
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Caching Files with a Program-based Last N Successors Model

Permalink

https://escholarship.org/uc/item/8b3462dk

Authors

Yeh, Tsozen
Long, Darrell
Brandt, Scott A

Publication Date

2001-06-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8b3462dk
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Caching Files with a Program-based Last N Successors Model

Tsozen Yeh, Darrell D. E. Long and Scott A. Brandt
Computer Science Department

Jack Baskin School of Engineering
University of California, Santa Cruz

Abstract

Recent increases in CPU performance have outpaced in-
creases in hard drive performance. As a result, disk opera-
tions have become more expensive in terms of CPU cycles
spent waiting for disk operations to complete. File pre-
diction can mitigate this problem by prefetching files into
cache before they are accessed. However, incorrect pre-
diction is to a certain degree both unavoidable and costly.
We present the Program-based Last N Successors (PLNS)
file prediction model that identifies relationships between
files through the names of the programs accessing them.
Our simulation results show that PLNS makes at least
21.11% fewer incorrect predictions and roughly the same
number of correct predictions as the last-successor model.
We also examine the cache hit ratio of applying PLNS
to the Least Recently Used (LRU) caching algorithm and
show that a cache using PLNS and LRU together can per-
form as well as a cache up to 40 times larger using LRU
alone.

1 Introduction

Running programs stall if the data they need is not in
memory. As the speed of CPU increases, disk I/O be-
comes more expensive in terms of CPU cycles. File
prefetching is a technique that mitigates the speed differ-
ence originating from the mechanical operation of disk
and the electronic operation of CPU [15] by preloading
files into memory before they are needed. The success
of file prefetching depends on file prediction accuracy –
how accurately an operating system can predict which
files to load into memory. Probability and history of file
access have been widely used to perform file prediction
[3,4,7,8,10,12], as have hints or help from programs and
compilers [2, 13].

While correct file prediction is useful, incorrect predic-
tion is to a certain degree both unavoidable and costly.
An incorrect prediction is worse than no prediction at all.
Not only does an incorrectly prefetched file do nothing to
reduce the stall time of any program, it also wastes valu-

able cache space and disk bandwidth. Incorrect prediction
can also prolong the time required to bring needed data
into the cache if a cache miss occurs while the incorrectly
predicted data is being transferred from the disk. Incor-
rect predictions can lower the overall performance of the
system regardless of the accuracy of correct prediction.
Consequently reducing incorrect prediction plays a very
important role in cache management.

In previous work we examined a file prediction model
called Program-based Last Successor (PLS) [17, 18], in-
spired by the observation that probability and repeated
history of file accesses do not occur for no reason. In par-
ticular, programs access more or less the same set of files
in roughly the same order every time they execute. PLS
uses knowledge about program-specific access patterns to
generate more accurate file predictions. In that work, PLS
was shown to outperform both the Last Successor (LS)
and Finite Multi-Order Context (FMOC) models [7].

In this paper we present an extension to PLS called
Program-based Last N Successors (PLNS). PLNS uses
additional knowledge about program-based file accesses
to determine multiple program-specific last-successors for
each file to generate more accurate file predictions. Our
results demonstrate that that in general, with only a little
more storage and prefetching overhead, PLNS generates
more accurate file predictions than either LS or PLS. In
particular, compared with LS, PLNS reduces the number
of incorrect file predictions and increases the number of
correct predictions to provide better overall file prediction
and therefore better overall system performance. The “N”
in PLNS represents the number of the most recent differ-
ent program-based last successors that PLNS could pre-
dict each time.

We compare PLNS with Last-Successor (LS) for differ-
ent values of “N” in PLNS. Generally speaking, LS has
a high predictive accuracy – our simulation results show
that LS can correctly predict the next file to be accessed
about 80% of the time in some cases. Our experiments
demonstrate that with traces covering as long as 6 months
PLNS makes at least 21.11% fewer incorrect predictions
than LS, giving PLNS a higher predictive accuracy than

1



LS. We also examine the cache hit ratios of Least Recently
Used (LRU) with no file prediction, and LRU with PLNS.
We observe that PLNS always increases the cache hit ra-
tio and in the best case, LRU and PLNS together perform
as well as a cache 40 times larger using LRU alone.

2 Related Work

Griffioen and Appleton use probability graphs to predict
future file accesses [4]. The graph tracks file accesses ob-
served within a certain window after the current access.
For each file access, the probability of its different follow-
ers observed within the window is used to make prefetch-
ing decision.

Lei and Duchamp use pattern trees to record past ex-
ecution activities of each program [10]. They maintain
different pattern trees for each different accessing pattern
observed. A program could require multiple pattern trees
to store similar patterns of file accesses in its previous ex-
ecution.

Vitter, Curewite, and Krishnan adopt the technique
of data compression to predict next required page [3,
16]. Their observation is that data compressors assign a
smaller code to the next character with a higher predicted
probability. Consequently a good data compressing algo-
rithm should also be good at predicting next page more
accurately.

Kroeger and Long predict next file based on probabil-
ity of files in contexts of FMOC [7]. Their research also
adopts the idea of data compression like Vitter et al. [16],
but they apply it to predicting next file instead of next
page.

Patterson et al. develop TIP to do prediction using hints
provided from modified compilers [13]. Accordingly, re-
sources can be managed and allocated more efficiently.
Chang and Gibson design a tool which can transform
UNIX application binaries to perform speculative execu-
tion and issues hints [2]. Their algorithm can eliminate the
issue of language independence, but it can only be applied
to single-thread applications.

Generally speaking probability-based predicting algo-
rithms respond to changes of reference pattern more dy-
namically than those relying on help from compilers and
applications. However over a longer period of time, ac-
cumulated probability may not closely reflect the latest
accessing pattern and even may mislead predicting algo-
rithms sometimes.

History-based techniques have also been investigated
for use in memory systems. Joseph and Grunwald inves-
tigated address correlation for cache prefetching [5]. Lai
and Falsafi studied per-processor memory sharing corre-
lation in shared-memory multiprocessors [9].

3 LS and PLNS Models

We start with a brief discussion of LS model, followed by
details of how to implement PLNS model.

3.1 LS

Given an access to a particular file
�

, LS predicts that the
next file accessed will be the same one that followed the
last access to file

�
. Thus if an access to file � followed

the last access to file
�

, LS predicts that an access to file �
will follow this access to file

�
. This can be implemented

by storing the successor information in the metadata of
each file. One potential problem with this technique is
that file access patterns rely on the temporal order of pro-
gram execution, and scheduling the same set of programs
in different orders may generate totally different file ac-
cess patterns.

3.2 PLNS

Lacking a priori knowledge of file access patterns, many
file prediction algorithms use statistical analysis of past
file access patterns to generate predictions about future
access patterns. One problem with this approach is that
executing the same set of programs can produce differ-
ent file access patterns even if the individual programs al-
ways access the same files in the same order. Because
it is the individual programs that access files, probabili-
ties obtained from the past file accesses of the system as
a whole are ultimately unlikely to yield the highest pos-
sible predictive accuracy. In particular, probabilities ob-
tained from a system-wide history of file accesses will not
necessarily reflect the access order for any individual pro-
gram or the future access patterns of the set of running
programs. However what could remain unchanged is the
order of files accessed by the individual programs. In par-
ticular, file reference patterns can describe what has hap-
pened more precisely if they are observed for each indi-
vidual program, and better knowledge about past access
patterns leads to better predictions of future access pat-
terns.

PLNS incorporates knowledge about the running pro-
grams to generate a better last-successor estimate. More
precisely, PLNS records and predicts program-specific
last successors for each file that is accessed. The “N”
in PLNS represents the number of the most recent dif-
ferent program-specific last successors that PLNS could
predict each time. For example, PL1S (N = 1) means only
the most recent program-specific last successor is pre-
dicted after each file access. In other words, PL1S can be
viewed as a program-specific last successor model. PL2S
(N = 2) predicts the most recent two different program-
specific last successors if a particular program accesses

2



A

P
1

P
2 C

B

Figure 1: PL1S model

multiple different files after each access of a particular
file. However PL2S could still predict only one succes-
sor if the program-specific successor for a given file has
never changed.

We will use PL1S as an example to explain PLNS. Sup-
pose a file trace at some time shows pattern

� � , and pat-
tern

���
occurring 60% and 40% of the time respectively.

A probability-based prediction will prefer predicting � af-
ter

�
is accessed. If � and

�
tend to alternate after

�
, then

LS will do especially poorly. But the reason that pattern� � and
���

occur may be quite different. For instance, in
Figure 1, the file access pattern

� � is seen to be caused
by program ��� , while the file access pattern

���
is caused

by program ��� . In other words, what is really behind the
numbers 60% and 40% is the execution of two different
applications, ��� and �	� . After we collect this information
(a set of pairs consisting of “program name” and “suc-
cessors”) for file

�
, next time it is accessed we can pre-

dict either � or
�

depending on � � or � � is accessing
�

,
or provide no prediction if

�
is accessed by another pro-

gram.

Table 1: Metadata of Figure 1 kept under PL1S model

file 
 program name, successor �
A 
���� , �� , 
��	� , � �
B 
���� , �������
C 
�� � , �������

One can argue that the same program may access differ-
ent sets of files each time that it is executed, particularly a
system utility program such as a compiler. While it is true
that compiling different programs will result in different
files being accessed, compiling the same program multi-
ple times will result in many or all of the same files being
accessed in the same order. Thus PL1S will make correct
predictions for most of these files, even when alternating
compilations between two sets of files. Assume, for ex-
ample, that two programs need to be compiled. The first
program needs files � � , � � , ..., ��� , in that order, and the
second program needs files ��� , ��� , ..., ��� , in that order. If
��� and ��� are different files, then we don’t know which

file to predict when the compiler starts running, but as
soon as either ��� or ��� is accessed we know which file to
prefetch next. If � � and � � are the same, then we prefetch
this file and wait to see whether � � or � � is needed, and
then we can predict the next file after that.

PLNS can also avoid the slow adaption problem in
probability-based prediction models. Probability-based
models always predict the same file until the correspond-
ing probability changes. Like LS, PLNS does not rely on
probability so it can respond immediately as file access
patterns change.

Two issues that need to be addressed are how to collect
the metadata in terms of 
 program name, successors � for
each file, and how big the metadata needs to be in order
to make accurate predictions. The first issue is simple.
Programs are executed as processes, so we can just store
the program name in the process control block (PCB). For
each running program (say � ), we also need to keep track
of the file (say � ), which it has most recently accessed.
When � accesses the next file (say � ) after � , we update
the metadata of the � with 
�� , ��� , and the next time that
� accesses � , PL1S can predict that the next file accessed
will be � .

In the example of Figure 1, when ��� accesses the next
file (say � ) after its access to

�
, we update the metadata

of
�

with 
���� , �� , and next time ��� accesses
�

, PL1S can
predict that the next file accessed will be � . Similarly,

�

also keeps 
���� , � � as parts of its metadata. If the access
to

�
by ��� is ever followed by access to different files, for

example � , other than � , then the name of file � will be
added to the metadata of

�
. So the corresponding metat-

data now becomes 
�� � , � , ��� . The metadata of files in
Figure 1 is shown in Table 1.

The second issue is not quite as simple as the first. Ide-
ally, for each file we would like to record the name of
every program that has accessed it before, along with the
program-specific successors to the file, so that we know
which file (or files) to predict when the same program ac-
cesses the file again. In reality, this may be too expen-
sive for files used by many different programs. Conse-
quently, we may need to limit the number of 
 program
name, successors � pairs kept for each file. However, our
simulation shows that about 99% of files are accessed by
six or fewer programs and thus metadata storage is not a
significant problem. In particular, by limiting metadata to
at most six programs per file, we can obtain almost all of
the benefit provided by PLNS.

A few terms need to be clarified here. The first is that
when we use the term “program” we mean any running
executable file. Thus a driver program that launches dif-
ferent sub-programs at different times is considered by
PLNS to be a different program from the sub-programs,
each of which is also treated independently. The second

3



is that both “program name” and “file name” include the
entire pathname of the files. This is important because dif-
ferent programs with the same name can access the same
file and different files with the same name can be accessed
by different programs, and these accesses must all be han-
dled correctly.

4 Experimental Results

In the section, we will discuss the trace data we used to
conduct our experiments, and how we compare perfor-
mance of LS and PLNS.

4.1 Simulation Trace and Experimental
Methodology

In examining PLNS we used the trace data from DFS-
Trace used by the Coda project [6,11]. These traces were
collected from 33 machines during the period between
February of 1991 and March of 1993. We used data from
October 1992 to March 1993, roughly equal to the last
quarter of the entire trace, from three machines Copland,
Holst, and Mozart. Research has demonstrated that the
average life of a file is very short [1]. Therefore, instead
of tracking every READ or WRITE event, we track only
the OPEN and EXECVE events in our simulation.

As mentioned above, PLNS needs to be able to deter-
mine the name of a program in order to generate its predic-
tions. Because we cannot obtain the name of any program
that started executing before the beginning of the trace,
we exclude all OPEN events initiated by any process id
(pid) which started before the beginning of our trace. In-
tuitively this filtering has no effect on the results of our ex-
periments because the filtering is based only on the time at
which the program began. In a real system such filtering
is not necessary because all program names are known.

We are interested in how different values of “N” in
PLNS could affect the performance and the costs come
with it compared with LS. We used the filtered trace data
to evaluate LS, PL1S, PL2S, and PL3S respectively.

Both LS and PL1S predict at most one file at a time. We
score LS and PL1S by adding one for each correct predic-
tion and zero for each incorrect prediction. We normalize
the final scores of PL1S and LS by the number of pre-
dictions, not by the number of events. This is because the
first time that a file is accessed there is no previous succes-
sor to predict and so the failure to make a prediction the
first time cannot be considered incorrect. We also score
PL2S and PL3S the same way we score LS. Of course
scores of PL2S and PL3S do not sit on the same ground
as those from PL1S because both PL2S and PL3S could
predict more than one file at a time in some cases. A more
detailed discussion of PL2S and PL3S will follow later.

4.2 Model Comparison

We begin with PL1S. Figure 2 shows that PL1S has a
higher predictive accuracy than LS in all machines. One
pitfall in comparing prediction models in terms of predic-
tive accuracy is that higher predictive accuracy does not
assure the success of a model because the scores are com-
monly normalized by the number of predictions made,
which does not include those cases where no prediction
was made. Consider two prediction models,

�
and � . If�

makes 40 correct predictions, 40 incorrect predictions,
and does not make a prediction 20 times out of a total
of 100 file accesses, then

�
’s predictive accuracy is 50%.

Suppose � makes only 2 correct predictions, 1 incorrect
prediction, and does not make a prediction 97 times. � ’s
predictive accuracy is 67%, but model � is almost useless
in practice.

Clearly, in order to examine the real performance of a
prediction model, we need other information besides pre-
dictive accuracy. Thus, we use LS as the baseline to eval-
uate the performance of PL1S in three categories. The
first category is the percentage of total predictions (includ-
ing correct and incorrect predictions) made by PL1S as
compared with LS. This percentage should not be to too
small, otherwise PL1S may be an unrealistic model just
like the model � above. The second is the percentage of
correct predictions made by PL1S as compared with LS.
This number should be as high as possible. The last cat-
egory is the percentage of incorrect predictions made by
PL1S as compared with LS.

0

10

20

30

40

50

60

70

80

90

100

copland holst mozart

p
re

d
ic

ti
ve

 a
cc

u
ra

cy
 (

%
)

LS
PL1S

Figure 2: Predictive accuracy of LS and PL1S

4.3 Category Performance

Figure 3 displays the PL1S performance normalized
by LS in the three different categories. The columns
marked “total” show that the total number of predictions
made by PL1S is about 92% to 95% of the number
made by LS. This is close enough to consider PL1S

4



to be a practical prediction algorithm in terms of the
number of predictions it makes. The middle columns
marked “correct” are the percentages of correct pre-
dictions. PL1S makes more correct predications than
LS in all three machines. Percentages from the middle
columns demonstrate that PL1S can do roughly as well
as LS in correctly predicting files. Finally, the columns
marked “incorrect” show that PL1S indeed makes about
21% to 25% fewer incorrect predictions as compared
with LS, which is a very exciting result. This explains
why the PL1S model performs better than LS in Figure 2 .

0
10
20
30
40
50
60
70
80
90

100
110

total correct incorrect

%
 o

f l
as

t-
su

cc
es

so
r 

m
od

el

copland
holst
mozart

Figure 3: PL1S performance normalized by LS in 3 sepa-
rate categories

The reduction of incorrect predictions in PL1S is sig-
nificant enough to be worthy of further exploration. Since
the number of predictions made by PL1S is only about
five to eight percent less than LS, and the number of cor-
rect predictions is roughly same as LS, we conclude that
PL1S makes no prediction more often than LS. We col-
lected the percentage of cases where no prediction was
made by PL1S compared with LS, and the results are dis-
played in Figure 4, which confirms this surmise. Figure
4 shows that the percentage of events where no prediction
was made by PL1S is roughly two to three times higher
than that of LS.

As mentioned earlier we are interested in the cost and
benefit of PL2S and PL3S. Table 2 lists the average num-
ber of files predicted each time in PL2S and PL3S. It indi-
cates that PL2S actually predicts fewer than two files most
of the time. Figure 5 shows how PLNS can increase the
percentage of correct prediction (upper part) and reduces
incorrect prediction (lower part) respectively. Their pre-
dictive accuracy is displayed in Figure 6. The incorrect
prediction reduced normalized by LS is shown in Figure
7. Table 2 and Figure 5 to 7 demonstrate that with an av-
erage of predicting 1.07 or 1.08 files each time, PL2S pro-
vides significant improvements over LS and PL1S. PL2S
makes from 38.45% to 46.88% fewer incorrect predic-

0
1
2
3
4
5
6
7
8
9

10
11
12
13

copland holst mozart

%
 o

f 
n

o
 e

v
e

n
ts

 w
h

e
re

 n
o

 p
re

d
ic

ti
o

n
 w

a
s

 
m

ad
e LS

PL1S

Figure 4: No predictions made by LS and PL1S

Table 2: Average number of files predicted each time in
PL2S and PL3S

PLNS PL2S PL3S
machine: Copland 1.07 1.19

machine: Holst 1.08 1.18
machine: Mozart 1.08 1.16

tions and from 6.4% to 8.3% more correct predictions as
the LS. Nevertheless, PL3S does not offer an obvious im-
provement over PL2S in our simulation.

0
10
20
30
40
50
60
70
80
90

100

LS PL1S PL2S PL3S

%
 

copland-
correct
holst-
correct 
mozart-
correct
copland-
incorrect
holst-
incorrect
mozart-
incorrect

Figure 5: Correct and incorrect predictions made by LS
and PLNS

We stated earlier that some events were filtered out of
our trace data due to the requirement that PLNS needs to
know the program initiating an event, and we claimed that
the filtering does not affect the validity of our results. To
verify this, we compared the percentage of events filtered
out of original trace data with PL1S predictive accuracy
for each machine. Our assumption was that if the filtered
trace had improved the performance, the effect would be
greater for larger amounts of filtered data. However, the
results in Figure 8 show that the highest predictive ac-
curacy of PL1S (from Mozart) does not come from the

5



0

10

20

30

40

50

60

70

80

90

100

copland holst mozart

p
re

d
ic

ti
ve

 a
cc

u
ra

cy
 (

%
)

LS
PL1S
PL2S
PL3S

Figure 6: Predictive accuracy of LS and PLNS

0

10

20

30

40

50

60

70

80

90

100

copland holst mozart

%
 o

f 
ev

en
ts

 in
co

rr
ec

tl
y 

p
re

d
ic

te
d

 
(n

o
rm

al
iz

ed
 b

y 
L

S
)

PL1S
PL2S
PL3S

Figure 7: Incorrect prediction reduced by PLNS (normal-
ized by LS)

percentage of events filtered out most (Copland) from the
original trace data. In a real system such filtering won’t
be necessary because all program names are known.

One last note about the number of 
 program name,
successors � pairs that a file requires to successfully im-
plement PLNS. Our simulation results show that for Cop-
land, more than 99% of files are accessed by four or fewer
programs, while more than 99% of files are accessed by
six or fewer programs for Holst. For Mozart, more than
99% of files are accessed by five or fewer programs. Thus
the amount of data stored for each file in PLNS is not of
concern.

In addition to predictive accuracy we also want to know
how PLNS performs in terms of cache hit ratio, and addi-
tional experiments were conducted to determine this. We
set the cache size according to the number of files it can
hold for two reasons. The first is that file size is usu-
ally small, so the entire file can often be prefetched into
cache [14]. The second is that in the case of large files,
sequential read is the most common activity. Modern op-
erating systems can already identify sequential read ac-
cesses and techniques such as prefetching the next several
data blocks for sequential read have been implemented.
We simulate cache with different sizes ranging from 25

copland holst mozart

0
10
20
30
40
50
60
70
80
90

%

events filtered out PL1S predictive accuracy

Figure 8: PL1S performance vs. percentage of events fil-
tered out of original trace data

files to 2000 files, and compare the cache hit ratios be-
tween the LRU caching algorithm with no prediction and
the LRU caching algorithm with PL1S. Figure 9 shows
that when using PL1S prediction, the cache always per-
forms better than when using LRU alone, regardless of
cache size, and in some cases it performs as well as a
cache up to 40 times larger.

50
55
60
65
70
75
80
85
90
95

100

25 50 100 250 500 1000 2000

cache size: number of files

c
a

c
h

e
 h

it
 r

a
ti

o
 (

%
)

copland-
PL1S+LRU

copland-
LRU

holst-
PL1S+LRU

holst-LRU

mozart-
PL1S+LRU

mozart-
LRU

Figure 9: Cache hit ratio of LRU (lablled LRU) and LRU
with PL1S (labelled PL1S+LRU)

5 Future Work

Several alternatives may improve the performance of
PLNS and are worthy of further exploration. For exam-
ple, files existing temporarily (such as those in /tmp di-
rectory) usually won’t get the same name next time they
are created again. If so, then they can never be predicted

6



correctly by PLNS and there is no need to store their in-
formation. PLNS may also use the preceding file together
with the 
 program name, successors � to improve the per-
formance.

We believe that part of the reason for the dramatic per-
formance improvement shown in Figure 9 is that an incor-
rect prediction made by PLNS, one that does not correctly
predict the next file to be accessed, will still provide bene-
fit if the file is subsequently accessed while it is still in the
cache. Because PLNS makes program-based predictions,
its incorrect predictions are much more likely to be for a
file to be accessed in the near future than are predictions
made by non-program-based models, which may predict a
file accessed by a program that is no longer even running.
In other words, the incorrect predictions by PLS are more
likely to be used in the near future and are therefore less
wrong than those made by other models. In future work
we plan to measure this effect directly.

6 Conclusions

As the speed gap between CPU and the secondary storage
device will not be narrowing in the foreseeable future, file
prefetching will continue to remain a promising way to
keep programs from stalling while waiting for data from
disk. Incorrect prediction can be costly in practice. Re-
ducing the number of files incorrectly predicted is very
important to cache management and the overall system
performance. We propose PLNS, a new Program-based
Last N Successors model. Our simulations from PLNS
show good results in predicting files, especially in elimi-
nating the cases of incorrect prediction.

By tracking programs initiating file accesses, we suc-
cessfully avoid many incorrect predictions, which is par-
ticularly valuable in a system with limited cache size.
Therefore, the overall performance penalty in a system
caused by incorrect predictions can be significantly re-
duced. At least more than 21% of incorrect predictions
can be reduced as compared with LS as our results demon-
strate. Different values of “N” in PLNS could affect the
performance and they come with different costs. As “N”
equals to two, PL2S provides an impressive improvement
over LS with little overhead. We also compare the cache
hit ratios of LRU with and without PL1S. The results show
that with PL1S, LRU can deliver a much higher cache hit
ratio.

References

[1] Mary Baker, John Hartman, Michael Kupfer, Ken
Shirriff, and John Ousterhout. Measurements of a

Distributed File System. In ACM 13th Symposium
on Operating Systems Principles, 1991.

[2] Fay Chang and Garth Gibson. Automatic I/O Hint
Generation through Speculative Execution. In Third
Symposium on Operating Systems Design and Im-
plementation, 1999.

[3] Kenneth Curewite, P. Krishnan, and Jeffrey Scott
Vitter. Practical Prefetching via Data Compression.
In ACM SIGMOD, 1993.

[4] J. Griffioen and R. Appleton. Reducing File Sys-
tem Latency Using a Predictive Approach. In Pro-
ceedings of USENIX summer Technical Conference,
1994.

[5] Dirk Grunwald and Douglas Joseph. Prefetching Us-
ing Markov Predictors. In ACM/IEEE International
Symposium on Computer Architecture, 1997.

[6] James Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. In ACM Tran-
scations on Computer Systems, 1992.

[7] Tom Kroeger and Darrell Long. The Case for Effi-
cient File Access Pattern Modeling. In Proceedings
of the Seventh Workshop on Hot Topics in Operating
Systems, 1999.

[8] Geoffrey H. Kuenning. The Design of the Seer Pre-
dictive Caching System. In Workshop on Mobile
Computing Systems and Applications, IEEE Com-
puter Society, 1994.

[9] An-Chow Lai and Babak Falsafi. Memory Shar-
ing Predictor: The Key to a Speculative Coherent
DSM. In ACM/IEEE International Symposium on
Computer Architecture, 1999.

[10] Hui Lei and Dan Duchamp. An Analytical Approach
to File Prefetching. In Proceedings of the USENIX
1997 Annual Techical Conference, 1997.

[11] L. Mummert and M. Satyanarayanan. Long Term
Distributed File Reference Tracing: Implementation
and Experience. Technical report, CMU, 1994.

[12] Mark Palmer and Stanley B. Zdonik. Fido: A Cache
That Learns to Fetch. In Proceedings of the 17th
International Conference on Very Large Data Base,
1991.

[13] R. Hugo Patterson, Garth A. Gibson, Eka Gint-
ing, Daniel Stodolsky, and Jim Zelenka. Informed
prefetching and caching. In Proceedings of the 15th
Symposium on Operating Systems Principles, 1995.

7



[14] Drew Roselli, Jacob R. Lorch, and Thomas E. An-
derson. A Comparison of File System Workloads. In
Proceedings of the USENIX Annual Technical Con-
ference, 2000.

[15] Elizabeth Shriver and Christopher Small. Why does
file system prefetching work? In Proceedings of the
1999 USENIX Annual Technical Conference, 1999.

[16] Jeffery Scott Vitter and P. Krishnan. Optimal
Prefetching via Data Compression. In Journal of the
ACM, 1996.

[17] Tsozen Yeh, Darrell Long, and Scott Brandt. Con-
serving Battery Energy Through Making Fewer In-
correct File Predictions. In Proceedings of the IEEE
Workshop on Power Management for Real-Time and
Embedded Systems, 2001.

[18] Tsozen Yeh, Darrell Long, and Scott Brandt. Per-
forming File Prediction with a Program-Based Suc-
cessor Model. In Proceedings of the Ninth Interna-
tional Symposium on Modeling, Analysis, and Simu-
lation on Computer and Telecommunication Systems
(MASCOTS 2001), 2001, to appear.

8




