
Application-Driven Development of Computational Tools and Algorithms for Machine
Learning and Mean-Field Games

By

Mahan Tajrobehkar

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Engineering - Industrial Engineering and Operations Research

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Xin Guo, Chair
Professor Zeyu Zheng
Professor Anant Sahai

Summer 2023

Application-Driven Development of Computational Tools and Algorithms for Machine
Learning and Mean-Field Games

Copyright 2023
by

Mahan Tajrobehkar

1

Abstract

Application-Driven Development of Computational Tools and Algorithms for Machine
Learning and Mean-Field Games

by

Mahan Tajrobehkar

Doctor of Philosophy in Engineering - Industrial Engineering and Operations Research

University of California, Berkeley

Professor Xin Guo, Chair

In today’s rapidly evolving technological landscape, the development and advancement
of computational tools and algorithms have become paramount across a wide range of
research fields. This holds particularly true in various domains of computational mathematics,
encompassing areas such as machine learning, optimization, and algorithmic game theory. The
computational tools serve as essential enablers, empowering researchers and practitioners by
facilitating efficient modeling, analysis, and prediction. Algorithms are essential components
of computational tools, which provide instructions for data processing, pattern recognition,
and decision-making.

This dissertation focuses on developing computational tools and algorithms for specific
applications in the interconnected fields of optimization, machine learning (ML), and mean-
field games (MFGs). First, to address the absence of a comprehensive computational tool
for MFGs, we present MFGLib, an open-source Python library designed to provide a user-
friendly and customizable interface for solving Nash equilibria in generic MFGs. Second,
we demonstrate that the search for Nash equilibria in MFGs and various ML problems can
be formulated as non-convex optimization problems, where the presence of saddle points
significantly impedes the effectiveness of gradient descent algorithm and its variants. To help
optimization algorithms escape saddle points efficiently, we introduce a novel perturbation
mechanism based on the dynamics of vertex-repelling random walk. This leads to the
development of two new algorithms, perturbed gradient descent adapted to occupation
time (PGDOT) and its accelerated version (PAGDOT). Theoretical guarantees for these
algorithms are established, and through extensive numerical experiments, we showcase their
superiority over several state-of-the-art optimization methods. Last, we explore a relatively
independent machine learning task—detecting overutilization and fraud in healthcare. We
focus on developing an ensemble model based on Stacked Generalization (stacking) to
detect overutilization in Medicare within the field of Ophthalmology. Our results highlight

2

the superiority of the stacking ensemble model over traditional ML models in accurately
distinguishing overutilizing ophthalmologists from non-fraudulent ones.

i

To my parents, for ensuring every educational opportunity was available to me.

ii

Contents

Contents ii

List of Figures iv

List of Tables vii

1 Introduction 1
1.1 Related Publications . 2

2 MFGLib: A Library for Mean-Field Games 3
2.1 Related Work . 5
2.2 Brief Overview of MFGLib . 5
2.3 Future Work . 8

Appendices 9
2.A Background on Discrete Finite-Horizon MFGs 9
2.B MFGLib Documentation . 11

3 Escaping Saddle Points Efficiently with Occupation-Time-Adapted Per-
turbations 32
3.1 Background and Existing Results . 37
3.2 Main Results . 39
3.3 Empirical Results . 42
3.4 Conclusion . 49

Appendices 50
3.A Monotone Convergence of Gradient Descent . 50
3.B Background on Convex Optimization . 51
3.C Proof of Theorem 4 . 52
3.D Proof of Theorem 5 . 52
3.E Hyperparameter Settings in the Numerical Examples 53
3.F Image Classification Task Results of Adaptive Gradient Methods 55

iii

4 Leveraging Stacked Generalization to Effectively Detect Overutilization
in Medicare 57
4.1 Data Source, Preprocessing, and Labeling . 60
4.2 Overutilization Analysis via Machine Learning Techniques 62
4.3 Discussion . 69
4.4 Limitations . 73

Appendices 75
4.A Data Source Details . 75
4.B HCPCS Codes . 76
4.C Labeling Process . 77
4.D ML Models Details . 77
4.E Nested CV . 80
4.F Calibration Plots . 81
4.G Further Overutilization Statistics . 81
4.H Probability Threshold . 82

Bibliography 88

iv

List of Figures

2.B.1Exploitability scores obtained by running the Online mirror Descent algorithm on
the Beach Bar environment . 13

2.B.2Comparing the exploitability scores obtained by the default and tuned Online
Mirror Descent. 24

3.0.1 Illustration of occupation-time-adapted perturbation using f(x) = x3. 34
3.0.2 Illustration of Ah

r . 35
3.3.1 Graph of f̃ (left) and the landscape of f(xxx) (middle) with xxx ∈ R2 in the case of

N = 4, L = 1. The figure on the right shows the performance of different algorithms
in the stair function problem when N = 4, L = 1, d = 4. In this figure, the y-axis
and x-axis represent the loss and number of iterations, respectively. 43

3.3.2 The target function y∗(t) and fitted function ŷ(t) obtained by PGDOT (left),
and the performance of different algorithms (right) in the nonlinear regression
problem. In the figure on the right, the y-axis and x-axis represent the loss and
number of iterations, respectively. 44

3.3.3 The performance of different algorithms in the regularized quadratic problem (left)
and the phase retrieval problem (right). In both figures, the y-axis and x-axis
represent the loss and number of iterations, respectively. 45

3.3.4 Experimental results of training the MLP model on MNIST using various al-
gorithms. The dashed blue line corresponds to SGD; the dashed orange line
corresponds to Adam; the solid green line corresponds to PGD; the solid red line
corresponds to PAGD, the solid purple line corresponds to PGDOT; and the solid
brown line corresponds to PAGDOT. 46

3.3.5 Experimental results of training SqueezeNet on CIFAR-10 using various algorithms.
The dashed blue line corresponds to SGD; the dashed orange line corresponds to
Adam; the dashed green line corresponds to PGD; the dashed red line corresponds
to PAGD, the solid purple line corresponds to PGDOT; and the solid brown line
corresponds to PAGDOT. 46

3.3.6 Experimental results of training ResNet18 on CIFAR-100 using various algorithms.
The dashed blue line corresponds to SGD; the dashed orange line corresponds to
Adam; the solid green line corresponds to PGD; the solid red line corresponds
to PAGD, the solid purple line corresponds to PGDOT; and the solid brown line
corresponds to PAGDOT. 47

v

3.3.7 Scatter plot of gradient norm vs. minimum eigenvalue of Hessian in the vicinity
of MFOMO’s initial point (left) and Training curves of MFOMO equipped with
different optimizers (right) for the Susceptible Infected environment. 48

3.F.1Experimental results of training the MLP model on MNIST using several adaptive
gradient methods. The dashed blue line corresponds to Adam; the dashed orange
line corresponds to AMSGrad; the dotted green line corresponds to AdaBelief;
and the dotted red line corresponds to STORM. 55

3.F.2Experimental results of training SqueezeNet on CIFAR-10 using several adaptive
gradient methods. The dashed blue line corresponds to Adam; the dashed orange
line corresponds to AMSGrad; the dashed green line corresponds to AdaBelief;
and the dashed red line corresponds to STORM. 55

3.F.3Experimental results of training ResNet18 on CIFAR-100 using several adaptive
gradient methods. The dotted blue line corresponds to Adam; the dotted orange
line corresponds to AMSGrad; the dotted green line corresponds to AdaBelief;
and the dotted red line corresponds to STORM. 56

4.1.1 Data preprocessing flowchart. The presented flowchart outlines the sequential
steps undertaken in the data preprocessing phase, specifically focusing on obtaining
the feature set for a particular provider using their billing information from the
year 2015. 61

4.1.2 Sparsity map of the features associated with the providers in the labeled dataset.
The plot shows the sparsity pattern of the feature space, indicating the utilization
of HCPCS codes by labeled providers. Each cell represents the presence (non-zero
value) or absence (zero value) of a specific HCPCS code for a provider. 63

4.2.1 ROC curves and calibration plots. Corresponding values of the area under the
curve (AUROC score) for each are presented in Table 4.2.1. KNN (blue line)
indicates k-nearest neighbor; LR (orange line), logistic regression; SVM (greed
line), support vector machines; MLP (red line), multilayer perceptron; XGB
(purple line), extreme gradient boosting; and Stacking (brown line), stacking
ensemble. 66

4.2.2 Predicted Overutilization Rates within Medicare Jurisdictions in 2021. The figure
displays the overutilization rates, sorted in descending order, for each Medicare
jurisdiction. The leftmost jurisdiction represents the highest overutilization rate,
while the rightmost jurisdiction indicates the lowest fraud rate. The data provides
insights into the distribution of predicted overutilization across different jurisdictions. 68

4.2.3 Monetary Losses on Medicare overutilization within Medicare Jurisdictions in
2021. The figure illustrates the amount of money lost due to overutilization, sorted
in descending order, for each Medicare jurisdiction. The leftmost jurisdiction
represents the highest monetary losses, while the rightmost jurisdiction indicates
the lowest losses. The losses are calculated in the same way nationwide loss is
calculated. 68

vi

4.2.4 The heat map showcases the predicted overutilization rates across states in the
United States, providing a visual representation of the variations in overutilization
patterns across different regions. The darker colors represent higher rates of
overutilization. 69

4.2.5 Shap Summary Plot. 70
4.D.1Configuration and hyperparameters of deployed pipelines. The figure illustrates

the detailed configuration and hyperparameter settings for the pipelines utilized
in the training process. 79

4.F.1Calibration plots. KNN (blue line) indicates k-nearest neighbor; LR (orange
line), logistic regression; SVM (greed line), support vector machines; MLP (red
line), multilayer perceptron; XGB (purple line), extreme gradient boosting; and
Stacking (brown line), stacking ensemble. 81

4.G.1Predicted overutilization rate within Medicare jurisdictions in 2021. 82
4.G.2Comparing the average payment per patient between overutilizer and non-fraudulent

ophthalmologists within Medicare Jurisdictions 2021. 83
4.G.3Monetary loss within Medicare jurisdictions in 2021. 84
4.G.4Comparing the average non-drug Medicare payment per patient between overuti-

lizer and non-fraudulent ophthalmologists within Medicare Jurisdictions 2021. . . 84
4.H.1The Relation between the accuracy and false positive rate. The red dot corresponds

to the probability threshold of 0.353. 86
4.H.2The heat map showcases the predicted overutilization rates across states in the

United States. The rates are estimated using the probability threshold of 0.646. . 87

vii

List of Tables

3.E.1Hyperparameters utilized in the small-scale problems. 54
3.E.2Hyperparameters utilized by SGD and the adaptive gradient methods in the image

classification tasks. 54
3.E.3Hyperparameters utilized by PGD, PAGD, PGDOT, and PAGDOT in the image

classification tasks. 54

4.1.1 Number of ophthalmology records . 60
4.1.2 Characteristics of labeled providers . 62
4.2.1 Performance measures for various ML models . 65
4.2.2 Medicare jurisdictions and coverage areas . 67
4.A.1Features used from the MPOP_PS data . 75
4.A.2Features used from the MPOP_P data . 76
4.G.1Overutilization rate within Medicare jurisdictions details 82
4.G.2Average payment per patient within Medicare jurisdictions details 83
4.G.3Monetary loss within Medicare jurisdictions details 84
4.G.4Average non-drug Medicare payment per patient within Medicare jurisdictions

details . 85
4.H.1Additional performance metrics for the stacking ensemble model utilizing a proba-

bility threshold of 0.353 . 85
4.H.2Performance metrics for the stacking ensemble model utilizing a probability

threshold of 0.646 . 86

viii

Acknowledgments

I have many people to thank for their guidance and support of this research and my academic
career.

First, I would like to express my deepest gratitude to Xin Guo, my advisor, for her
exceptional mentorship, unwavering patience, and profound expertise throughout my research
journey. Her guidance and support have been invaluable, particularly during the times when
I felt uncertain or lost. Xin’s dedication to my growth as a researcher was evident in her
efforts to find research problems that aligned with my interests, even if they were not directly
related to her own research pursuits. Her introduction of intriguing and challenging problems
in the fields of optimization, machine learning, and mean-field games broadened my horizons.
I am truly fortunate to have her as my advisor.

Second, I would like to thank my collaborators and committee members. I consider
myself fortunate to have had the opportunity to work in a stimulating research environment
surrounded by exceptional individuals. Many thanks to my collaborators, Wenping Tang,
Jiequn Han, Anran Hu, Junzi Zhang, Matteo Santamaria, Scott Lee, and Varun Shravah. As
members of my qualifying exam and dissertation committee, Zeyu Zheng and Anant Sahai
provided me with helpful feedback in my research, and I am thankful for their support.

I would also like to thank many more individuals who have greatly enriched my experience
at UC Berkeley. Special shout-out to Yoon Lee and Yuhao Ding for co-founding the “Stronger”
group. My gratitude extends to our research group members and my peers at the IEOR
department: Yusuke Kikuchi, Haotian Gu, Haoyang Cao, Renyuan Xu, Xinyu Li, Salar
Fattahi, Mahbod Olfat, Reza Mohammadi-Ghazi, Han Feng, Cedriz Jozs, Armin Askari,
SangWoo Park, Igor Molybog, Tomas Valencia, Marie (Pelagie) Elimbi, Julie Mulvaney-Kemp,
Yann Fraboni, Vanshika Bansal, Ruijie Zhou, Ilgin Dogan, Erik Bertelli, Ruojie Zeng, Michael
Murray, Jehum Cho, and Bhaskar Chaturvedi.

Finally, I would like to express my profound appreciation for my parents and my dear
Saghi, whose unwavering love, support, and encouragement have been a constant source of
strength throughout my academic journey.

1

Chapter 1

Introduction

In today’s era of rapid technological advancements and data-driven decision-making, the
development and advancement of computational tools have emerged as a top priority across
diverse fields of research. This holds particularly true in various domains of computational
mathematics, encompassing areas such as machine learning, optimization, and algorithmic
game theory. These tools serve as essential enablers, empowering researchers and practitioners
by facilitating efficient modeling, analysis, and prediction. Computational tools heavily rely
on algorithms to fulfill their purpose effectively. Algorithms drive the functionality and
capabilities of computational tools. They determine how data is processed, patterns are
identified, and insights are extracted. Algorithms enable automation, streamline computa-
tions, and facilitate efficient decision-making. Advancing and optimizing algorithms within
computational tools is vital for enhancing performance, accuracy, and scalability.

This dissertation focuses on the development of computational tools and algorithms for
specific applications in optimization, machine learning (ML), and mean-field games (MFGs).
These three fields are interconnected and they leverage each other’s concepts and techniques.
Optimization plays a fundamental role in ML. Optimization algorithms are used to train ML
models by minimizing a loss function and finding optimal model parameters. Similarly, in
MFGs, optimization techniques are employed to solve for Nash equilibria and find optimal
strategies for a large population of interacting agents. Additionally, in recent years, the
relationship between ML and MFGs has become a fruitful area of research. ML techniques
like deep learning and reinforcement learning can be applied to solve MFGs, while mean-field
techniques provide insights into neural networks and multi-agent reinforcement learning.

Each of the following chapters presents a unique computational tool or algorithm. Chapter
2, “MFGLib: A Library for Mean-Field Games,” introduces MFGLib, an open-source
Python library dedicated to solving Nash equilibria for generic MFGs with a user-friendly
and customizable interface, aiming at promoting both applications and research of MFGs.
This chapter discusses the design principles and essential features of the library, highlighting
its distinguishing aspects compared to other computational tools available for MFGs. Addi-
tionally, a concise mathematical background on discrete finite-horizon MFGs as well as the
comprehensive documentation of MFGLib are provided in the corresponding appendices.

CHAPTER 1. INTRODUCTION 2

Chapter 3, “Escaping Saddle Points Efficiently with Occupation-Time-Adapted
Perturbations,” presents a novel perturbation mechanism inspired by the dynamics of vertex
repelling random walk. This mechanism is integrated into the framework of perturbation-
based optimization algorithms, enhancing their ability to escape saddle points more effectively.
The chapter introduces two new algorithms, namely perturbed gradient descent adapted to
occupation time (PGDOT) and its accelerated version (PAGDOT), which are developed
based on this perturbation mechanism. The subsequent sections of this chapter are dedicated
to establishing the theoretical guarantees for these algorithms and conducting numerical
experiments to showcase the advantages of the new perturbation mechanism. The numerical
experiments encompass a range of problems, including finding Nash equilibria in MFGs and
image classification tasks with deep learning models.

Chapter 4, “Leveraging Stacked Generalization to Effectively Detect Overuti-
lization in Medicare,” focuses on the problem of detecting overutilization and fraud in
Medicare within the field of Ophthalmology. The primary objective is to develop an ML model
capable of accurately distinguishing fraudulent physicians from non-fraudulent ones. The
chapter proceeds by detailing the creation and preprocessing of a labeled dataset specifically
designed for this purpose. Subsequently, a comparative study of various ML methods is
conducted to evaluate their performance. The results highlight the superiority of the Stacked
Generalization (stacking) ensemble method over traditional approaches. Additionally, the
chapter extends the analysis beyond model performance by employing the stacking ensemble
model to estimate essential overutilization statistics within the field of ophthalmology.

We remark that each chapter is designed to be self contained—they each contain back-
ground, motivation, and key definitions for the topic at hand—and can be read independently,
if desired.

1.1 Related Publications
This dissertation incorporates content that is currently undergoing the review process at
scientific journals. The preprints are available at the following locations:

• Chapter 2: Guo, Xin, Anran Hu, Matteo Santamaria, Mahan Tajrobehkar, and Junzi
Zhang. "MFGLib: A Library for Mean-Field Games." arXiv preprint arXiv:2304.08630
(2023).

• Chapter 3: Guo, Xin, Jiequn Han, Mahan Tajrobehkar, and Wenpin Tang. "Escaping
Saddle Points Efficiently with Occupation-Time-Adapted Perturbations." arXiv preprint
arXiv:2005.04507 (2020).

3

Chapter 2

MFGLib: A Library for Mean-Field
Games

Large population games are ubiquitous in real-world problems. Examples include multiplayer
online role-playing games [68], high frequency trading [88], Ad auctions [29] and sharing
economy [53], to name just a few. As the number of players in the game grows, however, the
computational complexity grows exponentially and it becomes notoriously hard to solve such
problems. Mean-field games, pioneered by the seminal work of [62] and [84], is a relatively
recent branch of mathematics, which attempts to understand the limiting behavior of systems
involving very large number of rational agents which play differential games under partial
information and symmetry assumptions.

A Mean-Field Game (MFG for short) refers to a game involving an infinite number of
indistinguishable players who exhibit similar behavior, i.e., they are symmetric. The individual
player identities are not crucial to consider as part of their state. Since the player count is
infinite, it becomes possible to represent the individual players by their distributions across
the state (and sometimes action) space. By focusing on the distribution of the population,
we can examine the interaction between a representative player, randomly selected from the
population’s distribution, and the population’s distribution itself. The ultimate objective is
to determine a Nash equilibrium (NE), a policy from which no player will unilaterally deviate.
Seeking an NE policy assumes that all players are perfectly rational, aiming to maximize their
own rewards (or minimize their costs). It has been shown that the NE policy of a mean-field
game is an ϵ-NE of the corresponding N -player game [122], with ϵ = O(1√

N
) [62]. In practice,

games with small N on the order of tens can be well approximated by MFGs [52, 81, 19].
Recently, the literature of MFGs has experienced an exponential growth both in theory and

in practice. In particular, there has been a surge of interests in the computation and learning
of NEs in MFGs, with wide applications including bid recommendation [52], population
dynamics [30], high frequency trading [88], crowd motion modeling [1], product pricing [51],
autonomous vehicles [61], dynamic routing [19], animal behavior simulation [114], energy
production and management [4], and security and communication. [99]

In MFGs, the NE policies are typically characterized through optimality conditions, which

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 4

manifest as a coupled system of forward-backward equations. The forward equation describes
the progression of the population distribution, while the backward equation represents the
evolution of the value function, indicating the utility of policy for a representative player.
In the continuous time and continuous space setting, the equations can take the form of
either partial differential equations (PDEs) or stochastic differential equations (SDEs) of the
McKean-Vlasov type. The choice between these two types depends on whether one adopts
an analytical approach or a probabilistic approach. [14, 23] e discrete time case is close to
the framework of Markov Decision Processes. We refer to [85] for a detailed breakdown of
the discrete time MFGs. Our focus will be on discrete finite-horizon MFGs with finite state
and action spaces.

Iterative methods are commonly employed to compute NE solutions. These methods
begin with an initial policy and population distribution (also called mean-field distribution)
and iteratively update them until they reach an equilibrium. The update of the mean field
involves utilizing the population distribution induced by the current policy. The policy update
can be executed in two distinct manners. It can either be determined by computing the best
response against the mean field or by the evaluation of the previous policy. Fictitious Play
[113], GMF-V [52], Prior Descent [32], and Online Mirror Descent [112] are a few examples of
the iterative methods. An alternative approach involves employing an optimization framework
to determine the NE solutions. [50] demonstrate that the task of finding the NE solutions
for a general class of discrete-time MFGs is equivalent to solving an optimization problem
known as MF-OMO. This optimization problem entails bounded variables and simple convex
constraints. Notably, the authors do not assume the uniqueness of the NE solution or rely
on contractivity or monotonicity conditions, which are typically assumed in the iterative
methods.

Despite the extensive utilization of MFGs across various applications and the availability of
a diverse range of computational methods and algorithms, there remains a significant gap: the
absence of a unified computational tool that caters to researchers and practitioners interested
in MFGs. This lack of a comprehensive tool hinders the accessibility and convenience for
users who seek to explore and implement different MFG algorithms and work with various
environments. Implementations of the MFG environments and algorithms are currently by
and large provided mainly for paper reproducibility or experimental/internal-use purposes.
Consequently, researchers and practitioners are faced with the challenge of navigating and
integrating disparate tools and resources, thereby impeding the seamless development and
application of MFG methodologies. Addressing this gap and providing a unified computational
tool would enhance the efficiency and effectiveness of MFG research and facilitate its practical
implementation in real-world scenarios.

This chapter introduces MFGLib, an open-source Python library dedicated to solving NEs
for generic MFGs with a user-friendly and customizable interface, aiming at promoting both
applications and research of MFGs. On one hand, it facilitates the creation and analysis
of arbitrary user-defined MFG environments with minimal prior knowledge on MFGs. On
the other hand, it serves as a modular and extensible code base for the community to easily
prototype and implement new algorithms and environments of MFGs as well as their variants

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 5

and generalizations.1 The package is distributed under the MIT license and the source code
and documentation can be found at https://github.com/radar-research-lab/MFGLib/.

The rest of this chapter is organized as follows. Section 2.1 reviews the related work.
Section 2.2 briefly overviews the MFGLib package and discusses its design and key features.
Section 2.3 discusses the future work. We refer the readers to Appendix for a concise review of
the mathematical framework involved in solving finite-horizon MFGs, as well as the detailed
documentation of MFGLib.

2.1 Related Work
Various libraries have been developed for N -player games, such as QuantEcon [133], Nashpy
[140] and ilqgames [42]. In contrast, only very limited tools focus on MFGs and are mainly
for experimental and internal use, and hence not suitable for general users with their own
customized environments and problems.

Among these very few existing MFG libraries, OpenSpiel [83], a collection of environments
and algorithms for research in reinforcement learning and planning in games, is the closest one
to MFGLib. OpenSpiel has dedicated a module to MFGs implementing several environments
and algorithms. However, it lacks customizability and a user-friendly API. In fact, according
to its documentation, their code is still experimental and is only recommended for internal
use. Other MFG libraries such as gmfg-learning [75] and entropic-mfg [144] 2 are mainly
developed to support the experimental results of a particular paper and are not suitable for
general MFG experiments.

2.2 Brief Overview of MFGLib

MFGLib is a handy tool for solving the (ϵ)-NE of generic user-defined MFG environments.3
On one hand, it provides an off-the-shelf environment creator, with which the users can
create their environments by simply inputting the reward functions, transition functions and
some basic problem data (e.g., number of states and actions) without additional problem
reformulation. On the other hand, MFGLib is equipped with different algorithms for users to
choose from to solve their environments, which output a sequence of candidate NE policies
and log the progress of their exploitability values. In what follows, we briefly discuss the
design and features of this library.

1A pre-release version of MFGLib has been internally used by Amazon Advertising for research and
production and was reported to serve well for their purposes.

2These two libraries are for graphon MFGs and continuous-time variational MFGs, respectively.
3The current library is focused on discrete-time MFGs with a finite horizon and finite state and action

spaces.

https://github.com/radar-research-lab/MFGLib/

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 6

Library Design
MFGLib consists of two main modules: environments and algorithms, which can be developed
and extended entirely independently of one another. Target environments and algorithms can
be separately imported and instantiated from their corresponding modules. Users can easily
define their own environment by providing problem parameters. Then the algorithms can be
deployed to solve the environment instances—find approximate NE solutions. Additionally,
the exploitability scores can be computed, which evaluate the proximity of the obtained
solutions to an NE solution. The user-facing API of MFGLib is designed such that each
aforementioned step can be performed using simple codes.

Environments. Users can easily define environments with the syntax:
1 from mfglib .env import Environment
2 user_env = Environment (T=T, S=S, A=A, mu0=mu0 , r_max=r_max ,
3 reward_fn =reward_fn ,
4 tranistion_fn = tranistion_fn)

Here T,S,A,mu0,r_max are the time horizon, state space size, action space size, initial
state distribution and max reward of the MFG, respectively. The rewards reward_fn and
transitions transition_fn are the mappings from time (t) and population distribution (L_t)
to rewards and transitions tensors, which are callables 4 with the following signatures:

1 def reward_fn (t: int , L_t: torch. Tensor) -> torch. Tensor :
2 ...
3 def transition_fn (t: int , L_t: torch. Tensor) -> torch. Tensor :
4 ...

In addition, we also provide several ready-to-use environments [32, 113, 112, 52, 50] that
can be directly instantiated as class methods of the Environment class via the environment
names like user_env = Environment.left_right(**kwargs), which serve as playgrounds
and educative examples to jump-start users before implementing their own environments.
The optional environment-dependent keyword arguments can also be specified to adjust the
problem parameters, giving more flexibility for the users.

Solvers and evaluation. Once a user-defined environment user_env is created, one can
then instantiate a solver from the options provided by MFGLib with the following syntax:

1 from mfglib .alg import MFOMO
2 # Can also use OnlineMirrorDescent , PriorDescent or FictitiousPlay
3 user_alg = MFOMO (** kwargs)
4 solutions , expls , runtimes = user_alg .solve(user_env)

Here the outputs store the solutions, exploitability scores and cumulative run-time over
iterations. A formatted log of the iteration process is also printed out in real-time to help

4We allow both function and class callables. But for simplicity, we focus on function implementations of
transitions and rewards here.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 7

users monitor the performance. In addition, for an arbitrary list of policies policies (not
even necessarily computed by MFGLib), the exploitability scores of them can be computed as
follows:

1 from mfglib . metrics import exploitability_score
2 exploitability_scores = exploitability_score (user_env , policies)

Auto-tuning. Beyond what is shown above, MFGLib also provides an auto-tuning tool to
automatically select the best algorithm hyperparameters for users if the default performances
are not satisfactory. It can be simply invoked with the following syntax, where env_suite is
a list of environment instances to be tuned on:

1 user_alg_tuned = user_alg .tune(env_suite)
2 solutions , expls , runtime = user_alg_tuned .solve(user_env)

See the next subsection for more details on the additional arguments of the tune method.

Key Features
Below, we highlight the key features of MFGLib.

High-dimensional representation of state and action spaces. We use PyTorch tensors
to represent policies, mean-fields, rewards, etc. Whenever possible, we opt to keep the state
and action spaces in their original form without performing any transformation. For high
dimensional spaces, instead of flattening them and representing them using one dimensional
spaces, we keep the original spaces. This treatment yields higher interpretability and provides
more flexible and simpler interactions with users.

Implemented algorithms. MFGLib implements four state of the art MFG algorithms
including (Damped) fictitious play [113, 112], online mirror descent [112], prior descent
[32], and mean-field occupation measure optimization (MFOMO) [50]. We remark that the
implemented algorithms include many other existing algorithms as special cases, such as fixed
point iteration and GMF-V algorithms [52].

Embedded tuner. Every implemented algorithm requires at least one hyperparameter.
To simplify the tuning process, MFGLib endows all its algorithms with a built-in tuner, which
can be used to tune the hyperparameters on one single environment instance or across several
instances (an environment suite). The tuners are based on Optuna [3], an open source
hyperparameter optimization framework used to automate hyperparameter search. After the
algorithm is initialized, the tuner can be called using a single line of code, as shown in the
following code snippet that tunes the learning rate of the online mirror descent algorithm
with the left_right and beach_bar environments.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 8

1 from mfglib .env import Environment
2 from mfglib .alg import OnlineMirrorDescent
3 omd_tuned = OnlineMirrorDescent ().tune(
4 env_suite =[Environment . left_right (),
5 Environment . beach_bar ()])

The tune method provides the users with several additional optional arguments to adjust
the tuning process, including max iterations (max_iter), the absolute and relative tolerances for
early stopping (atol, rol), the tuning metric (metric, which can be either shifted_geo_mean
or failure_rate), the number of trials (n_trials) and the maximum run-time of the whole
tuning process (timeout).

Code quality and accessibility. MFGLib adheres to the highest standards of code quality.
The library is regularly subjected to unit testing and static analysis through a continuous
integration (CI) system. We employ the latest tools such as black and ruff to ensure that
the source code remains clean and readable. We also strictly type-check the library with
mypy to eliminate an entire class of type-safety bugs. Each proposed code change must fully
pass the comprehensive CI check before it is permitted to merge.

MFGLib welcomes outside contributors and is easily accessible to anyone familiar with
Python, beginners and experts alike. The folder structure is simple and easy to navigate.
Since MFGLib is a pure Python implementation, there is no complicated build process to
speak of. We hope the structural simplicity encourages users to engage with the library and
submit new algorithms and environments.

2.3 Future Work
MFGLib is currently undergoing active development, and alongside the addition of new
environments and algorithms, there are several potential extensions that can further enhance
its scope and user experience.

Regarding the environment and modeling aspect, an exciting direction for MFGLib’s
expansion would be to support MFGs with infinite horizons, multiple populations, continuous
state-action spaces, and graphon structures. Additionally, beyond Nash equilibria, there are
several other solution concepts that can be implemented using our framework including but
not limited to socially optimal solutions (i.e., mean-field control), equilibrium selection for
computing price of anarchy/stability metrics, (coarse) correlated equilibrium, and Stackelberg
equilibria.

On the algorithm side, as highlighted in [50][Appendix A], the integration of optimization
techniques like Stochastic Projected Gradient Descent and Anderson Acceleration into
MFOMO holds potential for enhancing convergence performance in practice. These techniques
are not included in the initial release of the package to ensure minimal dependencies and
maintain a streamlined package design. Nevertheless, further testing and incorporating these
approaches into the package is a key focus for future releases.

9

Appendix

In what follows, we first provide a mathematical background on discrete finite-horizon MFGs,
and then present the detailed documentation of MFGLib. The documentation can also be
found online at https://mfglib.readthedocs.io/en/latest.

2.A Background on Discrete Finite-Horizon MFGs
Consider an MFG with a finite-time horizon T , a state space S, and an action space A. We
assume ∣S ∣ = S < ∞ and ∣A∣ = A < ∞. In this game, a representative player starts from a
state s0 ∼ µ0, with µ0 being the initial distribution of all players of an infinite population. At
each time step t ∈ T = {0, 1, 2, . . . , T} and when at state st, she chooses an action at ∈ A from
some policy πt ∶ S → ∆(A), where ∆(A) denotes the set of probability vectors on A. she will
then move to a new state st+1 according to a transition probability Pt(.∣st, at, Lt) and receive
a reward rt(st, at, Lt), where Lt ∈ ∆(S ×A) is the joint state-action distribution among all
players at time t referred to as the mean-field information hereafter.

Given the mean-field flow {Lt}t∈T , the objective of this representative player is to maximize
her accumulated rewards, i.e., to solve the following Markov Decision Process (MDP) problem:

maximize{πt}t∈T E [
T

∑
t=0

rt(st, at, Lt)∣s0 ∼ µ0]

subject to st+1 ∼ Pt(⋅∣st, at, Lt), t = 0, . . . , T − 1,

at ∼ πt(⋅∣st), t = 0, . . . , T.

(2.1)

For a given mean-field flow L = {Lt}t∈T , Let’s denote the mean-field induced MDP (2.1) as
M(L), V ⋆t (L) ∈ RS as its optimal total expected reward, i.e., the value function, starting
from time t, with the s-th entry [V ⋆t (L)]s being the optimal expected reward starting
from state s at time t, and V ⋆µ0(L) = ∑s∈S µ0(s)[V ⋆0 (L)]s as its optimal expected total
reward starting from µ0. Correspondingly, denote respectively V π

t (L) ∈ RS, [V π
t (L)]s, and

V π
µ0(L) = ∑s∈S µ0(s)[V π

0 (L)]s, under a given policy π = {πt}t∈T for M(L).
To analyze such an MFG, the most widely adopted solution concept is the Nash equilibrium

(NE). A policy sequence {πt}t∈T and a mean-field flow {Lt}t∈T constitute an NE solution of
this finite-time horizon MFG, if the following conditions are satisfied.

Definition 1 (NE solution).

https://mfglib.readthedocs.io/en/latest

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 10

1) (Optimality/Best Response) Fixing {Lt}t∈T , {πt}t∈T solves the optimization problem
(2.1), i.e., {πt}t∈T is optimal for the representative agent given the mean-field flow
{Lt}t∈T ;

2) (Consistency) Fixing {πt}t∈T , the consistency of the mean-field flow holds, namely

Lt = Pst,at , where st+1 ∼ Pt(⋅∣st, at, Lt), at ∼ πt(⋅∣st), s0 ∼ µ0, t = 0, . . . , T − 1. (2.2)

Here Px denotes the probability distribution of a random variable/vector x.

Note that (2.1) requires that the policy sequence {πt}t∈T is the best response to the
flow {Lt}t∈T , while (2.2) requires that the flow {Lt}t∈T is the corresponding mean-field flow
induced when all players adopt the policy sequence {πt}t∈T . Also note that (2.2) can be
written more explicitly as follows:

L0(s, a) = µ0(s)π0(a∣s),
Lt+1(s′, a′) = πt+1(a′∣s′)∑

s∈S

∑
a∈A

Lt(s, a)Pt(s′∣s, a, Lt), ∀t = 0, . . . , T − 1. (2.3)

The following existence result for NE solutions holds as long as the transitions and
rewards are continuous in Lt. The proof is based on the Kakutani fixed-point theorem; it is
almost identical to those in [122, 32], except for replacing the state mean-field flow with the
state-action joint mean-field flow.

Proposition 1. Suppose that Pt(s′∣s, a, Lt) and rt(s, a, Lt) are both continuous in Lt for any
s, s′ ∈ S, a ∈ A and t ∈ T . Then an NE solution exists.

In order to characterize the difference between any policy and an NE solution, the common
approach is to use the concept of exploitability. More precisely, define a mapping Γ that
maps any policy sequence {πt}t∈T to its induced mean-field flow {Lt}t∈T when all players
take such a policy sequence. Following the consistency condition (2.3), such Γ can be defined
recursively, starting with the initialization

Γ(π)0(s, a) ∶= µ0(s)π0(a∣s), (2.4)

such that

Γ(π)t+1(s, a) ∶= πt+1(a∣s)∑
s′∈S
∑

a′∈A
Γ(π)t(s′, a′)Pt(s∣s′, a′, Γ(π)t), ∀t = 0, . . . , T − 1. (2.5)

Then, the exploitability characterizes the sub-optimality of the policy π under L = {Lt}t∈T =
Γ(π) as follows,

Expl(π) ∶= V ⋆µ0(Γ(π)) − V π
µ0(Γ(π)) =max

π′
V π′

µ0 (Γ(π)) − V π
µ0(Γ(π)). (2.6)

In particular, (π, L) is an NE solution if and only if L = Γ(π) and Expl(π) = 0. And a policy
π is an ϵ-NE solution if Expl(π) ≤ ϵ.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 11

2.B MFGLib Documentation
MFGLib provides pre-built wheels for Python 3.8+ and can be installed via pip on all major
platforms:

1 $ pip install mfglib

Your First MFG
To demonstrate the power of MFGLib, let’s use the library to find a Nash equilibrium
(NE) solution for an instance of the Beach Bar environment. We begin by importing the
Environment class.

1 from mfglib .env import Environment

The Environment class comes equipped with several classmethods which can be used to
create instances of environments well-studied in the mean-field game literature. In addition
to the pre-implemented environments, you can also easily implement your own custom
environments. More on pre-implemented and custom environments can be found in the
Environments subsection.

With Environment imported, we can then instantiate a Beach Bar instance by calling
the corresponding classmethod.

1 beach_bar = Environment . beach_bar ()

To “solve" the instance, we must next introduce an algorithm. Solving an environment means
finding an approximate NE solution for it.

In this example, let’s use Online Mirror Descent. Other options include Fictitious
Play, Prior Descent, and Mean-Field Occupation Measure Optimization. Just like with the
environments, MFGLib also supports user-defined algorithms. More on the algorithms can
be found in the Algorithms section.

1 from mfglib .alg import OnlineMirrorDescent
2 online_mirror_descent = OnlineMirrorDescent ()

Now, we just need to call solve(). The solve() method returns a three-item tuple: a
list of policies (solutions) found during iteration, exploitability scores of the solutions, and
the runtime at each iteration.

1 solns , expls , runtimes = online_mirror_descent .solve(beach_bar)

The solve() method allows us to set the initial policy, change the number of iterations, use
early stopping, and print the convergence information during iteration. More details can be
found in API Documentation.

By default, solve() runs for 100 iterations and assumes the initial policy to be the
uniform policy over the state and action space at each time step. We can verify this by
comparing solns[0] with solns[-1].

https://mfglib.readthedocs.io/en/latest/api.html

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 12

1 solns [0]
2 >>> tensor ([[[0.3333 , 0.3333 , 0.3333] ,
3 [0.3333 , 0.3333 , 0.3333] ,
4 [0.3333 , 0.3333 , 0.3333] ,
5 [0.3333 , 0.3333 , 0.3333]] ,
6 [[0.3333 , 0.3333 , 0.3333] ,
7 [0.3333 , 0.3333 , 0.3333] ,
8 [0.3333 , 0.3333 , 0.3333] ,
9 [0.3333 , 0.3333 , 0.3333]] ,

10 [[0.3333 , 0.3333 , 0.3333] ,
11 [0.3333 , 0.3333 , 0.3333] ,
12 [0.3333 , 0.3333 , 0.3333] ,
13 [0.3333 , 0.3333 , 0.3333]]])

1 solns [-1]
2 >>> tensor ([[[1.6836e-04, 9.9983e-01, 3.7345e -32] ,
3 [1.0000 e+00, 1.9363e-10, 6.1326e -33] ,
4 [8.3867e-01, 1.3771e-01, 2.3616e -02] ,
5 [1.1221e-21, 9.9755e-01, 2.4476e -03]] ,
6 [[1.0706e-08, 1.0000 e+00, 8.2818e -23] ,
7 [6.9968e-01, 3.0032e-01, 7.3669e -19] ,
8 [7.8170e-05, 9.9416e-01, 5.7577e -03] ,
9 [3.3300e-20, 9.9985e-01, 1.5068e -04]] ,

10 [[1.3887e-11, 1.0000 e+00, 1.3887e -11] ,
11 [1.3888e-11, 1.0000 e+00, 1.3888e -11] ,
12 [1.3888e-11, 1.0000 e+00, 1.3888e -11] ,
13 [1.3888e-11, 1.0000 e+00, 1.3888e -11]]])

To compare the two solutions, we look at their exploitability scores.
1 expls [0]
2 >>> 0.9316978454589844

1 exps [-1]
2 >>> 0.0024423599243164062

The computed exploitability score is decreased significantly implying that the last policy
is a fairly good approximation of an NE solution for the Beach Bar environment. You can
monitor the progression of an algorithm by plotting the exploitability scores vs. the number
of iterations or vs. the runtime as shown in Figure 2.B.1.

Variable Representation
We use PyTorch tensors to represent policies, mean-fields, etc. Whenever possible, we opt to
keep the state and action spaces in their original form without performing any transformation.
For high dimensional spaces, instead of flattening them and representing them using one
dimensional spaces, we keep the original spaces. This treatment yields higher interpretability
and provides more flexible and simpler interactions with users.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 13

Figure 2.B.1: Exploitability scores obtained by running the Online mirror Descent algorithm
on the Beach Bar environment

When creating an environment, the attributes T (integer), S (tuple of integers), and A
(tuple of integers) determine the time horizon, state space shape, and action space shape,
respectively. For example, if the state space is all the integers from 1 to 100, then S=(100,),
and if the state space is all the integer grid points (x, y) such that 1 ≤ x, y ≤ 100, then S=(100,
100).

Policies, mean-fields, rewards, and transition probabilities are represented as high-
dimensional tensors. Given T, S, and A, the shape of policy and mean-field tensors will
be (T+1,) + S + A. For example, if T=10, S=(20, 20), A=(5,), the policy and mean-field
tensors will be of size (11, 20, 20, 5). The reward and transition probability tensors at a
given time t will be of shape S + A and S + S + A, respectively. We do not integrate the
time into the reward and transition probability tensors.

In general, let S=(S_1, S_2, ..., S_n) and A=(A_1, A_2, ..., A_m), and let pi, L,
r_t, and p_t be the policy, mean-field, reward (at t), and transition probability (at t) tensors,
respectively. Then, pi[t, s_1, s_2, ..., s_n, a_1, a_2, ..., a_m] represents the
probability of choosing action a = (a_1, a_2, ..., a_m) given the state s = (s_1, s_2,
..., s_n) at time t. L[t, s_1, s_2, ..., s_n, a_1, a_2, ..., a_m] is the portion
of players that are in state s = (s_1, s_2, ..., s_n) and choose action a = (a_1, a_2,
..., a_m) at time t. r_t[s_1, s_2, ..., s_n, a_1, a_2, ..., a_m] is the reward that
agent gets from choosing action a = (a_1, a_2, ..., a_m) while being at state s = (s_1,
s_2, ..., s_n) at time t. And lastly, p_t[s2_1, s2_2, ..., s2_n, s1_1, s1_2, ...,

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 14

s1_n, a_1, a_2, ..., a_m] is the probability of going to the state s2 = (s2_1, s2_2,
..., s2_n) if the agent is currently at the state s = (s_1, s_2, ..., s_n) and chooses
the action a = (a_1, a_2, ..., a_m) at time t.

Algorithms
This library comes with 4 implemented MFG algorithms:

• Fictitious Play

• Online Mirror Descent [112].

• Prior Descent [32].

• Mean-Field Occupation Measure Optimization [50].

The first three algorithms are built on top of three main modules: mean_field.py, q_fn.py,
and greedy_policy_given_mean_field.py. The last algorithm has a relatively different
structure. In the following, we first provide more information about the fundamental modules
for iterative methods. Then, we discuss the solve() method embedded in all algorithms.
Next, we elaborate on each one of the implemented algorithms. Last, we describe how to use
the auto-tuning tool provided in MFGLib.

Fundamental Modules

The fundamental modules facilitate the implementation of iterative methods.
Let’s start with mean_field.py, which implements the function mean_field() with the

following signature:
1 def mean_field (env: Environment , pi: torch. Tensor) -> torch. Tensor :
2 ...

mean_field() computes the induced mean-field corresponding to a policy π. The induced
mean-field Γ(π) satisfies the equations (2.4) and (2.5), and therefore can be computed
recursively.

The second module, q_fn.py, implements the QFn class. Two methods are imple-
mented within QFn: optimal() computes the optimal Q-function given a mean-field L,
and for_policy() computes the Q-function corresponding to a pair of mean-field L and
policy π. The signature of QFn is as follows:

1 class QFn:
2 def __init__ (
3 self , env: Environment , L: torch.Tensor , *, verify_integrity : bool

= True
4) -> None:
5 ...
6 def optimal (self) -> torch. Tensor :

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 15

7 ...
8 def for_policy (self , pi: torch. Tensor) -> torch. Tensor :
9 ...

The optimal Q-function of mean-field L can be computed using a backward recursive equation
as in (2.7) and (2.8).

Q⋆(L)T (s, a) ∶= rT (s, a, LT), (2.7)
Q⋆(L)t(s, a) ∶= rt(s, a, Lt) +∑

s′
Pt(s′∣s, a, Lt)max

a′
Q⋆(L)t+1(s′, a′). (2.8)

Similarly, the Q-function corresponding to a mean-field L and policy π satisfies backward
recursive equations as in (2.9) and (2.10).

Q(L, π)T (s, a) ∶= rT (s, a, LT), (2.9)

Q(L, π)t(s, a) ∶= rt(s, a, Lt) + ∑
s′,a′

Pt(s′∣s, a, Lt)πt+1(a′∣s′)Q(L, π)t+1(s′, a′). (2.10)

Lastly, greedy_policy_given_mean_field.py implements Greedy_Policy() whose sig-
nature is provided below:

1 def Greedy_Policy (env_instance : Environment , L: torch. Tensor) -> torch.
Tensor :

2 ...

Greedy_policy() computes the policy π⋆(L) which is the best response to the given mean-
field L. Given the optimal Q-function, the best response can be computed as follows:

π⋆(L)t(s, a) =
⎧⎪⎪⎨⎪⎪⎩

1, if a = argmaxa′Q
⋆(L)t(s, a′),

0, otherwise.

Note that if the argmax is not unique, then the result will be a uniform distribution between
the actions that attain the maximum value.

Efficient implementation is a crucial consideration for the fundamental modules. Given
that variables like policies, mean-fields, rewards, etc. often involve high-dimensional tensors,
it is essential to minimize the usage of loops when solving the forward and backward recursive
equations. In the implementation of the fundamental modules, we make optimal use of tensor
vectorization to reduce the reliance on for loops. The code employs loops only to iterate
over time. By utilizing tensor vectorization and minimizing loop usage, we can achieve faster
and more efficient computations within the fundamental modules.

The solve() Method

Each algorithm implemented in this library is equipped with a solve() method upon calling
which the algorithm will be run on the given environment instance. The signature of the
solve() methods is shown below.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 16

1 def solve(
2 self ,
3 env_instance : Environment ,
4 *,
5 pi: Literal [" uniform "] | torch. Tensor = " uniform ",
6 max_iter : int = 100,
7 atol: float | None = 1e-3,
8 rtol: float | None = 1e-3,
9 verbose : bool = False ,

10) -> tuple[list[torch. Tensor], list[float], list[float]]:
11 ...

Let’s take a closer look at this method’s inpuit arguments.

• The only required argument is env_instance. In the example provided in Your First
MFG, we set it to beach_bar.

• pi defines the initial policy that the algorithm starts with. By default, it is set to
"uniform" meaning that the uniform distribution will be considered. You may want to
initialize the algorithm at a non-uniform policy in which case you need to define the
initial tensor and pass it to pi. Just make sure that the policy tensor defined is indeed
a policy, and also that it matches the time horizon and state and action shapes of your
environment.

• max_iter determines the maximum number of iterations to run the algorithm. The
reason for setting the maximum number is that due to the early stopping feature, the
algorithm could terminate earlier.

• atol and rtol define the absolute and relative tolerance for the exploitability score.
If at least one of them is not None, at every iteration, we compute the exploitability
score and compare it with the threshold atol + rtol * score_0, where score_0 is
the initial exploitability. If it was less than or equal to the threshold, we stop the
algorithm.

• verbose determine whether the convergence information during iteration is printed.

The solve() method outputs the policy iterations and their corresponding exploitability
scores, as well as the runtimes.

Fictitious Play

Discrete time Fictitious Play algorithm [113] provides a robust approximation scheme for
computing NEs by computing iteratively the best response against the distribution induced
by the average of the past best responses. See [113][Algorithm 1] for the details. Our
implementation is based on Fictitious Play Damped introduced in [112]. The damped
version generalizes the original algorithm by adding a learning rate parameter α. It is worth
mentioning that the Fixed Point Iteration algorithm is a special case when α = 1.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 17

Hyperparameters. The only hyperparameter is alpha that corresponds to the learning
rate used in Fictitious Play Damped. It takes any value in the close interval [0, 1] or can be
None. If None, the implementation would be inline with the original Fictitious Play algorithm
as the learning rate used in the nth iteration would be 1

n+1 . The default is None. The example
code below creates an instance of the Fictitious Play algorithm with learning rate 0.1.

1 from mfglib .alg import FictitiousPlay
2 fp = FictitiousPlay (alpha =0.1)

Online Mirror Descent

[112] introduce the Online mirror Descent algorithm to address scaling up equilibrium
computation in MFGs. See [112][Algorithm 1] for the details. They empirically show that
Online Mirror Descent scales up and converges significantly faster than Fictitious Play.

Hyperparameters. The only hyperparameter is alpha which represents the learning rate.
It can take any non-negative real value. The default is set to 1.0. The example code below
creates and instance of the Online mirror Descent algorithm with learning rate 0.01.

1 from mfglib .alg import OnlineMirrorDescent
2 omd = OnlineMirrorDescent (alpha =0.01)

Prior Descent

The Prior Descent algorithm, proposed by Cui et al. (2021), employs two nested loops,
namely the inner and outer loops, to iteratively update the policy. Within the inner loop,
Boltzman/RelEnt Iteration is executed for a predetermined number of iterations to update
the prior policy. This process is repeated for the specified number of outer loops. See
[32][Algorithms 2 and 6] for more details. While the Prior Descent algorithm improves the
performance of algorithms employed in its inner loop, the presence of a nested double loop
structure can be computationally demanding, particularly in the context of deep reinforcement
learning.

Hyperparameters. The first hyperparameter is eta, the temperature. It can take any
non-negative real value. The default is 1.0. The second one is n_inner, which determines the
number of iterations between prior policy updates. It can be a positive integer or None. If
None, prior policy remains intact, which is basically the GMF-V algorithm [52]. An instance
of Prior Descent can be created as follows:

1 from mfglib .alg import PriorDescent
2 pd = PriorDescent (eta =0.1 , n_inner =10)

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 18

Mean-Field Occupation Measure Optimization (MFOMO)

The MFOMO algorithm [50] reformulates the problem of finding NE solutions in MFGs
as solving an equivalent optimization problem with bounded variables and trivial convex
constraints. It is built on the classical work of reformulating an MDP as a linear program,
and by adding the consistency constraint for MFGs in terms of occupation measures, and
by exploiting the complementarity structure of the linear program. See [50][Theorem 5] for
more details. It is worth mentioning that the initial motivation behind creating this library
was to produce the experimental results for MFOMO.

The constrained optimization problem that MFOMO solves to find an NE solution is
presented below:

min
L,z,y

∣∣ALL − b∣∣22 + ∣∣AT
Ly + z − cL∣∣22 + zT L (2.11)

s.t. L ≥ 0, z ≥ 0,

1T Lt = 1 ∀t ∈ {0, ..., T},
1T z ≤ SA(T 2 + T + 2)rmax,

∣∣y∣∣2 ≤
S(T + 1)(T + 2)

2 rmax,

where L = {Lt}t∈T is a flattened vector in RSA(T+1), z ∈ RSA(T+1), y ∈ RS(T+1), and rmax =
supt∈T ,s∈S,a∈A,L∈∆(S×A) ∣rt(s, a, L)∣. See [50][Equations (7) and (8)] for the description of AL, b,
and cL. Note that the flattening of vectors in MFGLib are with row-major order, in contrast
to the column-major order used in the corresponding article.

If (π, L) is an NE solution of the MFG ((2.1) and (2.2)), then there exist some y, z such
that (y, z, L) solves (2.11). On the other hand, if (y, z, L) solves (2.11) with objective value
0, then for any π ∈ Π(L), (π, L) is an NE solution of the MFG ((2.1) and (2.2)). Note that
π ∈ Π(L) if and only if

πt(a∣s) =
Lt(s, a)

∑a′∈ALt(s, a′) ,

when ∑a′∈ALt(s, a′) > 0, and πt(∣s) is an arbitrary probability vector in ∆(A) otherwise.
Since MFOMO is structurally different than the iterative methods, we have created

different fundamental modules to implement it:

• mf_omo_params.py implements the function mf_omo_params() with the following sig-
nature:

1 def mf_omo_params (
2 env_instance : Environment , L: torch. Tensor
3) -> tuple[torch.Tensor , torch.Tensor , torch. Tensor]:
4 ...

given an environment instance and its mean-field, this function computes AL, b, cL.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 19

• mf_omo_obj.py implements the function mf_omo_obj(), which basically computes the
objective function in (2.11). Its signature is provided below:

1 def mf_omo_obj (
2 env_instance : Environment ,
3 L_u: torch.Tensor ,
4 z_v: torch.Tensor ,
5 y_w: torch.Tensor ,
6 loss: Literal ["l1"] | Literal ["l2"] | Literal ["l1_l2"],
7 c1: float ,
8 c2: float ,
9 c3: float ,

10 parameterize : bool ,
11) -> torch. Tensor :
12 ...

Its input arguments are later explained in details while we breakdown the hyperpa-
rameters of MFOMO. Note that by differentiating the output of this function, we get
the gradients corresponding to variables L, z, and y, which can be further used to
iteratively solve the optimization problem.

• mf_omo_constraints.py implements the function mf_omo_constraints(), whose sig-
nature is presented below:

1 def mf_omo_constraints (
2 env_instance : Environment ,
3 L: torch.Tensor ,
4 z: torch.Tensor ,
5 y: torch.Tensor ,
6) -> tuple[torch.Tensor , torch.Tensor , torch. Tensor]:
7 ...

This function returns the projections of L, z, and y onto the constraint set of (2.11).

By utilizing the aforementioned modules and leveraging automatic differentiation capabil-
ities in PyTorch, we can iteratively solve (2.11) using diverse optimization algorithms like
Projected Gradient Descent. Furthermore, Guo et al. (2022) propose several techniques that
can enhance convergence in this context. Below, as we describe the hyperparamters, we also
review the optimization techniques employed in the current implementation of MFOMO.

Hyperparameters. The MFOMO implementation has more than 10 hyperparameters
detailed below:

• Optimization Algorithm: You can run MFOMO with different optimization al-
gorithms. Currently, we only support PyTorch optimizers. Using the optimizer
hyperparameter, you can determine your desired optimizer. optimizer should be a
dictionary with two keys:

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 20

- "name": The name of a PyTorch optimizer, e.g., Adam, SGD, RMSprop, etc.
- "config": The desired configuration for the selected optimizer. For example,

if we choose Adam, then we can set the value of "config" as {"lr": 0.1,
"amsgrad":True}.

By default, optimizer is set to {"name": "Adam", "config": "lr": 0.1}. Note
that since we are solving a constrained optimization problem, the optimizer iterations
are automatically projected onto the constraint set after each iteration.

• Parameterized Formulation: Replacing the constrained optimization problem (2.11)
with a smooth unconstrained problem enables us to use a broader range of optimization
solvers. As explained in [50][Appendix A.3], we can reparameterize the variables in
MFOMO to completely get rid of the constraints. The new problem is called the
“parameterized” formulation. Using the following input argument, we can switch
between the different formulations:

- parameterize: Optionally solve the alternate “parameterized” formulation. De-
fault is False.

• Hat Initialization: According to [50][Proposition 6], if L, z, y is a solution to (2.11),
so is L, ẑ, ŷ. See the corresponding proposition for detailed definitions of ẑ and ŷ. We
have experimentally found that utilizing hat initialization, which means replacing the
initial L0, z0, y0 with L0, ẑ0, ŷ0, could boost the performance of optimization algorithms.
The hyperparameter hat_init determines whether this initialization scheme is used.
Default is False.

• Redesigned Objective: In the optimization problem (2.11), one can assign different
coefficients to the three terms in the objective function, and come up with a “redesigned
objective”. To be precise, the redesigned objective is

c1∣∣ALL − b∣∣22 + c2∣∣AT
Ly + z − cL∣∣22 + c3z

T y.

Furthermore, one can apply different norms (L1 or L2) to the different terms in the
objective function. Using specific caefficients and norms could potentially improve
the theoretical guarantees of MFOMO. The following input arguments determine the
parameters of the redesigned objective:

- c1, c2, c3 determine the redesigned objective coefficients. Default is 1 for all
the coefficients. Also, note that without loss of generality, we can always let c3=1.

- loss determines the type of norm (L1, L2, or both) used in the redesigned objective
function. Three available options are listed below:

1. "l1": The objective will be c1∣∣ALL − b∣∣1 + c2∣∣AT
Ly + z − cL∣∣1 + c3zT y.

2. "l2": The objective will be c1∣∣ALL − b∣∣22 + c2∣∣AT
Ly + z − cL∣∣22 + c3(zT y)2.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 21

3. "l1_l2": The objective will be c1∣∣ALL − b∣∣22 + c2∣∣AT
Ly + z − cL∣∣22 + c3zT y.

The default value is "l1_l2".

• Adaptive Residual Balancing: We can adaptively change the coefficients c1, c2,
c3 of the redesigned objective based on the value of their corresponding objective term.
This can be done using the following input arguments:

- m1, m2, m3 determine the parameters used for adaptive residual balancing.
Let’s denote by O1 the value of the first objective term (depending on the norm
used, it could be either ∣∣ALL− b∣∣22 or ∣∣ALL− b∣∣1), and let O2 and O3 be the values
of the second and third objective terms, respectively. When adaptive residual
balancing is applied, we modify the coefficients in the following cases:

1. If O1/max(O2, O3) is greater than m1, then multiply c1 by m2.
2. If O1/min(O2, O3) is less than m3, then divide c1 by m2.
3. If O2/max(O1, O3) is greater than m1, then multiply c2 by m2.
4. If O2/max(O1, O3) is less than m3, then divide c2 by m2.

- rb_freq determines the frequency of applying residual balancing. It can be a
positive integer or None. If None, residual balancing will not be applied.

• Initialization: We can set the initial policy for any algorithm using the input argument
pi through the solve() method. MFOMO uses the initial policy to compute the initial
values of the variables L, z, y. However, if you want to initialize these variables directly,
you can do so using the following input arguments:

- L, z, y: The initial values of math L, z, y. Default is None. If not None, these
values overwrite the initial values derived from the initial policy.

- u, v, w: The initial values of the variables u, n, w used in the “parameterized”
formulation. Refer to the [50][Appendix A.3] for more information. Default is
None. If not None, these values overwrite the initial values derived from the initial
policy.

Apart from the techniques and parameters mentioned earlier, we also conducted ex-
periments with additional approaches such as Anderson Acceleration, Stochastic Projected
Gradient Descent, and Hat Enforcement to improve the convergence results of MFOMO.
Anderson Acceleration (AA) [5] can help accelerate the convergence of optimization algo-
rithms. We used the aa package developed by the Stanford University Convex Group, which
implements AA based on the scheme described in [150]. Its potential benefits are briefly
discussed in [50][Appendix A.3]. Stochastic Projected Gradient Descent takes advantage
of the property that the objective function in (2.11) can be expressed as a summation of
S(2A+1)(T +1) terms. Consequently, it becomes possible to compute gradients by considering
only a subset of these terms, known as a mini-batch. This approach is particularly advanta-
geous when dealing with large-scale games, as it allows for more efficient and manageable

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 22

computations by operating on a reduced subset of terms. See [50][Appendix A.1] for more
details. The Hat Enforcement technique shares similarities with the previously mentioned
Hat Initialization. However, in Hat Enforcement, the variables L, z, y are transformed to
L, ẑ, ŷ at regular intervals (e.g., every 10 iterations), as opposed to Hat Initialization, where
the variable transformation takes place solely during initialization. However, these techniques
were not included in the initial release of the package to ensure minimal dependencies and
maintain a streamlined package design. Nevertheless, further testing and incorporating these
approaches into the package is a key focus for future releases.

Hyperparameter Tuning

Choosing the right set hyperparameters is essential to get the best performance out of an
algorithm. A set of hyperparameters could work for one environment but result in a poor
performance in other environments. Even two distinct instances of the same environment
could require very different sets of hyperparameters. Accordingly, manually tuning the
hyperparameters for algorithms such as Fictitious Play and Online Mirror Descent, despite
having only one tunable parameter, is not very straight forward, let alone for Prior Descent
and specifically for MFOMO that have several hyperparameters with a wide value range.

All the algorithms in MFGLib are endowed with a built-in tuner which could be used
to tune the algorithms on one single environment instance or a suite of several environment
instances. The tuners are based on Optuna [3], an open source hyperparameter optimization
framework used to automate hyperparameter search. You just need to call the tune() method
to start the tuning process. Let’s take a closer look at the tune() method and its input
arguments.

• env_suite is the list of environments we want to tune our algorithm on.

• max_iter determines for how many iterations each algorithm trial should be run on
each environment instance in the environment suite.

• atol and rtol: Determine the early stopping parameters.
While running an algorithm on an environment instance, if the exploitability level reaches
or goes below atol + rtol * score_0, where score_0 is the initial exploitability, we
consider the environment instance solved by the algorithm. Otherwise, we mark it as
unsolved.
When an algorithm is run on an environment instance, Stopping Iteration is the
number of iterations needed for the algorithm to reach the desired exploitability level
(atol + rtol * score_0). If the algorithm does not reach this level in less than
max_iter iterations, we set the stopping iteration to max_iter.

• metric determines the metric used by the tuner—the tuner searches for a set of
hyperparameters that minimizes the given metric. The two supported options are listed
below:

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 23

- "shifted_geo_mean": Assume that we have n environment instances in the
environment suite and an algorithm is run on all these instances. Let’s denote
by (s1, s2, . . . , sn) the stopping iterations corresponding to these environment
instances. Then, a way to evaluate the performance of the algorithm on the
whole environment suite is to consider the shifted geometric mean of the stopping
iterations. To be precise, we consider n

√
(s1 +m)(s2 +m) . . . (sn +m) −m, where

m is the shift parameter. Note that si are non-negative numbers less or equal to
max_iter. Therefore, the shifted geometric mean would be a non-negative number
less than or equal to max_iter.

- "failure_rate": This metric determines the portion of instances in the environ-
ment suite NOT solved by the algorithm, which will be a number in the interval
[0, 1].

• n_trials is the number of trials. If this argument is not given, as many trials are run
as possible.

• timeout is used to stop tuning after the given number of second(s).

To demonstrate how the tuner works, let’s consider an instance of the Rock Paper
Scissors environment and tune the Online Mirror Descent algorithm on it. We will compare
the performance of the tuned and default algorithms. The tuner runs for 20 trials and
the time limit is 60 seconds. Below, we present the corresponding code snippet. Note that
env_suite=[Environment.rock_paper_scissors()] as we want to tune the algorithm only
on one specific environment instance.

1 from mfglib .env import Environment
2 from mfglib .alg import OnlineMirrorDescent
3
4 # Default algorithm
5 omd = OnlineMirrorDescent ()
6
7 # Tuned algorithm
8 omd_tuned = omd.tune(
9 env_suite =[Environment . rock_paper_scissors ()],

10 max_iter =500 ,
11 atol =0,
12 rtol =1e-2,
13 metric =" shifted_geo_mean ",
14 n_trials =20,
15 timeout =60,
16)

Figure 2.B.2 compares the performance of the default and tuned algorithms. The tuned
algorithm outperforms the default. By setting lower exploitability thresholds, we might get
even a better performance, but we may need to run the tuner for more trials and time. A
few remarks about the tuner:

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 24

Figure 2.B.2: Comparing the exploitability scores obtained by the default and tuned Online
Mirror Descent.

• To ensure that the tuned hyperparameters work well on a broader range of environments,
we can pass a list of multiple environment instances to the tuner via the env_suite
input argument.

• The default set of hyperparameters may not be used during the tuning process. Conse-
quently, there might be cases in which the default algorithm outperforms the tuned
algorithm.

• Depending on the the values of the tuner’s inputs such as max_iter, atol, rtol, etc.,
it is possible that none of the algorithm trials solve any of the environment instances in
which case the tuner does nothing. However, if at least one of the algorithm trials is
successful in solving at least one of the instances, then tuner outputs the algorithm
equipped with the best set of hyperparameters.

• An algorithms’ tuner conducts hyperparameter search for all the existing hyper-
parameters and over predetermined search domains, which is determined via the
_tuner_instance() method. By modifying this method and adapt the tune() method
to these changes, one can change the set of tunable hyperparameters as well as their
corresponding search domains.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 25

Environments
In this section, we first discuss how users can define their own custom environments, and
subsequently we review the preimplemented environments offered in this library.

User-Defined Environments

The Environment class is the general class for MFG environments. It can be imported as
follows:

1 from mfglib .env import Environment

Below, we describe the different attributes of the Environment class:

• T: Sets the time horizon of the environment from 0 to T.

• S: State space shape.

• A: Action space shape.

• mu0: Initial state distribution.

• r_max: The supremum of the absolute value of rewards. This parameter is only used in
Mean-Field Occupation Measure Optimization algorithm and does not necessarily need
to be exact. Even a loose upper bound would be sufficient.

• reward_fn: Defines the reward function. The user is allowed to pass either a function
or a class implementing __call__. The inputs of the reward function must be env (an
environment instance), t (a specific time in the time horizon), and L_t (the mean-field
tensor at time t). The output will be a tensor of shape S + A. The signature of reward
function is presented below:

1 def reward_fn (t: int , L_t: torch. Tensor) -> torch. Tensor :
2 ...

• transition_fn: Defines the transition probability function. The user is allowed to
pass either a function or a class implementing __call__. The inputs of the transition
probability function must be env (an environment instance), t (a specific time in the
time horizon), and L_t (the mean-field tensor at time t). The output will be a tensor of
shape S + S + A. The signature of tranistion probability function is presented below:

1 def transition_fn (t: int , L_t: torch. Tensor) -> torch. Tensor :
2 ...

In order to create a custom environment, you can define each one of the above-mentioned
attributes and pass them to Environment. Let’s take a look at the environment Random
Linear, which is a custom environment already implemented in the library.

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 26

We first define the states and actions. We want to have n states and n actions. Therefore,
S=(n,) and A=(n,). Also, we use a uniform initial state distribution. To get a specific
instance, we consider n=5.

Now, we define the reward and transition probability functions. As the name of envi-
ronment suggests, we want the reward and transition probabilities to be a random linear
(affine indeed) function of the mean-field, that is given the mean field L, the reward and
tranistion probabilities should be equal to M1 ×L+M2 for some randomly generated matrices
M1, M2. We generate different pairs of matrices for reward and transition functions. Note
that in order for transition probabilities to be well-defined, we apply a softmax function to
the output of the affine function. Furthermore, we restrict all the entries of the randomly
generated matrices to be in [-m, m]. With this constraint, it is fairly straightforward to see
that the absolute value of reward cannot be larger than 2*m implying that we should set
r_max=2*m. To get an environment instance, we set m=1.

By passing all the required attributes to the Environment class, we define and instantiate
the Random Linear environmentas shown in the code snippet presented below:

1 import torch
2
3 from mfg.env import Environment
4
5 # Environment parameters
6 T = 4 # time horizon
7 n = 5
8 m = 1
9

10 # State and action space shapes
11 S = (n,)
12 A = (n,)
13
14 # Initial state distribution
15 mu0 = torch.ones(n) / n
16
17 # Reward and transition probability functions
18 torch. manual_seed (0)
19
20 r1 = 2 * m * torch.rand(n, n) - m # M_1 for reward_fn
21 r2 = 2 * m * torch.rand(n, n) - m # M_2 for reward_fn
22 reward_fn = lambda env , t, L_t: r1 @ L_t + r2
23
24 p1 = 2 * m * torch.rand(n, n, n) - m # M_1 for transition_fn
25 p2 = 2 * m * torch.rand(n, n, n) - m # M_2 for transition_fn
26 transition_fn = lambda env , t, L_t: torch.nn. Softmax (dim =-1)(p1 @ L_t + p2

)
27
28 # Define the custom environment
29 user_defined_random_linear = Environment (
30 T=T
31 S=S,

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 27

32 A=A,
33 mu0=mu0 ,
34 r_max =2 * m,
35 reward_fn =reward_fn ,
36 transition_fn = transition_fn ,
37)

Note that by varying T, n, and m, we can create different environment instances. MFGLib
offers this environment as one of the pre-implemented environments—the class method
Environment.random_linear(). The MFGLib implementation of Random Linear is an
alternative class-based implementation.

Pre-Implemented Environments

MFGLib comes with 10 pre-implemented environments which can be accessed by calling the
corresponding classmethods of the Environment class. The pre-implemented environments
are listed below:

• Beach Bar: The beach bar process is an MDP with ∣X ∣ states disposed on a one
dimensional torus (X = {0, . . . , ∣X ∣ − 1}), which represents a beach. A bar is located in
one of the states. As the weather is very hot, players want to be as close as possible
to the bar, while keeping away from too crowded areas. See [113] for details. This
environment can be accessed by calling the classmethod Environment.beach_bar()
with the following signature:

1 def beach_bar (
2 cls ,
3 T: int = 2,
4 n: int = 4,
5 bar_loc : int = 2,
6 log_eps : float = 1e-20,
7 p_still : float = 0.5,
8 mu0: Literal [" uniform "] | torch. Tensor = " uniform ",
9) -> Environment :

10 ...

n determines the number of bar locations. bar_loc is the exact bar location (a number
between 0 and n-1). log_eps determines the parameter ϵ which is used in computing
the logarithms. Specifically, we replace log(x) with log(x + ϵ) to enforce a lower bound.
p_still is the probability of a player staying still. The probability of them going to
the left or right will be (1 - p_still) / 2.

• Building Evacuation: In this problem, there is a multilevel building and each agent of
the crowd wants to go downstairs as quickly as possible while favoring social distancing.
At each floor, two staircases are located at two opposite corners, such as the crowd has
to cross the whole floor to take the next staircase. Each agent can remain in place,
move in the 4 directions (up, down, right, left) as well as go up or down when on a

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 28

staircase location. See [112] for details. This environment can be accessed by calling
the classmethod Environment.building_evacuation() with the following signature:

1 def building_evacuation (
2 cls ,
3 T: int = 3,
4 n_floor : int = 5,
5 floor_l : int = 10,
6 floor_w : int = 10,
7 log_eps : float = 1e-20,
8 eta: float = 1.0,
9 evac_r : float = 10.0 ,

10 mu0: Literal [" uniform "] | torch. Tensor = " uniform ",
11) -> Environment :
12 ...

n_floor determines the number of floors. floor_l and floor_w determine the length
and width of the floors, respectively. log_eps is used to replace log(x) with log(x + ϵ).
eta is a parameter of the reward function. evac_r is the reward received upon getting
to the first floor.

• Conservative Treasure Hunting: This environment provides an example of an
MFG that is neither contractive nor strictly monotone, and has multiple NE solutions.
See [50] for details. This environment can be accessed by calling the classmethod
Environment.conservative_treasure_hunting() with the following signature:

1 def conservative_treasure_hunting (
2 cls ,
3 T: int = 5,
4 n: int = 3,
5 r: tuple[float , ...] = (1.0 , 1.0, 1.0) ,
6 c: tuple[float , ...] = (1.0 , 1.0, 1.0, 1.0, 1.0) ,
7 mu0: Literal [" uniform "] | torch. Tensor = " uniform ",
8) -> Environment :
9 ...

n determines the number of states and actions. r is the vector of ri for i = 1, . . . , n. c is
the vector of Ct for t = 1, 2, . . . , T .

• Crowd Motion: This environment extends the Beach Bar environment in 2 di-
mensions. Our implementation is an adaptation of the crowd motion environment
introduced in [112]. This environment can be accessed by calling the classmethod
Environment.crowd_motion() with the following signature:

1 def crowd_motion (
2 cls ,
3 T: int = 3,
4 torus_l : int = 20,
5 torus_w : int = 20,

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 29

6 loc_change_freq : int = 2,
7 c: float = 10.0 ,
8 log_eps : float = 1e-10,
9 p_still : float = 0.5,

10 seed: int = 0,
11 mu0: Literal [" uniform "] | torch. Tensor = " uniform ",
12) -> Environment :
13 ...

torus_l and torus_w determine the length and width of the bar location grid, respec-
tively. loc_change_freq specifies the length of the interval between two consecutive
bar location changes—in constrst to the Beach Bar environment, the bar location is not
fixed in this problem. log_eps and p_still work as in the Beach Bar environment.

• Equilibrium Price: In this problem, a large number of homogeneous firms producing
the same product under perfect competition are considered. The price of the product
is determined endogenously by the supply-demand equilibrium. Each firm, meanwhile,
maintains a certain inventory level of the raw materials for production, and decides
about the quantity of raw materials to consume for production and the quantity of
raw materials to replenish the inventory. See [51] for details. This environment can
be accessed by calling the classmethod Environment.equilibrium_price() with the
following signature:

1 def equilibrium_price (
2 cls ,
3 T: int = 4,
4 s_inv: int = 3,
5 Q: int = 2,
6 H: int = 2,
7 d: float = 1.0,
8 e0: float = 1.0,
9 sigma: float = 1.0,

10 c: tuple[float , float , float , float , float] = (1.0 , 1.0, 1.0,
1.0, 1.0) ,

11 mu0: Literal [" uniform "] | torch. Tensor = " uniform ",
12) -> Environment :
13 ...

s_inv determines the maximum inventory level. Q is the maximum amount of raw
material to consume. H represents the maximum amount of raw material to replenish.
d, e0, sigma are parameters of the supply-demand equilibrium equation. c is a vector
of reward function coefficients.

• Left-Right: In this problem, a large number of agents choose simultaneously between
going left or right. Afterwards, each agent shall be punished proportional to the
number of agents that chose the same action, but more-so for choosing right than
left. See [32] for details. This environment can be accessed by calling the classmethod
Environment.left_right() with the following signature:

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 30

1 def left_right (
2 cls , mu0: tuple[float , float , float] = (1.0 , 0.0, 0.0)
3) -> Environment :
4 ...

• Linear Quadratic: See [113] for details. This environment can be accessed by calling
the classmethod Environment.linear_quadratic() with the following signature:

1 def linear_quadratic (
2 cls ,
3 T: int = 3,
4 el: int = 5,
5 m: int = 2,
6 sigma: float = 3.0,
7 delta: float = 0.1,
8 k: float = 1.0,
9 q: float = 0.01 ,

10 kappa: float = 0.5,
11 c_term : float = 1.0,
12 mu0: Literal [" uniform "] | torch. Tensor = " uniform ",
13) -> Environment :
14 ...

m and el determine the number of states and actins, respectively. To be precise,
the states are {-m, ..., m} and the actions are {-l, ..., l}. sigma and k are
parameters of the state dynamics (they impact the transition probabilities). q, kappa,
and c_term are parameters of the reward function. delta appears in both the state
dynamics and reward function.

• Random Linear: It is a custom environment as discussed in the previous subsection.
It can be accessed by calling the classmethod Environment.random_linear() with
the following signature:

1 def random_linear (
2 cls ,
3 T: int = 3,
4 n: int = 5,
5 m: float = 10.0 ,
6 seed: int = 0,
7 mu0: Literal [" uniform "] | torch. Tensor = " uniform ",
8) -> Environment :
9 ...

• Rock Paper Scissors: This game is inspired by Shapley (1964) and their generalized
non-zero-sum version of Rock-Paper-Scissors, for which classical fictitious play would
not converge. Each of the agents can choose between rock, paper and scissors, and
obtains a reward proportional to double the number of beaten agents minus the number
of agents beating the agent. See [32] for details. This environment can be accessed

CHAPTER 2. MFGLIB: A LIBRARY FOR MEAN-FIELD GAMES 31

by calling the classmethod Environment.rock_paper_scissors() with the following
signature:

1 def rock_paper_scissors (
2 cls , T: int = 1, mu0: tuple[float , float , float , float] =

(1.0 , 0.0, 0.0, 0.0)
3) -> Environment :
4 ...

• Susceptible Infected: In this problem, a large number of agents can choose between
social distancing or going out. If a susceptible agent chooses social distancing, they
may not become infected. Otherwise, an agent may become infected with a probability
proportional to the number of agents being infected. If infected, an agent will recover
with a fixed chance every time step. Both social distancing and being infected have an
associated cost. See [32] for more details. This environment can be accessed by calling
the classmethod Environment.susceptible_infected() with the following signature:

1 ef susceptible_infected (
2 cls , T: int = 50, mu0: tuple[float , float] = (0.4 , 0.6)
3) -> Environment :
4 ...

The implemented environments encompass a wide variety MFGs. These environments
include problems like Beach Bar, where only the reward function depends on the mean-field, as
well as environments like Conservative Treasure Hunting, where both rewards and transition
probabilities depend on the mean-field.

Furthermore, as discussed above, all implemented environments take initialization param-
eters that modify the resulting instance in terms of state and action space, underlying reward
and transition probabilities, etc. This way, one can generate infinitely many environments
with varying sizes to experiment with. Let’s look at the Building Evacuation environment for
example. We can create distinct buildings (distinct environment instances) by changing the
number of floors, the size of each floor, etc. In the following, we create two distinct buildings,
one with 10 floors each 20 by 20, and another one with 100 floors each 50 by 5.

1 from mfglib .env import Environment
2 building_evacuation_1 = Environment . building_evacuation (n_floor =10,

floor_l =20, floor_w =20)
3 building_evacuation_2 = Environment . building_evacuation (n_floor =100 ,

floor_l =50, floor_w =5)

32

Chapter 3

Escaping Saddle Points Efficiently with
Occupation-Time-Adapted
Perturbations

Gradient descent (GD), which dates back to [24], aims to minimize a function f ∶ Rd → R via
the iteration: xxxt+1 = xxxt − η∇f(xxxt), t = 0, 1, 2, . . . , where η > 0 is the step size and ∇f is the
gradient of f . Due to its simple form and fine computational properties, GD and its variants
(e.g., stochastic gradient descent) are essential for many machine learning tools: principle
component analysis [22], phase retrieval [20], and deep neural network [120], just to name a
few. In the era of data deluge, many problems are concerned with large-scale optimization
in which the intrinsic dimension d is large. GD turns out to be efficient in dealing with
high-dimensional convex optimization, where the first-order stationary point ∇f(xxx) = 0 is
necessarily the global minimum point. Algorithmically, it involves finding a point with small
gradient ∣∣∇f(xxx)∣∣ < ϵ. A classical result of [104] showed that the time required by GD to find
such a point in a possibly non-convex problem is of order ϵ−2, independent of the dimension
d.

In non-convex settings, applying GD will still lead to an approximate first-order stationary
point. However, this is not sufficient: for non-convex functions, first-order stationary points
can be either global minimum, local minimum, local maximum, or saddle points. As we will
explain, saddle points are the main bottleneck for GD in many non-convex problems. The
goal of this chapter is therefore to develop efficient algorithms to escape saddle points in
high-dimensional non-convex problems, and hence overcome the curse of dimensionality.

Escape local minima: Inspired by annealing in metallurgy, [80] developed simulated
annealing to approximate the global minimum of a given function. [48] proposed a diffusion
simulated annealing and proved that it converges to the set of global minimum points. However,
subsequent works [59, 98, 100, 13, 101, 131] revealed that it might take an exponentially long
time (of order exp(d)) for diffusion simulated annealing to get close to the global minimum.
See [130] for a review. Some work, e.g., methods based on Lévy flights [108] or Cuckoo’s
search [148] showed empirically faster convergence to the global minimum. Yet the theory of

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 33

these approaches is far-fetched. Closely related to simulated annealing are recent efforts in
approximating the global minimum in non-convex problems via Langevin dynamics-based
stochastic gradient descent [117, 26], where the gradient is evaluated at a randomly selected
data point in each iteration. There also exist several variants of Langevin-based stochastic
gradient descent using non-reversibility [60] and replica exchange [27, 37]. Typically, these
algorithms take polynomial time in the dimension d, and thus may scale poorly when d is
large.

Escape saddle points: Fortunately, in many non-convex problems, it suffices to find a
local minimum. Indeed, there has been a line of recent work arguing that local minima are
less problematic, and that for many non-convex problems there are no spurious local minima.
That is, all local minima are comparable in value with the global minimum. Examples
include tensor decomposition [47, 44, 46, 123], semidefinite programming [7, 97], dictionary
learning [128], phase retrieval [127], robust regression [96], low-rank matrix factorization [15,
43, 45, 107], and certain classes of deep neural networks [28, 38, 76, 77, 90, 106, 139, 147].
Nevertheless, as shown in [35, 39, 67], saddle points may correspond to suboptimal solutions,
and it may take exponentially long time to move from saddle points to a local minimum point.
Meanwhile, it has been observed in empirical studies [34, 129] that GD and its variants such
as stochastic gradient descent (SGD) [49] and Adam [79] may be trapped in saddle points.

[47] took the first step to show that by adding noise at each iteration, GD can escape all
saddle points in polynomial time. Additionally, [40, 87] proved that with random initialization,
GD converges to a local minimizer. Moreover, [70] proposed the perturbed gradient descent
(PGD) algorithm, which [69] further improved to the perturbed accelerated gradient descent
(PAGD) algorithm. They showed that PGD and PAGD are efficient – the time complexity
is almost independent of the dimension d. See also [71] for a summary of results in this
direction.

Our idea. Motivated by the “fast exploration” of self-repelling random walk, this chapter
develops a new perturbation mechanism by adapting the perturbations to the history of states.
Recall that [70, 71] used the following perturbation update when perturbation conditions
hold:

xxx′t = xxxt +Unif(Bd(000, r)), xxxt+1 = xxx′t − η∇f(xxx′t),

where Unif(Bd(000, r)) is a point picked uniformly in the ball of radius r. On the empirical
side, [103, 151] applied this idea of GD with noise to train deep neural networks. Our idea is
to replace Unif(Bd(000, r)) with non-uniform perturbations, whose mechanism depends on the
current state xxxt and the history of states {xxxs; s ≤ t}. There are conceivably many ways to
add non-uniform perturbation based on the current and previous states; here we choose to
adapt perturbations to the “occupation time”.

The intuition is illustrated by the one-dimensional function f(x) = x3 (see Figure 3.0.1).
There is a saddle point at 0, and imagine GD approaches 0 from the right. It can be shown
that GD converges monotonically to a stationary point (see Appendix 3.A). The uniform
perturbation will add noise with probability 1/2 both to the right and to the left. To the

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 34

Figure 3.0.1: Illustration of occupation-time-adapted perturbation using f(x) = x3.

right, GD will again get stuck at the saddle point 0. However, to the left, there is a possibility
of escaping from 0 and finding a local minimum (−∞ in this case). Therefore, it is reasonable
to add noise with a larger probability to the left, since it has spent a long time on the right
and has yet to explore the left side.

The previous intuition can be quantified via the notion of occupation times Lt (the number
of {xs}s<t to the left of xt) and Rt (the number of {xs}s<t to the right of xt). By definition,
Rt +Lt = t, for each t = 0, 1, If Lt is larger, the perturbation will push the iterate xt to
the right; and if Rt is larger, push to the left. More precisely,

xt+1 = {
xt − r Unif(0, 1) with probability p,
xt + r Unif(0, 1) with probability 1 − p,

(3.1)

where p = w(Rt)

w(Lt)+w(Rt)
and w ∶ {0, 1, . . .} → (0,∞) is an increasing weight function on the

nonnegative integers (e.g., w(k) = 1 + kα for α > 0).
The dynamics (3.1) is closely related to the vertex-repelling random walk defined by

Zt+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

Zt − 1 with probability w(R̃t)

w(L̃t)+w(R̃t)
,

Zt + 1 with probability w(L̃t)

w(L̃t)+w(R̃t)
,

(3.2)

where R̃t ∶= {s < t ∶ Zs = Zt + 1} and L̃t ∶= {s < t ∶ Zs = Zt − 1}. This (non-Markovian) random
walk model was introduced by [110] in the statistical physics literature. Based on the scaling
arguments and simulations, it was conjectured that for w(⋅) with a suitable growth, the walk
(Zt, t ≥ 0) is recurrent and is further super-diffusive in the sense that EZ2

t ∼ t
4
3 , whereas for a

simple random walk (St, t ≥ 0) its exploration range is ES2
t ∼ t≪ t

4
3 . These properties have

only been proved rigorously for a simpler variant – the edge-repelling random walk, see [36,
134, 136, 135]. For instance, it was conjectured that for w(k) ∼ λk with λ > 1,

(Znu

(σn) 2
3
, u ≥ 0) converges in distribution to (Zu, u ≥ 0) as n→∞,

where σ > 0 is a variance parameter depending on w(⋅), and the scaling limit (Zu, u ≥ 0) is
a (universal) continuous process whose marginal distribution p(u, ⋅) is given as follows. Let

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 35

(∣Bh
s ∣, s ∈ R) be a two-sided reflected Brownian motion with ∣Bh

0 ∣ = h > 0. Define

T −0 ∶= sup{s < 0 ∶ ∣Bh
s ∣ = 0} and T +r ∶= sup{s > r ∶ ∣Bh

s ∣ = 0} for r > 0,

and
Ah

r ∶= ∫
T+r

T−0
∣Bh

s ∣ds (area of ∣Bh∣ between T −0 and T +r).

See Figure 3.0.2 for an illustration.

Figure 3.0.2: Illustration of Ah
r .

Denote by ρ(u, r; h) ∶= ∂
∂uP (Ah

r ≤ u) the density of Ah
r . Then

p(u, x) = ∫
∞

0
ρ(u

2 , ∣x∣; h)dh for x ∈ R. (3.3)

Clearly, the conjecture implies that EZ2
t is of order t

4
3 . It is easy to see from (3.3) that Zu

has the same distribution as r−
2
3Zru for each u > 0. However, the distribution of (Zu, u ≥ 0)

at the process level remains open to date, and we even don’t know whether the process Z
is a diffusion process. A counterpart to the vertex-repelling walk is the vertex-reinforced
walk [111, 142] defined by Zt+1 = Zt − 1 with probability w(L̃t)

w(L̃t)+w(R̃t)
, and Zt+1 = Zt + 1 with

probability w(R̃t)

w(L̃t)+w(R̃t)
. It is well known [132, 142] that vertex-reinforced random walk exhibits

localization at a finite number of points for some choices of w(⋅), e.g., w(k) ∼ kα with α ≥ 1.
Our results. We will first show that vertex-repelling walk will never be localized or stuck

at some points in contrast with vertex-reinforced walk (see Theorem 4). The non-localization
and the (conjectured) super-diffusive properties of the vertex-repelling walk (3.2) facilitate
exploration, and thus the corresponding perturbation scheme (3.1) makes it more likely to
escape from saddle points.

We will then propose a new perturbation mechanism based on the dynamics (3.1), which
can be integrated into the framework of (any) perturbation-based optimization algorithms.
In particular, integrating the above-mentioned mechanism into the framework of PGD and
PAGD, we propose two new algorithms: perturbed gradient descent adapted to occupation
time (PGDOT, Algorithm 1) and its accelerated version, perturbed accelerated gradient
descent adapted to occupation time (PAGDOT, Algorithm 2).

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 36

We will prove that Algorithm 1 (resp. Algorithm 2) converges to a second-order stationary
point at least as fast as PGD (resp. PAGD). Algorithms 1 and 2 are state-dependent adaptive
algorithms, perturbing GD and accelerated gradient descent (AGD) [105] non-uniformly
according to the history of states.

Algorithm 1 Perturbed Gradient Descent Adapted to Occupation Time (Meta Algorithm)
for t = 0, 1, . . . do

if perturbation condition holds then
for i = 1, . . . , d do

Li
t ←#{s < t ∶ xi

s ≤ xi
t}

Ri
t ←#{s < t ∶ xi

s > xi
t}

xi
t ← {

xi
t − r√

d
Unif(0, 1) w.p. p,

xi
t + r√

d
Unif(0, 1) w.p. 1 − p,

where p = w(Ri
t)

w(Li
t)+w(Ri

t)

end for
end if
xxxt+1 ← xxxt − η∇f(xxxt)

end for

Algorithm 2 Perturbed Accelerated Gradient Descent Adapted to Occupation Time (Meta
Algorithm)

for t = 0, 1, . . . , do
if perturbation condition holds then

for i = 1, . . . , d do
Li

t ←#{s < t ∶ xi
s ≤ xi

t}
Ri

t ←#{s < t ∶ xi
s > xi

t}

xi
t ← {

xi
t − r√

d
Unif(0, 1) w.p. p,

xi
t + r√

d
Unif(0, 1) w.p. 1 − p,

where p = w(Ri
t)

w(Li
t)+w(Ri

t)

end for
end if
xxxt+1 ← Accelerate(xxxt,vvvt), vvvt+1 ← xxxt+1 −xxxt

end for

We will finally corroborate our theoretical analysis by experimental results. Specifically,
we will empirically demonstrate that Algorithms 1 and 2 exhibit faster escape from saddle
points, surpassing not only their counterparts (PGD and PAGD) but also outperforming
SGD and several adaptive gradient methods, including Adam, AMSGrad [119], AdaBelief
[152], and STORM [33] in training deep learning models on popular datasets such as MNIST
[86], CIFAR-10 [82], and CIFAR-100 [82].

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 37

Notations: Below we collect the notations that will be used throughout this chapter.
For S a finite set, let #S denote the number of elements in S. For D as a domain, let
Unif(D) be the uniform distribution on D, e.g., Unif(0, 1) is the uniform distribution on
[0, 1]. For a function f ∶ Rd → R, let ∇f and ∇2f denote its gradient and Hessian, and
f⋆ ∶=minxxx∈Rd f(xxx) denote its global minimum. For AAA a symmetric matrix, let λmin(AAA) be its
minimum eigenvalue.

The notation ∣∣ ⋅ ∣∣ is used for both the Euclidean norm of a vector and the spectral
norm of a matrix. For xxx = (x1, . . . , xd) and r > 0, let Bd(xxx, r) ∶= {yyy ∶ ∣∣yyy − xxx∣∣ ≤ r} be the
d-dimensional ball centered at xxx with radius r, and Cd(xxx, r) ∶= {yyy ∶ ∣yi − xi∣ ≤ r for 1 ≤ i ≤ d}
be the d-dimensional hypercube centered at xxx with distance r to each of its surfaces. We
use the symbol O(⋅) to hide only absolute constants which do not depend on any problem
parameter.

The rest of the chapter is organized as follows. Section 3.1 provides background on the
continuous optimization and recalls some existing results. Section 3.2 presents the main
results. Section 3.3 contains numerical experiments to corroborate our analysis. Section 3.4
concludes.

3.1 Background and Existing Results

Results of GD
We consider non-convex optimization (convex optimization results are recalled in Appendix
3.B). In this case, it is generally difficult to find the global minima. A popular approach is to
consider the first-order stationary points instead.

Definition 2. Let f ∶ Rd → R be a differentiable function. We say that (i) xxx is a first-
order stationary point of f if ∇f(x) = 0; (ii) xxx is an ϵ-first-order stationary point of f if
∣∣∇f(x)∣∣ ≤ ϵ.

We say that a differentiable function f ∶ Rd → R is ℓ-gradient Lipschitz if ∣∣∇f(xxx1) −
∇f(xxx2)∣∣ ≤ ℓ∣∣xxx1−xxx2∣∣ for all xxx1,xxx2 ∈ Rd. For gradient Lipschitz functions, GD converges to the
first-order stationary points, which is quantified by the following theorem from [104][Section
1.2.3].

Theorem 1. Assume that f ∶ Rd → R is ℓ-gradient Lipschitz. For any ϵ > 0, if we run GD
with step size η = ℓ−1, then the number of iterations to find an ϵ-first-order stationary point is
ℓ(f(xxx0)−f⋆)

ϵ2 .

Note that in Theorem 1, the time complexity of GD is independent of the dimension d.
For a non-convex function, a first-order stationary point can be either a local minimum, a
saddle point, or a local maximum. The following definition is taken from [70][Definition 4].

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 38

Definition 3. Let f ∶ Rd → R be a differentiable function. We say that (i) xxx is a local minimum
if xxx is a first-order stationary point, and f(xxx) ≤ f(yyy) for all yyy in some neighborhood of xxx;
(ii) xxx is a saddle point if xxx is a first-order stationary point but not a local minimum. Assume
further that f is twice differentiable. We say a saddle point xxx is strict if λmin(∇2f(xxx)) < 0.

For a twice differentiable function f , note that λmin(∇2f(xxx)) ≤ 0 for any saddle point xxx.
So by assuming a saddle point xxx to be strict, we rule out the case λmin(∇2f(xxx)) = 0. The
next subsection will review two perturbation-based algorithms that allow jumping out of
strict saddle points.

Results of PGD and PAGD
One drawback of GD in non-convex optimization is that it may get stuck at saddle points.
[70] and [69] proposed PGD and PAGD, respectively, to escape saddle points, which we review
here. To proceed further, we need some vocabulary regarding the Hessian of the function f .

Definition 4. A twice differentiable function f ∶ Rd → R is ρ-Hessian Lipschitz if ∣∣∇2f(xxx1)−
∇2f(xxx2)∣∣ ≤ ρ∣∣xxx1 −xxx2∣∣ for all xxx1,xxx2 ∈ Rd. Furthermore, we say that (i) xxx is a second-order
stationary point of f if ∇f(xxx) = 0 and λmin(∇2f(xxx)) ≥ 0; (ii) xxx is a ϵ-second-order stationary
point of f if ∣∣∇f(xxx)∣∣ ≤ ϵ and λmin(∇2f(xxx)) ≥ −√ρϵ.

To simplify the presentation, assume that all saddle points are strict (Definition 3). In
this situation, all second-order stationary points are local minima. The basic idea of these
two algorithms is as follows. Imagine that we are currently at an iterate xxxt which is not
an ϵ-second-order stationary point. There are two scenarios: (i) The gradient ∣∣∇f(xxxt)∣∣ is
large and a usual iteration of GD or AGD is enough; (ii) The gradient ∣∣∇f(xxxt)∣∣ is small but
λmin(∇2f(xxxt)) ≤ −

√
ρϵ (large negative). So xxxt is around a saddle point, and a perturbation ξ

is needed to escape from the saddle region: x̃xxt = xxxt + ξ.
The main result for PGD, Theorem 3 in [70], and for PAGD, Theorem 3 in [69], are stated

below showing that the time complexity of these two algorithms are almost dimension-free
(with a log factor).

Theorem 2. [70] Assume that f ∶ Rd → R is ℓ-gradient Lipschitz and ρ-Hessian Lipschitz.
Then there exists cmax > 0 such that for any δ > 0, ϵ ≤ ℓ2/ρ, ∆f ≥ f(xxx0) − f∗, and c ≤ cmax,
PGD outputs an ϵ-second-order stationary point with probability 1 − δ, terminating within the
following number of iterations:

O (ℓ(f(xxx0) − f⋆)
ϵ2 log4 (dℓ∆f

ϵ2δ
)) .

Compared with Theorem 1, PGD takes almost the same order of time to find a second-order
stationary point as GD does to find a first-order stationary point.

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 39

Theorem 3. [69] Assume that f ∶ Rd → R is ℓ-gradient Lipschitz and ρ-Hessian Lipschitz.
Then there exists an absolute constant cmax > 0 such that for any δ > 0, ϵ ≤ ℓ2/ρ, ∆f ≥ f(xxx0)−f∗,
and c ≥ cmax, with probability 1 − δ, one of the iterates xxxt of PAGD will be an ϵ-second-order
stationry point in the following number of iterations:

O (ℓ1/2ρ1/4(f(xxx0) − f⋆)
ϵ7/4 log6 (dℓ∆f

ρϵδ
)) .

3.2 Main Results
In this section, we first prove the non-localization property of the vertex-repelling random
walk. Then, we formalize the idea of perturbations adapted to occupation time and provide
the full version of PGDOT and PAGDOT in Algorithms 3 and 4, respectively. Our main
results show that these algorithms converge rapidly to second-order stationary points.

Non-Localization Property of Vertex-Repelling Random Walk
The following theorem suggests that the new perturbation mechanism helps perturbation-
based algorithms to avoid getting stuck at saddle points, as the dynamics of vertex-repelling
random walk prescribed in (3.1) does not localize.

Theorem 4. Let {Zt, t = 0, 1, . . .} be the vertex-repelling random walk defined by (3.2), where
w ∶ {0, 1, . . .}→ (0,∞) is an increasing function such that w(n)→∞ as n→∞. Then

P (∃t0 > 0, k ≤ ℓ ∶ Zt ∈ {k, . . . , ℓ} for all t ≥ t0) = 0.

The proof of this theorem is given in Appendix 3.C.

Perturbed Gradient Descent Adapted to Occupation Time
PGD adds a uniform random perturbation when stuck at saddle points. From the discussion
in the introduction, it is more reasonable to perturb with non-uniform noise whose distribution
depends on the occupation times. Recall that w ∶ {0, 1, . . .}→ (0,∞) is an increasing weight
function on the nonnegative integers. The following algorithm adapts PGD to random
perturbation depending on the occupation dynamics. We follow the parameter setting as in
[70]. Our algorithm performs GD with step size η and gets a perturbation of amplitude r√

d

near saddle points at most once every tthres iterations. The threshold tthres ensures that the
dynamics of the algorithm is mostly GD. The threshold gthres determines if a perturbation is
needed, and the threshold fthres decides when the algorithm terminates.

The next theorem gives the convergence rate of Algorithm 3: PGDOT finds a second-order
stationary point in the same number of iterations (up to a constant factor) as PGD does.

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 40
Algorithm 3 Perturbed Gradient Descent Adapted to Occupation Time
PGDOT(xxx0, ℓ, ρ, ϵ, c, δ, ∆f , w)

χ← 3 max {log(dℓ∆f

cϵ2δ), 4}, η ← c
ℓ , r ← ϵ

√
c

χ2ℓ

gthres ← ϵ
√

c
χ2 , fthres ← c

χ3

√
ϵ3

ρ , tthres ← χℓ
c2√ρϵ

tnoise ← −tthres − 1
for t = 0, 1, . . . do

if ∣∣∇f(xxxt)∣∣ ≤ gthres and t − tnoise > tthres then
x̃xxt ← xxxt, tnoise ← t
for i = 1, . . . , d do

Li
t ←#{s < t ∶ xi

s ≤ xi
t}

Ri
t ←#{s < t ∶ xi

s > xi
t}

xi
t ← {

x̃i
t − r√

d
Unif(0, 1) w.p. p,

x̃i
t + r√

d
Unif(0, 1) w.p. 1 − p,

where p = w(Ri
t)

w(Li
t)+w(Ri

t)

end for
end if
if t − tnoise = tthres and f(xxxt) − f(x̃xxtnoise) > −fthres then

return x̃xxtnoise
end if
xxxt+1 ← xxxt − η∇f(xxxt)

end for

Theorem 5. Assume that f ∶ Rd → R is ℓ-gradient Lipschitz and ρ-Hessian Lipschitz. Then
there exists cmax > 0 such that for any δ > 0, ϵ ≤ ℓ2/ρ, ∆f ≥ f(xxx0) − f∗, and c ≤ cmax, PGDOT
(Algorithm 3) outputs an ϵ-second-order stationary point with probability 1 − δ terminating
within the following number of iterations:

O (ℓ(f(xxx0) − f⋆)
ϵ2 log4 (dℓ∆f

ϵ2δ
)) .

The proof of Theorem 5 is based on a geometric characterization of saddle points – thin
pancake property [70]. In Appendix 3.D, we will discuss this property, and show how it is
used to prove Theorem 5.

Perturbed Accelerated Gradient Descent Adapted to Occupation
Time
Similar to the way we combined our perturbation mechanism with PGD, we can adapt PAGD
to this mechanism as well resulting in the accelerated version of PGDOT (Algorithm 4). We
follow the parameter setting as in [69].

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 41

Algorithm 4, similar to PAGD, employs a feature called Negative Curvature Exploitation
(NCE) which resets the momentum and decides whether to exploit the negative curvature
when the function becomes “too convex". See [69][Algorithm 3].

Algorithm 4 Perturbed Accelerated Gradient Descent Adapted to Occupation Time
PAGDOT(xxx0, η, θ, γ, s, r,T , w)

χ←max {log(dℓ∆f

ρϵδ), 1}, κ← ℓ
√

ρϵ , η ← 1
4ℓ

θ ← 1
4
√

κ
, γ ← θ2

η , s← γ
4ρ , r ← ηϵ

χ5c8 , T ← χc
√

κ
vvv0 ← 0
for t = 0, 1, . . . , do

if ∥∇f(xxxt)∥ ≤ ϵ and no perturbation in last T steps then
x̃xxt ← xxxt

for i = 1, . . . , d do
Li

t ←#{s < t ∶ xi
s ≤ xi

t}
Ri

t ←#{s < t ∶ xi
s > xi

t}

xi
t ← {

x̃i
t − r√

d
Unif(0, 1) w.p. p,

x̃i
t + r√

d
Unif(0, 1) w.p. 1 − p,

where p = w(Ri
t)

w(Li
t)+w(Ri

t)

end for
end if
yyyt ← xxxt + (1 − θ)vvvt

xxxt+1 ← yyyt − η∇f(yyyt)
vvvt+1 ← xxxt+1 −xxxt

if f(xxxt) ≤ f(yyyt) + ⟨∇f(yyyt),xxxt − yyyt⟩ − γ
2∥xxxt − yyyt∥2 then

(xxxt+1,vvvt+1)← NCE(xxxt,vvvt, s)
end if

end for

The next theorem gives the convergence rate of Algorithm 4: PAGDOT finds a second-
order stationary point in the same number of iterations (up to a constant factor) as PAGD
does, and therefore achieves a faster convergence rate than PGD and PGDOT. The proof of
Theorem 6 is similar to that of Theorem 5.

Theorem 6. Assume that f ∶ Rd → R is ℓ-gradient Lipschitz and ρ-Hessian Lipschitz. Then
there exists an absolute constant cmax > 0 such that for any δ > 0, ϵ ≤ ℓ2/ρ, ∆f ≥ f(xxx0) − f∗,
and c ≥ cmax, one of the iterates xxxt of PAGDOT (Algorithm 4) will be an ϵ-second-order
stationry point in the following number of iterations, with probability 1 − δ:

O (ℓ1/2ρ1/4(f(xxx0) − f⋆)
ϵ7/4 log6 (dℓ∆f

ρϵδ
)) .

It is worth mentioning that the new algorithms can be regarded as generalizations of
PGD and PAGD. This is exemplified by the fact that when the weight function w is a

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 42

constant function (e.g. w(k) = 1,∀k ≥ 0), the perturbations become uniform. Additionally,
Algorithms 3 and 4 share some spirit with GD with momentum methods such as the heavy
ball method [115]. In the heavy ball method, a momentum term, which is a function of the
current and previous states, is explicitly added to control the oscillations and accelerate in
low curvatures along the direction close to momentum. In Algorithms 3 and 4, however, no
explicit momentum term is added. Instead, the perturbation is adapted to the history of
states providing the current state with an explicit direction.

We also remark that Theorem 5 (Theorem 6) has been proven using the exact same
steps and lemmas as the ones employed in proving Theorem 2 (Theorem 3). As a result,
the convergence rate of PGDOT (PAGDOT) is identical to that of PGD (PAGD). This
equivalence extends to the hidden constants as well. However, we believe that by exploiting
the intrinsic properties of the embedded perturbation mechanism, such as the super-diffusivity
of the corresponding random walk, there is a possibility to enhance the theoretical results.
Nonetheless, formally establishing this improvement remains an open question.

3.3 Empirical Results
This section presents empirical results to corroborate the theoretical analysis presented in the
previous section. The experiments showcase the effectiveness of our new perturbation-based
algorithms, not only in escaping saddle points but also in doing so efficiently and rapidly.
To comprehensively evaluate their performance, we consider both small-scale and large-scale
problems to demonstrate the practicality and scalability of the new algorithms. Additionally,
we explore an MFG example to establish a link with the preceding chapter and demonstrate
the potential of our proposed perturbation mechanism in assisting optimization-based MFG
algorithms to efficiently find NE solutions.

The small-scale problems include a synthetic problem, a nonlinear regression problem,
a regularized quadratic problem, and a phase retrieval problem, wherein we compare the
new algorithms with their counterparts, PGD and PAGD, and vanilla GD. In the large-scale
problems, we focus on image classification tasks using popular datasets such as MNIST [86],
CIFAR-10 [82], and CIFAR-100 [82]. We compare the performance of the new algorithms
against their counterparts, as well as SGD [49] and several state-of-the-art adaptive gradient
algorithms including Adam [79], AMSGrad [119], AdaBelief [152], and STORM [33].

In these experiments, we use Li
t(h) ∶= #{t − tcount ≤ s < t ∶ xi

t − h ≤ xi
s ≤ xi

t} and
Ri

t(h) ∶= #{t − tcount ≤ s < t ∶ xi
t < xi

s ≤ xi
t + h} instead of Li

t and Ri
t in Algorithms 3 and

4. Here h is a hyperparameter characterizing the occupation time over a small interval.
tcount is another hyperparameter prescribing how long one should keep track of the history
of xxxt in order to approximate the occupation time with a constant memory cost. All the
hyperparameter settings used in the experiments and their tuning process are reported in
Appendix 3.E. The small-scale problems are run on a commodity machine with Intel® Core™

i7-7500U CPU. The image classification tasks are run on Google Colab, utilizing NVIDIA
A100 GPU in the High-RAM setting.

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 43

Stair Function Problem. Given N ∈ Z+, L ∈ R+, define a function f̃ ∶ R+ → R+ as

f̃(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r3, r ∈ [0, 1
2L),

(r − nL)3 + 1
4nL3, r ∈ [a(n), b(n)), 1 ≤ n ≤ N,

(r −NL)3 + 1
4NL3, r ∈ [NL + 1

2L,∞),

where a(n) = nL − 1
2L and b(n) = nL + 1

2L. For xxx = (x1, . . . , xd) ∈ Rd, we define f(xxx) =
f̃ (1

d∑
d
i=1 x2

i) .
Figure 3.3.1 presents the visualization of the case N = 4, L = 1 as well as the training

curves of f given by 5 different algorithms when d = 4. The initial values are all the same, and
all the algorithms except for GD are run 3 times considering the randomness of perturbations.
We observe that while GD becomes trapped at saddle points, all other algorithms successfully
navigate away from these points. Furthermore, the newly introduced algorithms, PGDOT
and PAGDOT, outperform their respective counterparts.

0 1 2 3 4 5
r̃

0.0

0.5

1.0

1.5

f̃
(r̃

)

x1 −2
−1

0
1

2
x2

−2
−1

0
1

2

f
(x

)

0.0
0.2
0.4
0.6
0.8
1.0

1.2

Figure 3.3.1: Graph of f̃ (left) and the landscape of f(xxx) (middle) with xxx ∈ R2 in the case of
N = 4, L = 1. The figure on the right shows the performance of different algorithms in the
stair function problem when N = 4, L = 1, d = 4. In this figure, the y-axis and x-axis represent
the loss and number of iterations, respectively.

Nonlinear Regression Problem. We consider a nonlinear regression problem, adapted
from learning time series data with a continuous dynamical system [89]. The loss function is
defined as f(xxx) = 1

N ∑
N
i=1(ŷ(si;xxx) − y∗(si))2, where {si}N

i=1 are N sample points, y∗(s) is the
target function, and ŷ(s) is the function to fit with the form ŷ(s;xxx) = ∑M

m=1(am cos (λms) +
bm sin (λms))ewms. Here xxx = {am, bm, λm, wm}M

m=1 and the optimization problem is non-convex.
We assume y∗(s) = Ai(ω[s − s0]), where ω = 3.2, s0 = 3.0, and Ai(s) is the Airy function of
the first kind, given by the improper integral Ai(s) = 1

π ∫
∞

0 cos (u3

3 + su)du.
For the specific regression model, we assume M = 4 and use N = 50 data points with

si = i/10, i = 0, . . . , 49. {am, bm, λm}4
m=1 are initialized via N (0, 1) and {wm}4

m=1 are initialized
via Unif(−2,−0.2). Figure 3.3.2 shows the target function and the fitted function obtained
by PGDOT. Also, the learning curves of 5 different algorithms are plotted. We observe that
PGDOT and PAGDOT escape the saddle point faster than GD and outperform PGD and
PAGD, respectively.

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 44

0 1 2 3 4 5
s

−1.0

−0.5

0.0

0.5

1.0

y

y∗(s)

ŷ (s)

Figure 3.3.2: The target function y∗(t) and fitted function ŷ(t) obtained by PGDOT (left),
and the performance of different algorithms (right) in the nonlinear regression problem. In
the figure on the right, the y-axis and x-axis represent the loss and number of iterations,
respectively.

The next two non-convex optimization problems are taken from [143]. In both problems,
all other algorithms escape saddle points faster than GD, with PGDOT and PAGDOT slightly
outperforming their counterparts.

Regularized Quadratic Problem. The first problem is a regularized quadratic problem
[118], in which the loss function is defined as

f1(xxx) =
1
2xxxT Hxxx + 1

N

N

∑
i=1

bbbT
i xxx + ∣∣xxx∣∣10

10,

where we take N = 10, H = diag([1,−0.1]), and bbbi’s instances of N (0, diag([0.1, 0.001])). We
initialize this problem at xxx0 = 0. Different algorithms’ performance are shown in Figure 3.3.3.

Phase Retrieval Problem. The second problem is the phase retrieval problem [21] with
loss function

f2(xxx) =
1
N

N

∑
i=1
((aaaT

i xxx)2 − (aaaT
i xxx∗)2)2,

where we choose N = 200, xxx∗ an instance of N (0, Id/d), and aaai’s instances of N (0, Id) with
d = 10. We initialize the problem at xxx0 sampled from N (0, Id/(10000d)). Figure 3.3.3 presents
the learning curves of different algorithms.

Image Classification Task. [34] observed that in training multilayer perceptrons (MLPs)
on MNIST and CIFAR-10, SGD might get stuck at saddle points. Additionally, [129]
demonstrated that Adam gets stuck and performs poorly when MLPs with certain weight ini-
tialization are trained on the MNIST dataset. In the following, we conduct image classification
task on the MNIST, CIFAR-10, and CIFAR-100 datasets using various deep learning models.

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 45

Figure 3.3.3: The performance of different algorithms in the regularized quadratic problem
(left) and the phase retrieval problem (right). In both figures, the y-axis and x-axis represent
the loss and number of iterations, respectively.

The purpose of these experiments is to deliberately subject the algorithms to saddle points
through specific weight initialization schemes, drawing inspiration from the abovementioned
works.

In each experiment, we compare our newly introduced algorithms with PGD, PAGD, SGD,
Adam, AMSGrad, AdaBlief, and STORM. The batch size is set as 128 for all algorithms
across all experiments. It is worth mentioning that SGD and the adaptive gradient methods
exhibit poor performance across all experiments, leading to nearly identical plots. As a result,
we only present the training curves of SGD and Adam in this section, while the performance
results of AMSGrad, AdaBelief, and STORM can be found in Appendix 3.F.

In the first experiment, we train an MLP with one hidden layer of size 100 on the MNIST
dataset. We use Rectified Linear Unit (ReLu) as the activation function of the neurons in
the hidden layer. The MLP has 3 layers of size (28×28)-100-10 totalling in 79,510 parameters
considering all the weights and biases. We initialize the weights and biases with N (−1, 0.1)
and run the algorithms for 100 epochs. Figure 3.3.4 shows the train and test losses and
accuracy results of different algorithms.

In the second experiment, we train SqueezeNet [64] on the CIFAR-10 dataset. We set the
number of output channels in the last convolutional layer as 10 to account for the 10 different
classes existing in CIFAR-10. In total, the model has 740,554 parameters. The weights and
biases of the convolutional layers are initialized with N (−1, 0.1) and the algorithms are run
for 200 epochs. Figure 3.3.5 shows the train and test losses and accuracy results of different
algorithms.

In the third experiment, we train ResNet18 [57] on the CIFAR-100 dataset. We set the
number of output channels in the last linear layer as 100 to account for the 100 different
classes existing CIFAR-100. In total, the model has 11,227,812 parameters. This time, we
initialize the weights and biases of the batch normalization modules (as denoted by γ and
β in [66]) to 0 and run the algorithms for 50 epochs. Figure 3.3.6 shows the train and test
losses and accuracy results of different algorithms.

From the results obtained, it is evident that both SGD and the adaptive gradient methods

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 46

Figure 3.3.4: Experimental results of training the MLP model on MNIST using various
algorithms. The dashed blue line corresponds to SGD; the dashed orange line corresponds to
Adam; the solid green line corresponds to PGD; the solid red line corresponds to PAGD, the
solid purple line corresponds to PGDOT; and the solid brown line corresponds to PAGDOT.

Figure 3.3.5: Experimental results of training SqueezeNet on CIFAR-10 using various al-
gorithms. The dashed blue line corresponds to SGD; the dashed orange line corresponds
to Adam; the dashed green line corresponds to PGD; the dashed red line corresponds to
PAGD, the solid purple line corresponds to PGDOT; and the solid brown line corresponds to
PAGDOT.

exhibit poor performance across all experiments. Despite the presence of inherent noise in
the mini-batch gradient, these methods fail to navigate away from saddle points effectively.
Conversely, the new algorithms demonstrate the ability to successfully escape saddle points
and achieve significant reductions in loss. Moreover, when comparing the new algorithms with
their counterparts, it becomes apparent that the newly introduced perturbation mechanism
holds a distinct advantage over the uniform perturbation utilized in PGD and PAGD. It is
important to highlight that the observed generalization gap in CIFAR-10 and CIFAR-100
can be mainly attributed to the specific initialization scheme employed.

MFG Example. We consider the problem of solving the Susceptible Infected environment
[32] using the MFOMO algorithm. [50] For details on the terminology used, please refer to

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 47

Figure 3.3.6: Experimental results of training ResNet18 on CIFAR-100 using various algo-
rithms. The dashed blue line corresponds to SGD; the dashed orange line corresponds to
Adam; the solid green line corresponds to PGD; the solid red line corresponds to PAGD, the
solid purple line corresponds to PGDOT; and the solid brown line corresponds to PAGDOT.

appendices 2.A and 2.B in the previous chapter.
In this environment, a large number of agents can choose between social distancing (D)

or going out (U). If a susceptible (S) agent chooses social distancing, they may not become
infected (I). Otherwise, an agent may become infected with a probability proportional to the
number of agents being infected. If infected, an agent will recover with a fixed chance every
time step. Both social distancing and being infected have an associated cost. Let S = {S, I},
A = {U, D}, µ0(I) = 0.6, r(s, a, µt) = −1{I}(s) − 0.5 . 1{D}(a), and T = {0, 1}. The transition
probabilities are given as

P (st+1 = S∣st = I) = 0.3,

P (st+1 = I ∣st = S, at = U) = 0.92µt(I),
P (st+1 = I ∣st = S, at =D) = 0.

Recall that MFOMO reformulates the problem of finding NE solutions as a constrained
optimization problem represented by equation (2.11). While this formulation restricts us
to using constrained optimization algorithms, the simplicity of the constraints allows for
parameterizing the variables. Consequently, an equivalent unconstrained optimization problem
is formed, granting flexibility in selecting the optimizer. Initially, the last two constraints can
be relaxed since they primarily serve to bound the constraints. Subsequently, L and z can be
parameterized as follows:

Ls,a,t =
exp(us,a,t)

∑s′,a′ exp(us′,a′,t)
, zs,a,t = q2

s,a,t,

for some u = [us,a,t]s∈S,a∈A,t∈T and q = [qs,a,t]s∈S,a∈A,t∈T in RSA(T+1). The equivalent uncon-
strained formulation is as follows:

min
u,q,y

∣∣Aσ(u)σ(u) − b∣∣22 + ∣∣AT
σ(u)y + diag(q)q − cσ(u)∣∣22 + qT diag(q)σ(u), (3.4)

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 48

where σ(u)s,a,t = exp(us,a,t)

∑s′,a′ exp(us′,a′,t)
, for s ∈ S, a ∈ A, t ∈ T .

In general, equation (3.4) represents a non-convex optimization problem. As discussed
earlier, the presence of saddle points poses a significant challenge for various optimization
algorithms in non-convex settings. To demonstrate the existence of saddle points in the
Susceptible Infected problem, we examine the objective function of (3.4) in the vicinity of
MFOMO’s initial point—we initialize the elements of u with log(1/4) to ensure a uniform
mean-field L, while setting q and y to zero.

Due to the high dimensionality of the problem (20 dimensions involving u and q in R8

and y in R4), directly visualizing the objective function is not feasible. Instead, we generate a
plot showing the norm of the gradient versus the minimum eigenvalue of the Hessian matrix
at randomly selected points in the vicinity of MFOMO’s initial point. See Figure 3.3.7. The
depicted figure provides evidence supporting the presence of a saddle point near the initial
point. This conclusion is drawn from the observation of multiple instances where the norm
of the gradient is significantly small while the magnitude of the minimum eigenvalue of the
Hessian matrix is comparatively large.

Figure 3.3.7: Scatter plot of gradient norm vs. minimum eigenvalue of Hessian in the vicinity
of MFOMO’s initial point (left) and Training curves of MFOMO equipped with different
optimizers (right) for the Susceptible Infected environment.

Considering the existence of saddle points, it is anticipated that MFOMO equipped with
GD or adaptive gradient methods such as Adam may become trapped and fail to converge to
an NE solution. The training curves of MFOMO with four different optimizers, namely GD,
Adam, PGDOT, and PAGDOT, are illustrated in Figure 3.3.7. It is worth noting that GD
and Adam struggle to escape the saddle point and reduce the exploitability score, while both
PGDOT and PAGDOT successfully do so. GD and Adam are tuned using a grid search,
and their learning rate is set to 0.01 and 0.1, respectively. In PGDOT, learning rate is 0.01,

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 49

gthresh = 0.1, tthresh = 100, tcount = 100, h = 1012, α = 5, and r = 0.01. PAGDOT has similar
parameters with momentum being 0.9.

3.4 Conclusion
In this chapter, we developed a new perturbation mechanism in which the perturbations
are adapted to the history of states via the notion of occupation time. This mechanism is
integrated into the framework of PGD and PAGD resulting in two new algorithms: PGDOT
and PAGDOT. We prove that PGDOT and PAGDOT converge rapidly to second-order
stationary points, which is corroborated by empirical studies ranging from time series analysis
and the phase retrieval problem to deep learning.

50

Appendix

3.A Monotone Convergence of Gradient Descent
Here we prove a property of gradient descent applied to a function f ∶ R→ R, as mentioned
in the introduction. This property of gradient descent supports the use of our proposed
perturbation mechanism.

Proposition 2. Let f ∈ C2(R). Assume that we start gradient descent at some arbitrary point
x0, and the corresponding iterates {xn}n≥0 converge to the point xs with f ′′(xs) ≠ 0. Then,
if f is ℓ-gradient Lipschitz and the step size is less than 1

ℓ , the sequence {xn}n≥0 converges
monotonically to xs.

In order to prove this proposition, we break it down into two lemmas.

Lemma 1. Let f ∈ C2(R). Assume that we start gradient descent at some arbitrary point x0,
and the corresponding iterates {xn}n≥0 converge to the point xs with f ′′(xs) ≠ 0. Then, if f is
ℓ-gradient Lipschitz and the step size is less than 1

ℓ , there exists M > 0 such that the sequence
{xn}n≥M converges monotonically to xs.

Proof. Note that for n ≥ 0, xn+1 = xn − ηf ′(xn), where 0 < η < 1
ℓ is the step size. Also,

it is easy to show that f ′(xs) = 0. Assume that at some point xn ≥ xs. Then, since
∣f ′(xn) − f ′(xs)∣ = ∣f ′(xn)∣ ≤ ℓ∣xn − xs∣, we have

xs ≤ xn −
1
ℓ
∣f ′(xn)∣ ≤ xn − η∣f ′(xn)∣

≤ xn − ηf ′(xn) = xn+1.

Similarly, if xn ≤ xs, then we get xn+1 ≤ xs. This implies that the sequence {xn}n≥0 is entirely
either on the left hand side of xs or on its right hand side (including xs).

Without loss of generality, assume that the entire sequence of iterations lies on the right
hand side of xs. If at some iteration, xm = xs, then since f ′(xs) = 0, xn = xs for n ≥ m,
which yields the desired result. So we can assume that xn ≠ xs for all n ≥ 0. Using a similar
argument, we can also assume that f ′(xn) ≠ 0 for all n ≥ 0. Suppose by contradiction that
there is no such M as described in the lemma. Then there exist infinitely many n such
that xn < xn+1 implying that for infinitely many n, f ′(xn) < 0. Since lim

n→∞
xn = xs and the

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 51

entire sequence is on the right hands side of xs, we also have infinitely many n such that
f ′(xn) > 0. Combining these results, one can construct a strictly decreasing sub-sequence
{yn}n≥0 of the iterations such that lim

n→∞
yn = xs, f ′(y2m) > 0, and f ′(y2m+1) < 0 for all m ≥ 0.

Since f ′ is continuous, there exists y2m+1 < zm < y2m such that f ′(zm) = 0, for each m ≥ 0. It
is easy to see that {zn}n≥0 is also strictly decreasing and lim

n→∞
zn = xs. Note that since f ′′ is

continuous, by the mean value theorem, one can find a sequence {tn}n≥0 such that for each
n ≥ 0, zn+1 < tn < zn and f ′′(tn) = 0. Since {zn}n≥0 converges to xs, then so does {tn}n≥0. But
this implies that f ′′(xs) = lim

n→∞
f ′′(tn) = 0 contradicting with the fact that f ′′(xs) ≠ 0.

Lemma 2. Given the setting in Lemma 1, {xn}n≥0 converges monotonically to xs.

Proof. Without loss of generality, assume that x0 ≥ xs, then using what we obtained during
the proof of Lemma 1, we know that the entire sequence {xn}n≥0 lies on the right hand side
of xs ((including xs). Let M be the minimum index that satisfies the condition in Lemma
1. Suppose by contradiction that M > 0. So xs < xM−1 < xM , which implies f ′(xM−1) < 0
considering xM = xM−1 − ηf ′(xM−1). Since the sequence converges to xs, there should be a
k ≥ 0 such that xM+k+1 < xM−1 < xM+k. Note that xM+k+1 = xM+k − ηf ′(xM+k), so

ηf ′(xM+k) = xM+k − xM+k+1 > xM+k − xM−1.

Since f ′(xM−1) < 0, we have η(f ′(xM+k) − f ′(xM−1)) > ηf ′(xM+k) > xM+k − xM−1. This
contradicts the fact that η(f ′(xM+k) − f ′(xM−1)) ≤ ηℓ(xM+k − xM−1) < xM+k − xM−1.

3.B Background on Convex Optimization
We provide some context of gradient descent applied to convex functions.

Definition 5.

1. A differentiable function f ∶ Rd → R is ℓ-gradient Lipschitz if ∣∣∇f(xxx1) − ∇f(xxx2)∣∣ ≤
ℓ∣∣xxx1 −xxx2∣∣ for all xxx1,xxx2 ∈ Rd.

2. A twice differentiable function f ∶ Rd → R is α-strongly convex if λmin(∇2f(xxx)) ≥ α for
all xxx ∈ Rd.

The gradient Lipschitz condition controls the amount of decay in each iteration, and the
strong convexity condition guarantees that the unique stationary point is the global minimum.
The ratio ℓ/α is often called the condition number of the function f . The following theorem
shows the linear convergence of gradient descent to the global minimum xxx⋆, see [18][Theorem
3.10] and [104][Theorem 2.1.15].

Theorem 7. [18, 104] Assume that f ∶ Rd → R is ℓ-gradient Lipschitz and α-strongly convex.
For any ϵ > 0, if we run gradient descent with step size η = ℓ−1, then the number of iterations
to be ϵ-close to xxx⋆ is 2ℓ

α log (∣∣xxx0−xxx⋆∣∣
ϵ) .

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 52

3.C Proof of Theorem 4
Suppose by contradiction that with positive probability, the walk is localized at some points
{k, . . . , ℓ}. We focus on the left end k. Let τ k

n be the time at which the point k is visited n
times. For n sufficiently large, the point k + 1 is visited approximately at least n times by
τ k

n . So at time τ k
n , the walk moves from k to k + 1 with probability bounded from above by

C/w(n) for some constant C > 0. Consequently, the probability that the walk is localized at
{k, . . . , ℓ} is less than ∏n>0

C
w(n) . By standard analysis, ∏n>0

C
w(n) = 0 if w(n)→∞ as n→∞.

This leads to the desired result.

3.D Proof of Theorem 5
We show how the thin-pancake property of saddle points is used to prove Theorem 5. Recall
that an ϵ-second-order stationary point is a point with a small gradient, and where the Hessian
does not have a large negative eigenvalue. Let us put down the basic idea in Section 3.1 with
the parameters in Algorithm 3 (PGDOT). If we are currently at an iterate xxxt which is not an ϵ-
second-order stationary point, there are two cases: (1) The gradient is large: ∣∣∇f(xtxtxt)∣∣ ≥ gthres;
(2) xxxt is close to a saddle point: ∣∣∇f(xtxtxt)∣∣ ≤ gthres and λmin(∇2f(xtxtxt)) ≤ −

√
ρϵ. The case (1)

is easy to deal with by the following elementary lemma.

Lemma 3. Assume that f ∶ Rd → R is ℓ-gradient Lipschitz. Then for GD with step size
η < ℓ−1, we have f(xxxt+1) − f(xxxt) ≤ −η

2 ∣∣∇f(xxxt)∣∣2.

The case (2) is more subtle, and the following lemma gives the decay of the function
value after a random perturbation described in Algorithm 3 (PGDOT).

Lemma 4. Assume that f ∶ Rd → R is ℓ-gradient Lipschitz and ρ-Hessian Lipschitz. If
∣∣∇f(xtxtxt)∣∣ ≤ gthres and λmin(∇2f(xtxtxt)) ≤ −

√
ρϵ, then adding one perturbation step as in Algo-

rithm 3 followed by tthres steps of GD with step size η, we have f(xxxt+tthres) − f(xxxt) ≤ −fthres

with probability at least 1 − dℓ
√

ρϵe
−χ.

[70] proved Lemma 4 for PGD, and used it together with Lemma 3 to prove Theorem 2.
We will use the same argument, with Lemmas 3 and 4, leading to Theorem 5 for PGDOT.

Now, let us explain how to prove Lemma 4 via a purely geometric property of saddle points.
Consider a point x̃xx satisfying the condition ∣∣∇f(x̃xx)∣∣ ≤ gthres and λmin(∇2f(x̃xx)) ≤ −√ρϵ. After
adding the perturbation in Algorithm 3, the resulting vector can be viewed as a distribution
over the cube C(d)(x̃xx, r/

√
d). Similar as in [70], we call C(d)(x̃xx, r/

√
d) the perturbation

cube which is divided into two regions: (1) escape region χescape which consists of all points
xxx ∈ C(d)(x̃xx, r/

√
d) whose function value decreases by at least fthres after tthres steps; (2) stuck

region χstuck which is the complement of χescape in C(d)(x̃xx, r/
√

d). The key idea is that the
stuck region χstuck looks like a non-flat thin pancake, which has a very small volume compared
to that of C(d)(x̃xx, r/

√
d). This claim can be formalized by the following lemma, which is a

direct corollary of [70][Lemma 11] as C(d)(x̃xx, r/
√

d) ⊆ Bd(x̃xx, r):

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 53

Lemma 5. Assume that x̃xx satisfies ∣∣∇f(x̃xx)∣∣ ≤ gthres and λmin(∇2f(x̃xx)) ≤ −√ρϵ. Let eee1 be the
smallest eigendirction of ∇2f(x̃xx). For any δ < 1/3 and any uuu,vvv ∈ C(d)(x̃xx, r/

√
d), if uuu−vvv = µreee1

and µ ≥ δ/(2
√

d), then at least one of uuu and vvv is not in the stuck region χstuck.

To prove Lemma 4, it suffices to check that P(χstuck) ≤ Cδ for some C > 0. This criterion
is general for any (random) perturbation. Let O1, . . . ,O2d be the orthants centered at x̃xx; that
is, the space Rd is divided into 2d subspaces according to the coordinate signs of ⋅ − x̃xx. The
symbol sgn(Oi) ∈ {−1, 1}d denotes the coordinate signs of yyy − x̃xx for any yyy ∈ Oi. For 1 ≤ i ≤ 2d,
let

pi = ∏
sgn(Oi)k=−1

w(Rk
t)

w(Lk
t) +w(Rk

t)
∏

sgn(Oi)k=1

w(Lk
t)

w(Lk
t) +w(Rk

t)

be the probability that the random perturbation drives x̃xx into C(d)(x̃xx, r/
√

d) ∩Oi. Conse-

quently, P(χstuck) =
2d

∑
i=1

pi
Vol(χstuck∩Oi)

Vol(C(d)(x̃xx,r/
√

d)∩Oi)
, where Vol(⋅) denotes the volume of a domain. It

is easy to see that Vol(C(d)(x̃xx, r/
√

d) ∩Oi) = (r/
√

d)d. By Lemma 5 and the slicing volume
bound [6], Vol(χstuck ∩Oi) ≤

√
2(r/
√

d)d−1 δr√
d
. Therefore, Vol(χstuck∩Oi)

Vol(C(d)(x̃xx,r/
√

d)∩Oi)
≤
√

2δ implying
that P(χstuck) ≤

√
2δ.

Note that this proof does not rely on the full history of states for Lt and Rt. Thus, one can
restrict the number of previous iterations as is done in Section 3.3 using the hyperparameter
tcount.

3.E Hyperparameter Settings in the Numerical
Examples

To ensure a fair comparison between algorithms in the small-scale problems, we opted to
select a consistent set of hyperparameters. Specifically, we employed the same learning rate
as GD for all other algorithms. Additionally, we set the common hyperparameters between
the new algorithms and their counterparts to be equal. Table 3.E.1 provides an overview of
the hyperparameters utilized in the small-scale problems.

For the image classification tasks (the large-scale problems), we do a grid search and report
the best hyperparameters for SGD and the adaptive gradient methods. For SGD, Adam,
AMSGrad, and AdaBelief, the only hyperparameter is the learning rate. For STORM, we tune
both k and c while setting w = 0.1. Table 3.E.2 provides an overview of the hyperparameters
utilized by SGD and the adaptive gradient methods in the image classification tasks. It is
important to note that the significant disparity observed in the learning rates employed by
various algorithms in the second image classification task stems from the fact that regardless
of the learning rate value, none of the algorithms manage to escape the saddle points, leading
to no improvement in the training loss.

To ensure fair comparison between PGDOT and PAGDOT and their counterparts, we
select a consistent set of hyperparameters for them. The only difference is in the perturbation

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 54

Table 3.E.1: Hyperparameters utilized in the small-scale problems.

d h tcount η tthres gthres r momentum steps
Stair function 4 0.04 200 0.1 10 0.01 0.04 0.5 2000
Nonlinear regression 16 0.04 200 0.1 50 0.1 0.1 0.5 14000
Regularized quadratic 2 1 200 0.01 50 0.01 0.01 0.5 3000
Phase retrieval 10 1 200 0.001 50 1 0.01 0.5 1200

Table 3.E.2: Hyperparameters utilized by SGD and the adaptive gradient methods in the
image classification tasks.

SGD Adam AMSGrad AdaBelief STORM
MLP on MNIST lr: 0.01 lr: 0.001 lr: 0.001 lr: 0.001 k: 0.01, c: 100
SqueezeNet on CIFAR-10 lr: 1.0 lr: 0.0001 lr: 1.0 lr: 0.1 k: 0.01, c: 10
ResNet18 on CIFAR-100 lr: 0.1 lr: 0.001 lr: 0.001 lr: 0.001 k: 0.1, c: 100

norm r. Note that norm of the actual perturbation applied in PGDOT and PAGDOT is
r/
√

d. Since d is a large number in the large-scale problems, r/
√

d would be significantly
different than r. Therefore, we adjust the perturbation norm in PGD and PAGD accordingly.
Additionally, in all the image classification tasks, we set tcount = 100 and h = 1012. Table
3.E.3 provides an overview of the hyperparameters utilized by PGD, PAGD, PGDOT, and
PAGDOT.

Table 3.E.3: Hyperparameters utilized by PGD, PAGD, PGDOT, and PAGDOT in the image
classification tasks.

η tthres gthres rPGD/PAGD rPGDOT/PAGDOT momentum
MLP on MNIST 0.01 10 0.1 1√

79,510 1 0.9
SqueezeNet on CIFAR-10 0.001 10 1 10√

740,554 10 0.1
ResNet18 on CIFAR-100 0.01 200 1 1√

11,227,812 1 0.9

We also remark that the weight function in Algorithms 3 and 4 is set as w(k) = 1 + k5 for

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 55

all the small-scale and large-scale problems.

3.F Image Classification Task Results of Adaptive
Gradient Methods

Here, we present the training outcomes of AMSGrad, AdaBelief, and STORM, in addition to
Adam, across the three distinct image classification tasks. It is worth noting that as Adam
exhibited unsatisfactory performance in all experiments, any training curves that closely
resemble or are identical to Adam’s indicate poor performance for the other algorithms as
well.

Figure 3.F.1: Experimental results of training the MLP model on MNIST using several
adaptive gradient methods. The dashed blue line corresponds to Adam; the dashed orange
line corresponds to AMSGrad; the dotted green line corresponds to AdaBelief; and the dotted
red line corresponds to STORM.

Figure 3.F.2: Experimental results of training SqueezeNet on CIFAR-10 using several adaptive
gradient methods. The dashed blue line corresponds to Adam; the dashed orange line
corresponds to AMSGrad; the dashed green line corresponds to AdaBelief; and the dashed
red line corresponds to STORM.

CHAPTER 3. ESCAPING SADDLE POINTS EFFICIENTLY WITH
OCCUPATION-TIME-ADAPTED PERTURBATIONS 56

Figure 3.F.3: Experimental results of training ResNet18 on CIFAR-100 using several adaptive
gradient methods. The dotted blue line corresponds to Adam; the dotted orange line
corresponds to AMSGrad; the dotted green line corresponds to AdaBelief; and the dotted
red line corresponds to STORM.

57

Chapter 4

Leveraging Stacked Generalization to
Effectively Detect Overutilization in
Medicare

It is estimated that over $100 billion is lost each year in the United States due to healthcare
fraud and abuse accounting for 3-10% of all healthcare expenditures.[102, 137] One major
target for overutilization and fraud is Medicare, for which utilization data is publicly available.
Over 63 million Americans are currently enrolled in Medicare and the total cost of the program
in 2021 was $900.8 billion, accounting for 21% of total national healthcare expenditures.[94]
Given a rapidly aging American population, 75 million Americans will be enrolled in Medicare
by 2027, and Medicare spending is projected to jump to nearly $1.6 trillion by 2028.[63, 78]
Despite the increase in federal healthcare spending over past decades, patients are increasingly
being forced to shoulder more of the financial burden. Between 2002 and 2022, Medicare Part
B deductibles have risen 133% and monthly premiums have risen 215%.[31, 93] Yet, even
with increased spending from both the federal government and patients, the Medicare trust
fund is expected to become insolvent in the near future.[41] The substantial financial losses
from fraud and abuse call for new methods of fraud detection, involving both physicians and
data scientists.

A small fraction of medical providers are known to have engaged in various forms of
overutilization or fraud to exploit the Medicare system. One prevalent form is phantom
billing, where unnecessary procedures are performed and billed to Medicare. Another form is
upcoding, where providers bill for higher reimbursing procedures while actually performing
lower-reimbursing ones. Additionally, cloned documentation occurs when providers copy
information from previous patient records or even from different patients, leading to false or
inaccurate billing. These practices not only waste healthcare resources but also compromise
patient care and can put lives at risk with unnecessary procedures. Currently, there is no
reliable method to detect overutilization or fraud in healthcare whereas financial systems (i.e.,
banking, stock markets, etc.) have far more sophisticated methods for early detection and
prevention. Fraud detection within healthcare is primarily done through a manual effort by

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 58

auditors and investigators searching through billing records in a time-consuming and often
imprecise manner. It is often dependent on whistleblowers or insiders to report employers,
and therefore the vast majority of overutilization and fraud goes undetected. In 2019, only
$2.6 billion of fraudulent claims were recovered by the United States Department of Justice.
[74] Given the lack of domain expertise and the subtlety of Medicare abuse by healthcare
providers, it can be difficult for auditors to determine what test or procedure is medically
necessary in a particular office population.

Detection of fraud using machine learning (ML) has gained significant attention in recent
years due to its potential for improving the efficiency and effectiveness of fraud identification
and prevention. Since the Centers for Medicare and Medicaid Services (CMS) released public
data files in 2014, numerous studies have explored the application of various ML techniques
in Medicare fraud detection. For instance, Bauder and Khoshgoftaar [11] conducted a
comparative study with supervised, unsupervised, and hybrid ML approaches. They found
that the supervised methods tend to perform better than unsupervised or hybrid methods,
but the results could vary depending on the class imbalance sampling technique and provider
type. Herland et al. [58] focused on the detection of Medicare fraud using various CMS public
datasets. They provided detailed discussions on Medicare data processing and exploratory
analyses in order to show the best learners and datasets for the detection of fraudulent claims.
Several studies had a narrower focus on the performance and applications of supervised ML
algorithms such as gradient boosted decision trees (Hancock and Khoshgoftaar [56]), CatBoost
(Hancock and Khoshgoftaar [54]), bagging (Yao et al. [149]), and deep learning (Johnson and
Khoshgoftaar [73]; Mayaki and Riveill [92]) in identifying Medicare fraud. Additionally, there
have been works that deployed unsupervised approaches to identify fraudulent outliers and
Medicare anomaly. (Bauder and Khoshgoftaar [10]; Branting et al. [16]; Bauder et al. [9];
Sadiq and Shyu [121])

While ML techniques have shown promise in detecting Medicare fraud, there are several
issues that can limit their effectiveness. A common issue with many studies is the heavy
reliance on the List of Excluded Individuals and Entities (LEIE) [65] for model training
and evaluation. LEIE is a database compiled by the Office of the Inspector General that
reports individuals and entities that have been excluded from receiving federally-funded
healthcare programs due to fraud. A significant hurdle in using known fraud labels from the
LEIE dataset is the issue of class imbalance with a fraud rate between 0.038% and 0.074%.
Data-level techniques such as random sampling and varying class distribution are shown to
help mitigate the issue of class imbalance. (Brauder and Khoshgoftar [8, 12]; Johnson and
Khoshgoftaar [73]; Hancock et al. [55]) Another notable problem associated with using the
LEIE dataset is that many of the providers listed in LEIE were prosecuted due to overt and
deliberate fraudulent billing—their convictions were a diverse array of felonies such as billing
under the National Provider Identifier (NPI) of another doctor, etc. The vast majority of
healthcare abuse is attributed to overutilization. The subtle variations in billing patterns,
which may show higher utilization of certain procedures and services than medically necessary
is often undetectable by the non-physician. Using LEIE providers and their Medicare billing
data as a training set may develop a model that can detect brazen, outlandish billing patterns,

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 59

but would be unable to pinpoint instances of more subtle fraud from which a majority of the
financial loss and waste occurs.

Another common issue observed in many Medicare fraud detection studies is the tendency
to focus on aggregate information such as the total number of procedures performed, total
Medicare reimbursement amount, etc. to detect fraudulent activity. (Herland et al. [58];
Yao et al. [149]; Mayaki and Riveill [92]) While these aggregate features can provide a
high-level overview, they may overlook crucial details about the specific procedures and
services performed by the providers. By neglecting the granular information associated
with each individual procedure, the model may miss out on identifying specific patterns or
anomalies that could be indicative of fraudulent behavior. It is worth mentioning that one
approach used to get around the data aggregation challenge is to assign overutilization labels
to provider-procedure pairs instead of just the providers. This approach reflects the fact
that fraudulent providers do not necessarily engage in fraudulent activities for every single
procedure they perform. Bauder and Khoshgoftaar [8], Johnson and Khoshgoftaar [72], and
Hancock and Khoshgoftaar [54] use the LEIE dataset to label the provider-procedure pairs.
The issue with using the LEIE dataset is that it does not contain data on which procedures
the provider submitted fraudulent claims for, and therefore all the provider-procedure pairs
for the providers listed on the LEIE dataset should be labeled as fraud. This clearly could
result in incorrect labels and introducing noise and bias into the training data, which in turn
could significantly compromise the performance of the ML models.

In this chapter, our primary goals are twofold. First, we aim to address the limitations of
the LEIE dataset by incorporating the experience of seasoned physicians and medical billers
to create a labeled dataset that overcomes the issues of class imbalance and the exclusive
focus on overtly fraudulent providers. Unlike previous approaches our methodology involves
capturing the nuances and intricacies of fraudulent behavior by incorporating the specific
details of each procedure and service. By focusing our efforts on the field of ophthalmology,
we leverage our access to domain knowledge and concentrate on the unique characteristics
and specific Healthcare Common Procedure Coding System (HCPCS) codes relevant to this
medical specialty. This targeted approach enables us to build a specialized dataset that
reflects the intricacies and complexities of Medicare overutilization within ophthalmology.

Second, we conduct a comparative study of various machine learning models for the task
of predicting Medicare overutilization within ophthalmology. To this end, we compare the
performance of several supervised ML models including k-nearest neighbor, logistic regression,
support vector machines, extreme gradient boosting, multilayer perceptron, as well as an
ensemble model based on the Stacked Generalization (stacking) method [145] on the newly
created dataset. The comparative study not only enables us to identify the best-performing
model but also aims to demonstrate the effectiveness of stacking ensemble model in surpassing
individual models in Medicare overutilization detection. Once the best-performing model
is determined, we extend our analysis beyond model performance to estimate essential
overutilization statistics within the field of ophthalmology. These statistics include the overall
overutilization and fraud rate within the specialty and the financial losses incurred as a result
of these activities.

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 60

4.1 Data Source, Preprocessing, and Labeling

Data Source
The unprocessed data, without labels, is sourced from the CMS website [95], which currently
encompasses data for 2013 to 2021 calendar years. Our analysis mainly relies on the Medicare
Provider Utilization and Payment Data (MPUPD). [124] MPUPD comprises publicly available
data files summarizing the information on services and procedures provided to Medicare
beneficiaries by physicians and other healthcare professionals. Within MPUPD, we utilize
two specific data files:

• Medicare Physician and Other Practitioners - by Provider and Service [126]: This
data, referred to as MPOP_PS, provides detailed information on use, payments, and
submitted charges organized by NPI, HCPCS code, and place of service.

• Medicare Physician and Other Practitioners - by Provider [125]: This data, referred to
as MPOP_P, provides summary information on use, payments, submitted charges, and
beneficiary demographic and health characteristics organized by NPI.

Note that both MPOP_PS and MPOP_P comprise individual datasets corresponding to
each calendar year from 2013 to 2021. It is also worth mentioning that the data extraction
process is specifically tailored to ophthalmologists, as our study focuses exclusively on this
medical specialty. Table 4.1.1 summarizes the number of ophthalmology records found in
MPOP_PS and MPOP_P in different calendar years. Appendix A provides further details
on the data source.

Table 4.1.1: Number of ophthalmology records

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021

MPOP_PS 237,630 238,242 240,279 242,748 240,830 239,707 239,906 219,717 230,653

MPOP_P 17,550 17,664 17,698 17,788 17,817 17,804 17,856 17,631 17,489

Data Preprocessing
In our study, specific data preprocessing steps are taken to transform MPOP_PS and
MPOP_P into a structured feature representation that captures the details of procedures and
services for each provider in a given calendar year. The flowchart in Figure 4.1.1 illustrates
a concise representation of the various stages involved in the data preprocessing step. In
particular,

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 61

• Pivoting MPOP_PS: We pivot the records based on the providers’ NPI to create a
feature vector for each provider. This way, for each provider, we have a unique record
detailing the procedures and services they have performed.

• Feature extraction from MPOP_PS: In order to ensure a unified feature representation
across all providers, we adopt a standardized set of 513 HCPCS codes pertaining to
ophthalmology. For each HCPCS code, we extract two essential billing statistics from
the pivoted MPOP_PS—the number of services (NoS) and the number of Medicare
beneficiaries (NoMB). This results in a feature set of size 1026 for each provider. More
details on the HCPCS codes used can be found in Appendix B.

• Feature extraction from MPOP_P: We extract only 3 features for each provider from
the MPOP_P data—total count of Medicare beneficiaries served by each provider
(TotPatient), total payment made by Medicare to each provider (TotPayment), and the
total payment made by Medicare to each provider for drug services (DrugPayment).

• Feature transformation: To enhance the informativeness of the features, we introduce
two new features per HCPCS code—the ratio of NoS to NoMB and the ratio of NoMB
to TotPatient. Additionaly, we introduce two supplementary features to further enrich
the feature set—the ratio of TotPayment to TotPatient and the ratio of DrugPayment
to TotPayment.

By combining the transformed features, we obtain a feature set of size 1028 for each
provider.

Figure 4.1.1: Data preprocessing flowchart. The presented flowchart outlines the sequential
steps undertaken in the data preprocessing phase, specifically focusing on obtaining the
feature set for a particular provider using their billing information from the year 2015.

Dataset Labeling
Through collaboration with experienced physicians with a minimum of 10 years in practice
and seasoned medical billers, we curated a labeled dataset consisting of 663 ophthalmologists

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 62

based on their 2015 Medicare billing data. The assigned labels are either “non-fraudulent"
or “overutilizer". The labeling process was conducted with the assumption that Medicare
restrictions are consistent nationwide, ensuring equal opportunities for providers across the
country to engage in overutilization activities. Each provider in the dataset was labeled by no
less than 3 individuals to ensure consistency and accuracy. When there was any disagreement,
an experienced fourth member of the team served as a tiebreaker to discuss and obtain
consensus among the four. To ensure accuracy of labeling, further validation was made by a
survey and test administered to practicing ophthalmologists. Baseline characteristics of the
labeled providers can be found in Table 4.1.2. The labeling process is detailed in Appendix
C.

Table 4.1.2: Characteristics of labeled providers

Characteristic Overutilizer Non-fraudulent
Number 200 463
Location

California 185 269
New York 38 171

Average number of patients 733.8 760.7
Average number of services 6904.3 4144.2
Average Medicare payment per patient ($) 917.6 520.8

Preliminary statistical analysis. An initial examination of the generated features for the
labeled providers highlights the significant sparsity (a large number of zero features) present
in the feature set. Each provider is associated with 1028 features, out of which 1026 features
are derived from 513 distinct HCPCS codes (2 features per code). However, not all the
HCPCS codes are utilized by every provider, and on average, ophthalmologists bill for fewer
than 50 HCPCS codes annually. For example, in 2015, ophthalmologists in California billed
an average of just 33 HCPCS codes. Figure 4.1.2 illustrates the sparsity pattern observed
in the features associated with the providers in the labeled dataset. The observed sparsity
necessitates the use of special techniques during the training process.

4.2 Overutilization Analysis via Machine Learning
Techniques

Providers’ billing behaviors, both the normal or the abnormal ones, can evolve over time
due to various factors such as the introduction of new procedures, shifts in the medically

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 63

Figure 4.1.2: Sparsity map of the features associated with the providers in the labeled dataset.
The plot shows the sparsity pattern of the feature space, indicating the utilization of HCPCS
codes by labeled providers. Each cell represents the presence (non-zero value) or absence
(zero value) of a specific HCPCS code for a provider.

necessary requirements of their patients, or efforts to avoid detection by auditors through
normalized billing practices. To account for this dynamic nature, we employ models that aim
to classify providers as either overutilizer (positive) or non-fraudulent (negative) based on
their billing information within a specific calendar year. By focusing on yearly billing data,
we can capture the evolving patterns and behaviors of providers, allowing for more accurate
and timely detection of abnormal billing practice.

ML models. In our analysis, we experiment with a diverse set of both linear and nonlinear
predictive models including K-nearest neighbor (KNN), logistic regression (LR), support
vector machines (SVM), extreme gradient boosting (XGB), and multilayer perceptron (MLP).
To improve the model performance, we also explore an ensemble technique called stacked
generalization (stacking) [145] to develop an ensemble model by combining the predictions of
the five aforementioned ML models. The diverse capabilities of the individual models are
shown to provide improved predictive accuracy. More details on the deployed ML models are
provided in Appendix D.

Performance evaluation. To ensure an unbiased evaluation of the models’ performance,
a repeated nested cross-validation (nested CV) approach is employed. See Appendix E for
detailed technical description. The models’ performance was evaluated using two metrics.
The primary measure of performance is the area under the receiver operating characteristic
curve (AUROC score), which quantifies the models’ ability to discriminate between positive
and negative instances across different classification thresholds. Additionally, we report the

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 64

Brier score assessing the models’ confidence by evaluating the accuracy of their probabilistic
predictions.

We also plot receiver operating characteristic (ROC) curves, which provide a graphical
representation of the models’ discrimination ability across different classification thresholds.
These curves allow us to compare the models’ performance in terms of true positive rate and
false positive rate. Furthermore, we generate calibration plots to assess the calibration of
the models. Calibration plots illustrate the agreement between the predicted probabilities of
the models and the observed frequencies of the target variable. By visually examining the
calibration plots, we can determine the models’ reliability and assess if they are underconfident
or overconfident in their predictions.

Results
Model performance. The results of the model performance are presented in Table 4.2.1,
which provides an overview of the mean performance scores along with their corresponding 95%
confidence intervals (CIs) obtained through the repeated nested CV procedure. Additionally,
Figure 4.2.1a displays the average ROC curves, showcasing the discriminative ability of each
model.

It is evident that all models exhibit a certain albeit varying level of discriminative power,
as their mean AUROC scores surpassed that of a completely random classifier (AUROC
score of 0.50). Among the models, the KNN model demonstrated the lowest discrimination
with an AUROC score of 0.740 (95% CI: 0.716-0.765), indicating its limitations in accurately
distinguishing between overutilizer and non-fraudulent instances. Meanwhile, the LR, SVM,
and MLP models exhibited almost similar performance across all evaluation metrics, with
strong discriminatory capabilities, achieving AUROC scores higher than 0.85. The XGB model
displayed even better discriminative power, with an AUROC score of 0.898 (95% CI: 0.887-
0.909). However, the higher AUROC score was accompanied by lower predictive accuracy,
as indicated by the Brier score. In contrast, the stacking ensemble model demonstrated the
strongest discriminative power, with an AUROC score of 0.907 (95% CI: 0.896-0.918), and
the highest predictive accuracy and confidence.

The calibration plots in Figure 4.2.1b illustrate the consistency between the observed and
predicted probabilities of overutilization for the XGB and stacking ensemble models. See
Appendix F for the rest of the models’ calibration plots. Although the XGB model and the
stacking ensemble model exhibit almost similar discriminative power (in terms of the AUROC
score), a comparison of their calibration plots revealed a notable difference. The XGB model
demonstrates lower consistency in its overutilization detection compared to the stacking
ensemble model. Specifically, the XGB model is overconfident in its prediction, underesti-
mating overutilization when the predicted probabilities are below 0.5 and overestimating
overutilization when the predicted probabilities exceed 0.5.

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 65

Table 4.2.1: Performance measures for various ML models

Model AUROC score (95% CI) Brier score (95% CI)
KNN 0.740 (0.716-0.765) 0.182 (0.175-0.189)
LR 0.865 (0.854-0.876) 0.132 (0.127-0.138)
SVM 0.867 (0.855-0.879) 0.130 (0.123-0.137)
MLP 0.871 (0.857-0.885) 0.134 (0.125-0.143)
XGB 0.898 (0.887-0.909) 0.152 (0.136-0.168)
Stacking 0.907 (0.896-0.918) 0.109 (0.102-0.117)

Predicting Overutilization Statistics
Based on the model performance results, the stacking ensemble model is chosen and then
trained on the entire labeled dataset to predict the labels for all ophthalmologists across
the United States based on their Medicare billing data from 2021. Consequently, various
overutilization statistics, including the Medicare overutilization rate and the monetary losses
attributed to Medicare overutilization within the field of ophthalmology are obtained. We
first conduct these calculations across the entire nation, and then within individual Medicare
jurisdictions. Furthermore, we present a heatmap depicting the predicted overutilization
rates across different states in the United States.

Nationwide overutilization rate. Among the 17,013 ophthalmologists enrolled in Medi-
care in 2021, our analysis predicts that 1,457 of them are likely to engage in overutilization
activities, resulting in a predicted overutilization rate of approximately 8.6%.

Nationwide monetary loss. We compute the average Medicare payment per patient
(MPPP) for both the predicted overutilizer and non-fraudulent providers. The 1,457 overuti-
lizer ophthalmologists (mean=$908.0, std=$1021.2) compared to 15,556 non-fraudulent
ophthalmologists (mean=$542.0, std=$841.3) had significantly higher MPPP (t(17011)=13.3,
p << 0.01). The t-test is conducted using Scipy v1.8.1 [141]. This suggests that the overutilizer
ophthalmologists tend to receive higher Medicare payments per patient compared to their
non-fraudulent counterparts. Additionally, these overutilizer providers had a combined patient
count of 932,520 and the total Medicare payment to them amounted to $942.5 million. To
put these numbers into perspective, if all the overutilizer physicians had similar MPPP to the
average non-fraudulent physician ($542.0), their total Medicare payment would have been
$505.4 million (932, 520× 542.0). This indicates that there is a potential loss of $437.1 million
due to overutilization activities for just one year and just the field of ophthalmology.

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 66

(a) ROC curves (b) Calibration plots

Figure 4.2.1: ROC curves and calibration plots. Corresponding values of the area under
the curve (AUROC score) for each are presented in Table 4.2.1. KNN (blue line) indicates
k-nearest neighbor; LR (orange line), logistic regression; SVM (greed line), support vector
machines; MLP (red line), multilayer perceptron; XGB (purple line), extreme gradient
boosting; and Stacking (brown line), stacking ensemble.

We further provide a breakdown of the calculated statistics across different Medicare
jurisdictions and states. Table 4.2.2 provides an overview of the 12 Medicare jurisdictions,
including the states and territories they cover. The calculated statistics within each Medicare
jurisdiction are shown in Figures 4.2.2 and 4.2.3. Figure 4.2.4 depicts the heat map of
overutilization rates across different states in the US. More details on the Medicare jurisdictions’
overutilization statistics are provided in Appendix G.

We remark that the significant variation in MPPP, as indicated by the high standard
deviation calculated earlier, is primarily attributed to the inclusion of drug payments. If we
exclude drug payments from the total payments, we anticipate that the average payment per
patient for non-drug services among overutilizer providers will still be considerably higher
than that of non-fraudulent providers. See Appendix G for a comparison.

It is also worth mentioning that in order to obtain precise labels for overutilization
detection, we employed a specific probability threshold to convert the predicted probabilities
into suspected overutilizer versus non-fraudulent labels. In order to strike a balance between
precision and sensitivity (recall), we select a probability threshold of 0.353. With this
threshold, the stacking ensemble model achieves an accuracy of 0.850 (95% CI: 0.836-0.862),

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 67

Table 4.2.2: Medicare jurisdictions and coverage areas

Jurisdiction States and territories Number of ophthalmologists in 2021
JE CA, NV, HI, AS, GU, MP 2149
JF WA, OR, ID, MT, WY, ND, SD, UT,

AZ, AK
1243

JH CO, NM, TX, OK, AR, MS, LA 2143
JL PA, MD, DE, NJ, DC 1855
J5 NE, KS, IA, MO 662
J8 MI, IN 825
JJ TN, AL, GA 926
JM WV, VA, NC, SC 1264
JK NY, VT, MA, CT, RI, NH, ME 2502
J6 MN, WI, IL 1248
J15 OH, KY 779
JN FL, PR, VI 1417

a specificity of 0.886 (95% CI: 0.867-0.903), a precision of 0.750 (95% CI: 0.720-0.779), and
a sensitivity of 0.763 (95% CI: 0.733-0.793). More information on selecting the probability
threshold is provided in Appendix H.

Feature Importance Analysis
Feature importance analysis is a valuable technique in ML that enables understanding the
relative importance of different features in making predictions. By assessing the impact of
features on the stacking ensemble model’s output, we can gain insights into which factors
play a significant role in influencing the model’s decisions in the detection of overutilization.
One popular approach to feature importance analysis is using SHAP (SHapley Additive
exPlanations).[91] SHAP quantifies the contribution of each feature in the prediction process.
We utilize the Python package SHAP v0.41.0 [91] in our study.

Figure 4.2.5 shows the SHAP summary plot to visualize the feature importance values
obtained from the stacking ensemble model analysis. In this plot, the features are listed along
the y-axis of the plot, with the most important features at the top. Secondly, each feature
is represented by a horizontal bar in the plot depicting the corresponding SHAP values. A
positive SHAP value means positive impact on prediction (in our case, overutilization/fraud
prediction), whereas a negative SHAP value corresponds to a negative impact. A higher
positive value indicates a higher positive impact, and a lower negative value indicates a
higher negative impact. Lastly, the color gradient within each bar represents the value of the

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 68

Figure 4.2.2: Predicted Overutilization Rates within Medicare Jurisdictions in 2021. The
figure displays the overutilization rates, sorted in descending order, for each Medicare
jurisdiction. The leftmost jurisdiction represents the highest overutilization rate, while the
rightmost jurisdiction indicates the lowest fraud rate. The data provides insights into the
distribution of predicted overutilization across different jurisdictions.

Figure 4.2.3: Monetary Losses on Medicare overutilization within Medicare Jurisdictions
in 2021. The figure illustrates the amount of money lost due to overutilization, sorted in
descending order, for each Medicare jurisdiction. The leftmost jurisdiction represents the
highest monetary losses, while the rightmost jurisdiction indicates the lowest losses. The
losses are calculated in the same way nationwide loss is calculated.

corresponding feature.
The first feature displayed at the top is the ratio of total amounts of Medicare payments

to the total number of patients. The corresponding horizontal bar suggests that higher values
of this ratio consistently have a positive impact on the model’s predictions of overutilization.
Other features listed in the plot present the HCPCS codes that could be more influential in
determining overutilization.

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 69

Figure 4.2.4: The heat map showcases the predicted overutilization rates across states in the
United States, providing a visual representation of the variations in overutilization patterns
across different regions. The darker colors represent higher rates of overutilization.

4.3 Discussion
The goal of our study was to test various ML models to identify the most effective screening
approach for Medicare overutilization detection within the field of ophthalmology. This was
uniquely accomplished by curating a comprehensive labeled dataset of ophthalmologists. Our
medical team ensured the labeled dataset addressed the limitations of the LEIE dataset
by tackling the issue of class imbalance and capturing nuanced fraudulent patterns and
overutilization. Using our created dataset, we found that the stacking ensemble model
enhanced overutilization detection by harnessing the strengths and diverse perspectives of
individual ML models. In what follows, we further discuss the different components of our
analysis and the key findings.

The engineered features are designed in very labor-intensive collaboration with physicians
and medical experts, ensuring that they align with their domain expertise and thought process
during the labeling of the data. First, the ratio of NoS to NoMB provides insights into the
frequency of services rendered per beneficiary, allowing for a more nuanced understanding of

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 70

Figure 4.2.5: Shap Summary Plot.

utilization patterns. Second, the ratio of NoMB to TotPatient provides valuable information
about the proportion of Medicare beneficiaries among all patients served, which can shed
light on the demographics and patient population of the provider. Additionally, the ratio
of TotPayment to TotPatient reflects the average Medicare payment per patient, offering
insights into the financial aspects of the services provided. Lastly, the ratio of DrugPayment
to TotPayment captures the proportion of drug-related payments within the total Medicare
payment amount.

To evaluate the effectiveness of these features in overutilization detection, consider the
following scenarios. Take the HCPCS code 66984, which represents extracapsular cataract
removal. If the ratio of the NoS to NoMB ratio exceeds two in a given year, it would be highly
suspicious. This is because, on average, each patient has only two eyes, and the average
number of cataract surgeries per patient should not exceed two. (Note that the revision
surgery has a separate code and can be distinguished from initial surgery.) Similarly, for the
HCPCS code 95004, which pertains to allergy testing of the skin, if the NoMB to TotPatient
ratio is 1 or higher, it indicates that allergy testing has been performed on every patient

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 71

encounter. In the case of ophthalmologists, this suggests excessive and unwarranted billing
since not every patient requires skin allergy testing every encounter. Additionally, the ratio
of DrugPayment to TotPatient is particularly useful in distinguishing retina specialists from
other subspecialties. The aforementioned ratio is often high among retina specialists due to
the expensive nature of the anti-VEGF drugs they utilize.

Our labeled dataset provides a more balanced distribution between overutilizer and non-
fraudulent providers compared to the LEIE dataset, with the minority class representing
30.2% of the dataset. In the specific context of ophthalmology, the LEIE dataset includes
only 63 fraudulent ophthalmologists, while in 2021, there were over 17,000 ophthalmologists
participating in Medicare. It is important to note that the LEIE dataset primarily focuses on
extreme cases of fraud and may not capture the full range of overutilizing activities in the
field. In contrast, our collaborative approach with physicians and medical billers allowed us
to thoroughly examine the billing information of selected ophthalmologists, ensuring that our
dataset represents a wider range of overutilizer and non-fraudulent providers. The detailed
examination of billing patterns can only be accomplished when physicians or medical billers
with years of experience are analyzing the data. Unfortunately this has never been done
before because of the labor intensive nature of creating the dataset as well as industry wide
lack of domain expertise, i.e., claim analysis is rarely done by physicians and those who
understand the patterns of clinical care.

The comparative evaluation of different ML models revealed varying levels of discrimi-
nation performance in detecting Medicare overutilization within the field of ophthalmology.
The KNN model exhibited the lowest discrimination ability, while the LR, SVM, and MLP
models demonstrated similar strong performance. The XGB model displayed even better
discrimination power, although with lower predictive accuracy. However, it was the stacking
ensemble model that consistently showcased the highest performance. The superior discrimi-
nation performance as well as the high predictive confidence of the stacking ensemble model
indicates that combining the predictions of multiple models using the stacked generalization
technique can lead to improved overutilization detection outcomes. Therefore, more attention
should be directed towards ensemble approaches, as they have the capability to leverage the
strengths of individual models and produce improved overutilization detection outcomes.

Using our stacking ensemble model trained on the entire labeled dataset, we were able
to estimate the nationwide overutilization rate as 8.6%, which falls within the range of
existing fraud estimates of 3-10%.[137] Additionally, we estimated the annual monetary loss
on overutilization and fraud in Medicare for the field of ophthalmology to be approximately
$437 million. By extrapolating this estimate to the entire Medicare system, considering
ophthalmology’s share of 0.89% of the Medicare budget, we estimate the total money lost
on overutilization and fraud in Medicare to be around $49.1 billion per year. Considering
the $900.8 billion total cost of Medicare program in 2021, this implies that approximately
5.5% of the Medicare budget is lost due to overutilization and possible fraud. These findings
highlight the dire need for effective prevention strategies.

Current prevention and detection strategies prove to be very insufficient. CMS often
outsources and relies on overly simplistic ratios to identify potentially irregular behavior. For

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 72

example, one analysis is the ratio of complex cataract surgery to total surgeries done by a
physician. This would not necessarily account for those physicians expert in complex cataract
surgery who are referred these particularly difficult cases. Additionally, these analyses lack
the consideration of subspecialties and fail to capture the intricacies and complexities of
physician billing practices. Incorporating real-time machine learning for claims analysis
would be a huge step forward in both the deterrence and post claim payment recoupment of
overutilization. This way, flagged claims could undergo further scrutiny without the need to
manually review thousands of appropriately billed and paid claims

We additionally conducted estimations of overutilization rates and associated monetary
losses within each Medicare jurisdiction. The predicted rates exhibited variations across
different regions of the United States. Notably, Jurisdiction JE, which includes California,
displayed the highest predicted overutilization rate at 14.01%, followed by JN with 11.43%.
Conversely, the jurisdiction J15 encompassing Ohio and Kentucky had the lowest overuti-
lization rate at 4.11%. Surprisingly, although jurisdiction JE had the highest overutilization
rate, it did not have the highest monetary loss. Instead, JN incurred the highest monetary
loss at $63.6 million, followed by JH with $58.6 million. Several factors could contribute to
this distribution, including demographic disparities, variations in healthcare provider density,
regional differences in fraud awareness and enforcement, cultural and behavioral norms, and
variances in healthcare practices. These findings underscore the need for targeted measures
for detecting and preventing overutilization that are customized to specific regions.

The feature importance analysis revealed that the payment per patient ratio was a strong
indicator of overutilization, with higher values indicating a higher likelihood of overutilization
activity. This association can be attributed to the potential incentive of using certain highly
reimbursed HCPCS codes frequently, even when not medically necessary. Moreover, the
excessive utilization of specific HCPCS codes has been identified as a significant indicator
of overutilization. This heightened utilization is observed through either a high ratio of
beneficiaries to total patients or a high ratio of services to beneficiaries. The HCPCS code
95930 (visual evoked potential) is an example to demonstrate how excessive use serves as a
red flag for fraudulent behavior. In ophthalmology, this code is narrowly applicable, primarily
employed by neuroophthalmologists to diagnose optic neuropathies or malingering through
measurements of the visual cortex’s response to visual stimuli. However, when a general
ophthalmologist utilizes this code for nearly every patient and every visit, it deviates from the
standard of care and signifies excessive utilization. It is apparent that there may be a financial
motivation behind this utilization. It is noteworthy that the Medicare fee schedule allowable
for HCPCS code 95930 is $134.35 in certain geographic locations, and when multiplied by all
the patients in a given practice can be financially very lucrative.

It is crucial to mention that the high utilization of an HCPCS codes is not necessarily
indicative of fraud. For instance, an ophthalmologist may have a very high usage of codes
such as 99215 (highest reimbursing patient examination code) as well as many esoteric
codes such as the aforementioned 95930 or 92275 (retinal electrography). Individual code
analysis may pinpoint this physician with overutilization, but an analysis of all claims of their
practice may reveal that he or she has a neuro-ophthalmology subspecialty, with very complex

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 73

patients and few total encounters over the course of a year compared to a high volume general
ophthalmologist. This suggests that overutilization detection cannot solely rely on individual
code analysis but should consider patterns and relationships among multiple codes to gain a
comprehensive understanding of potential fraudulent behavior.

Never before has domain expertise of ophthalmologists and medical billers been combined
with machine learning to analyze the medicare claims database. The implications of this
study are that medicare could save $50 billlion dollars per year by incorporating a properly
trained machine learning model under each specialty in its claims analysis. We focused on
the most egregious and blatant forms of overutilization. If applied to more subtle forms of
overutilization, then the cost savings would be even greater. The additional funds generated
could be applied to lowering the eligibility age of medicare recipients, expanding clinical
and drug coverage, or raising reimbursement rates for the vast majority of honest physicians
providing clinically and epidemiologically appropriate care. In this modern era where machine
learning has the power to analyze individual provider behavior, and to compare it with the
totality of the medicare data set, it is long overdue that we leverage the computational power
of big data, to use medicare dollars efficiently and appropriately.

4.4 Limitations
Despite the aforementioned strengths and critical findings, our study has a number of
limitations. The first limitation of our work is the limited number of data points in our
created dataset. The meticulous and labor intensive process of analyzing and evaluating billing
information for each provider resulted in a relatively small dataset. This limited sample size
may not capture the full variations and distributions of overutilizer and non-fraudulent data,
particularly given its high-dimensional nature. To enhance the accuracy and generalizability
of the models, further data acquisition efforts are necessary to expand the dataset.

Secondly, it is important to acknowledge that the reported overutilization statistics are
based on model predictions, which are not infallible. As such, it is crucial to interpret the
model’s predictions as estimations rather than absolute truths. Validation and verification
through additional means, such as manual audits or investigations, are necessary to ascertain
the true extent of overutilization and possibly fraudulent activities, and the associated
financial losses. While the findings can guide decision-making and resource allocation,
ongoing refinement and improvement of the models and methodologies are essential to ensure
their accuracy and reliability in detecting aberrant behavior.

Further, it is often difficult to distinguish high or overutilization from blatant fraud, which
has intent behind it. Utilization ultimately is a broad continuum and often the medical
record is needed to justify clinical behavior. This paper addresses clinician behavior by
yearly patterns, but Medicare ascertains fraud by individual patient records to determine if a
procedure was done and if clinically appropriate. Often on an individual basis, actions can
be defensible, even if occurring on a repeated basis.

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 74

Lastly, it is worth noting that although some components of our study, such as data
preprocessing and feature engineering, can be applied to detect Medicare overutilization
in other subspecialties, the availability of a labeled dataset specific to each subspecialty
remains a requirement. This underscores the need for domain expertise and collaboration
with healthcare professionals in that subspecialty to create labeled datasets that accurately
capture overutilization patterns within specific subspecialties. This can be very labor intensive
and costly and represents the largest barrier to widespread incorporation of this methodology.

75

Appendix

4.A Data Source Details
MPOP_PS data: This data is structured in comma-separated values (CSV) format and
comprises individual files for each calendar year. Every record in the data identifies a provider,
primarily by the provider’s National Provider Identifier (NPI), and a procedure that the
provider has submitted a claim to Medicare for, which is represented with a Healthcare
Common Procedure Coding System (HCPCS) code. In addition to the NPI, each record
contains several other elements that offer detailed information about the provider including
their name, demographics, and the provider’s type (e.g. ophthalmology). Furthermore, each
record includes essential aggregate statistics pertinent to the listed procedure. These statistics
encompass the number of times the provider performed the procedure within the given year,
the average billing amount for that procedure, and other relevant information. Table 4.A.1
lists the subset of features from the MPOP_PS data used in our analysis.

Table 4.A.1: Features used from the MPOP_PS data

Name Description Type
Rndrng_NPI National Provider Identifier (NPI) for

the rendering provider on the claim
Categorical

HCPCS_Cd HCPCS code used to identify the spe-
cific medical service furnished by the
provider

Categorical

Tot_Srvcs Number of services provided Numerical
Tot_Benes Number of distinct Medicare benefi-

ciaries receiving the service
Numerical

MPOP_P data: This data is structured in comma-separated values (CSV) format
and comprises individual files for each calendar year. Each record in the data represents a

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 76

unique provider, primarily identified by their National Provider Identifier (NPI). Additional
information provided by each record includes demographic details, provider’s type, and
various aggregate statistics related to their services and procedures such as total number
of unique HCPCS codes, total number of Medicare beneficiaries receiving services from the
provider, etc. Table 4.A.2 lists the subset of features from the MPOP_P data used in our
analysis.

Table 4.A.2: Features used from the MPOP_P data

Name Description Type
Rndrng_NPI National Provider Identi-

fier (NPI) for the rendering
provider on the claim

Categorical

Tot_Benes Total Medicare beneficiaries
receiving services from the
provider.

Numerical

Tot_Mdcr_Pymt_Amt Total amount that Medicare
paid after deductible and coin-
surance amounts have been de-
ducted for all the provider’s
line item services

Numerical

Drug_Mdcr_Pymt_Amt Total amount that Medicare
paid after deductible and coin-
surance amounts have been de-
ducted for all the provider’s
line item drug services

Numerical

4.B HCPCS Codes
The set of 513 HCPCS codes used to construct the feature vectors is derived from aggregating
the services and procedures performed by ophthalmologists located in California over the
period from 2013 to 2019. This timeframe allows us to capture a substantial amount of data
and encompass the diversity of services rendered by ophthalmologists during those years.
“hcpcs_codes.xltx" lists all the 513 HCPCS codes used.

California, being home to the highest number of ophthalmologists compared to other
states (in 2015, 1,975 out of 17,698 ophthalmologists in the United States were located in

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 77

California), provides a rich source of information for constructing a representative set of
HCPCS codes. By leveraging the data from California, we can ensure that the selected
513 HCPCS codes encompass a wide range of procedures and services commonly performed
within the field of ophthalmology.

4.C Labeling Process
The initial set of labels was generated manually by utilizing the Wall Street Journal’s Medicare
Unmasked graphic [146], which provided visual representations of Medicare reimbursements
received by providers in a given year. This program offered insights into various aspects,
including total payments, patient counts, payments per patient, and a breakdown of reim-
bursements by service category. It also provided information on HCPCS codes used, the
number of unique patients receiving each procedure, and the total Medicare reimbursement
for specific HCPCS codes in the year under consideration (2015 in our case). The labeling
team thoroughly examined this information to determine the epidemiological accuracy of
the billed HCPCS codes. This involved considering factors such as the ratio of HCPCS
codes to the number of Medicare beneficiaries, the ratio of higher-reimbursing procedures to
lower-reimbursing procedures, and the provider’s reimbursement percentile at the state and
national levels.

The labeling process involved multiple iterations of training the SVM model on the already
labeled dataset, using the trained model to predict the likelihood of unlabeled providers
being fraudulent, and selecting a random sample of 50 providers who were on the borderline
(with a probability close to 0.5) for further labeling by the team. Sampling providers who
were on the borderline helped improve the model’s ability to distinguish between fraudulent
and non-fraudulent cases. While it was relatively easier to identify blatantly fraudulent or
non-fraudulent doctors, borderline cases posed greater challenges. Obtaining labels for this
borderline sample contributed to enhancing the model’s accuracy in detecting fraud.

However, due to the difficulty in definitively determining the fraudulent or non-fraudulent
nature of borderline doctors, the process of generating these labels was time-consuming.
Manual analysis encompassing various dimensions, such as the number of services performed
per code, the total number of patients for each physician, and the physician’s subspecialty,
was conducted to create a label for each billing pattern. Given the meticulous nature of this
analysis, generating an adequate number of labels to train the model required a significant
amount of time

4.D ML Models Details

Models’ Configuration and Hyperparameters
In our analysis, we develop a diverse set of both linear and nonlinear predictive models
including k-nearest neighbor (KNN), logistic regression (LR), support vector machines (SVM),

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 78

extreme gradient boosting (XGB), and multilayer perceptron (MLP). Each model is embodied
in a specific pipeline that incorporates various preprocessing techniques, such as feature
scaling (e.g., min-max normalization, standardization) and dimensionality reduction methods
(e.g., principal component analysis, recursive feature elimination, feature subsampling) to
enhance their performance. It is important to note that when we refer to the models, we are
specifically referring to the complete pipelines they are part of. Figure 4.D.1 shows the exact
configuration and hyperparameters associated with the deployed pipelines.

The hyperparameter settings are used during the nested CV procedure to fine-tune the
models. For each model, the hyperparameter settings are defined as a Python dictionary in
which each key defines a hyperparameter and its corresponding value determines the type
and search domain for that hyperparameter. The type and range of a hyperparameter is
formatted as a tuple in which the first element defines its type and could be either "int"
(integer), "float", or "cat" (categorical). The rest of elements determine the search domain.
For instance, ("int", 1, 25) defines an integer between 1-25, or ("float", 0.01, 10, ‘‘log")
defines a float in the range 0.01-10 sampled in the logarithmic domain. Additionally, ("
cat", [None, ‘‘balanced"]) determines a categorical variable which could be either None or
"balanced".

Further information regarding the pipelines’ configurations and hyperparameters are listed
below:

• All analyses are done using Python v3.8. The KNN, LR, SVM,and MLP models were
implemented using scikit-learn v1.1.2 [109]. The XGB model is implemented using
XGBoost v1.6.2 [25].

• To expedite the training process, preprocessing methods like feature scaling are employed.
The primary technique utilized for feature scaling is min-max normalization, which
preserves the non-negativity and sparsity of the features. Standardization, on the other
hand, is exclusively applied to MLP due to improved performance compared to min-max
normalization, as observed in our experiments.

• In our analysis, we employ multiple techniques for dimensionality reduction. The
Sklearn library’s VarianceThreshold module is utilized to eliminate constant features,
which are essentially features that consist entirely of zeros. Additionally, PCA (Prin-
cipal Component Analysis) and RFE (Recursive Feature Elimination) are specifically
employed in the LR and SVM pipelines, respectively. Furthermore, in the XGB pipeline,
we restrict the model from utilizing the entire feature set by setting the colsample_bytree
argument to a value less than one.

• Certain models including LR, SVM, and XGB offer the ability to address class imbalance
by resampling the training data. For instance, by setting "lr__class_weight" to "balanced
", the LR model oversamples the minory (fraudulent) class. This helps mitigate the
impact of class imbalance.

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 79

Figure 4.D.1: Configuration and hyperparameters of deployed pipelines. The figure illustrates
the detailed configuration and hyperparameter settings for the pipelines utilized in the training
process.

Stacking
In addition to the individual models, we also explore the benefits of ensemble techniques
in improving overall performance. We leverage stacked generalization (stacking) [145] to
develop an ensemble model, which combines the predictions of the five aforementioned ML
models. Stacking involves the use of an additional model called the “meta-learner" to learn
the optimal way of combining the predictions from the base models. In our ensemble model,
the base models, KNN, LR, SVM, XGB, and MLP, generate predictions that are then fused

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 80

together using an LR-based meta-learner. This ensemble approach allows for leveraging the
diverse capabilities of the individual models and can lead to improved predictive accuracy.
The exact meta-learner used in our analysis is LogisticRegression(penalty="none", max_iter
=1000, random_state=0).

In the following explanation, we outline the training and testing process for the stacking
ensemble model using a given training set. Initially, the 5 base models undergo fine-tuning
through k-fold cross-validation on the training set. During this procedure, the predictions
made by each tuned base model are stacked together. By merging the stacked predictions from
all the tuned base models, we construct the training set for the meta learner. Subsequently,
all the tuned models are trained using the entire training set, while the meta learner is trained
using its corresponding training set. For testing and making predictions on unseen data, we
first utilize the trained base models to generate predictions, and then these predictions are
combined using the trained meta learner.

Please note that to evaluate the performance scores of the stacking ensemble model using
nested CV, the described procedure is repeated multiple times, depending on the number of
outer loops in nested CV.

4.E Nested CV
The nested CV procedure consists of an outer loop for model evaluation while an inner
loop tunes the hyperparameters. The performance estimates are calculated by averaging
the test scores obtained across the different dataset splits in the outer loop. Varma and
Simon [138] demonstrated that this approach, which avoids pooling the training and test
data, produces nearly unbiased performance estimates. To further reduce bias and obtain
more accurate estimates, the nested CV procedure could be repeated multiple times using
different random shuffles of the labeled data. In our analysis, we utilized three random
shuffles of nested CV with 10 outer loops and 5 inner loops, ensuring a robust assessment of
the models’ performance. We remark that in order to conduct the hyperparameter tuning
procedure in the inner loop of the nested CV, we used the Optuna framework [2]. Optuna is
a powerful optimization library that efficiently searches for the optimal hyperparameters of
the models. For more details on the nested cross-validation procedure, including information
on determining the number of outer and inner loops and the computational implications,
please refer to the online article by Jason Brownlee [17].

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 81

Figure 4.F.1: Calibration plots. KNN (blue line) indicates k-nearest neighbor; LR (orange
line), logistic regression; SVM (greed line), support vector machines; MLP (red line), multilayer
perceptron; XGB (purple line), extreme gradient boosting; and Stacking (brown line), stacking
ensemble.

4.F Calibration Plots

4.G Further Overutilization Statistics

Overutilization Statistics for Medicare Jurisdictions
Below, we present the details of overutilization statistics computed for each Medicare juris-
diction. (Note that 0.0 as p-value means a value significantly smaller than 0.01.)

Non-Drug Medicare Payment Per Patient
The significant variation in Medicare payment per patient, as indicated by the high standard
deviation calculated earlier, is primarily attributed to the inclusion of drug payments. If we
exclude drug payments from the total payments, we anticipate that the average payment per
patient for non-drug services among overutilizing providers will still be considerably higher

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 82

Figure 4.G.1: Predicted overutilization rate within Medicare jurisdictions in 2021.

Table 4.G.1: Overutilization rate within Medicare jurisdictions details

JE JF JH JL J5 J8 JJ JM JK J6 J15 JN
Overutilizer # 301 68 140 163 35 87 64 101 234 70 32 162
Non-fraud # 1848 1175 2003 1692 627 738 862 1163 2268 1178 747 1255

overutilization rate (%) 14.01 5.47 6.53 8.79 5.29 10.54 6.91 7.99 9.35 5.61 4.11 11.4

than that of non-fraudulent providers. Below, we detail this statistic across the nation and
within Medicare jurisdictions (See Figure 4.G.4 and Table 4.G.4.)

Across the nation, the 1,457 overutilizing/fraudulent ophthalmologists (mean=$545.4,
std=$388.9) compared to 15,556 non-fraudulent ophthalmologists (mean=$302.9, std=$157.1)
had significantly higher non-drug Medicare payment per patient (t(17011)=21.3, p << 0.01).

4.H Probability Threshold
To compute performance metrics such as accuracy, specificity, precision, and sensitivity (recall),
a specific probability threshold is required. Typically, these metrics are computed using a
default threshold of 0.5, but this may not be optimal for imbalanced data situations.[116]
Additionally, depending on the application, the emphasis may be placed on either precision
or sensitivity, which would warrant a higher or lower threshold, respectively.

In the case of Medicare overutilization/fraud, if the primary goal is to avoid missing
instances of overutilization/fraud, a higher sensitivity is desired, leading to a lower probability
threshold. This approach would detect more providers as overutilizer/fraudulent, but it
carries the risk of mislabeling non-fraudulent providers, potentially damaging their reputation

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 83

Figure 4.G.2: Comparing the average payment per patient between overutilizer and
non-fraudulent ophthalmologists within Medicare Jurisdictions 2021.

Table 4.G.2: Average payment per patient within Medicare jurisdictions details

JE JF JH JL J5 J8 JJ JM JK J6 J15 JN
Overutilizer # 301 68 140 163 35 87 64 101 234 70 32 162
Overutilizers mean ($) 815.8 975.0 1090.5 845.67 1347.2 1046.3 712.9 1011.9 854.1 743.1 751.1 979.3

Overutilizers std ($) 819.8 1108.5 1287.9 1000.1 1456.4 1193.5 952.5 1208.3 963.6 757.9 909.3 925.9

Non-fraud # 1848 1175 2003 1692 627 738 862 1163 2268 1178 747 1255

Non-frauds mean ($) 538.7 661.0 537.3 546.3 612.0 540.7 545.8 543.1 498.6 530.5 480.8 524.7

Non-frauds std ($) 1423.9 850.6 694.2 754.7 831.4 683.1 747.2 788.4 657.6 720.2 603.1 701.8

t-value 4.8 2.3 5.0 3.7 3.0 3.9 1.4 3.8 5.5 2.3 1.7 6.0
p-value 0.0 0.01 0.0 0.0 0.003 0.0 0.09 0.0 0.0 0.01 0.05 0.0

if publicly announced. However, if the goal is to minimize mislabeling, a higher precision
is preferred, requiring a higher probability threshold. While this is beneficial for public
disclosure of overutilizing/fraudulent providers, it poses a financial burden on Medicare, as
more instances of abuse go undetected.

In this study, we aim to strike a balance between precision and sensitivity. Thus, we
seek a probability threshold that achieves a trade-off between these metrics. The F-score is
optimized to determine such a balance, and the threshold is adjusted accordingly to maximize
the average F-score obtained through the repeated nested CV procedure. This results in a
probability threshold of 0.353. Accordingly, providers with a predicted overutilization/fraud
probability exceeding 35.3% are labeled as overutilizer/fraudulent, while those below this

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 84

Figure 4.G.3: Monetary loss within Medicare jurisdictions in 2021.

Table 4.G.3: Monetary loss within Medicare jurisdictions details

JE JF JH JL J5 J8 JJ JM JK J6 J15 JN
Overutilizers total payment ($m) 150.5 43.5 104.0 108.6 54.2 66.1 35.8 91.8 117.0 27.0 13.6 130

Monetary loss ($m) 53.5 17.8 58.6 46.5 38.0 37.2 10.8 49.6 51.2 7.0 6.2 63.6

Figure 4.G.4: Comparing the average non-drug Medicare payment per patient between
overutilizer and non-fraudulent ophthalmologists within Medicare Jurisdictions 2021.

threshold are considered non-fraudulent. The accuracy, specificity, precision, and sensitivity
of the stacking ensemble model obtained using the probability threshold of 0.353 are presented
in Table 4.H.1. The metrics are calculated via the repeated nested CV procedure.

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 85
Table 4.G.4: Average non-drug Medicare payment per patient within Medicare jurisdictions
details

JE JF JH JL J5 J8 JJ JM JK J6 J15 JN
Overutilizer # 301 68 140 163 35 87 64 101 234 70 32 162
Overutilizers mean ($) 594.1 528.8 604.2 516.8 475.1 521.6 405.8 456.3 565.1 530.0 418.7 572

Overutilizers std ($) 349.6 219.0 766.6 235.9 220.0 203.4 171.4 178.1 404.8 370.7 191.0 386

Non-fraud # 1848 1175 2003 1692 627 738 862 1163 2268 1178 747 1255

Non-frauds mean ($) 323.4 343.4 306.7 299.5 313.8 302.4 286.6 280.7 292.4 297.9 278.3 300

Non-frauds std ($) 174.1 175.9 157.9 149.6 149.5 150.3 133.5 140.4 148.3 174.4 134.6 159

t-value 11.9 6.2 4.2 10.4 4.0 8.7 4.7 8.2 9.3 5.0 3.8 7.9
p-value 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 4.H.1: Additional performance metrics for the stacking ensemble model utilizing a
probability threshold of 0.353

Accuracy (95% CI) Specificity (95% CI) Precision (95% CI) Sensitivity (95% CI)
0.850 (0.836-0.862) 0.886 (0.867-0.903) 0.750 (0.720-0.779) 0.763 (0.733-0.793)

Reducing Mislabeling
Modifying the probability threshold not only would change the performance metrics, but
also would lead to alterations in predicted overutilization statistics. In what follows, we
adjust the probability threshold so as to reduce mislabeling. Subsequently, we recalculate the
overutilization statistics and compare them with the results mentioned in the article.

To reduce mislabeling, we adjust the probability threshold to a higher value, resulting in
an increased specificity (or a decreased false positive rate). Suppose our target is to achieve
a specificity score of 95% or higher (or a false positive rate of 5% or lower). According to
Figure 4.H.1, we can identify a probability threshold that maintains the same accuracy level
while achieving a very low false positive rate. Specifically, we choose the probability threshold
of 0.646. The corresponding performance metrics are presented in Table 4.H.2. The results
demonstrate that the new probability threshold leads to higher specificity and precision,

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 86

albeit at the expense of lower sensitivity. This choice of probability threshold is particularly
suitable in situations where the main objective is to minimize false positives.

Figure 4.H.1: The Relation between the accuracy and false positive rate. The red dot
corresponds to the probability threshold of 0.353.

Table 4.H.2: Performance metrics for the stacking ensemble model utilizing a probability
threshold of 0.646

Accuracy (95% CI) Specificity (95% CI) Precision (95% CI) Sensitivity (95% CI)
0.847 (0.835-0.860) 0.952 (0.939-0.965) 0.854 (0.819- 0.889) 0.605 (0.5685-0.642)

With this higher probability threshold, we expect to detect less overutilizer physicians,
and therefore the estimated overutilization rate should decrease. Indeed, the estimated
nationwide overutilization rate is decreased to 4.2% (from 8.6%), which still falls between the
3-10% fraud rate estimation [137], and the estimated monetary loss is decreased to $168.5
million (from $437.1 million). Additionally, Figure 4.H.2 shows the updated heat map of
overutilization rate across the US.

It is intriguing to find that a state like CA, which previously had the highest overutilization
rate (14.2%), does not have the highest rate in the new estimations. Instead, its overutilization
rate is estimated to be 8.6% whereas the highest rate is 11.1%. The shift in the estimated
overutilization rates for CA and many other states indicates that many physicians in these
states fall into the category of borderline physicians. This means that the probability of them
being overutilizers lies above 35% (previous probability threshold) but below 64% (the new

CHAPTER 4. LEVERAGING STACKED GENERALIZATION TO EFFECTIVELY
DETECT OVERUTILIZATION IN MEDICARE 87

Figure 4.H.2: The heat map showcases the predicted overutilization rates across states in the
United States. The rates are estimated using the probability threshold of 0.646.

probability threshold). The presence of a significant number of borderline physicians in these
states highlights the need for further investigation into their billing practices.

88

Bibliography

[1] Yves Achdou and Jean-Michel Lasry. “Mean field games for modeling crowd motion”.
In: Contributions to partial differential equations and applications (2019), pp. 17–42.

[2] Takuya Akiba et al. “Optuna: A Next-generation Hyperparameter Optimization
Framework”. In: Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2019.

[3] Takuya Akiba et al. “Optuna: A next-generation hyperparameter optimization frame-
work”. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining. 2019, pp. 2623–2631.

[4] Clémence Alasseur, Imen Ben Taher, and Anis Matoussi. “An extended mean field
game for storage in smart grids”. In: Journal of Optimization Theory and Applications
184 (2020), pp. 644–670.

[5] Donald G Anderson. “Iterative procedures for nonlinear integral equations”. In: Journal
of the ACM (JACM) 12.4 (1965), pp. 547–560.

[6] Keith Ball. “Cube slicing in Rn”. In: Proc. Amer. Math. Soc. 97.3 (1986), pp. 465–473.
[7] Afonso S. Bandeira, Nicolas Boumal, and Vladislav Voroninski. “On the low-rank ap-

proach for semidefinite programs arising in synchronization and community detection”.
In: Conference on Learning Theory. 2016, pp. 361–382.

[8] Richard Bauder and Taghi Khoshgoftaar. “Medicare fraud detection using random
forest with class imbalanced big data”. In: 2018 IEEE international conference on
information reuse and integration (IRI). IEEE. 2018, pp. 80–87.

[9] Richard Bauder, Raquel da Rosa, and Taghi Khoshgoftaar. “Identifying medicare
provider fraud with unsupervised machine learning”. In: 2018 IEEE international
conference on information Reuse and integration (IRI). IEEE. 2018, pp. 285–292.

[10] Richard A Bauder and Taghi M Khoshgoftaar. “A probabilistic programming approach
for outlier detection in healthcare claims”. In: 2016 15th IEEE international conference
on machine learning and applications (ICMLA). IEEE. 2016, pp. 347–354.

[11] Richard A Bauder and Taghi M Khoshgoftaar. “Medicare fraud detection using
machine learning methods”. In: 2017 16th IEEE international conference on machine
learning and applications (ICMLA). IEEE. 2017, pp. 858–865.

BIBLIOGRAPHY 89

[12] Richard A Bauder and Taghi M Khoshgoftaar. “The effects of varying class distribution
on learner behavior for medicare fraud detection with imbalanced big data”. In: Health
information science and systems 6.1 (2018), pp. 1–14.

[13] Fabrice Baudoin, Martin Hairer, and Josef Teichmann. “Ornstein-Uhlenbeck processes
on Lie groups”. In: J. Funct. Anal. 255.4 (2008), pp. 877–890.

[14] Alain Bensoussan, Jens Frehse, Phillip Yam, et al. Mean field games and mean field
type control theory. Vol. 101. Springer, 2013.

[15] Srinadh Bhojanapalli, Behnam Neyshabur, and Nati Srebro. “Global optimality of local
search for low rank matrix recovery”. In: Advances in Neural Information Processing
Systems. 2016, pp. 3873–3881.

[16] L Karl Branting et al. “Graph analytics for healthcare fraud risk estimation”. In: 2016
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM). IEEE. 2016, pp. 845–851.

[17] Jason Brownlee. “Nested Cross-Validation for Machine Learning with Python”. In:
https://machinelearningmastery.com/nested-cross-validation-for-machine-learning-
with-python (2020).

[18] Sébastien Bubeck. “Convex optimization: Algorithms and complexity”. In: Foundations
and Trends® in Machine Learning 8.3-4 (2015), pp. 231–357.

[19] Theophile Cabannes et al. “Solving N-player dynamic routing games with congestion:
a mean field approach”. In: arXiv preprint arXiv:2110.11943 (2021).

[20] Emmanuel J. Candès, Xiaodong Li, and Mahdi Soltanolkotabi. “Phase retrieval via
Wirtinger flow: theory and algorithms”. In: IEEE Trans. Inform. Theory 61.4 (2015),
pp. 1985–2007.

[21] Emmanuel J. Candès et al. “Phase retrieval via matrix completion”. In: SIAM J.
Imaging Sci. 6.1 (2013), pp. 199–225.

[22] Emmanuel J. Candès et al. “Robust principal component analysis?” In: J. ACM 58.3
(2011), Art. 11, 37.

[23] René Carmona, François Delarue, et al. Probabilistic theory of mean field games with
applications I-II. Springer, 2018.

[24] Augustin Cauchy. “Méthode générale pour la résolution des systemes d’équations
simultanées”. In: Comp. Rend. Sci. Paris 25.1847 (1847), pp. 536–538.

[25] Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In:
Proceedings of the 22nd acm sigkdd international conference on knowledge discovery
and data mining. 2016, pp. 785–794.

[26] Xi Chen, Simon S. Du, and Xin T. Tong. “On stationary-point hitting time and
ergodicity of stochastic gradient Langevin dynamics”. In: J. Mach. Learn. Res. 21
(2020), Paper No. 68, 41.

BIBLIOGRAPHY 90

[27] Yi Chen et al. “Accelerating nonconvex learning via replica exchange Langevin diffu-
sion”. In: International Conference on Learning Representations (ICLR). 2019.

[28] Anna Choromanska et al. “The loss surfaces of multilayer networks”. In: Artificial
Intelligence and Statistics. 2015, pp. 192–204.

[29] Vincent Conitzer et al. “Pacing Equilibrium in First Price Auction Markets”. In:
Management Science (2022).

[30] Areski Cousin et al. “Mean field games and applications”. In: Paris-Princeton lectures
on mathematical finance 2010 (2011), pp. 205–266.

[31] J. Cubanski. “What’s in Store for Medicare’s Part B Premiums and Deductible in 2016,
and Why?” In: https://www.kff.org/medicare/issue-brief/whats-in-store-for-medicares
-part-b-premiums-and-deductible-in-2016-and-why (2015).

[32] Kai Cui and Heinz Koeppl. “Approximately solving mean field games via entropy-
regularized deep reinforcement learning”. In: International Conference on Artificial
Intelligence and Statistics. PMLR. 2021, pp. 1909–1917.

[33] Ashok Cutkosky and Francesco Orabona. “Momentum-based variance reduction in
non-convex sgd”. In: Advances in neural information processing systems 32 (2019).

[34] Yann Dauphin et al. “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization”. In: (2014). arXiv:1406.2572.

[35] Yann N. Dauphin et al. “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization”. In: Advances in Neural Information Processing
Systems. 2014, pp. 2933–2941.

[36] Burgess Davis. “Reinforced random walk”. In: Probab. Theory Related Fields 84.2
(1990), pp. 203–229.

[37] Jing Dong and Xin T. Tong. “Replica exchange for non-convex optimization”. In: J.
Mach. Learn. Res. 22 (2021), Paper No. 173, 59.

[38] Felix Draxler et al. “Essentially No Barriers in Neural Network Energy Landscape”.
In: International Conference on Machine Learning. 2018, pp. 1309–1318.

[39] Simon S. Du et al. “Gradient descent can take exponential time to escape saddle
points”. In: Advances in Neural Information Processing Systems. 2017, pp. 1067–1077.

[40] Simon S. Du et al. “Gradient Descent Learns One-hidden-layer CNN: Don’t be Afraid
of Spurious Local Minima”. In: International Conference on Machine Learning. 2018,
pp. 1339–1348.

[41] Richard G Frank and Tricia Neuman. “Addressing the risk of Medicare trust fund
insolvency”. In: JAMA 325.4 (2021), pp. 341–342.

[42] David Fridovich-Keil et al. “Efficient iterative linear-quadratic approximations for
nonlinear multi-player general-sum differential games”. In: 2020 IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2020, pp. 1475–1481.

BIBLIOGRAPHY 91

[43] Rong Ge, Chi Jin, and Yi Zheng. “No spurious local minima in nonconvex low rank
problems: A unified geometric analysis”. In: International Conference on Machine
Learning. 2017, pp. 1233–1242.

[44] Rong Ge, Jason D. Lee, and Tengyu Ma. “Learning One-hidden-layer Neural Networks
with Landscape Design”. In: International Conference on Learning Representations.
2018.

[45] Rong Ge, Jason D. Lee, and Tengyu Ma. “Matrix completion has no spurious local
minimum”. In: Advances in Neural Information Processing Systems. 2016, pp. 2973–
2981.

[46] Rong Ge and Tengyu Ma. “On the optimization landscape of tensor decompositions”.
In: Advances in Neural Information Processing Systems. 2017, pp. 3653–3663.

[47] Rong Ge et al. “Escaping from saddle points – online stochastic gradient for tensor
decomposition”. In: Conference on Learning Theory. 2015, pp. 797–842.

[48] Stuart Geman and Chii-Ruey Hwang. “Diffusions for global optimization”. In: SIAM
J. Control Optim. 24.5 (1986), pp. 1031–1043.

[49] Saeed Ghadimi and Guanghui Lan. “Stochastic first-and zeroth-order methods for
nonconvex stochastic programming”. In: SIAM Journal on Optimization 23.4 (2013),
pp. 2341–2368.

[50] Xin Guo, Anran Hu, and Junzi Zhang. “MF-OMO: An optimization formulation of
mean-field games”. In: arXiv preprint arXiv:2206.09608 (2022).

[51] Xin Guo et al. “A general framework for learning mean-field games”. In: arXiv preprint
arXiv:2003.06069 (2020).

[52] Xin Guo et al. “Learning mean-field games”. In: Advances in Neural Information
Processing Systems 32 (2019).

[53] Juho Hamari, Mimmi Sjöklint, and Antti Ukkonen. “The sharing economy: Why
people participate in collaborative consumption”. In: Journal of the association for
information science and technology 67.9 (2016), pp. 2047–2059.

[54] John Hancock and Taghi M Khoshgoftaar. “Medicare fraud detection using catboost”.
In: 2020 IEEE 21st international conference on information reuse and integration for
data science (IRI). IEEE. 2020, pp. 97–103.

[55] John Hancock, Taghi M Khoshgoftaar, and Justin M Johnson. “The Effects of Random
Undersampling for Big Data Medicare Fraud Detection”. In: 2022 IEEE International
Conference on Service-Oriented System Engineering (SOSE). IEEE. 2022, pp. 141–146.

[56] John T Hancock and Taghi M Khoshgoftaar. “Gradient boosted decision tree algorithms
for medicare fraud detection”. In: SN Computer Science 2.4 (2021), p. 268.

[57] Kaiming He et al. “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition. 2016, pp. 770–778.

BIBLIOGRAPHY 92

[58] Matthew Herland, Taghi M Khoshgoftaar, and Richard A Bauder. “Big data fraud
detection using multiple medicare data sources”. In: Journal of Big Data 5.1 (2018),
pp. 1–21.

[59] Richard A. Holley, Shigeo Kusuoka, and Daniel W. Stroock. “Asymptotics of the
spectral gap with applications to the theory of simulated annealing”. In: J. Funct.
Anal. 83.2 (1989), pp. 333–347.

[60] Yuanhan Hu et al. “Non-Convex Optimization via Non-Reversible Stochastic Gradient
Langevin Dynamics”. In: (2020). arXiv:2004.02823.

[61] Kuang Huang et al. “A game-theoretic framework for autonomous vehicles velocity
control: Bridging microscopic differential games and macroscopic mean field games”.
In: arXiv preprint arXiv:1903.06053 (2019).

[62] Minyi Huang, Roland P Malhamé, and Peter E Caines. “Large population stochastic
dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equiva-
lence principle”. In: Communications in Information & Systems 6.3 (2006), pp. 221–
252.

[63] Katie F Huffman and Gina Upchurch. “The health of older Americans: a primer on
Medicare and a local perspective”. In: Journal of the American Geriatrics Society 66.1
(2018), pp. 25–32.

[64] Forrest N Iandola et al. “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and< 0.5 MB model size”. In: arXiv preprint arXiv:1602.07360 (2016).

[65] Office of Inspector General. “List of Excluded Individuals Entities (LEIE) Database”.
In: https://oig.hhs.gov/exclusions/index.asp (2023).

[66] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on machine
learning. pmlr. 2015, pp. 448–456.

[67] Prateek Jain et al. “Global Convergence of Non-Convex Gradient Descent for Com-
puting Matrix Squareroot”. In: Artificial Intelligence and Statistics. 2017, pp. 479–
488.

[68] Seong Hoon Jeong, Ah Reum Kang, and Huy Kang Kim. “Analysis of game bot’s
behavioral characteristics in social interaction networks of MMORPG”. In: ACM
SIGCOMM Computer Communication Review 45.4 (2015), pp. 99–100.

[69] Chi Jin, Praneeth Netrapalli, and Michael I Jordan. “Accelerated gradient descent
escapes saddle points faster than gradient descent”. In: Conference On Learning
Theory. 2018, pp. 1042–1085.

[70] Chi Jin et al. “How to escape saddle points efficiently”. In: International Conference
on Machine Learning. 2017, pp. 1724–1732.

[71] Chi Jin et al. “On Nonconvex Optimization for Machine Learning: Gradients, Stochas-
ticity, and Saddle Points”. In: Journal of the ACM 68.2 (2021), pp. 1–29.

BIBLIOGRAPHY 93

[72] Justin M Johnson and Taghi M Khoshgoftaar. “Deep learning and data sampling with
imbalanced big data”. In: 2019 IEEE 20th international conference on information
reuse and integration for data science (IRI). IEEE. 2019, pp. 175–183.

[73] Justin M Johnson and Taghi M Khoshgoftaar. “Medicare fraud detection using neural
networks”. In: Journal of Big Data 6.1 (2019), pp. 1–35.

[74] U.S. Department of Justice. “Justice Department Recovers over $3 Billion from False
Claims Act.” In: https://www.justice.gov/opa/pr/justice-department-recovers-over-3
-billion-false-claims-act-cases-fiscal-year-2019 (2020).

[75] Kai Cui. “GMFG-learning: Learning graphon mean-field games”. In: https://github.com
/tudkcui/gmfg-learning last visited 2023 March 25 (2021).

[76] Kenji Kawaguchi. “Deep learning without poor local minima”. In: Advances in Neural
Information Processing Systems. 2016, pp. 586–594.

[77] Abbas Kazemipour, Brett Larsen, and Shaul Druckmann. “Avoiding Spurious Local
Minima in Deep Quadratic Networks”. In: (2019). arXiv:2001.00098.

[78] Sean P Keehan et al. “National Health Expenditure Projections, 2019–28: Expected
Rebound In Prices Drives Rising Spending Growth: National health expenditure
projections for the period 2019–2028.” In: Health Affairs 39.4 (2020), pp. 704–714.

[79] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”.
In: International Conference on Learning Representations. 2015.

[80] S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi. “Optimization by simulated
annealing”. In: Science 220.4598 (1983), pp. 671–680.

[81] Arman C Kizilkale, Rabih Salhab, and Roland P Malhamé. “An integral control
formulation of mean field game based large scale coordination of loads in smart grids”.
In: Automatica 100 (2019), pp. 312–322.

[82] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from
tiny images”. In: (2009).

[83] Marc Lanctot et al. “OpenSpiel: A Framework for Reinforcement Learning in Games”.
In: CoRR abs/1908.09453 (2019). arXiv: 1908.09453 [cs.LG].

[84] Jean-Michel Lasry and Pierre-Louis Lions. “Mean field games”. In: Japanese Journal
of Mathematics 2.1 (2007), pp. 229–260.

[85] Mathieu Laurière et al. “Learning mean field games: A survey”. In: arXiv preprint
arXiv:2205.12944 (2022).

[86] Yann LeCun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[87] Jason D. Lee et al. “Gradient descent only converges to minimizers”. In: Conference
on Learning Theory. 2016, pp. 1246–1257.

https://arxiv.org/abs/1908.09453

BIBLIOGRAPHY 94

[88] Charles-Albert Lehalle and Charafeddine Mouzouni. “A mean field game of port-
folio trading and its consequences on perceived correlations”. In: arXiv preprint
arXiv:1902.09606 (2019).

[89] Zhong Li et al. “On the Curse of Memory in Recurrent Neural Networks: Approximation
and Optimization Analysis”. In: International Conference on Learning Representations.
2021.

[90] Shiyu Liang et al. “Adding one neuron can eliminate all bad local minima”. In:
Advances in Neural Information Processing Systems. 2018, pp. 4350–4360.

[91] Scott M Lundberg and Su-In Lee. “A unified approach to interpreting model predic-
tions”. In: Advances in neural information processing systems 30 (2017).

[92] Mansour Zoubeirou A Mayaki and Michel Riveill. “Multiple Inputs Neural Networks
for Medicare fraud Detection”. In: arXiv preprint arXiv:2203.05842 (2022).

[93] Centers for Medicare and Medicaid Services. “2020 Medicare Parts A & B Premi-
ums and Deductibles”. In: https://www.cms.gov/newsroom/fact-sheets/2020-medicare-
parts-b-premiums-and-deductibles (2019).

[94] Centers for Medicare and Medicaid Services. “NHE fact sheet”. In:
https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and
-reports/nationalhealthexpenddata/nhe-fact-sheet (2023).

[95] Centers for Medicare & Medicaid Services. “CMS Website”. In: https://www.cms.gov
(2023).

[96] Song Mei, Yu Bai, and Andrea Montanari. “The landscape of empirical risk for
nonconvex losses”. In: Ann. Statist. 46.6A (2018), pp. 2747–2774.

[97] Song Mei et al. “Solving SDPs for synchronization and MaxCut problems via the
Grothendieck inequality”. In: Conference on Learning Theory. 2017, pp. 1476–1515.

[98] Georg Menz et al. “Ergodicity of the infinite swapping algorithm at low temperature”.
In: (2018). arXiv:1811.10174.

[99] François Mériaux, Vineeth Varma, and Samson Lasaulce. “Mean field energy games in
wireless networks”. In: 2012 conference record of the forty sixth Asilomar conference
on signals, systems and computers (ASILOMAR). IEEE. 2012, pp. 671–675.

[100] Laurent Miclo. “Recuit simulé sur Rn. Étude de l’évolution de l’énergie libre”. In:
Ann. Inst. H. Poincaré Probab. Statist. 28.2 (1992), pp. 235–266.

[101] Pierre Monmarché. “Hypocoercivity in metastable settings and kinetic simulated
annealing”. In: Probab. Theory Related Fields 172.3-4 (2018), pp. 1215–1248.

[102] National Health Care Anti-Fraud Association. “The Challenge of Health Care Fraud”.
In: https://www.nhcaa.org/tools-insights/about-health-care-fraud/the-challenge-of-
health-care-fraud (2023).

BIBLIOGRAPHY 95

[103] Arvind Neelakantan et al. “Adding gradient noise improves learning for very deep
networks”. In: (2015). arXiv:1511.06807.

[104] Yurii Nesterov. Introductory lectures on convex optimization: A basic course. Vol. 87.
Applied Optimization. Kluwer Academic Publishers, Boston, MA, 2004, pp. xviii+236.

[105] Yurii E Nesterov. “A method for solving the convex programming problem with
convergence rate O(1/k2)”. In: Dokl. Akad. Nauk SSSR. Vol. 269. 1983, pp. 543–547.

[106] Quynh Nguyen and Matthias Hein. “The loss surface of deep and wide neural networks”.
In: International Conference on Machine Learning. 2017, pp. 2603–2612.

[107] Dohyung Park et al. “Non-square matrix sensing without spurious local minima via the
Burer-Monteiro approach”. In: Artificial Intelligence and Statistics. 2017, pp. 65–74.

[108] Ilya Pavlyukevich. “Lévy flights, non-local search and simulated annealing”. In: Journal
of Computational Physics 226.2 (2007), pp. 1830–1844.

[109] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In: the Journal of
machine Learning research 12 (2011), pp. 2825–2830.

[110] Luca Peliti and Luciano Pietronero. “Random walks with memory”. In: La Rivista del
Nuovo Cimento 10.6 (1987), pp. 1–33.

[111] Robin Pemantle. “Vertex-reinforced random walk”. In: Probab. Theory Related Fields
92.1 (1992), pp. 117–136.

[112] Julien Perolat et al. “Scaling up mean field games with online mirror descent”. In:
arXiv preprint arXiv:2103.00623 (2021).

[113] Sarah Perrin et al. “Fictitious play for mean field games: Continuous time analysis
and applications”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 13199–13213.

[114] Sarah Perrin et al. “Mean Field Games Flock! The Reinforcement Learning Way”. In:
arXiv preprint arXiv:2105.07933 (2021).

[115] Boris T Polyak. “Some methods of speeding up the convergence of iteration methods”.
In: USSR Computational Mathematics and Mathematical Physics 4.5 (1964), pp. 1–17.

[116] Foster Provost. “Machine learning from imbalanced data sets 101”. In: (2008).
[117] Maxim Raginsky, Alexander Rakhlin, and Matus Telgarsky. “Non-convex learning via

stochastic gradient Langevin dynamics: a nonasymptotic analysis”. In: Conference On
Learning Theory. 2017, pp. 1674–1703.

[118] Sashank Reddi et al. “A generic approach for escaping saddle points”. In: International
Conference on Artificial Intelligence and Statistics. 2018, pp. 1233–1242.

[119] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. “On the convergence of Adam and
beyond”. In: International Conference on Learning Representations. 2018.

[120] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning repre-
sentations by back-propagating errors”. In: Nature 323.6088 (1986), pp. 533–536.

BIBLIOGRAPHY 96

[121] Saad Sadiq and Mei-Ling Shyu. “Cascaded propensity matched fraud miner: Detecting
anomalies in medicare big data”. In: Journal of Innovative Technology 1.1 (2019),
pp. 51–61.

[122] Naci Saldi, Tamer Basar, and Maxim Raginsky. “Markov Nash equilibria in mean-field
games with discounted cost”. In: SIAM Journal on Control and Optimization 56.6
(2018), pp. 4256–4287.

[123] Maziar Sanjabi et al. “When Does Non-Orthogonal Tensor Decomposition Have No
Spurious Local Minima?” In: (2019). arXiv:1911.09815.

[124] Centers For Medicare & Medicaid Services. “Medicare Provider Utilization and Pay-
ment Data”. In: https://data.cms.gov/provider-summary-by-type-of-service (2023).

[125] Centers For Medicare & Medicaid Services. “Medicare Provider Utilization and Pay-
ment Data: Medicare Physician & Other Practitioners - by Provider”. In:
https://data.cms.gov/provider-summary-by-type-of-service/medicare-physician-other
-practitioners/medicare-physician-other-practitioners-by-provider (2023).

[126] Centers For Medicare & Medicaid Services. “Medicare Provider Utilization and Pay-
ment Data: Medicare Physician & Other Practitioners - by Provider and Service”. In:
https://data.cms.gov/provider-summary-by-type-of-service/medicare-inpatient-hospital
s/medicare-inpatient-hospitals-by-provider-and-service (2023).

[127] Ju Sun, Qing Qu, and John Wright. “A geometric analysis of phase retrieval”. In:
Found. Comput. Math. 18.5 (2018), pp. 1131–1198.

[128] Ju Sun, Qing Qu, and John Wright. “Complete dictionary recovery over the sphere I:
Overview and the geometric picture”. In: IEEE Trans. Inform. Theory 63.2 (2017),
pp. 853–884.

[129] Grzegorz Swirszcz, Wojciech Marian Czarnecki, and Razvan Pascanu. “Local minima
in training of deep networks”. In: https://openreview.net/pdf?id=Syoiqwcxx (2016).

[130] Wenpin Tang and Xun Yu Zhou. “Simulated annealing from continuum to discretiza-
tion: a convergence analysis via the Eyring–Kramers law”. In: (2021). arXiv:2102.02339.

[131] Wenpin Tang and Xun Yu Zhou. “Tail probability estimates of continuous-time
simulated annealing processes”. In: Numer. Algebra Control Optim. 13.3-4 (2023),
pp. 473–485.

[132] Pierre Tarrès. “Vertex-reinforced random walk on Z eventually gets stuck on five
points”. In: Ann. Probab. 32.3B (2004), pp. 2650–2701.

[133] Thomas J. Sargent, et al. “QuantEcon.py: A high performance, open source Python
code library for economics”. In: https://github.com/QuantEcon/QuantEcon.py last
visited 2023 March 25 (2013).

[134] Bálint Tóth. ““True” self-avoiding walks with generalized bond repulsion on Z”. In: J.
Statist. Phys. 77.1-2 (1994), pp. 17–33.

BIBLIOGRAPHY 97

[135] Bálint Tóth. “Generalized Ray-Knight theory and limit theorems for self-interacting
random walks on Z1”. In: Ann. Probab. 24.3 (1996), pp. 1324–1367.

[136] Bálint Tóth. “The “true” self-avoiding walk with bond repulsion on Z: limit theorems”.
In: Ann. Probab. 23.4 (1995), pp. 1523–1556.

[137] Thad Trousdale. “Health care fraud & the FBI”. In: Missouri medicine 109.2 (2012),
p. 102.

[138] Sudhir Varma and Richard Simon. “Bias in error estimation when using cross-validation
for model selection”. In: BMC bioinformatics 7.1 (2006), pp. 1–8.

[139] Luca Venturi, Afonso S. Bandeira, and Joan Bruna. “Spurious valleys in one-hidden-
layer neural network optimization landscapes”. In: J. Mach. Learn. Res. 20 (2019),
Paper No. 133, 34.

[140] Vince Knight. “Nashpy: A Python library for 2 player games”. In:
https://github.com/drvinceknight/Nashpy last visited 2023 March 25 (2016).

[141] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python”. In: Nature Methods 17 (2020), pp. 261–272.

[142] Stanislav Volkov. “Phase transition in vertex-reinforced random walks on Z with
non-linear reinforcement”. In: J. Theoret. Probab. 19.3 (2006), pp. 691–700.

[143] Jun-Kun Wang, Chi-Heng Lin, and Jacob Abernethy. “Escaping Saddle Points Faster
with Stochastic Momentum”. In: International Conference on Learning Representations.
2019.

[144] Wilson Jallet. “Entropic-MFG: Entropic variational mean-field games”. In:
https://github.com/ManifoldFR/entropic-mfg last visited 2023 March 25 (2020).

[145] David H Wolpert. “Stacked generalization”. In: Neural networks 5.2 (1992), pp. 241–
259.

[146] WSJ. “WSJ Medicare Unmasked reference”. In: https://graphics.wsj.com/medicare-
billing (2023).

[147] Chenwei Wu, Jiajun Luo, and Jason D. Lee. “No Spurious Local Minima in a Two Hid-
den Unit ReLU Network”. In: https://openreview.net/forum?id=B14uJzW0b (2018).

[148] Xin-She Yang and Suash Deb. “Cuckoo search via Lévy flights”. In: 2009 World
congress on nature & biologically inspired computing (NaBIC). 2009, pp. 210–214.

[149] Jiahe Yao et al. “Medicare fraud detection using wtbagging algorithm”. In: 2021 7th
International Conference on Computer and Communications (ICCC). IEEE. 2021,
pp. 1515–1519.

[150] Junzi Zhang, Brendan O’Donoghue, and Stephen Boyd. “Globally convergent type-I
Anderson acceleration for nonsmooth fixed-point iterations”. In: SIAM Journal on
Optimization 30.4 (2020), pp. 3170–3197.

BIBLIOGRAPHY 98

[151] Mo Zhou et al. “Toward Understanding the Importance of Noise in Training Neural
Networks”. In: International Conference on Machine Learning. 2019.

[152] Juntang Zhuang et al. “Adabelief optimizer: Adapting stepsizes by the belief in
observed gradients”. In: Advances in neural information processing systems 33 (2020),
pp. 18795–18806.

	Contents
	List of Figures
	List of Tables
	Introduction
	Related Publications

	MFGLib: A Library for Mean-Field Games
	Related Work
	Brief Overview of MFGLib
	Future Work

	Appendices
	Background on Discrete Finite-Horizon MFGs
	MFGLib Documentation

	Escaping Saddle Points Efficiently with Occupation-Time-Adapted Perturbations
	Background and Existing Results
	Main Results
	Empirical Results
	Conclusion

	Appendices
	Monotone Convergence of Gradient Descent
	Background on Convex Optimization
	Proof of Theorem 4
	Proof of Theorem 5
	Hyperparameter Settings in the Numerical Examples
	Image Classification Task Results of Adaptive Gradient Methods

	Leveraging Stacked Generalization to Effectively Detect Overutilization in Medicare
	Data Source, Preprocessing, and Labeling
	Overutilization Analysis via Machine Learning Techniques
	Discussion
	Limitations

	Appendices
	Data Source Details
	HCPCS Codes
	Labeling Process
	ML Models Details
	Nested CV
	Calibration Plots
	Further Overutilization Statistics
	Probability Threshold

	Bibliography

