
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Improving the generalizability of convolutional neural networks for brain tumor 
segmentation in the post-treatment setting

Permalink
https://escholarship.org/uc/item/8b36c5gs

Author
Ellison, Jacob Charles

Publication Date
2020
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8b36c5gs
https://escholarship.org
http://www.cdlib.org/


 

 

 
 
 
by 
 
 
 
 
Submitted in partial satisfaction of the requirements for degree of 
 
 
in 
 
 
 
in the 
 
GRADUATE DIVISION 
of the 
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 
 
 
 
 
 
 
 
 
 
 
 
 
Approved: 
 
______________________________________________________________________________ 

       Chair 
 
 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 

______________________________________________________________________________ 
Committee Members 

������������	�
��

	 #$"(�!��&�����!�$���+�����&*�"���"!("�'&�"!���!�'$���!�&)"$�%��"$��$��!�&' "$�
%�� �!&�&�"!��!�&���#"%&�&$��& �!&�%�&&�!�


��"������%"!

����	�

��" �������	 ���!�


�!�!���'#"

����!&�!�����"��

��!���


�(��$������!'�(����*�$



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 



 iii 

Improving the generalizability of convolutional neural networks for brain tumor 

segmentation in the post-treatment setting 

Jacob Ellison 

Abstract 

 

 Current encoder-decoder convolutional neural networks (CNN) used in automated glioma lesion 

segmentation and volumetric measurements perform well on newly diagnosed lesions that have not 

received any treatment. However, there are challenges in generalizability for patients after treatment, 

including at the time of suspected recurrence. This results in decreased translation to clinical use in the 

post-treatment setting where it is needed the most. A potential reason is that these deep learning models 

are primarily trained on a singular curated dataset and demonstrate decreased performance when they are 

tested in situations with unseen variations to disease states, scanning protocols or equipment, and 

operators. While using a highly curated dataset does have the benefit of standardizing comparison of 

models, it comes with some significant drawbacks to generalizability. The primary source of images used 

to train current models for glioma segmentation is the BraTS (Multimodal Brain Tumor Image 

Segmentation Benchmark) dataset. The image domain of the BraTS dataset is large, including high- and 

low-grade tumors, varying acquisition resolution, and scans from multi-center studies. Despite this, it may 

still lack sufficient feature representation in the target clinical imaging domain. Here we address 

generalizability to the disease state of post-treatment glioma. The current BraTS dataset consists entirely 

of images obtained from newly diagnosed patients who have not undergone surgical resection, received 

adjuvant treatment, or shown significant disease progression, all of which can greatly alter the 

characteristics of these lesions.  To improve the clinical utility of deep learning models for glioma 

segmentation, they must accommodate variations in signal intensity that may arise as a result of resection, 

tissue damage (treatment induced or otherwise), or progression.  We compared models trained on either 

BraTS data, UCSF acquired post-treatment glioma data, UCSF acquired newly diagnosed glioma data, 

and various combinations of these data, to determine the effect of including images with features unique 
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to treated gliomas into training the networks on segmentation performance in the post-treatment domain. 

Although an absolute threshold training inclusion value for generalization of segmentation networks to 

post-treatment glioma patients has not been established, we found that with 200 total training volumes, 

models trained with greater than or equal to 30% of the training images from patients with prior treatment 

received the greatest performance gains when testing in this domain. Additionally, we found that after this 

threshold is met, additional images from newly diagnosed patients did not negatively impact 

segmentation performance on patients with treated gliomas. We also developed a pre-processing pipeline 

and implemented a loss penalty term that incorporates cavity distance relationships to the tumor into 

weighting a cross entropy loss term. The aim of this was to bias the network weights to morphological 

features of the image relevant to pathologies that are prevalent post-treatment. This may either be used as 

an initialization for training with an available larger dataset such as BraTS or used to finetune a 

transferred network that has not seen sufficient post-treatment glioma images during training in order to 

allow domain adaptation with fewer training data from this disease state. Preliminary results show 

qualitatively more desirable segmentations of tumor lesions with respect to cavities and small 

disconnected components in selected examples that are worthy of further analysis with alternate training 

configurations, more focused performance assessments, and larger cohorts. Here, we will evaluate these 

techniques as potential solutions to improve the generalizability of CNN tumor segmentation to post-

treatment glioma, as well as provide a framework for further data augmentation based on augmenting the 

boundary of these lesions. 
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Introduction: 

Central nervous system malignancies originating in glial cells are the most common form of brain 

cancer among adults[1]. Primary gliomas can cause devastating changes to brain function, quality of life, 

and lifespan. In order to guide diagnosis and treatment, they are separated into grades and subtypes 

according to the World Health Organization (WHO) Classification of Central Nervous System Tumors[2]. 

Low - grade tumors include gliomas of Grade I and Grade II, including astrocytoma or oligoastrocytomas. 

On average, Low-grade gliomas tend to have more well-defined boundaries, are slower growing, and 

have better long-term prognosis. Gliomas of Grade III and IV are grouped into the High - grade category. 

These include anaplastic astrocytoma and glioblastoma multiforme tumors. In general, High-grade 

gliomas may consist of undifferentiated cells, are rapidly progressing, highly malignant, and have worse 

long term outcomes, specifically for certain molecular subtypes such as Isocitrate dehydrogenase (IDH) 

wild type glioblastoma (GBM) [3].   

The global mortality rates for primary malignant brain tumors in women are 2.0/100,000, and 

2.8/100,000 in men[4]. Although gliomas are relatively uncommon, survival can be as short as four 

months in the most aggressive form of GBM[1]. However, the prognosis of gliomas vary greatly, with 

five year median survival rates ranging from 6% to 73%[4,5]. This variability can be accounted for by 

patient age, grade, and tumor subtype. Histologic type and grade, age, extent of resection, tumor location, 

molecular and genetic characteristics have all been well correlated to outcomes and treatment response in 

both clinical trial and population registry data[1,6]. In addition to the molecular and histological analyses, 

volumetric spatial measurements from MRI are a widely used clinical standard for assessing tumor 

progression and treatment response[6,7].  

These anatomical measurements are made in accordance with the Response Assessment in 

Neuro-Oncology (RANO) criteria[3] Assessments are made by expert Neuro-oncologists and Neuro-

radiologists largely based on standard clinical imaging protocols that include acquiring T1-weighted pre- 

and post-contrast injection of a gadolinium-based agent, T2-weighted, and T2 Fluid Attenuated Inversion 

Recovery (FLAIR) images[7]. The 2D product of maximum bidimensional diameters of contrast-
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enhancing tumor and qualitative evaluation of T2 FLAIR hyperintensities, are the two main basis for 

RANO criteria[2,3]. Using these images to make manual estimates of tumor volume and RANO criteria 

are highly time consuming and subject to interobserver variability[6]. Automated approaches for tumor 

volume segmentation have been shown to save time, minimize inter-rater variability, correlate with 

patient outcome, and can be sensitive to more subtle changes over time[6,7], with potential to provide a 

high level of utility to the clinic.  

There are technical challenges associated with automated brain tumor lesion segmentation. Many 

arise because the lesions are differentiated by signal intensity changes relative to healthy tissue, and 

gradients between neighboring structures can be smoothed or obscured by partial-voluming or bias field 

artifacts[8]. These challenges can cause even manual delineations to vary with respect to inter-observing 

experts[7]. Another challenge to the automated tumor segmentation task is that priors used to account for 

location or shape cannot be used due to spatial variations in location or structural changes that arise from 

mass effect displacement of healthy brain structure, or the high variation in tumor location that is not 

present in segmentation tasks for other organs[8].  

Despite these challenges, deep learning neural networks have been used in order to provide 

highly accurate and speedy segmentations for newly-diagnosed, treatment naïve gliomas [1,6,7,9–13].  The 

most prevalent methods in computer vision literature for automated tumor segmentation use encoder 

decoder architecture in an end-to-end approach to generate lesion masks[10]. These methods are largely 

inspired by the pioneering developments of fully convolution encoder-decoder architectures capable of 

segmentation in works like U-net[11] and V-net[12]. Many of the prevailing neural networks for brain 

tumor lesion segmentation have been trained using the Multimodal Brain Tumor Image Segmentation 

Benchmark (BraTS) data set[8]. This dataset has in the past consist primarily of, and currently only 

consists of anatomical images from newly diagnosed glioma patient scans before surgery. Lesions from 

newly diagnosed gliomas tend to have better boundary signal delineation from healthy tissue, lack the 

presence of cavities left by tumor resection and tissue deformities that result from adjuvant treatment, or 

disease progression. These variations in signal intensities are exacerbated in patients who have had 
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multiple follow ups with various treatments and are not represented in the BraTS dataset. This 

underrepresentation of unique features causes challenges of generalizability and translation to clinical use 

for patients with glioma post-treatment.  Training convolutional neural networks for glioma segmentation 

has been done with a variety of architectures and training strategies. The model that won the BraTS 2018 

brain tumor segmentation challenge followed the encoder-decoder structure, with an asymmetrically large 

encoder to extract deep image features, and decoder to reconstruct dense segmentation masks. They also 

used a variational autoencoder (VAE) branch to the network to reconstruct the input images jointly with 

segmentation in order to regularize the shared encoder[13].  Here this network will serve as a starting point 

to evaluate our methods of improving generalizability. 

After treatment, signal intensity gradients near the edges of T2 hyperintense lesions can be weak. 

In order to provide networks with sufficient training examples to learn these precise features, data 

augmentation may be employed. Passing expert annotated lesion masks through a distance-based 

boundary selection threshold, morphological dilation, Laplacian kernel convolutions and addition to the 

original image, similar to high pass filter addition of the lesion boundary in the Fourier domain, can 

generate synthetic images with lesion boundaries enhanced. Similarly, synthetic images with tumor 

boundaries blurred, i.e. contrast between surrounding healthy tissue and lesion lowered, can be produced 

using a similar pipeline with a Gaussian blurring step replacing the Laplacian convolution step. 

Augmenting data in this way may provide a larger representation of images where tumor boundary signal 

gradients vary in training. This may aid the network generalize to these challenging post-treatment cases 

during testing.  

Some recent works have explored the use of distance based or other types of anatomical feature 

weighting to learning in the form of loss function modification that can provide additional performance 

gains for segmentation[20,21]. One approach that addresses issues of low boundary signal gradient in tumor 

edges is the boundary aware method proposed by Hatamaizadeh et al. Their network is designed to 

account for organ boundary information, both by providing a special network edge branch and edge-

aware loss terms in addition to a shape stream encoding branch that processes feature maps at the 
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boundary level [21]. They included a modification to their loss function that utilized a weighted loss term 

based on the predicted lesion edge and ground truth lesion edge. Using this, their network accounted for 

edge information and improved segmentation performance in an end-to-end capable training 

method[21].  Another approach to improving performance of glioma segmentation proposed an automated 

data augmentation method that uses generative adversarial networks (GANs) to learn a Coarse-to-fine 

Boundary-aware generation of synthetic images[22]. Their model similarly incorporates the use of 

boundary aware loss into training. They were able to generate additional training data for the 

segmentation task, improving dice scores by 36% in validation compared to networks that were trained on 

synthetic images generated by traditional GANs.  

To address the challenge of generalizing to data with a larger representation of tissue deformities 

and resection cavities, we employed a loss term that incorporates information of unique pathological 

features to images of treated glioma in order to bias the network to this domain. A cavity-aware loss term 

may provide additional performance gains with respect to segmentation of gliomas after 

treatment.  Similar to the method developed by Caliva et. al., distance mapping could be used to penalize 

the network by weighting distance relationships between cavity and tumor boundaries in a variety of 

ways. Distances of the lesion to the cavity may be penalized either inversely, or both proportional and 

inversely where pixels of the lesion that are farthest away and closest to the cavity will be weighted most 

highly. These weightings can be used in a cross entropy loss term to penalize the network more for 

incorrect predictions at these locations.  

Other methods have addressed the consistency of network performance on glioma 

segmentation[23,24]. One, by Wang et al., addresses the challenge of predicting the likelihood of success 

for a given segmentation by developing an uncertainty estimation of a generated tumor lesion. They do 

this by utilizing cascaded networks in test-time augmentations to provide multiple prediction results of 

the same input image with different spatial transformations and intensity changes. The disagreement 

between these predictions provides an uncertainty estimation of the segmentation[24]. Including this 
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uncertainty information can provide guidance for manual correction or automated correction in places 

where the network was uncertain about its segmentation.  

A common problem in biomedical imaging tasks is that when a predictive model approximating 

fs(x)=P(y|x),  is trained to make predictions in a particular imaging source domain, Ds={Xs,P(Xs)}, with 

feature space Xs, and marginal distributions P(Xs), with ground truth labels (Ys,Xs), y∈Ys and x∈Xs, from 

source images, xsi, of the feature space Xs={xs1,xs2,…,xsn}, that model can experience a decrease in 

performance when applied to images of a new target domain, Dt={Xt,P(Xt)}, where the feature space and 

marginal distributions, Xt ≠ Xs and P(Xt) ≠ P(Xs), differ from the training source[14]. This occurs when the 

data used to train a network, the source domain, is not fully representative of the target imaging domain in 

which the model is desired to be used. The problem of adapting a predictive network to approximate an 

ideal model that either works well in both domains, or the target domain alone, fs,t(x)=P(y|x) or 

ft(x)=P(y|x), also known as, domain adaptation, has been addressed before in both supervised and 

unsupervised methods[14–19].  

Here we are focused on the differences in the anatomical imaging feature differences of the 

disease states between the BraTS dataset, a more uniform dataset of newly diagnosed gliomas, and post-

treatment glioma. There are three methods that we address here, of training a network such that it can 

perform well in the target domain of post-treatment glioma. The goal is to improve the generalizability of 

CNNs to post-treatment cases of glioma by: 1) incorporating sufficient training examples with features of 

the target domain i.e. training on a dataset reflective of a mixture of domains Ds,t={Xs,t,P(Xs,t)}, s.t. 

Xs,t={xs1,xs2,…,xsn,xt1,xt2,…,xtm} into current models, 2) exploring the use of a modified loss function  

(Ltot=L(y,x)+L(yt,xt) ) that incorporates a penalization term L(yt,xt) based on the distance relationship 

between surgical cavities and the leading edge of the tumor into training, and 3) developing a tumor 

boundary augmentation technique to increase the training examples with greater variability of features 

relevant to the target domain.  
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Methods: 

-Datasets- 

BraTS: 

This dataset is known as the Multimodal Brain Tumor Image Segmentation Benchmark (BraTS) 

data set[8].  The 2018 version of this dataset that we used includes a total of 285 pre-operative, multi-

contrast MR scans collected from glioma patients annotated by expert neuro-radiologists. Multi-contrasts 

include T1, T1-contrast enhanced, T2, and T2 FLAIR images. Whole tumor (based on the T2-

hyperintensity lesion), tumor core (or necrosis), and contrast-enhancing tumor lesions, have been 

provided as annotation labels for each of the volumes. 75 of the multi-contrast images were acquired from 

LGG and 210 from HGG. Images were already co-registered to the same anatomical template, 

interpolated to the same resolution (1 mm^3) and skull stripped.  

 

UCSF: 

The UCSF data set consisted of 208 newly diagnosed patients with glioma and 217 patients with 

treated gliomas at the time of suspected recurrence. These datasets were all acquired on a 3T GE scanner 

at UCSF within 48 hours before a patient underwent surgical resection. The post-treatment patients all 

underwent prior surgical resection, radiation therapy, and chemotherapy and have lesions that contain a 

mixture of recurrent tumor and treatment induced injury.  All patients provided informed consent for their 

images to be used in research. 

 Image volumes consisted of T2, T2 FLAIR, T1, and T1 post-contrast images. Expert neuro-

radiologists guided the annotation of T2-hyperintensity, necrotic, and contrast enhancing lesions. Only the 

T2all lesions were used to compare the models. All volumes were cropped to [240,240,155] spatial 

dimensions in pre-processing. All scans were reformatted to an axial orientation.  

In the post-treatment dataset, only initial scans with unique patient IDs were selected to prevent 

data leakage between training datasets and testing. 25 of these treated datasets also contain an annotated 

cavity region that was used for generating distance maps in the modified loss function during training. 
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Skull stripping was performed, and brain masks were generated in an additional image using FSL brain 

extraction toolkit[28]. Skull stripped masks were only applied to training data when models were 

compared against BraTS. 

 

 -Preprocessing and Augmentation- 

Part 1: Inclusion of post-treatment data 

Augmentation and preprocessing were not changed from the methods reported in the paper that 

described the BraTS18 winning model[13]. Images acquired at UCSF were cropped to [240,240,155]. 

These images were also skull stripped to match the BraTS data in the multi-channel experiments. In the 

single channel experiments using UCSF acquired, newly diagnosed and post-treatment glioma, the 

images were left without skull stripping to determine if the same performance gains can be seen without 

this preprocessing step that may not be available in routine clinical use.  

Part 2: Loss Function Modification 

Within the Dioscoridess framework, cropping to [224,224,116] with random center was not used. 

Instead of zero mean normalization to range [-1,1], images were normalized to the range [0,1] and divided 

by the 85th percentile to account for outliers. Cavity distance maps were generated prior to training and 

used as an additional label input into training in order to avoid extraneous computation during training 

and speed up training times. Two variations of this technique were used. First, the binary mask of the 

annotated cavity lesion is subtracted from 1 and the absolute value is taken. This is followed by a 

Euclidean distance transform to generate a distance map where pixels far away from the cavity have the 

highest scalar value. This map was then normalized to values between 0 and 1 and multiplied by the 

binary T2 lesion mask. 1 is added to mitigate any zero weighting. This generates a whole tumor lesion 

where pixels close to the cavity are weighted by low values and pixels far away from the cavity are 

weighted by higher values as shown in Figure 2. When this distance map is used in the calculation of the 

loss, it is referred to as inverse distance weighted.  



 8 

The second technique uses this T2 distance weighted lesion and subtracts the values from 1, taken 

as the absolute value, and multiplies them by the original binary T2 lesion mask. This has the effect of 

generating a distance map where pixels of the lesion that are close to the cavity are weighted highly and 

pixels far away from the cavity are weighted less. This map is then normalized to the range between 0 and 

1, subtracted from the other distance map, and taken as the absolute value. 1 is added to mitigate any zero 

weighting. This generates a T2 lesion where pixels both close to and far from the cavity are weighted 

most highly, and pixels in the center are weighted less, as shown in Figure 3. When this distance map is 

used in the calculation of the loss, it is referred to as combination distance weighted. 

 Part 3: Boundary Augmentation 

A preprocessing pipeline for boundary augmentation was developed but not incorporated into 

training at this stage. This pipeline includes using the expert annotated binary tumor lesion masks and 

performing a Euclidean distance transform.  A boundary can be selected by thresholding values near the 

edges of the lesion. Then a morphological dilation followed by a Laplacian kernel convolution is used to 

generate a border lesion image where edges are sharpened.  These pixels are then added back to the 

original image to generate synthetic images with lesion boundaries enhanced. Similarly, synthetic images 

with tumor boundaries blurred, i.e. contrast between surrounding healthy tissue and lesion lowered, can 

be produced using a similar pipeline with a Gaussian blurring step replacing the Laplacian of Gaussian 

convolution step. These edge blurring or sharpening augmentations can be performed as a preprocessing 

step, with randomly selected Gaussian parameters or edge thresholding, to create a large variation of 

boundary signal intensity gradients. A schematic outlining this method is shown in Figure 4. 

 

-Network Architectures and Hyperparameters- 

Part 1: Inclusion of post-treatment data 

The network was adapted from the 2018 BraTS challenge winner and pulled from the Nvidia 

GPU Cloud catalog. Training was performed using Nvidia’s Clara v2 framework. The original network is 

a modified V-net with a variational branch that encodes the original input image and uses an L2 
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regularization loss penalty to enforce regularity in the output segmentation masks. This variational auto 

encoder component was not used due to the fact that similar initial testing accuracies were being achieved 

with and without, and due to the concern that additional parameters would slow training times or limit 

available GPU compatibility. The encoding blocks follow the structure of a Seg-Res-Net[27], with 4 

encoding blocks, each containing two (3,3,3) convolutions with stride 2, Group normalization, and ReLU 

activation. 16 initial convolution filters were used, with an increase in feature dimension by a factor of 

two through each convolutional layer. The decoding path included similar 4 decoding blocks to the 

encoder, where skip connections are used at each upsampling step.  The upconvolutions reduce the 

number of features by a factor of 2 with kernels of (1,1,1) and doubling the spatial dimension by using 3D 

bilinear upsampling. The network was adapted to use 16 initial filters instead of 32 to fit into available 

GPU capacity. The network was used in the original configuration to take input of multi-contrast image 

data. Similarly, the output included the whole tumor, enhancing tumor, and tumor core. Dropout 

probability used was 0.2. Regularization weight decay was 1e-5. A schematic of the original network 

architecture developed by Nvidia that won the BraTS18 challenge [13] and modified to fit the above 

parameters, is shown in Figure 1. 

The main differences between our network and the BraTS18 winner were that we used automatic 

mixed precision, removed the auto-encoding branch, and decreased the initial filters from 32 to 16. 

Ensembling the networks was additionally shown to increase segmentation performance; however, this 

technique was not used. This configuration may not be the optimal architecture for achieving high 

performance, however the goal of these experiments was to generate reproducible training while varying 

the training data and evaluating segmentation performance changes in the post-treatment domain, with the 

aim of generating insights about performance gains that can be applied to more optimized model 

architecture and hyperparameters to increase performance.  

The second set of experiments modified the network described above to generate an output of just 

one segmentation mask, the T2all lesion (denoted whole tumor in the BraTS dataset), based on only one 

input, the T2 FLAIR images.  
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Networks were trained with an Adam optimizer with Dice loss. Models trained for 300 epochs, 

with one network stopping early (266 epochs) due to connectivity issues. A batch size of 1 was used to 

allow the multichannel data to fit into the GPU’s memory capacity and kept consistent for the single 

channel experiments. For the multi-channel experiments, a learning rate of 1e-4 was used, while the 

single-channel experiments employed a learning rate of 3e-4. These networks were trained on Tesla 

V100-32GB GPU within the UCSF Radiology scientific computing servers, using Nvidia’s Clara-v2 

training framework.  

 

Part 2: Loss Function Modification 

Dioscoridess framework was used to train models using various loss functions with Adam 

optimizer and learning rates of 5e-5 and 1e-4. This framework was developed by the Pedoia laboratory 

with the Center for Intelligent Imaging (Ci2) at UCSF, is similarly written in TensorFlow, and was used 

due to its flexibility to accommodate additional image inputs with customizable loss functions. The 

architecture for these experiments used a smaller V-net with 4 levels, instead of 7, compared to the 

models used in training with the Nvidia Clara framework. These layers used convolutions per level of 

1,2,4,1, with a dropout probability of .05. The architecture used here was not the most optimal 

configuration for achieving high performance but was selected to generate reproducible and deterministic 

training for comparing performance among various loss functions.  

Once the distance maps were generated as described above, a cross entropy term was added to the 

Dice loss term, to formulate the overall loss. This method is largely based on the distance-based penalty 

term developed by Caliva et. al[20]. This cross entropy is computed between the pixels of the predicted 

lesion and the ground truth, where pixels of the ground truth are weighted by their distance relationship to 

the surgical cavities. The formulations of these Loss terms are as follows: Ltot=λ1LDice+λ2Lcavity, where 

Lcavity=w(yi)*-∑i(yi)log(yi′)), s.t, w(yi) = 1 + distcavity(yi), where yi is the ground truth lesion, and yi′ is the 

predicted lesion, and distcavity(yi) is some function of distance between the cavity and the tumor. This cross 

entropy term was weighted at λ2=0.1, and Dice at λ1=1. This was compared against different learning 
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rates to identical models using a Dice loss term alone. These networks were trained using a Titan X-16GB 

GPU within the UCSF Radiology scientific computing server.  

  

-Experimental Set up- 

Part 1: Inclusion of post-treatment data 

In the multi-channel experiments, 3 identical networks were trained to compare the effect of 

including post-treatment glioma into training on BraTS data. Network 1 had a Train/Val split of 227/57 

images from the BraTS data. Network 2 was trained on 61/16 images from post-treatment data. Network 

3 was trained on 288/73 total images from both UCSF acquired post-treatment glioma and the BraTS 

dataset. All images used for training and inference were skull-stripped and cropped to [240,240,155] to 

match the format of the BraTS dataset. All three models were then tested on a set of 25 independent 

patients with post-treatment glioma separated from the original dataset prior to training and chosen at 

random from the post-treatment dataset. The testing results are shown in Table 1. 

Next, five models were trained using only T2 FLAIR image contrast, to generate only the T2 

lesion. These models used data input that had not been skull stripped to avoid a non-trivial pre-processing 

step that may not be available in clinical use. These models additionally used equal total amounts of 

training data, something that may have confounded the above experiments. These experiments were 

focused as well, on a domain comparison between newly diagnosed and post-treatment glioma acquired at 

UCSF. This provided an additional domain comparison to comparing post-treatment patients to BraTS, in 

that little is changed between groups of UCSF data aside from the disease state. These experiments may 

then serve as a more directed domain comparison between segmentation of newly diagnosed and post-

treatment gliomas. Models were trained with differing ratios of post-treatment and newly diagnosed 

glioma patients from scans acquired at UCSF. 200 total patients were used to train these models with 

varying ratios of post-treatment and newly diagnosed glioma, all with training validation splits of 

80%/20%. Ratios of patient disease state inclusion in training, with testing dice score on 19 patients with 

post-treatment glioma are shown in Table 2.  
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Finally, four additional networks were trained starting with 153 post-treatment glioma patients, 

with 50 newly diagnosed glioma patients added into the training set for each successive model. These 

models were validated on 39 post-treatment patients and tested on a set of 19 separate patients with post-

treatment glioma. The aim of these experiments was to determine if additional images of newly diagnosed 

glioma would negatively impact segmentation performance on the post-treatment glioma patients. Ratios 

of patient disease state inclusion in training, with testing Dice scores on 19 patients with post-treatment 

glioma are shown in Table 3. All networks were trained on a Tesla V100-32GB GPU within the UCSF 

Radiology scientific computing server.  

Part 2: Loss Function Modification 

For the loss modification experiments, a small subset of the post-treatment data with expert cavity 

lesion annotations was used to train. 25 patients were used to train, 25 separate patients were used to 

validate, and 25 patients were used to test. All patients had post-treatment glioma. To determine if the 

distance mappings are affecting convergence at any stage in training, different learning rates were used. 

The models were trained with learning rates of 1e-5 and 5e-5 and compared to models trained with Dice 

loss alone. Models were selected by their top validation accuracy before 8000 iterations for testing, then 

resulting predictions were compared.  

  

Results: 

Part 1: Inclusion of post-treatment data 

            In the first set of experiments, models trained on BraTS data, post-treatment glioma, and a mix of 

both, were compared. The BraTS trained model performed the lowest with a mean testing Dice score of 

0.721 and standard deviation of 0.216. The model trained on post-treatment data with about ¼ of the 

training data compared to the BraTS model, had a mean Dice score of 0.810 and a standard deviation of 

0.107. The model trained on a mix of both performed the highest with a mean Dice score of 0.830 and a 

standard deviation of 0.102. Since the UCSF data had necrotic lesion and contrast enhancing lesion 

annotated differently from the BraTS tumor core and enhancing tumor, we were unable to change the 
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Clara framework calculation of those lesions correctly within the timeframe. Because of this, these 

experiments are focused on the singular T2 lesion predictions.  Upon observation of the predicted T2 

(Whole Tumor) lesion masks, it appears as though the BraTS model falsely segments hyperintense pixels 

near sulci, as well as pixels within distorted ventricles and large cavities near the lesion, some examples 

are shown in Figures 9 and 10.  

            In the second set of experiments, models were trained using only T2 FLAIR images as input to 

predict the whole tumor lesion. 200 patients were used to train these models with varying ratios of post-

treatment and newly diagnosed glioma, each with Train/Val splits of 80%/20%. A trend emerged that 

illustrated higher testing performance for models where a larger proportion of post-treatment data were 

mixed into training. Dice scores of the models and their ratio of post-treatment to newly diagnosed glioma 

are shown in Table 2. The distribution of the Dice scores in the testing set was also shown to be tighter 

following this trend. This may be indicative that the features present in cases that were causing the model 

to perform very poorly, are being learned through training inclusion. However, at about 30-35% 

inclusion, performance gains plateau. This effect is illustrated in Figure 11 (left). Examples from testing 

on 19 patients with post-treatment glioma are shown in Figure 12 and 13 that illustrate increased 

performance for models trained on post-treatment data.  

            Finally, training was done starting with images from 153 post-treatment glioma patients and 

increasing the amount of newly diagnosed patients added into training by 50 in each successive run until 

200 newly diagnosed patients were added into training. Each model was validated on 39 patients with 

post-treatment glioma and tested on a separate set of 19 patients with post-treatment glioma. Here, the 

testing Dice scores remain steady around .82, indicating that addition of training data from newly 

diagnosed glioma did not negatively impact the segmentation performance of post-treatment glioma. The 

mean testing Dice score for the model that stopped at 266/300 epochs was slightly lower than the rest at 

.79. The mean testing Dice scores for these experiments are shown in Table 3 and visualized in Figure 11 

(right). 

 



 14 

Part 2: Loss Function Modification 

            Models trained and validated on 25/25 images from the post-treatment glioma domain with 

standard Dice loss, inverse distance weighted cross entropy loss plus Dice, and combination distance 

weighted cross entropy plus Dice, where trained with the same architecture at different learning rates and 

tested on 25 patients with post-treatment glioma. The models trained with a distance weighted cross 

entropy term were weighted with Ltot=λ1LDice+λ2Lcavity, λ1 = 1.0 and λ2 = 0.1. The mean testing Dice scores 

and standard deviations for the highest validating models at 8000 iterations, are shown in Table 3. All 

testing Dice scores were significantly lower than the state-of-the-art models, with an average Dice score 

of 0.6572. The model trained with combination distance weighted cross entropy plus Dice outperformed 

the model trained with standard Dice loss with a learning rate of 1e-4 by 0.0304. The highest performing 

model in testing was the model trained with a standard Dice loss at a learning rate of 5e-5. Although this 

model had a higher testing Dice score than the best performing model trained with the distance weighted 

cross entropy term by .055, upon examination of the lesion segmentations, it appears that in situations 

with irregular tumor lesion shapes with respect to post-treatment cavities, and lesions containing small 

disconnected components, the models trained with distance weightings were able to segment these 

portions of the tumor more favorably than their standard Dice trained counterparts. Some examples are 

shown in Figures 6, 7, and 8.  

 Part 3: Boundary Augmentation 

 Synthetic images were generated using the boundary lesion sharpening and smoothing techniques 

described above. The T2 lesion was dilated and eroded by disk shaped morphological structuring 

elements of sizes 5 and 3 and the original T2 lesion was subtracted. This generated a mask where pixels 

of surrounding tissue to the lesion were selected. The log intensities of the pixels selected by this mask 

were compared to the log intensities of the pixels selected by the original T2 lesion. These were plotted in 

histograms and compared for the non-augmented image and synthetic images resulting from both the edge 

smoothing and edge sharpening operations. The histograms, along with pixel selections are shown in 

Figure 5. The degree of overlap in intensities between the pixels surrounding the lesion and the lesion 
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itself serves as a measure of contrast at the boundary of the lesion. Overlap between lesion and boundary 

tissue was shown to decrease following the boundary enhancing operation, and increase following the 

boundary blurring operation.  

 

Discussion: 

Part 1: Inclusion of post-treatment data 

Our results indicate that including a threshold of training examples from patients with post-

treatment glioma will ultimately improve segmentation performance in the target post-treatment domain. 

We saw that with 200 training volumes, greater than 30% inclusion into training from post-treatment 

glioma showed the highest performance gains, with plateaus at increasing levels of inclusion. This 

increase in performance is shown in Figure 11 (left).  At this amount of training examples, 30% 

constitutes 60 volumes from post-treatment glioma in order to generalize. An absolute minimum 

threshold is unclear; however, this may provide useful information when training a network that is desired 

to perform segmentation on brain tumors with specific disease states that may be prevalent in the clinical 

setting. We also noted that once this threshold inclusion is met, and the network is performing well on 

post-treatment glioma, addition of images from newly diagnosed glioma did not negatively impact 

segmentation performance on post-treatment glioma. This effect is illustrated in Figure 11 (right).  

            Although we would like to compare segmentation accuracies of all three lesions that current 

models are capable of segmenting, these experiments have demonstrated that including a certain threshold 

of examples from the target clinical disease state of post-treatment glioma, into training may improve 

generalizability to post-treatment patients. Additionally, optimal architecture and hyperparameters for 

these experiments were not used. These implications of these results however may provide an insight to 

achieve performance gains when training a segmentation model for clinical use on post-treatment glioma 

patients and may be applied to higher performing network architectures and training configurations. 

These experiments should be repeated using more optimized architecture and hyperparameters in an aim 

to improve the segmentation performance of post-treatment glioma to the current standard of BraTS 
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testing accuracies, with some models achieving Dice scores of greater than .90 for the whole tumor 

lesion.  

            When comparing the models trained on BraTS, newly diagnosed glioma, and post-treatment 

glioma, we only evaluated generalizability in a task-based assessment by evaluating testing Dice scores 

on post-treatment glioma. An alternative method that may provide another approach to quantifying 

domain adaptation to the post-treatment disease state would be to explore the use of a discriminator 

network. Discriminators have been used in the past to adapt a network to a given domain by adversarial 

training against a discriminator that classifies the features of an image passed through the encoding 

branch of a segmentation network[14]. If the classification has a high accuracy, it indicates the features of 

a given image that are being extracted belong to a distinct domain. In this way, the network will have 

learned to extract features that are specific to a certain domain. Penalizing the network for correct 

classifications during training had the effect of allowing the network to extract features that are not 

distinct to either domain, thus illustrating generalizability to both the target and source domains [14].  In an 

alternate use of this method, a discriminator could be used to classify the features of an image passed 

through the encoding branch of the of our network. If the classification accuracy is low, this may be 

indicative that the network is learning to extract features that are relevant to segmentation in both 

domains, and thus has generalized.  

Part 2: Loss function modification 

            The results of the loss experiments are preliminary. The models trained here performed with 

overall testing scores significantly lower than the state-of-the-art models. Despite this fact, in select 

situations, models trained with a loss term that incorporates the distance relationship between the post-

treatment cavities and T2all lesion, were showing an ability to segment more favorably at boundaries of 

the lesion near and far away from the cavities and with respect to small disconnected components of the 

lesion, compared to their non-cavity distance penalized counterparts. Whether this is indicative that using 

this term is allowing the networks to converge faster towards the same minimum in the loss landscape of 

post-treatment glioma as their unweighted counterparts or allowing convergence to a more optimal global 
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minimum is unclear.  More experiments are required to elucidate this relationship. It should also be noted 

that alternate experimental set-ups have yet to be tested with variation to loss weightings, iterations, 

learning rates, other hyperparameters, and architectures. An extensive hyperparameter search for an ideal 

training configuration for using these loss terms has not yet been done. It may be the case that the distance 

weighted loss terms may optimize performance when compared to the unweighted terms with alternate 

hyperparameter configurations or weightings. It may yield more informative results to compare models 

with the optimal training scheme for each loss function independently. Additionally, the architecture of 

these models was significantly changed from the models used in the first set of experiments, by reducing 

the number of convolutional layers in order to fit into smaller GPU with more availability. With a larger 

number of parameters, these networks may experience higher testing accuracies, and may yield a fairer 

comparison of training with a cavity distance weighted loss term, perhaps with overall testing Dice scores 

closer to the current standard of performance.  

             Additional experiments are needed to determine the exact effect of using a penalization that 

incorporates post-treatment cavities into training. For the experiments done here, extensive 

hyperparameter search needs to be done, with many weighting schemes for both variations of the cross 

entropy loss terms. An automated hyperparameter search can be done for the same networks, with and 

without using the cavity distance weighted loss terms. Then the optimal training configurations for using 

these terms can be compared against one another. This may provide a clearer comparison between 

training with cavity distance maps and without, due to the fact that these different loss functions may have 

different optimal training configurations. Additionally, using a different metric that places more emphasis 

on boundary regions of the lesion or disconnected components to evaluate segmentation performance, 

such as boundary Dice, or by evaluating on a case by case basis, may provide more informative 

evaluations of the potential gains provided by training with a cavity distance weighted penalization.  

            Once the effect of training with cavity distance penalization is determined, the most optimal 

configuration of those loss functions can then be used in additional experiments, to determine their value 

with respect to transfer learning. A network trained on a large available dataset that is not reflective of the 
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features unique to post-treatment glioma, such as BraTS, can then be fine-tuned by training on a small 

subset of data from the post-treatment domain with a loss function that is modified to include features of 

this domain. This network would be compared to training both on the BraTS dataset mixed with the small 

subset of post-treatment glioma, and to training on BraTS or newly diagnosed glioma alone. Additionally, 

weights of the network may be initialized using this loss function by training on a small subset of the 

post-treatment patients, then transferring the weights into training on the BraTS dataset. This model could 

be compared to training on BraTS alone or training on the mix of BraTS and post-treatment data using a 

standard Dice loss.  

Part 3: Boundary Augmentation 

            In addition to these methods, a preprocessing pipeline for boundary augmentation been 

implemented, but not yet incorporated into training. This additional step could improve generalizability to 

the domain of post-treatment glioma. Although this has previously been done to generate synthetic 

images by using GANs[22], this requires training a network, where a computationally less complex 

solution, or one that does not require training an adversarial network may be available. 

 

Conclusions: 

 From incorporating images of patients with post-treatment glioma into training, and utilizing a 

loss term that takes into account the location of the cavity and leading tumor edge into training, we were 

able to evaluate two methods that can provide useful information towards training a segmentation 

network that is capable of generalizing to post-treatment glioma. Specifically, we learned that with 200 

total training examples, after including a threshold of 30% or greater patients with treated gliomas, 

segmentation performance of the post-treatment T2 lesion improved and plateaued. We also found that 

after this inclusion threshold is met, additional images from newly diagnosed glioma did not negatively 

impact segmentation performance on post-treatment patients. We saw that preliminary models trained 

with cavity distance penalizations showed qualitatively more desirable segmentations of tumor lesions 

with respect to cavities and small disconnected components in selected examples. To more clearly 
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understand the effect of using this loss modification, training with alternate hyperparameters, larger 

cohorts, and evaluating with more focused performance assessments, will be explored. Lastly, we have 

developed a pre-processing augmentation method to vary the boundary signal delineation of the T2 

lesion, aiming to resemble changes in treated glioma. This augmentation technique, along with including 

data from post-treatment glioma into training and modifying the loss function to incorporate cavity 

position relative to the T2 lesion, may be useful methods to improve the generalizability of CNN brain 

tumor segmentation to treated gliomas.  
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Figures: 

 
Figure 1: Architectural Schematic of the variational auto-encoder taken from the paper on ‘3D MRI brain tumor segmentation 
using autoencoder regularization’. This is the structure of the model that was modified for the experiments where Nvidia’s Clara 
v-2 framework was used for training.  
 
 

 
Figure 2: Preprocessing pipeline for distance map generation used in implementing the inverse cavity distance based loss term. 
Pixels of the T2 lesion, weighted inversely by distance to the resection cavity, are weighted most highly in pixels furthest away 
from the cavity and lowest near to the cavity.  
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Figure 3: Distance map implementation of the combination cavity distance based loss term. The inverse distance weighted T2all 
lesion is inverted and subtracted from the inverse distance weighted T2all lesion. The absolute value is taken. 1 is added to 
mitigate zero weighting. Pixels of the T2all lesion both near and far away from the cavity are weighted most highly.  

 
 
 

 
Figure 4: Boundary augmentation preprocessing pipeline schematic. Boundary region extraction threshold, Laplacian of 
Gaussian parameters, and Gaussian blurring parameters can be selected in preprocessing to control the degree of edge sharpening 
or smoothing or chosen randomly to generate augmented images 
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Figure 5: (Top-right) Non-augmented T2 FLAIR image where healthy tissue surrounding the tumor is selected in yellow, 
hyperintense tumor is selected in turquoise. (Top-left and Bottom) Histograms of the log intensities of healthy tissue (yellow) 
surrounding the T2 hyperintense lesion (turquoise) on the original T2 FLAIR image and following boundary augmentation. 
Boundary sharpening operations are shown to decrease the degree of overlap between healthy and tumor intensities compared to 
the non-augmented image. This indicates increased contrast between tumor and surrounding healthy tissue. Boundary smoothing 
operation is shown to increase the degree of overlap, indicating decreased contrast between surrounding healthy tissue and tumor.  
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Figure 6: Example of testing models trained with various loss functions and learning rates, on 25 patients with post-treatment 
glioma. Yellow overlay are the outputs of the sigmoid activation, not thresholded. Yellow values represent predicted probabilities 
closer to 1, while green values represent values closer to 0. Note that the combination distance weighted cross entropy plus Dice 
loss was able to segment a small dethatched segment of the lesion below the left ventricle, compared to standard Dice alone at the 
same learning rate of 1e-4. 

 

 

Figure 7: Example of testing models trained with various loss functions and learning rates, on 25 patients with post-treatment 
glioma. Yellow overlay are the outputs of the sigmoid activation, not thresholded. Yellow values represent predicted probabilities 
closer to 1, while green values represent values closer to 0. The combination distance weighted cross entropy plus Dice loss was 
able to segment a small dethatched segment of the lesion to the right of the cavity, compared to Dice at 5e-5. Additionally, at a 
learning rate of 1e-4, the model trained on Dice alone over segmented the portion of the lesion at the bottom left of the cavity, 
compared to combination distance loss at the same learning rate.  
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Figure 8: Example of testing models trained with various loss functions and learning rates, on 25 patients with post-treatment 
glioma. Yellow overlay are the outputs of the sigmoid activation, not thresholded. Yellow values represent predicted probabilities 
closer to 1, while green values represent values closer to 0. Note that the combination distance weighted cross entropy plus Dice 
loss was able to segment a weakly intense branch to the right of the lesion as well as a small disconnected region of the lesion 
near the top left of the cavity, compared to Dice alone at learning rate of 1e-4. 

 

Figure 9: Example testing on a patient with post-treatment glioma for the three multi-channel models. BraTS model is seen to 
over segment near sulci and into the large surgical cavity compared to the models trained on post-treatment data from UCSF. 
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Figure 10: Example testing on a patient with post-treatment glioma for the three multi-channel models. The BraTS model over 
segments into distorted left ventricle compared to the models trained on post-treatment data from UCSF. 

 

 
 
 

 
 

Figure 11: (Left) Visualization of performance gain from including post-treatment glioma into training. Testing mean Dice 
scores, interquartile range, and standard deviation of 19 cases of post-treatment glioma are shown. (Right) Visualization of no 
negative performance impact from including newly diagnosed glioma into training, once the threshold for post-treatment patients 
has been met. The third data point was from a model that stopped training early due to connectivity issues. This model completed 
266 epochs of desired 300. Testing mean Dice scores, interquartile range, and standard deviation are shown. 
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Figure 12: Example of testing single-channel models trained on either newly diagnosed patients, post-treatment glioma, or a 
mixed data at 51% inclusion in training. This example shows under segmentation in the prediction of the newly diagnosed model 
near the edges of the hyperintense lesion that have weak signal intensity gradients. The mixed model and post-treatment model 
performed similarly in this case. 

 

Figure 13: Example of testing models trained on either newly diagnosed patients, post-treatment glioma, or a mixed data at 51% 
inclusion in training. This example shows a missed segmentation in the prediction of the newly-diagnosed model near the edges 
of a distorted left ventricle. The mixed model and post-treatment model performed similarly in this case.  
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Tables: 

 

Table 1: Testing Dice scores for models trained on either BraTS data, post-treatment glioma acquired at UCSF, or a mix of both. 
Each model was trained on various amounts of training data with a Train/Val split of 80%/20%. Models were trained on 4 
channel inputs of T1, T1 post-gadolinium contrast, T2 FLAIR, and T2 image contrast. Only T2 lesion Dice scores are reported. 
Models were tested on 25 patients with post-treatment glioma.  

Testing Dice Scores Mean Standard 
deviation 

BraTS – 227/57 0.721 0.216 
 

UCSF post-treatment glioma – 61/16 0.810 
 

0.107 
 

Mixed data – 288/73 0.830 
 

0.102 
 

Table 2: Testing Dice scores for models trained on ratios of post-treatment and newly diagnosed glioma. Each model was trained 
on 200 images with a Train/Val split of 80%/20%. Models were tested on 19 patients with post-treatment glioma.  

Testing Dice Scores Mean Standard 
deviation 

Newly diagnosed glioma Only 0.716 0.165 

15.625% post-treatment glioma 0.746 0.147 

31.25% post-treatment glioma 0.803 0.089 

51.25% post-treatment glioma 0.801 0.094 

post-treatment glioma only 0.820 0.075 
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Table 3: Testing Dice scores for models trained on ratios of post-treatment and newly diagnosed glioma. Each model was trained 
by adding in 50 volumes acquired from newly diagnosed glioma at each successive training. The initial, post-treatment glioma 
only model, started with 153 training images and 39 validation images, both from post-treatment glioma. Models were tested on 
19 patients with post-treatment glioma. The model at 39.53% newly diagnosed glioma included into training was stopped at 266 
epochs instead of 300 due to connectivity issues.  

Testing Dice Scores Mean Standard deviation 

post-treatment glioma only 0.820 0.075 

24.63% Newly diagnosed glioma  0.821 0.071 

39.53% Newly diagnosed glioma* 0.791 0.089 

49.50% Newly diagnosed glioma  0.818 0.061 

57.62% Newly diagnosed glioma  0.821 0.066 

Table 4: Testing Dice scores for models trained on 25 post-treatment glioma. Models were trained using various loss functions 
and learning rates. Each model was selected for testing based on highest validation accuracy from validation with 25 patients 
with post-treatment glioma before 8000 iterations. Models were tested on 25 separate patients with post-treatment glioma. Mean 
and standard deviations of the testing Dice scores for each model are reported below.  

Testing Dice Scores Mean Standard 
deviation 

Dice loss,  
Learning rate: 1e-4 

0.6247 0.2111 

Dice loss, 
Learning rate: 5e-5 

0.7078 0.1456 

Combination Cavity Distance Weighted Cross Entropy plus Dice loss, 
Learning rate: 1e-4 

0.6551 0.1987 

Combination Cavity Distance Weighted Cross Entropy plus Dice loss, 
Learning rate: 5e-5 

0.6601 0.1686 

Inverse Cavity Distance Weighted Cross Entropy plus Dice loss, 
Learning rate: 1e-4 

0.6383 0.1856 
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