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University of California, San Diego, 2021 

Professor Jiun-Shyan Chen, Chair 

 

High-rate deformation processes of metals such as explosive welding and cold spray 

additive manufacturing entail intense grain refinement. The multi-field variational formulation and 

the associated computational method capable of modeling the evolution of microstructures with 

sharp solution transition near the grain boundaries remain challenging in achieving high accuracy, 

stability, and computational efficiency. In this work, a new computational formulation for coupling 

Cosserat crystal plasticity and phase field is developed. The conventional approach by penalizing 

the kinematic incompatibility between lattice orientation and displacement-based elastic rotation 

leads to significant solution sensitivity to the penalty parameter, resulting in low accuracy and 

convergence rates. To address these issues, a duality-based formulation is developed under a multi-



 

xx 

 

field variational framework. The associated Galerkin formulation incorporated with a weak inf-

sup-based skew-symmetric stress projection is introduced to ensure coercivity for stability in the 

dual formulation. An additional least squares stabilization is introduced to suppress the spurious 

lattice rotation with a suitable parameter range derived analytically and validated numerically. It 

is shown that under this formulation, the equal order displacement-rotation-phase field 

approximations are stable, which allows efficient construction of approximation functions for all 

independent variables. The proposed formulation is shown to yield superior accuracy and 

convergence with marginal parameter sensitivity compared to the conventional penalty-based 

approach and successfully captures the dominant rotational recrystallization mechanisms that exist 

in the block dislocation structures and grain boundary migration. 

Modeling the sharp transition in the phase field near the grain boundaries associated with 

the lattice orientation often requires highly refined discretization for sufficient accuracy, which 

significantly increases the computational cost. While adaptive model refinement can be employed 

for enhanced effectiveness, it is cumbersome for the traditional mesh-based methods to perform 

adaptive model refinement. In this work, neural network-enhanced reproducing kernel particle 

method (NN-RKPM) is proposed, where the location, orientation, and the shape of the solution 

transition is automatically captured by the NN approximation by the minimization of total potential 

energy. The standard RK approximation is then utilized to approximate the smooth part of the 

solution to permit a much coarser discretization than the high-resolution discretization needed to 

capture sharp solution transition with the conventional methods. The proposed NN-RKPM is first 

verified by solving the standard damage evolution problems. The proposed computational 

framework is then applied to modeling grain refinement mechanisms, including the migration of 

grain boundaries at a triple junction, for validating the effectiveness of the proposed methods.
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Chapter 1  

Introduction 

1.1. Motivation 

 High strain rate deformation processes of metals, such as cold spray additive 

manufacturing and explosive welding, entail intense grain refinement as well as extreme 

deformation and fragmentation. The latter phenomena are presented in the form of  interfacial 

wave and jetting [1–8] observed in macro scale. While these macro-scale phenomena are 

challenging for traditional mesh-based approaches to capture [9, 10], meshfree methods has been 

proven to effective in the prediction of both jetting and interfacial wave in recent studies [11–15]. 

Baek et al. (2021) [11] addressed the difficulties in accurate modeling of strong shock, extreme 

deformation, and material separation by introducing node-based shock algorithm and adaptive 

integration domain adjustment technique into semi-Lagrangian reproducing kernel particle method 

[16–18], and accurately predicted the explosion and impact-induced shock, gradual evolution of 

interfacial wave, morphology of interfacial wave, and jetting (Figure 1.1). In [15], expected 

material phase states were indirectly predicted and the traditional welding windows were evaluated 

based on macro-scale numerical observations using combined meshfree and finite difference 

simulations. 
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Figure 1.1. Numerical prediction of explosive welding (Baek el al., 2021): (a) gradually-built 

interfacial wave compared to an experimental result [5], (b) strong shock produced by explosion 

and plate impact, (c) interfacial wave captured by the numerical simulation, and (d) the 

corresponding experimental result [4] 

Although these research works provide valuable findings at the macro scale, it remains 

unresolved in establishing the linkage among the process parameters, microstructure evolution, 

and resulting material properties due to the high degree of microstructural evolution caused by the 

high rate manufacturing processes, particularly, the intense grain refinement observed in a large 

volume of experimental studies [19–24]. Meyers et al. [25, 26] proposed the rotational 

recrystallization mechanism that explains the grain refinement induced by extreme shear 

localization under high strain rate. This mechanism is supported by experimental works [27, 28] 

on the cold spray technique. 
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Numerical modeling of the aforementioned recrystallization mechanism is challenging as 

it entails extreme material deformations, nonlocal effects of GNDs, discontinuities in lattice 

orientation (localizations of lattice curvature), and moving grain boundaries. The multi-field 

variational formulation and the associated computational method capable of modeling the 

evolution of microstructures with sharp solution transition near the grain boundaries remain 

challenging in achieving high accuracy, stability, and computational efficiency. While numerical 

modeling in very small length scales such as atomic scale and dislocation scale can be considered, 

it is computationally intractable despite of its predictive capability. Mesoscale approaches such as 

crystal plasticity treat dislocations with a continuous dislocation density field and describe the 

anisotropic viscoplastic deformations by considering plastic slips and applied shear stresses on 

individual slip systems. However, the nonlocal effects associated with GNDs has limitations on 

local continuum models. As a remedy, the strain gradient-typed crystal plasticity introduces 

nonlocal effects by including additional plastic slip degrees of freedom on all slip system but 

requires increased computational costs. The Cosserat crystal plasticity reduces the number of 

degrees freedom by corelating GND with the lattice curvature. In Cosserat crystal plasticity, lattice 

rotations are introduced as independent variables, which is computationally less extensive than 

strain gradient-typed formulations due to fewer additional degrees of freedom. However, when 

penalty method is used to corelate elastic rotation with the lattice curvature, solution sensitivity to 

the penalty parameter can be an issue in the widely used penalty-based Cosserat crystal plasticity. 

Moreover, the modeling of grain boundary migration brings additional challenges related 

to correct representation of grain boundary energy, discretization sensitivity, and coupling with 

crystal plasticity. In general, if the discretization sensitivity is not properly addressed for a problem 

involving localization, numerical results including energy, force, and localization patterns can be 
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strongly mesh-dependent due to the loss of ellipticity in the mathematical formulation. For 

example, the grain growth kinetics tends to be strongly influenced by the resolution and shape of 

grid in cellular automation. The phase field methods are regularization techniques where the 

discontinuous fields are approximated by the diffusive phase fields, and the coupling of the phase 

field and other degrees of freedom is attained in the free energy. The length scales introduced in 

the phase field methods serve as localization limiters. In the widely used multi-phase field method, 

multiple phase fields are introduced and each phase is associated with a specific grain orientation, 

in which the grain orientations are represented by discrete variables. An advantage of this method 

is the straightforward implementation and easy calibration of model parameters. However, the 

problem size can easily grow as the number of phase fields increase proportionally to the number 

of grain orientations. Robust coupling between phase field functions and crystal plasticity is 

another challenge in this type of methods.   

Modeling the sharp transition in the phase field near the grain boundaries associated with 

the lattice orientation often requires highly refined discretization for sufficient accuracy, which 

significantly increases the computational cost. While adaptive model refinement can be employed 

for enhanced effectiveness, it is cumbersome for the traditional mesh-based methods to perform 

adaptive model refinement. While the deep neural network (DNN) has been applied to the solution 

of partial differential equations, the employment of a fully connected NN layers results in a 

tremendously large number of unknown parameters. Systematic analysis on the interpretability of 

the weights and biases in DNN for approximation space construction is still lacking for an effective 

application to strain localization problems. 
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1.2. Objectives 

The objective of this work is to develop a mathematical and computational framework for 

accurate, stable, and computationally efficient modeling of grain refinement processes. The major 

developments are summarized as follows: 

• Development of duality-based Cosserat crystal plasticity coupled with phase field. In 

Cosserat crystal plasticity, lattice rotations are employed as independent variables, 

which introduces the GND-induced nonlocal effects into the plastic deformation of the 

media. This is computationally less demanding than strain gradient-typed formulations 

due to less additional degrees of freedom. However, the conventional approach by 

penalizing the kinematic incompatibility between lattice orientation and displacement-

based elastic rotation leads to significant solution sensitivity to the penalty parameter, 

resulting in low accuracy and convergence rates. To address this issue, the rotational 

compatibility condition is introduced based on the dualization of the primal Cosserat 

crystal plasticity and the phase field formulation.  

• Thorough stability analysis of the proposed duality-based formulation. Multi-field 

formulation can lead to instability if the approximation functions are not consistent in 

the sense of coercivity in the saddle-point problems, often referred to as the inf-sup 

condition. The first part of this work formulates the dual problems of the Cosserat 

crystal plasticity subject to compatibility between lattice rotation and displacement 

based elastic rotation.  The second part of this work addresses the stability issue of the 

multi-field variation formulation of Cosserat crystal plasticity by introducing a weak 

inf-sup condition for coercivity via a skew-symmetric stress projection. An additional 

least squares stabilization is introduced to suppress the spurious lattice rotation modes 
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with the stability condition of the least-squares stabilization parameter derived 

analytically and validated numerically. The proposed formulation is shown to yield 

superior accuracy and convergence with marginal parameter sensitivity compared to 

the conventional penalty-based approach. 

•  Development of a neural network enhanced reproducing kernel particle method. The 

phase field method often requires highly refined discretization for accurate prediction, 

which significantly increases the computational cost. While adaptive model refinement 

can be employed for reduced computational effort, it is cumbersome for the traditional 

mesh-based methods to perform the adaptive model refinement. In this work, a neural 

network-enhanced reproducing kernel particle method (NN-RKPM) is proposed, 

where the location and orientation of strain localizations are automatically detected, 

and the distribution of the solution transition is formulated accordingly by the NN 

approximation via the minimization of total potential energy. The standard RK 

approximation is then utilized to approximate the smooth part of the solution to permit 

a much coarser discretization than the fine discretization needed to capture sharp 

solution transition in the conventional methods. The proposed NN-RKPM is verified 

by solving the several damage evolution verification problems. 

• Application of the proposed computational methods to problems involving grain 

refinement mechanisms in the rotational recrystallization process. The proposed 

duality-based Cosserat crystal plasticity – phase field formulation is applied to 

problems of block dislocation structure formation and grain boundary rotation at a 

triple junction. Compared to the analytical solution and experimental results, the 

numerical results properly capture the key phenomena in the rotational recrystallization. 
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It is further demonstrated that the proposed NN-RKPM is capable of capturing the fine 

resolution in the solution transition with coarse RK discretization. 

1.3. Outline 

The remainder of this dissertation is organized as follows. In Chapter 2, an overview on 

the grain refinement mechanisms, crystal plasticity theories, numerical approaches for modeling 

grain boundaries, and physics-informed neural networks for solving partial differential equations 

are given. In Chapter 3, the physics and fundamentals of orientation phase field method and 

Cosserat crystal plasticity along with the advantages and disadvantages of the existing approaches 

are discussed. In Chapter 4, a duality-based mathematical and computational formulation with 

stabilizations is presented. In this chapter, the Cosserat energy functional of the primal problem is 

first dualized to introduce independent lattice orientation degrees of freedom, and the dual variable 

in the dual problem is derived. A least squares stabilization term is included in the augmented 

multi-field functional for suppression of the spurious lattice rotation modes. In Chapter 5, the 

proposed duality-based multi-field formulation is discretized by the reproducing kernel particle 

method (RKPM). In Chapter 6, stability analyses on the duality-based formulation are performed. 

A weak inf-sup analysis identifies conditions for the coercivity, and the stability condition is 

fulfilled by a skew-symmetric stress projection. Also, a mathematical deviation provides the 

stability range for the least-squares stabilization parameter. A series of verification problems were 

analyzed to demonstrate superior accuracy and stability of the proposed method, as well as its 

parameter insensitivity of the formulation with a justifiable computational cost. In Chapter 7, a 

neural network enhanced RKPM is proposed. Neural network architectures are developed with 

interpretable weights and biases to automatically detect the locations and orientations of strain 
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localization, and to construct the distribution of solution transitions near the grain boundaries in 

an efficient manner. Also, details of the network structure that incorporates the RK approximation 

are provided. The proposed NN-RKPM is first verified by solving several damage evolution 

problems. In Chapter 8, the proposed methods are applied to problems involving block dislocation 

structure formation and grain boundary rotation that are the key phenomena in the rotational 

recrystallization mechanism. Lastly, conclusion remarks are given with the suggestions of future 

work in Chapter 9. 
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Chapter 2  

Literature Review 

2.1. Grain Refinement in High-rate Manufacturing Processes and Grain Refinement 

Mechanisms 

Grain refinement is frequently caused by extreme deformation processes of metallic 

materials. It has been observed that equiaxed, very fine grains are formed during adiabatic strain 

localizations in various metals [25, 29, 30]. Similar phenomena occur in high-rate manufacturing 

processes such as cold spray additive manufacturing [21] and high velocity impact welding [1, 5], 

and drastically change material properties in the manufactured products. Meyers et al. [25] 

attributed this localization-induced grain refinement to the rotational recrystallization mechanism 

illustrated in Figure 2.1. At the first stage of the rotational recrystallization, the grains are subjected 

to very large elongation due to shear localization. The deformations are highly anisotropic due to 

the presence of slip systems. Then, to accommodate such large deformations, geometrically 

necessary dislocations (GNDs) are locally accumulated (refer to [31] for more information on 

GNDs) and such self-organization of GNDs generates several isolated blocks of the original grains 

(block dislocation structures, see Figure 2.1(c)). Due to the large lattice curvature in the high 

density GNDs, each isolated block undergoes a lattice orientation that distinguishes itself from the 

surrounding blocks. Thin zones with high GND density divide into sub-grains with low-angle grain 

boundaries. As shown in Figure 2.1(c) – (d), the grain boundaries migrate to minimize the energy 

by evolving the angles at the triple junctions. Such slight migrations of the grain boundaries result 
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in refined equiaxed grains. Also, the crystalline lattice of the subgrains rotate and the low-angle 

grain boundaries gradually evolve into high-angle grain boundaries. This mechanism is often 

called continuous dynamic recrystallization with progressive accumulation of geometrically 

necessary dislocations (GNDs)[32]. Under high-temperature deformation, this recrystallization 

mechanism has been observed in various metals[33, 34]. 

 

Figure 2.1. Mechanism of rotational recrystallization: (a) initial grains, (b) strain localization-

induced extreme deformation, (c) geometrically necessary dislocations and block dislocation 

structures, and (d) equiaxed refined grains produced by grain boundary migrations 
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2.2. Overview of Numerical Methods for Grain Refinement Modeling 

Numerical modeling of the aforementioned recrystallization mechanism is challenging as 

it entails extreme material deformations, nonlocal effects of GNDs, discontinuities in lattice 

orientation (localizations of lattice curvature), and moving grain boundaries. While numerical 

modeling in very small length scales such as atomic scale[35–37] and dislocation scale[38, 39] can 

be considered, it is computationally too expensive for such small-scale models to simulate 

polycrystalline structures despite of their predictive capability[40]. On the other hand, continuum 

meso-scale approaches such as crystal plasticity treat dislocations with a continuous dislocation 

density field, and it has been demonstrated that crystal plasticity theories can accurately capture 

the anisotropic viscoplastic deformations by considering plastic slips and applied shear stresses on 

individual slip systems. In order to model the nonlocal effects associated with GNDs, strain 

gradient-typed crystal plasticity has been proposed[41–45]. In this class of models, plastic slip on 

each slip system is introduced as additional degrees of freedom. While effective in modeling GND-

induced deformations that are related to the gradient of plastic slip, the method is computationally 

costly as a significant number of independent variables are required. Forest[46] proposed a 

Cosserat crystal plasticity formulation by utilizing the close relation between GND and the lattice 

curvature established in earlier works[47, 48]. In Cosserat crystal plasticity[46, 49–51], lattice 

rotations are introduced as independent variables, which is computationally less extensive than 

strain gradient-typed formulations due to fewer additional degrees of freedom. However, solution 

sensitivity to the penalty parameter can be an issue in the widely used penalty-based Cosserat 

crystal plasticity. While both methods have been successfully applied to the modeling of 

deformation-induced localizations of GNDs and the resulting block dislocation structures[52, 53], 

these methods have limitations in capturing grain boundary migration which is an important 
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mechanism in the rotational recrystallization due to the complexities involved the evolution of 

grain topology during the grain boundary migrations. 

Various methods have been proposed to model grain boundary migrations[54], including 

phase field methods[55–58], level-set methods[59–62], cellular automation[63–65], and double-

grid reproducing kernel particle method[66, 67]. Phase field methods for modeling grain boundary 

migration are classified into two categories: multi-phase field method and orientation phase field 

method. In the multi-phase field method[55, 56], multiple phase fields are introduced and each 

phase is associated with a specific grain orientation, in which the grain orientations are represented 

by discrete variables. An advantage of this method is the straightforward implementation and easy 

calibration of model parameters. However, the problem size can easily grow as the number of 

phase fields are proportional to the number of grain orientations. Robust coupling between phase 

field functions and crystal plasticity is another challenge for this type of method. A second class 

of the phase field approach is the orientation phase field theory[57, 58] in which a scalar phase 

field is introduced in addition to the continuous lattice orientation field to capture regions with 

large lattice curvature and to correct the grain boundary (GB) energy. As the derivative of the 

orientation field (lattice curvature) and the GND density are closely related to each other[47, 48], 

a direct coupling of the orientation phase field theory with a crystal plasticity theory via the 

Helmholtz-free energy can be better formulated. In prior work[68, 69], the coupling of orientation 

phase field method and Cosserat crystal plasticity has been considered. Similarly, a coupled 

orientation phase field and strain gradient-type crystal plasticity theory has been introduced[70]. 

Also, the orientation phase field method has been coupled with elasto-plasticity[71]. The flexibility 

in a direct coupling with crystal plasticity is an attractive feature in the orientation phase field 

method compared to other methods[72]. 
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Discretization sensitivity is a major computational challenge in modeling grain boundaries 

which are regions of localized lattice curvature. In general, if the discretization sensitivity is not 

properly addressed for a problem involving localization, numerical results including energy, force, 

and localization patterns can be strongly mesh-dependent due to the loss of ellipticity in the 

mathematical formulation[73]. For example, the grain growth kinetics tends to be strongly 

influenced by the type of grid in cellular automation[61]. There have been several numerical 

approaches proposed for regularization of the mesh-dependent numerical defects. Some 

localization problems have been successfully solved by, introducing nonlocal models with intrinsic 

length scales, such as quantity averaging[74] and high order gradient models[75–77]. While high 

order gradients are troublesome in 𝐶0finite elements, it is noteworthy that an implicit gradient 

method in the form of convolution integral has been proposed to implicitly reproduce higher order 

gradient without taking direct derivatives[78, 79]. The phase field approach[80, 81] is another class 

of regularization technique where discontinuous fields are approximated by the diffusive phase 

fields, and the coupling of the phase field and other degrees of freedom is attained within the free 

energy. Similar to the nonlocal methods, length scales are introduced in the phase field methods 

and they serve as localization limiters. The regularization property is a unique feature in the 

aforementioned multi-phase method and orientation phase field method for modeling strain 

localization problems. 

2.3. Physics-informed Neural Network for Solving Partial Differential Equations 

The deep artificial neural network has demonstrated its impressive ability in information 

processing such as image recognition, and more recently, is rapidly extending its regime into 

various fields including mechanistic machine learning. Its successful adoption is mainly attributed 
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to the adaptive nature of manipulating the function space based on data in the frame of 

minimization of the loss function. Such flexibility brings a computational model the capability to 

capture certain information that is hard to be detected by conventional approaches. For example, 

He et al. (2021) [82] introduced the deep autoencoder to discover the latent low-dimensional data 

pattern embedded in noisy material datasets and significantly enhanced the effectiveness of the 

physics-constrained data-driven approach developed by He and Chen (2020) [83]. Lee and 

Carlberg (2020) [84] proposed a model order reduction technique based on low-dimensional 

nonlinear manifolds constructed by the deep convolutional autoencoder and demonstrated the 

outperformance over linear subspace-based reduce order modeling techniques. 

Recently, the utilization of neural networks (NNs) for solving partial differential equations 

(PDE) in physics and mechanics has been drawing increasing attention. In this class of studies, the 

potential of NN used as an approximation is explored, considering its flexible function space 

construction. Raissi et al. (2019) [85] introduced the terminology physics-informed neural network 

(PINN) which serves as an approximation of the solution of a PDE in the framework of collocation 

method and show the effectiveness of the method on one-dimensional Burgers equation using 

densely connected deep neural networks with the hyperbolic tangent activation function. As the 

solution of Burgers equation is a typical hyperbolic tangent-type function, the solution was 

accurately captured. Haghighat and Juanes (2021) [86] introduced a Python package SciANN for 

scientific computing using PINN and showed that the method captured strain and stress 

localization produced in a perfectly plastic material. However, they used 4 densely connected 

layers with 100 neurons per layer, which involves 100 million unknowns, to obtain the results. 

Samaniego et al. (2020) [87] established that the potential-based loss functions leads to better 

results with significantly less unknowns than the collocation-based loss function widely used in 
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PINN. However, the aforementioned studies employed a fully connected multiple hidden layers, 

which may not be an optimal choice to describe behaviors of materials. Zhang et al. (2020) [88] 

devised the deep neural networks to represent standard approximations such as finite elements and 

reproducing kernel particles, and treated the nodal positions as unknown network parameters. This 

element or particle-wise network is a sparse network showing a potential of designing more 

efficient network. Lee et al. (2021) [89] introduced a partition of unity network which possesses 

the properties of optimal convergence and showed how NN partitions the domain and 

approximates smooth and piecewise smooth functions. Although NN for solving PDEs in physics 

and mechanics draws increasing attention, the volume of research and discussion on development 

of NN for modeling discontinuities and localizations remains very limited and deserves further 

investigation. 
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Chapter 3  

Physics and Fundamentals of Orientation Phase Field Method and Cosserat 

Crystal Plasticity 

In this chapter, the Cosserat crystal plasticity theory and its coupling with the phase field 

method are reviewed. The coupling of Cosserat crystal plasticity and the orientation phase field 

method is formulated naturally as the internal energy associated with lattice curvature has 

contribution from both models. Also, the regularization properties in the orientation phase field 

method ensure consistent grain boundary energy independent of the choice of discretization. 

Penalty method in the conventional approach is used to impose kinematic constraints on the 

displacement-based and lattice orientation-based lattice curvatures. 

3.1. Primal problem 

3.1.1. Kinematics 

Let the displacement 𝐮 ∈ ℝ𝑑 with space dimension 𝑑 be defined as 𝐮 = 𝐱(𝐗, 𝑡) − 𝐗 where 

𝐗 ∈ ℝ𝑑 and 𝐱(𝐗, 𝑡) ∈ ℝ𝑑 are the material coordinates and the current coordinates, respectively, as 

shown in Figure 3.1.  
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Figure 3.1. Deformation of a material body 

The deformation gradient is defined as 

𝐅 =
𝜕𝐱

𝜕𝐗
= 𝐈 + 𝐞, 𝐹𝑖𝑗 = 𝑥𝑖,𝑗 = 𝛿𝑖𝑗 + 𝑒𝑖,𝑗, (3.1) 

with (⋅)𝑖,𝑗 ≡ 𝜕(⋅)𝑖/𝜕𝑋𝑗, and the displacement gradient is additionally defined as follows: 

𝑒𝑖𝑗 = 𝑢𝑖,𝑗 (3.2) 

As shown in Figure 3.2, the total deformation of the crystallographic lattice can be decomposed 

into three components: plastic slip, lattice deformation, and lattice rotation. In the continuum 

description of crystal plasticity, the lattice deformation and the lattice rotation are considered 
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identical to the elastic stretch and the elastic rotation, respectively, and the multiplicative 

decomposition is constructed as follows:  

𝐅 = 𝐅𝑒𝐅𝑝 = 𝐑𝐔𝑒𝐅𝑝, (3.3) 

where 𝐅𝑒 , 𝐅𝑝, 𝐑, and 𝐔𝑒  are elastic deformation gradient, plastic deformation gradient, elastic 

rotation tensor, and elastic stretch, respectively. 

 

Figure 3.2. Multiplicative decomposition of deformation 

Under the small strain assumption, strain 𝛆 and material rotation 𝛗 are defined as follows: 
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휀𝑖𝑗 =
1

2
(𝑒𝑖𝑗 + 𝑒𝑗𝑖), (3.4) 

and 

𝜑𝑖 = −
1

2
𝜖𝑖𝑗𝑘𝑒𝑗𝑘, (3.5) 

where 𝜖𝑖𝑗𝑘 is the third-rank permutation tensor, and the decomposition described in Eq. (3.3) can 

be approximated as an additive decomposition: 

𝑒𝑖𝑗 = 𝑒𝑖𝑗
𝑒 + 𝑒𝑖𝑗

𝑝 = −𝜖𝑖𝑗𝑘𝜑𝑘
𝑒 + 휀𝑖𝑗

𝑒 + 𝑒𝑖𝑗
𝑝 , (3.6) 

where 𝑒𝑖𝑗
𝑒 , 𝑒𝑖𝑗

𝑝
, 휀𝑖𝑗
𝑒 , and 𝜑𝑘

𝑒  are elastic displacement gradient, plastic displacement gradient, elastic 

strain, and elastic rotation, respectively. In (3.6), the elastic displacement gradient 𝑒𝑖𝑗
𝑒   is 

decomposed into its symmetric and skew-symmetric parts using elastic strain 휀𝑖𝑗
𝑒  and elastic 

rotation 𝜑𝑘
𝑒  as follows: 

𝑒𝑖𝑗
𝑒 = 휀𝑖𝑗

𝑒 − 𝜖𝑖𝑗𝑘𝜑𝑘
𝑒 , (3.7) 

with 

휀𝑖𝑗
𝑒 =

1

2
(𝑒𝑖𝑗
𝑒 + 𝑒𝑗𝑖

𝑒), (3.8) 

and 
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𝜑𝑘
e = −

1

2
𝜖𝑘𝑚𝑛𝑒𝑚𝑛

𝑒 . (3.9) 

Similarly, the plastic displacement gradient can be decomposed as follows: 

𝑒𝑖𝑗
𝑝 = 휀𝑖𝑗

𝑝 − 𝜖𝑖𝑗𝑘𝜑𝑘
𝑝, (3.10) 

where the plastic strain 휀𝑖𝑗
𝑝

 and the plastic rotation 𝜑𝑘
𝑝
 are defined as 

휀𝑖𝑗
𝑝 =

1

2
(𝑒𝑖𝑗
𝑝 + 𝑒𝑗𝑖

𝑝), (3.11) 

and 

𝜑𝑘
𝑝 = −

1

2
𝜖𝑘𝑚𝑛𝑒𝑚𝑛

𝑝 . (3.12) 

From Eqs. (3.6)-(3.12), 𝑒𝑖𝑗 and 𝜑𝑖 can also be described with the additive decomposition 

as follows: 

휀𝑖𝑗 = 휀𝑖𝑗
𝑒 + 휀𝑖𝑗

𝑝
 (3.13) 

and 

𝜑𝑖 = 𝜑𝑖
𝑒 + 𝜑𝑖

𝑝. (3.14) 
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3.1.2. Energy functional 

In this work, we start with a framework in which the Cosserat crystal plasticity and the 

phase field theories are coupled via the Helmholtz free energy[68]. In the primal problem, two 

independent field variables are introduced: displacement 𝐮 ∈ ℝ𝑑 and phase field 휂 ∈ [0,1] ⊂ ℝ. 

The Helmholtz free energy of the primal problem is defined as follows: 

𝜓(𝐮, 휂 ) =
1

2
휀𝑖𝑗
𝑒 (𝐮)𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙

𝑒 (𝐮) + 𝛼𝑓(휂)‖∇𝛗𝑒(𝐮)‖ +
𝛽

2
𝑔(휂)‖∇𝛗𝑒(𝐮)‖2 

+𝑝𝑟(휂) +
𝑞

2
(∇휂)2, 

(3.15) 

where ‖𝐀‖ = √𝐴𝑖𝑗𝐴𝑖𝑗, 𝐶𝑖𝑗𝑘𝑙 is the elasticity tensor, 𝑓(휂) and 𝑔(휂) are coupling functions, and 𝛼, 

𝛽, 𝑝, and 𝑞 are material constants. Tensor notations are used herein, where repeated indices denote 

summation unless otherwise stated. The first term of the right-hand side of Eq. (3.15) is the Cauchy 

strain energy density. The second term, linear Cosserat energy density, represents the self-energy 

of geometric necessary dislocations (GNDs), which is the elastic energy that GNDs produce in the 

surrounding material. The third term, the quadratic Cosserat energy density, represents the 

interaction energy of GNDs, which is the energy produced when multiple GNDs interact with each 

other. The linear term is particularly important in modeling grain boundaries since, without the 

linear term, localized lattice curvature (i.e. presence of grain boundaries) cannot minimize energy 

in the absence of an external load[58]. The constants 𝛼 and 𝛽 contain the Cosserat length scales 

and can be written as 

𝛼 ≡ 𝐸𝜃ℓ𝛼 , 𝛽 ≡ 𝐸𝜃ℓ𝛽
2 , (3.16) 
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where 𝐸𝜃, ℓ𝛼, and ℓ𝛽 are reference Cosserat energy density, length scale associated with the linear 

Cosserat energy, and length scale associated with the quadratic Cosserat energy, respectively. 

Typically, the reference Cosserat energy density is chosen to be 𝐸𝜃 = 𝜇  with 𝜇  the shear 

modulus[46, 51]. Although closely related to smaller scale material behaviors, the length scales 

are usually calibrated through experimental data. As the linear Cosserat energy term tends to make 

a sharp transition of lattice orientation at a grain boundary and the quadratic Cosserat energy term 

tends to diffuse it[58], a larger ℓ𝛼/ℓ𝛽 ratio leads to more localized grain boundaries. 

 

Figure 3.3. Diffuse grain boundary representation in the orientation phase field method 

In the phase field method, the discontinuous lattice orientation field across a grain 

boundary is approximated by the diffuse grain boundary representation, which is schematically 

described in Figure 3.3. In the diffuse grain boundary region, the lattice orientation field 𝛗𝑒 

smoothly changes and the phase field gradient captures the large lattice curvature so that the phase 



 

25 

 

field has a value 휂 ≈ 1  in the bulk grain and decreases to a smaller value in the diffuse grain 

boundary region. 

The term 𝑝𝑟(휂) in (3.15) is homogeneous phase field free energy density and various 

functional forms of 𝑟(휂) can be considered. In Appendix A, the effects of the following quadratic 

and linear phase field free energy functions on the diffusive behavior of phase field are discussed: 

𝑟(휂) =
1

2
(1 − 휂)2, (3.17) 

𝑟(휂) = |1 − 휂|. (3.18) 

The term last term in (3.15),  
𝑞

2
(∇휂)2, is a penalty term associated with the phase field 

gradient with positive constant 𝑞. The phase field 휂 captures grain boundaries and corrects the GB 

energies. With positive 𝑝 and 𝑞 , and positive coupling functions 𝑓(휂) and 𝑔(휂), 휂 ≈ 1 in the 

region where ‖∇𝛗𝑒‖ ≈ 0, i.e., inside bulk grains, while 휂 < 1 in the region where ‖∇𝛗𝑒‖ > 0. 

The phase field model constants 𝑝 and 𝑞 can be expressed as 

𝑝 = 𝐸𝜂 , 𝑞 = 𝐸𝜂ℓ𝜂
2 , (3.19) 

where 𝐸𝜂 and ℓ𝜂 are reference phase field energy density and phase field length scale, respectively, 

which should be calibrated such that the model accurately represents the experimentally observed 

GB energy. The functions 𝑓(휂) and 𝑔(휂) couple the Cosserat crystal plasticity and phase field 

theories. A common example is 𝑓(휂) = 𝑔(휂) = 휂2. More generally, a polynomial form[90] can 

be taken as 𝑓(휂) = ∑ 𝐴𝑚
𝑓
휂𝑚𝑁

𝑚=0  and 𝑔(휂) = ∑ 𝐴𝑚
𝑔
휂𝑚𝑁

𝑚=0  or nonstandard forms, such as a quasi-



 

26 

 

linear function[91]. The effects of several combinations of 𝑟, 𝑓, and 𝑔 on the GB energy profiles 

and diffuse GB widths against misorientation are discussed in Section 3.3. 

3.1.3. Governing equations and constitutive laws 

By applying the principle of virtual power, the set of governing equations are obtained as 

follows. 

𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0 in   Ω ×]0, 𝑇[

𝑚𝑖𝑗,𝑗 − 𝜖𝑖𝑗𝑘𝜎𝑖𝑗 = 0 in   Ω ×]0, 𝑇[

𝜋𝑖,𝑖
∇𝜂
− 𝜋𝜂 = 𝜇𝜂휂̇ in   Ω ×]0, 𝑇[

𝑢𝑖 = �̅�𝑖 on  𝜕Ω𝑔𝑖 ×]0, 𝑇[

𝜎𝑖𝑗𝑛𝑗 = ℎ𝑖 on  𝜕Ωℎ𝑖 ×]0, 𝑇[

𝜑𝑖
𝑒 = �̅�𝑖 on  𝜕Ω�̅�𝑖 ×]0, 𝑇[

𝑚𝑖𝑗𝑛𝑗 = 𝑐 𝑖 on  𝜕Ω𝑐 𝑖 ×]0, 𝑇[

휂 = 휂 on  𝜕Ω�̅� ×]0, 𝑇[

𝜋𝑖
∇𝜂
𝑛𝑖 = �̅� on  𝜕Ω�̅� ×]0, 𝑇[

휂(𝑡 = 0) = 휂0 in   Ω

 (3.20) 

where 𝛔 , 𝐦 , 𝜋𝜂 , 𝛑∇𝜂 , and 𝐛  are generalized stress, couple stress, phase field microstress 

associated with 휂, phase field microstress associated with ∇휂, and body force, respectively, 𝐧 

denotes boundary surface normal, �̅� , �̅� , and 휂  are essential boundary values applied to the 

corresponding essential boundaries 𝜕Ω𝑔𝑖 , 𝜕Ω�̅�𝑖 , and 𝜕Ω�̅�, and 𝐡, 𝐜 , and �̅� are natural boundary 

values applied to the corresponding natural boundaries 𝜕Ωℎ𝑖, 𝜕Ω𝑐 𝑖, and 𝜕Ω�̅�, and their definitions 

are to be given below. The first, second, and third equations in (3.20) are the balance of linear 

momentum, balance of angular momentum, and balance of phase field micro-stresses, respectively. 

The generalized stress 𝛔 is defined as  
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𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑐 + 𝜎𝑖𝑗

𝑎 , (3.21) 

where 𝜎𝑖𝑗
𝑐  is the standard symmetric Cauchy stress and 𝜎𝑖𝑗

𝑎  is a nonstandard skew-symmetric stress. 

Note that the balance of angular momentum is exactly satisfied in the primal problem where 

𝜑𝑖𝑗
𝑒 (𝐮) is a displacement-based quantity and 𝜎𝑖𝑗

𝑎  is defined accordingly as 

𝜎𝑖𝑗
𝑎 =

1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙,𝑙. (3.22) 

The constitutive relations can be motivated by the Clausius-Duhem inequality under the 

isothermal condition: 

−�̇� + 𝓅𝑖𝑛𝑡 ≥ 0, (3.23) 

where 𝓅𝑖𝑛𝑡 is the internal virtual power density: 

𝓅𝑖𝑛𝑡 = 𝜎𝑖𝑗 �̇�𝑖𝑗 + 𝜖𝑖𝑗𝑘𝜎𝑗𝑘�̇�𝑖
𝑒 +𝑚𝑖𝑗�̇�𝑖,𝑗

𝑒 + 𝜋𝜂휂̇ + 𝜋𝑖
∇𝜂
휂̇,𝑖. (3.24) 

By utilizing �̇�𝑖
𝑒 = −

1

2
𝜖𝑖𝑗𝑘�̇�𝑗𝑘

𝑒  and 𝜖𝑖𝑗𝑘𝜖𝑖𝑚𝑛𝜎𝑗𝑘 = (𝛿𝑗𝑚𝛿𝑘𝑛 − 𝛿𝑗𝑛𝛿𝑘𝑚)𝜎𝑗𝑘 = 2𝜎𝑚𝑛
𝑎 , Eq. 

(3.24) becomes 

𝓅𝑖𝑛𝑡 = 𝜎𝑖𝑗�̇�𝑖𝑗
𝑝 + 𝜎𝑖𝑗

𝑐 �̇�𝑖𝑗
𝑒 +𝑚𝑖𝑗�̇�𝑖,𝑗

𝑒 + 𝜋𝜂휂̇ + 𝜋𝑖
∇𝜂
휂̇,𝑖, (3.25) 

which leads to 
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(𝜎𝑖𝑗
𝑐 −

𝜕𝜓

𝜕𝑒𝑖𝑗
𝑒 ) �̇�𝑖𝑗

𝑒 + (𝑚𝑖𝑗 −
𝜕𝜓

𝜕𝜑𝑖,𝑗
𝑒 ) �̇�𝑖,𝑗

𝑒 + (𝜋𝜂 −
𝜕𝜓

𝜕휂
) 휂̇ + (𝜋𝑖

∇𝜂
−
𝜕𝜓

𝜕휂,𝑖
) 휂̇,𝑖 + 𝜎𝑖𝑗 �̇�𝑖𝑗

𝑝

≥ 0. 

(3.26) 

Consequently, Cauchy stress is obtained as 

𝜎𝑖𝑗
𝑐 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙

𝑒 , (3.27) 

the couple stress 𝐦 is obtained as 

𝑚𝑘𝑙 = (
𝛼𝑓(휂)

‖∇𝛗𝑒‖
+ 𝛽𝑔(휂))𝜑𝑘,𝑙

𝑒 , (3.28) 

and the phase field micro-stresses are defined as 

𝜋𝜂 = 𝑝𝑟,𝜂 + 𝛼𝑓,𝜂‖∇𝛗
𝑒‖ +

𝛽𝑔,𝜂

2
‖∇𝛗𝑒‖2, (3.29) 

𝜋𝑖
∇𝜂
= 𝑞휂,𝑖. (3.30) 

The plastic behavior is determined by introducing a plastic dissipation potential 𝑊𝑝. For 

example[92, 93], 

𝑊𝑝 =∑
𝐾𝑣
𝑛 + 1

〈
|𝜏(𝐼)| − 𝑅(𝐼)

𝐾𝑣
〉𝑛+1

𝑁𝑠

𝐼=1

+
1

2
𝜇∗
−1(휂, ∇𝛗𝑒)𝜎𝑖𝑗

𝑎𝜎𝑖𝑗
𝑎 , (3.31) 

where 〈⋅〉 = max(⋅ ,0) . The first term on the right-hand side of Eq. (3.31) represents the 

contribution of plastic slip on each slip system to the global plastic potential. 𝑅(𝐼) is the critical 
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resolved shear stress on slip system 𝐼, 𝑁𝑠 is the number of slip systems, and 𝐾𝑣 and 𝑛 are model 

constants. The critical resolved shear stress can evolve under consideration of generation and 

annihilation of dislocations. The resolved shear stress 𝜏(𝐼) acting on slip system 𝐼 is defined as 

𝜏(𝐼) = 𝑠𝑖
(𝐼)𝜎𝑖𝑗𝑛𝑗

(𝐼), (3.32) 

where 𝐬(𝐼) and 𝐧(𝐼) are the slip direction and the slip plane normal vectors of the slip system 𝐼, 

respectively. Further, the second term of Eq. (3.31) represents the diffusive behavior of grain 

boundary. The function 𝜇∗(휂, ∇𝛗
𝑒) is grain boundary inverse mobility, of which the value is small 

inside grain boundaries and large in bulk grains so that the second term is only activated in the 

grain boundary regions. For example, 𝜇∗ = �̂�∗(1 − (1 − 𝜇𝑝) exp(−𝛽𝑃‖∇𝛗
e‖))  can be 

considered with the reference inverse mobility �̂�∗ and model constants 𝜇𝑝 and 𝛽𝑝. 

The velocity gradient is derived from Eq. (3.31) �̇�𝑖𝑗
𝑝  = 𝜕𝑊𝑝/𝜕𝜎𝑖𝑗  as follows: 

�̇�𝑖𝑗
𝑝 =∑�̇�(𝐼)

𝑁𝑠

𝐼=1

𝑠𝑖
(𝐼)𝑛𝑗

(𝐼) + 𝜇∗
−1(휂, ∇𝛗𝑒)𝜎𝑖𝑗

𝑎 , (3.33) 

where the plastic slip �̇�(𝐼) of slip system 𝐼 is 

�̇�(𝐼) = 〈
|𝜏(𝐼)| − 𝑅(𝐼)

𝐾𝑣
〉𝑛 sign(𝜏𝐼). (3.34) 

The above-mentioned displacement-based lattice orientation computational formulation 

often exhibits low accuracy since the displacement-based material rotation 𝛗 is approximated one 

order lower than that of 𝐮 (see Eqs. (3.2) and (3.5)) and the plastic rotation 𝛗𝑝 is approximated 
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three orders lower than that of 𝐮  (see Eqs. (3.22), (3.28), and (3.33)). This motivates the 

development of a mixed formulation. Also, note that the computation of 𝛔𝑎 in Eq. (3.22) requires 

the computation of high gradients of the plastic displacement gradient 𝐞𝑝 (𝑒𝑖
𝑒 = 𝑒𝑖 − 𝑒𝑖

𝑝
), which 

leads to a numerically challenging PDE in Eq. (3.33). A duality-based mixed formulation to be 

introduced in Section 3 avoids computation of high order gradients of 𝐞𝑝. 

3.2. Penalty-based approach 

Due to its simple numerical implementation, the penalty-based approach has been widely 

used for pure Cosserat crystal plasticity[46, 51] and its coupling with phase field methods[68, 93]. 

In the penalty approach, an independent lattice orientation field 𝛉 ∈ ℝ�̅� is introduced where 𝑑 =

3  when 𝑑 = 3  and 𝑑 = 1  when 𝑑 = 2  by imposing the kinematic constraint 𝛉 = 𝛗𝑒  with the 

penalty method as follows: 

𝜓(𝐮, 𝛉 , 휂 ) =
1

2
휀𝑖𝑗
𝑒 𝜎𝑖𝑗

𝑐 + 𝛼𝑓(휂)‖∇𝛉‖ +
𝛽

2
𝑔(휂)‖∇𝛉‖2 + 2𝜇𝑐(휃𝑖 − 𝜑𝑖

𝑒)(휃𝑖 − 𝜑𝑖
𝑒)

+ 𝑝𝑟(휂) +
𝑞

2
(∇휂)2, 

(3.35) 

where 𝜇𝑐 is penalty parameter and can be defined proportional to the shear modulus, 𝜇𝑐 = 𝑐𝜇, with 

normalized penalty parameter 𝑐. Then the Euler-Lagrange equations read 

𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0   in   Ω ×]0, 𝑇[

𝑚𝑖𝑗,𝑗 − 𝜖𝑖𝑗𝑘𝜎𝑗𝑘
𝑎 = 0   in   Ω ×]0, 𝑇[

𝜋𝑖,𝑖
∇𝜂
− 𝜋𝜂 = 𝜇𝜂휂̇   in   Ω ×]0, 𝑇[

 (3.36) 

where 
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𝑚𝑖𝑗 = (
𝑓(휂)𝛼

‖∇𝛉‖
+ 𝑔(휂)𝛽)휃𝑖,𝑗, (3.37) 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑐 + 𝜎𝑖𝑗

𝑎 , 

𝜎𝑖𝑗
𝑐 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙

𝑒 , 

𝜎𝑖𝑗
𝑎 = 2𝜇𝑐𝜖𝑖𝑗𝑘(휃𝑘 − 𝜑𝑘

𝑒). 

(3.38) 

𝜋𝜂 = 𝑝𝑟,𝜂 + 𝛼𝑓,𝜂‖∇𝛉‖ +
𝛽𝑔,𝜂

2
‖∇𝛉‖2, (3.39) 

𝜋𝑖
∇𝜂
= 𝑞휂,𝑖. (3.40) 

The second equation in (3.36) represents the balance of angular momentum. In the 

derivation of the Euler-Lagrange equations, the penalty term in (3.35) leads to the specific form of 

𝛔𝑎 in Eq. (3.38) which is different from 𝛔𝑎 in the primal problem. Note that 𝛔𝑎 does not contain 

high gradients of 𝐞𝑝, which reduces the aforementioned complexity in solving the constitutive 

equation in (3.33). Also, the variational formulation of Eq. (3.35) only requires the independent 

field variables 𝐮, 𝛉, and 휂 to be in 𝐻1 spaces, which is another advantage for implementation in 

finite element methods. However, solutions of the penalty-based approach can be sensitive to the 

penalty parameter 𝜇𝑐, and the convergence rate can be suboptimal if 𝜇𝑐 is not properly chosen. 

Low 𝜇𝑐 leads to large discrepancy between 𝛉 and 𝛗𝑒 while large 𝜇𝑐 can result in locking unless 

functions spaces for 𝛉 and 𝛗𝑒  are carefully selected. In this work, an alternative approach to 

introduce the lattice orientation field is proposed in Chapter 4 to overcome these drawbacks. 
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3.3. Phase Field Model Functions and Model Constants 

The coupled Cosserat – phase field model involves three phase field model functions 𝑟(휂), 

𝑓(휂) , and 𝑔(휂) , used in the orientation phase field formulations[58, 90]. Choosing proper 

functions is important to obtain a solution which is both physically meaningful and numerically 

well-regularized. A physically meaningful solution requires the correct nonlinear relationship 

between the GB energy and misorientation, e.g., a Read-Shockley type behavior, while a well-

regularized solution must be insensitive to mesh discretization. Since the microstructure evolves 

and the level of misorientations can vary throughout a simulation, a given set of 𝑟, 𝑓, and 𝑔 should 

provide well-behaved properties for a wide range of misorientations while avoiding overly-

diffusive solutions. 

For investigating the effects of the phase field model functions, we consider a one-

dimensional version of Eq. (3.15) with the simplifying assumption 휀𝑒 = 0. Then, Eq. (3.15) is 

identical to the classical orientation phase field formulation [57] with the free energy functional 

𝜓 = 𝑓(휂)𝛼|휃,𝑥| + 𝑔(휂)
𝛽

2
|휃,𝑥|

2
+ 𝑝𝑟(휂) +

𝑞

2
|휂,𝑥|

2
. (3.41) 

The static problem is derived from minΠ = ∫ 𝜓 𝑑𝑥
+∞

−∞
 with boundary conditions 

휃(−∞) = −∆휃/2, 휃(∞) = ∆휃/2, and 휂(−∞) = 휂(∞) = 1, which leads to the following strong 

form problem [94, 95]: 

휃,𝑥 = {

𝛼

𝛽𝑔(휂)
(𝑓(휂 ) − 𝑓(휂)), 𝑥 ∈ [−𝛿/2,+𝛿/2]

0, otherwise
, (3.42) 
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휂,𝑥 = {
√𝑝/𝑞 (2𝑟(휂) −

𝛼2

𝛽𝑝

1

𝑔(휂)
(𝑓(휂 ) − 𝑓(휂))

2
)

1/2

, 𝑥 ∈ [−𝛿/2,+𝛿/2]

√𝑝/𝑞(2𝑟(휂))
1/2
, otherwise

 (3.43) 

where 휂 ≡ 휂(𝑥 = ±𝛿/2)  with the grain boundary width 𝛿 . The solution of this strong form 

problem can be obtained based on the following equations: 

𝑓(휂 ) = 𝑓(휂0) +
√2𝑟(휂0)𝑔(휂0)

𝛼/√𝛽𝑝
, (3.44) 

𝑥 = ∫
1

휁(휂)
 d휂

𝜂

𝜂0

, (3.45) 

휃 = ∫
𝜒(휂)

휁(휂)
 d휂

𝜂

𝜂0

, (3.46) 

where 휂0 ≡ 휂(𝑥 = 0), and 휁 and 𝜒 are defined as 

휁(휂) = {
√𝑝/𝑞 (2𝑟(휂) −

𝛼2

𝛽𝑝

1

𝑔(휂)
(𝑓(휂 ) − 𝑓(휂))

2
)

1/2

, 휂0 ≤ 휂 ≤ 휂 

√𝑝/𝑞(2𝑟(휂))
1/2
, 휂 < 휂 ≤ 1

, (3.47) 

𝜒(휂) = {

𝛼

𝛽𝑔(휂)
(𝑓(휂 ) − 𝑓(휂)), 휂0 ≤ 휂 ≤ 휂 

0, 휂 < 휂 ≤ 1
. (3.48) 

From (3.44) – (3.46), we obtain 휂0, 휂 , and the grain boundary width 𝛿 = 2∫ 1/휁(휂) d휂
�̅�

𝜂0
, 

given the misorientation ∆휃 = 2∫ 𝜒(휂)/휁(휂) d휂
�̅�

𝜂0
. Additionally, from (3.44), the condition 

𝑓(휂 ) ≤ 𝑓(1) leads to the following constraints on model constants: 
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𝛼/√𝛽𝑝 ≥ max
𝜂0∈[0,1]

√2𝑟(휂0)𝑔(휂0)

𝑓(1) − 𝑓(휂0)
. (3.49) 

Table 3.1 lists the considered model functions and constants. The model constants are 

calibrated against the experimental data from[96, 97]. Set I is composed of typical model functions 

in quadratic form[68] and allows to fit the Read – Shockley type relation between GB energy and 

misorientation as shown in Figure 3.4(a). However, the width of the diffuse GB 𝛿  linearly 

decreases as the misorientation ∆휃 increases as shown in Figure 3.4(b) – (d). This indicates that 

the domain discretization should be much refined to ensure regularized solutions that contain an 

arbitrary level of misorientation. Also, note that Figure 3.4(c) and (d) show highly diffusive phase 

field compared to the GB width 𝛿. In Set II, motivated by Abrivard et al.[90], 𝑔(휂) is modified 

such that 𝑔 ∈ [0.01, 1.0]. As shown in Figure 3.5, this choice yields less decreasing GB width over 

∆휃, which is more favorable in terms of regularization than Set I. However, 휂 remains highly 

diffusive as 𝑟(휂) is unchanged.  

To remedy the diffusive behavior of phase field, consider a linear form 𝑟(휂) = |1 − 휂| (Set 

III), motivated by Geelen et al.[91]. Also, the following nonstandard quasi-linear (QL) function 

(see Figure 3.6) introduced in Geelen et al.[91] is adopted for 𝑓(휂). 

𝑓(휂) =
휂

휂 + 𝑚(1 − 휂)
, (3.50) 

where 𝑚 ≥ 1 is a constant. The benefit of using QL function in the coupled Correrat-phase field 

approach is twofold. First, it leads to a similar 𝑓(휂)  vs 휂  profile to the function 𝑓(휂) =

−2(log(1 − 휂) + 휂) specifically designed to yield the Read-Shockley relation in Kobayashi et 
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al.[58], but the QL function maintains 𝑓(휂) ∈ [0, 1] while the logarithmic function 𝑓(휂) ∈ [0,∞] 

which requires a numerical treatment for implementation. 

Second, the QL function has much less strict condition from Eq. (3.49) than polynomial 

𝑓(휂). As described in (3.16) and (3.19), the model constants can be written as 

𝛼 ≡ 𝐸𝜃ℓ𝛼 , 𝛽 ≡ 𝐸𝜃ℓ𝛽
2 , (3.51) 

where 𝐸𝜃, ℓ𝛼, and ℓ𝛽 are reference Cosserat energy density, length scale associated with the linear 

Cosserat energy, and  

𝑝 = 𝐸𝜂 , 𝑞 = 𝐸𝜂ℓ𝜂
2 , (3.52) 

where 𝐸𝜂 and ℓ𝜂 are reference Cosserat energy density and phase field length scale. Then, (3.49) 

becomes 

ℓ𝛼
ℓ𝛽
≥ 𝑐 max

𝜂0∈[0,1]
ℱ(휂0), (3.53) 

where 𝑐 = √𝐸𝜂/𝐸𝜃 and ℱ(휂0) = √2𝑟(휂0)𝑔(휂0)/(𝑓(1) − 𝑓(휂0)). 

Note that a larger ℓ𝛼/ℓ𝛽 ratio leads to a more localized grain boundary (see Section 3.1), 

so selecting a too large ℓ𝛼/ℓ𝛽 ratio should be avoided in order to obtain a well-regularized solution. 

A quadratic 𝑓(휂)  paired with the linear 𝑟(휂)  requires ℓ𝛼/ℓ𝛽 ≥ 22𝑐  as shown in Figure 3.7, 

limiting ℓ𝛼/ℓ𝛽 to a large number. A quasi-linear 𝑓(휂) paired with the linear 𝑟(휂) as employed for 

Set III relieves the restriction to ℓ𝛼/ℓ𝛽 ≥ 1.8𝑐  as shown in Figure 3.7 which is a more favorable 
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condition. Figure 3.8(c) and (d) show that the phase field from Set III is not as diffusive as the one 

from Set II (Figure 3.5(c) and(d)) while Figure 3.8(b) – (d) shows that Set III maintains relatively 

stable grain boundary widths for a wide range of ∆휃 compared to Set I (Figure 3.4 (b) – (d)). Also, 

as shown in Figure 3.8(a), a reasonable physical GB energy profile is obtained by Set III. 

 

Figure 3.4. Grain boundary properties from Set I. (a) GB energy vs misorientation, (b) GB width 

vs misorientation, (c) 휃 and 휂 distribution for ∆휃 = 10°, (d) 휃 and 휂 distribution for ∆휃 = 30°. 
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Figure 3.5. Grain boundary properties from Set II. (a) GB energy vs misorientation, (b) GB 

width vs misorientation, (c) 휃 and 휂 distribution for ∆휃 = 10°, (d) 휃 and 휂 distribution for ∆휃 =
30°. 
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Figure 3.6. Quasi-linear energy correction functions 

 

Figure 3.7. ℱ(휂0) vs 휂0 profiles for the quasi-linear and quadratic energy correction functions 

𝑓(휂) in (a) and a magnified plot shown in (b). 
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Figure 3.8. Grain boundary properties from Set III. (a) GB energy vs misorientation, (b) GB 

width vs misorientation, (c) 휃 and 휂 distribution for ∆휃 = 10°, (d) 휃 and 휂 distribution for ∆휃 =
30°. 
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Table 3.1. Lists of model functions and constants 

Set I Set II Set III 

Model functions 

𝑟 = (1 − 휂)2/2 

𝑓 = 휂2 

𝑔 = 휂2 

Model constants 

𝛼 = 1.5√𝛽𝑝 

𝛽 = 𝐸𝜃ℓ𝛽
2  

𝑝 = 𝐸𝜂 

𝑞 = 𝐸𝜂ℓ𝜂
2  

𝐸𝜃 = 114.8 MPa 

𝐸𝜂 = 0.005𝐸𝜃 

ℓ𝛽 = 0.5 μm 

ℓ𝜂 = 1.5 μm 

Model functions 

𝑟 = (1 − 휂)2/2 

𝑓 = 휂2 

𝑔 = 0.99휂2 + 0.01 

Model constants 

𝛼 = 1.5√𝛽𝑝 

𝛽 = 𝐸𝜃ℓ𝛽
2  

𝑝 = 𝐸𝜂 

𝑞 = 𝐸𝜂ℓ𝜂
2  

𝐸𝜃 = 114.8 MPa 

𝐸𝜂 = 0.005𝐸𝜃 

ℓ𝛽 = 0.5 μm 

ℓ𝜂 = 1.5 μm 

Model functions 

𝑟 = |1 − 휂| 

𝑓 = 휂/(휂 + 25(1 − 휂)) 

𝑔 = 0.99휂4 + 0.01 

Model constants 

𝛼 = 1.85√𝛽𝑝 

𝛽 = 𝐸𝜃ℓ𝛽
2  

𝑝 = 𝐸𝜂 

𝑞 = 𝐸𝜂ℓ𝜂
2  

𝐸𝜃 = 27.5 MPa 

𝐸𝜂 = 0.01𝐸𝜃 

ℓ𝛽 = 2 μm 

ℓ𝜂 = 1.75 μm 
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Chapter 4  

A duality-based Formulation of Coupled Cosserat Crystal Plasticity – Phase 

Field 

To address the issue of high parameter sensitivity in the classical penalty-based Cosserat 

crystal plasticity, a stabilized duality-based formulation in introduced. The kinematic constraints 

on the displacement-based and lattice orientation-based lattice curvatures were imposed with the 

energy conjugate couple stress derived in the dualization.  An additional least squares stabilization 

is introduced with the parameter range estimated from the stability analysis to suppress spurious 

lattice rotation modes. 

4.1. Duality-based introduction of the lattice orientation field 

In this section, the independent lattice orientation field 𝛉 is introduced based on the duality 

theory. Let us consider a primal problem that is in equilibrium. 

inf
𝐮∈𝒱 
𝜂∈𝒫

Π =
1

2
∫휀𝑖𝑗𝜎𝑖𝑗

𝑐  dΩ
Ω

+∫ 𝑓(휂)𝛼‖∇𝛗𝑒‖ + 𝑔(휂)
𝛽

2
‖∇𝛗𝑒‖2 dΩ

Ω⏟                        
=𝐴

 

+∫ 𝑝𝑟(휂) +
𝑞

2
(∇휂)2 dΩ

Ω

− Π𝑒𝑥𝑡(𝐮, 휂), 

(4.1) 

where Π𝑒𝑥𝑡(𝐮, 휂)  is the external energy associated with body force and Neumann boundary 

conditions. The internal energy 𝐴 associated with the lattice curvature can be represented by its 

convex conjugate 𝐴∗ with dual variable 𝛌 as follows: 
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𝐴 = sup
𝛌
{∫𝜆𝑖𝑗𝜑𝑖,𝑗

𝑒  dΩ
Ω

− 𝐴∗}. (4.2) 

Also, 𝐴∗ can be obtained by the following definition. 

𝐴∗ = sup
𝛗𝑒
{∫𝜆𝑖𝑗𝜑𝑖,𝑗

𝑒  dΩ
Ω

− 𝐴} (4.3) 

Substituting 𝐴 in (4.1) into (4.3), 

𝐴∗ = sup
𝛗𝑒
𝑃 = {∫𝜆𝑖𝑗𝜑𝑖,𝑗  dΩ

Ω

−∫ 𝑓(휂)𝛼‖∇𝛗𝑒‖ + 𝑔(휂)
𝛽

2
‖∇𝛗𝑒‖2 dΩ

Ω

}. (4.4) 

To obtain the stationary point �̂�, consider 

𝛿𝑃 = ∫𝛿𝜑𝑖,𝑗𝜆𝑖𝑗  dΩ
Ω

−∫ 𝛿𝜑𝑖,𝑗 (
𝑓(휂)𝛼

‖∇𝛗𝑒‖
+ 𝑔(휂)𝛽)𝜑𝑖,𝑗  dΩ

Ω

= 0, (4.5) 

which yields the dual variable 𝛌 identical to the couple stress 𝐦 defined in Eq. (3.28): 

𝜆𝑖𝑗 = 𝑚𝑖𝑗 = (
𝑓(휂)𝛼

‖∇�̂�‖
+ 𝑔(휂)𝛽) �̂�𝑖,𝑗. (4.6) 

Let us introduce an independent lattice orientation field 𝛉 ∈ 𝒯 such that it satisfies the 

following relation: 
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𝑚𝑖𝑗 = (
𝑓(휂)𝛼

‖∇𝛉‖
+ 𝑔(휂)𝛽)휃𝑖,𝑗. 

 

(4.7) 

Then, �̂�𝑖,𝑗 = 휃𝑖,𝑗 at the stationary point and Eq. (4.6) becomes 

𝐴∗ = 𝑃(∇𝛗𝑒 = ∇�̂� = ∇휃) = ∫𝑚𝑖𝑗휃𝑖,𝑗 dΩ
Ω

−∫ 𝑓(휂)𝛼‖∇𝛉‖ + 𝑔(휂)
𝛽

2
‖∇𝛉‖2 dΩ

Ω

. (4.8) 

By substituting Eq. (4.8) into Eq. (4.2), 𝐴 reads 

𝐴 = sup
𝐦
{∫𝑚𝑖𝑗𝜑𝑖,𝑗 dΩ
Ω

−∫𝑚𝑖𝑗휃𝑖,𝑗 dΩ
Ω

+∫ 𝑓(휂)𝛼‖∇𝛉‖ + 𝑔(휂)
𝛽

2
‖∇𝛉‖2 dΩ

Ω

} 

= sup
𝐦
{∫ 𝑓(휂)𝛼‖∇𝛉‖ + 𝑔(휂)

𝛽

2
‖∇𝛉‖2 dΩ

Ω

−∫𝑚𝑖𝑗(휃𝑖,𝑗 − 𝜑𝑖,𝑗
𝑒 ) dΩ

Ω

} 

= sup
𝛉∈𝒯

{∫ 𝑓(휂)𝛼‖∇𝛉‖ + 𝑔(휂)
𝛽

2
‖∇𝛉‖2 dΩ

Ω

−∫𝑚𝑖𝑗(𝛉)(휃𝑖,𝑗 −𝜑𝑖,𝑗
𝑒 ) dΩ

Ω

}. 

(4.9) 

The Substitution of Eq. (4.9) into Eq. (4.1) ends the derivation. 

inf
𝐮∈𝒱 
𝜂∈𝒫

sup
𝛉∈𝒯

Π (𝐮, 𝛉 , 휂 )

=
1

2
∫ 휀𝑖𝑗𝜎𝑖𝑗

𝑐  dΩ
Ω

+∫ 𝑓(휂)𝛼‖∇𝛉‖ + 𝑔(휂)
𝛽

2
‖∇𝛉‖2 dΩ

Ω

−∫𝑚𝑖𝑗(𝛉)(휃𝑖,𝑗 − 𝜑𝑖,𝑗
𝑒 ) dΩ

Ω

+∫ 𝑝𝑟(휂) +
𝑞

2
(∇휂)2 dΩ

Ω

− Π𝑒𝑥𝑡(𝐮, 휂), 

(4.10) 

with the energy conjugate stress 𝑚𝑖𝑗(𝛉) defined in Eq. (4.7). 

Note that Eq. (4.10) contains 𝜑𝑖,𝑗
e = −

1

2
𝜖𝑖𝑘𝑙(𝑒𝑘𝑙,𝑗 − 𝑒𝑘𝑙,𝑗

𝑝 ). To avoid taking gradients of 𝐞𝑝, 

integration by parts is applied to ∫ 𝑚𝑖𝑗(휃𝑖,𝑗 − 𝜑𝑖,𝑗
𝑒 ) dΩ

Ω
 as follows: 
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Π =
1

2
∫휀𝑖𝑗𝜎𝑖𝑗

𝑐  dΩ
Ω

+∫ 𝑓𝛼(휂)𝛼‖∇𝛉‖ + 𝑓𝛽(휂)
𝛽

2
‖∇𝛉‖2 dΩ

Ω

+∫𝑚𝑖𝑗,𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

−∫ 𝑚𝑖𝑗𝑛𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΓ

𝜕Ω

+∫ 𝑝𝑟(휂) +
𝑞

2
(∇휂)2 dΩ

Ω

− Π𝑒𝑥𝑡(𝐮, 휂). 
(4.11) 

Remark 1. In (4.4), since the kinematic compatibility is imposed on the gradient of 𝛉 and 

𝛗𝑒, spurious rigid lattice rotation modes can exist in 𝛉 field. That is, arbitrary constant field in 휃𝑖 

does not contribute to Π unless Dirichlet BCs on lattice orientation are introduced. In general cases, 

a least-squares stabilization can be considered as follows: 

Π =
1

2
∫휀𝑖𝑗𝜎𝑖𝑗

𝑐  dΩ
Ω

+∫ 𝑓𝛼(휂)𝛼‖∇𝛉‖ + 𝑓𝛽(휂)
𝛽

2
‖∇𝛉‖2 dΩ

Ω

+∫𝑚𝑖𝑗,𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

−∫ 𝑚𝑖𝑗𝑛𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΓ

𝜕Ω

+ 2𝜇𝑐∫(휃𝑖 − 𝜑𝑖
𝑒)(휃𝑖 − 𝜑𝑖

𝑒) dΩ
Ω

+∫ 𝑝𝑟(휂) +
𝑞

2
(∇휂)2 dΩ

Ω

− Π𝑒𝑥𝑡(𝐮, 휂), 

(4.12) 

where 𝜇𝑐 is a stabilization parameter. The new term 2𝜇𝑐 ∫ (휃𝑖 − 𝜑𝑖
𝑒)(휃𝑖 − 𝜑𝑖

𝑒) dΩ
Ω

 has the same 

form as the penalty term in Eq. (3.35), but the role is completely different. The term is used in 

(4.12) only to remove the spurious oscillation. Thus, the acceptable parameter range is much wider 

than the penalty-based approach (see Section 6.3.2 for an example). A stability analysis is 

performed in Section 6.2 to obtain the suitable range of the stabilization parameter 𝜇𝑐 . The 

spurious rigid lattice rotation modes can alternatively be suppressed by a strong imposition of the 

kinematic constraint 𝛉 = 𝛗𝑒 as a boundary condition. See Appendix B for details. 

The set of Euler-Lagrangian equations derived from Eq. (4.11) is as follows: 
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𝜎𝑖𝑗,𝑗 + 𝑏𝑖 = 0 in   Ω ×]0, 𝑇[

𝜋𝑖,𝑖
∇𝜂
− �̂�𝜂 = 𝜇𝜂휂̇ in   Ω ×]0, 𝑇[

휃𝑖,𝑗 = 𝜑𝑖,𝑗
𝑒 in   Ω ×]0, 𝑇[

 (4.13) 

with the boundary and initial conditions 

𝑢𝑖 = 𝑔𝑖 on   𝜕Ω𝑔𝑖 ×]0, 𝑇[

𝜎𝑖𝑗𝑛𝑗 = ℎ𝑖 on   𝜕Ωℎ𝑖 ×]0, 𝑇[

𝜑𝑖
𝑒 = �̅�𝑖 on   𝜕Ω�̅�𝑖 ×]0, 𝑇[

𝑚𝑖𝑗𝑛𝑗 = 𝑐 𝑖 on   𝜕Ω𝑐𝑖 ×]0, 𝑇[

휂 = 휂 on   𝜕Ω�̅� ×]0, 𝑇[

𝜋𝑖
∇𝜂
𝑛𝑖 = �̅� on   𝜕Ω�̅� ×]0, 𝑇[

휂(𝑡 = 0) = 휂0 in   Ω

 (4.14) 

and the stresses 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑐 + 𝜎𝑖𝑗

𝑎

𝜎𝑖𝑗
𝑐 = 𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙

𝑒

𝜎𝑖𝑗
𝑎 =

1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙,𝑙

𝑚𝑖𝑗 = (
𝑓(휂)𝛼

‖∇𝛉‖
+ 𝑔(휂)𝛽)휃𝑖,𝑗

�̂�𝜂 = 𝑝𝑟,𝜂 +
𝛼𝑓,𝜂
‖∇𝛉‖

휃𝑖,𝑗𝜑𝑖,𝑗
𝑒 +

𝛽𝑔,𝜂

2
휃𝑖,𝑗(2𝜑𝑖,𝑗

𝑒 − 휃𝑖,𝑗)

𝜋𝑖
∇𝜂
= 𝑞휂,𝑖.

 (4.15) 

The last equation in (4.13) is derived from 

∫ 𝛿휃𝑘,𝑙
𝜕𝑚𝑖𝑗

𝜕휃𝑘,𝑙
(휃𝑖,𝑗 − 𝜑𝑖,𝑗

𝑒 ) dΩ
Ω

= 0  ∀ 𝛿휃𝑘,𝑙, (4.16) 

with 𝜕𝑚𝑖𝑗/𝜕휃𝑘,𝑙 ≠ 0 for general cases. 
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4.2. Galerkin formulation 

The weak form of Eq. (4.13) is to find 𝐮 ∈ 𝐻1 with 𝑢𝑖 = 𝑔𝑖 on 𝜕Ω𝑔𝑖 and 𝜑𝑖
𝑒 = �̅�𝑖 on 𝜕Ω�̅�𝑖, 

𝛉 ∈ 𝐻2 with 휃𝑖 = �̅�𝑖 on 𝜕Ω�̅�𝑖, and 휂 ∈ 𝐻1 with 휂 = 휂  on 𝜕Ω�̅�, such that 

∫𝛿𝑢𝑖,𝑗𝜎𝑖𝑗
𝑐  dΩ

Ω

+∫𝛿휃𝑖,𝑗𝑚𝑖𝑗  dΩ
Ω

+∫𝛿휃𝑖𝑚𝑖𝑗,𝑗 dΩ
Ω

+∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙,𝑙 dΩ

Ω

+∫𝛿𝑚𝑖𝑗,𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

−∫ 𝛿휃𝑖𝑚𝑖𝑗𝑛𝑗  dΓ
 𝜕Ω𝑐𝑖

−∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙𝑛𝑙  dΓ

 𝜕Ω𝑐𝑖
−∫ 𝛿𝑚𝑖𝑗𝑛𝑗(휃𝑖 − 𝜑𝑖

𝑒) dΓ
 𝜕Ω𝑐𝑖

+ 4𝜇𝑐∫𝛿휃𝑖(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

+ 4𝜇𝑐∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘(휃𝑘 − 𝜑𝑘

𝑒) dΩ
Ω

+∫𝛿휂,𝑖𝜋𝑖
∇𝜂
 dΩ

Ω

+∫𝛿휂𝜋𝜂  dΩ
Ω

+∫𝛿휂𝜇𝜂휂̇ dΩ
Ω

 

= ∫𝛿𝑢𝑖𝑏𝑖 dΩ
Ω

+∫ 𝛿𝑢𝑖ℎ𝑖  dΓ
 𝜕Ωℎ𝑖

−∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘𝑐 𝑖 dΓ

 𝜕Ω𝑐𝑖
+∫ 𝛿휂�̅� dΓ

 𝜕Ω�̅�
, 

(4.17) 

for all 𝛿𝐮 ∈ 𝐻1  with 𝛿𝑢𝑖 = 0 on 𝜕Ω𝑔𝑖  and 𝛿𝜑𝑖
𝑒 = 0 on 𝜕Ω�̅�𝑖 , 𝛿𝛉 ∈ 𝐻2 with 𝛿휃𝑖 = 0 on 

𝜕Ω�̅�𝑖, and 𝛿휂 ∈ 𝐻1 with 𝛿휂 = 0 on 𝜕Ω�̅�. 

Remark 2. In Eq. (4.17), the Dirichlet boundary condition is applied both to 𝛉 and 𝛗𝑒 to 

remove the spurious rigid lattice rotation as discussed in Remark 1, Section 4.1. In case of 𝜕Ω�̅�𝑖 ≠

∅, 𝜇𝑐 = 0 can be applied. Eq. (4.17) assumes that both 𝛉 and 𝛗𝑒 are kinematically admissible, i.e., 

the function spaces are chosen such that 𝛉 = �̅� and 𝛗𝑒 = �̅� on 𝜕Ω�̅�𝑖 can be strongly imposed. 

However, kinematic admissibility can be difficult to achieve particularly in the approximation of 

displacement-based lattice orientation 𝛗𝑒, where it is hard to possess the Kronecker delta property 

in the function space due to 𝛗𝑝  in 𝛗𝑒 = 𝛗−𝛗𝑝 . For kinematically inadmissible 𝛉  and 𝛗𝑒 , 

Nitsche’s method can be implemented to impose these boundary conditions by considering 

additional terms in the potential energy functional of Eq. (4.11) with 𝜇𝑐 = 0 as follows: 
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Π̅ = Π + ∫ 𝑚𝑖𝑗𝑛𝑗(휃𝑖 − �̅�𝑖) dΓ
𝜕Ω�̅�𝑖

−
𝜅�̅�

2
∫ (휃𝑖 − �̅�𝑖)(휃𝑖 − �̅�𝑖) dΓ
𝜕Ω�̅�𝑖

−∫ 𝑚𝑖𝑗𝑛𝑗(𝜑𝑖
𝑒 − �̅�𝑖) dΓ

𝜕Ω�̅�𝑖
+
𝜅�̅�

2
∫ (𝜑𝑖

𝑒 − �̅�𝑖)(𝜑𝑖
𝑒 − �̅�𝑖) dΓ

𝜕Ω�̅�𝑖
 

= 0, 

(4.18) 

where 𝜅�̅�  is stabilization parameter. The third and fifth terms of Eq. (4.18) and the Dirichlet 

boundary portion of the sixth term of Eq. (4.11) are canceled, leading to the following modified 

weak form. 

∫𝛿𝑢𝑖,𝑗𝜎𝑖𝑗
𝑐  dΩ

Ω

+∫𝛿휃𝑖,𝑗𝑚𝑖𝑗 dΩ
Ω

+∫𝛿휃𝑖𝑚𝑖𝑗,𝑗  dΩ
Ω

+∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙,𝑙 dΩ

Ω

+∫𝛿𝑚𝑖𝑗,𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

−∫ 𝛿휃𝑖𝑚𝑖𝑗𝑛𝑗  dΓ
 𝜕Ω𝑐𝑖

−∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙𝑛𝑙  dΓ

 𝜕Ω𝑐𝑖
−∫ 𝛿𝑚𝑖𝑗𝑛𝑗(휃𝑖 − 𝜑𝑖

𝑒) dΓ
 𝜕Ω𝑐𝑖

− 𝜅�̅�∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘𝜑𝑘

𝑒  dΓ
𝜕Ω�̅�𝑖

− 𝜅�̅�∫ 𝛿휃𝑖휃𝑖  dΓ
𝜕Ω�̅�𝑖

+ 4𝜇𝑐∫𝛿휃𝑖(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

+ 4𝜇𝑐∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘(휃𝑘 − 𝜑𝑘

𝑒) dΩ
Ω

+∫𝛿휂,𝑖𝜋𝑖
∇𝜂
 dΩ

Ω

+∫𝛿휂𝜋𝜂  dΩ
Ω

+∫𝛿휂𝜇𝜂휂̇ dΩ
Ω

 

= ∫𝛿𝑢𝑖𝑏𝑖 dΩ
Ω

+∫ 𝛿𝑢𝑖ℎ𝑖  dΓ
 𝜕Ωℎ𝑖

−∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘𝑐 𝑖 dΓ

 𝜕Ω𝑐𝑖

− 𝜅�̅�∫ 𝛿𝑢𝑖,𝑗
1

2
𝜖𝑖𝑗𝑘�̅�𝑘 dΓ

𝜕Ω�̅�𝑖
− 𝜅�̅�∫ 𝛿휃𝑖�̅�𝑖 dΓ

𝜕Ω�̅�𝑖
+∫ 𝛿휂�̅� dΓ

 𝜕Ω�̅�
. 

(4.19) 

In this work, the parameter 𝜅�̅� = 100𝛽/ℎ  with nodal spacing ℎ  is used. Note that, 

although Nitsche’s method is applied, the Lagrange multiplier portions of the method are canceled, 

which results in a pure penalty method for the imposition of �̅�𝑖. Thus, 𝜅�̅� needs to be sufficiently 

large. However, it will be shown that this formulation still yields optimal convergence. Finding a 

more effective way to impose �̅�𝑖 will be included in future work. 
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The corresponding Galerkin formulation corresponding to Eq. (4.17) is obtained by 

replacing 𝐮, 𝛉, and 휂 with the approximations 𝐮ℎ, 𝛉ℎ, and 휂ℎ, respectively. 
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Chapter 5  

Reproducing Kernel Particle Method 

A Reproducing Kernel Particle Method is introduced to construct the basic approximation 

functions for approximating the smooth solution in the kinematic valuables involved in the multi-

field variational formulation derived in Chapter 4. The ability of using arbitrary order of monomial 

basis functions and arbitrary smoothness in the kernel functions is particularly effective in 

evaluating higher order derivative terms in the crystal plasticity equations. 

5.1. Reproducing Kernel Approximation 

As the proposed formulation requires 𝛉ℎ ∈ 𝐻2, 𝐶1-continuity is also required. For this 

reason, the reproducing kernel (RK) approximation[98, 99] is used in this work. The RK 

approximation is particularly suitable since the order of continuity of the approximation is 

controlled by simply using a kernel function with a desired order of continuity and is independent 

of the order of basis. 

Let us consider a domain Ω discretized by 𝑁𝑃 nodes with nodal coordinate 𝐗𝐼 with 1 ≤

𝐽 ≤ 𝑁𝑃. The RK approximation 𝑓ℎ(𝐗) of a function 𝑓(𝐗) is 

𝑓ℎ(𝐗) =∑Ψ𝐽(𝐗)𝑑𝐽

𝑁𝑃

𝐽=1

, (5.1) 
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where Ψ𝐽(𝐗) is RK shape function of node 𝐽 and 𝑑𝐽 is generalized nodal coefficient of node 𝐽. The 

RK shape function Ψ𝐽(𝐗) is a correction of a kernel function Φ𝑎(𝐗 − 𝐗𝐽) defined on the compact 

support of node 𝐽 with support size of 𝑎: 

Ψ𝐽(𝐗) = {∑ (𝐗 − 𝐗𝐽)
𝛂
𝑏𝛂(𝐱)

|𝛂|≤𝑛

}Φ𝑎(𝐗 − 𝐗𝐽), (5.2) 

where (𝐗 − 𝐗𝐽)
𝛂

 is a basis function, 𝛂 = (𝛼1, 𝛼2, … , 𝛼𝑑) with dimension 𝑑, and |𝛂| ≡ ∑ 𝛼𝑖
𝑑
𝑖=1 . 

𝐗𝛼 is defined as 

𝐗𝛂 ≡ 𝑋1
𝛼1 ⋅ 𝑋2

𝛼2 ⋅ … ⋅ 𝑋𝑑
𝛼𝑑  (5.3) 

The coefficients 𝑏𝛂(𝐗) for |𝛂| ≤ 𝑛 are the solutions of the following set of reproducing 

conditions: 

∑Ψ𝐽(𝐗)𝐗𝐽
𝛂

𝑁𝑃

𝐽=1

= 𝐗𝛂, |𝛂| ≤ 𝑛 (5.4) 

which leads to the explicit form of Ψ𝐽(𝐗) as follows. 

Ψ𝐽(𝐗) = 𝐇
𝑇(𝟎)𝐌−1(𝐗)𝐇(𝐗 − 𝐗𝐽)Φ𝑎(𝐗 − 𝐗𝐽) (5.5) 

where 𝐌(𝐗) is moment matrix and 𝐇(𝐗 − 𝐗𝐽) is the basis vector defined as 

𝐌(𝐗) =∑𝐇(𝐗 − 𝐗𝐽)𝐇
𝑇(𝐗 − 𝐗𝐽)Φ𝑎(𝐗 − 𝐗𝐽)

𝑁𝑃

𝐽=1

, (5.6) 
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𝐇(𝐗 − 𝐗𝐽) = [1, (𝑋1 − 𝑋1𝐽), (𝑋2 − 𝑋2𝐽), (𝑋3 − 𝑋3𝐽),⋯ , (𝑋3 − 𝑋3𝐽)
𝑛
]
𝑇
. (5.7) 

The order of continuity of the RK approximation is determined by the kernel function 

Φ𝑎(𝐗 − 𝐗𝐽) while the polynomial completeness of the approximation is determined by the basis 

vector 𝐇(𝐗 − 𝐗𝐽) . Thus, it is straightforward to introduce high order continuity into the 

approximation space, which makes the RK approximation more appealing to utilize for the 

formulation proposed in Chapter 4 than the C0 interpolation-type approximations used in finite 

element methods. 

 

Figure 5.1. Illustration of RK discretization and shape function 

Now, consider the following approximations: 

𝐮ℎ(𝐗) =∑Ψ𝐽
𝑢(𝐗)𝐝𝐽

𝑢

𝑁𝑃

𝐽=1

 (5.8) 
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𝛉ℎ(𝐗) =∑Ψ𝐽
𝜃(𝐗)𝐝𝐽

𝜃

𝑁𝑃

𝐽=1

 (5.9) 

휂ℎ(𝐗) =∑Ψ𝐽
𝜂(𝐗)𝑑𝐽

𝜂

𝑁𝑃

𝐽=1

 (5.10) 

where 𝐝𝐽
𝑢 = [𝑑𝐽1

𝑢  ⋯ 𝑑𝐽𝑑
𝑢 ]

𝑇
, 𝐝𝐽

𝜃 = [𝑑𝐽1
𝜃  ⋯ 𝑑𝐽�̅�

𝜃 ]
𝑇

, and 𝑑𝐽
𝜂

 are the generalized coefficients. In 

general, it is recommended that a second order or higher basis vector is used for 𝛉ℎ to possess the 

zeroth order or higher polynomial completeness on 𝛉,𝑖𝑗
ℎ  since the proposed formulation and general 

constitutive equations involve ∇2𝐦 which contains 𝛉,𝑖𝑗
ℎ . For 𝐮ℎ, a basis with an order equal to the 

order of basis for 𝛉ℎ could be chosen considering both accuracy and efficiency, since the weak 

inf-sup stabilization stabilizes an equal-order pair[100]. If higher accuracy of displacement and 

strain is of interest, a higher order basis can be considered for 𝐮ℎ. For the phase field 휂ℎ, the basis 

order equal to the basis order of other independent variables has widely been used, e.g., an equal 

order displacement-phase field pair for phase field fracture simulations[91, 101, 102] and an equal 

order lattice rotation-phase field pair for orientation phase field simulations[68, 103], and stable 

solutions have been obtained. Similarly, for the proposed method, it has been observed that equal 

order lattice rotation-phase field pairs are stable. Consequently, equal order displacement-lattice 

rotation-phase field approximations are considered in this work. The specific orders of basis 

vectors used for this work are specified in each numerical example. 
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5.2. Solution Procedure 

To solve the proposed formulations, the staggered solution scheme is applied such that, at 

time 𝑡 = 𝑡𝑛 , the equation is first solved for the phase field while the displacement and lattice 

orientation are fixed. In the next stage, the obtained phase field is fixed and the equation is solved 

for the displacement and lattice orientation. This simplifies the implementation of the proposed 

formulation. In the first stage, the problem states 

∫𝛿휂ℎ𝜇𝜂휂̇ℎ dΩ
Ω

+∫𝛿휂,𝑖
ℎ𝜋𝑖

∇𝜂
 dΩ

Ω

+∫𝛿휂ℎ𝜋𝜂  dΩ
Ω

= ∫ 𝛿휂ℎ�̅� dΓ
 𝜕Ω�̅�

   

∀  𝛿휂ℎ ∈ 𝒫ℎ ⊂ 𝐻1. 

(5.11) 

with given 𝐮ℎ  and 휃ℎ. The backward Euler scheme is employed for the time integration. 

The problem of the second stage reads 

∫𝛿𝑢𝑖,𝑗
ℎ 𝜎𝑖𝑗

𝑐  dΩ
Ω

+∫ 𝛿𝑢𝑖,𝑗
ℎ 1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙,𝑙 dΩ

Ω

−∫ 𝛿𝑢𝑖,𝑗
ℎ 1

2
𝜖𝑖𝑗𝑘𝑚𝑘𝑙𝑛𝑙  dΓ

 𝜕Ω𝑐𝑖

+ 4𝜇𝑐∫ 𝛿𝑢𝑖,𝑗
ℎ 1

2
𝜖𝑖𝑗𝑘(휃𝑘

ℎ − 𝜑𝑘
𝑒) dΩ

Ω

 

= ∫𝛿𝑢𝑖
ℎ𝑏𝑖 dΩ

Ω

+∫ 𝛿𝑢𝑖
ℎℎ𝑖  dΓ

 𝜕Ωℎ𝑖
−∫ 𝛿𝑢𝑖,𝑗

ℎ 1

2
𝜖𝑖𝑗𝑘𝑐 𝑖 dΓ

 𝜕Ω𝑐𝑖
   

∀ 𝛿𝐮ℎ ∈ 𝒱ℎ ∈ 𝐻1, 

(5.12) 
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∫𝛿휃𝑖,𝑗
ℎ 𝑚𝑖𝑗 dΩ

Ω

+∫𝛿휃𝑖
ℎ𝑚𝑖𝑗,𝑗  dΩ

Ω

+∫ (𝛿휃𝑘,𝑙
ℎ
𝜕𝑚𝑖𝑗,𝑗

𝜕휃𝑘,𝑙
ℎ + 𝛿휃𝑘,𝑙𝑠

ℎ
𝜕𝑚𝑖𝑗,𝑗

𝜕휃𝑘,𝑙𝑠
ℎ ) (휃𝑖

ℎ −𝜑𝑖
𝑒) dΩ

Ω

−∫ 𝛿휃𝑖
ℎ𝑚𝑖𝑗𝑛𝑗  dΓ

 𝜕Ω𝑐𝑖
−∫ 𝛿휃𝑘,𝑙

ℎ
𝜕𝑚𝑖𝑗

𝜕휃𝑘,𝑙
ℎ 𝑛𝑗(휃𝑖

ℎ − 𝜑𝑖
𝑒) dΓ

 𝜕Ω𝑐𝑖

+ 4𝜇𝑐∫𝛿휃𝑖(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

= 0    

 ∀ 𝛿휃ℎ ∈ 𝒯ℎ ∈ 𝐻2, 

(5.13) 

with given 휂ℎ. The Newton-Raphson algorithm is implemented to solve Eqs. (5.11), (5.12), and 

(5.13). 

5.3. Matrix Equations 

The matrix equations for the proposed formulation are provided for two-dimension. Let us 

first define the following vectors: 

𝐞 = [𝑢1,1 𝑢2,2 𝑢1,2 𝑢2,1]𝑇 (5.14) 

𝛋 = [휃,1 휃,2 ]𝑇 (5.15) 

𝐪 = [휃,11 휃,22 휃,12 휃,21]𝑇 (5.16) 

𝛜 = [0 0 1 −1]𝑇 (5.17) 

Next, we have the stress 𝛔 as follows: 

𝛔 = 𝐃𝐞𝑒 +
1

2
𝛜 (𝑐𝑚𝑘,𝑘 + 4𝜇𝑐(휃 − 𝜑)) = �̂�𝐞

𝑒 +
1

2
𝛜(𝑐𝑚𝑘,𝑘 + 4𝜇𝑐휃) (5.18) 

where 
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𝐃 = [

2𝜇 + 𝜆 𝜆 0 0
𝜆 2𝜇 + 𝜆 0 0
0 0 𝜇 0
0 0 0 𝜇

] (5.19) 

and 

�̂� = 𝐃 + 𝜇𝑐𝛜𝛜
𝑇 . (5.20) 

The couple stress 𝐦 is 

𝐦 = (
𝛼

|∇𝛉|
+ 𝛽)𝛋 = 𝐵𝛋 (5.21) 

where 

𝐵 =
𝛼

|∇𝛉|
+ 𝛽 

(5.22) 

By substituting Eqs. (5.8), (5.9), and (5.10) into (5.11), (5.12), and (5.13), 

𝐟𝐼
𝑖𝑛𝑡,𝑢 = ∫𝐁𝐼

𝑢𝑇𝛔 dΩ
Ω

−∫ 𝐁𝐼
𝑢𝑇
1

2
𝛜𝐧𝑇𝐦  dΓ

 𝜕Ω𝑐𝑖
 

= ∫𝐍𝐼
𝑢𝑇𝐛 dΩ

Ω

+∫ 𝐍𝐼
𝑢𝑇𝐡 dΓ

 𝜕Ωℎ𝑖
−∫ 𝐁𝐼

𝑢𝑇
1

2
𝛜𝐧𝑇𝐜  dΓ

 𝜕Ω𝑐𝑖
 = 𝐟𝐼

𝑒𝑥𝑡,𝑢
 

∀ 𝐼 ∈ 𝒮, 

(5.23) 
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𝑓𝐼
𝑖𝑛𝑡,𝜃 = ∫𝐁𝐼

𝜃𝑇𝐦 dΩ
Ω

+∫Ψ𝐼
𝜃𝑇𝑚𝑗,𝑗 dΩ

Ω

+∫𝐖𝐼
𝜃𝑇(휃 − 𝜑) dΩ

Ω

−∫ Ψ𝐼
𝜃𝑇𝐧𝑇𝐦 dΓ

 𝜕Ω𝑐𝑖

−∫ 𝐁𝐼
𝜃𝑇𝐂𝑇𝐧(휃 − 𝜑) dΓ

 𝜕Ω𝑐𝑖
= 0    

 ∀ 𝐼 ∈ 𝒮, 

(5.24) 

𝑓𝐼
𝑖𝑛𝑡,𝜂

= ∫Ψ𝐼
𝜂𝑇
𝜇𝜂휂̇ℎ dΩ

Ω

+∫𝐁𝐼
𝜂𝑇
𝛑
∇𝜂
 dΩ

Ω

+∫Ψ𝐼
𝜂𝑇
𝜋𝜂  dΩ

Ω

= ∫ Ψ𝐼
𝜂𝑇
�̅� dΓ

 𝜕Ω�̅�

= 𝑓𝐼
𝑒𝑥𝑡,𝜂

   

∀ 𝐼 ∈ 𝒮. 

(5.25) 

where  

 𝐂 = 𝐵𝐈 −
𝛼

|∇𝛉|3
𝛋𝛋𝑇 (5.26) 

𝐍𝐼
𝑢 = 𝐍𝐼

𝑢(𝐗) = [
Ψ𝐼
𝑢(𝐗) 0

0 Ψ𝐼
𝑢(𝐗)

] (5.27) 

𝐁𝐼
𝑢 = 𝐁𝐼

𝑢(𝐗) =

[
 
 
 
 
Ψ𝐼,1
𝑢 (𝐗) 0

0 Ψ𝐼,2
𝑢 (𝐗)

Ψ𝐼,2
𝑢 (𝐗) 0

0 Ψ𝐼,1
𝑢 (𝐗)]

 
 
 
 

 (5.28) 

𝐁𝐼
𝜃 = 𝐁𝐼

𝜃(𝐗) = [
Ψ𝐼,1
𝜃 (𝐗)

Ψ𝐼,1
𝜃 (𝐗)

] (5.29) 

𝐁𝐼
𝜂
= 𝐁𝐼

𝜂(𝐗) = [
Ψ𝐼,1
𝜂 (𝐗)

Ψ𝐼,1
𝜂 (𝐗)

] (5.30) 

𝐖𝐼
𝜃 = 4𝜇𝑐𝐍𝐼

𝜃 + 𝑐(𝐪𝑇𝐓𝑇𝐁𝐼
𝜃 + 𝐇𝐐𝐼

𝜃) (5.31) 
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𝐐𝐼
𝜃 = 𝐐𝐼

𝜃(𝐗) =

[
 
 
 
 
Ψ𝐼,11
𝜃 (𝐗)

Ψ𝐼,22
𝜃 (𝐗)

Ψ𝐼,12
𝜃 (𝐗)

Ψ𝐼,21
𝜃 (𝐗)]

 
 
 
 

 (5.32) 

𝐓 = −
𝛼

|∇𝛉|3
[
3휃,1 휃,1 휃,2 휃,2
휃,2 3휃,2 휃,1 휃,1

] + 3
𝛼

|∇𝛉|5
[
휃,1
3 휃,1휃,2

2 휃,1
2휃,2 휃,1

2휃,2

휃,1
2휃,2 휃,2

3 휃,1휃,2
2 휃,1휃,2

2] (5.33) 

𝐇 = [𝐶11 𝐶22 𝐶21 𝐶12] (5.34) 

If the Nitsche’s method is considered for imposing the Dirichlet boundary condition on the 

displacement, the following terms are additionally introduced with the stability parameter 휁. 

𝐟𝐼
𝐸𝐵𝐶𝑢,𝑖𝑛𝑡,𝑢 = −∫ 𝛿𝐁𝐼

𝑢𝑇�̂�𝐯𝐮 dΓ
𝜕Ωg

+∫ 𝐍𝐼
𝑢𝑇[휁𝐮 − 𝐯𝑇𝛔] dΓ

𝜕Ωg
 (5.35) 

𝐟𝐼
𝐸𝐵𝐶𝑢,𝑒𝑥𝑡,𝑢 = −∫ 𝛿𝐁𝐼

𝑢𝑇�̂�𝐯𝐠𝑢 dΓ
𝜕Ωg

+∫ 𝐍𝐼
𝑢𝑇휁𝐠 dΓ

𝜕Ωg
 (5.36) 

𝐟𝐼
𝐸𝐵𝐶𝑢,𝑖𝑛𝑡,𝜃 = −∫ 𝐖𝐼

𝜃𝑇
1

2
𝛜𝑇𝐯𝐮 dΓ

Γg
 (5.37) 

𝐟𝐼
𝐸𝐵𝐶𝑢,𝑒𝑥𝑡,𝜃 = −∫ 𝐖𝐼

𝜃𝑇
1

2
𝛜𝑇𝐯𝐠𝑢 dΓ

Γg
 (5.38) 

where  

𝐯 = [

𝑛1 0
0 𝑛2
𝑛2 0
0 𝑛1

]. (5.39) 
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For the nonlinear iteration, we obtain the following matrix equation by taking the 

incremental forms of Eqs. (5.23) and (5.24): 

[𝐊
𝑢𝑢 𝐊𝑢𝜃

𝐊𝜃𝑢 𝐊𝜃𝜃
] [
∆𝐝𝑢

∆𝐝𝜃
] = [

∆𝐟𝑢

∆𝐟𝜃
] (5.40) 

where  

𝐊𝐼𝐽
𝑢𝑢 = ∫𝐁𝐼

𝑢𝑇�̂��̂�𝐁𝐽
𝑢 dΩ

Ω

 (5.41) 

𝐊𝐼𝐽
𝑢𝜃 = ∫ 𝐁𝐼

𝑢𝑇
1

2
�̂�𝛜𝐖𝐽

𝜃 dΩ
Ω

−∫ 𝐁𝐼
𝑢𝑇
1

2
𝛜𝐧𝑇𝐂𝐁𝐽

𝜃 dΓ
 𝜕Ω𝑐𝑖

 (5.42) 

𝐊𝐼𝐽
𝜃𝑢 = ∫ 𝐖𝐼

𝜃𝑇
1

2
𝛜𝑇𝐆𝐁𝐽

𝑢 dΩ
Ω

−∫ 𝐁𝐼
𝜃𝑇
1

2
𝐂𝑇𝐧𝛜𝑇�̅�𝐁𝐽

𝑢 dΓ
𝜕Ω𝑐𝑖

 (5.43) 

𝐊𝐼𝐽
𝜃𝜃 = ∫𝐁𝐼

𝜃𝑇𝐂𝐁𝐽
𝜃 dΩ

Ω

+∫ [𝐖𝐼
𝜃𝑇𝐍𝐽

𝜃 + 𝐍𝐼
𝜃𝑇𝐖𝐽

𝜃]  dΩ
Ω

−∫𝐍𝐼
𝜃𝑇4𝜇𝑐𝐍𝐽

𝜃  dΩ
Ω

−∫ 𝐖𝐼
𝜃𝑇
1

4
𝛜𝑇𝐆𝛜𝐖𝐽

𝜃 dΩ
Ω

+ 𝑐∫ �̅�𝐼𝐽
𝜃𝜃(휃 − 𝜑) dΩ

Ω

− 𝑐∫𝐁𝐼
𝜃𝑇(휃 − 𝜑)𝐏𝐁𝐽

𝜃 dΓ
Γ

− 𝑐∫ [𝐍𝐼
𝜃𝑇𝐧𝑇𝐂𝐁𝐽

𝜃 + 𝐁𝐼
𝜃𝑇𝐂𝑇𝐧𝐍𝐽

𝜃]  dΓ
Γ

+ 𝑐∫ 𝐁𝐼
𝜃𝑇𝐂𝑇𝐧

1

4
𝛜𝑇𝐆𝛜𝐖𝐽

𝜃 dΓ
Γ

 

(5.44) 

�̅�𝐼𝐽
𝜃𝜃 = 𝐁𝐼

𝜃𝑇𝐒𝐁𝐽
𝜃 + 𝐁𝐼

𝜃𝑇𝐓𝐐𝐽
𝜃 + 𝐐𝐼

𝜃𝑇𝐓𝑇𝐁𝐽
𝜃 (5.45) 

�̂� = 𝐈 − �̂�𝐆 
(5.46) 

 𝐆 = 𝐈 − 𝐆�̂� (5.47) 

with the surface normal vector 𝐧 and the constitutive model-specific modulus 𝐆. 
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If the Nitsche’s method is considered for imposing the Dirichlet boundary condition on the 

displacement, the following terms are additionally introduced, with the stability parameter 휁. 

𝐊𝐼𝐽
𝐸𝐵𝐶,𝑢𝑢 = −∫ 𝐁𝐼

𝑢𝑇�̂�𝐯𝐍𝐽
𝑢 dΓ

𝜕Ωg
+∫ 𝐍𝐼

𝑢𝑇[휁𝐍𝐽
𝑢 − 𝐯𝑇�̂��̂�𝐁𝐽

𝑢] dΓ
𝜕Ωg

 (5.48) 

𝐊𝐼𝐽
𝐸𝐵𝐶,𝑢𝜃 = −∫ 𝐍𝐼

𝑢𝑇𝐯𝑇
1

2
�̂�𝛜𝐖𝐽

𝜃 dΓ
Γg

 
(5.49) 

𝐊𝐼𝐽
𝐸𝐵𝐶,𝜃𝑢 = −∫ 𝐖𝐼

𝜃𝑇
1

2
𝛜𝑇𝐯𝐍𝐽

𝑢 dΓ
Γg

 
(5.50) 

𝐊𝐼𝐽
𝐸𝐵𝐶,𝜃𝜃 = −∫ �̅�𝐼𝐽

𝜃𝜃
1

2
𝛜𝑇𝐯(𝐮 − 𝐠𝑢) dΓ

Γg
. 

(5.51) 

5.4. Strong Imposition of Rotational Kinematic Constraint on Boundary 

Another approach to remove the spurious rigid lattice rotation modes is the imposition of 

the rotational kinematic constraints on boundaries in (4.17). Consider the following matrix 

equation of the incremental formulation (5.40) with kinematically admissible function spaces: 

𝐊∆𝐝 = [
𝐊𝑢𝑢 𝐊𝑢𝜃

𝑑
𝐊𝑢𝜃𝑏

𝐊𝜃
𝑑𝑢 𝐊𝜃

𝑑𝜃𝑑 𝐊𝜃
𝑑𝜃𝑏

𝐊𝜃
𝑏𝑢 𝐊𝜃

𝑏𝜃𝑑 𝐊𝜃
𝑏𝜃𝑏

] [
∆𝐮
∆𝛉𝑑

∆𝛉𝑏
] = [

∆𝐟𝑢

∆𝐟𝜃
𝑑

∆𝐟𝜃
𝑏

] = 𝐟, (5.52) 
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where the superscripts 𝑑  and 𝑏  denote quantities associated with domain and boundary, 

respectively. Let 𝑁𝑢, 𝑁𝜃
𝑑
, and 𝑁𝜃

𝑏
 be the length of the vectors ∆𝐮, ∆𝛉𝑑, and ∆𝛉𝑏, respectively. 

On a boundary node 𝐱𝐼, the following relation holds. 

∆휃𝐼𝑖
𝑏 = ∆𝜑𝑖

𝑒(𝐱𝐼) = −
1

2
𝜖𝑖𝑗𝑘 (∆𝑒𝑗𝑘(𝐱𝐼) − ∆𝑒𝑗𝑘

𝑝 (𝐱𝐼)), (5.53) 

where 

∆𝐞 = 𝐁∆𝐮 (5.54) 

and 

∆𝐞𝑝 = 𝐂𝑢∆𝐮 + 𝐂𝜃∆𝛉 (5.55) 

Then, 

∆𝛉𝑏 = [𝐀𝑢  𝐀𝜃
𝑑

  𝐀𝜃
𝑏
] [
∆𝐮
∆𝛉𝑑

∆𝛉𝑏
], (5.56) 

where 

𝐀𝑢 = −
1

2
𝛜𝑇(𝐁 − 𝐂𝑢)∆𝐮 (5.57) 

𝐀𝜃
𝑑
=
1

2
𝛜𝑇𝐂𝜃

𝑑
∆𝛉𝑑 (5.58) 
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𝐀𝜃
𝑏
=
1

2
𝛜𝑇𝐂𝜃

𝑏
∆𝛉𝑏, (5.59) 

which leads to 

∆𝛉𝑏 = 𝚲 [
∆𝐮
∆𝛉𝑑

], (5.60) 

where 

𝚲 = (𝐈𝑏 − 𝐀𝜃
𝑏
)
−1

[𝐀𝑢  𝐀𝜃
𝑑

 ], (5.61) 

with the identity matrix 𝐈𝑏 with the size of 𝑁𝜃
𝑏
×𝑁𝜃

𝑏
. Now, we have 

[
∆𝐮
∆𝛉𝑑

∆𝛉𝑏
] = �̂� [

∆𝐮
∆𝛉𝑑

], (5.62) 

with 

�̂� = [𝐈
𝑑

𝚲
], (5.63) 

where 𝐈𝑑 is the identity matrix with the size of (𝑁𝑢 + 𝑁𝜃
𝑑
) × (𝑁𝑢 + 𝑁𝜃

𝑑
). 

By pre-multiplying 𝐊  and ∆𝐟 , and post-multiplying 𝐊  by �̂� , we have the following 

modified system matrix equation. 

�̂�∆�̂� = ∆𝐟 (5.64) 



 

62 

 

with  

�̂� = �̂�𝑇𝐊�̂� (5.65) 

∆𝐟 = �̂�𝑇∆𝐟 (5.66) 

∆�̂� = [
∆𝐮
∆𝛉𝑑

]. (5.67) 
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Chapter 6  

Stability Analysis of Duality-based Coupled Cosserat Crystal Plasticity – 

Phase Field Formulation 

In this chapter, the stability properties of the proposed method are investigated and an 

additional stabilization is suggested. The phase field is not included here to focus on the instability 

that arises from the duality-based imposition of the rotational kinematic constraint. 

6.1. Weak inf-sup condition 

Consider the following variational formulation associated with the unstabilized dual 

problem: find 𝐮ℎ ∈ 𝒰ℎ ∈ 𝐻0
1 and 𝛉ℎ ∈ 𝒯ℎ ⊂ 𝐻0

2, such that 

𝑎(𝐮ℎ, 𝛿𝐮ℎ) + 𝑑(𝛿𝐮ℎ, 𝛉ℎ) = 𝐹(𝛿𝐮ℎ),   ∀ 𝛿𝐮ℎ ∈ 𝒰ℎ ⊂ 𝐻0
1, (6.1) 

𝑑(𝐮ℎ, 𝛿𝛉ℎ) − 𝑏(𝛉ℎ, 𝛿𝛉ℎ) = 0,   ∀ 𝛿𝛉ℎ ∈ 𝒯ℎ ⊂ 𝐻0
2, (6.2) 

where bilinear forms 𝑎(⋅,⋅), 𝑏(⋅,⋅), and 𝑑(⋅,⋅) are defined as 

𝑎(𝐮ℎ, 𝛿𝐮ℎ) = ∫휀𝑖𝑗(𝛿𝐮
ℎ)𝐶𝑖𝑗𝑘𝑙휀𝑘𝑙(𝐮

ℎ) dΩ
Ω

, (6.3) 

𝑏(𝛉ℎ, 𝛿𝛉ℎ) = −∫𝛿휃𝑖,𝑗
ℎ 𝑚𝑖𝑗  dΩ

Ω

−∫𝛿휃𝑖
ℎ𝑚𝑖𝑗,𝑗 dΩ

Ω

−∫𝛿𝑚𝑖𝑗,𝑗휃𝑖
ℎdΩ

Ω

, (6.4) 
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𝑑(𝛿𝐮ℎ, 𝛉ℎ) = −∫𝜑𝑖(𝛿𝐮
ℎ)𝑚𝑖𝑗,𝑗 dΩ

Ω

. (6.5) 

The bilinear form 𝑎(⋅,⋅) is assumed to possess the following property: 

𝑎(𝐮ℎ, 𝐮ℎ) ≥ 𝐶𝑎‖𝐮ℎ‖1
2. (6.6) 

The constant 𝐶𝑎 is independent of nodal spacing ℎ. By applying integration by parts to the 

second and third terms on the right-hand side of Eq. (6.4) with 𝛉ℎ ∈ 𝐻0
2 , 𝑏(𝛉ℎ, 𝛿𝛉ℎ) =

∫ 𝛿𝑚𝑖𝑗휃𝑖,𝑗
ℎ  dΩ

Ω
 is obtained, and 𝑏(⋅,⋅) is assumed to be positive semi-definite: 

𝑏(𝛉ℎ, 𝛉ℎ) ≥ 𝐶𝑏|𝛉ℎ|1
2 ≥ 0. (6.7) 

The bilinear form 𝑑(⋅,⋅) is required to satisfy the inf-sup condition for positive constant 𝛾 

independent of ℎ: 

sup
𝐮ℎ∈𝒰ℎ

𝑑(𝐮ℎ, 𝛉ℎ)

‖𝐮ℎ‖1
≥ 𝛾‖𝐦 ⋅ ∇‖0 , ∀ 𝛉ℎ ∈ 𝒯ℎ (6.8) 

To find the missing term in satisfying Eq. (6.8), a weak inf-sup condition is derived, 

inspired by Bochev et al.[100]. 
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sup
𝐮ℎ∈𝒰ℎ

∫ 𝜑𝑖(𝐮
ℎ)(−𝑚𝑖𝑗,𝑗) dΩΩ

‖𝐮ℎ‖1
≥
|∫ 𝜑𝑖(𝛿𝐮

ℎ)(−𝑚𝑖𝑗,𝑗) dΩΩ
|

‖𝛿𝐮ℎ‖1

≥
|∫ 𝜑𝑖(𝛿𝐮

ℎ)(−𝑚𝑖𝑗,𝑗) dΩΩ
|

𝐶‖𝛿𝐮‖1

=
|∫ (𝜑𝑖(𝛿𝐮

ℎ) − 𝜑𝑖(𝛿𝐮))(−𝑚𝑖𝑗,𝑗) dΩ + ∫ 𝜑𝑖(𝛿𝐮)(−𝑚𝑖𝑗,𝑗) dΩΩΩ
|

𝐶‖𝛿𝐮‖1

≥
∫ 𝜑𝑖(𝛿𝐮)(−𝑚𝑖𝑗,𝑗) dΩΩ

− |∫ (𝜑𝑖(𝛿𝐮
ℎ) − 𝜑𝑖(𝛿𝐮))(−𝑚𝑖𝑗,𝑗) dΩΩ

|

𝐶‖𝛿𝐮‖1
 

(6.9) 

With Eq. (3.5), the terms in the numerator of the right-hand side of Eq, (6.9) can be 

expressed as follows: 

∫𝜑𝑖(𝛿𝐮)(−𝑚𝑖𝑗,𝑗) dΩ
Ω

= ∫ 𝛿𝑢𝑗,𝑘(
1

2
𝜖𝑖𝑗𝑘𝑚𝑖𝑙,𝑙) dΩ

Ω

 (6.10) 

|∫ (𝜑𝑖(𝛿𝐮
ℎ) − 𝜑𝑖(𝛿𝐮))(−𝑚𝑖𝑗,𝑗) dΩ

Ω

| = |∫ (𝛿𝑢𝑗,𝑘
ℎ − 𝛿𝑢𝑗,𝑘)(

1

2
𝜖𝑖𝑗𝑘𝑚𝑖𝑙,𝑙) dΩ

Ω

| (6.11) 

Let us define 𝛔× =
1

2
𝛜 ⋅ (𝐦 ⋅ ∇)  and assume 𝛔× ∈ 𝐿2 , then, there exists 𝛿𝐮 ∈ 𝐻0

1  that 

satisfies the following inequality: 

∫ 𝛿𝑢𝑗,𝑘(
1

2
𝜖𝑖𝑗𝑘𝑚𝑖𝑙,𝑙) dΩ

Ω

= ∫𝛿𝑢𝑗,𝑘𝜎𝑗𝑘
×  dΩ

Ω

≥ 𝐶1‖𝛿𝐮‖1‖𝛔
×‖0. (6.12) 

Also, by performing integration by parts on Eq. (6.11), 

|∫ (𝛿𝑢𝑗,𝑘
ℎ − 𝛿𝑢𝑗,𝑘)(

1

2
𝜖𝑖𝑗𝑘𝑚𝑖𝑙,𝑙) dΩ

Ω

| = |∫ (𝛿𝑢𝑗
ℎ − 𝛿𝑢𝑗)

1

2
𝜖𝑖𝑗𝑘𝑚𝑖𝑙,𝑙𝑗 dΩ

Ω

|

≤ ‖∇𝛔×‖0‖𝛿𝐮 − 𝛿𝐮
ℎ‖0 ≤ 𝐶2ℎ‖∇𝛔

×‖0‖𝛿𝐮‖1, 

(6.13) 
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where the last inequality holds due to the inverse inequality. Together with Eqs. (6.12) and (6.13), 

Eq. (6.9) becomes 

sup
𝐮ℎ∈𝒰ℎ

∫ 𝜑𝑖(𝐮
ℎ)(−𝑚𝑖𝑗,𝑗) dΩΩ

‖𝐮ℎ‖1
≥
𝐶1
𝐶
‖𝛔×‖0 −

𝐶2
𝐶
ℎ‖∇𝛔×‖0. (6.14) 

Let us consider the case that 𝛔× ∈ 𝐻1  and introduce a projection operator 𝜋𝐿(⋅) =

1

𝑉𝐿
∫ (⋅) dΩ
Ω𝐿

 with the volume 𝑉𝐿 of the integration domain Ω𝐿. Then, with ∇𝜋𝐿𝛔× = 𝟎 in Ω𝐿, 

‖∇(𝛔×)‖0 =∑‖∇(𝛔× − 𝜋𝐿𝛔×)‖0,Ω𝐿
𝐿

≤
𝐶 

ℎ
∑‖𝛔× − 𝜋𝐿𝛔×‖0,Ω𝐿
𝐿

, (6.15) 

which leads to 

sup
𝒖ℎ∈𝒰ℎ

∫ 𝜑𝑖(𝐮
ℎ)(−𝑚𝑖𝑗,𝑗) dΩΩ

‖𝐮ℎ‖1
+
𝐶2𝐶 

𝐶
∑‖𝛔× − 𝜋𝐿𝛔×‖0,Ω𝐿
𝐿

≥
𝐶1
𝐶
‖𝛔×‖0. (6.16) 

Based on this stability analysis, the introduction of 
𝜅𝑝𝑟𝑜𝑗 

2
‖𝛔× − 𝜋𝐿𝛔×‖0

2 into Eq. (4.12) can 

be considered for the formulation to be stable as follows. 

Π =
1

2
∫휀𝑖𝑗𝜎𝑖𝑗

𝑐  dΩ
Ω

+∫ 𝑓𝛼(휂)𝛼‖∇𝛉‖ + 𝑓𝛽(휂)
𝛽

2
‖∇𝛉‖2 dΩ

Ω

+∫𝑚𝑖𝑗,𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΩ

Ω

−∫ 𝑚𝑖𝑗𝑛𝑗(휃𝑖 − 𝜑𝑖
𝑒) dΓ

𝜕Ω

−
𝜅𝑝𝑟𝑜𝑗 

2
‖𝛔× − 𝜋𝐿𝛔×‖0

2

+ 2𝜇𝑐∫(휃𝑖 − 𝜑𝑖
𝑒)(휃𝑖 −𝜑𝑖

𝑒) dΩ
Ω

+∫ 𝑝𝑟(휂) +
𝑞

2
(∇휂)2 dΩ

Ω

− Π𝑒𝑥𝑡(𝐮, 휂) 

(6.17) 
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Bochev et al.[100] state that the parameter 𝑘𝑝𝑟𝑜𝑗  is introduced for the dimensional 

correction, not a tunable stabilization parameter. Along this line, we introduce 𝑘𝑝𝑟𝑜𝑗 = 𝑎2/𝐶𝑝 

with the kernel support size 𝑎 (see Section 5.1) and 𝐶𝑝 = 𝜋𝐿(‖𝐏‖) where 𝐏 is the tensor defining 

the relation between the couple stress divergence and second gradient of 휃  as given below by 

taking the divergence of the couple stress in (4.7) with 휂 = 1. 

𝑚𝑖𝑛,𝑛 = 𝑃𝑖𝑗𝑘𝑙휃𝑘,𝑙𝑗, (6.18) 

where 

𝑃𝑖𝑗𝑘𝑙 = (
𝛼

‖∇𝛉‖
+ 𝛽)𝛿𝑖𝑘𝛿𝑗𝑙 −

𝛼

‖∇𝛉‖3
휃𝑖,𝑗휃𝑘,𝑙. (6.19) 

6.2. Parameter range for least squares stabilization 

Now, consider the following modified dual problem with the least squares stabilization 

adopted to avoid the spurious rigid lattice rotation (see Remark 1). 

�̅�(𝐮ℎ, 𝛿𝐮ℎ) = 𝑎(𝐮ℎ, 𝛿𝐮ℎ) + 4𝜇𝑐∫𝛿𝜑𝑖
ℎ𝜑𝑖

ℎ dΩ
Ω

, (6.20) 

�̅�(𝛉ℎ, 𝛿𝛉ℎ) = 𝑏(𝛉ℎ, 𝛿𝛉ℎ) − 4𝜇𝑐∫𝛿휃𝑖
ℎ휃𝑖

ℎ dΩ
Ω

, (6.21) 

𝑑 (𝛿𝐮ℎ, 𝛉ℎ) = 𝑑(𝛿𝐮ℎ, 𝛉ℎ) − 4𝜇𝑐∫𝛿𝜑𝑖
ℎ휃𝑖

ℎ dΩ
Ω

, (6.22) 
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where 𝑎(⋅,⋅), 𝑏(⋅,⋅), and 𝑐(⋅,⋅) are defined in Eqs. (6.3) – (6.5). Let the stability parameter be a 

scaled shear modulus, 𝜇𝑐 = 𝑐 𝜇, with scaling parameter 𝑐 . To determine the suitable range of 𝑐 , the 

following system bilinear operator 𝒜 is considered by subtracting Eq. (6.2) from Eq. (6.1) and 

substituting 𝐮ℎ and 𝛉ℎ into 𝛿𝐮ℎ and 𝛿𝛉ℎ, respectively: 

𝒜((𝐮ℎ, 𝛉ℎ), (𝐮ℎ, 𝛉ℎ)) = �̅�(𝐮ℎ, 𝐮ℎ) + �̅�(𝛉ℎ, 𝛉ℎ)

≥ 𝐶𝑎‖𝐮ℎ‖1
2 + 𝐶𝑏|𝛉ℎ|1

2 + 𝑐 𝜇 ∫𝜑𝑖
ℎ𝜑𝑖

ℎ dΩ
Ω

− 𝑐 𝜇 ∫휃𝑖
ℎ휃𝑖

ℎ dΩ
Ω

, 
(6.23) 

With Eq. (6.7) in hand, a positive stability parameter 𝑐  could make the bilinear operator 

�̅�(⋅,⋅) lose its positive semi-definiteness. On the other hand, a negative 𝑐  leads to  

�̅�(𝛉ℎ, 𝛉ℎ) ≥ −𝑐 𝜇‖𝛉ℎ‖0
2 + 𝐶𝑏|𝛉ℎ|1

2 ≥ min(𝐶𝑏 , −𝑐 𝜇) ‖𝛉ℎ‖1
2, (6.24) 

However, 𝑐  should not be too low to avoid losing the coercivity on �̅�(𝐮ℎ, 𝐮ℎ) . To 

determine a proper lower limit, consider a two-dimensional case with homogeneous Dirichlet 

boundaries on 𝐮ℎ: 

�̅�(𝐮ℎ, 𝐮ℎ) = ∫
𝜇

2
(𝑢𝑖,𝑗

ℎ + 𝑢𝑗,𝑖
ℎ )(𝑢𝑖,𝑗

ℎ + 𝑢𝑗,𝑖
ℎ ) + 𝜆𝑢𝑖,𝑖

ℎ 𝑢𝑗,𝑗
ℎ  dΩ

Ω

+ 𝑐 𝜇 ∫𝜑3
ℎ2 dΩ

Ω

, (6.25) 

where 𝑖, 𝑗 = 1,2. In the last term of (6.25), 𝜑3
ℎ is equivalent to 𝜑3

ℎ = −0.5𝜖3𝑖𝑗𝑢𝑖,𝑗 = 0.5(𝑢2,1
ℎ −

𝑢1,2
ℎ ). Also, performing the integration by parts twice, we have ∫ 𝜇𝑢𝑖,𝑗

ℎ 𝑢𝑗,𝑖
ℎ  dΩ

Ω
= ∫ 𝜇𝑢𝑖,𝑖

ℎ 𝑢𝑗,𝑗
ℎ  dΩ

Ω
. 

Thus, the following inequality is obtained. 
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�̅�(𝐮ℎ, 𝐮ℎ) ≥ 𝜇∫𝑢𝑖,𝑗
ℎ 𝑢𝑖,𝑗

ℎ  dΩ
Ω

+ 𝑐 𝜇 ∫ (𝑢1,2
ℎ 𝑢1,2

ℎ + 𝑢2,1
ℎ 𝑢2,1

ℎ ) dΩ
Ω

. (6.26) 

With  𝑐 ≡ −𝑐 < 1, 𝑎(⋅,⋅) maintains �̅�(𝐮ℎ, 𝐮ℎ) ≥ 𝐶 𝑎‖𝐮ℎ‖1
2 with a positive constant 𝐶 𝑎, so 

𝒜((𝐮ℎ, 𝛉ℎ), (𝐮ℎ, 𝛉ℎ)) ≥ 𝐶𝑎‖𝐮ℎ‖1
2 + 𝐶𝑏‖𝛉ℎ‖1

2. Note that the derivation is based on the Dirichlet 

boundary assumption. The upper limit can be slightly lower when a Neumann boundary is present. 

For these reasons, log10 𝑐 ≤ −2 is suggested. The lower limit must be sufficiently large and 

log10 𝑐 ≥ −5 is suggested although this is not a decisive value. Numerical studies on the upper 

limit and the 𝑐-sensitivity of solution are shown in Sections 6.3.1 and 0. 

6.3. Numerical Verification 

A series of numerical examples are presented in this section to demonstrate that the 

proposed method is stable, convergent, and insensitive to the stability parameter. The plane strain 

is assumed and a quadratic RK basis is used for the displacement, the lattice rotation, and the phase 

field with a normalized support size of 3.0 unless otherwise stated. For the domain integration, the 

5×5 Gauss quadrature is employed. 

6.3.1. Stabilization effects and convergence 

To demonstrate the proposed stabilization techniques, we consider a two-dimensional 

Cosserat elasticity problem with the problem domain Ω = (−𝐻/2,+𝐻/2) × (−𝐻/2,+𝐻/2) with 

𝐻 = 10 μm and all displacement boundaries are Dirichlet boundaries as shown in Figure 6.1 (a). 

The phase field is neglected. The Lamé constants 𝜆 = 69.2 GPa, 𝜇 = 46.1 GPa and the Cosserat 

parameters 𝛼 = 0, 𝛽 = 𝜇ℓ𝛽
2  with ℓ𝛽 = 𝐻/5 are used. As shown in Figure 6.1 (b), the domain is 
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discretized by 441 uniformly distributed RK nodes and the linear RK basis is used for both 𝐮 and 

휃 with a cubic B-spline kernel function and the normalized support size of 2.0. For the domain 

integration, the 5 × 5 -point Gauss integration is employed for 400 conforming integration 

domains which uniformly divide Ω. Nitsche’s method is used to impose the Dirichlet boundary 

condition on 𝐮. 

 

Figure 6.1. Problem setup: (a) domain and boundaries, (b) RKPM nodes and Gauss quadrature 

cells 

Figure 6.2 shows the first five lowest energy modes of the condensed stiffness matrix �̅� 

defined as 

𝐊 = [
𝐊𝑢𝑢 𝐊𝑢𝜃

𝐊𝑢𝜃
𝑇

−𝐊𝜃𝜃
] , �̅� = 𝐊𝜃𝜃 + 𝐊𝜃𝑢𝐊𝑢𝑢−1𝐊𝜃𝑢

𝑇
. (6.27) 

In this example, Dirichlet boundary conditions on the rotation are also applied to all four 

boundaries (𝜕Ω1−4) using Eq. (4.19) and 𝑐 = 0. Figure 6.2(a) shows that the formulation without 
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the weak inf-sup projection yields severe node-to-node oscillation modes. In contrast, such 

unstable modes are not observed in the formulation with the projection following (6.17). 

 

Figure 6.2. Five lowest energy modes: (a) without projection and (b) with projection 

Let us consider the body force and boundary conditions corresponding to the following 

analytical solution: 

𝑢1 =
2𝐻

𝜋
휃 sin (

𝜋

2𝐻
(𝑥1 + 𝑥2)) 

𝑢2 =
2𝐻

𝜋
휃 sin (

𝜋

2𝐻
(𝑥1 − 𝑥2)) 

휃 =
1

2
(𝑢2,1 − 𝑢1,2) = 휃 sin (

𝜋

2𝐻
𝑥1) sin (

𝜋

2𝐻
𝑥2), 

(6.28) 

with 휃 = 10°. 

The numerical solutions obtained with and without the projection are presented in Figure 

6.3. The node-to-node oscillation modes shown in Figure 6.2 have strong effects on the solutions 

without implementing the projection, particularly on the curvature fields (right two subfigures on 

the top row of Figure 6.3). Such oscillations are effectively suppressed by the projection-based 
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stabilization. The projected formulation achieves the optimal convergence rates for linear bases 

and for quadratic bases as shown in Figure 6.4. For the convergence study, 121, 441, 1681, and 

6561 RK nodes are used for each level of refinement. Throughout the remaining numerical 

examples, the projection-based stabilization is used for all simulations when solved by the 

proposed method, unless otherwise stated. 

 

Figure 6.3. Solutions obtained by the proposed method without projection (top) and with 

projection (bottom) 
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Figure 6.4. Convergence curves obtained by the proposed method with projection: (a) linear RK 

bases for 𝐮 and 휃 and (b) quadratic RK bases for 𝐮 and 휃. The average convergence rates are 

enclosed by parentheses in the legends. The rotational Dirichlet boundary conditions are applied 

to both 𝜑𝑒 and 휃. 𝑐 = 0 is used. 

6.3.2. Parameter sensitivity 

Let us consider cases that there is no Dirichlet boundary conditions on rotation. To avoid 

spurious rigid lattice rotation, least squares stabilization can be utilized as discussed in Chapter 4. 

The stability analysis performed in Section 6.2 suggests that the upper limit of the normalized 

stabilization parameter 𝑐  is one, i.e., at the upper limit, log10 𝑐 = 0 , for cases of Dirichlet 

displacement boundary. Table 6.1 lists the value of log10 𝑐 at which the sign of the minimum 

eigenvalue of �̅�  in Eq. (6.27) changes from positive to negative for four cases with different 

boundary conditions. Case I agrees well with the result of the stability analysis and the upper limit 

of log10 𝑐 decreases as the fraction of Dirichlet boundary decreases. For this reason, log10 𝑐 ≤ −2 

as estimated from stability analysis can be considered a conservative choice. 
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Table 6.1. List of cases with different displacement boundaries 

Case Displacement boundary 𝐥𝐨𝐠𝟏𝟎 𝒄 upper limit 

Case I 
Dirichlet: 𝜕Ω1−4 

Neumann: ∅ 
0.2 

Case II 
Dirichlet: 𝜕Ω1−3 

Neumann: 𝜕Ω4 
-0.36 

Case III 
Dirichlet: 𝜕Ω1−2 

Neumann: 𝜕Ω3−4 
-0.85 

Case IV 
Dirichlet: 𝜕Ω1 

Neumann: 𝜕Ω2−4 
-0.94 

 

Now, we investigate the solution accuracy and convergence behavior for a wide range of 

log10 𝑐 for Case III. As can be seen in Figure 6.5, for −6 ≤ log10 𝑐 ≤ −1, nearly identical solution 

accuracy and convergence behaviors are obtained. However, for log10 𝑐 > 0, poor performances 

are observed, which is consistent with the stability analysis in Section 6.2 and the numerically 

tested upper limit for a few cases of Dirichlet boundary conditions given in Table 6.1. Figure 6.7 

shows the solution fields obtained by the proposed method with 441 RK nodes for each log10 𝑐. 

Clearly, the simulations with a positive log10 𝑐 lead to severe instability and such parameter range 

must be avoided. However, with negative log10 𝑐, the results are insensitive to log10 𝑐 in a wide 

range. Contrarily, the penalty-based approach is very sensitive to the penalty parameter as shown 

in Figure 6.6, and none of these cases achieves the optimal convergence rates for all four error 

measures. Also shown in Figure 6.8, small penalty parameters fail to capture 휃 and ∇휃 accurately.  
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Figure 6.5. Convergence curves obtained by the proposed method with various 𝑐: (a) 𝐮ℎ, (b) 

∇𝐮ℎ, (c) 휃ℎ, and (d) ∇휃ℎ. The average convergence rates are enclosed by parentheses in the 

legends. 
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Figure 6.6. Convergence curves obtained by the penalty-based approach with various 𝑐: (a) 𝐮ℎ, 

(b) ∇𝐮ℎ, (c) 휃ℎ, and (d) ∇휃ℎ. The average convergence rates are enclosed by parentheses in the 

legends. 
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Figure 6.7. Solutions obtained by the proposed method for various 𝑐 
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Figure 6.8. Solutions obtained by the penalty-based approach for various 𝑐 
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6.3.3. Computational costs 

The CPU times taken for various methods to assemble the global matrices are plotted in 

Figure 6.9. The simulations were conducted by a parallel code written in MATLAB with four CPU 

cores (3.00 GHz per core) and a 32 GB RAM. Each CPU time is computed by averaging the CPU 

times of five simulations. On average, the proposed formulation costs approximately 22.0 % more 

than the penalty method due to the additional terms to assemble and the projection-based 

stabilization introduces 6.94 % of additional CPU time. Considering the convergence, accuracy, 

parameter insensitivity, and stability attained by the proposed method, the additional 

computational costs are justifiable. Note that a high-order Guass quadrature (5×5 points per cell) 

is used in this study to exclude errors introduced by the numerical integration since the RK shape 

functions and their derivatives are rational function: 2500, 10000, 40000, and 160000 total domain 

integration points are used for the cases of 121, 441, 1681, and 6561 RK nodes, respectively. 

Reduced order integration techniques such as stabilized conforming nodal integration[104, 105] 

and variationally consistent reduced order integration[106] can be considered as a future research 

of this work. Since the formulation is developed for general three-dimensional problems, the 

extension to 3D is straightforward, provided an efficient reduced order domain integration is 

employed. 
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Figure 6.9. CPU times for the global matrix assembly taken by various methods: NP denotes the 

number of RK particles. 
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Chapter 7  

Neural Network-enhanced Reproducing Kernel Approximation 

Modeling the sharp transition in the phase field near the grain boundaries associated with 

the lattice orientation often requires highly refined discretization for sufficient accuracy, which 

significantly increases the computational cost. While adaptive model refinement can be employed 

for enhanced effectiveness, it is cumbersome for the traditional mesh-based methods to perform 

adaptive model refinement. 

In this chapter, a neural network enhanced RKPM is proposed. Neural network 

architectures are developed with interpretable weights and biases to automatically detect the 

locations and orientations of strain localization, and to construct functions with sharp transitions 

near the grain boundaries. Further, details of the network structure that incorporates the RK 

approximation will be presented.   

7.1. Overview 

 Let 𝐱 ∈ ℝ𝐷  be the physical coordinate with space dimension 𝐷 . The approximation 

𝑓ℎ(𝐱) ≈ 𝑓(𝐱) ∈ ℝ is constructed by the addition of reproducing kernel (RK) and neural network 

(NN) approximations. 

𝑓ℎ(𝐱) = 𝑓ℎ,𝑅𝐾(𝐱) + 𝑓ℎ,𝑁𝑁(𝐱), (7.1) 
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where 𝑓ℎ,𝑅𝐾(𝐱) ∈ 𝒱𝑅𝐾  and 𝑓ℎ,𝑁𝑁(𝐱) ∈ 𝒱𝑁𝑁  are RK approximation and NN approximation, 

respectively, with 𝒱𝑅𝐾 the RK approximation space and 𝒱𝑁𝑁 the NN approximation space. In the 

above approximation, the NN approximation is constructed to introduce a fine-scale feature to the 

solution at a region close to a localization and to capture sharp solution transitions, while the RK 

approximation is formulated to capture the overall smooth behavior of the solution. The RK 

approximation takes its traditional form discussed in Section 5.1: 

𝑓ℎ,𝑅𝐾(𝐱) =∑Ψ𝐼(𝐱)𝑓𝐼
𝑅𝐾

𝑁𝑃

𝐼=1

, (7.2) 

where Ψ𝐼(𝐱) and 𝑓𝐼
𝑅𝐾 are RK shape function and RK generalized coefficient associated with RK 

node 𝐼, respectively.  

7.1.1. Considerations on the construction of neural network approximation 

In the construction of the NN approximation, we focus on the following considerations: 1) 

both strong and weak discontinuities should be approximated with a far higher resolution than the 

RK approximation, 2) the position and orientation of complex localization paths should be 

automatically captured, 3) the NN approximation influences only local regions close to 

localizations, and 4) the localization capturing procedure can be achieved by the total potential 

minimization without introducing additional criterion. As stated in Consideration 1, both strong 

and weak discontinuities are to be approximated by considering weak discontinuity in the 

displacement field and the corresponding strong discontinuity in the lattice orientation following 

𝜑 = 𝑢2,1 − 𝑢1,2 in 2D (Eq. (3.5)). To achieve Consideration 2, unknown parameters representing 

the localization position and orientation will be included in the NN approximation. Also, a block 
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level NN approximation will be constructed to capture complex localization topology by a 

superposition of multiple block-level NN approximations, each of which are designed to 

approximate relatively simple localization topology. 

Consideration 3 is related to the computational efficiency. As the smooth solution far from 

the localization can be efficiently captured by the RK approximation, the domain of influence of 

the NN approximation should be small so that the NN approximation focuses on the regions around 

localizations that requires fine resolution of the solution. The neural network approximation will 

be designed such that the domain of influence is controlled by adjustable parameters that are 

automatically determined by the optimization. When multiple sparsely distributed localization 

clusters are populated in the domain as shown in Figure 7.1, the domain of influence in the NN 

approximation is sparsely distributed near the localization clusters. The aforementioned block-

level NN approximation will also reflect this consideration. 

 

Figure 7.1. A domain with multiple localization regions 
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In the construction of NN approximation space that satisfies Considerations 1-3, 

parameters that control the location, orientation, and shape of a localization are included in the NN 

approximation space, and these parameters are determined by the potential energy minimization.  

In the next subsection, a design of block-level NN approximation to satisfy Considerations 1-3 is 

proposed. 

7.2. Block-level approximation 

As discussed in Section 7.1.1, it is desirable to have the NN approximation only locally 

enrich the solution space in the presence of localizations for computational efficiency. In this 

regard, NN approximation is constructed by the block-level NN approximations as follows. 

𝑓ℎ,𝑁𝑁(𝐱) = ∑𝑏Α
𝑁𝑁(𝐱;𝐖𝐽)

𝑁𝐵

Α=1

, (7.3) 

where 𝑏Α
𝑁𝑁(𝐱;𝐖Α) is Α-th block-level approximation with unknown weights and biases 𝐖Α and 

𝑁𝐵 is the number of blocks. Each NN block is constructed to capture a certain part of localizations 

distributed throughout the domain and to enrich the solution at a local region. Here the introduction 

of NN blocks helps reduce the number of unnecessary unknown weights and biases that exist when 

a dense network is employed. Also, the superposition of multiple block-level approximations is 

performed to capture complex localization topology. 

In this work, the block-level approximation takes the following form: 
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𝑏Α
𝑁𝑁(𝐱;𝐖) =∑�̂�𝐼Α(𝐱;𝐖

𝐿 ,𝐖S)𝑝(𝐱;𝐖𝐼Α
𝑃 )

𝑁𝐾

𝐼=1

 (7.4) 

where 𝑝 is a monomial function and �̂�𝐼Α is a normalized kernel function. The role of the kernel 

function is to capture the location, orientation, and the transition shape of the localization. Thus 

�̂�𝐼Α involves two sets of unknown parameters: the localization location and orientation capturing 

parameter set 𝐖𝐿  and the kernel shape control parameter set 𝐖𝑆  serving as the parameters in 

capturing the localization. Meanwhile, the monomial function adds the monomial completeness to 

the neural network function space with a set of unknown polynomial basis parameters 𝐖𝐼Α
𝑀  for 

further accuracy. 

In the following sections, how these three sets of parameters contribute to the construction 

of the NN approximation suitable for capturing localizations will be introduced. 

7.2.1. Construction of adjustable kernel functions 

Let us consider the following one-dimensional kernel function: 

𝜙(𝑦; {�̅�1, �̅�2, 𝑐1, 𝑐2}) = �̅�1(𝑦; {�̅�1, 𝑐1})�̅�2(𝑦; {�̅�2, 𝑐2}), (7.5) 

with  

�̅�𝑖(𝑦; {�̅�𝑖, 𝑐𝑖}) = (
1

2
− (−1)𝑖

1

2
tanh(

(𝑦 − �̅�𝑖)

𝑐𝑖
)) (7.6) 

where {�̅�1, �̅�2, 𝑐1, 𝑐2}  is a set of shape control parameters. Figure 7.2 illustrates the above-

mentioned kernel function constructed with various sets of the shape control parameters. The 
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kernels presented in Figure 7.2(a) and (b) possess a sharp transition while the kernel shown in 

Figure 7.2(c) is a symmetric kernel. For simulation of grain boundary evolution, kernels in Figure 

7.2(a) and (b) are suitable in capturing the sharp transition of the lattice orientation, i.e., strong 

localization of lattice curvature. The symmetric kernel in Figure 7.2(c) is suitable in approximating 

the localized phase field with a small support.  In this work, this kernel is called neural network 

(NN) kernel (Type I). 

 

Figure 7.2. Kernel function constructed with various sets of shape control parameters: the 

parameters {�̅�1, �̅�2, 𝑐1, 𝑐2} used for each case is (a) {−1,1,0.1,1}, (b) {−1,1,1,0.1}, and (c) 
{−1,1,1,1}. 

Now consider a set of 𝑁𝐾 kernels: 𝒮 = {𝜙𝐽}𝐽=1
𝑁𝐾

 employed in a single block. For the kernels 

to possess the partition of unity, the following normalization is considered: 

�̂�𝐽(𝑦) =
𝜙𝐽(𝑦)

∑ 𝜙𝐾(𝑦)
𝑁𝐾
𝐾=1 + 𝜖 

 (7.7) 
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where �̂�𝐽(𝑦) is the normalized NN kernel, and  𝜖  is a small number introduced to control locality 

of the domain of influence. Figure 7.3 shows a group of normalized NN kernels with various 

selections of the shape control parameters. 

 

Figure 7.3. Normalized NN kernels. The parameter sets {�̅�1, �̅�2, 𝑐1, 𝑐2} are set {−4,−2.5,2,0.5}, 
{−2.5, −0.5,0.5,2}, {−0.5,0.5,2,0.5}, {0.5,2,0.5,2}, and {2,4,2,2} for the kernels from left to 

right. 

To introduce a weak discontinuity, one can further consider a modification of Eq. (7.6) as 

follows: 

�̅�𝑖(𝑦; {�̅�𝑖, 𝑐𝑖, 𝑠1𝑖, 𝑠2𝑖}) = (
1

2
− (−1)𝑖

1

2
tanh (

𝑀𝑃𝑅𝐸𝐿𝑈(𝑦 − �̅�𝑖; {𝑠1𝑖, 𝑠2𝑖})

𝑐𝑖
)) (7.8) 

where the modified parametric rectified linear unit (MPRELU) is defined as 
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𝑀𝑃𝑅𝐸𝐿𝑈(𝑦; {𝑠1, 𝑠2}) = {
𝑠1𝑦 𝑧 ≤ 0
𝑠2𝑦 𝑧 > 0

 (7.9) 

Figure 7.7 shows an example of the distribution of kernel functions with a weak 

discontinuity. In (7.7), introducing a small number 𝜖  ensures that the NN solution affects only a 

region close to the localization by having the normalized kernel vanish when the evaluation point 

is far from the kernel center (see Figure 7.5). 

 

Figure 7.4. Normalized NN kernels with weak discontinuities. The parameters {�̅�1, �̅�2, 𝑐1, 𝑐2} are 

set {-5, -3, 1, 1}, {-3, -1, 1, 1}, {-1, 1, 1, 1}, {1, 3, 1, 1}, and {3, 5, 1, 1} for the NN kernels from 

left to right. {𝑠1, 𝑠2} = {0,5} is applied to the NN kernel in the middle. 
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Figure 7.5. kernel functions: (a) unnormalized kernels, (b) normalized kernels with 𝜖 = 10−5, 
and (c) normalized kernels with 𝜖 = 0 

For a multi-block scenario, the normalization is performed as follows: 

�̂�𝐽Α(𝑥;𝐖
𝐿 ,𝐖S) =

𝜙𝐽Α(𝑦(𝑥;𝐖Α
𝐿);𝐖𝐽Α

𝑆 )

∑ ∑ 𝜙𝐾Β(𝑦(𝑥;𝐖Β
𝐿);𝐖𝐾Β

𝑆 )𝑁𝐾
𝐾=1

𝑁𝐵
Β=1 + 𝜖 

 (7.10) 

where �̂�𝐽Α(𝑥;𝐖
𝐿 ,𝐖S)  is the 𝐽 -th NN kernel in block Α , 𝑦(𝑥;𝐖Α

𝐿)  is parametric coordinate 

constructed for block Α  with location-controlling parameter set 𝐖Α
𝐿  (see Section 7.2.2 for 

parametrization), 𝐖𝐽Α
𝑆  is shape control parameter set, 𝐖𝐿 = {𝐖Α

𝐿}Α=1
𝑁𝐵 , and 𝐖𝑆 = {{𝐖𝐽Α

𝑆 }
𝐽=1

𝑁𝐾
}
Α=1

𝑁𝐵

. 

Note that the normalization of the kernels is performed across all the blocks. This is intended to 

have the kernels possess the partition of unity even for the block-overlapping regions and 
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consequently have the polynomial completeness hold, achieving better solution accuracy than 

normalizing the kernels only among the kernels in the same block.  

The extension of the NN kernel in (7.6) to two-dimension is straightforward: 

𝜙𝐾(𝐲; {𝐖11𝐾
𝑆 ,𝐖21𝐾

𝑆 ,𝐖12𝐾
𝑆 ,𝐖22𝐾

𝑆 })
= �̅�11𝐾(𝑦1;𝐖11𝐾

𝑆 )�̅�21𝐾(𝑦1;𝐖21𝐾
𝑆 )�̅�12𝐾(𝑦2;𝐖12𝐾

𝑆 )�̅�22𝐾(𝑦2;𝐖22𝐾
𝑆 ) 

(7.11) 

where 𝜙𝐾 denotes 𝐾-th kernel and, with the shape control parameter set 𝐖𝑖𝛼𝐾
𝑆 = {�̅�𝑖𝛼𝐾, 𝑐𝑖𝛼𝐾}, and 

�̅�𝑖𝛼𝐾 are defined as follows: 

�̅�𝑖𝛼𝐾(𝑦𝛼;𝐖𝑖𝛼𝐾
𝑆 ) = (

1

2
− (−1)𝑖

1

2
tanh (

(𝑦𝛼 − �̅�𝑖𝛼𝐾)

𝑐𝑖𝛼𝐾
)) (7.12) 

Another type of NN kernels (Type II) can be considered as follows: 

𝜙𝐾(𝐲;𝐖
𝑆) = �̅�(𝐲)𝑆𝐾(𝐲;𝐖

𝑆)  for 𝐾 = 1,2, (7.13) 

where �̅�(𝐲)  and 𝑆𝐾(𝐲;𝐖
𝑆)  are standard kernel function and regularized step function, 

respectively. For example, the following functions can be considered: 

�̅�(𝐲) = sech2(‖𝐲‖) (7.14) 

𝑆𝐾(𝐲;𝐖
𝑆) =

1

2
+
1

2
tanh ((−1)𝐾

𝑦2
𝑐
) (7.15) 

where ‖𝐲‖ = ‖𝐲‖2 = (𝐲 ⋅ 𝐲)
1/2. As shown in Figure 7.6, the above-mentioned normalized NN 

kernels have a sharp transition at 𝑦2 = 0. This type of kernel can reduce the number of control 
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parameters than the kernel presented in (7.11) and (7.12), but is less flexible in capturing 

localizations. 

 

Figure 7.6. Two-dimensional NN functions (normalized with 𝜖 = 10−3) 

7.2.2. Parametrization 

In multi-dimensional problems, highly complex localization topology can present and the 

complicated localization patterns will be projected on to a low-dimensional manifold by 

parametric coordinates with a proper parametrization 𝒫: 𝐱 → 𝐲  where 𝐱 ∈ ℝ𝑑  and 𝐲 ∈ ℝ𝑑  are 

physical coordinates and parametric coordinates, respectively. Figure 7.7 provides a schematic 

illustration where a complex localization pattern (red curves) in the physical coordinate is 

represented by multiple lines in a parametric coordinate. With parametrization, kernel functions 

defined in the low-dimensional manifold can capture complex localizations in the high-

dimensional space. 
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Figure 7.7. Parametric and physical coordinates: the red curves in the physical coordinate denote 

discontinuities. The coordinates are parametrized as shown in the right-hand side figure. 

For parametrization, multiple layers with hyperbolic tangent activation function can be 

considered as an example. Let 

�̅�(𝐗;𝐖Α
𝐿) = 𝐡𝑛𝐿(⋅;𝐖Α𝑛𝐿

𝐿 ) ∘ 𝐡𝑛𝐿−1(⋅;𝐖Α𝑛𝐿−1
𝐿 ) ∘ ⋯∘ 𝐡1(𝐱;𝐖Α1

𝐿 ) (7.16) 

where 𝐖Α
𝐿 = {𝐖Α1

𝐿 , 𝐖Α2
𝐿 , ⋯ , 𝐖Α𝑁

𝐿 } with 𝐖Α𝑖
𝐿  are the weights and biases of layer 𝑖 of block Α, 𝑁 

is the number of layers employed in the parameterization network, and 𝐡𝑖 of 𝑖-th layer is defined 

as 

𝐡𝑖(𝛏;𝐖Α𝑖
𝐿 ) = tanh (𝐳𝑖(𝛏;𝐖Α𝑖

𝐿 )) , for 𝑖 < N 

𝐡𝑖(𝛏;𝐖Α𝑖
𝐿 ) = 𝐳𝑖(𝛏;𝐖Α𝑖

𝐿 ), for 𝑖 = 𝑁, 

(7.17) 
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where  

𝐳𝑖(𝛏;𝐖Α𝑖
𝐿 ) = 𝚯Α𝑖𝛏 + 𝛃Α𝑖 (7.18) 

where 𝐖Α𝑖
𝐿 = {𝚯Α𝑖, 𝛃Α𝑖} with the weight matrix 𝚯Α𝑖 and the bias vector 𝛃Α𝑖 and �̅� defined in (7.16) 

is scaled to obtain 𝐲 as follows: 

𝑦𝑖 =
1

𝑎𝑖
�̅�𝑖, 𝑖 = 1,⋯ ,𝐷 (7.19) 

where 𝑎𝑖 is a positive scaling factor. 

7.3. Network structure details 

Figure 7.8 describes the network structure considered in this work. The entire network 

provides the map ℝ𝐷 → ℝ  with input 𝐱 ∈ ℝ𝐷  and output 𝑢ℎ ∈ ℝ  where 𝐷  denotes the space 

dimension. As the RK approximation serves on approximating the smooth part of the solution, a 

relatively coarse, predetermined discretization is sufficient. Since the RK shape functions do not 

evolve throughout the simulation, and the shape functions {Ψ𝐼(𝐗)}𝐼=1
𝑁𝑃  is precomputed and directly 

inputted to the network as shown in Figure 7.8. The RK network has the RK coefficients as its 

weights. 

Meanwhile, the NN approximation directly takes the coordinate 𝐱 as its input. Instead of 

employing a densely connected deep neural network, multiple network blocks are constructed in 

parallel as discussed in Section 7.2, and each block has a block-level approximation (see Eq. (7.3)) 

as its output. Each block is built upon its own parametric coordinate, contains multiple NN kernels, 
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and is capable of capturing discontinuities in the regions near localizations as described in Sections 

7.1 and 7.2. In this approach we consider superposition of multiple NN approximation functions, 

each of which represents the captured discontinuities in the NN block by its independent 

parametric coordinates. If highly complicated localization topology is developed in a small region, 

utilizing multiple NN blocks can enhance the solution accuracy. 

 

Figure 7.8. Entire network structure that incorporates the RK approximation and the NN 

approximation. The unknown parameters associated with each part of the network are written in 

red. The thick black arrows denote that the network connections entail unknown parameters and 

the thin grey arrows denote that the weight of the associated connection is one (1) and do not 

change throughout the computation. 
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The network structure of block Α is described in Figure 7.9. The parameterization network 

contains the kernel function layer and the polynomial layer independently constructed. All the 

unknown parameters introduced in 7.2 for each part of the block are denoted as 𝐖𝐿, 𝐖𝑆, and 𝐖𝑃 

in red color. The details of polynomial subblock are presented in Figure 7.10. The neuron-wise 

multiplication of the polynomial layer and kernel function layer is performed by employing 

tensorflow.keras.layers.multiply available in TensorFlow. Figure 7.11 shows how the solution 

derivatives are computed for use in solving the potential energy minimization problem. To 

compute the spatial derivatives of 𝑢𝑁𝑁 , the automatic differentiation function provided by 

TensorFlow is utilized. To compute the spatial derivatives of 𝑢𝑅𝐾, the input of the RK network, 

Ψ𝐼(𝐱) in Figure 7.8 is replaced by the pre-computed shape function derivatives Ψ𝐼,𝑖(𝐱).  

 

Figure 7.9. Network structure for block Α. The unknown parameters introduced in each part are 

denoted in red color. 
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Figure 7.10. Polynomial subblock details: The thick black lines denote that the network 

connections entail unknown parameters and the thin grey arrows denote that the weight of the 

associated connection is one (1) and do not change throughout the computation. 

 

Figure 7.11. Computation of solution derivative 𝑢,𝑖
ℎ: The thick black lines denote that the 

network connections entail unknown parameters and the thin grey arrows denote that the weight 

of the associated connection is one (1) and do not change throughout the computation. 
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The optimization problem to solve is the minimization of potential energy as follows: 

argmin
𝐝,𝐖

Π(𝐔ℎ(𝐝,𝐖)) = ∫ 𝜓(𝐔ℎ(𝐝,𝐖)) 𝑑Ω
Ω

− 𝐹(𝐔ℎ(𝐝,𝐖)), (7.20) 

where 𝐔ℎ(𝐝,𝐖) = 𝐔ℎ,𝑅𝐾(𝐝) + 𝐔ℎ,𝑁𝑁(𝐖)  is the set of approximations of independent field 

variables of a general multi-field formulation constructed upon the RK coefficient set 𝐝 and the 

neural network weight set 𝐖 = {𝐖𝐿 ,𝐖𝑆 ,𝐖𝑃} , and 𝜓  and 𝐹  are internal energy density and 

external work, respectively. 

The potential energy minimization problem is solved in two stages. In the first stage, the 

problem is solved only for the RK coefficients to find the initial guess of the RK coefficients as 

follows: 

argmin
𝐝 

Π(𝐔ℎ,𝑅𝐾(𝐝 )) = ∫ 𝜓(𝐔ℎ,𝑅𝐾(𝐝 ))  𝑑Ω
Ω

− 𝐹 (𝐔ℎ,𝑅𝐾(𝐝 )) (7.21) 

In this stage, the overall solution behavior including the smooth part of the solution and the 

boundary conditions is found by the RK approximation. Note that this leads to a standard Galerkin-

based RKPM formulation and the problem can be solved by using a standard matrix solver. Since 

the RK approximation obtained in the first stage can oscillate around the localization due to the 

Gibbs-type phenomenon, the filtered RK coefficients are used as the initial guess for the next step 

as follows: 

𝐝 𝑓𝑖𝑙 = �̅�𝐝 , (7.22) 

where 𝐝 𝑓𝑖𝑙 is the filtered RK coefficient set and �̅� is the filter with its entries Ψ̅𝐼𝐽 = Ψ𝐽(𝐱𝐼). 
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In the second stage, Eq. (7.23) is solved for both 𝐝 and 𝐖. The initial guess of the RK 

coefficients is 𝐝 = 𝐝 𝑓𝑖𝑙. The neural network weights 𝐖 = {𝐖𝐿 ,𝐖𝑆,𝐖𝑃} are initialized as follows: 

1) 𝐖𝐿  is initialized such that the blocks are uniformly distributed over the domain, 2) 𝐖𝑆  is 

initialized such that the kernels are uniformly distributed is uniformly distributed in the parametric 

coordinate of the corresponding blocks, 3) 𝐖𝑃 = 0 is taken for the polynomial basis parameters. 

The potential energy minimization problem can be solved by a gradient descent-type 

optimizer. In this work, Adam [107], a first-order gradient-based stochastic optimizer with adaptive 

learning rate, is used. For the upper bound of the learning rate, the default value (10−3) is initially 

used and the upper bound of the learning rate is decreased when severe oscillation in the loss curve 

is observed. In all cases presented in this work, the upper bounds between 10−4 and 10−3 yielded 

a stable loss curve. 

7.4. Regularization 

The NN-RK approximation proposed in this work can be applied to both local (e.g., Cauchy 

continuum) and nonlocal models (e.g., phase field formulation). If a local model is employed, the 

localization width may not be bounded and the NN approximation may become sensitive to the 

distribution of integration points. When the NN-RK approximation is applied to a nonlocal 

formulation, it has been observed that the network regularization introduces additional 

stabilization in solving the potential energy minimization problem with a model with insufficient 

integration point resolution. 

Although the NN kernel contains the sharpness control parameter 𝑐 in Eqs. (7.6), (7.12), 

and (7.15), the sharpness is also affected by the parametrization, more specifically, the gradient of 
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the parametric coordinate 𝐲 with respect to the physical coordinate 𝐱. In this subsection, two 

methods are proposed to introduce a localization limiter into the NN approximation. 

To analyze the influence of the parametrization on the transition sharpness, consider the 

Taylor expansion of 𝑦𝑖(𝐱) and truncate the second order and higher terms as follows. 

𝑦𝑖(𝐱) ≈ 𝑦𝑖(�̅�) + (𝐱 − �̅�) ⋅
𝜕𝑦𝑖
𝜕𝐱
|
𝐱=�̅�

 (7.23) 

Additionally, define �̂� as follows. 

�̂� ≡ 1/ ‖
𝜕𝑦𝑖
𝜕𝐱
‖
𝐱=�̅�

 (7.24) 

By substituting (7.23) into the term inside the hyperbolic tangent in (7.6), (7.12), or (7.15), 

we have 

𝑦𝑖 − �̅�𝑖
𝑐

≈

(𝐱 − �̅�) ⋅ (
𝜕𝑦𝑖
𝜕𝐱
|
𝐱=�̅�
)

𝑐
, 

(7.25) 

where �̅�𝑖 = 𝑦𝑖(�̅�). Then, multiply both the numerator and the denominator by �̂�. 

𝑦𝑖 − �̅�𝑖
𝑐

≈

(𝐱 − �̅�) ⋅ (�̂�
𝜕𝑦𝑖
𝜕𝐱
|
𝐱=�̅�
)

𝑐�̂�
, 

(7.26) 
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 Note that the norm of �̂�
𝜕𝑦𝑖

𝜕𝐱
|
𝐱=�̅�

 in (7.26) is unity (1) due to the definition of �̂� in (7.24). 

Hence, (𝐱 − �̅�) ⋅ (�̂�
𝜕𝑦𝑖

𝜕𝐱
|
𝐱=�̅�
)  is a projection of (𝐱 − �̅�)  onto a unit vector, thus, the scale of 

(𝐱 − �̅�) ⋅ (�̂�
𝜕𝑦𝑖

𝜕𝐱
|
𝐱=�̅�
) is always the same as the scale of the physical coordinate and the sharpness 

of the following hyperbolic tangent is solely controlled by the numerator 𝑐�̂�. 

tanh(

(𝐱 − �̅�) ⋅ (�̂�
𝜕𝑦𝑖
𝜕𝐱
|
𝐱=�̅�
)

𝑐�̂�
) (7.27) 

A straightforward way is to make the following modification to (7.6): 

�̅�(𝑦) = (
1

2
+
1

2
tanh (

(𝑦 − �̅�)�̂�

𝑐
)), (7.28) 

of which the hyperbolic tangent function leads to Eq. (7.27) but without �̂� in the denominator, and 

the sharpness is entirely controlled by 𝑐. Therefore, imposing a lower limit constraint on 𝑐 is 

sufficient for regularization (Type I regularization). The complexity in the implementation of this 

approach depends on the complexity of the parametrization network as the derivative of the 

parametric coordinate 𝑦 is directly used. One can consider using the automatic differentiation, but 

it might deteriorate the computational efficiency. 

Another approach for regularization is to impose certain constraints on the weights of the 

parametrization network such that �̂�  has a lower bound (Type II regularization), which is 

relatively easier than the first approach as it does not require computing the spatial derivative of 

𝑦. To achieve this, first estimate the lower limit of �̂� in terms of the weights of the parametric 
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network. The derivation provided here is based on Type II NN kernel, but the generalization is 

straightforward. The derivative of 𝑦2 with respect to 𝐱 is as follows. 

𝜕𝑦2
𝜕𝐱

=
1

𝑎2

𝜕�̅�2
𝜕𝐱

=
1

𝑎2

𝜕�̅�2
𝜕𝐡𝑛𝐿−1

⋅ ⋯ ⋅
𝜕𝐡2
𝜕𝐡1

⋅
𝜕𝐡1
𝜕𝐱
, (7.29) 

where the functions 𝐡𝑖 are defined in (7.24). With the hyperbolic tangent activation, the 𝑟-th row 

of last term in (7.29), 𝜕ℎ1
𝑟/𝜕𝐱, can be written as 

𝜕ℎ1
𝑟

𝜕𝐱
= sech2(ℎ1

𝑟)
𝜕𝑧1

𝑟

𝜕𝐱
= sech2(ℎ1

𝑟)𝚯𝑟
1 (7.30) 

where 𝑧𝐿
𝑟 = ∑ Θ𝑟𝑘

𝐿 𝑥𝑘
𝐷
𝑘=1 + 𝛽𝑟

𝐿 is defined with the weight matrix 𝚯𝐿 and the bias vector 𝛃𝐿 of layer 

𝐿, and 𝚯𝑟
𝐿 is the 𝑟-th row of 𝚯𝐿. In (7.30), the duplicated indices do not imply summation. 

Let us consider the following constraint. 

‖𝚯𝑟
1‖ ≤ 𝐶1, (7.31) 

where 𝐶1 is a constant. Then, 

‖
𝜕𝑦2
𝜕𝐱
‖ =

1

𝑎2
‖
𝜕�̅�2
𝜕𝐱
‖ =

1

𝑎2
‖∑

𝜕�̅�2
𝜕ℎ1

𝑟

𝜕ℎ1
𝑟

𝜕𝐱

𝑛𝑁
1

𝑟=1

‖ ≤
1

𝑎2
∑‖

𝜕�̅�2
𝜕ℎ1

𝑟

𝜕ℎ1
𝑟

𝜕𝐱
‖

𝑛𝑁
1

𝑟=1

≤
1

𝑎2
∑|

𝜕�̅�2
𝜕ℎ1

𝑟| ‖
𝜕ℎ1

𝑟

𝜕𝐱
‖

𝑛𝑁
1

𝑟=1

=
1

𝑎2
∑|

𝜕�̅�2
𝜕ℎ1

𝑟| sech
2(ℎ1

𝑟) ‖𝚯𝑟
1‖

𝑛𝑁
1

𝑟=1

, 

(7.32) 

where 𝑛𝑁
𝐿  is the number of neurons at layer 𝐿 . By utilizing (7.31) and sech2(⋅) ≤ 1 , (7.32) 

becomes  
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‖
𝜕𝑦2
𝜕𝐱
‖ ≤

𝐶1
𝑎2
∑|

𝜕�̅�2
𝜕ℎ1

𝑟|

𝑛𝑁
1

𝑟=1

=
𝐶1
𝑎2
‖
𝜕�̅�2
𝜕𝐡1

‖
1

≤
𝐶1√𝑛𝑁

1

𝑎2
‖
𝜕�̅�2
𝜕𝐡1

‖, (7.33) 

where ‖𝐳‖1 = ∑ 𝑧𝑖
𝑛
𝑖=1  is 1-norm of 𝐳 with dimension 𝑛 and ‖𝐳‖1 ≤ √𝑛‖𝐳‖2 is utilized. Now, we 

introduce the constraint in (7.31) to all layers. 

‖𝚯𝑟
𝐿‖ ≤ 𝐶𝐿 , 𝐿 = 1⋯𝑛𝑁

𝐿  (7.34) 

By iterating the procedure performed in (7.32) and (7.33), the following inequality is 

obtained. 

‖
𝜕𝑦2
𝜕𝐱
‖
𝐱=𝐱 

≤ max
𝐱
‖
𝜕𝑌2
𝜕𝐱
‖ ≤

1

𝑎2
∏ 𝐶𝐿√𝑛𝑁

𝐿
𝑛𝐿

𝐿=1
≡
1

�̂̂�
 (7.35) 

From (7.24) and (7.35), 

1

‖
𝜕𝑦2
𝜕𝐱
‖
𝐱=𝐱 

= �̂� ≥ �̂̂�, 
(7.36) 

which leads to 

�̂�𝑐 ≥ �̂̂��̂̂�, (7.37) 

with an additional constraint 

𝑐 ≥ �̂̂� (7.38) 



 

103 

 

Note that the left-hand side of (7.37) is the denominator of the last term in (7.26). Therefore, 

by enforcing the constraints (7.34) and (7.38), the hyperbolic tangent function is regularized with 

the localization limit of �̂̂��̂̂� . The constraints on the weight matrices are imposed by using 

MinMaxNorm provided in TensorFlow, which is trivial to implement. Compared to Type I 

regularization, the implementation of Type II regularization is much easier and computationally 

more efficient. Note that, as the Type II regularization constrains the weights of NN, the function 

space with the constrained parametrization network becomes less flexible. 
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7.5. Numerical Examples 

A series of numerical examples is presented to demonstrate the localization capturing 

ability of the proposed method including automatic detection of localization locations and 

orientations, as well as the effectiveness of regularization. To construct the RK shape functions, 

the linear monomial basis functions and the cubic B-spline kernel function with normalized 

support size of 2.0 are used unless otherwise specified. For the numerical integration, the Gauss 

quadrature is employed. The distribution of the quadrature cells is described in each example. To 

minimize the total potential energy, Adam, a first-order gradient-based stochastic optimizer is used. 

The step size upper bound 𝛼 of Adam used in this study is given in each numerical example. For 

the imposition of Dirichlet boundary conditions, 𝛽 = 1000.  

7.5.1. Pre-degraded one-dimensional elastic bar 

The following one-dimensional elastic bar problem is considered to investigate how the 

individual NN block approximations play a role in capturing localizations. 

minΠ = ∫
1

2
𝐸(𝑥)𝑢(𝑥),𝑥

2 − 𝑢(𝑥)𝑏(𝑥) 𝑑𝑥
+1

−1

+
1000𝐸

2ℎ
[(𝑢(−1) − 𝑔1)

2 + (𝑢(1) − 𝑔2)
2] 

(7.39) 

where 𝐸, 𝑏, ℎ, and 𝑔𝑖 are Young’s modulus, body force, RK nodal spacing, and Dirichlet boundary 

value, respectively. The Dirichlet boundary values 𝑔1 = 0 and 𝑔2 = 0.5 are used. As shown in 

Figure 7.12, the material is pre-degraded locally with small Young’s modulus and the bar is 

subjected to a smooth body force: 
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𝐸(𝑥) = 𝐸0 [1.0 −∑0.99 sech (
max(0, |𝑥 − 𝑥 𝑘| − 0.002)

0.01
)

3

𝑘=1

] (7.40) 

with (𝑥 1, 𝑥 2, 𝑥 3) = (−0.65,−0.21,0.55), and 

𝑏(𝑥) = 10 sin 3𝜋𝑥. (7.41) 

 

Figure 7.12. One-dimensional elasticity: (a) Young’s modulus distribution and (b) body force 

distribution 

The RK approximation space is constructed by 21 equally spaced RK points. Also 

uniformly distributed 500 quadrature cells are employed and the two-point Gauss quadrature is 

used for each cell. Four NN blocks are initially uniformly distributed with quadratic monomial 

bases which amount to 36 total unknowns. The NN kernels are uniformly distributed throughout 

the domain at the initial stage and the monomial coefficients are initialized to be zero, which means 
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that the neural network initially does not have any information on the localizations. Note that the 

domain is discretized by only 21 RK nodes. This is purposely done as the sharp transition is solely 

taken care of by the neural network and the RK approximation only targets the smooth part. 

Figure 7.13 shows the total solution, NN approximation, and RK approximation. As 

expected, the NN approximation captures the very sharp solution transition while the RK 

approximation represents the overall smooth solution. As shown in Figure 7.14, the pure RK 

solution achieves a similar resolution with 801 unknowns while the transitions are insufficiently 

sharp even with 201 and 401 nodes while the NN-enhanced approximation agrees very well with 

the exact solution with 57 unknowns, which is 93% reduction in the number of unknowns. The 

number of unknowns required to capture localizations in multi-dimensional problems will be much 

more pronounced and the proposed approach is expected to be more effective compared to the 

standard RK approximation. Figure 7.15 shows the block-level approximation where each block 

locally influences the solution and captures nearby localizations.  
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Figure 7.13. Numerical solution of one-dimensional problem: total solution, NN approximation, 

and RK approximation 

 

Figure 7.14. Pure RK solution (left) and NN-enhanced RK solution (right) 
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Figure 7.15. Block-level approximations 

7.5.2. Two-dimensional elasticity with pre-degraded material 

To demonstrate the capability of the proposed method to capture the geometry of 

localizations, a two-dimensional elastic specimen under tension with the locally pre-degraded 

shear modulus is considered as shown in Figure 7.16. For the RK approximation, the domain is 

uniformly discretized with 256 RK points. 2×2 Gauss quadrature is used with 3600 quadrature 

cells which uniformly divide the domain. For NN approximation, four blocks are randomly 

populated at the initial stage. For the parametrization network, two hidden layers with the 
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hyperbolic tangent activation and four neurons per layer are employed. For each block-level 

approximation, quadratic polynomial basis functions are employed. The total number of unknowns 

is 780, consisting of 512 RK unknowns and 268 NN unknowns. 

Figure 7.17 shows the numerical solutions including the total solution, RK approximation, 

and NN approximation. Similar to the one-dimensional example, the total solution captures the 

sharp solution transition very well, primarily due to the NN approximation as shown in Figure 7.17 

(c) and (f). Figure 7.18 shows the evolution of the NN approximation, 𝑢2
𝑁𝑁, at different epochs. 

Since the information on the localization is not prescribed in the NN approximation, each NN 

block does not approximate the localization accurately at an early stage of the simulation. However, 

the block-level approximations gradually evolve and successfully capture the localization during 

the total potential energy minimization procedure as discuss in Section 7.1. Figure 7.19 shows all 

the NN kernel functions used in this simulation. Each pair of NN kernel functions in each NN 

block covers a segment of the localization and has a sharp decrease in the NN kernel function 

value along the curved path 𝑦2
𝐼 = 0. 
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Figure 7.16. Problem setting of two-dimensional elasticity: (a) model geometry and boundary 

conditions and (b) shear modulus distribution 

 

Figure 7.17. Numerical solution of two-dimensional elasticity problem: (a) 𝑢1
ℎ, (b) 𝑢1

𝑅𝐾, (c) 𝑢1
𝑁𝑁, 

(d) 𝑢2
ℎ, (e) 𝑢2

𝑅𝐾, (f) 𝑢2
𝑁𝑁 
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Figure 7.18. The evolution of 𝑢2
𝑁𝑁: (a) 500-th epoch, (b) 1000-th epoch, (c) 2000-th epoch, (d) 

5000-th epoch 

 

Figure 7.19. NN kernel functions at 13000-th epoch: (a) �̂�11, (b) �̂�21, (c) �̂�12, (d) �̂�22, (e) �̂�13, 

(f) �̂�23, (g) �̂�14, (h) �̂�24  

Next, let us consider a domain with a pre-degraded zone that includes a triple junction 

(Case 2) as shown in Figure 7.20. The material properties and RK discretization are the same as 

the previous example. For NN approximation, six (6) NN blocks are used with the initial block 

distribution shown in Figure 7.21. The initial center positions of the blocks are uniformly 
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distributed throughout the domain while the orientations are randomly chosen. As shown in Figure 

7.22 - Figure 7.24, the NN kernels evolve and the sharp transition in the kernels are correctly 

located on the degraded zone. Consequently, the sharp solution transition along the branching 

curves is well-captured as shown in Figure 7.25. 

 

Figure 7.20. Shear modulus distribution (Case 2): the pre-degraded zone includes a triple 

junction. 
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Figure 7.21. NN kernels at the initial states: (a) block 1, (b) block 2, (c) block 3, (d) block 4, (e) 

block 5, and (f) block 6 
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Figure 7.22. NN kernels at epoch 500: (a) block 1, (b) block 2, (c) block 3, (d) block 4, (e) block 

5, and (f) block 6 
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Figure 7.23. NN kernels at epoch 1000: (a) block 1, (b) block 2, (c) block 3, (d) block 4, (e) 

block 5, and (f) block 6 
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Figure 7.24. NN kernels at epoch 12000: (a) block 1, (b) block 2, (c) block 3, (d) block 4, (e) 

block 5, and (f) block 6 
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Figure 7.25. Numerical solution of two-dimensional elasticity problem (case 2): (a) 𝑢1
ℎ, (b) 𝑢1

𝑅𝐾, 

(c) 𝑢1
𝑁𝑁, (d) 𝑢2

ℎ, (e) 𝑢2
𝑅𝐾, (f) 𝑢2

𝑁𝑁 

 

7.5.3. Damage Propagation: A Simple-sheared Pre-notched Problem 

A pre-notched specimen under simple shear as shown in Figure 7.26(a) is considered with 

the following potential functional.s 

Π(𝐮) = 𝜓0
− + 𝑔(휂)(𝜓0

+ − 𝜓𝑐) + 𝜓𝑐 + 𝐷(휂) (7.42) 
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where, 휂 , 𝑔(휂) , 𝐷(휂) , and 𝜓𝑐  are damage, degradation function, dissipation functional, and 

critical fracture energy density for damage initiation, respectively, and, with the principal strain �̅�, 

we have 

𝜓0
+ = 𝜇〈휀 𝑖〉〈휀  𝑖〉 +

𝜆

2
〈휀 𝑖휀 𝑖⟩ (7.43) 

𝜓0
− = 𝜓0 − 𝜓0

+ (7.44) 

with  

𝜓0 =
2𝜇 + 𝜆

2
휀 𝑖휀 𝑖 . (7.45) 

In (7.43), 𝜇  and 𝜆  are Lamé’s first and second parameters, respectively, and 〈⋅⟩ =

max(⋅ ,0) are Macaulay brackets. Additionally, the following degradation functional 𝑔(휂) and 

dissipation functional 𝐷(휂) are employed. 

𝑔(휂) = (1 − 휂)2 (7.46) 

𝐷(휂) =
𝑝

2
휂2 (7.47) 

with model constant 𝑝. Damage 휂 has the following functional form. 

휂 =
2𝜅

2𝜅 + 𝑝
 (7.48) 

where 𝜅 is defined as 
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𝜅 = ⟨ℋ − 𝜓𝑐⟩ (7.49) 

Here, the history variable ℋ  is the maximum 𝜓0
+  that the material point has been 

experienced. 

Note that (7.42) is equivalent to the potential functional for phase field fracture proposed 

in [101] except for the term involving the gradient of damage. In the absence of the gradient term, 

this damage model is a local model. Instead, the regularization is introduced by regularizing the 

NN approximation as discussed in Section 3.4. The model constant 𝑝 is estimated as 

𝑝 =
6𝒢𝑐

ℓ̅
, (7.50) 

where 𝒢𝑐 and ℓ̅ are fracture energy and localization limit, respectively. In this work, as used in [91, 

108], Young’s modulus of 210 GPa, Poisson’s ratio of 0.3, and 𝒢𝑐=2.7 N/mm are chosen, and 

ℓ̅=0.01667 mm is used by selecting 𝑎2=3.0, 𝐶𝐿=3.0, and ℓ𝐼 = 0.15. Material is pre-degraded as 

shown in Figure 7.26(b). The domain is uniformly discretized by 256 RK nodes for the RK 

approximation and four NN blocks are used with cubic basis for the NN approximation. The total 

number of unknowns is 790, including 512 RK unknowns and 278 NN unknowns. The Gauss 

quadrature points used for this simulation are plotted in Figure 7.26(b). Figure 7.27 shows the 

evolution of damage produced by the increase of 𝑔. The series of results demonstrates that the 

proposed method is also capable to capture evolving localizations including the damage and the 

sharp transition in 𝑢1
ℎ and 𝑢2

ℎ across the localization, which is a promising result. The angle of 

crack path of 63° degrees compares well with the initial angle of 65° reported in [108]. 
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Figure 7.26. Problem setting of elastic-damage problem: (a) geometry and boundary conditions 

and (b) pre-degraded shear modulus and Gauss integration points 
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Figure 7.27. Damage evolution: (a) 𝑔 = 22 × 10−3 mm, (b) 𝑔 = 24 × 10−3 mm, (c) 𝑔 =
26 × 10−3 mm; (left) 𝑢1

ℎ, (center) 𝑢2
ℎ, (right) damage 
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Chapter 8  

Applications to modeling of Grain Refinement 

In this chapter, a series of numerical examples are presented to verify its capability to 

simulate sub-grain formations and grain boundary migrations which are key stages of rotational 

recrystallization. The plane-strain condition is assumed and the quadratic RK basis functions are 

used for the displacement, the lattice rotation, and the phase field, and kernel function with a 

normalized support size of 3.0 is used unless otherwise stated. For the domain integration, the 5×5 

Gauss quadrature is employed. 

8.1. Parameter sensitivity of the coupled Cosserat-phase field formulation 

A single crystal under tension is simulated to investigate the sensitivity of the proposed 

formulation to the normalized stabilization parameter 𝑐 introduced in Section 6.2. As shown in 

Figure 8.1, a single crystal contains two slip systems with angles 33.7° and 123.7° with respect to 

the horizontal axis. The domain is defined as Ω = (−𝐻/2, +𝐻/2) × (−𝐻/2,+𝐻/2) with 𝐻 =

10 μm. Fixed Dirichlet boundary conditions are imposed to 𝑢1 and 𝑢2 on the lower boundary and 

𝑔2(𝑡) is imposed to 𝑢2 on the upper surface. All the other boundary conditions on 𝐮, 휃, and 휂 are 

zero Neumann boundaries. The Lamé parameters of 𝜆 = 69.2 GPa , 𝜇 = 46.1  GPa and the 

Cosserat parameters of 𝛼 = 𝑓0ℓ𝛼, 𝛽 = 𝑓0ℓ𝛽
2  with 𝑓0 = 1.8 MPa, ℓ𝛼 = 3 μm, and ℓ𝛽 = 2 μm are 

used. The phase field model constants 𝑝 = 𝑓0  and 𝑞 = 𝑓0ℓ𝜂  with ℓ𝜂 = 0.5  μm are also used 

together with the phase field model functions 𝑟(휂) = 0.5(1 − 휂)2, 𝑓(휂) = 휂2 and 𝑔(휂) = 0.05 +

0.95휂2, motivated by[90]. This set of model constants is taken from[93] and modified such that 
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the steady state diffuse grain boundary has its width approximately in the range of 0.7 to 1.0 μm. 

Additionally, the following velocity gradient is employed with �̇�(𝐼) defined in (3.34). 

�̇�𝑖𝑗
𝑝 =∑�̇�(𝐼)

2

𝐼=1

𝑠𝑖
(𝐼)𝑛𝑗

(𝐼), (8.1) 

The constitutive model constants are 𝑛 = 10, 𝐾𝑣 = 8.2 MPa, 𝑅 = 0.3𝜇𝑏√𝜌0  with 𝑏 =

0.2556 nm and 𝜌0 = 10
15 m-2 [68, 69]. The backward Euler scheme is employed to solve the 

constitutive equation. The phase field inverse mobility 𝜇𝜂 = 0.001𝑓0𝜏0 with 𝜏0 = 10
−5 s is used. 

The domain is discretized by 441 uniformly distributed RK nodes. 

 

Figure 8.1. Problem description. 

Figure 8.2 shows the progressive deformation obtained by the proposed method with 

log10 𝑐 = −4. Due to the presence of slip systems, the anisotropic deformation is developed as the 

initially single crystal is deformed. Under such anisotropy, lattice curvature is localized, i.e., GNDs 

locally evolve, to accommodate the anisotropic deformation. As a result, four distinct dislocation 

block structures are developed during the deformation process. The phase field effectively captures 
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the localized lattice curvature. As larger deformation is developed, the crystalline lattice of each 

sub-grain independently rotates and the misorientation becomes larger at the sub-grain boundaries 

with a maximum value of 8° at approximately time 𝑡 = 0.6 μs. As shown in Figure 8.3, the 

solutions obtained from different values of 𝑐 within the suggested parameter range agree with each 

other, which demonstrates that the proposed formulation is insensitive to the stabilization 

parameter. 

Additionally, the solution obtained with the strong imposition of rotational kinematic 

constraint on boundaries discussed in Section 0 is compared with the solutions obtained with the 

least squares stabilization presented in 6.3.2 with various stability parameters. As discussed in 

Section 6.3.2, the lower bound of the normalized stability parameter has not been fully discovered 

and a choice of a small stability parameter may not eliminate the spurious lattice rotation modes. 

As shown in Figure 8.4(a), the lattice orientation field obtained with log 𝑐 = −8 has a spurious 

lattice rotation compared to the choices of larger stability parameters (Figure 8.4(b) and (c)). In 

contrast, the strong imposition of the rotational kinematic constraint on boundaries without the 

least squares stabilization introduced yields the lattice orientation fields without a spurious rotation, 

which demonstrates that the strong imposition can be an alternative approach to eliminate the 

spurious lattice rotation modes introduced in the duality-based formulation. 
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Figure 8.2. Progressive deformation obtained by the proposed method with log10 𝑐 = −4 at 

times of (a) 0.1, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, and (f) 0.6 μs 
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Figure 8.3. Solutions obtained at 𝑡 = 0.4 μs with different 𝑐: (a) log10 𝑐 = −6, (b) log10 𝑐 = −4, 

and (c) log10 𝑐 = −2 
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Figure 8.4. Comparison of the numerical solutions: least squares stabilization with (a) log 𝑐 =
−8, (b) log 𝑐 = −7, and (c) log 𝑐 = −6, and (d) the strong imposition of the rotational kinematic 

constraints on boundaries with 𝑐 = 0 

8.2. Migration of grain boundaries with a triple junction 

A problem involving migrations of grain boundaries with a triple junction is considered. 

In this problem, the grain boundary topology is evolved towards steady state by grain boundary 

migrations. This is an essential stage in the rotational recrystallization mechanism where the 

dislocation blocks formed under large anisotropic deformation is made into equiaxed grains. 
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Consider a square domain Ω = (0,0) × (𝐷, 𝐻) with dimensions 𝐷 = 12 μm and 𝐻 = 10 μm as 

shown in Figure 8.5(a). The domain is initially composed of three rectangular grains with the initial 

constant lattice orientation 휃(𝑡 = 0) within each grain. The initial values are shown in Figure 8.5(a) 

along with the initial displacement 𝐮(𝑡 = 0) = 𝟎. The Dirichlet boundary conditions on 𝐮 and 휃 

are applied on all boundaries: 𝐮 = 𝟎 and 휃 = 휃(𝑡 = 0) on Γ. 

 

Figure 8.5. Problem dimension and initial grain orientation 

The following constitutive equation is used. 

�̇�𝑖𝑗
𝑝 = 𝜇∗

−1𝜎𝑖𝑗
𝑎 , (8.2) 

where the inverse grain boundary mobility is taken as [93] 

𝜇∗ = �̂�∗(1 − (1 − 𝜇𝑝) exp(−𝛽𝑃|∇휃|)), (8.3) 
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with 𝜇𝑝 = 1000 , 𝛽𝑃 = 1000 , and �̂�∗ = 0.1𝑓0𝜏0  with 𝜏0 = 10
−5  s. The phase field inverse 

mobility 𝜇𝜂 = 0.001𝑓0𝜏0 is also used. The phase field model functions and constants used for this 

numerical example are listed in Set III of Table 3.1 in Section 3.3. 

For the numerical implementation, the following initial lattice orientation field is applied: 

휃(𝑡 = 0) =
∆휃

4
(1 + tanh (

𝑥1 − 𝜉1
𝑤1

)) tanh (
𝑥2 − 𝜉2
𝑤2

), (8.4) 

where 𝜉1 , 𝜉2 , 𝑤1 , and 𝑤2  are 4 μm, 5 μm, 1.5 μm, and 1.2 μm, respectively, and ∆휃  is the 

difference in the initial lattice orientations of the upper-right and lower-right grains as shown in 

figure Figure 8.5(a). To hold 𝐮(𝑡 = 0) = 𝟎 and nonzero elastic rotation such that 𝜑𝑒(𝑡 = 0) =

휃(𝑡 = 0)  simultaneously, the initial plastic rotation 𝜑𝑝(𝑡 = 0) = −휃(𝑡 = 0)  is applied. With 

𝜑(𝑡 = 0) = 0  derived from 𝐮(𝑡 = 0) = 𝟎 , 𝜑𝑒(𝑡 = 0) = 𝜑(𝑡 = 0) − 𝜑𝑝(𝑡 = 0) = 휃(𝑡 = 0) 

holds. 

The analytical value of 𝜒 in Figure 8.5(b) can be obtained by the Herring’s equation [109]: 

𝜒 = 180° − cos−1 (−
1

2

𝐸𝐺𝐵,ℎ𝑜𝑟𝑖𝑧

𝐸𝐺𝐵,𝑑𝑖𝑎𝑔
), (8.5) 

where 𝐸𝐺𝐵,ℎ𝑜𝑟𝑖𝑧  and 𝐸𝐺𝐵,𝑑𝑖𝑎𝑔  are the GB energies of the horizontal grain boundary and the 

diagonal grain boundaries, respectively. At the steady state, each grain keeps its initial lattice 

orientation [93] as shown in Figure 8.5(b) and the displacement 𝐮 = 𝟎. 

For numerical simulations, the domain is uniformly discretized by 806 RK particles with a 

cubic RK basis function for 𝐮ℎ, 휃ℎ, and 휂ℎ with a normalized support size of 4.0 for accurate 
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estimation of ∇ ⋅ 𝐦 which acts as a driving force of the grain boundaries. Figure 8.6 presents the 

progression of 휃ℎ, |∇휃ℎ|, and 휂ℎ for ∆휃 = 15°. The triple junction moves as the grain boundary 

migrates while the lattice orientation of each grain does not change from its original value. Two 

additional problems with ∆휃 = 12°  and ∆휃 = 24°  are considered for comparison and the 

predicted steady state solutions for all three cases are presented in Figure 8.7. A smaller 𝜒 is 

obtained with larger ∆휃. This is because the Read – Shockley type relation, the nonlinear relation 

of GB energy and ∆휃, shown in Figure 3.8(a), leads to smaller 𝐸𝐺𝐵,ℎ𝑜𝑟𝑖𝑧-to-𝐸𝐺𝐵,𝑑𝑖𝑎𝑔 ratio with 

larger ∆휃, and consequently the grain boundary topology is in equilibrium with larger 𝜒 as Herring 

established[109] and reflected in Eq. (8.4). Figure 8.8 shows numerical and analytical 𝜒 and 𝑥  

against ∆휃 and the numerical results agree with the analytical solutions with errors less than 4%. 

The effectiveness of the proposed phase field approach is shown in Figure 8.9. As shown 

in Figure 8.9(d)-(f), the simulation without the phase field does not maintain the sharp transition 

of the lattice orientation, therefore cannot capture the grain boundary structure.  
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Figure 8.6. Numerical results of progressive grain migration at times of (a) 0, (b) 1.0, (c) 2.0, (d) 

3.0, and (e) 4.0 μs: 휃 (top), |𝐻∇휃| (middle), and 휂 (bottom). 
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Figure 8.7. Predicted steady states of (a) ∆휃 = 12°, (b) ∆휃 = 15°, and (c) ∆휃 = 24°: 휃 (top), 

|𝐻∇휃| (middle), and 휂 (bottom). 

 

Figure 8.8. Comparison of numerical and analytical solutions: (a) 𝜒 vs ∆휃 and (b) 𝑥  vs ∆휃 
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Figure 8.9. Comparison of simulations with and without the phase field for the case of ∆휃 = 24°. 
휃 and |𝐻∇휃| are shown on top and bottom of each subfigure, respectively. Results of the 

simulation with phase field are given at times of (a) 0, (b) 0.25, (c) 0.5 μs. Results of the 

simulation without phase field are given at times of (d) 0, (e) 0.25, (f) 0.5 μs. 

Next, we solve the same problem using NN-RKPM proposed in Chapter 7. For simplicity, 

in solving the problem, the displacement field is ignored to focus on investigating the capability 
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of NN-RK in capturing the sharp solution transition. For the RK approximation, the domain is 

discretized with the nodal spacing of 0.5 μm compared to 0.4 μm which is used for the pure RKPM 

case presented in this case. The linear RK basis is additionally used along with the cubic B-spline 

kernel with normalized support size of 2.0. For the NN approximation, we consider two models 

M1 and M2 of which the details are listed in Table 8.1. Note that more NN kernels are used for 

M2 than for M1, which leads to more unknowns. For both models, the weights and biases 

associated with the parametrization network are shared by the lattice orientation and phase field 

NN approximations. However, the other unknown parameters are independently calculated for 

both approximations. The sizes of the Gauss quadrature cells are 0.125 μm and 0.083μm for M1 

and M2, respectively, and 2×2 Gauss points are used per cell. Additionally, 1 − 휂 is approximated 

only by the NN approximation as it has nonzero value only at the narrow band of the grain 

boundary, and 휃 is approximated by the combination of RK and NN approximations. 

Table 8.1. NN approximation details for the triple junction problem 

Model # Blocks 

Parametrization network 

# NN 

kernels per 

layer 

Order of 

basis 

Total 

number of 

unknowns 

# Gauss 

points 

# Layers # Neurons 

per layer 

M1 4 1 22 9 1 920 25600 

M2 4 1 22 16 1 1152 47488 

 

The steady state solutions for the case of ∆휃=24° is plotted in Figure 8.10. The NN-RKPM 

models M1 (Figure 8.10(b)) and M2 (Figure 8.10(c)) present far sharper solution transitions at the 

grain boundaries and significantly thinner diffuse grain boundary widths than the pure RKPM 

solution. The high-gradient representation of the diffuse grain boundary is encouraging in that it 
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enables the model to more accurately captures complicated grain boundary morphology. Figure 

8.11 shows how NN and RK approximations influences the orientation field. While the RK 

approximation captures the overall smooth solution transition, the NN approximation enriches the 

solution field so that the sharp orientation transition at the grain boundaries is accurately captured. 

 

 

Figure 8.10. Steady state solutions predicted by various models: (a) pure RKPM, (b) NN-RKPM 

M1, (c) NN-RKPM M2. 휃 (top), |𝐻∇휃| (middle), and 휂 (bottom).  
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Figure 8.11. RK and NN approximations from M1 and M2 

8.3. Band substructure formation in an FCC single crystal 

A two-dimensional plane strain problem of uniaxial hot compression of an FCC single 

crystal aluminum is considered. The rotational recrystallization-induced grain refinement is 

facilitated when temperature 𝑇 ≥ 0.4𝑇𝑚  where 𝑇𝑚  is the melting point[25]. In this numerical 

example, 𝑇 = 0.7𝑇𝑚  is used as considered in Gourdet and Montheillet[33] for uniaxial hot 

compression experiments of single crystal aluminums. Also, it has been reported that the 
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nonstandard {110}<110> 1  slip systems dominate instead of the standard close-packed 

{111}<110> systems in the temperature range 𝑇 ≥ 0.6𝑇𝑚 [110]. Figure 8.12(a) describes the 

considered single crystal cube in the global coordinate. The crystallographic directions [100], 

[010], and [001] in Miller indices align with 𝑥1 , 𝑥2 , and 𝑥3  directions, respectively. The 

compression axis is 𝑥2. The slip system with 𝐧 = (−1/√2, 1/√2, 0) and 𝐬 = (1/√2, 1/√2, 0) is 

the activated system and the problem is reduced to the plane strain problem on 𝑥1 − 𝑥2 plane with 

𝐿 = 1 mm described in Figure 8.12(b). A set of periodic boundary conditions is introduced due to 

the fact that the problem domain is significantly smaller than the actual experiment specimen 

(18 × 12 × 11.5 mm3)[33]. The compression of specimen is applied with the following Dirichlet 

boundary conditions: on the bottom edge, 

1

𝐿
∫ 𝑢2 𝑑Γ
Γ𝐵

= 0, (8.6) 

and on the top edge, 

1

𝐿
∫ 𝑢2 𝑑Γ
Γ𝑇

= −𝜖 ̇𝑡, (8.7) 

 

1 Herein, the Miller indices are used to describe planes and directions[112]. [ℎ𝑘𝑙] denotes a direction ℎ𝐚1 +
𝑘𝐚2 + 𝑙𝐚3 where 𝐚𝑖’s are lattice basis vectors. (ℎ𝑘𝑙) denotes a plane perpendicular to a direction ℎ𝐛1 + 𝑘𝐛2 + 𝑙𝐛3 

where 𝐛𝑖’s are the reciprocal lattice vectors of 𝐚𝑖’s. For cubic crystals, the set of 𝐚𝑖’s and the set of 𝐛𝑖’s are identical. 

<hkl> and {hkl} refer to the set of directions of the same type and the set of planes of the same type due to the 

symmetry of the crystalline structures, respectively. 
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where Γ𝑏 and Γ𝑇 denote the bottom and top boundaries and the loading rate 𝜖 ̇ = 0.1𝐿 s−1 is used. 

A penalty method is used to apply the boundary conditions with the penalty constant of 100𝜇. 

 

Figure 8.12. Three dimensional and plane strain description of the considered FCC single crystal 

The constitutive equation (3.34) is implemented with 𝐾𝑣 = 0.15𝑟 MPa, 𝑟 = 0.73, and 𝑛 =

3.6. The model constants are calibrated such that the relation between the plastic slip and the 

resolved shear stress matches the constitutive behavior provided in Abrivard et al.[90]. The critical 

resolved shear stress is given as 𝑅 = 0.3𝑟𝜇𝑏√𝜌𝑆𝑆𝐷 with 𝑏 = 0.286 nm. The statistically stored 

dislocation (SSD) density 𝜌𝑆𝑆𝐷  is randomly distributed with the normal distribution 𝒩(2 ×

1011 m−2, 0.5 × 1011 m−2) to initiate inhomogeneous deformation. The shear modulus of 20.6 

GPa at 𝑇 = 0.7𝑇𝑚  [33] and Poisson’s ratio of 0.35 are used. The Cosserat and phase field 

parameters 𝑓0 = 30 MPa, ℓ𝛽 = 0.1 mm, 𝑔0 = 10
−6𝑓0 and ℓ𝜂 = 0.0875 mm are chosen such that 

the phase field has a sufficiently large value at low angle grain boundaries and it maintains the 
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diffuse grain boundary width of approximately 0.1𝐿. For numerical simulations, the domain is 

uniformly discretized by 441 RK particles. 

The numerical results are shown in Figure 8.13. The figures clearly show banded sub-grain 

structure and the orientation of the bands is approximately 135° with respect to the horizontal axis 

which is perpendicular to the slip direction 𝐬. This implies that the localized lattice curvature (i.e. 

lattice reorientation) is formed by kink bands. Here kink band denotes a localized plastic 

deformation zone with an orientation perpendicular the slip direction[53] and the formation of kink 

bands is an important source of sub-grain formation[72]. The non-symmetric activation of slip 

system leads to inhomogeneous displacement and deformation as shown in Figure 8.13. The 

experimental observations are shown in Figure 8.14. The crystallographic orientation of the initial 

single crystal (Figure 8.14(a)) is consistent with Figure 8.12(a)[33]. Figure 8.14(b) and (c) are 

snapshots on the surfaces (001) and (100), respectively[111], that contain the slip traces, which 

implies the slip system depicted in Figure 8.12(a) was activated. Also, there is banded 

microstructure shown on surface (001) (Figure 8.14(a)) perpendicular to the slip direction, which 

qualitatively validates the numerical results. Although in-depth quantitative comparisons are not 

available due to the limited information about the material properties used in the experiment, the 

numerical simulation successfully captures the microstructural evolution including the formation 

of kink bands and the banded sub-grains. 
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Figure 8.13. Numerical results: from top to bottom, 휃ℎ, |∇휃ℎ|, and 휂ℎ at times of (a) 0.26 ms and 

(b) 1 ms 
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Figure 8.14. Experimental observation[33, 111]: (a) a cube cut out from the central part of the 

specimen, (b) slip traces on surface (001), and (c) slip traces on surface (100) 
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Chapter 9  

Conclusions 

9.1. Summary of this research 

A duality-based Cosserat crystal plasticity formulation coupled with a phase field was 

proposed for modeling deformation-induced grain refinement. The independent lattice orientation 

field was introduced based on duality theory as a stability and accuracy enhancement of the 

classical penalty-based approach. In the proposed method, the kinematic constraints on the 

displacement-based and lattice orientation-based lattice curvatures were imposed with the energy 

conjugate couple stress derived in the dualization. To avoid spurious lattice rotation, least squares 

stabilization was introduced. A stability analysis was performed to derive the suitable range for 

the stabilization parameter to maintain the coercivity of the duality-based formulation. A 

projection-based stabilization was additionally employed for the duality-based formulation based 

on the weak inf-sup condition. The high order continuity requirement of the solution space was 

attained by the reproducing kernel approximation. The numerical results demonstrated that the 

equal order approximations for displacement, rotation, and phase field are stable, which allows 

efficient use of the same set of shape functions for all independent variables. 

The proposed method yielded optimal convergence rates and superior solution accuracy 

over the penalty-based method. Also, the solution sensitivity to the stabilization parameter was 

shown to be much smaller than the sensitivity of the penalty method to the penalty parameter. The 

projection-based stabilization effectively suppressed oscillations in solution including the lattice 

curvature and couple stress divergence. The proposed method was successfully applied to 
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modeling key mechanisms of rotational recrystallization: evolution of block dislocation structures 

and rotation of grain boundaries. In the former example, the proposed method captured the lattice 

curvature localization induced by the anisotropic deformation due to the formation of kink bands, 

and the resulting banded sub-grains are formed perpendicular to the slip direction, which 

qualitatively agree with the experimental observation. In the latter example, the proposed method 

predicted the migration of grain boundaries with a triple junction, and the predicted steady state 

angle between grain boundaries agreed well with the analytical value. 

In the conventional crystal plasticity formulation coupled with phase field, modeling the 

sharp transition in the phase field near the grain boundaries associated with the lattice orientation 

often requires highly refined discretization for sufficient accuracy, which significantly increases 

the computational cost. To this end, neural network-enhanced reproducing kernel particle method 

(NN-RKPM) has been proposed, where the location and orientation of strain localizations were 

automatically captured by the NN algorithms, and the distribution of solution transition was 

constructed with the NN approximations via the minimization of total potential energy. The 

standard RK approximation is then utilized to approximate the smooth part of the solution to permit 

a much coarser discretization than the high-resolution discretization needed to capture sharp 

solution transition with the conventional methods. The proposed NN-RKPM was first verified by 

solving several damage evolution problems. The proposed computational framework was then 

applied to modeling grain refinement mechanisms, including the migration of grain boundaries at 

a triple junction and sub-grain formation of a material with activated slip systems, for validating 

the effectiveness of the proposed methods.  
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9.2. Recommendations for Future Work 

The recommendations for future work are summarized as follows. 

• Development of advanced nodal integration technique suitable for the duality-based 

Cosserat crystal plasticity – phase field formulation for additional computational efficiency. 

When high dimensional problems are of interest, employment of an efficient integration 

technique is essential. Since the proposed mixed formulation involves second derivative of 

the lattice orientation, a reduced integration such as a nodal integration scheme should be 

carefully designed to satisfy the variational consistency for optimal convergence. 

• Extension of the proposed formulation to the large deformation framework. High-rate 

manufacturing processes produce extreme deformation that entails severe shear 

localizations where intense grain refinement occurs. To this end, the geometric nonlinearity 

should be considered. 

• Dynamic formulation and development of shock algorithm for Cosserat – phase field 

theory. High-rate manufacturing processes often involve high velocity impact and this 

entails strong dynamic effects. Particularly, strong shock is often produced and numerical 

investigation into the effects of the shock on the microstructural evolution, such as grain 

refinement and phase change, would be beneficial. Also, numerical investigation into the 

effects of the generation and annihilation of dislocations under the adiabatic condition on 

the grain refinement would also be beneficial. 

• Development of multiscale formulation. As the scale of the actual manufacturing product 

and the grain scale is several orders in difference, a robust multiscale method can be 
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developed to establish the linkage between the processing parameters and the 

microstructural evolution. 
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