ponatinib inhibited growth of human liposarcoma tumors
growing in immunodeficient mice
Tumors in experimental mice (ponatinib treatment)
were significantly (P = 0.004) smaller than in control
mice (vehicle treatment) (Fig. 6a, b). Body weights and
overall activity of both murine groups were stable during
the experiment (data not shown). Tumors of the
ponatinib-treated mice had a significantly lower

percentage of proliferating cells (less Ki-67 staining)
compared to the tumors from the control mice (Fig. 6c).
Further investigation revealed slightly reduced levels of
phosphorylated KIT and FGFR in ponatinib-treated tu-
mors compared to vehicle-treated group (Fig. 6d).
Tumor cell lysates revealed activation of pro-apoptotic
proteins (BAX and cleaved caspase 9) and reduction of
anti-apoptotic proteins (MCL-1, BCL-XL, p-BAD) in tu-
mors of the ponatinib-treated mice compared to tumors
of the vehicle-treated mice (Fig. 6e). Thus, the xenograft
study demonstrated ponatinib significantly decreased the
tumor growth by inhibiting cellular proliferation in vivo
and inducing apoptosis.

Discussion
Liposarcomas are the most frequent soft tissue sarcomas
with histological heterogeneity and diverse chemosensi-
tivity. The response of liposarcomas to standard chemo-
therapeutic agents depends on their histological subtype
ranging from myxoid being most sensitive to well-
differentiated being most resistant to therapies [28].
However, none of the standard chemotherapeutic drugs
are very effective against liposarcomas. Personalized
medicine hopes to identify the vulnerable pathways in
cancer cells.

Fig. 4 Ponatinib treatment inhibits KIT signaling and clonogenic growth of liposarcoma cells. a Ponatinib (250–1000 nM, 16 h)-treated liposarcoma cell
lines LPS141 (well-differentiated) and MLS402 (myxoid) were analyzed for KIT signaling pathway by western blotting. β-actin and GAPDH served as
loading controls. b Anchorage-dependent colony formation assay of LPS141 and MLS402 cells treated with either ponatinib (250–1000 nM, 10 days) or
diluent control. Colonies were stained with crystal violet (microscope images in left panel) and quantification of staining intensity is shown by bar
graphs (right panel). c Soft agar colony formation (anchorage-independent) of LPS141 and MLS402 cells cultured with either ponatinib (250–1000 nM,
21 days) or diluent control. Number of colonies shown as bar graphs. Experiments were done in triplicates and repeated 3 times. *P value ≤ 0.01
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We used RNA interference screening and identified 17
important and critical kinases, which can decrease the
growth of liposarcoma cells when silenced. To validate
and corroborate further the identified kinase targets
from siRNA profiling, we screened 11 liposarcoma cell
lines using a growth inhibition assay against a panel of
120 drugs either FDA approved or in clinical trials in-
cluding many kinase inhibitors. Liposarcoma cells were
very sensitive to Hsp90 inhibitor (17AAG and Elesclo-
mol) which is consistent with a recent study demonstrat-
ing that Hsp90 inhibition induces apoptosis and cell
cycle arrest of liposarcoma cells [29, 30]. We also ob-
served cytotoxicity of CDK inhibitors against the panel
of liposarcoma cells. Preclinical and clinical studies have
shown that a CDK inhibitor either alone or in com-
bination with a cytotoxic drug has therapeutic activity
against liposarcomas. Palbociclib (PD-0332991), a
CDK4/6 inhibitor, is in phase II clinical trial for well-
differentiated liposarcoma [31] and is FDA approved for
advanced breast cancer [32, 33]. A recent study also sug-
gested the potential of synergism of CDK4 inhibitors

with MDM2 antagonists in managing dedifferentiated
liposarcomas [34]. Also consistent with our screen, acti-
vation of PI3K/AKT/mTOR pathway is an important
tumorigenic event in liposarcomagenesis [35], and drugs
blocking the pathway have shown promising efficacy in
clinical trials [36]. Interestingly, our drug screening
showed subtype-specific drugs indicating myxoid sub-
type sensitive to Aurora kinase inhibition and dediffer-
entiated liposarcomas sensitive to inhibition of IGF-1R.
We validated PTK2 and KIT kinases as targets important

in survival and proliferation of liposarcomas. PTK2, also
known as focal adhesion kinase, is a non-receptor scaf-
folding kinase that plays an important role in regulating
growth factor receptor- and integrin-mediated signaling in
cellular adhesion and metastasis [37]. We identified it as a
therapeutic target in well-differentiated and dedifferentiated
liposarcoma cells suggesting a subtype-specific target in
liposarcoma. Inhibiting the PTK2 scaffolding function with
small-molecule inhibitors is currently in early develop-
mental stages with some of the inhibitors in preclinical and
clinical non-liposarcoma studies [38].

Fig. 5 Ponatinib causes cell cycle arrest and apoptosis of liposarcoma cells. a Flow cytometric cell cycle analysis of ponatinib (1000 nM, 16 h)-
treated LPS141 and MLS402 liposarcoma cells compared to diluent control. Bar graphs show the percentage of cells in different phases of the cell
cycle. Experiments were done in triplicates, repeated 3 times and results represent mean ± SE. b Western blot analysis of cell cycle-related proteins in
LPS141 and MLS402 cells treated with ponatinib (250–1000 nM, 16 h) or diluent control (β-actin, loading control). c Flow cytometric Annexin V-APC/
Propidium iodide staining of LPS141 and MLS402 cells treated with ponatinib (1000 nM, 16 h). Percentage of Annexin V+/PI+ cells (apoptotic cells) of
ponatinib- and diluent control-treated cells shown in bar graphs. Experiments were done in triplicates, repeated 3 times and results represent mean ±
SE. *P value ≤ 0.01. d Proteins associated with growth and apoptosis were analyzed by western blotting in liposarcoma cells treated with either
ponatinib or diluent control (GAPDH, loading control)
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Our screening profiling led to the novel identification
of ponatinib as having anti-growth activity against all
liposarcoma cells. This drug is an orally bioavailable
multi-targeted receptor tyrosine kinase inhibitor target-
ing various receptors including KIT, BCR-ABL, VEGFR,
PDGFR, EGFR, SRC, RET, and FLT3 [39]. Due to its clin-
ical efficacy in treating tyrosine kinase inhibitor-resistant
CML, it received FDA approval [40, 41]. Interestingly,
our siRNA profiling also identified KIT kinase as a driver
of liposarcoma growth. KIT is a cell-surface receptor
tyrosine kinase involved in various signaling pathways
associated with proliferation, survival, and differentiation
and aberrantly activated in various malignancies [42].
KIT inhibitors including imatinib, dasatinib, ponatinib,
sunitinib, axitinib, pazopanib, and nilotinib have been
approved recently by US FDA and are used to treat vari-
ous non-liposarcoma cancers having aberrant KIT sig-
naling [43]. Because of our screening data, ponatinib

was examined in detail focusing on dedifferentiated lipo-
sarcoma (LPS141) and myxoid liposarcoma (MLS402).
The drug inhibited liposarcoma growth in liquid culture
and clonogenic assays, as well as in an animal model.
Ponatinib decreased phosphorylation of KIT and its
downstream signaling pathway. Growth-reducing effects
of ponatinib indicated the possibility of using it as an ef-
fective strategy to manage liposarcoma.
Flow cytometric assays showed that ponatinib blocked

the cell cycle and caused apoptosis. Cyclin D1, CDK4,
and RB play an important role in cell cycle progression,
which can contribute to cellular transformation. [44]
Western blot demonstrated that the drug reduced pro-
tein levels of Cyclin D1, CDK4, and phosphorylated RB.
Ponatinib also caused dephosphorylation of BAD, de-
creased levels of BCL-XL, and increased levels of cleaved
caspase 9 consistent with induction of apoptosis. Taken
together, ponatinib was cytotoxic to liposarcoma cells. In

Fig. 6 Ponatinib inhibits growth of liposarcoma xenografts. a LPS141 cells (2 × 106) mixed with equal volume of matrigel were injected subcutaneously
in the flank of NSG mice. When tumors reached ~ 100 mm3, mice were randomly divided into two groups [experimental (n = 9) and control (n= 0)].
Experimental group received daily ponatinib (10 mg/kg), and control group received an equal volume of the vehicle, both by oral gavage for 21 days.
Images of dissected tumors from mice of both groups are shown. b Bar graphs of tumor weights from vehicle- and ponatinib-treated mice. Results
represent mean ± standard deviation. *P value ≤ 0.01. c Immunohistochemical staining for Ki-67 (proliferation marker) on tumor sections of mice treated
with either vehicle or ponatinib. d Western blot analysis of phosphorylated and total protein levels of KIT and FGFR in the xenograft tumors of vehicle-
and ponatinib-treated mice (α-tubulin, loading control). e Apoptotic- and growth-associated proteins examined by western blotting from tumor lysates
of the xenografts treated with either ponatinib or vehicle (α-tubulin, loading control)
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addition, the drug appeared to be well tolerated by the
mice at the same time as it inhibited the growth of their
liposarcoma tumors.
Similar to our drug screening results, several other

tyrosine kinase receptor inhibitors (dasatinib [45], pazo-
panib [46], sunitinib [47], and sorafenib [48]) have anti-
liposarcoma activity and are in clinical trials. Dasatinib is
a potent and multi-targeted inhibitor with greater select-
ivity against active ABL and SRC. Sunitinib has shown to
have prominent activity against VEGFR2 and PDGFRβ.
Also in phase II trials, sunitinib was more effective
against leiomyosarcomas compared to liposarcomas,
perhaps due to a prominent role of VEGF expression in
tumor angiogenesis and pathogenesis in leiomyosarcoma
[49]. In our screening, ponatinib had significantly lower
IC50 values than sunitinib suggesting an enhanced anti-
neoplastic effect of ponatinib. Of interest, recent reports
suggest a role of FGFR [50] and SRC [45] signaling in
liposarcoma, these activated receptors are also the target
of ponatinib. We suggest that in liposarcoma patients,
ponatinib will be a better therapeutic agent because of
effective inhibition of not only one but several kinases
that play important role in liposarcomagenesis.

Conclusion
Advanced disease stage of liposarcoma is no longer cur-
able with surgery and traditional chemotherapies that
underlines the critical necessity to develop novel thera-
peutics. In summary, we demonstrated the role of tyro-
sine kinase genes in the growth of liposarcoma using
siRNA and small-molecule inhibitor screening. The ana-
lyzed results predicted PTK2 and KIT as the potential
therapeutic targets and multi-targeted tyrosine kinase in-
hibitor and ponatinib as an effective drug candidate for
liposarcoma disease management. Ponatinib exhibited
an anti-growth effect in liposarcoma cells by downregu-
lating the phosphorylation levels of KIT and causing
apoptosis. Screening of liposarcoma cells revealed vari-
ous potential therapeutic kinases that might play a vital
role in the progression of this tumor and could be mod-
ulated for treatment benefits in the patients. A ponatinib
clinical trial against liposarcoma either as a single agent
or in combination with additional active drugs may suc-
cessfully fight this deadly disease.
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