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Small RNAs are short, non-coding RNA molecules that have been identified in a wide 

range of species across all three domains of life. In mammals, canonical small RNAs such 

as microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs) are tissue-specifically dis-

tributed and can regulate gene expression at both transcriptional and post-transcriptional 

levels, associating with various fundamental functions such as gene silencing and re-

trotransposon control. While miRNAs and piRNAs have been extensively investigated, the 

existence and mechanism of other non-canonical mammalian small RNAs remain under-

explored. 

With the extensive use of high-throughput sequencing technologies in the past dec-

ade, small RNA diversity is rapidly growing. However, the conventional small RNA library 

construction method lacks the detection capability for non-canonical small RNAs that carry 

specific terminal and internal modifications, especially for tRNA-derived small RNAs 
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(tsRNAs) and rRNA-derived small RNAs (rsRNAs). In addition, existing downstream bi-

oinformatics tools are mostly focused on analyzing canonical small RNAs such as miRNAs 

and piRNAs, while the annotation of other small RNAs remains rudimentary or ignored. 

 To reveal a panoramic view of small RNAs, a small RNA annotation pipeline (that 

is, SPORTS) is developed to simultaneously and comparatively annotate both canonical 

and non-canonical small RNAs, along with RNA modification prediction capacity. More-

over, a small RNA library preparation procedure (that is, PANDORA-seq) is optimized to 

comprehensively capture modified small RNAs such as tsRNAs and rsRNAs. 

 The improved RNA-seq and bioinformatics strategy leads to a new and surprising 

small RNA landscape that tsRNAs and rsRNAs have a higher abundance than canonical 

small RNAs in a majority of mouse and human tissues/cells that have been examined. 

Those mammalian tsRNAs and rsRNAs also exhibit tissue- and cell-specific patterns and 

the expression level of those small RNAs are dynamically altered during the generation of 

induced pluripotent stem cells (iPSCs) based on PANDORA-seq. Those newly identified 

small RNAs also display translational regulation during embryonic stem cell differentiation 

and have a role in regulating embryonic stem cell lineage fate based on the transcriptomic 

changes after their transfection. 
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Chapter 1: Introduction 

Overview 

Small RNAs represent a major family of noncoding RNAs that are universally distributed 

from bacteria to mammals. However, the concept of ‘small RNA’ is relatively subjective, 

only vaguely defined as RNAs that have relatively shorter RNA lengths when compared to 

transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), and long coding/non-coding RNAs. 

Short RNAs in bacteria have also been recognized as small RNAs, although they are usu-

ally irrelevant to small RNAs in eukaryotes (Kim et al., 2009). The bacterial small RNAs 

typically range from 50 to 400 nucleotides and are involved in gene expression regulation 

(Wagner and Romby, 2015). In eukaryotes, especially in mammals, small RNAs are gen-

erally referred to some specific types of noncoding RNAs, such as microRNAs (miRNAs, 

21-23 nucleotides), and Piwi-interacting RNAs (piRNAs, 21-35 nucleotides) (Bartel, 2018; 

Ozata et al., 2019). While those canonical small RNAs have already been extensively in-

vestigated from various aspects, this thesis focuses on discovering and describing non-ca-

nonical small RNAs of 15-50 nucleotides in length. Those small RNAs include tRNA-

derived small RNAs (tsRNAs), rRNA-derived small RNAs (rsRNAs), and YRNA-derived 

small RNAs (ysRNAs) that also show diverse functions, and with great potential as disease 

biomarkers. 

Multiple general small RNA annotation software and pipelines have been devel-

oped to analyze miRNAs, piRNAs, etc. (Di Bella et al., 2020). However, there is still a 

lack of specialized tools that can simultaneously and comparatively analyze both canonical 

and non-canonical small RNAs. In this thesis, a small RNA annotation bioinformatics tool 
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(small RNA annotation pipeline optimized for rRNA- and tRNA-derived small RNAs, 

SPORTS) is developed to provide optimized annotation and enhanced visualization, which 

aims to bridge the gap between raw RNA-seq data and researchers to explore the small 

RNA world. 

 Traditional construction of cDNA libraries for small RNA-seq is based on adapter 

ligation to the 3’ and 5’ RNA terminals, which is followed by reverse transcription and 

cDNA amplification. However, some terminal and/or internal RNA modifications in small 

RNAs can affect the library construction process, thus these small RNAs cannot be effi-

ciently captured during the cDNA amplification step for RNA-seq, generating biased final 

sequencing results. To overcome the RNA modification causing obstacles during cDNA 

library construction, a method based on consecutive enzymatic-treatments (panoramic 

RNA display by overcoming RNA modification aborted sequencing, PANDORA-seq) is 

developed in this thesis.  

 

Canonical regulatory small RNAs 

In general, both miRNAs and piRNAs perform silencing or destruction function through 

binding Argonaute proteins (for example, Ago subfamily and Piwi subfamily) to target 

RNA molecules (Hock and Meister, 2008). Such a process is defined as a canonical regu-

lation process in this thesis. 

The first miRNA, lin-4, was discovered in 1993 in nematode worms (Lee et al., 

1993; Wightman et al., 1993). But it did not receive much attention until let-7 was discov-

ered (Reinhart et al., 2000). Unlike lin-4, the miRNA let-7 is evolutionarily conserved in 
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metazoan (Pasquinelli et al., 2000). The discovery of let-7 swiftly boosts large scale 

miRNA discovery (Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001).  

 Canonical miRNAs are transcribed by RNA Polymerase II (Pol II) as primary miR-

NAs (pri-miRNAs) with 5’ capped, sometimes 3’ polyadenylated. Those pri-miRNAs can 

be hundreds to thousands of nucleotides in length. Cleaved from the pri-miRNA by Drosha, 

a nuclear RNase III, the precursor miRNA (pre-miRNA, ~70 nucleotides) forms a stem-

loop structure. It is further cleaved by another RNase III, Dicer, to generate an ∼21nt 

miRNA duplex (miRNA/miRNA* duplex). Then the single-stranded mature miRNA pref-

erentially assembles into the RNA-Induced Silencing Complex (RISC), which includes an 

AGO protein, while its passenger strand, miRNA*, degrades. Based on the characteristics 

of dsRNA cleavage function of RNase III, mature miRNA has 5’ phosphate (5’-P) and 3’ 

hydroxy (3’-OH) termini (Bartel, 2018; Du and Zamore, 2005). miRNAs typically recog-

nize and target transcripts by consecutively base-pairing 6-8 nucleotides with mRNA 3’ 

UTR region (Bartel, 2018), which indicates in vivo cross-linking ligation and high-

throughput sequencing of hybrids as the best practice to accurately quantify miRNA in-

teractome (Helwak and Tollervey, 2014).  

 piRNAs that transcribed from the tandem repeat regions were first identified in 

drosophila testis (Aravin et al., 2001). In 2006, those germline-specific small RNAs were 

termed piRNAs since they are specifically interacting with PIWI protein (Aravin et al., 

2006; Girard et al., 2006; Grivna et al., 2006; Lau et al., 2006). The piRNA sequences are 

usually distributed in clusters from intergenic loci where are enriched with transposon 
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fragments, 3ʹ untranslated regions (3ʹ UTRs) of messenger RNAs (mRNAs), and long non-

coding RNAs (Ozata et al., 2019).  

 The piRNA clusters can be classified into two forms: uni-strand piRNA clusters, 

which give rise to piRNA from only one genomic strand; and dual-strand piRNA clusters 

that generate piRNA precursors from both genomic strands (Czech and Hannon, 2016). 

While the dual-strand piRNA cluster form has been observed only in arthropods, the uni-

strand cluster form has been widely identified in metazoans, including mammals (Ozata et 

al., 2019). piRNA precursors that have 5’ 7-methylguanosine and 3’ Polyadenylation are 

generated though Pol II-dependent transcription in most animals. Then the precursors are 

endonucleolytically cleaved into pre-piRNAs with 5’ monophosphate, which is needed for 

PIWI protein binding. Pre-piRNAs often begin with a uridine probably due to the intrinsic 

preference of PIWI protein (Gainetdinov et al., 2018). The 3ʹ end of the PIWI-bound pre-

piRNAs are trimmed by endonuclease and/or 3’ to 5’ exonuclease until they shorten to a 

certain length (21-35 nucleotides). Concomitantly, the 3’ ends of piRNA intermediates are 

2’-O-methylated by an S-adenosylmethionine (SAM)-dependent methyltransferase to form 

mature piRNAs (Czech and Hannon, 2016; Kirino and Mourelatos, 2007). The piRNAs 

are generated by the primary pathway, or amplified by ping-pong cycle, which produces 

secondary piRNAs though pre-existing piRNAs (Beyret et al., 2012). While piRNAs are 

found in a great variety of species and are of high abundance in mammalian testis, their 

sequence conservation is modest compared with miRNAs. Thus, the paradigm of piRNA 

function, especially for pachytene piRNAs, has yet to be determined. In addition to 
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crosslinking methods, piRNA binding site affinity as well as its molecule number should 

be taken into account when piRNA targets are being identified (Wu and Zamore, 2021).  

 

Non-canonical regulatory small RNAs 

The tRNAs are a type of highly modified and structured RNA that have a well-defined role 

in mRNA translation. The fragmentation of hundred types of tRNAs at different loci gives 

birth to a new species of small RNAs: tsRNAs (Schimmel, 2018).  

Since the 1960s it has been reported that a tRNA fragment from tRNAfMet can in-

teract with ribosomal subunits in a fashion similar to that of its precursor mature tRNAfMet 

(Rudland and Dube, 1969); this suggests that tsRNAs may naturally compete with the func-

tion of tRNAs under some circumstances. While notable amount of RNAs with the integral 

tRNA corresponding length (76-90 nucleotides) exist in human urine (Perez-Hernandez et 

al., 2015), later the RNA sequencing results confirm that tsRNAs are dominant at the small 

RNA range (El-Mogy et al., 2018; Yeri et al., 2017). In the 2000s, the phenomenon of 

tRNA cleavage induced by environmental stress was firstly described in protozoa (Lee and 

Collins, 2005), then in human cell lines (Thompson et al., 2008). Those tsRNAs were for-

merly regarded as tRNA random degradation intermediates until they were identified under 

physiological condition in mammalian sperm and serum by RNA-seq (Dhahbi et al., 2013; 

Peng et al., 2012; Zhang et al., 2014). The mammalian tsRNAs are derived from preferen-

tial cleavage sites of tRNAs, and have different length distribution compared with other 

canonical small RNAs such as miRNAs and piRNAs. 
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 From a structural perspective, the cloverleaf-shaped secondary structure of tRNA 

is folded into an L-shape in Three-dimensional space (Figure 1.1) (Schimmel, 2018). This 

L-shaped structure is overall tightly condensed but has two relatively exposed sites: the 

anticodon at one end of the L and the tRNA elbow at the bending site of the L, where the 

D-loop and the T-loop meet and interact with each other. The exposed sites of the tRNA 

structure can be ‘points of attack’ under a dynamic cellular (and perhaps early proto-cell) 

environment, being fragmented by one of the following: either nonspecific stress signals 

such as radiation and oxygen reactive species (ROS), specific recognition by enzymes or 

ribozymes, or the combination of both. This simple view actually coincides with the pre-

vailing observations that the most abundantly detected tsRNAs are fragmented at the anti-

codon, and are derived from 5’ half of the tRNA (~30 nt), whereas shorter 3’ or 5’ shorter 

tsRNAs (~18-22 nt) fragmented at the T-loop or D-loop, respectively, or internal tsRNAs 

derived from sequences between these loops, are far less abundant (Figure 1.1) (Kumar et 

al., 2015). Notably, tRNA cleavage can also occur independently of the loop site, such as 

by targeting a specific tRNA stem position by RNase P that recognizes a specific (that is, 

GC enriched) sequence (Kikuchi et al., 1990) or, more generally, by enzymes targeting 

double-stranded (ds) RNA regions. For example, although it is well-known that the Rnase 

Dicer cleaves dsRNAs to generate siRNA and miRNAs, Dicer is also responsible for the 

biogenesis of some tsRNAs from tRNAs (Cole et al., 2009; Haussecker et al., 2010; 

Reinsborough et al., 2019). Other Rnase including RNase T2 (Andersen and Collins, 2012; 

Thompson and Parker, 2009), RNase L (Donovan et al., 2017), and the vertebrate-specific 

angiogenin (RNase A family) (Fu et al., 2009; Yamasaki et al., 2009), can cleave tRNAs 
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at the anticodon loop, resulting in fragmentation into tsRNAs. The cleavage produces RNA 

fragments with 5’-hydroxyl (5’-OH) and 2’,3’-cyclic phosphate (2,3’-CP) termini 

(Donovan et al., 2017; Luhtala and Parker, 2010; Lyons et al., 2017), providing a unique 

feature of tsRNAs compared to canonical small RNAs. 

 In addition to the termini, both tsRNAs and their precursor tRNAs are heavily mod-

ified. It has been demonstrated that DNMT2- and NSUN2- dependent addition of a 5-

methylcytosine(m5C) modification to several tRNAs (for example, tRNAAsp, tRNAVal, 

tRNAGly and tRNALeu) increases tRNA stability in flies and mice, whereas deletion of 

Dnmt2 and/or Nsun2 abolishes m5C on those tRNAs, making them likely to be cleaved 

into tsRNAs under stress conditions (Schaefer et al., 2010; Tuorto et al., 2012; Zhang et 

al., 2018b). The Queuosine (Q) modification catalyzed by QTRT1 occurs at the wobble 

anticodon position of several tRNAs (for example, tRNAHis, tRNAAsn, tRNATyr, and 

tRNAAsp) and protects tRNAs against cleavage into tsRNAs in human HEK293T cells 

(Wang et al., 2018b). Interestingly, recent reports showed that C38 Q-modified tRNA pro-

motes DNMT2-mediated m5C on C38 of tRNAAsp (Muller et al., 2015; Tuorto et al., 2018); 

these discoveries resonate with findings that the establishment of one RNA modification 

can depend on the existence of another (Barraud et al., 2019). Recent evidence also shows 

that deletion of ALKBH1 (Rashad et al., 2020) or ALKBH3 (Chen et al., 2019) increased 

the levels of N1-methyladenine (m1A) in tRNAs, preventing tRNA cleavage and resulting 

in less tsRNA production. TRMT10A-mediated N1-methylguanine (m1G) modification 

also leads to increased tRNAGln stability and less production of tsRNAGln (Cosentino et al., 

2018). Moreover, 2'-O-methylation of the C34 in human tRNAMet can prevent site-specific 
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cleavage of tRNAMet by angiogenin and reduce tsRNA production (Vitali and Kiss, 2019). 

In addition to preventing tRNA cleavage, some RNA modifications can also promote 

tsRNA biogenesis. For example, PUS7-mediated pseudouridine (Ψ) at the U8 position has 

been shown to affect tsRNA biogenesis in stem cells, where deletion of PUS7 leads to a 

decreased level of several types of 5’ tsRNAs (~18 nt) with terminal oligo(G), suggesting 

that Ψ U8 increases the cleavage of these tRNAs to generate tsRNAs (Guzzi et al., 2018). 

In another example in yeast, 5-methoxycarbonylmethyl-2-thiouridine (mcm5S2) at the an-

ticodon wobble position can promote the cleavage of tRNA into tsRNAs (Lu et al., 2008).  

 In mammals, four cytoplasmic (5S, 5.8S, 18S, and 28S) rRNAs are encoded by the 

nuclear genome and two mitochondrial (12S and 16S) rRNAs are encoded by the mito-

chondrial genome. The rRNAs associate riboproteins to form ribosomes that have the fun-

damental role in synthesizing proteins. The nucleotides that forming the peptidyl-transfer-

ase site are extremely conserved across all species in three kingdoms, which resonate with 

the extensive existence of rRNAs (Lafontaine and Tollervey, 2001). While intact rRNAs 

make up the majority part of RNAs in somatic cells, it is unveiled that the full length rRNAs 

are absent in mature human sperm (Ostermeier et al., 2002), indicating rRNA fragmenta-

tion may occur during late spermatogenesis or during epididymal transition. Depending on 

the RNA-seq technology, an appreciable amount of rsRNAs has been systematically rec-

ognized and highlighted in mouse sperm (Chu et al., 2017; Zhang et al., 2018b) and other 

tissues (Wei et al., 2013). 

 Despite that eukaryotic rRNA maturation has already been detailedly in details as 

a sequential cleavage process (Aubert et al., 2018; Henras et al., 2015), the understanding 
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of rsRNA biogenesis remains limited. Previous small RNA-seq results demonstrate that 

rsRNAs are preferentially generated from 5’ and 3’ end terminal of rRNAs in both mouse 

and human cells (Li et al., 2012). It is also found that a prominent rsRNA in size slightly 

longer than 50 nucleotides derived from the 5’ end of mouse 28S rRNA is associated with 

apoptosis process (King et al., 2000). A 21-nucleotide rsRNA derived from the 5’ end of 

the 18S rRNA is discovered in zebrafish, the sequence of which is identical to it in mam-

malian cells that can bind to AGO proteins, suggesting that at least some rsRNAs are gen-

erated though miRNA biogenesis pathway (Locati et al., 2018). Similar to tsRNA biogen-

esis, Angiogenin can also cleave 5.8S rRNAs into short fragments with different lengths 

(Li et al., 2012). Additionally, rsRNAs expression level is also sensitive to environmental 

exposures such as altered diet and inflammation (Chu et al., 2017; Natt et al., 2019; Zhang 

et al., 2018b). Interestingly, deletion of a multisubstrate tRNA methyltransferase Dnmt2 in 

mouse seems to decrease the level of rsRNA while the rRNA m5C level is not affected 

(Legrand et al., 2017), suggesting unknown distinguish regulatory mechanisms between 

rsRNA and rRNA that independent from m5C (Zhang et al., 2018b). 

 A complete rRNA modification landscape has been pinpointed with quantitative 

mass spectrometry, recognizing dozen types of post-transcriptional modifications that are 

distributed at hundreds of sites in human 5.8S, 18S and 28 rRNAs (Taoka et al., 2018; 

Wein et al., 2020). More than 90% of the modifications are covered by pseudouridine or 

2’-O-methylation, which can also be the majority types of modifications on rsRNAs that 

are cleaved from mature rRNAs. Impaired 2’-O-methylation can result in ribosome dys-

function that may cause disease (Nachmani et al., 2019). Although reports on rsRNA 
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modifications remain limited, their potential to contain modifications are high, given their 

widespread presence and ingenious response to methylation-related enzymes (Zhang et al., 

2018b).  

 

Small RNA library generation strategies and problems 

High-throughput RNA sequencing (RNA-seq) has substantially facilitated the discovery of 

small RNAs over the past decade. It does not require a prior knowledge of the RNA se-

quence compared with polymerase chain reaction (PCR) and microarray detection method. 

The small RNA-seq workflow includes: RNA samples preparation, complementary DNA 

(cDNA) libraries construction, high-throughput sequencing, and small RNA-seq data anal-

ysis (Figure 1.2).  

Small RNA isolation procedure 

Two different RNA preparation protocols are commonly chosen when purifying small 

RNA from cells or tissues. After extracting total RNAs with reagent Trizol (Rio et al., 

2010), denaturing urea-Polyacrylamide Gel Electrophoresis (PAGE) based purification is 

performed to select the specific size of small RNAs. According to the difference in the 

affinity of RNA size, the glass-fiber filter-based protocol is designed to separate RNAs, 

and is employed in the MirVana™ miRNA isolation kit. This commercial kit can enrich 

RNAs less than 200 nucleotides and has better performance than traditional Trizol extrac-

tion method in miRNA recovery (Kim et al., 2012). However, the middle-size RNAs such 

as 5S RNA (~120 nucleotides), 5.8S RNAs (~150 nucleotides), and tRNAs (76-90 nucle-

otides) are also mixed in the final products of the kit. 
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It is also a race against time to perform an RNA isolation procedure before the 

RNase in vivo can catalyze the RNA degradation process. The RNA integrity number (RIN) 

based on a Bayesian learning technique is designed to quantify the integrity of total RNA. 

The RIN value ranges from 10 to 1, while 10 represents intact RNA and 1 indicates totally 

degraded RNA (Schroeder et al., 2006). While the algorithm generates a RIN value in an 

automated and reproducible manner, it also smooths out the species and tissue specificity. 

For example, the RIN value does not work out when measuring sperm RNA samples and 

purified small RNAs that lack 18S and 28S rRNA peaks, although the peaks are essential 

features in the model (Peng et al., 2012). 

cDNA library construction 

A typical strategy to obtain small RNA library is sequentially composed of 3’ and 5’ end 

adapter ligation, reverse transcription, second-strand synthesis, and PCR amplification 

steps. Generally, RNA ligases involve in adding adapters to canonical small RNAs carrying 

5’-P and 3’-OH termini. Both of T4 RNA Ligase 1 (Rnl1) and T4 RNA Ligase 2 (Rnl2) 

can catalyze the ligation of 5’-P to 3’-OH of DNA or RNA with ATP participation, which 

may add adapters to either termini of the target RNAs (Nichols et al., 2008). While Rnl1 

prefers single-stranded RNA linking, Rnl2 is utilized for ligating nicks in double-stranded 

RNAs. A truncated form of T4 Rnl2 that contains the first 249 amino acid, is named as 

Rnl2tr. It is specifically joins the pre-adenylated adapters to the 3’ end of RNA because of 

lacking adenylation domain (Dai and Gu, 2020). Thus, T4 Rnl2tr can reduce the byproducts 

of RNA self-cyclization and self-ligation process. The 3’ end adapter can also be produced 

by poly (A) polymerase (PAP), which adds an uncertain number of adenine nucleotides to 
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the small RNA termini bypassing the adapter ligation step (Dard-Dascot et al., 2018). How-

ever, adenine nucleotides at the end of original small RNA sequences are identical to the 

poly (A) tails, thus increasing the difficulty of bioinformatics analysis when adapters are 

trimmed.  

In addition to the intrinsic properties of the enzymes, some modified nucleotides to 

the terminus of small RNA also hamper adapter ligation. Small RNA with 2’-O methyla-

tion at 3’ termini (for example, piRNAs) significantly decreases T4 Rnl1 ligation effi-

ciently and PAP tailing efficiency. However, T4 Rnl2tr keeps a certain degree of the en-

zyme activity when the modification exists (Munafo and Robb, 2010). Small RNAs that 

contain 5’-OH, 3’-P or 2,3’-CP can be detected in human bioliquid such as serum and 

plasma (Akat et al., 2019) thus the 5’ and 3’ adapter ligation will be blocked by the modi-

fications. 3’-P and 2,3’-CP can be removed using T4 Polynucleotide Kinase (T4PNK) 

while 5’-OH can also be phosphorylated with the same enzyme. Then the ligation step can 

proceed smoothly (Akat et al., 2019).  

Although other terminal modifications may not be abundant in mammalian small 

RNAs, they may also inhibit ligation process. The 5’-triphosphate (5’-PPP) group is dis-

covered in virus (Abbas et al., 2013) and C. elegans (Gu et al., 2009). It can be dephosphor-

ylated to 5’-P by polyphosphates (Gu et al., 2009). The 5’-cap structure that is commonly 

found on mRNAs also exists on small nuclear RNAs (Matera et al., 2007). The pyrophos-

phatases work as a decapping function, which allow RNA ligation to be performed (Dai 

and Gu, 2020; Kramer and McLennan, 2019). Mature tRNAs can cognate with the 3’-

aminoacyl (3’-aa) group to execute translation function. Although the amino acid of the 
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charged tRNA may obstruct adapter linking (Honda et al., 2015; Raabe et al., 2014), it is 

able to be released under alkaline condition without enzyme treatment (Evans et al., 2017). 

 Parts of RNA methylations enriched in tRNA can obstruct the reverse transcription 

process and generate truncated cDNA products. α-ketoglutarate-dependent hydroxylase 

(AlkB) enzyme has been described to precisely demethylate such modifications, namely 

N1-methyladenosine (m1A), N3-methylcytosine (m3C), N1-methylguanosine (m1G), and N2, 

N2-dimethylguanosine (m2
2G) (Cozen et al., 2015; Dai et al., 2017; Zheng et al., 2015). 

Additionally, some other modifications can generate mismatches between RNA template 

and cDNA sequence during the synthesis. For example, although a few reverse transcrip-

tases can overcome the interference from oxidized guanine, incorrect base pairs can occur 

(Alenko et al., 2017).  

 

Bioinformatics tools for small RNA deep sequencing data 

The amount of sequencing data is estimated to be 1 zetta (1021) bases per year in 2025. It 

will be doubled every seven months based on historical growth rate (Stephens et al., 2015). 

However, how to integrate, process and analyze such massive data has become an opening 

question waiting to be solved.  

Quality control 

At the present time, small RNA-seq data can be generated by two major sequencing ap-

proaches: PCR cluster-based sequencing (Ross et al., 2013) and DNA nanoball-based se-

quencing (Drmanac et al., 2010). The former uses exponential DNA amplification, and the 

latter performs linear DNA amplification to obtain enough DNA signals (Fehlmann et al., 
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2016). Neither of these sequencing platforms can avoid generating the substitution error 

when calling bases due to chemical-to-optical signal conversion process. The sequencing 

errors also accumulate with read length, despite that the error rate of each base in average 

can be suppressed to 10-5 to 10-4 (Ma et al., 2019). The sequencing error is quantified as 

quality scores, indicating the probability that the corresponding base call is wrong. In ad-

dition, the length of small RNA varies between 15-50 nucleotides, usually shorter than the 

sequencer reading length (50bp, 75bp, or 150bp with single-end strategy). Most of the out-

put reads inescapably incorporate 3’ end adapter sequences. Therefore, pre-processing 

reads by trimming the low-quality sequences/bases and adapters is necessary (Figure 1.2). 

Cutadapt is a Command-Line Interface (CLI) pipeline to find and remove adapter se-

quences or other unwanted sequence from RNA-seq reads in an error-tolerant way (Martin, 

2011). The fastx_clipper tool embedded in FASTX-Toolkit (http://han-

nonlab.cshl.edu/fastx_toolkit/) is also a common CLI pipeline to remove adapter sequences, 

but by using different trimming algorithms from Cutadapt (Buschmann et al., 2016). Both 

of the tools take raw fastq format files as input and generate trimmed fastq files, which is 

necessary for downstream analysis.  

Small RNA database 

Most of the small RNA annotation process relies on aligning sequences to the RNA refer-

ences, which are normally presented by way of a database. The small RNA database is 

defined as a compilation for one or some kind of small RNA sequences and annotation of 

eukaryote, prokaryote as well as viruses. miRBase is the conventional online repository for 

miRNA information. Currently its latest version (release v22.1) contains 38589 pre-
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miRNA hairpin and 48885 mature miRNA sequences, most of which are introduced by 

small RNA-seq data without northern blot validation (Kozomara and Griffiths-Jones, 

2014). A recent study indicates that 65% of mature miRNA candidates are likely false-

positives (Alles et al., 2019), some of them are even marked as high-confident in miRBase. 

Therefore, we need to take extra care when annotating miRNAs based on the database.  

Several piRNA databases exist for piRNA annotation, including piRBase (Wang et 

al., 2019), piRNAbank (Sai Lakshmi and Agrawal, 2008), piRNAQuest (Sarkar et al., 

2014), IsopiRBank (Zhang et al., 2018a), piRTarBase (Wu et al., 2019), piRNAdb 

(https://www.pirnadb.org/), and piRNA cluster database (Rosenkranz, 2016). Majority of 

the databases are the collection of small RNA-seq data from piRNA enriched tissues (for 

example, testis, ovary, and brain), or the assemblage of RNA-seq results of cross-linking 

immunoprecipitated (CLIP) with PIWI proteins except for piRNA cluster database. The 

piRNA cluster database is a web source of predicted piRNA information from existing 

small RNA-seq data based on piRNA typical length and clustering features by performing 

the sorting algorithm proTRAC (Rosenkranz and Zischler, 2012). Similar to the problem 

of miRBase, false-positives also exist in piRNA databases because biological/biochemical 

verification is absent to the piRNA sequences.  

 Since tsRNAs and rsRNAs are derived from their precursors, tRNA and rRNA da-

tabases can be regarded as the fundamental references for the annotating step. The genomic 

and mitochondrial tRNAs in both of the databases GtRNAdb (Chan and Lowe, 2016) and 

tRNAdb (Juhling et al., 2009) are predicted from whole genome sequences by the proba-

bilistic search software tRNAscan-SE (Chan and Lowe, 2019). Additionally, a handful of 
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tsRNA databases analyzed from small RNA libraries are also available, including tRFdb 

(Kumar et al., 2015), MINTbase (Pliatsika et al., 2018), PtRFdb (Gupta et al., 2018), On-

cotRF (Yao et al., 2020), and tsRBase (Zuo et al., 2021). While the rRNA sequences for 

microbes are well categorized in SILVA (Quast et al., 2013), rRNA sequence repository 

specialized for animals/plants is still under construction. Alternatively, the rRNA and other 

kinds of small RNA entries can be collected from comprehensive RNA databases that in-

clude both coding and noncoding sequence data. NCBI Nucleotide database 

(https://www.ncbi.nlm.nih.gov/nuccore/), RNAcentral (https://rnacentral.org/), Ensembl 

(https://www.ensembl.org/), and Rfam (https://rfam.xfam.org/) are the commonly accessi-

ble databases for browsing RNA information, although not perfect for small RNAs. 

Small RNA annotation 

An efficient and effective computational pipeline is crucial for small RNA annotation pro-

cedure. Dozens of frequently used small RNA annotation programs concentrate on inter-

preting limited types of canonical small RNAs, such as miRDeep2 (Friedlander et al., 

2012), piPipes (Han et al., 2015), proTRAC (Rosenkranz and Zischler, 2012), and piRNN 

(Wang et al., 2018a). These tools focus on discovering the known miRNAs and piRNAs 

and predicting the novel ones based on their intrinsic sequence features by different statis-

tical algorithms, such as Bayesian Statistics, binomial probability, or convolution neural 

network.  

Due to the accumulating reports on discovering other non-canonical small RNAs 

in the recent decade, the capability of annotating these small RNA molecules simultane-

ously becomes increasingly important. One straightforward solution is mapping sequence 
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reads to respective references in databases mentioned above, since most small RNAs are 

derived from the annotated RNAs. Frequently used tools for small RNA sequence align-

ment, are Bowtie (Langmead et al., 2009), Burrows-Wheeler Aligner (BWA) (Li and 

Durbin, 2009), SeqMap (Jiang and Wong, 2008), and PatMaN (Prufer et al., 2008). Bowtie 

and BWA base on Ferragina-Manziniuse (FM) index searching algorithm, which is de-

signed for short reads mapping (Hatem et al., 2013), while SeqMap bases on the hash table-

based algorithm. PatMaN requires no indexing step, but the running time takes 10 times 

longer on average (Hoffmann et al., 2009). FM index algorithm is preferred when reads are 

aligned to multiple identical copies in the reference sequences (Shen et al., 2014), which 

frequently occurs for non-canonical small RNA mapping. Several bioinformatics tools are 

established for multiple small RNA parallel annotation based on those mapping algorithms. 

For example, sRNAtoolbox (Aparicio-Puerta et al., 2019) as an integrated tool basing on 

bowtie focuses on miRNA profiling, while it can also annotate other small RNA sequences. 

It has both web interface and standalone graphical user interface (GUI), although the of-

fline version depends on virtual machine, which in general causes the performance loss 

compared with the naïve one (Zhang et al., 2012). Unitas (Gebert et al., 2017) is built upon 

SeqMap and obtains reference information from Ensembl, piRNA cluster database, SILVA, 

GtRNAdb, and miRBase. The source code of the latest version of Unitas is provided online 

while the precompiled executable file to be requested through contact support. The internet 

connection is required in order to download reference sequences before its usage. The UEA 

sRNA Workbench (Stocks et al., 2018) is a cross-platform tool calls PatMaN for small 

RNA annotation. The miRNA, tRNA and rRNA entries are incorporated in the software 
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although the common species (for example, mouse, rat, and human) they belong to are 

absent.  

The annotation pipeline performance can be quantified by parameters of true posi-

tive (TP), true negative (TN), false positive (FP), false negative (FN). They present as Sen-

sitivity (TP/(TP+FN)), Precision (TP/(FP+TP)), and F-measure (2Precision×Sensitiv-

ity/(Precision+Sensitivity)) (Di Bella et al., 2020). Additionally, the software customiza-

bility and expandability for reference database and input format are usually supportive 

when non-model organisms are annotated. Another point to consider when choosing anno-

tation software is that the accessible rate of web-based bioinformatics tools descends an-

nually. After 10 years, only ~50% tools published in 2010 are reachable (Kern et al., 2020). 

Therefore, it is responsible to choose the standalone version of a bioinformatics software 

that uploads to a common software repositories platform, rather than keep it only on the 

lab website, during its developing or utilizing.  

 

Objectives 

Despite the significant progress achieved, we may still at an early stage to unravel the full 

complexity of small RNA world. More details of the panoramic small RNA landscape are 

still waiting to be filled, especially the presence and abundance of non-canonical small 

RNAs in mammalian tissues and cells. While the small RNA analysis tools are the premise 

and basis of small RNA exploration, a comprehensive annotation software integrated with 

well-organized reference database is still some distance away.  
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Another major challenge in revealing small RNA population is locating small 

RNAs that commonly carry modified nucleotides. These modified small RNAs usually 

conceal under regular sequencing method. The recently developed enzymatic treatment 

procedures that remove specific modifications on either RNA terminus or body holds 

promising potential to facilitate the detection of non-canonical small RNAs, and the com-

binatorial usage of multiple enzymes may assist to unveil the small RNA world. 
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Figures 

 

Figure 1.1: tsRNA biogenesis is rooted in tRNA structure and regulated by tRNA 

modifications 

The 2D and 3D structure of a tRNA, showing the loose sites at the anticodon loop and the 

tRNA elbow (joint of D- and T-loops) that represent the preferred sites of fragmentation 

to generate various types of tsRNAs. 
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Figure 1.2: Workflow of small RNA sequencing 

The main steps of small RNA sequencing and cDNA library construction are outlined in 

the figure. 
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Chapter 2: An annotating tool optimized for non-canonical small RNAs  

Abstract 

High-throughput RNA-seq has revolutionized the process of small RNA discovery, leading 

to a rapid expansion of small RNA categories. In addition to the previously well-charac-

terized small RNAs such as miRNAs and piRNAs, recent emerging studies have spot-

lighted on tsRNAs and rsRNAs as new categories of non-canonical small RNAs that bear 

versatile functions. Since existing software and pipelines for small RNA annotation mostly 

focus on analyzing miRNAs or piRNAs, the small RNA annotation pipeline optimized for 

rRNA- and tRNA-derived small RNAs (SPORTS1.0) is developed. SPORTS1.0 is opti-

mized for analyzing tsRNAs and rsRNAs from small RNA-seq data, in addition to its ca-

pacity to annotate canonical small RNAs such as miRNAs and piRNAs. Moreover, 

SPORTS1.0 can predict potential RNA modification sites based on nucleotide mismatches 

within small RNAs. SPORTS1.0 is precompiled to annotate small RNAs for a wide range 

of 68 species across bacteria, yeast, plant, and animal kingdoms, while additional species 

for analyses could be readily expanded upon end users’ input. For demonstration, by ana-

lyzing existing small RNA datasets using SPORTS1.0, it is revealing that distinct signa-

tures are present in tsRNAs and rsRNAs from different mouse cell types. Compared to 

other small RNA species, tsRNAs bear the highest mismatch rate, which is consistent with 

their highly modified nature. SPORTS1.0 is an open-source software and can be publically 

accessed at https://github.com/junchaoshi/sports1.0. 
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Introduction 

Expanding classes of small RNAs have emerged as key regulators of gene expression, ge-

nome stability, and epigenetic regulation (Cech and Steitz, 2014; Chen et al., 2016b). In 

addition to the previously well-characterized small RNA classes such as miRNAs and piR-

NAs, recent analysis of small RNA-seq data has led to the identification of expanding novel 

small RNA families. These include tsRNA and rsRNAs (Kumar et al., 2016). tsRNAs and 

rsRNAs have been discovered in a wide range of species with evolutionary conservation, 

supposedly due, in part, to the highly conservative sequence of their respective precursors, 

that is, tRNAs and rRNAs (Kumar et al., 2016). Interestingly, tsRNAs and rsRNAs have 

been abundantly found in unicellular organisms (for example, protozoa), where canonical 

small RNA pathways such as miRNA and piRNAs are entirely lacking (Garcia-Silva et al., 

2014; Lambertz et al., 2015; Liao et al., 2014). The dynamic regulation of tsRNAs and 

rsRNAs in these unicellular organisms suggests that they are among the most ancient clas-

ses of small RNAs for intra- and inter-cellular communications (Szempruch et al., 2016).  

Moreover, recent emerging evidence from mammalian species have highlighted the 

diverse biological functions mediated by tsRNAs, including regulating ribosome biogene-

sis, translation initiation, retrotransposon control, cancer metastasis, stem cell differentia-

tion, neurological diseases, and epigenetic inheritance (Anderson and Ivanov, 2014; Chen 

et al., 2016a; Gebetsberger et al., 2017; Ivanov et al., 2011; Kim et al., 2017; Kumar et al., 

2016; Martinez et al., 2017; Schimmel, 2018; Schorn et al., 2017). Although tsRNAs are 

known to be involved in regulating these processes at both post-transcriptional and trans-

lational levels (Ivanov et al., 2011; Kim et al., 2017; Luo et al., 2018), the exact molecular 
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mechanisms of how tsRNAs exert their functions have not been fully understood. Com-

pared to tsRNAs, rsRNAs are more recently discovered and also exhibit tissue-specific 

distribution. Dynamic expression of rsRNAs is associated with diseases such as metabolic 

disorders and inflammation (Chu et al., 2017; Wei et al., 2013; Zhang et al., 2018). The 

diverse biological functions of tsRNAs and rsRNAs and their strong disease associations 

are now pushing the new frontier of small RNA research.  

Currently, there are multiple existing general small RNA annotation software and 

pipelines (Axtell, 2013; Fasold et al., 2011; Mohorianu et al., 2017; Rueda et al., 2015; Wu 

et al., 2017), and some have been developed aiming to analyze tsRNAs (Selitsky and 

Sethupathy, 2015; Thompson et al., 2018; Zheng et al., 2016). However, there still lack the 

specialized tools that can simultaneously analyze both tsRNAs and rsRNAs in addition to 

other canonical small RNAs. Here, SPORTS1.0 is provided, which can annotate and profile 

canonical small RNAs such as miRNAs and piRNAs, and is also optimized to analyze 

tsRNAs and rsRNAs from small RNA-seq data (Figure 2.1). In addition, SPORTS1.0 can 

help predict potential RNA modification sites based on nucleotide mismatches within small 

RNAs. 

 

Results 

As an example, SPORTS1.0 was performed to analyze small RNA-seq datasets from 

mouse sperm (GSM2304822 (Yang et al., 2016)), bone marrow cells (GSM1604100 

(Tuorto et al., 2015)), and intestinal epithelial cells (GSM1975854 (Peck et al., 2017)) 

samples. Graphic output by SPORTS1.0 reveals distinct small RNA profiles in sperm 
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(Figure 2.2a), bone marrow cells (Figure 2.2b), and intestinal epithelial cells (Figure 2.2c) 

samples. tsRNAs and rsRNAs are found equally or more abundantly than previously well-

known miRNAs or piRNAs (length distribution data for each type of small RNA are ex-

emplified in Table S2.1). In particularly, tsRNAs are dominant in sperm, rsRNAs are high-

est in bone marrow cells, and intestinal epithelial cells contain an appreciable amount of 

both tsRNAs and rsRNAs in addition to a miRNA peak. 

Importantly, SPORTS1.0 found an appreciable portion of rsRNAs annotated in 

sperm (48.7%), bone marrow cell (11.1%) and intestinal epithelial cell (61.1%) samples 

that was previously deemed as ‘unmatch genome’ (UMG) (Figure 2.2a-c upper pie-chart). 

This is because these newly annotated rsRNAs are derived from rRNA genes (rDNA), 

which were not assembled and shown in current mouse genome (mm10) (McStay and 

Grummt, 2008), and thus were discarded before analysis by previous small RNA analyzing 

pipelines. SPORTS1.0 can now annotate and analyze these rsRNAs, including providing 

the subtypes of rRNA precursors (5.8S, 18S, 28S, etc.) from which they are derived from 

(Figure 2.3a-c), as well as the loci mapping information (Figure 2.3d-f). Interestingly, the 

analyses revealed that the specific loci that generate rsRNAs are completely distinct among 

sperm, bone marrow cell, and intestinal epithelial cell samples (Figure 2.3d-f), suggesting 

distinct biogenesis and functions of these rsRNAs. Similarly, SPORTS1.0 also revealed 

tissue-specific landscape of tsRNAs in terms of their relative abundance (Figure 2.2a-c 

lower pie chart) and the tRNA loci where they are derived from (5’ terminus, 3’ terminus, 

3’CCA end, etc.) (Figure 2.4, and Supplementary Figure S2.1-2.3). Since tsRNAs from 

different loci bear distinct biological functions (Kumar et al., 2016), the tissue-specific 
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tsRNA composition may represent features that define the unique functions of respective 

tissue/cell types.  

In addition, SPORTS1.0 also revealed distinct mismatch rates among different 

types of small RNAs (Figure 2.5 and Table S2.2), with tsRNAs showing the highest. The 

detected mismatch sites represent the modified nucleotides that might have caused mis-

incorporation of nucleotides during the RT process. The relatively higher mismatch rate 

detected in tsRNA sequences is consistent with their highly modified nature. The mismatch 

sites detected by SPORTS1.0 could provide a potential source for further analyses of RNA 

modifications within small RNAs.  

Finally, SPORTS1.0 can analyze small RNAs of a wide range of species, depending 

on the availability of their reference genome and small RNA sequences (Figure 2.6 and 

Table S2.3). The species to be analyzed and their associated small RNA references are 

subject to update in future versions, or can be customized by the end users.  

 

Conclusion 

SPORTS1.0 is an easy-to-use and flexible pipeline for analyzing small RNA-seq data 

across a wide-range of species. Using mice as example, SPORTS1.0 provides a far more 

complicated small RNA landscape than having been previously seen, highlighting a tissue-

specific dynamic regulation of tsRNAs and rsRNAs. SPORTS1.0 can also predict potential 

RNA modification sites based on nucleotide mismatches within small RNAs, and show a 

distinct pattern between different small RNA types. SPORTS1.0 may set the platform for 
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many future new discoveries in biomedical and evolution research that is related to small 

RNAs.  

 

Methods 

The source code of SPORTS1.0 is written in Perl and R. The whole package and installa-

tion instructions are available on Github (https://github.com/junchaoshi/sports1.0). 

SPORTS1.0 can apply to a wide-range of species and the annotation references of 68 spe-

cies are precompiled for downloading (Table S2.3).  

The workflow of SPORTS1.0 consists of four main steps, that is, pre-processing, 

mapping, annotation output, and annotation summary (Figure 2.1). SRA, FASTQ, and 

FASTA are the acceptable formats for data input. By calling Cutadapt (Martin, 2011) and 

Perl scripts extracted from miRDeep2 (Friedlander et al., 2008), SPORTS1.0 outputs clean 

reads by removing sequence adapters and discarding sequences with length beyond the 

defined range, and those with bases other than ATUCG. The clean reads obtained in pre-

processing step are sequentially mapped against reference genome, miRBase (Kozomara 

and Griffiths-Jones, 2014), rRNA database (collected from NCBI), GtRNAdb (Chan and 

Lowe, 2016), piRNA database (Sai Lakshmi and Agrawal, 2008; Zhang et al., 2014), En-

sembl (Yates et al., 2016) and Rfam (Nawrocki et al., 2015), upon users’ setting. Small 

RNA sequences are first annotated by Bowtie (Langmead et al., 2009). Next, a Perl script 

precompiled in SPORTS1.0 is used to identify the locations of tsRNAs regarding whether 

they are derived from 5’ terminus, 3’ terminus, or 3’CCA end of tRNAs. Then an R script 
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precompiled in SPORTS1.0 is applied to obtain rsRNA expression level and positional 

mapping information regarding their respective rRNA precursors (5.8S, 18S, 28S, etc.).  

SPORTS1.0 can also be used to analyze sequence mismatch information if mismatches are 

allowed during alignment process. Such information can help predict potential modifica-

tion sites that have caused nucleotide misincorporation during the reverse transcription (RT) 

process as previously reported (Ryvkin et al., 2013). In the current version, a mismatch site 

is designated using criteria as previously described (Ryvkin et al., 2013). Binomial distri-

bution is used to address whether the observed mismatch enrichment is significantly higher 

than the base-calling error. Here, perr is defined as the base-calling error rate, nref is defined 

as the number of nucleotides perfectly fitted to the reference sites, nmut is defined as the 

number of mismatched nucleotides, and ntot is defined as the sum of nref and nmut. The prob-

ability of observing not larger than k perfectly matched nucleotides out of ntot can be cal-

culated as:  

𝑃(𝑘 ≤ 𝑛𝑟𝑒𝑓) = ∑ 𝑝𝑏𝑖𝑛𝑜𝑚(𝑖; 𝑛𝑡𝑜𝑡 , (1 − 𝑝𝑒𝑟𝑟))

𝑘

𝑖=0

 

SPORTS1.0 provides two methods to evaluate nmut number. The first option is to simply 

calculate nmut as the read number of sequences containing particular mismatches. Since 

some sequences may align to multiple reference loci, using this method may result in an 

increased false-positive rate. A second method is thus included, in which read number of 

sequences from multiple matching loci is uniformly distributed (based on the assumption 

that each of these multiple sites will equally express RNAs) and consequently generates an 

adjusted nmut. 
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SPORTS1.0 summary output includes annotation details for each sequence and 

length distribution along with other statistics. (See sample output Figure 2.2 and Figure 2.3, 

Table S2.1 and Table S2.2). User guideline is provided online (https://github.com/juncha-

oshi/sports1.0).  
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Figures 

 

Figure 2.1: Workflow of SPORTS1.0 

SPORTS1.0 contains four main steps, that is, pre-processing, mapping, annotation output, 

and annotation summary, as outlined in the figure. 
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Figure 2.2: Exemplary annotation and profiling of sRNA-seq datasets generated by 

SPORTS1.0 

Categorization and length distribution analysis of different sRNA types in mouse sperm 

(a), bone marrow cell (b), and intestinal epithelial cell (c) samples. RPM, reads per mil-

lion clean reads; Unanno: unannotated; MG: match genome; UMG: unmatch genome. 
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Figure 2.3: Cell-specific rsRNA profiles revealed by SPORTS1.0 

Subtypes of rRNA precursors (5.8S, 18S, 28S, etc.) for rsRNAs from mouse sperm (a), 

bone marrow cell (b), and intestinal epithelial cell (c) samples. Comparison of rsRNA-

generating loci from different rRNA precursors reveals distinct pattern between sperm 

(d), bone marrow cell (e), and intestinal epithelial cell (f). RPM, reads per million clean 

reads.  
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Figure 2.4: Cell-specific tsRNA profiles revealed by SPORTS1.0 

Examples of 3 cell-specific tsRNA profiles revealed in mouse sperm (a), bone marrow 

cell (b), and intestinal epithelial cell (c) samples. Full tsRNA mapping results against 

tRNA loci are included in Figure S2.1-S2.3 for sperm (Figure S2.1), bone marrow cell 

(Figure S2.2), and intestinal epithelial cell (Figure S2.3) respectively. RPM, reads per 

million clean reads.  
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Figure 2.5: sRNA mismatch statistics by SPORTS1.0 

The percentage of unique sequences that contain significantly-enriched mismatches out 

of total number of unique sequences from each subtype of sRNAs (miRNAs, piRNAs, 

tsRNAs, and rsRNAs) is provided for sperm (a), bone marrow cell (b), and intestinal epi-

thelial cell (c) samples. EMS: enrichment mismatch sequences; TUS: total unique se-

quences. 
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Figure 2.6: Species recompiled for analysis by SPORTS1.0 

The 68 species and their respective reference database included in SPORTS1.0 precom-

piled for analysis.  
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Supplementary materials 

Figure S2.1: The mouse sperm tsRNA mapping results against tRNA loci revealed 

by SPORTS1.0  

Mapping result for each annotated tsRNA was provided. 

 

Figure S2.2: The mouse bone marrow cell tsRNA mapping results against tRNA loci 

revealed by SPORTS1.0  

Mapping result for each annotated tsRNA was provided. 

 

Figure S2.3: The mouse intestinal epithelial cell tsRNA mapping results against 

tRNA loci revealed by SPORTS1.0  

Mapping result for each annotated tsRNA was provided. 

 

Table S2.1: Example output of SPORTS1.0 which includes annotation for each se-

quence (A), length distribution information (B) and expression level of each anno-

tated category (C) for dataset GSM2304822 

 

Table S2.2: Example output of SPORTS1.0 for sRNA sequence mismatch analysis 

for dataset GSM2304822 under the alignment criteria of mismatch ≤ 1 (A), ≤ 2 (B), 

and ≤ 3 (C) 

 

Table S2.3: The list of 68 species and their respective reference database that are 

precompiled in SPORTS1.0 ready for analyses 
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Chapter 3: Improved small RNA-seq method by overcoming RNA modifications 

Abstract 

Although high-throughput RNA sequencing (RNA-seq) has greatly advanced small RNA 

discovery, the currently widely used complementary DNA library construction protocol 

generates biased sequencing results. This is partially due to RNA modifications that inter-

fere with adapter ligation and reverse transcription processes, which prevent the detection 

of small RNAs bearing these modifications. PANDORA-seq (Panoramic RNA Display by 

Overcoming RNA Modification Aborted Sequencing) is presented in this chapter, employ-

ing a combinatorial enzymatic treatment to remove key RNA modifications that block 

adapter ligation and reverse transcription. PANDORA-seq identified abundant modified 

small RNAs — mostly transfer RNA-derived small RNAs (tsRNAs) and ribosomal RNA-

derived small RNAs (rsRNAs) — that were previously undetected, exhibiting tissue-spe-

cific expression across mouse brain, liver, spleen and sperm, as well as cell-specific ex-

pression across embryonic stem cells (ESCs) and HeLa cells. Using PANDORA-seq, un-

precedented landscapes of microRNA, tsRNA and rsRNA dynamics are revealed during 

the generation of induced pluripotent stem cells. Importantly, tsRNAs and rsRNAs that are 

downregulated during somatic cell reprogramming impact cellular translation in ESCs, 

suggest a role in lineage differentiation.  
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Introduction 

High-throughput RNA-seq has substantially facilitated the discovery of functional small 

RNAs over the last decade. Traditional construction of cDNA libraries for deep sequencing 

of small RNAs is based on adapter ligation to the 3’ and 5’ termini, which is followed by 

reverse transcription. This protocol has been proven efficient for many small RNA species 

that have a 5’-P and 3’-OH (Figure 3.1a), such as miRNAs (Bartel, 2018). However, this 

protocol has inherent problems when encountering small RNAs bearing specific RNA 

modifications, including 3’ terminal modifications such as 3’-P and 2’3’-CP that block the 

adapter ligation process (Honda et al., 2015), and RNA methylations such as m1A, m3C, 

m1G and m2
2G that interfere with reverse transcription (Cozen et al., 2015; Dai et al., 2017; 

Zheng et al., 2015). small RNAs bearing one or more of these modifications are often in-

efficiently and incompletely converted into cDNAs, leading to challenges with their detec-

tion and quantitation by deep sequencing. This problem is particularly severe for highly 

modified small RNAs such as tsRNAs and rsRNAs (Chen et al., 2016b; Zhang et al., 2016), 

because their precursors (tRNAs and rRNAs) are known to harbor a diversity of RNA 

modifications (Phizicky and Hopper, 2010; Schimmel, 2018; Sergiev et al., 2018) and be-

cause 3’-P or 2’3’-CP are commonly implemented during the biogenesis of tsRNAs and 

rsRNAs (Akiyama et al., 2019; Honda et al., 2015; Shigematsu et al., 2018). 

To discover the modified small RNAs that escaped traditional RNA-seq, enzymatic 

treatment protocols have been developed to address specific RNA modifications. For ex-

ample, treatment with the dealkylating enzyme AlkB and its mutant forms have been in-

troduced to demethylate RNA modifications (for example, m1G, m1A, m3C, and m2
2G) to 
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enable reverse transcription (Figure 3.1a) (Cozen et al., 2015; Dai et al., 2017; Zheng et 

al., 2015); and T4PNK has been used to convert the 3’ terminal 3-’P or 2’3’-CP into 3’-

OH and to add a 5’-P, thus facilitating adapter ligation for RNA-seq of small (Akat et al., 

2019) and large (Giraldez et al., 2019) RNAs (Figure 3.1a). While these methods can re-

veal the sequence of specific small RNAs bearing targeted modifications, each of these 

treatments alone cannot capture modified small RNAs beyond their individual enzymatic 

capacity and therefore are not able to reveal a full small RNA spectrum. In addition, the 

bioinformatics analyses of small RNAs are currently evolving from previously focusing on 

miRNAs (Bartel, 2018) to other potentially important small RNA species, including the 

emerging tsRNAs (Schimmel, 2018; Shi et al., 2019; Su et al., 2020; Zhang et al., 2016) 

and rsRNAs (Gu et al., 2020; Natt et al., 2019; Zhang et al., 2018b) that can now be sys-

tematically analyzed along with miRNAs and piRNAs using the software described in 

Chapter 2. 

To test whether a combinatorial use of enzymatic treatments can overcome both 

adapter ligation and reverse transcription obstacles and reveal a more in depth composition 

of small RNAs, PANDORA-seq is developed (Figure 3.1a,b). This method, coupled with 

the improved small RNA bioinformatics pipelines (see Methods), is based on consecutive 

enzymatic treatments of the small RNA fraction (15- to 50-nucleotide) with T4PNK and 

AlkB to provide stepwise optimization that improves both adapter ligation and reverse 

transcription during cDNA library construction, respectively (Figure 3.1a). Systematic 

comparison to existing small RNA-seq methods demonstrated that PANDORA-Seq out-

performed both traditional sequencing and individual AlkB or T4PNK treatments by more 
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extensively and accurately uncovering previously unidentified modified small RNAs in a 

wide range of mouse and human tissues and cells. PANDORA-seq also revealed unprece-

dented miRNA, tsRNAs and rsRNAs dynamics during the reprogramming of somatic cells 

to induced iPSCs, guiding us to probe their function during ESC differentiation. Together, 

PANDORA-seq and the small RNA repertoire across different lineages open the avenue 

for future exploration of the hidden layer of functional small RNAs in other biological and 

disease conditions. 

 

Results 

Enzyme validation and protocol optimization 

PANDORA-seq is developed by leveraging a combination of two enzymatic treatments 

that can overcome distinct RNA modifications that either prevent reverse transcription (by 

AlkB treatment) or adapter ligation (by T4PNK treatment) (Figure 3.1a). To this end, 

AlkB enzyme was generated using a previously reported plasmid with codon optimization 

(Trewick et al., 2002). Then, its enzymatic efficacy was tested in removing RNA methyl-

ations using a high-throughput RNA modification quantitation platform based on liquid 

chromatography-tandem mass spectrometry (LC-MS/MS) that was developed previously 

(Chen et al., 2016a; Zhang et al., 2018b). The AlkB efficiency was tested by treating the 

15- to 50 -nucleotide RNA fraction extracted from mouse liver, followed by LC-MS/MS 

examination. As a result, the AlkB treatment efficiently removed m1A and m3C and also 

significantly decreased m1G and m2
2G to ~20% of their original level (Figure 3.1c). The 

AlkB plasmid (see Methods) has sequence differences at the amino terminus compared to 



 57 

a previously reported AlkB (Zheng et al., 2015), but generates similar efficacy in removing 

m1A, m3C and m1G, demonstrating expected enzymatic activity.  

The enzymatic efficacy of T4PNK in converting 3’-P and 2’3’-CP into 3’-OH was 

also tested in regard to its impact in facilitating RNA adapter ligation. As shown in Figure 

3.1d, synthetic tsRNAs with 3’-P cannot be ligated using T4 ligase, while T4PNK treat-

ment of these 3’-P tsRNAs enabled a high ligation efficiency similar to that of the synthetic 

3’-OH tsRNA (Figure 3.1d). The effect of T4PNK was further tested on the 25- to 50-

nucleotide RNA fraction recovered from mouse tissues, which is expected to contain 5’ 

tsRNAs bearing a 2’3’-CP end such as those generated by angiogenin-mediated cleavage 

of tRNA (Honda et al., 2015). As an example, using RNAs from the mouse spleen (Figure 

3.1d), it is found that while T4 ligase alone worked poorly on the untreated samples, 

T4PNK treatment substantially increased the overall adapter ligation efficiency (Figure 

3.1e), demonstrating T4PNK’s effect in improving adapter ligation for small RNA cDNA 

library construction. 

Notably, although AlkB and T4PNK are not supposed to have ribonuclease activity, 

and despite the addition of RNase inhibitor during the enzymatic treatment, it was noticed 

that when treating total RNA from tissues or cells, AlkB can cause detectable RNA degra-

dation, as revealed by increased RNA smear in the small RNA region and increased level 

of tsRNAs and rsRNAs detected by northern blots (Figure 3.1f,g). This phenomenon might 

be due to the demethylation effect of AlkB on tRNAs and rRNAs, which results in altered 

RNA structure and increased fragmentation of tRNAs and rRNAs (Pan, 2018). This effect 

will generate additional tsRNAs/rsRNA in the small RNA library as an artifact, which has 
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not been addressed in previous publications using AlkB treatment (Cozen et al., 2015; 

Zheng et al., 2015). To circumvent this problem, the protocol was optimized by applying 

a pre-size-selection procedure to first obtain the 15- to 50-nucleotide small RNA fraction 

from the total RNA and then performing enzymatic treatments on this 15- to 50-nucleotide 

RNA fraction. This procedure pre-eliminated the sources (that is, tRNAs and rRNAs) that 

generate artificial tsRNAs and rsRNAs from degradation and, importantly, the treatment 

of AlkB and/or T4PNK in the 15- to 50-nucleotide fraction did not cause further degrada-

tion of tsRNAs and rsRNAs (Figure 3.1h,i).  

The potential impact of treatment order of AlkB and T4PNK was also tested by 

comparing the RNA-seq results between the treatment order of AlkB first and T4PNK sec-

ond (AlkB+T4PN) versus T4PNK first and AlkB second (T4PNK+AlkB) in HeLa cells. 

The results showed a high degree of correlation (ρ=0.995; Figure 3.1j) between both treat-

ments orders, indicating that the order of treatment does not result in major differences. 

With the enzymatic validation and protocol optimization above, PANDORA-seq was es-

tablished by first size-selecting the 15- to 50-nucleotide RNA fraction, followed by enzy-

matic treatment in the order T4PNK+AlkB, as applied to all other tissue or cell samples. 

A tsRNA- and rsRNA-enriched small RNA landscape 

The outcome of PANDORA-seq was assessed in a variety of mouse and human tissue and 

cell types, including mouse brain, liver, spleen and mature sperm (and sperm head), mouse 

ESCs (mESCs); human ESCs in primed and naïve (Guo et al., 2017)) states, HeLa cells, 

and cells during the reprogramming of mouse embryonic fibroblasts (MEFs) into iPSCs 

(Cheloufi et al., 2015). Three biological repeats were included for most tissues or cell types, 
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except two biological repeats were included for mouse spleen and naïve hESC sample. The 

read summaries and differentially expressed small RNAs between individual protocols are 

presented in Table S3.1. small RNA sequence distribution, as exemplified in mouse brain, 

liver, mature sperm, mESCs, and Hela cells (Figure 3.2a-e) (see Figure 3.3 for other tissue 

and cell types) reveals that while miRNAs are the dominant small RNAs detected by tra-

ditional RNA-seq (except in mature sperm and sperm head as was previously known (Peng 

et al., 2012)), the treatment with AlkB and T4PNK substantially increased the reads of 

tsRNAs and rsRNAs in distinct patterns (Figure 3.2a-e), and PANDORA-seq showed an 

overall enhanced effect compared to each treatment alone. Due to the abundantly increased 

rsRNA reads after T4PNK or PANDORA-seq treatment, which consumed the relative 

reads of tsRNAs and miRNAs (Figure 3.2a-e), the relative tsRNA/miRNA ratio was fur-

ther separately analyzed under different treatment protocols (Figure 3.2f, Figure 3.3g-l), 

which showed clearer effects of each treatment on tsRNA discovery. Notably, mature 

sperm heads contained the highest concentration of tsRNAs and showed the highest 

tsRNA/miRNA ratio across all samples examined under PANDORA-seq (Figure 3.2c,f).  

The abundant expression of rsRNAs revealed by PANDORA-seq is surprising, yet 

the results represent the in vivo situation. The relative expression levels of representative 

miRNA, tsRNA and rsRNA were further validated by northern blots in mouse brain, liver 

and in HeLa cells (Figure 3.2g-i). The abundant expression of tsRNAs and rsRNAs has 

also been previously detected in mouse sperm by northern blots (Chu et al., 2017; Zhang 

et al., 2018b). Notably, certain miRNAs, such as miR-122, remain highly expressed in the 

liver compared to tsRNAs and rsRNAs (Figure 3.2h), resonating with their crucial role in 
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liver function (Valdmanis et al., 2016). A further examination of the relative efficiency 

across different northern blot probes (that is, rsRNA-28S-1, 5’ tsRNAGlu, let-7i, mir-122, 

and mir-21) (Figure 3.4) enabled better semi-quantitative analysis of the relative level of 

the examined small RNAs in the tissues and cells by northern blot signal (Figure 3.2g-i), 

again supporting the abundant existence of rsRNAs and tsRNAs compared with miRNAs, 

consistent with the result of PANDORA-seq.  

Notably, the bioinformatics pipeline discovered appreciable piRNA reads from 

non-germ cell mouse samples (Figure 3.2a-e and Figure 3.3a-f). Since the annotation of 

piRNAs was based on the two existing publicly available piRNA databases (Sai Lakshmi 

and Agrawal, 2008; Zhang et al., 2014), but not the PIWI pulldown experiments of each 

tissue, the accuracy of the piRNA annotation largely depends on the quality of the data-

bases. In fact, cautions are exercised in the analyses regarding the true identity of these 

piRNAs in mice: if one to three mismatches are allowed, the annotation rate of piRNA (but 

not other types of small RNAs) dramatically decreases and many piRNAs are annotated in 

other small RNA categories (Figure 3.5), which puts the identity of these piRNAs in doubt. 

Further analyses of piRNAs were avoided in the following context but focused on the other 

categories of small RNAs that could be reliably annotated (for example, miRNAs, tsRNAs 

and rsRNAs). 

Distinct methylation pattern of miRNAs, tsRNAs and rsRNAs  

Next, the response of miRNAs, tsRNAs and rsRNAs was separately analyzed upon T4PNK, 

AlkB, and PANDORA-seq (T4PNK+AlkB) treatments. Using mESCs (Figure 3.6a-m) as 

an example (see Figure 3.7 for other tissue and cell types), miRNA profiles were generally 
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not dramatically changed after the enzymatic treatments, as shown in the correlation for 

traditional vs AlkB (Figure 3.6a), traditional vs T4PNK (Figure 3.6b), and traditional vs 

PANDORA-seq (T4PNK+AlkB) (Figure 3.6c). This is consistent with the well-defined 

biogenesis pathways of miRNAs, which result in 5’-P and 3’-OH termini, and the fact that 

miRNA populations are less modified than the tsRNA and rsRNA populations (Zhang et 

al., 2018b).  

Compared to miRNAs, tsRNAs are sensitive to both AlkB and T4PNK, as demon-

strated by the correlation pattern, with a substantial number of tsRNAs showing upregula-

tion after each treatment alone or after PANDORA-seq treatment (T4PNK+AlkB) in 

mESCs (Figure 3.6a-c) and similarly in other tissue and cell types (Figure 3.7). These 

results resonate with the fact that some reverse transcription-blocking RNA modifications 

in tsRNAs can be removed by AlkB; and that the 3’-P and 2’3’-CP termini of tsRNAs can 

be converted to 3’-OH by T4PNK to improve adapter ligation efficiency. 

Notably, compared to the effects of AlkB and T4PNK treatment alone, a combina-

torial effect of PANDORA-seq is observed when examining the relative expression of tsR-

NAs of different origins (5’ tsRNA, 3’ tsRNA, 3’ tsRNA with a CCA end, and internal 

tsRNAs) in mESCs (Figure 3.6d, see Figure 3.8 for other tissue and cell types). The over-

all mapping of all tsRNAs on a tRNA length scale revealed the preferential loci from which 

tsRNAs are derived from the full-length tRNA under different protocols (Figure 3.6e). In 

addition to the overall mapping analyses, individual tsRNAs have distinct responses, as 

exemplified in f (data on tsRNA mapping to each kind of tRNA in all tissue and cell types 

are provided in Figure S3.1). In contrast. mitochondrial tRNAs on the other hand showed 
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an overall different tsRNA production pattern compared with that of genomic tsRNAs 

(Figure 3.6d,e), possibly because mitochondrial tRNAs bear different RNA modifications 

and structures (Suzuki and Suzuki, 2014) that result in a differential cleavage pattern (see 

Figure 3.8 and 3.9 for the tsRNA mapping data in other tissue and cell types). 

Compared with tsRNAs, rsRNAs are less sensitive to AlkB treatment but show a 

dramatic increase after T4PNK treatment (Figure 3.6g-i), suggesting that many rsRNAs 

contain either a 3’-P or 2’3’-CP that can be converted to 3’-OH, or a 5’-OH that can be 

converted to 5’-P. Detailed mapping data of rsRNAs showed the specific loci of different 

ribosomal RNAs from which they are derived (as exemplified by 5S, 5.8S 18S and 28S 

rRNAs in Figure 3.6j-m, data for 45S rRNA and mitochondria-encoded 12S, 16S rRNAs 

are provided in Figure S3.2), and the different effects between protocols can be visualized. 

Notably, PANDORA-seq further increased rsRNA detection compared to T4PNK alone, 

demonstrating that these small RNAs harbor both adapter ligation-preventing terminal 

modifications and reverse transcription-blocking internal modifications. The rsRNA map-

ping data for other tissue and cell types are provided in Figure S3.2. 

Interestingly, while the majority of miRNAs (annotated in miRBase) are not re-

sponsive to AlkB and T4PNK treatment, a small portion of them indeed showed a signifi-

cant upregulation in their relative expression levels following the PANDORA-seq protocol. 

Further analyses revealed that most of these distinct miRNA sequences can in fact be an-

notated to other small RNA categories, with the majority of them annotated to rsRNAs in 

both mESCs and hESCs (Figure 3.6n,o). Similar observations are also shown in other tis-

sue and cell types (Figure 3.10 and Table S3.2), suggesting that these miRNAs are distinct 
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from canonical miRNAs and await further evaluation in miRBase. Based on this infor-

mation, the workflow of SPORTS1.0 described in charter 2 was revised (Figure 3.11) and 

the annotation results in this chapter were generated by the upgraded version SPORTS1.1. 

Tissue- and cell-specific tsRNA and rsRNA patterns 

Using PANDORA-seq, the expression patterns of tsRNAs and rsRNAs were further ana-

lyzed across six tissue and cell types in mice (brain, liver, spleen, mESCs, sperm and sperm 

heads) (Figure 3.12a-d) and three cell types in humans (HeLa cell, primed hESCs and 

naïve hESCs) (Figure 3.12e-j). The radar plot of each tissue or cell type shows the relative 

response of tsRNA subcategory to AlkB, T4PNK and PANDORA-seq treatment compared 

with the traditional protocol (the levels of tsRNA were normalized to total miRNA reads), 

revealing tissue- and cell-specific patterns (Figure 3.12a,e). Notably, PANDORA-seq in-

creased the relative level of a majority of tsRNA subcategories to a greater extent compared 

with AlkB or T4PNK treatment alone (Figure 3.12a,e). The heatmaps of genomic and 

mitochondrial tsRNAs further show the relative amount of each tsRNA subcategory (nor-

malized with total miRNA reads) across mouse (Figure 3.12b) and human (Figure 3.12f) 

tissue and cell types.  

The mapping and overall comparative expression patterns of rsRNAs across differ-

ent protocols and tissue or cell types are summarized according to their origin from indi-

vidual ribosomal RNAs (that is, 5S, 5.8S,18S, 28S, 45S and mitochondria-encoded 12S 

and 16S rRNAs) in Figure 3.13 and Figure 3.2. Overall coverage similarity comparison 

matrices (Figure 3.12c,g) and detailed rsRNA mapping data (Figure 3.12d,h) are 
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presented using rsRNAs from 28S and 18S rRNA as examples, from which the distinct 

expression patterns of rsRNAs across tissue and cell types can be visualized and compared.  

In addition to tsRNAs and rsRNAs, human and mouse samples also contain small 

RNAs derived from YRNAs, which are defined as YRNA-derived small RNAs (ysRNAs) 

(Figure S3.3). ysRNAs have been reported to be involved in immunological processes 

(Hizir et al., 2017) and could be harnessed as disease markers along with tsRNAs/rsRNAs 

(Gu et al., 2020). PANDORA-seq reveals that ysRNAs are differentially expressed be-

tween HeLa cells, primed hESCs and naïve hESCs (Figure 3.12i,j and Figure S3.3) and 

their biogenesis and functions await further explorations. 

Small RNA dynamics during iPSC induction 

Finally, PANDORA-seq was used to explore the small RNA dynamics during transcription 

factor-mediated somatic cell reprogramming to pluripotency. The levels of miRNAs, tsR-

NAs and rsRNAs showed dynamic changes during the reprogramming process: MEFs 

(Day0), reprogramming intermediates (Day3) and stably derived iPSCs (Figure 3.14a). An 

overall decrease in the miRNA level during reprogramming was evident by PANDORA-

seq (Figure 3.14b). The overall tsRNA/rsRNA profiles between different protocols and 

across different stages were summarized for tsRNAs and rsRNAs in Figure 3.14c,g and 

Figure 3.13. Heatmap analyses (Figure 3.14d) and exemplary tsRNA loci mapping (Fig-

ure 3.16e,f) showed a dynamic tsRNA expression pattern during the reprogramming pro-

cess by PANDORA-seq. The rsRNA comparison matrix (Figure 3.14g) showed that 

PANDORA-seq reveals more dynamic changes in expression patterns across different 

stages compared with traditional RNA-seq. Representative rsRNAs from 5S, 18S and 28S 
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rRNAs (Figure 3.14h-j) showed statistically significant changes in expression levels dur-

ing the reprogramming process. Selected individual miRNAs, tsRNAs and rsRNAs be-

tween MEFs and iPSCs were validated by northern blots (Figure 3.14k-r), with overall 

consistency with PANDORA-seq results (Figure 3.14k-r), but less consistency with the 

results of traditional RNA-seq (Table S3.3).  

The results that many miRNAs and tsRNAs are downregulated during iPSC repro-

gramming are consistent with previous reports that decreased levels of miRNAs 

(Viswanathan et al., 2008) and tsRNAs (Krishna et al., 2019) are associated with mESC 

pluripotency (some tsRNAs showing upregulation by PANDORA-seq are actually ex-

pressed at low level below the detection limit by northern blots). The changes of rsRNAs 

during reprogramming are more dynamic, depending on the loci from which they are de-

rived from (Figure 3.14h-j,q,r).  

tsRNAs and rsRNAs impact mESC differentiation 

The tsRNAs (Ala, Arg, Glu, His and Lys) and rsRNA-28S-1 showing downregulation dur-

ing iPSC reprogramming by PANDORA-seq were further examined by northern blots dur-

ing mESC differentiation in an embryoid bodies formation assay. The northern blot results 

showed a trend of upregulation for all these tsRNA and rsRNA candidates during embryoid 

body differentiation on day 6 and 10 (Figure 3.15), suggesting that these tsRNAs and 

rsRNAs may play a functional role in mESC differentiation. To test this hypothesis, differ-

ent types of tsRNA and rsRNA (that is, rsRNA-28S-1, individual 5’ tsRNAAla, 3’ tsRNAArg, 

5’ tsRNAGlu, 5’ tsRNAHis, 3’ tsRNALys, and a pool of the five abovementioned tsRNAs) 

were transfected into mESCs followed by embryoid body formation. Then transcriptomic 
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RNA-seq/bioinformatics analyses of embryoid bodies were performed at Days 1, 3 and 6 

after transfection (Figure 3.16a), during which no significant morphological changes were 

detected during embryoid body formation after any of the tsRNA or rsRNA transfections. 

Gene ontology analyses on the altered mRNAs (Table S3.4) suggest that the trans-

fection of rsRNA-28S-1 or the tsRNA pool significantly promoted the lineage differentia-

tion in day 6 embryoid bodies, including the promotion of endoderm (for example, inner 

ear development), mesoderm (for example, urogenital and muscle/heart development) and 

ectoderm (for example neurological development) (Figure 3.16b). While different effects 

of individual tsRNA transfections were observed, transfection of tsRNA pool showed an 

overall combinatory effect (Figure 3.16b). It is interesting that the transfection of rsRNA-

28S-1 or the tsRNA pool had a similar overall effect in promoting lineage differentiation 

(Figure 3.16b) despite their distinct sequences. This could be due to the fact that both 

rsRNA-28S-1 and tsRNA pool have a strong effect in downregulating the mitochondria 

oxidative phosphorylation and translation/ribosome pathways (Figure 3.16c), as the alter-

ation of mitochondria oxidative phosphorylation can act as an overarching factor to change 

cell metabolism and affect cell lineage progression (Zhang et al., 2018a). Moreover, the 

promotion of embryonic forebrain development has been shown to be associated with 

downregulation of ribosome/translation pathways (Chau et al., 2018), consistent with the 

observation. Individual genes involved in the highlighted pathways in Figure 3.16b,c were 

further shown in heatmaps and the overlapping changes shown between each transfection 

(Figure 3.16d,e and Figure 3.17a-d), further supporting the discoveries at the pathway 

level and providing a gene resource for future in-depth investigations. 
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Next a day 1 to day 3 to day 6 developmental view of the overall trend of selected 

key pathway was generated shown in Fig6b,c, in which an algorithm was applied to com-

pute gene set scores using the rank-weighted gene expression of individual samples (Yang 

et al., 2012), with a higher level representing an overall upregulation of a specific Gene 

Ontology biological process (GOBP) term (Figure 3.16f and Table S3.5). The results re-

capitulate the conclusion that the main lineage effects appear at day 6 while the effects are 

minimal at day 1 (Figure 3.16f). Indeed, the transcriptomic changes on day1 (from any of 

the tsRNA or rsRNA transfection groups) were mostly sporadic and the altered genes did 

not group into clusters into clusters in Gene Ontology analyses under the same criteria that 

used for the differentially expressed genes on days 3 and 6 (Figure 3.16b,c, Figure 3.17e,f). 

This suggests that tsRNA and rsRNA transfection do not directly disrupt mRNAs, but may 

regulate translational processes (Shi et al., 2019). The embryoid body differentiation effect 

observed on day 6 would represent the outcome of a cascade reaction during early transla-

tional programming (Genuth and Barna, 2018) that results in stem cell differentiation (Li 

and Wang, 2020). Using a translational assay measuring the nascent protein synthesis, it 

was indeed found that the transfection of rsRNA-28S-1 or the tsRNA pool in mESCs re-

duced the translation rate (Figure 3.16g,h). Although the exogenous transfection of tsR-

NAs and rsRNAs may not precisely represent the relative tsRNA and rsRNA quantity and 

modification status in vivo, these proof-of-principle functional data may open future op-

portunity to investigate how such translational programming may affect cell differentiation. 
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Conclusion 

PANDORA-seq is developed by improving both adapter ligation and reverse tran-

scription during RNA-seq library construction, and it shows major advantages: (1) The 

single and combinational use of T4PNK and AlkB treatments not only enabled the theo-

retical and practical identification of previously undetected modified small RNAs, but also 

delineated the small RNAs that respond to different treatments, from which their RNA 

modification conditions can be partially deduced. (2) Importantly, the northern blot-vali-

dated PANDORA-seq results in different tissue and cell types (Figure 3.2) and during 

reprogramming (Figure 3.14) allowed for discovery of an unprecedented landscape that 

miRNAs are in fact not the majority small RNA population in many tissue and cell types. 

(3) The pre-size-selection procedure corrected the false positive detection of tsRNAs and 

rsRNAs that can be induced by AlkB treatment on total RNAs (Figure 3.1f-i), which has 

been previously been overlooked (Cozen et al., 2015). (4) The upgraded small RNA anal-

ysis pipeline based on SPORTS1.1 (see method) provided direct mapping visualization of 

tsRNAs and rsRNAs in regard to their sources (tRNAs and rRNAs) and can easily be used 

for comparison between different protocols and samples, which may provide the bench-

mark for future small RNA analyses. (5) Results from PANDORA-seq also provided a 

knowledge basis for updating the information in miRBase, including the re-evaluation of 

miRNA identity according to their sequence origin (for example, sequences that can alter-

natively be matched to rsRNAs) and modification features judged by their sensitivity to 

PANDORA-seq (Figure 3.6n,o). 
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Data obtained from PANDORA-seq also provide additional interpretations of pre-

vious studies. For example, it has been demonstrated that the injection of the 30- to 40-

nucleotide fractions of sperm RNAs from high-fat diet-treated mice can induce metabolic 

phenotypes in the offspring (Chen et al., 2016a; Sarker et al., 2019; Zhang et al., 2018b), 

which could be due to the effect of tsRNAs, because tsRNAs were the dominant small 

RNAs previously detected in 30- to 40-nucleotide fractions by traditional RNA-seq. How-

ever, PANDORA-seq revealed that the rsRNAs are, in fact, more abundant in 30- to 40-

nucleotide RNA fractions from mature sperm (note that the level of 30- to 40-nucleotide 

rsRNAs in mature sperm heads are similar to those of tsRNAs) (Figure 3.2c); therefore, 

the phenotypic outcome of injecting the 30- to 40-nucleotide RNA fractions could be a 

combinatorial effect from both tsRNAs and rsRNAs and may relate to their function in cell 

fate regulation in the early embryo as exemplified in mESCs (Figures 3.14, 3.16). 
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Methods 

Animals 

Animal experiments were conducted under the protocol and approval of the institutional 

animal care and use committees of the University of California, Riverside, the University 

of Nevada, Reno and the Institute of Zoology, Chinese Academy of Sciences, China. Mice 

were given access to food and water ad libitum and were maintained on a 12 h light/12 h 

dark artificial lighting cycle. Mice were housed in cages at a temperature of 22-25 °C, with 

40-60% humidity. 

 

Tissue preparation 

Male C57BL/6J mice aged 9-10 weeks were sacrificed individually, and brains, livers, and 

spleens were harvested and frozen in liquid nitrogen. Frozen tissues were pulverized in 

liquid nitrogen for RNA isolation or were stored at -80 °C.  

 

Sperm isolation 

Mature sperm were released from the cauda epididymis of 9-week-old C57BL/6J male 

mice into 5 ml phosphate-buffered saline (PBS) and incubated at 37 °C for 15 min, after 

which the sperm were filtered using a 40-µm cell strainer to remove the tissue debris. The 

sperm were then incubated with somatic cell lysis buffer (0.1% sodium dodecyl sulfate 

(SDS) and 0.5% Triton X in nuclease-free H2O) for 40 min on ice to eliminate somatic cell 

contamination. Sperm were then pelleted by centrifugation at 600g for 5 min. Then, the 
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sperm pellet was resuspended and washed in 10 ml PBS and centrifuged twice at 600g for 

5 min. The precipitation was performed for the RNA isolation procedure. 

 

Sperm head isolation 

Sperm head isolation was based on the previous publication (Peng et al., 2012). Mature 

sperm were released from the cauda epididymis of male mice into 5 ml PBS and incubated 

at 37 °C for 15 min, after which the sperm were then filtered using a 40-µm cell strainer to 

remove tissue debris. After centrifugation at 3,000g for 5 min, the sperm were then incu-

bated with lysis buffer (10 mM Tris-HCl (pH 8.0), 10 mM EDTA, 50 mM NaCl, 2% SDS 

and 7.5% proteinase K) for 15 min at room temperature, followed by centrifugation at 

3,000g for 5 min. The pellet (mostly sperm heads) was collected, resuspended, washed in 

10 ml PBS and centrifuged at 600g for 5 min, repeated twice. The precipitation was exam-

ined under microscopy for sperm head purity (>99%) before being processed for RNA 

extraction. 

 

Mouse ESCs  

E14 mouse ESCs were kindly provided by A. Smith (Stem Cell Institute, Cambridge, 

United Kingdom). Cells were cultured on gelatin-coated plates in N2B27 supplemented 

with 2iLIF (1μM MEK inhibitor PD0325901 (Stem Cell Institute), 3μM GSK3 inhibitor 

CHIR99021 (Stem Cell Institute) and 10 ng ml-1 leukaemia inhibitory factor (LIF; Stem 

Cell Institute)) at 37 °C under 21% O2 and 5% CO2. The N2B27 medium comprised a 1:1 

mix of DMEM/F-12 (21331-020; Thermo Fisher Scientific) and Neurobasal A (10888-022; 



 72 

Thermo Fisher Scientific) supplemented with 1% vol/vol B-27 (10889-038; Thermo Fisher 

Scientific), 0.5% vol/vol N-2 (homemade), 100μM β-mercaptoethanol (31350-010; 

Thermo Fisher Scientific), penicillin-streptomycin (15140122; Thermo Fisher Scientific) 

and GlutaMAX (35050061; Thermo Fisher Scientific). The N-2 supplement contained 

DMEM/F-12 medium (21331-020; Thermo Fisher Scientific), 2.5 mg ml-1 insulin (I9287; 

Sigma-Aldrich), 10 mg ml-1 apo-transferrin (T1147; Sigma-Aldrich), 0.75% Bovine Albu-

min Fraction V (15260037; Thermo Fisher Scientific), 20μg ml-1 progesterone (p8783; 

Sigma-Aldrich), 1.6 mg ml-1 putrescine dihydrochloride (P5780; Sigma-Aldrich) and 6μg 

ml-1 sodium selenite (S5261; Sigma-Aldrich).  

 

Human ESCs 

The UK Stem Cell Bank Steering Committee approved all of the hESC experiments. All 

of the experiments complied with the UK Code of Practice for the Use of Human Stem 

Cell Lines. The hESC line used was H9, which was kindly provided by L. Vallier (Stem 

Cell Institute), within an agreement with WiCell. Unless otherwise stated, hESCs were 

maintained in a humidified incubator set at 37 °C under 21% O2 and 5% CO2. 

Cells were passaged using Accutase, which was added for 3 min at 37 °C before 

being diluted in DMEM/F-12 and centrifuged. Cells were then plated in their appropriate 

medium supplemented with 10μM ROCK inhibitor Y-27632 (72304; STEMCELL Tech-

nologies). The ROCK inhibitor was removed after 24 h. 
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Primed hESCs 

Conventional primed hESCs were either cultured on growth factor-reduced Matrigel 

(Corning)-coated dishes or on irradiated CF-1 MEFs (ASF-1201; AMS Biotechnology). 

For the Matrigel coating, a 16% Matrigel solution in DMEM/F-12 was incubated for 2 h at 

room temperature. When cultured on Matrigel, primed hESCs were cultured in mTeSR1 

(85850; STEMCELL Technologies), with the medium changed every 24 h. When cultured 

on MEFs, primed hESCs were cultured in primed medium consisting of DMEM/F-12 

(21331-020; Thermo Fisher Scientific) supplemented with 100μM β-mercaptoethanol 

(31350-010; Thermo Fisher Scientific), penicillin-streptomycin (15140122; Thermo Fisher 

Scientific), GlutaMAX (35050061; Thermo Fisher Scientific), MEM Non-Essential Amino 

Acids (11140035; Thermo Fisher Scientific) and 20% vol/vol KnockOut Serum Replace-

ment (10828010; Thermo Fisher Scientific). This was supplemented with 12 ng ml-1 

bFGF2 (Stem Cell Institute) before use. 

 

Naive hESCs 

To convert hESCs into a naive state, the protocol published by A. Smith’s laboratory was 

used (Guo et al., 2017). At 24 h before beginning the resetting protocol, hESCs were plated 

on MEFs in primed medium. Once reset, cells were maintained in N2B27 supplemented 

with T2iLGö (1µM CHIR (Stem Cell Institute), 1µM PD03 (Stem Cell Institute), 10 ng 

ml-1 recombinant human LIF (Stem Cell Institute) and 2µM Gö (2285; Tocris) under hy-

poxic conditions (5% O2, 5% CO2 and 37 °C). 
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Induction of iPSCs  

To derive iPSCs, a well-established reprogrammable mouse system that allows reproduci-

ble kinetics was used during this process (Cheloufi et al., 2015; Stadtfeld et al., 2010). 

MEFs were derived from transgenic embryos harbouring two copies of a doxycycline-in-

ducible polycistronic transcription factor cassette (Col1a1::tetOP-OKSM) and a constitu-

tive M2rtTA driver with or without the Oct4-EGFP reporter. Cells were first expanded in 

DMEM media supplemented with 10% foetal bovine serum (FBS), 100 U ml-1 penicillin, 

100μg ml-1 streptomycin, sodium pyruvate (1 mM), l-glutamine (4 mM), 0.1 mM β-mer-

captoethanol and 50μg ml-1 sodium ascorbate at 37 °C under normal oxygen levels (21% 

O2). MEFs were then trypsinized and plated under reprogramming culture conditions by 

adding 1,000 U ml-1 LIF, 50μg ml-1 sodium ascorbate and 2μg ml-1 doxycycline to ESC 

media (knockout DMEM supplemented with 15% FBS, 100 U ml-1 penicillin, 100μg ml-1 

streptomycin, 1 mM sodium pyruvate, 4 mM l-glutamine and 0.1 mM β-mercaptoethanol). 

Specifically, cells were plated at a density of 2 million, 300,000 and 60,000 cells per 10-

cm plate to collect day 0 uninduced MEFs, day 3 reprogramming intermediates and estab-

lished iPSC cultures, respectively. Doxycycline was replenished every 48 h to sustain ex-

pression of the OKSM transcription factors. To establish iPSCs, doxycycline and ascorbic 

acid were withdrawn at day 5 of reprogramming and cells were cultured for another five 

days to ensure formation of Col1a1::tetOP-OKSM transgene-independent iPSC colonies. 

iPSC lines were derived from three independent MEF lines. To reduce epigenetic memory, 

transgene-independent iPSCs were passaged for an additional five passages and pre-plated 

for 30 min at 37 °C. Isolated iPSCs were then analysed for Oct4-GFP expression using 
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flow cytometry and microscopy. Cell pellets for each time point (day 0, day 3 and estab-

lished iPSCs) were collected and resuspended in TRIzol at a concentration of 10 million 

cells per ml for subsequent RNA isolation. 

 

Embryoid body assay from ESCs 

Mouse ESCs containing an Oct4-GFP reporter were incubated at 37 °C under 5% CO2, 

passaged every 2 d in gelatin-coated culture dishes and maintained in stem cell media con-

sisting of KO-DMEM (Gibco; 10829) supplemented with 15% FBS (Gibco; 10437; Lot-

2190737RP), 2 mM GlutaMAX (Gibco; 35050), 100 U ml-1 penicillin (Gibco; 15140), 

100µg ml-1 streptomycin (Gibco; 15140), non-essential amino acids (100µM each; Gibco; 

11140), 55µM β-mercaptoethanol (Gibco; 21985) and 1,000 U ml-1 LIF.  

Embryoid bodies were formed as previously described (Behringer et al., 2016). 

ESCs were trypsinized using 0.25% trypsin-EDTA (Gibco; 25200), rinsed twice with Dul-

becco’s PBS (Gibco; 14190) and resuspended in stem cell media without LIF at 32,000 

cells per ml. The cell suspension was then aliquoted into 25-µl drops (800 cells per drop) 

onto petri dish lids. The lids were then replaced onto a petri dish containing 10 ml Dul-

becco’s PBS to form hanging drops and incubated for 72 h. Hanging drops were then trans-

ferred to suspension culture in ultra-low-attachment 60-mm plates (Corning; 3261) with 6 

ml stem cell media, excluding LIF, for up to 3 d. Embryoid bodies were collected from 

hanging drops at 24 and 72 h and from suspension cultures at day 6 (see below). 
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tsRNA and rsRNA transfections 

ESCs were transfected at the onset of embryoid body formation as hanging drops. The 

transfection protocol was adapted for hanging drop embryoid bodies from the reverse trans-

fection protocol, as described previously (Schaniel et al., 2006). Briefly, transfection mix-

tures containing 1.2 µM respective RNA (see below) and 30 µl ml-1 Lipofectamine Stem 

Reagent were incubated for 15 min at room temperature in unmodified DMEM (Gibco-

10313). After incubation, ESCs in single-cell suspension with stem cell media (excluding 

LIF and antibiotics) were added to each transfection mixture to make final concentrations 

of 32,000 cells per ml, 200 nM total RNA and 5µl ml-1 Lipofectamine Stem Reagent. The 

ESC transfection mixture was then used for the embryoid body differentiation assay. Day 

1 and day 3 collections were taken after 24 and 72 h incubation of hanging drops, and day 

6 collections were taken after an additional 72 h incubation in suspension culture by low-

attachment culture dish (Corning; 3261).  

For each transfection, three independent replicates were performed. Vehicle-only 

transfection was used as a control. The transfection group included one of the following 

RNA suspensions: rsRNA-28S-1, 5’ tsRNAAla, 3’ tsRNAArg, 5’ tsRNAGlu, 5’ tsRNAHis, 3’ 

tsRNALys or a tsRNA pool containing the abovementioned five tsRNAs, making a total of 

24 samples per time point collection (days 1, 3 and 6).  

rsRNA-28S-1 represents a mixture of three sequences of different lengths (27, 30 

and 37 nucleotides) mixed together equally. Each transfected small RNA contained two 

forms, which attached either a hydroxy group or a phosphate group in the 3’ terminal of 
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the synthesized sequence. The total RNA concentration for each transfection group was 

200 nM. The transfected tsRNA or rsRNA sequences were as follows:  

Name Sequences 

5’ tsRNAAla 5’P-rGrGrGrGrGrUrGrUrArGrCrUrCrArGrUrGrGrUrArGrAr-

GrCrGrCrGrUrGrC-3’OH 

5’P-rGrGrGrGrGrUrGrUrArGrCrUrCrArGrUrGrGrUrArGrAr-

GrCrGrCrGrUrGrC-3’P 

 

5’ tsRNAHis 5’P-rGrCrCrGrUrGrArUrCrGrUrArUrArGrUrGrGrUrUrArGrU-

rArCrUrCrUrGrCrG-3’OH 

5’P-rGrCrCrGrUrGrArUrCrGrUrArUrArGrUrGrGrUrUrArGrU-

rArCrUrCrUrGrCrG-3’P 

 

5’ tsRNAGlu 5’P-rUrCrCrCrUrGrGrUrGrGrUrCrUrArGrUrGrGrUrUrArGr-

GrArUrUrCrGrGrCrGrCrUrC-3’OH 

5’P-rUrCrCrCrUrGrGrUrGrGrUrCrUrArGrUrGrGrUrUrArGr-

GrArUrUrCrGrGrCrGrCrUrC-3’P 

 

3’ tsRNAArg 5’P-rUrCrGrArCrUrCrCrUrGrGrCrUrGrGrCrUrCrGrCrCrA-3’OH 

5’P-rUrCrGrArCrUrCrCrUrGrGrCrUrGrGrCrUrCrGrCrCrA-3’P 

 

3’ tsRNALys 5’P--rArGrGrGrUrUrCrArArGrUrCrCrCrUrGrUrUrCrGrGrGrCrGrCr

CrA-3’OH 

5’P--rArGrGrGrUrUrCrArArGrUrCrCrCrUrGrUrUrCrGrGrGrCrGrCr

CrA-3’P 

 

rsRNA-28S-1 

 

5’P-rArGrArCrGrUrGrGrCrGrArCrCrCrGrCrUrGrArArUrUrU-

rArArGrC-3’OH (27 nucleotides) 

5’P-rArGrArCrGrUrGrGrCrGrArCrCrCrGrCrUrGrArArUrUrU-

rArArGrC-3’P (27 nucleotides) 

5’P-rCrGrCrGrArCrCrUrCrArGrArUrCrArGrArCrGrUrGrGrCrGrAr-

CrCrCrGrCrUrGrArArU-3’OH (35 nucleotides) 

5’P-rCrGrCrGrArCrCrUrCrArGrArUrCrArGrArCrGrUrGrGrCrGrAr-

CrCrCrGrCrUrGrArArU-3’P (35 nucleotides) 

5’P-rCrGrCrGrArCrCrUrCrArGrArUrCrArGrArCrGrUrGrGrCrGrAr-

CrCrCrGrCrUrGrArArUrUrU-3’OH (37 nucleotides) 

5’P-rCrGrCrGrArCrCrUrCrArGrArUrCrArGrArCrGrUrGrGrCrGrAr-

CrCrCrGrCrUrGrArArUrUrU-3’P (37 nucleotides) 
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mESC transfection and Global protein synthesis assay 

Before transfection, 3,000 ESCs per well was seeded in 96-well plates coated with 0.1% 

gelatin and incubated them overnight (~16 h) with mESC medium. The transfection com-

plex was prepared as follows: 0.4μl respective RNA (100µM) with 4μl Lipofectamine Stem 

Reagent and 20μl Opti-MEM was mixed by vortexing and incubated at room temperature 

for 15 min. The media was discarded and 180μl new mESC media (excluding antibiotics) 

was added to the wells. The lipofectamine-RNA transfection complex was added to the 

wells and incubated for 24 h at 37 °C under 5% CO2. For each transfection, three inde-

pendent replicates were used. Vehicle-only transfection was used as a control. The trans-

fection group included one of the following RNA suspensions: scrambled small RNAs, the 

tsRNA pool or rsRNA-28S-1. 

The global protein synthesis assay was performed with the Protein Synthesis Assay 

Kit (ab235634; Abcam), per the manufacturer’s instructions. Briefly, the media was re-

placed with fresh complete mESC media containing 1×Protein Label. Incubation was per-

formed for 2 h at 37 °C under 5% CO2. Then, the culture media was removed and the cells 

were rinsed with PBS. Fixative solution (100μl) was added to each well and the cells were 

incubated for 15 min at room temperature, protected from light. The cells were washed 

with wash buffer and incubated with 100μl permeabilization buffer for 10 min at room 

temperature. The cells were then incubated with 1× reaction cocktail for 30 min, protected 

from light at room temperature, then washed again. A 1× dilution of DAPI DNA stain was 

prepared and 100μl was added per well. The cells were incubated for 20 min at room tem-

perature. The DAPI staining solution was aspirated and replaced with PBS. Then, the 
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samples were analysed by fluorescence microscopy (Lecia DM8 system) with excitation 

and emission at 440/490 and 540/580 nm, respectively. The intensity of the red signal rep-

resented the relative quantity of nascent peptide. The intensity of the sample image was 

processed and extracted using Fuji (ImageJ) software. 

 

Cell lines 

HeLa cells were purchased from the American Type Culture Collection (ATCC; catalogue 

number CCL-2). HeLa cells were cultured in DMEM medium with 10% FBS and incu-

bated at 37 °C under 5% CO2. Total RNA was harvested when the confluency reached ~95% 

in a 100-mm culture dish.  

 

RNA isolation 

TRIzol reagent (1 ml; Invitrogen; 15596018) was added to a microtube with pulverized 

tissues or collected cells and vortexed uniformly. Then, the sample was incubated at room 

temperature for 5 min. Chloroform (200μl; Alfa Aesar; J67241) was added per ml of sam-

ple, vortexed for 15 s, then incubated at room temperature for 2 min and centrifuged for 15 

min at 12,000g (4 °C). The aqueous phase was pooled in a microtube and combined with 

an equal volume of isopropanol (Fisher Scientific; BP2618-212). After gently mixing and 

incubating at room temperature for 10 min, the tube was centrifuged for 10 min at 12,000g 

(4 °C). After removing the supernatant, the precipitation was washed with 1 ml 75% etha-

nol (Koptec; V1001), then centrifuged for 5 min at 7,500g (4 °C). Then, the supernatant 
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was removed and air-dried for 5 min and the precipitation was resuspended in nuclease-

free water, quantified and stored at -80 °C or used for further processing. 

 

Isolation of specified-size RNA from total RNAs 

The RNA sample, mixed with an equal volume of 2× RNA loading dye (New England 

Biolabs; B0363S), was incubated at 75 °C for 5 min. The mixture was loaded into 15% 

(wt/vol) urea polyacrylamide gel (10 ml mixture containing 7 M urea (Invitrogen; 

AM9902), 3.75 ml Acrylamide/Bis 19:1, 40% (Ambion; AM9022), 1 ml 10× TBE (Invi-

trogen; AM9863), 1 g l-1 ammonium persulfate (Sigma-Aldrich; A3678-25G) and 1 ml l-1 

TEMED (Thermo Fisher Scientific; BP150-100)). The gel was run in a 1× TBE running 

buffer at 200 V until the bromophenol blue reached the bottom of the gel. After staining 

with SYBR Gold solution (Invitrogen; S11494), gel that contained small RNAs of 15-50 

nucleotides was excised based on small RNA ladders (New England Biolabs (N0364S) and 

Takara (3416)) and eluted in 0.3 M sodium acetate (Invitrogen; AM9740) and 100 U ml-1 

RNase inhibitor (New England Biolabs; M0314L) overnight at 4 °C. The sample was then 

centrifuged for 10 min at 12,000g (4 °C). The aqueous phase was mixed with pure ethanol, 

3 M sodium acetate and linear acrylamide (Invitrogen; AM9520) at a ratio of 3:9:0.3:0.01. 

Then, the sample was incubated at -20 °C for 2 h and centrifuged for 25 min at 12,000g 

(4 °C). After removing the supernatant, the precipitation was resuspended in nuclease-free 

water, quantified and stored at -80 °C or used for further processing. 
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Expression and purification of Escherichia coli AlkB 

The E. coli AlkB gene was cloned into the NdeI/BamHI site of the pET28a (+) plasmid. 

The constructed plasmid was transformed in the E. coli BL21(DE3) strain to express the 

AlkB protein with a tag of six histidines at the amino terminal. The E. coli was cultured in 

lysogeny broth medium containing 50µg ml-1 kanamycin. The medium, with 1 mM isopro-

pyl β-D-1-thiogalactopyranoside added, was incubated at 37 °C for 3 h. The AlkB protein 

was purified using an Ni-NTA Superflow column and stored in a buffer containing 20 mM 

Tris-HCl (pH 8.0), 50% glycerol, 0.2 M NaCl and 2 mM dithiothreitol at -80 °C. The purity 

of the AlkB protein was detected by 12% SDS-polyacrylamide gel electrophoresis (PAGE). 

The enzyme activity was confirmed by treating RNA with AlkB, followed by LC-MS/MS 

analysis to quantify the modified nucleosides. The AlkB gene sequence used in this study 

was: 

5’--CTGGACCTGTTCGCGGATGCGGAGCCGTGGCAGGAACCGCTGGCGGCGG

GTGCGGTTATCCTGCGTCGTTTCGCGTTTAACGCGGCGGAGCAACTGATCCGT

GACATTAACGATGTGGCGAGCCAGAGCCCGTTTCGTCAAATGGTTACCCCGG

GTGGCTACACCATGAGCGTGGCGATGACCAACTGCGGTCACCTGGGTTGGAC

CACCCACCGTCAGGGTTACCTGTATAGCCCGATCGACCCGCAAACCAACAAG

CCGTGGCCGGCGATGCCGCAGAGCTTCCACAACCTGTGCCAACGTGCGGCGA

CCGCGGCGGGTTACCCGGACTTTCAGCCGGATGCGTGCCTGATTAACCGTTAT

GCGCCGGGTGCGAAGCTGAGCCTGCACCAAGACAAAGATGAGCCGGATCTG

CGTGCGCCGATCGTTAGCGTGAGCCTGGGTCTGCCGGCGATTTTCCAGTTTGG

TGGCCTGAAGCGTAACGACCCGCTGAAACGTCTGCTGCTGGAGCACGGCGAT
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GTGGTTGTGTGGGGTGGCGAAAGCCGTCTGTTCTACCACGGTATCCAGCCGCT

GAAAGCGGGCTTTCACCCGCTGACCATTGACTGCCGTTATAACCTGACCTTCC

GTCAAGCGGGTAAGAAAGAA -3’. 

 

Quantification of modified nucleosides in RNA molecules by LC-MS/MS 

A total of 1µg 15- to 50-nucleotide RNA from mouse liver was incubated with 0.2 U nu-

clease P1 (Sigma-Aldrich) and 60μl 50 mM NH4OAc (pH 5.3) in a microtube at 50 °C for 

3 h. Then, a sample with 0.04 U phosphodiesterase I (USB) added was incubated at 37 °C 

for 2 h. After adding 2 U alkaline phosphatase (Sigma-Aldrich), the sample was incubated 

at 37 °C for 2 h. The mixture was moved into Nanosep centrifugal devices with 3K Omega 

membrane (PALL; OD003C35) and centrifuged for 20 min at 5,000g (4 °C). The liquid 

phase was lyophilized and stored at -80 °C. Then, the sample was dissolved in 70μl 2 mM 

ammonium acetate with 175 ng ml-1 guanosine (13C, 15N). Afterwards, 65μl of the solu-

tion was injected into the LC-MS/MS system. The solution was separated using an Agilent 

1200 HPLC system and then detected using an API 4000 QTRAP mass spectrometer (Ap-

plied Biosystems) with positive electrospray ionization. The following mass transitions 

were monitored: m/z 244.1 to 112.1 for cytidine (C); m/z 268.1 to 136.2 for adenosine (A); 

m/z 284.1 to 152.2 for guanosine (G); m/z 245.0 to 113.1 for uridine (U); m/z 282.1 to 150.2 

for 1-methyladenosine (m1A); m/z 298.1 to 166.1 for 1-methylguanosine (m1G); m/z 258.0 

to 126.0 for 3-methylcytidine (m3C); m/z 312.1 to 180.2 for N2,N2-dimethylguanosine 

(m2
2G); m/z 258.1 to 112.1 for 2’-O-methylcytidine (Cm); m/z 282.1 to 136.2 for 2’-O-

methyladenosine (Am); m/z 259.1 to 113.1 for 2’-O-methyluridine (Um); m/z 298.1 to 
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152.1 for 2’-O-methylguanosine (Gm); m/z 258.1 to 126.1 for 5-methylcytidine (m5C); m/z 

298.1 to 166.1 for N2-methylguanosine (m2G); m/z 245.2 to 125.1 for pseudouridine (Ψ); 

and m/z 286.1 to 154.1 for N4-acetylcytidine (ac4C). The nucleoside concentration was 

quantified according to the standard curve running for the same batch of samples. The 

ratios of m1A/A, Am/A, m1G/G, m2
2G/G, Gm/G, m2G/G, m3C/C, Cm/C, m5C/C, ac4C/C, 

Um/U and Ψ to U were subsequently calculated. 

 

Treatment of RNA with AlkB 

The RNA was incubated in 50μl reaction mixture containing 50 mM HEPES (pH 8.0) 

(Gibco (15630080) and Alfa Aesar (J63578)), 75μM ferrous ammonium sulfate (pH 5.0), 

1 mM α-ketoglutaric acid (Sigma-Aldrich; K1128-25G), 2 mM sodium ascorbate, 50 mg 

l-1 bovine serum albumin (Sigma-Aldrich; A7906-500G), 4μg ml-1 AlkB, 2,000 U ml-1 

RNase inhibitor and 200 ng RNA at 37 °C for 30 min. Then, the mixture was added into 

500μl TRIzol reagent to perform the RNA isolation procedure. 

 

Treatment of RNA with T4PNK 

The RNA was incubated in 50μl reaction mixture containing 5μl 10× PNK buffer (New 

England Biolabs; B0201S), 1 mM ATP (New England Biolabs; P0756S), 10 U T4PNK 

(New England Biolabs; M0201L) and 200 ng RNA at 37 °C for 20 min. Then, the mixture 

was added into 500μl TRIzol reagent to perform the RNA isolation procedure.  
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RNA adapter ligation capability identification 

The synthetic RNA with a 3’-OH end or a 3’-P end, or 25- to 50-nucleotide RNA from 

mouse spleen were performed in the experiment. Then, 50 ng RNA, dissolved in 5.5µl 

nuclease-free water mixed with 0.5μl 10μM 3’ SR adapter (Takara; sequence: 

5’--(rApp)--AGATCGGAAGAGCACACGTCT(NH2)-3’) and 2 μl 50% PEG 8000 (New 

England Biolabs; B1004), was incubated at 70 °C for 2 min. Following this, the sample 

was immediately incubated on ice for 5 min. Next, 1μl 10× T4 ligase reaction buffer (New 

England Biolabs; B0216L) and 1μl T4 RNA Ligase 2, truncated KQ (New England Biolabs; 

M0373L) were added to the sample, which was mixed well. After incubation at 25 °C for 

1 h and 75 °C for 5 min, the sample was run on 15% (wt/vol) urea polyacrylamide gel, 

followed by northern blot using the anti-3’ SR adapter probe (Takara; sequence: 5’--(DIG)-

AGACGTGTGCTCTTCCGATCT-3’) to detect the ligation outcome of the input RNAs. 

 

Northern blot 

Total RNA was extracted from mouse tissues and cell lines using TRIzol reagents, per the 

manufacturer’s instructions. RNA was separated by 10% urea-PAGE gel stained with 

SYBR Gold, and immediately imaged, then transferred to positively charged nylon mem-

branes (Roche; 11417240001) and ultraviolet crosslinked with an energy of 0.12 J. Mem-

branes were pre-hybridized with DIG Easy Hyb solution (Roche; 11603558001) for 1 h at 

42 °C. To detect miRNAs, tsRNAs and rsRNAs in the total RNA and 15- to 50-nucleotide 

small RNAs, membranes were incubated overnight (12-16 h) at 42 °C with DIG-labelled 

oligonucleotide probes synthesized by Integrated DNA Technologies as follows: 
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Name Sequences 

rsRNA-28S-1 5’-DIG-ATTCAGCGGGTCGCCACGTCT 

rsRNA-28S-2 5’-DIG-GGTCCGCACCAGTTCT 

rsRNA-28S-3 5’-DIG-CGCCAGGTTCCACACGAACGT 

rsRNA-18S-1 5’-DIG-AGGCACACGCTGAGCCAGTCAGT 

5’ tsRNAGlu 5’-DIG-AACCACTAGACCACCAGGGA 

5’ tsRNAAla 5’-DIG-GCACGCGCTCTACCACTG 

5’ tsRNAHis 5’-DIG-AGTACTAACCACTATACGATCACGG 

3’ tsRNAArg 5’-DIG-TGGCGAGCCAGCCAGGAGTCGA 

3’ tsRNALys 5’-DIG-TGGCGCCCGAACAGGGACTT 

let-7i 5’-DIG-CAGCACAAACTACTACCTCA 

let-7f 5’-DIG-AACTATACAATCTACTACCTCA 

miR-122 5’-DIG-AAACACCATTGTCACACTCCA 

miR-21 5’-DIG-TCAACATCAGTCTGATAAGCTA 

3’adapter probe 5’-DIG-AGACGTGTGCTCTTCCGATCT 

 

Then the membranes were washed twice with low stringent buffer (2× SSC with 

0.1% (wt/vol) SDS) at 42 °C for 15 min, rinsed twice with high stringent buffer (0.1× SSC 

with 0.1% (wt/vol) SDS) for 5 min, and then rinsed in washing buffer (1× SSC) for 10 min. 

Following the washes, the membranes were transferred into 1× blocking buffer (Roche, 

REF:11096176001) and incubated at room temperature for 3 h, after which the Anti-Di-

goxigenin-AP Fab fragments (Roche, REF: 11093274910) were added into the blocking 

buffer at a ratio of 1:10,000 and incubated for an additional 30 min at room temperature. 

Then the membranes were washed four times with DIG washing buffer (1× maleic acid 

buffer, 0.3% Tween-20) for 15 min, sequentially incubated in DIG detection buffer (0.1 M 

TrisHCl, 0.1 M NaCl, pH 9.5) for 5 min, and coated with CSPD ready-to-use reagent 

(Roach REF: 11755633001). The membranes were incubated in the dark with the CSPD 

reagent for 30 min at 37 °C before imaging with ChemiDoc™ MP Imaging System (BIO-

RAD). 
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Small RNA northern blot probe efficiency assay 

Synthetic RNA sequences complementary to northern blot probes (that is, rsRNA-28s-1, 

5’ tsRNAGlu, let-7i, mir-122 and mir-21) were synthesized by Integrated DNA Technolo-

gies as follows: 

Name Sequences 

Syn-rsRNA-28S-1 /5Phos/rArGrArCrGrUrGrGrCrGrArCrCrCrGrCrUrGrArA-

rUrUrU 

Syn-5’ tsRNA-Glu /5Phos/rUrCrCrCrUrGrGrUrGrGrUrCrUrArGrUrGrGrUrU-

rArGrGrArUrUrCrGrGrCrGrCrU 

Syn-let-7i /5Phos/rUrGrArGrGrUrArGrU-

rArGrUrUrUrGrUrGrCrUrGrUrU 

Syn-miR-122 /5Phos/rUrGrGrArGrUrGrUrGrArCrArArUrGrGrUrGrUrUrU 

Syn-miR-21 /5Phos/rUrArGrCrUrUrArUrCrArGrArCrUrGrArUrGrUrUr-

GrArC 

 

Small RNA library construction and deep sequencing 

The RNA segment was separated by PAGE, then a 15- to 45-nucleotide stripe was selected 

and recycled. The adapters were obtained from the NEBNext Small RNA Library Prep Set 

for Illumina (New England Biolabs; E7330S) and ligated sequentially. First, a 3’ adapter 

system was added under the following reaction conditions: 70 °C for 2 min and 25 °C for 

1 h or 16 °C for 18 h (for sperm heads). Second, a reverse transcription primer was added 

under the following reaction conditions: 75 °C for 5 min, 37 °C for 15 min and 25 °C for 

15 min. Third, a 5’ adapter mix system was added under the following reaction conditions: 

70 °C for 2 min and 25 °C for 1 h. First-strand cDNA synthesis was performed under the 

following reaction conditions: 70 °C for 2 min and 50 °C for 1 h. PCR amplification with 

PCR Primer Cocktail and PCR Master Mix was performed to enrich the cDNA fragments 

under the following conditions: 94 °C for 30 s; 11-22 cycles of 94 °C for 15 s, 62 °C for 
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30 s and 70 °C for 15 s; 70 °C for 5 min; and hold at 4 °C. Then, the PCR product was 

purified from PAGE gel. The qualified libraries were amplified on cBot to generate the 

cluster on the flow cell. The amplified flow cell was sequenced using the SE50 strategy on 

the Illumina system by BGI. For sperm heads, the qualified libraries were amplified and 

sequenced using the SE75 strategy on the Illumina system by the University of California, 

San Diego IGM Genomics Center.  

 

Quality control of small RNA-seq data 

The resulting sequencing reads were processed according to the standard quality control 

criteria: (1) reads containing N; (2) reads containing more than four bases with a quality 

score<10; (3) reads containing more than six bases with a quality score<13; (4) reads with 

5’ primer contaminants or without 3’ primer; (5) reads without the insert tag; (6) reads with 

ploy A; and (7) reads shorter than 15 nucleotides and longer than 44 nucleotides. The se-

quencing data analyses were performed on the clean reads after data filtration. 

 

Small RNA annotation and analyses for PANDORA-seq data 

RNAs of 15-50 nucleotides were subject to the PANDORA-seq protocol. Small RNA 

sequences were annotated using the software SPORTS1.1 (updated from SPORTS1.0) with 

one mismatch tolerance (SPORTS1.1 parameter setting: -M 1). Reads were mapped to the 

following individual non-coding RNA databases sequentially: (1) the miRNA database 

miRBase 21(Kozomara and Griffiths-Jones, 2014); (2) the genomic tRNA database GtR-

NAdb (Chan and Lowe, 2016); (3) the mitochondrial tRNA database mitotRNAdb (Juhling 
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et al., 2009); (4) the rRNA and YRNA databases assembled from National Center for Bio-

technology Information nucleotide and gene database, (5) the piRNA databases, including 

piRBase (Zhang et al., 2014) and piRNABank (Sai Lakshmi and Agrawal, 2008); and (6) 

the noncoding RNAs defined by Ensembl (Yates et al., 2016) and Rfam 12.3(Nawrocki et 

al., 2015). The tsRNAs were annotated based on both pre-tRNA and mature tRNA se-

quences. Mature tRNA sequences were derived from the GtRNAdb and mitotRNAdb se-

quences using the following procedures: (1) predicted introns were removed; (2) a CCA 

sequence was added to the 3’ ends of all tRNAs; and (3) a G nucleotide was added to the 

5’ end of histidine tRNAs. The tsRNAs were categorized into four types based on the origin 

of the tRNA loci: 5’ tsRNA (derived from the 5’ end of pre-/mature- tRNA); 3’ tsRNA 

(derived from the 3’ end of pre-tRNA); 3’ tsRNA-CCA end (derived from the 3’ end of 

mature tRNA); and internal tsRNAs (not derived from 3’ or 5’ loci of tRNA). For the 

rsRNA annotation, the small RNAs were mapped to the parent rRNAs in an ascending 

order of rRNA sequence length to ensure a unique annotation of each rsRNA (for example, 

the rsRNAs mapped to 5.8S rRNA would not be further mapped to the genomic region 

overlapped by 5.8S and 45S rRNAs). 

 

Differentially expressed small RNA analysis 

Pairwise comparison of differentially expressed small RNAs (average RPM > 0.1 in the 

compared treatments) among different RNA treatment were performed using the R pack-

age DEGseq (Wang et al., 2010) with a normalized RPM fold change > 2 and p < 0.05. 
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Atypical miRNA analysis 

Here, the miRNAs identified by either traditional RNA-seq or PANDORA-seq (mean 

RPM>0.1) and can perfectly match to the miRBase (SPORTS1.1 parameter setting: -M 0) 

were focused on. These miRNAs were re-mapped to the other small RNA databases with 

one mismatch tolerance (SPORTS1.1 parameter setting: -M 1), which potentially yielded 

an alternative annotation.  

 

Small RNA secondary structure prediction 

The tRNA secondary structure information was obtained from the GtRNAdb, while the 

YRNA secondary structure was predicted using the RNAfold tool in the ViennaRNA pack-

age(Lorenz et al., 2011) with default settings. The RNA secondary structure visualization 

was performed using the forna tool in the ViennaRNA package.  

 

rsRNA coverage similarity comparison matrix 

To calculate the overall rsRNA coverage similarity pairwise comparison among samples, 

a sensitive method was performed. For one specific rRNA with length n, it was assumed 

that the rsRNA coverage level of locus i in sample X is xi and in sample Y is yi. The rsRNA 

mapping similarity level between the two samples can be described as:  

𝑟 =  ∑ |
𝑥𝑖

∑ 𝑥𝑖
𝑛
𝑖=1

−
𝑦𝑖

∑ 𝑦𝑖
𝑛
𝑖=1

|

𝑛

𝑖=1

  

The lower r value indicates that samples X and Y are more similar in rsRNA cover-

age, while higher r value represents the opposite. 
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Identification of RNA mapping peaks 

The peak searching algorithm was modified from the findpeaks function in the R pracma 

package (version 1.9.9; https://www.rdocumentation.org/packages/pracma/ver-

sions/1.9.9/topics/findpeaks). Briefly, a new parameter gradient was added to the original 

algorithm for RNA peak identification. The expression significance of the RNA mapping 

region between traditional treatment and PANDORA-seq treatment was analysed by two-

way analysis of variance (ANOVA). 

 

mRNA library construction, RNA-seq and quality control 

Transcriptome libraries were constructed using the NEBNext Ultra RNA Library Prep Kit 

for Illumina (New England Biolabs; E7530L) following the manufacturer’s recommenda-

tions. For each RNA library, six G base pairs (raw data) were generated on the Illumina 

system. The resulting sequencing reads were processed using standard quality control cri-

teria: (1) reads containing adapters; (2) reads containing N>10% (N represents bases that 

cannot be determined); and (3) reads containing low-quality (Q score≤5) bases that repre-

sent over 50% of the total bases. The data sequencing analyses were performed on the clean 

reads after data filtration. The mRNA library preparation, quality examination and RNA-

seq processes were performed by Novogene. 
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Transcriptome data annotation 

RNA sequences were annotated using kallisto (Bray et al., 2016) with Ensembl mouse 

cDNA annotation information (GRCm38). The expression level of each gene was normal-

ized to transcripts per kilobase million. 

 

Functional enrichment analysis 

The edgeR (Robinson et al., 2010) was employed tool to identify the differentially ex-

pressed genes between the control and treated groups during mESC differentiation. The 

TMM algorithm was used for read count normalization and effective library size estimation 

(Robinson and Oshlack, 2010). The genes with a false discovery rate < 0.05 and fold 

change > 1.5 were deemed differentially expressed. The enriched biological process terms 

of differentially expressed genes were obtained using R package clusterProfiler (Yu et al., 

2012), setting a q value threshold of 0.005 for statistical significance. Only the gene sets 

with ≥2 differentially genes were retained.  

 

GOBP gene set score 

The FAIME algorithm (Yang et al., 2012) was applied to assign a gene set score for each 

GOBP term. The FAIME algorithm calculated gene set scores based on the rank-weighted 

gene expression of individual samples, which converts each sample’s transcriptomic data 

into pathway-/gene set-based information. A higher gene set score indicates an overall in-

crease in the abundance of the genes within the given GOBP term. 
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Statistics and Reproducibility  

The statistical tests and biological repeats for the RNA-seq samples, LC-MS/MS and north-

ern blot validations are described in the figure captions or Methods. All of the correlation 

analyses were performed using Spearman’s rank correlation test to generate the correlation 

coefficient (ρ). Multiple t-tests were performed using GraphPad Prism for the statistical 

analyses of RNA modification dynamics of 15- to 50-nucleotide RNA fractions from 

mouse liver after AlkB treatment. Fisher’s least significant difference (LSD) test was per-

formed for statistical analysis of the different origins of the tsRNAs/miRNA expression 

ratio under different treatments among mouse and human tissues and cells, miRNA expres-

sion during the cell reprogramming using PANDORA-seq, and statistical analysis of rep-

resentative GOBP terms during days 1, 3 and 6 of embryoid body differentiation under 

control, rsRNA-28S-1 and pooled tsRNA transfection. Two-way ANOVA was performed 

for statistical analysis of tsRNA/ rsRNA mapping peaks between MEFs and iPSCs on the 

corresponding RNA loci. Student’s t-test was performed for statistical analysis of the ex-

pression level of the northern blot probe targeting small RNAs between MEFs and iPSCs, 

as well as gene set score comparison for GOBP terms between controls and different RNA 

transfections. Dunnett’s multiple comparisons test was performed using GraphPad Prism 

for statistical analysis of protein synthesis rates after ESC transfection of scrambled RNA, 

rsRNA-28S-1 and pooled tsRNA. The radar plots were generated using the radarchart func-

tion in the R package fmsb based on a log10-transformed scale. The RNA relative expres-

sion heatmaps were generated using the heatmap.2 function in the R package gplots based 

on a log2-transformed scale. For each small RNA mapping plot, a shaded band was 
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included to indicate the standard error of the mean (s.e.m.). The rRNA coverage similarity 

comparison matrices were generated using the pheatmap function in the R package 

pheatmap. 
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Figure 3.1: Schematic overview, validation of AlkB and T4PNK enzyme activity, 

and protocol optimization of PANDORA-seq 

a, Schematics of the RNA properties (terminal and internal modifications) and key steps 

(adapter ligation and reverse transcription) of traditional RNA-seq, AlkB-facilitated 

RNA-seq, T4PNK-facilitated RNA-seq and PANDORA-seq. b, Schematic of the detec-

tion capacities of the abovementioned RNA-seq protocols from a small RNA pool. c, De-

methylation activity of m1A, m1G, m3C and m2
2G with or without AlkB treatment of 15- 

to 50-nucleotide RNA fractions from mouse tissue (liver), as revealed by LC-MS/MS 

(n = 3 biologically independent samples). The data represent means ± s.e.m. Statistical 

significance was determined by two-sided multiple t-test (**P < 0.01; ***P < 0.001). d, 

Validation of improvements in 3’ terminal ligation following T4PNK treatment in syn-

thesized tsRNAs and small RNA fractions extracted from mouse tissue (spleen). nt, nu-

cleotides. E, Northern blot analysis of the 3’ adapter sequence to show, semi-quantita-

tively, improvement in the number of adapters being ligated before and after treatment 

with T4PNK. f-i, the improved treatment protocol minimized the potential artificial in-

crease in tsRNAs and rsRNAs due to de novo degradation of tRNAs and rRNAs. In f and 

g, AlkB treatment on total RNAs (from HeLa cells) resulted in increased tsRNA (f) and 

rsRNA products (g), as observed by increased RNA smear (left) and by northern blots 

(right). In h and i, northern blot analyses of tsRNAs (h) and rsRNAs (i) after AlkB and/or 

T4PNK treatment on pre-size-selected RNA fractions (15- to 50-nucleotide RNA from 

HeLa cells) did not result in further degradation. For d-i, similar results were obtained in 

three independent experiments. J, Comparison of the PANDORA-seq results using treat-

ment with either T4PNK first and AlkB second (T4PNK + AlkB) or AlkB first and 

T4PNK second (AlkB + T4PNK) in HeLa cells (15- to 50-nucletide RNA) showed highly 

consistent results (Spearman’s correlation; ρ = 0.995).  

  



 96 

 
  



 97 

Figure 3.2: Read summaries and length distributions of different small RNA catego-

ries under traditional RNA-seq, AlkB-facilitated RNA-seq, T4PNK-facilitated RNA-

seq and PANDORA-seq 

a-e, Comparison of different protocols in five representative tissue or cell types (from a 

total of 11; the results for the other tissue and cell types are provided in Figure 3.3. 1): 

mouse brain (a), mouse liver (b), mouse mature sperm and mature sperm heads (c), 

mESCs (d) and HeLa cells (e). The results show a dynamic landscape of small RNAs de-

tected by different methods and across different tissue and cell types. The data represent 

means ± s.e.m. f, Relative tsRNA/miRNA ratios under different protocols (n = 3 biologi-

cally independent samples per bar). Different letters above the bars indicate a statistically 

significant difference (P < 0.05). Same letters indicate P ≥ 0.05. Statistical significance 

was determined by two-sided one-way ANOVA with uncorrected Fisher’s LSD test. All 

data are plotted as means ± s.e.m. g-i, The relative expression levels of miRNAs, tsRNAs 

and rsRNAs, as revealed by PANDORA-seq, were validated by northern blots. The re-

sults for mouse brain (g), mouse liver (h) and HeLa cells (i) are shown. For g-i, similar 

results were obtained in three independent experiments. Blue arrowheads point to 

rsRNA-28S-1, red arrowheads point to 5’ tsRNAGlu, black arrowheads point to let-7i, 

green arrowheads point to miR-122 and purple arrowheads point to miR-21.  
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Figure 3.3: Reads summary and length distributions of different small RNA cate-

gory under Traditional RNA-seq, AlkB-facilitated RNA-seq, T4PNK-facilitated 

RNA-seq, and PANDORA-seq 

Showing reads summary and length distributions of different small RNA category in six 

tissue/cell types that are not shown in Figure 3.2 because of space limitation. (a-c) Cells 

during mouse somatic cell reprogramming to iPSC: (a) MEFs (day 0), (b) intermediates 

(day 3), (c) iPSCs; (d) mouse spleen, (e) primed human embryonic stem cells (hESCs-

primed), and (f) naïve human embryonic stem cells (hESCs-naïve) (g-l) the relative 

tsRNA/miRNA ratio under different protocols. for g,h,i,k, mean ± SEM, n=3 biologically 

independent samples in each bar; for j,l, n=2 biologically independent samples in each 

bar; different letters above bars indicate statistical difference, P < 0.05; same letters indi-

cate P ≥ 0.05 (two-sided, one-way ANOVA, uncorrected Fisher’s LSD test).  
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Figure 3.4: Evaluation of Northern blot probe efficiency on synthesized targets 

The Northern blot probes used for each target are the same as used in Figure 3.2 g-i. a, 

each synthetic small RNAs (that is, rsRNA-28S-1, 5’ tsRNAGlu, let-7i, mir-122, mir-21) 

are individually loaded on PAGE followed by northern blots analyses. b, the five syn-

thetic small RNAs were mixed together with the amount tested in (a) and then equally 

separated and loaded on PAGE followed by northern blots analyses. The relative effi-

ciency of each northern blot probe can be shown: the probe efficiency between let-7i, 

tsRNAGlu and rsRNA-28 are similar; the probe for mir-122 is highest, while the probe for 

mir-21 has the lowest efficiency. Similar results were obtained in 3 independent experi-

ments.  

  



 101 

 

Figure 3.5: Annotation of mouse piRNA in non-germ cell tissue/cell types is not sta-

ble when 1-3 mismatches are allowed 

When 1-3 mismatches are allowed for small RNAs matching, the piRNA annotation rate 

(but not other small RNAs types) show significant decrease in mouse tissue/ cell types (a) 

mouse brain, (b) mouse liver, (c) mouse spleen, (d) mouse embryonic stem cells, (e) 

mouse mature sperm, (f) mouse mature sperm heads, (g) mouse MEFs (day 0), (h) mouse 

intermediate cells (day 3), (i) mouse iPSCs. Very few piRNAs were annotated for human 

cell lines (j) human HeLa cells, (k) human hESCs-primed, and (l) human hESCs-naïve. 

These data suggest the annotated piRNAs in non-germ cell tissue/cell types could be due 

to database quality issue and their true identity awaits to be verified. 
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Figure 3.6: Dissecting the effects of AlkB, T4PNK and PANDORA-seq on different 

small RNA populations in ESCs 

a-c, Scatter plots comparing profile changes in tsRNAs (red dots) and miRNAs (grey 

dots) detected using AlkB versus traditional (a), T4PNK versus traditional (b) and 

PANDORA-seq versus traditional protocols (c). ρ is the Spearman’s correlation coeffi-

cient. d, tsRNA responses to AlkB, T4PNK and PANDORA-seq in regard to different or-

igins (5’ tsRNA, 3’ tsRNA, 3’ tsRNA-CCA end and internal tsRNAs). The y axes repre-

sent the relative expression level compared with total reads of miRNA (n = 3 biologically 

independent samples per bar). Different letters above the bars indicate statistically signifi-

cant differences (P < 0.05). Same letters indicate P ≥ 0.05. Statistical significance was de-

termined by two-sided one-way ANOVA with uncorrected Fisher’s LSD test. All data are 

plotted as means ± s.e.m. e, Overall length mapping showing the distribution of relative 

tsRNA reads from mature genomic (left) and mitochondrial (right) tRNA under different 

RNA-seq protocols. f, Dynamic response to different RNA-seq protocols (left) of a repre-

sentative individual tsRNA (mouse tRNA-Gln-TTG-2; pictured right). g-i, Scatter plots 

comparing profile changes in rsRNAs (blue dots) and miRNAs (grey dots) detected using 

the following protocols: AlkB versus traditional (g), T4PNK versus traditional (h) and 

PANDORA-seq versus traditional (i). j-m, Comparison of rsRNA-generating loci by 

rsRNA mapping data on 5S rRNA (j), 5.8S rRNA (k), 18S rRNA (l) and 28S rRNA (m), 

detected using different RNA-seq protocols. n,o, Many of the previously annotated miR-

NAs from miRBase that showed upregulation under PANDORA-seq could also be anno-

tated to other small RNA categories, as exemplified in mESCs (n) and primed hESCs (o). 

The mapping plots in e, f and j-m are presented as means ± s.e.m.  
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Figure 3.7: Scattered plot comparison of profile changes in tsRNAs and rsRNAs 

compared to miRNAs under different treatment protocol 

Scattered plot comparison of profile changes in tsRNAs (red dots) and rsRNAs (blue 

dots) compared to miRNAs (gray dots) under AlkB vs traditional, T4PNK vs traditional 

and PANDORA-seq vs traditional in (a) mouse brain, (b) mouse liver, (c) mouse spleen, 

(d) mouse mature sperm, (e) mouse MEFs (day 0), (f) mouse intermediate cells (day 3), 

(g) mouse iPSCs, (h) human HeLa cells, (i) human hESCs-primed, (j) mouse mature 

sperm heads, and (k) human hESCs-naïve. 
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Figure 3.8: The tsRNA responses to AlkB, T4PNK and PANDORA-seq in regard to 

different tsRNA origin (5’ tsRNA, 3’ tsRNA, 3’ tsRNA with CCA end, and internal 

tsRNAs) 

(a), mouse brain, (b) mouse liver, (c) mouse spleen, (d) mouse mature sperm, (e) mouse 

mature sperm heads, (f) mouse MEFs (day 0), (g) mouse intermediate cells (day 3), (h) 

mouse iPSCs, (i) human HeLa cells, (j) human hESCs-primed, and (k) human hESCs-na-

ïve. For a-b, d-j, data are plotted as mean ± SEM (n=3 biologically independent samples 

in each bar); for c,k, n=2 biologically independent samples in each bar. Different letters 

above bars indicate statistical difference, P < 0.05; same letters indicate P ≥ 0.05 (two-

sided, one-way ANOVA, uncorrected Fisher’s LSD test).  
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Figure 3.9: Overall length mapping of tsRNA reads in genomic and mitochondrial 

tRNA under different RNA-seq protocol 

Overall mapping of all tsRNAs on a tRNA length scale revealed the preferential loci from 

which tsRNAs are derived from the mature full tRNA under traditional protocol and dif-

ferent enzymatic treatments. (a) mouse brain, (b) mouse liver, (c) mouse spleen, (d) 

mouse mature sperm, (e) mouse MEFs (day 0), (f) mouse intermediate cells (day 3), (g) 

mouse iPSCs, (h) human HeLa cells, (i) human hESCs-primed, (j) mouse mature sperm 

heads, and (k) human hESCs-naïve. Mapping plots are presented as mean ± SEM. 
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Figure 3.10: The miRNAs that showing sensitive response to PANDORA-seq are in 

fact rsRNAs 

Previously annotated miRNAs from miRBase that showed upregulation under 

PANDORA-seq could also annotate to rsRNAs (with one mismatch tolerance), as shown 

in (a) mouse brain, (b) mouse liver, (c) mouse spleen, (d) mouse mature sperm, (e) 

mouse mature sperm heads, (f) mouse MEFs (day 0), (g) mouse intermediate cells (day 

3), (h) mouse iPSCs, (i) human HeLa cells, and (j) human hESCs-naïve. 
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Figure 3.11: Workflow of SPORTS1.1 

SPORTS1.1 has changed the mapping order priority of miRNA and piRNA compared 

with SPORTS1.0. 
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Figure 3.12: Tissue- and cell type-specific expression of tsRNAs and rsRNAs in mice 

and humans 

a, Radar plots showing the different sensitivities of five different mouse tissue or cell 

types in regard to different RNA-seq protocols. The numbers (1, 10 and 100) on the ra-

dius represent log values. b, Heatmaps showing the tsRNA (genomic and mitochondrial) 

relative expression levels (normalized to total miRNA levels and based on a log2-trans-

formed scale in the row direction) of five different mouse tissue or cell types, as detected 

by PANDORA-seq. c, Pairwise comparison matrix showing the overall expression pat-

tern difference of rsRNAs (derived from 28S rRNAs) under different RNA-seq protocols 

across five mouse tissue or cell types. Blue represents more similarity and red more dif-

ference. d, Comparison of rsRNA-generating loci from mouse 28S rRNA revealed dis-

tinct patterns across tissue and cell types. e, Radar plots showing the different sensitivi-

ties of three different human cell types in regard to different RNA-seq protocols. The 

numbers (1, 10 and 100) on the radius represent log values. f, Heatmaps showing the 

tsRNA (genomic and mitochondrial) relative expression levels (normalized to total 

miRNA levels and based on a log2-transformed scale in the row direction) of three differ-

ent human cell types, as detected by PANDORA-seq. g, Pairwise comparison matrix 

showing the overall expression pattern difference of rsRNAs (derived from 18S rRNAs) 

identified using different RNA-seq protocols across three human cell types. Blue repre-

sents more similarity and red more difference. h, Comparison of rsRNA-generating loci 

from human 18S rRNA revealed distinct patterns across tissue and cell types. i,j, Exem-

plary human ysRNAs (RNY3 (i) and RNY5 (j)) that are differentially expressed between 

different cell types, as determined by PANDORA-seq. The mapping plots in d, h, i and j 

are presented as means ± s.e.m. 
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Figure 3.13: The pairwise comparison matrices showing the differential expression 

pattern of rsRNAs under different RNA-seq protocol across tissues and cells 

a, Pairwise comparison matrices for six mouse tissue/cell types, including 5S rRNA, 5.8S 

rRNA, mitochondrial 12S rRNA, mitochondrial 16S rRNA, 28S rRNA and 45S rRNA. 

Color bar: from blue (more similar) to red (more different). b, Pairwise comparison ma-

trices for three human cell types, including 5S rRNA, 5.8S rRNA, mitochondrial 12S 

rRNA, mitochondrial 16S rRNA, 28S rRNA and 45S rRNA. Color bar: from blue (more 

similar) to red (more different). c, Pairwise comparison matrices for during mouse iPSC 

reprogramming, including 5S rRNA, 5.8S rRNA, mitochondrial 12S rRNA, mitochon-

drial 16S rRNA, 18S rRNA, 28S rRNA and 45S rRNA. Color bar: from blue (more simi-

lar) to red (more different). 
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Figure 3.14: PANDORA-seq reveals that tsRNAs and rsRNAs are dynamically regu-

lated during MEF reprogramming to iPSCs (day 0) to intermediate (day 3) and 

iPSC stages 

a, Dynamic changes in small RNA distribution during iPSC reprogramming from MEFs 

(day 0) to intermediate (day 3) and iPSC stages (means ± s.e.m.), as determined by 

PANDORA-seq. b, Bar plot (top) and heatmap (bottom) showing miRNA expression 

changes (based on RPM values) during cell reprogramming using PANDORA-seq. c, Ra-

dar plots showing the different sensitivities of MEFs, intermediate stages and iPSCs in 

regard to different RNA-seq protocols. d, Heatmaps showing tsRNA (genomic and mito-

chondrial) expression levels (based on RPM values) during cell reprogramming using 

PANDORA-seq. e,f, Dynamic changes (e) of a representative tsRNA (tRNA-Arg-ACG-

1; pictured in f) during the reprogramming process, as determined by PANDORA-seq. g, 

Pairwise comparison matrix showing the correlation of rsRNAs (derived from 28S 

rRNA) under different RNA-seq protocols during cell reprogramming. Blue signifies 

more similarity and red more difference. Note that PANDORA-seq revealed a more dy-

namic change across different stages than traditional RNA-seq. h-j, Comparison of 

rsRNA-generating loci by rsRNA mapping data on 5S rRNA (h), 18S rRNA (i) and 28S 

rRNA (j) under PANDORA-seq, showing dynamic changes during the reprogramming 

process. In e and h-j, the shaded peaks are marked with the significance value for the 

comparison between MEFs and iPSCs, as determined by two-way ANOVA. The map-

ping plots in e and h-j are presented as means ± s.e.m. The highlighted windows in i and j 

show the detailed read mappings of rsRNA-18S-1 (i) and rsRNA-28S-1, -2 and -3 (j), 

which were used for northern blot validation in q and r (see arrows). k-r, Northern blot 

examination of representative small RNAs (let-7i (k), let-7f (l), 5’ tsRNAAla (m), 3’ 

tsRNAArg (n), 5’ tsRNAHis (o), 3’ tsRNALys (p), rsRNA-18S-1 (q) and rsRNA-28S-1, -2 

and -3 (r)) was performed in MEFs and iPSCs. The northern blot signals (similar results 

were obtained in three independent experiments) showed overall consistency with their 

corresponding sequencing reads in MEFs and iPSCs, as revealed by PANDORA-seq 

(n = 3 biologically independent samples per bar). Black arrowheads, miRNAs; red arrow-

heads, tsRNAs; blue arrowheads, rsRNAs. The data represent means ± s.e.m. Statistical 

significance was determined by two-sided Student’s t-test (*P < 0.05; **P < 0.01).  
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Figure 3.15: Northern blot analyses of tsRNA/rsRNA (that is, tsRNAAla, tsRNAArg, 

tsRNAGlu, tsRNAHis, tsRNALys and rsRNA-28S-1) changes during mESC to embry-

oid body differentiation 

(a) mESC vs Day6 EB; (b) mESC vs Day10 EB. Red arrowhead: tsRNAs; Blue arrow-

head: rsRNAs. Similar results were obtained in 3 independent experiments for rsRNA-

28S-1; and in 2 independent experiments for tsRNAAla, tsRNAArg, tsRNAGlu, tsRNAHis, 

and tsRNALys. EB: embryoid body. 
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Figure 3.16: Transfection of tsRNA or rsRNA impacts mESC lineage differentiation 

and cell translation 

a, Schematic of the procedure of tsRNA/rsRNA transfection (that is, rsRNA-28S-1, 5’ 

tsRNAAla, 3’ tsRNAArg, 5’ tsRNAGlu, 5’ tsRNAHis, 3’ tsRNALys and a pool of the five 

aforementioned tsRNAs (tsRNA pool)), followed by embryoid body formation and tran-

scriptome RNA-seq at days 1, 3 and 6 after transfection. b,c, Top-ranked upregulated (b) 

and downregulated GOBP terms (c) in day 6 embryoid bodies after each tsRNA/rsRNA 

transfection compared with the control. d,e, Expression heatmaps of the differentially ex-

pressed genes from the representative GOBP terms sensory organ development (d) and 

urogenital development (e). Similar analyses for other pathways are shown in Figure 

3.17 a-d. The Venn diagram beneath each heatmap shows the numbers of overlapped 

dysregulated genes under different tsRNA/rsRNA transfections. f, Gene set score anal-

yses of the representative GOBP terms during days 1, 3 and 6 of embryoid body differen-

tiation under control, rsRNA-28S-1 or pooled tsRNA transfection (n = 3 biologically in-

dependent samples at each time point). Statistical significance was determined by two-

sided one-way ANOVA (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001). Data 

represent means ± s.e.m. g,h, Global translational assay results. Representative pictures of 

nascent protein syntheses (g) and protein synthesis rates 24 h after transfection of the con-

trol (vehicle only; n = 40), scrambled RNA (n = 41), rsRNA-28S-1 (n = 44) and pooled 

tsRNA (n = 54) (h) are shown. Scale bars in g, 100 μm. The ESC clones were from three 

independent biological experiments. Statistical significance was determined by two-sided 

one-way ANOVA (****P < 0.0001). NS, not significant. Data represent means ± s.e.m. 
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Figure 3.17: Expression heatmap of the differentially expressed genes from repre-

sentative GOBP terms in Day6 and Enriched GOBP terms of differential expressed 

genes in Day3 embryoid bodies after tsRNA/rsRNA transfection 

Expression heatmap of the differentially expressed genes from the representative GOBP 

terms in Day3 embryoid bodies from Figure 3.16b,c: (a) Neurological development; (b) 

Muscle/heart development; (c) Oxidative phosphorylation; (d) Translation/ribosome. 

Venn-diagram beneath each heatmap shows the numbers of overlapped dysregulated 

genes under different tsRNA/rsRNA transfection. e, Top-ranked upregulated GOBP 

terms in Day3 embryoid bodies after each tsRNA/rsRNA transfection compared to con-

trol. f, Top-ranked downregulated GOBP terms in Day3 embryoid bodies after each 

tsRNA/rsRNA transfection compared to control.  
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Supplementary materials 

Figure S3.1: The detailed mapping data of each tsRNA under different treatment 

protocol  

(a) mouse brain, (b) mouse liver, (c) mouse spleen, (d) mouse mature sperm, (e) mouse 

mature sperm head, (f) mouse MEF (day 0), (g) mouse intermediate cell (day 3), (h) 

mouse iPSCs, (i) mouse embryonic stem cell (mESC), (j) human HeLa cell, (k) human 

embryonic stem cell (hESC-primed), (l) human embryonic stem cell (hESC-naïve). 

 

Figure S3.2: The rsRNA mapping data on different rRNAs under different RNA-seq 

protocol for different tissue/cell types 

(a) 5S rRNA, (b) 5.8S rRNA, (c) mitochondrial 12S rRNA, (d) mitochondrial 16S rRNA, 

(e) 18S rRNA, (f) 28S rRNA, and (g) 45S rRNA. 

 

Figure S3.3: The ysRNA mapping data on different YRNAs under different RNA-

seq protocol for different tissue/cell types 

(a) human RNY1 YRNA, (b) human RNY3 YRNA, (c) human RNY4 YRNA, (d) human 

RNY5 YRNA, (e) mouse RNY1 YRNA, (f) mouse RNY3 YRNA. 

 

Table S3.1: RNA-seq read summaries and differentially expressed small RNAs by 

pairwise comparison between individual RNA-seq protocols 

 

Table S3.2: Alternative annotation for miRNA fragments based on miRBase among 

mouse and human tissues/cells 

 

Table S3.3: Statistics of probes targeting small RNA expression between MEFs and 

iPSCs under traditional treatment 

 

Table S3.4: List of differentially expressed genes in day 1, 3 and 6 embryoid bodies 

after tsRNA/rsRNA transfection 

 

Table S3.5: Gene set scores for GOBP terms 
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Chapter 4: Conclusion 

Summary 

In addition to well-characterized miRNAs and piRNAs (Bartel, 2018; Ozata et al., 2019), 

the study of other non-canonical small RNAs such as tsRNAs and rsRNAs, is gaining mo-

mentum (Lambert et al., 2019; Schimmel, 2018; Su et al., 2020; Wei et al., 2013). The 

generation of tsRNAs and rsRNAs by cleaving tRNA and rRNA may represent one of the 

most ancient small RNA biogenesis pathways, as the process exists in all life domains, 

including archaea, bacteria and eukaryotes (Su et al., 2020). tsRNAs and rsRNAs both exist 

under physiological conditions and they respond sensitively to various environmental 

stressors (Andersen and Collins, 2012; Fricker et al., 2019; Garcia-Silva et al., 2014; 

Lambertz et al., 2015; Lee and Collins, 2005; Liao et al., 2014; Natt et al., 2019; Thompson 

et al., 2008; Yamasaki et al., 2009; Zhang et al., 2018; Zinskie et al., 2018) that are actively 

involved in translational regulation (Gebetsberger et al., 2017; Kim et al., 2017; Kuscu et 

al., 2018; Luo et al., 2018), retrotransposon control (Martinez et al., 2017; Schorn et al., 

2017), epigenetic inheritance (Chen et al., 2016; Sarker et al., 2019; Sharma et al., 2016; 

Zhang et al., 2019; Zhang et al., 2018), and even cross-kingdom regulation between pro-

karyote and eukaryote (Ren et al., 2019). In particular, RNA modifications in tsRNAs and 

rsRNAs create additional layers of information regarding secondary structure and binding 

potential, directing an exciting area of exploration (Frye et al., 2018; Lewis et al., 2017). 

In contrast, the complicated RNA modification landscapes have caused problems in small 

RNA high-throughput analyses, because they interfere with RNA-seq library preparation 

and prevent the detection of tsRNAs and rsRNAs bearing certain modifications. 
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 The small RNA annotation pipeline SPORTS1.0/1.1 that performed in this thesis is 

convenient for the identification and parallel analyses of both canonical and non-canonical 

small RNAs in numerous species spreading over three kingdoms with precompiled refer-

ence database available. The software can also infer small RNA modification sites in single 

nucleotide resolution depending on sequence alignment strategy, which shows a distinct 

pattern among canonical and non-canonical small RNAs. 

 The improved small RNA-seq method, named PANDORA-seq, is depicted in chap-

ter 3, which expands the repertoire of regulatory small RNAs by resolving RNA modifica-

tions that hamper both adapter ligation and reverse transcription process during RNA-seq 

library construction. Results from PANDORA-seq combined with the northern blot vali-

dation confirm that non-canonical small RNAs (for example, tsRNAs and rsRNAs) are the 

major types of small RNAs in plenty of mammalian tissues and cells, which has previously 

been underexplored or even excluded in bioinformatics analyses. Transfection of tsRNA 

and rsRNA sequences discovered by PANDORA-seq to embryoid bodies significantly pro-

moted the lineage differentiation, suggesting that those non-canonical small RNAs play a 

functional role in cell differentiation. 

 

Future perspectives 

PANDORA-seq has limitations and leaves room for future improvement. For ex-

ample, there are other potential terminal modifications in tsRNAs, or remaining amino ac-

ids attached to a tsRNA end that may interfere with adapter ligation (Honda et al., 2015; 

Raabe et al., 2014), and other tRNA modifications (for example, ms2i6A) that interfere 
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with reverse transcription (Wei et al., 2015), which can be further addressed through addi-

tional enzymatic treatment. PANDORA-seq may also be improved to enable an all-liquid-

based protocol (Li et al., 2019) to avoid repeated RNA extraction after enzymatic treat-

ments. Meanwhile, maintaining RNA integrity during every processing is essential, as the 

degradation of tRNAs/rRNAs may lead to artificial generation of tsRNAs/rsRNAs. Since 

a considerable RNA amount is requested for enzymatic treatment in PANDORA-seq, it 

leads to the question that if developing single-cell PANDORA-seq method is realistic with 

current library construction strategy. Although single-cell small RNA-seq methods based 

on different approaches are already available (Faridani et al., 2016; Xiao et al., 2018; Yang 

et al., 2019), the previous protocols do not considered the small RNA modifications that 

generated biased sequencing results. While the RNA extraction step causes substantial loss 

of RNA amount that is not acceptable for single cell RNA-seq, a one-pot and fully liquid-

based protocol is essential for establishing PANDORA-seq method at single-cell level.  

Nonetheless, PANDORA-seq, as well as SPORTS1.1, opens the Pandora’s box of 

small RNAs, especially the hidden world of non-canonical small RNAs that were previ-

ously underexplored. The biogenesis and functions of tsRNAs/rsRNAs, as well as the reg-

ulatory roles of various RNA modifications, warrant future extensive investigations in dif-

ferent systems. Furthermore, a complete small RNA profile should include not only the 

expression level of each small RNA sequence, but also the cleavage site/pattern from which 

they are derived, the overall spectrum of RNA modifications, and the site-specific RNA 

modifications on each small RNA. The level of complexity buried in the small RNA sig-

nature may provide a superior biomarker with better resolution for the diagnosis and 
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prognosis of complex diseases that were previously difficult to distinguish at the molecular 

level, facilitating the future development of precision medicine (exemplified in appendix). 
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Appendix: Peripheral blood non-canonical small noncoding RNAs as novel bi-

omarkers in lung cancer 

Abstract 

One unmet challenge in lung cancer diagnosis is to accurately differentiate lung cancer 

from other lung diseases with similar clinical symptoms and radiological features, such as 

pulmonary tuberculosis (TB). To identify reliable biomarkers for lung cancer screening, 

the recently discovered non-canonical small non-coding RNAs (i.e., tsRNAs, rsRNAs, and 

ysRNAs) were leveraged in human peripheral blood mononuclear cells and developed a 

molecular signature composed of distinct ts/rs/ysRNAs (TRY-RNA). The TRY-RNA sig-

nature precisely discriminates between control, lung cancer, and pulmonary TB subjects in 

both the discovery and validation cohorts and outperforms microRNA-based biomarkers, 

which bears the diagnostic potential for lung cancer screening. 

  



 137 

Introduction 

One unmet challenge in current lung cancer diagnosis is to accurately differentiate lung 

cancer from other lung diseases with similar clinical symptoms and radiological features. 

Imaging-based screening methods, such as low-dose computed topography (LDCT), could 

sometimes be false positives, as indeterminate pulmonary nodules may also be caused by 

other lung diseases such as pulmonary tuberculosis (TB) (Lakhani and Sundaram, 2017), 

which is especially concerning for clinical practice in TB-endemic countries/regions. 

Therefore, additional noninvasive diagnostic procedures are much needed to avoid a mis-

diagnosis in patients with lung cancer mimicking pulmonary TB, or vice versa. Here, a 

peripheral blood mononuclear cell (PBMC)-based molecular signature is aimed to be de-

veloped to differentiate lung cancer patients from healthy controls and pulmonary TB pa-

tients by harnessing the novel small RNAs.  

Recent small RNA sequencing attempts have ubiquitously detected several non-

canonical small RNA types, which are fragments derived from canonically transcribed par-

ent large RNAs, including tRNA-derived small RNAs (tsRNAs), rsRNAs, and ysRNAs. 

ts/rs/ysRNAs have been discovered in a wide range of species. The biological functions of 

tsRNAs have become a recent highlight and been linked with various human diseases (Su 

et al., 2020), including cancers (Balatti et al., 2017; Dhahbi et al., 2014; Farina et al., 2020), 

while rsRNAs and ysRNAs show sensitive response to pathophysiological conditions 

(Dhahbi et al., 2014; Farina et al., 2020). In this study, a diagnostic signature is developed 

composed of distinct ts/rs/ysRNAs (TRY-RNA) in human PBMCs. The TRY-RNA signa-

ture accurately discriminates between control, lung cancer, and pulmonary TB subjects in 
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both the discovery and validation cohorts and outperforms microRNA (miRNA)-based bi-

omarkers. Figure A.1 provides an overview of the experimental design. 

 

Results 

Dysregulated non-canonical small RNAs in lung cancer 

Small RNA-seq was performed for the PBMC samples collected from 59 human subjects 

in the discovery cohort, including 13 healthy controls, 10 pulmonary TB patients, and 36 

lung cancer patients (Table SA.1). The raw sequencing data were processed by SPORTS1.0. 

In total, 6673 tsRNA species, 20,172 rsRNA species, 1238 ysRNA species, and 973 

miRNA species were identified in human PBMCs (Figure A.2). The co-expression pattern 

of tsRNAs was investigated across the PBMC samples in the discovery cohort by grouping 

tsRNA species into subcategories according to their parent tRNA types. It was found that 

the expression of the tsRNAs derived from the tRNAs of alanine (tsRNA-Ala), asparagine 

(tsRNA-Asn), leucine (tsRNA-Leu), lysine (tsRNA-Lys), and tyrosine (tsRNA-Tyr) was 

strongly and positively correlated with that of each other (Spearman’s rank correlation test: 

ρ > 0.700 and P < 10-9) (Figure A.3a), suggesting shared biogenesis pathways among these 

tsRNAs. Interestingly, tsRNA-Ala, tsRNA-Asn, tsRNA-Leu, tsRNALys, and tsRNA-Tyr 

were the only five tsRNA groups that were upregulated in the lung cancer patients relative 

to the controls (adjusted P < 0.05) (Figure A.3b). It was further found that the expression 

of these five tsRNA groups was also significantly higher in the lung cancer patients than 

in the pulmonary TB subjects (P < 0.05) (Figure A.3b). Next, rsRNA and ysRNA species 

were grouped into subcategories according to their parent rRNA/YRNA types. Then, it was 
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found that the rsRNAs derived from rRNA-5S (rsRNA-5S) were significantly upregulated 

in the lung cancer patients relative to the controls, while the ysRNAs originating from 

YRNA-RNY1 (ysRNA-RNY1) were downregulated in the lung cancer patients compared 

with the controls (adjusted P < 0.05) (Figure A.3b). More interestingly, the expression of 

rsRNA-5S and ysRNA-RNY1 showed a completely inverse pattern in the pulmonary TB 

patients: rsRNA-5S was significantly downregulated in the TB patients relative to the con-

trols, while ysRNA-RNY1 was upregulated in the TB patients compared with the controls 

(P < 0.05) (Figure A.3b). The individual tsRNA-Ala, tsRNA-Asn, tsRNA-Leu, tsRNA-

Lys, tsRNA-Tyr, rsRNA-5S, and ysRNA-RNY1 species were further mapped to the cor-

responding parent RNAs, which followed a nonrandom fragmentation pattern (Figure 

A.3c-d and Figure A.4), suggesting highly regulated biogenesis of these small RNAs. In 

addition, the association of these non-canonical small RNA expression was investigated 

with cancer stage, histological type, lymph node status, metastasis status, and smoking his-

tory, but no significant difference was observed (Figure A.5). 

 

The molecular signature composed of noncanonical small RNAs 

Next, a molecular signature of small RNAs was developed by harnessing the above prior-

itized small RNA subcategories (i.e., tsRNA-Ala, tsRNA-Asn, tsRNA-Leu, tsRNA-Lys, 

tsRNA-Tyr, rsRNA-5S, and ysRNA-RNY1). In total, nine tsRNA species, eight rsRNA 

species, and eight ysRNA species (Figure A.6a-c) were selected, which consisted of a mo-

lecular signature with 25 distinct non-canonical small RNAs (Figure A.6d and Table SA.2), 

referred to as the TS/RS/YSRNA (TRY-RNA) signature. Both principal component 
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analysis (Figure A.6e) and hierarchical clustering on RNA expression (Figure A.3e) con-

firmed the discriminative power of the TRY-RNA signature between the control, lung can-

cer, and TB groups in the discovery cohort. To systematically evaluate the classification 

power of the TRY-RNA signature, a TRY-RNA index was assigned to each subject based 

on the expression of the ts/rs/ysRNAs within the TRY-RNA signature (see methods). The 

TRY-RNA index was a linear combination of the expression values of the small RNA spe-

cies within the TRY-RNA signature. A higher TRY-RNA index implies a higher likelihood 

of lung cancer. It was found that the TRY-RNA index was significantly higher in the lung 

cancer patients than in the healthy controls, while the TRY-RNA index of the pulmonary 

TB patients was significantly lower than that of the controls (t-test: P < 10-5) (Figure A.7a). 

The area under the receiver operating characteristic (ROC) curve (AUC) was 1.000 be-

tween the cancer and non-cancer subjects and 0.994 between the TB and non-TB subjects 

(Figure A.7b). In addition, the association of the expression of the individual RNA species 

was investigated within the TRY-RNA signature with cancer stage, histological type, 

lymph node status, metastasis status, and smoking history, but significant difference was 

only observed for ysRNARNY1–28 and ysRNA-RNY1-29a between adenocarcinoma and 

squamous cell carcinoma patients (Figure A.8-A12).  

 

The performance of the TRY-RNA signature in the validation cohort 

The TRY-RNA signature was further assessed in the validation cohort with 35 human 

PBMC samples collected from 12 healthy controls, 15 lung cancer patients, and 8 pulmo-

nary TB patients (Table SA.3). Unsupervised hierarchical clustering and principal 
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component analysis demonstrated a totally distinct expression pattern of the TRY-RNA 

signature between the lung cancer and TB subjects, with the controls largely falling in 

between in the validation cohort (Figure A.13a-b). The TRY-RNA index in the validation 

cohort was significantly higher in the lung cancer patients than in the healthy controls, 

while the TRY-RNA index of the TB patients was significantly lower than that of the con-

trols (t-test: P < 0.005) (Figure A.13c). The AUC was 0.930 between the cancer and non-

cancer subjects and 1.000 between the TB and non-TB subjects (Figure A.13d), which 

suggests the strong classification power of the TRY-RNA signature for both lung cancer 

and pulmonary TB screening. 

 

Comparison between the TRY-RNA and miRNAbased signatures 

The expression profiles of miRNAs among the control, lung cancer, and pulmonary TB 

subjects were also compared in the discovery cohort and identified a signature with 43 

miRNA species, referred to as the MIR signature (Figure A.14 and Table S4). Similar to 

the TRY-RNA signature, a MIR index was assigned to each subject based on the expression 

of the miRNAs within the MIR signature. It was found that in both the discovery and val-

idation cohorts, while the MIR index can differentiate the lung cancer patients from the 

control and TB subjects (Figure A.7c-d and A.15a-b), a resampling test (See methods) 

demonstrated a superior classification power of the TRY-RNA signature compared to the 

MIR signature (Figure A.15c). Whether the MIR signature provided additive classification 

power to the TRY-RNA signature by combining both signatures was further investigated 

(referred to as the TRY-RNA∪MIR signature). Although the performance of the TRY-
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RNA∪MIR signature was fairly good, the TRY-RNA∪MIR signature didn’t outperform 

the TRYRNA signature and barely provided additive information for the classification 

(Figure A.15d-f). 

 

Conclusions 

The TRY-RNA signature derived from the repertoire of PBMC non-canonical small RNAs 

makes it possible for the early diagnosis of lung cancer and pulmonary TB, which may 

reflect the host responses to different antigens and would represent an improvement over 

the previous studies focusing solely on tsRNAs in cancer tissues (Balatti et al., 2017; Farina 

et al., 2020; Pekarsky et al., 2016). Interestingly, the performance of the TRY-RNA signa-

ture shows superiority over the miRNA-based signature, which could be due to the more 

complex layer of non-canonical small RNAs. For example, tsRNAs and rsRNAs exhibit 

an unexpected complexity in regards to their RNA modifications as well as their sequence 

diversities (Shi et al., 2019). Previous study suggests that both tsRNAs and rsRNAs are 

involved in mammalian epigenetic inheritance, which form a ‘RNA code’ to convey envi-

ronmental clue to the offspring (Zhang et al., 2019; Zhang et al., 2018). Also, tsRNAs are 

thought to regulate translation process and ribosome biogenesis in versatile ways, including 

the fine-tuning of the ribosome composition that may affect the translational specificity on 

a selective pool of mRNAs (also referred to as ribosome heterogeneity). In other words, 

change in tsRNA (and perhaps rsRNA/ysRNA as well) composition may result in altered 

ribosome heterogeneity that directs the cell to a specific functional state (Shi et al., 2019). 

The complexity and possible permutations of different tsRNA/ rsRNA/ysRNAs may 
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endow the superior information capacity and specificity that are needed to distinguish com-

plex diseases, and as being harnessed here, represent a ‘disease RNA code’ in lung cancer 

screening.  

 

Methods 

Human subjects 

This study aimed to develop a non-canonical small RNA-based molecular signature in hu-

man PBMCs differentiating lung cancer patients from healthy controls and pulmonary TB 

subjects. Small RNA-seq was applied to measure the PBMC ts/rs/ysRNA expression for 

both the discovery (n = 59) and validation (n = 35) cohorts. All the subjects of this study 

were of Chinese Han descent. Lung cancer patients were recruited from the First Affiliated 

Hospital of Bengbu Medical College without receiving adjuvant chemotherapy. Both his-

tological and radiological features were collected for the diagnosis of lung cancer. Active 

pulmonary TB patients were recruited from the Infectious Disease Hospital of Bengbu City 

before any TB treatment. The diagnosis of TB was based on established international 

guidelines (Lewinsohn et al., 2017). The healthy controls were recruited from the Physical 

Examination Center of the First Affiliated Hospital of Bengbu Medical College. Subjects 

with other concurrent infectious diseases were excluded. All subjects were recruited con-

secutively over time, with the discovery cohort being recruited first followed by the vali-

dation cohort. The detailed information is presented in Table SA.1 and Table SA.2. The 

Ethics Committee of Bengbu Medical College approved this study, with written informed 
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consent obtained from all subjects, which conformed to the standard indicated by the Dec-

laration of Helsinki.  

 

PBMC RNA isolation 

PBMCs were collected from the subjects in the discovery and validation cohorts. Five mil-

liliters of anticoagulant peripheral blood were drawn from the ulnar vein of each subject. 

PBMCs were immediately isolated by the Ficoll-Hypaque density gradient centrifugation 

method. Briefly, the blood samples were diluted with RPMI-1640 basic medium at a ratio 

of 1:1. The diluted blood was added and spread over the Ficoll-Hypaque separation solu-

tion at a ratio of 2:1 and then centrifuged at 2,000 revolutions per minute for 20 minutes at 

room temperature. After centrifugation, the white misty cell layer was collected into a new 

centrifuge tube and washed twice with RPMI-1640 basic medium at 2,000 revolutions per 

minute for 5 minutes at 4 °C. The isolated PBMCs were transferred into 1.5 mL tubes, and 

1 mL TRIzol (Ambion, Thermo Fisher Scientific) was added for subsequent total RNA 

extraction. Total RNA as extracted from PBMCs using TRIzol reagent (Invitrogen) and 

purified with a mirVana miRNA Isolation Kit (Ambion, Thermo Fisher Scientific) accord-

ing to the manufacturer’s protocol. RNA degradation and contamination were monitored 

on 1% agarose gels. RNA purity was checked using a NanoPhotometer spectrophotometer 

(Implen, CA, USA). RNA concentration was measured using a Qubit RNA Assay Kit in a 

Qubit 2.0 Fluorometer (Life Technologies, CA, USA). RNA integrity was assessed by the 

RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent Technologies, 
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CA, USA). Only the RNA samples with RNA integrity values > 6 were retained for further 

study.  

 

Small RNA-seq library preparation 

A total of ~2 μg total RNA per sample was used as the input for the small RNA-seq libraries. 

The small RNA-seq libraries were constructed using the NEBNext Multiplex Small RNA 

Library Prep Set for Illumina® (New England Biolabs, USA). The NEB 3’ SR adaptor was 

ligated to the 3’ end of small RNAs, followed by the SR RT Primer being hybridized to the 

excess 3’ SR adaptor, which transformed the single-stranded DNA adaptor into double-

stranded DNA. The 5’ end adapter was ligated to the 5’ ends of small RNAs, followed by 

the first cDNA strand being synthesized using M-MuLV Reverse Transcriptase. PCR am-

plification was performed using LongAmp Taq 2X Master Mix for 11-13 cycles, and the 

products were purified on an 8% polyacrylamide gel (100 V, 80 minutes). DNA fragments 

were recovered and dissolved in 8 μL elution buffer. The qualified libraries, which were 

assessed by an Agilent Bioanalyzer 2100, were amplified on the cBot to generate the cluster 

on the flow cell. The amplified flow cell was sequenced (single-end) on the Illumina Sys-

tem with a read length of 50 nucleotides.  

 

small RNA-seq data processing 

SPORTS1.0 was used to parse the raw small RNA-seq data. Clean reads were outputted by 

removing sequence adapters and discarding sequences with lengths beyond the defined 

range and those with bases other than ATUCG. The clean reads were sequentially mapped 
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against miRBase (Kozomara and Griffiths-Jones, 2014), the rRNA/YRNA database (ob-

tained from NCBI), and GtRNAdb (Chan and Lowe, 2016). Because miRNAs were dom-

inant among the sequencing reads, the reads per million (RPM) values were summarized 

for the small RNA species with lengths ≤ 25 nucleotides and > 25 nucleotides separately. 

The miRNA-based signature was developed from sequencing reads with lengths ≤ 25 nu-

cleotides, while the signature composed of ts/rs/ysRNAs was derived from sequencing 

reads with lengths > 25 nucleotides. The non-canonical small RNAs were only retained 

with at least one read in at least 10 samples. Non-canonical small RNA species were further 

grouped, i.e., ts/rs/ysRNAs, into individual subcategories according to the parent large 

RNAs from which they originated. The small RNA subcategories with fold change < 2 

between the control and lung cancer groups were excluded from further analyses. A linear 

model controlling was used for age and sex (McDonough et al., 2019) to compare the ex-

pression of each small RNA subcategory between the control and lung cancer groups. The 

Benjamini-Hochberg procedure was used for P-value correction. The same linear model 

controlling for age and sex was also used to compare the expression of each small RNA 

subcategory between the pulmonary TB and lung cancer groups. To identify the small RNA 

species that were differentially expressed between the controls and lung cancer patients 

and between the controls and TB patients, the edgeR tool (Robinson et al., 2010) was em-

ployed controlling for age and sex. The small RNA species (mean RPM > 1) with a false 

discovery rate < 0.01 were deemed differentially expressed. 
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Developing the molecular signatures 

To develop the TRY-RNA signature, only the small RNA species differentially expressed 

between the controls and lung cancer patients and between the pulmonary TB and lung 

cancer patients were retained. To avoid potential biases caused by RNA size fractionation 

procedures, small RNA species with lengths ≥ 40 nucleotides were further excluded. For 

each tsRNA subcategory, only the top two tsRNA species with the highest average expres-

sion levels across all the PBMC samples if there was more than one tsRNA species within 

this subcategory were collected. In total, nine tsRNA species were prioritized: tsRNA-Ala-

AGC/CGC-30 and tsRNA-Ala-AGC/CGC-31 belonging to tsRNA-Ala, tsRNA-Asn-GTT-

26 and tsRNA-Asn-GTT-27 belonging to tsRNA-Asn, tsRNA-Leu-CAG-26 belonging to 

tsRNA-Leu, tsRNA-Lys-CTT-29 and tsRNA-Lys-CTT-30 belonging to tsRNA-Lys, and 

tsRNA-Tyr-GTA-31 and tsRNA-Tyr-GTA-32 belonging to tsRNATyr. For rsRNA-5S and 

ysRNA-RNY1, the RNA species with mean RPM > 50 were collected, yielding eight 

rsRNA species, rsRNA-5S-27, rsRNA-5S-28, rsRNA-5S-30, rsRNA-5S-31, rsRNA-5S-32, 

rsRNA-5S-37, rsRNA-5S-38, and rsRNA-5S-39, and eight ysRNA species, ysRNA-

RNY1-26, ysRNA-RNY1-28, ysRNA-RNY1-29a, ysRNA-RNY1-29b, ysRNA-RNY1- 30, 

ysRNA-RNY1-31, ysRNA-RNY1-32, and ysRNA-RNY1-36. The expression profiles of 

miRNAs among the control, lung cancer, and pulmonary TB patients in the discovery co-

hort were also examined. In total, 43 miRNA species were found to be differentially ex-

pressed between the controls and lung cancer patients and between the TB and lung cancer 

patients. These 43 miRNAs were designated as the MIR signature. 
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The TRY-RNA, MIR, and TRY-RNA∪MIR indices 

A scoring scheme was applied which was used in previous studies to assign each human 

subject a TRY-RNA index (Qian et al., 2018; Qian et al., 2016): 

𝐼𝑇𝑅𝑌−𝑅𝑁𝐴 = ∑ 𝑤𝑖(𝑒𝑖 − 𝜇𝑖)

25

𝑖=1

/𝜏𝑖 

Here, ITRY-RNA was the TRY-RNA index; wi was the weight of non-canonical small RNA i 

within the TRY-RNA signature as shown in Table SA.2 (wi = 1 if small RNA i was upreg-

ulated in the lung cancer patients relative to the controls, while wi = -1 if small RNA i was 

downregulated in the lung cancer patients); ei denoted the expression level of small RNA 

i; and μi and τi were the mean and standard deviation of the expression of small RNA i 

across all the samples, respectively. Similarly, the MIR index was defined as: 

𝐼𝑀𝐼𝑅 = ∑ 𝑤𝑖(𝑒𝑖 − 𝜇𝑖)

43

𝑖=1

/𝜏𝑖 

Here, IMIR was the MIR index; wi was the weight of miRNA i within the MIR signature as 

shown in Table SA.4 (wi = 1 if miRNA i was upregulated in the lung cancer patients relative 

to the controls, while wi = -1 if miRNA i was downregulated in the lung cancer patients); 

ei denoted the expression level of miRNA i; and μi and τi were the mean and standard 

deviation of the expression of miRNA i across all the samples, respectively. Finally, the 

TRY-RNA∪MIR index was defined as:  

𝐼𝑇𝑅𝑌−𝑅𝑁𝐴∪𝑀𝐼𝑅 = ∑ 𝑤𝑖(𝑒𝑖 − 𝜇𝑖)

68

𝑖=1

/𝜏𝑖 
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Here, ITRY-RNA∪MIR was the TRY-RNA∪MIR index; wi was the weight of RNA i 

within the TRYRNA∪MIR signature (including 25 ts/rs/ysRNA and 43 miRNA species); 

ei denoted the expression level of RNA i; and μi and τi were the mean and standard devia-

tion of the expression of RNA i across all the samples, respectively. 

 

Resampling test 

Because the size between the TRY-RNA and MIR signatures was different (25 

ts/rs/ysRNA species vs. 43 miRNA species), to perform a fair comparison between the two 

signatures, a resampling test was conducted by randomly selecting 25 miRNA sequences 

from the MIR signature 1,000 times. For each random 25-miRNA signature, the MIR index 

for each subject was recalculated, and a multi-class AUC was computed among the control, 

lung cancer, and TB groups according to the generalization model proposed by Hand and 

Till (Hand and Till, 2001), which represented the classification power of the random sig-

nature.  

 

Statistical analysis 

All statistical analyses were performed using the R platform. Correlations between contin-

uous variables were measured by Spearman’s rank correlation test using the cor.test func-

tion. Student’s t-test was performed for groupwise comparisons of normal distributions, 

using the t.test function. A linear model controlling for age and sex was applied to prioritize 

the differentially expressed non-canonical small RNA subcategories using the lm function. 

If multiple testing should be accounted for, the Benjamini-Hochberg procedure was applied 
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for P-value correction using the p.adjust function. Principal component analysis on the 

expression data of the TRY-RNA signature was performed using the dudi.pca function 

within the package ade4. The AUC and multi-class AUC values were computed using the 

roc and multiclass.roc functions respectively, within the package pROC.  
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Figures 

 

Figure A.1: The workflow of the study. PBMC ts/rs/ysRNA expression of the human 

subjects in the discovery cohort was profiled by small RNA-seq 

A molecular signature composed of ts/rs/ysRNAs was developed to discriminate between 

healthy controls, lung cancer patients, and pulmonary TB subjects. This signature was 

validated in the validation cohort with high accuracy. AUC: area under the receiver oper-

ating characteristic curve. 
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Figure A.2: The landscape of non-canonical small RNAs in human PBMCs 

a, The distribution of small RNA read proportions. The X-axis was log10-transformed. 

For each sample, the read proportions of tsRNAs, rsRNAs, ysRNAs, and miRNAs were 

computed, respectively. b, The correlation in read proportions between miRNAs and non-

canonical small RNAs, i.e., tsRNAs, rsRNAs, and ysRNAs. The correlation coeffcients 

(ρ) and P-values were calculated by Spearman’s rank correlation test. c, The length distri-

bution of small RNAs. Each dot represents one PBMC sample. The Y-axis shows the 

read proportion within each small RNA category, i.e., tsRNA, rsRNA, ysRNA, and 

miRNA. d, The parent large RNAs from which non-canonical small RNAs originated. 

The Y-axis shows the read proportion within each non-canonical small RNA category, 

i.e., tsRNA, rsRNA, and ysRNA.  
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Figure A.3: The dysregulated non-canonical small RNAs in lung cancer 

a, The co-expression pattern tsRNA subcategories across the PBMC samples in the dis-

covery cohort. b, The expression profile of tsRNA-Ala, tsRNA-Asn, tsRNA-Leu, tsRNA-

Lys, tsRNA-Tyr, rsRNA-5S, and ysRNA-RNY1 among the control, lung cancer, and TB 

subjects. RPM: reads per million. c and d, The coverage profile of the PBMC rsRNA- 5S 

and ysRNA-RNY1 sequences along rRNA-5S and YRNA-RNY1, respectively. The solid 

curves indicate the mean RPM values for the control, lung cancer, and TB groups. The 

colored bands represent the 95% confidence interval. nt: nucleotide. e, Expression 

heatmap of the small RNA species within the TRY-RNA signature in the discovery co-

hort. 
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Figure A.4: The mapping profile of tsRNAs 

Individual tsRNAs were classified according to the fragment locations on the correspond-

ing parent tRNAs, i.e., the 5 terminus, 3 terminus, 3 CCA-end, or internal region of 

tRNAs.  
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Figure A.5: Comparison of the expression of the prioritized small RNA subcatego-

ries between different conditions 

Comparison of the expression of the prioritized small RNA subcategories between (a) 

lung cancer stages, (b) lung cancer histological types, or the lung cancer patients (c) with 

and without lymph node involvement, (d) with and without distant metastasis, or (e) with 

and without smoking history. Groupwise comparisons were performed using a linear 

model controlling for age and sex. No significant difference was observed (adjusted P > 

0.05). 
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Figure A.6: The TRY-RNA signature 

The tsRNA (a), rsRNA (b), and ysRNA (c) species in the signature, respectively. The 

colored nucleotides indicate the location of the small RNAs on their corresponding parent 

RNAs. The darkness of the colors (from light blue to steel blue) indicates the overlap 

level among different small RNA species. Nucleotides with higher overlap levels are 

darkly colored. d, The small RNA sequences of the TRY-RNA signature. e, Principal 

component analysis of the TRY-RNA signature. PC1: the first principal component; PC2: 

the second principal component.  
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Figure A.7: The TRY-RNA and MIR index in the discovery cohort 

Comparison of the TRY-RNA (a) and MIR (c) index among the control, lung cancer, and 

TB subjects in the discovery cohort. (B) The ROC curve of the TRY-RNA (c) and MIR 

(d) index in distinguishing between lung cancer and non-cancer subjects and between TB 

and non-TB subjects in the discovery cohort. 
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Figure A.8: Comparison of the expression of the small RNA species within the TRY-

RNA signature between lung cancer stages 

Groupwise comparisons (stage I/II vs. III/IV) were performed using a linear model con-

trolling for age and sex. No significant difference was observed (adjusted P > 0.05). 
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Figure A.9: Comparison of the expression of the small RNA species within the TRY-

RNA signature between lung cancer histological types 

Groupwise comparisons (i.e., adenocarcinoma vs. squamous cell carcinoma, adenocarci-

noma vs. small cell lung carcinoma, and squamous cell carcinoma vs. small cell lung car-

cinoma) were performed using a linear model controlling for age and sex. Significant dif-

ference was only observed for ysRNA-RNY1-28 and ysRNA-RNY1-29a between adeno-

carcinoma and squamous cell carcinoma (adjusted P < 0.05). 
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Figure A.10: Comparison of the expression of the small RNA species within the 

TRY-RNA signature between the lung cancer patients with and without lymph node 

involvement 

Groupwise comparisons were performed using a linear model controlling for age and sex. 

No significant difference was observed (adjusted P > 0.05) 
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Figure A.11: Comparison of the expression of the small RNA species within the 

TRY-RNA signature between the lung cancer patients with and without distant me-

tastasis 

Groupwise comparisons were performed using a linear model controlling for age and sex. 

No significant difference was observed (adjusted P > 0.05). 
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Figure A.12: Comparison of the expression of the small RNA species within the 

TRY-RNA signature between the lung cancer patients with and without smoking 

history 

Groupwise comparisons were performed using a linear model controlling for age and sex. 

No significant difference was observed (adjusted P > 0.05). 
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Figure A.13: The performance of the TRY-RNA signature in the validation cohort 

a, Expression heatmap of the small RNA species within the TRY-RNA signature in the 

validation cohort. b, Principal component analysis of the TRY-RNA signature. PC1: the 

first principal component; PC2: the second principal component. PC1 significantly dif-

fered between the controls and lung cancer patients (t-test: P = 3.1 × 10-3), between the 

controls and TB patients (t-test: P = 4.7 × 10-6), and between the lung cancer and TB pa-

tients (t-test: P = 4.1 × 10-8). c, Comparison of the TRY-RNA index among the control, 

lung cancer, and TB subjects in the validation cohort. d, The ROC curve of the TRY-

RNA index in distinguishing between lung cancer and non-cancer subjects and between 

TB and non-TB subjects in the validation cohort. 
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Figure A.14: Expression heatmap of the MIR signature in the discovery cohort 

Red represents higher expression while blue stands for lower expression. 
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Figure A.15: Comparison between the TRY-RNA and MIR signatures 

a, Comparison of the MIR index between the control, lung cancer, and TB subjects in the 

validation cohort. b, The ROC curve of the MIR index in distinguishing between lung 

cancer and non-cancer subjects and between TB and non-TB subjects in the validation 

cohort. c, The superior classification power of the TRY-RNA signature compared with 

the MIR signature. The gray histogram shows the distribution of the multi-class AUC val-

ues of the 1,000 resampled 25-miRNA signatures randomly picked up from the MIR sig-

nature. The red triangle represents the multi-class AUC of the TRY-RNA signature. The 

right-tailed P-value of the sampling distribution was calculated. d, Comparison of the 

TRY-RNA[MIR index between the control, lung cancer, and TB subjects in the valida-

tion cohort. e, The ROC curve of the TRY-RNA[MIR index in distinguishing between 

lung cancer and non-cancer subjects and between TB and non-TB subjects in the valida-

tion cohort. f, Comparison of the multi-class AUC values between the MIR, TRY-

RNA[MIR, and TRY-RNA signatures in the validation cohort.  
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Supplementary materials 

Table SA.1: The human subjects of the discovery cohort 

 

Table SA.2: The TRY-RNA signature 

 

Table SA.3: The human subjects of the validation cohort 

 

Table SA.4: The MIR signature 
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