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Abstract 

Motivated by issues at a manufacturer of customized- and standard messenger bags, we 

develop an iterative two-stage framework (involving marketing and operations models) to 

determine the conditions under which a firm benefits from production spackling.  With 

spackling, the firm uses flexible capacity to produce custom products as demanded each period, 

and then fills in, or spackles, the production schedule with make-to-stock output of standard 

products to restock inventory.  Spackling broadly addresses market preferences, while mitigating 

the effects of "bumpy" demand for custom products by smoothing production, thereby improving 

capacity utilization as compared to a focused approach, where standard items are made with 

efficient capacity and custom products with flexible capacity.  

The marketing model employs logit-based choice and, given product costs and customer 

preferences, identifies optimal pricing, expected demand, and demand variability. Interestingly, 

we find that, under certain assumptions, the firm should price all products to achieve a constant 

absolute dollar markup.  The resultant demand parameters are fed into an operations model, 

which specifies optimal efficient and flexible capacities (and decides between spackling and 

focus), thereby determining product costs, which are fed back into the marketing model to solve 

iteratively.  That is, we link operations decisions regarding capacity to marketing decisions 

regarding price, and vice-versa.  We examine conditions under which convergence of the two 

models is achieved, and illustrate our framework with data from the messenger bag 

manufacturer. 
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Spackling:  Smoothing Make-to-order Production of Custom Products with 

Make-to-stock Output of Standard Items 

1. Introduction 

Timbuk2, a San Francisco manufacturer of messenger bags, recently introduced an 

Internet site where customers configure and order a customized laptop bag direct from the 

manufacturer. This direct channel takes advantage of Timbuk2’s flexible manufacturing 

capabilities and complements the firm’s traditional retail channel where pre-configured bags are 

sold. In particular, Timbuk2’s San Francisco factory can rapidly produce a bag of any 

configuration and deliver it within days.  This combination of a flexible manufacturing system 

with a web-based custom configurator makes direct selling not only feasible, but quite attractive 

to the firm and its customers. 

Timbuk2’s management has considered moving at least some manufacturing offshore in 

order to reduce production costs, but although more efficient, the off-shore capacity would have 

longer lead times and would be unable to fill demand for customized make-to-order (MTO) bags 

in a timely manner. Management wonders what effect a shift to off-shore production of standard 

make-to-stock (MTS) bags would have on manufacturing cost and demand for all bags, 

including the custom bags produced in San Francisco.  Ultimately, of course, Timbuk2 is 

concerned with profitability.  

This paper developed as we sought to analyze Timbuk2’s situation. Should Timbuk2 

utilize efficient (off-shore) capacity? Or, should it continue to produce standard off-the-shelf 

configurations for retail demand with MTS production using the flexible production capacity in 

San Francisco, thereby establishing a mix of MTO and MTS manufacturing in the same factory?1  

(The term MTS refers to production in anticipation of demand, with output being added to 

inventory, while MTO production fills specific end-customer orders after they are received, as is 

the case for custom bags.)  What are the optimal prices in the two channels? How many 

                                                 
1 At Timbuk2, standard and customized products are associated with retail outlets and the direct internet 

channel, respectively. In reality, the distribution channel and product type need not be linked – the 
firm could also sell standard bags directly to customers and could sell customized bags through retail 
distribution. The resulting analysis would be similar, although the discussion would use different 
terminology.  
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customers are expected to buy standard products through the traditional retail channel, and how 

many are expected to buy customized bags via the Internet?  

In this paper, we address these questions by developing a simple two-stage framework, 

comprised of a marketing model integrated with an operations model.  We assume the firm 

markets both standard and custom products, and that customers make choices based on a linear 

random utility model such as the logit framework. Given the firm’s production costs, the 

marketing model determines the optimal prices (markups) for the standard and customized 

products. Remarkably, the marketing model shows that, under a representative customer 

framework, the optimal pricing policy is to add the same absolute dollar markup to the costs of 

standard and custom products (see §3 and Theorem 1).  These optimal prices in turn yield 

expected demand volumes for each, and the level of demand variability, by aggregating the 

probabilistic choices of individual customers. 

Given the demand parameters for standard and custom products, the operations model 

next determines the type and level of capacity to acquire, and whether to operate in MTS or 

MTO fashion. Capacity comes in two forms: efficient capacity which can only produce standard 

products in MTS fashion, and flexible capacity which can produce either standard or customized 

products and can operate in either MTS or MTO fashion.  That is, efficient capacity is associated 

with lower costs from a relatively steady production schedule for a limited set of product 

configurations, where output is added to inventory.  Flexible capacity, on the other hand, is 

associated with resources that can produce multiple product configurations on relatively short 

order and need not run at stable output, but is subject to a capacity constraint. The efficient and 

flexible capacities have different fixed and variable, per-unit costs.  

We solve the marketing and operations models sequentially, for tractability, recognizing 

that an optimal solution relies on solving them simultaneously, since the marketing model uses 

costs which are influenced by the operations model, and the operations model uses demand 

parameters (means and variances) to determine costs.  As we show in §5, under the right 

conditions an iterative approach converges to the jointly consistent, optimal solution. We show 

that when operations adds the incremental costs of demand stochasticity (due to overage and 

underage) as an input to marketing, the optimal prices and demand quantities differ from the 

prices based only the traditional fixed and variable unit costs.  Similarly, we show that when 

marketing provides feedback to operations regarding demand and its variability, production 
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capacities and costs change.  That is, the price and cost of a product are endogenous to our two-

stage model since price affects demand variability, and variability affects cost which affects 

optimal pricing.  We contend that joint consideration of marketing and operations decisions 

improves the firm’s expected return. 

We illustrate another key result qualitatively in Figure 1.  The firm’s choice of operating 

regime depends on the firm’s production capabilities, in particular, the cost premium for flexible 

production when compared to efficient production. 

Figure 1 Optimal Strategy is Determined by the Cost Premium for Flexible Production 

 High cost premium Low cost premium 

 Focused Strategy: Spackling Strategy: 

 Use efficient capacity to make 
standard products via MTS. 

Use flexible capacity to make custom 
products via MTO. C

os
t B

ou
nd
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 V
 

Use one flexible capacity resource to 
make both standard products via MTS 
and custom products via MTO. 

When demand exists in significant quantities for both standard and customized products, 

a firm might traditionally implement a focused strategy whereby one efficient facility (or 

production line) focuses on standard products, managed in MTS fashion, and a separate flexible 

capacity focuses on custom products, operated as MTO.  We indeed find this to be optimal if 

efficient capacity is sufficiently less expensive.  However, as the cost penalty for the flexible 

resource diminishes, it becomes more attractive to consider a dual MTS/MTO strategy we call 

spackling.2  A theoretical contribution of this paper is to define the cost boundary, denoted by V 

(see §4), between the strategies of focus and spackle. 

With spackling, the firm acquires only flexible capacity.  Its first priority in any given 

period is to produce custom products via MTO.  However, order patterns for custom products are 

bumpy (uncertain), yielding an undesirable production profile compared to smooth schedules 

that would allow for higher capacity utilization. Thus the firm uses the same (flexible) 

production capacity to produce standard products in MTS fashion, to “fill in the holes” in the 

                                                 
2 The American Heritage® Dictionary of the English Language: Fourth Edition 2000 defines spackle as 

“A trademark used for a … paste designed to fill cracks and holes in plaster before painting or 
papering.  This trademark often occurs in lowercase and as a verb…” 
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production schedule, as shown in Figure 2.  The result is that MTO production closely tracks 

demand for customized products, while MTS output tracks demand for standard products, not 

over the short-run but rather over the longer-run, with some inventory build-up.  In the spackling 

case, total production output is relatively smooth, or spackled, allowing for higher utilization of 

the flexible capacity, and improved efficiency.   

 

Figure 2 Spackling Yields Steady Total Output Stream From One Production Facility 

Custom products made via MTO using flexible capacity

Standard products made via MTS using flexible capacity
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Total output is close to capacity

Time
 

We apply our model to Timbuk2’s situation and derive the reservation prices and price 

sensitivities of individual customers based on information attained in a three-stage study 

regarding customer preferences.  In the first stage, 297 MBA students at MIT completed a 

conjoint survey, while in stage two they configured and “purchased”3 a customized Timbuk2 

bag, and in stage three they completed a follow-up questionnaire. On the operations side, we use 

projected cost information from Timbuk2.  Solving the marketing and operations models 

iteratively, we characterize the conditions under which Timbuk2 might prefer a spackling 

strategy over a focused one. In essence, we determine, for Timbuk2, the boundary between 

“focus” and “spackling” as illustrated in Figure 1. In doing so, we also inherently address their 

questions regarding pricing, relative volumes for custom and standard products, and profitability.   

In summary, we address issues at the marketing / operations interface, finding: 

                                                 
3 Students were given money a $100 allowance to buy a bag, and received a refund if their selection was 

priced at less than $100.  
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(1) Prices and costs are endogenous: Marketing’s pricing decisions depend on costs, and 

determine demand.  Demand impacts operations decisions, which determine costs, including 

“hidden” costs such as overage and underage costs resulting from demand variability.   

(2) Pricing should be based on a constant absolute dollar markup: If our assumptions hold, it is 

optimal to price products by adding the same fixed-dollar markup to costs. 

(3) The optimal operations strategy is determined by the cost premium for flexible production: 

The firm’s choice between focused operations and spackling depends on the relative cost 

advantage of efficient production; the boundary between the two policies is quantified. 

The rest of this paper is organized as follows. We discuss the relationship of our work to 

the literature in §2.  We develop the marketing and operations models in §3 and §4, respectively. 

In §5 we examine conditions that lead to convergence of the marketing and operations model.  In 

§6 we apply the models to the case of Timbuk2, and we conclude with a discussion in §7.    

2. Literature Review 

Determining how best to supply a wider variety of products at low cost in the face of 

uncertain demand has been a topic of much recent attention.  Some of the research deals with the 

supply side of the equation, e.g., the design, manufacture, and distribution of the product.  Other 

work addresses the demand side, e.g., determining how demand reacts to broader product 

offerings or to shorter lead times. 

On the supply side, our research question relates to that of finding the optimal mix of less 

costly, dedicated capacity and more expensive, flexible capacity, as modeled by Van Mieghem 

(1998). In his model the firm decides between production using only dedicated capacity, only 

flexible capacity, or a mix of both, as determined by the marginal cost of flexible capacity.  All 

production is MTO, in that capacities are allocated to products after demand is observed.  He 

finds that it may be advantageous to invest in more expensive flexible resources even with 

perfectly positively correlated product demands. We find additional support for expensive 

flexible resources. In a different framework, where we assume that production can be MTO or 

MTS and that both fixed and variable costs are a function of the type of production, we show the 

positive effect on efficiencies possible with flexible resources through production smoothing. 

Other works that consider hybrid approaches to Operations include Eynan and Rosenblatt 

(1995), Federgruen and Katalan (1999), Rudi (2000), and Muckstadt, et al. (2001).   
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Eynan and Rosenblatt (1995) study the trade-offs of lower cost assembled in advance 

production with the higher cost of assemble to order but that doesn’t incur excessive and 

unnecessary assembly costs. Federgruen and Katalan (1999) develop a stochastic Economic Lot 

Scheduling Problem (ELSP) that evaluates cost and performance measures such as inventory 

level and waiting-time distributions, as well as average setup, holding, and backlogging costs 

under a dual MTS/MTO system.  Rudi (2000) considers the trade-offs of low-cost, long-lead 

time production in the Far East (Make to Stock) and local production with short lead times and 

pre-positioning of components (Assemble to Order). 

Muckstadt, et al. (2001) propose a hybrid MTO/MTS production environment (although 

they use different terminology) for making capacity allocation and inventory stocking decisions 

in a capacitated system where demand for a large subset of assembled items is highly erratic.  

The hybrid system uses MTO production for items (called B/C-type) with highly erratic demand 

while using MTS production for more predictable A-type items. They compare the performance 

of the hybrid system to an alternative system where all production decisions are made prior to 

observing demand (MTS).  Our spackling model has a similar structure but is motivated by a 

different setting where MTS production is possible at a lower cost to meet demand for a standard 

product. 

Arreola-Risa and DeCroix (1998) study the optimality of MTO versus MTS policies for a 

company producing multiple heterogeneous products at a shared manufacturing facility. They 

model demands as independent Poisson processes with different arrival rates and derive 

optimality conditions for MTO versus MTS policies considering trade offs in inventory holding 

costs and backordering costs. Graman and Magazine (2000) study the impact of postponement 

capacity on the ability to achieve the benefits of delayed product differentiation and conclude 

that very small postponement capacity is needed to achieve all of the benefits of completely 

delaying product differentiation for all customer demand. Gupta and Benjaafar (2001) consider 

delayed product differentiation as a hybrid strategy that strives to reconcile the dual needs of 

high variety and quick response time. Rajagopalan (2002) considers the portfolio of products at a 

company and develops a model to determine which products should be made to order and which 

should be made to stock. Our paper considers the possibility of producing a single product under 

both MTS and MTO. 
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The idea of dedicated capacity and reactive capacity, as put forth by Fisher and Raman 

(1996), is also related to our approach.  Early in the production season, capacity is dedicated to 

products having low demand variability (effectively production is MTS).  Capacity used late in 

the season can react to closer-to-actual demand (effectively production is MTO).   

The demand side of the issue involves at least two key issues: variety and lead time. 

Variety is an issue because as it increases, pooling benefits are lost and demand uncertainty 

generally increases.  (Uncertainty creates an incentive for MTO:  if we knew exactly how much 

product would be ordered, we could simply produce it as MTS without any risk.)  Also, an 

increase in variety reduces the volume for any given product, such that the variable cost of MTS 

goes up if there are economies of scale.  Lancaster (1990) offers a survey of papers addressing 

the variety issue.  The second issue is lead time, as examined by Li (1992), for example.  If 

customers were always willing to wait, again we simply would produce all the items as MTO 

without any risk.  Similar to our results, he finds a boundary between MTS and MTO as 

reflected by newsvendor–type results, and although he does not consider the possibility of the 

dual strategy as we do, he examines the effect of competition. 

Our research contributes to a small, but growing literature that touches on the integration 

of marketing and operations management decisions, cf., Chase (1996), Eliashberg and Steinberg 

(1993), Karmarkar (1996), Lovejoy (1998), and  Verma, et al. (2001).   

3. Marketing Model 

In this section we present an analytical framework for determining the optimal prices for 

standard and customized products, given product costs.  These prices, in turn, establish expected 

sales volumes for each type of product and the variance in demand for custom products.  After 

presenting the operations model in §4 and discussing how to solve jointly the operations and 

marketing models in §5, we apply the approach to actual data from the messenger bag 

manufacturer in §6. 

We take as a given the feature levels the firm incorporates into its standard product and 

the menu of customizable features it offers to customers.4  We assume the firm has measured 

each customer’s willingness-to-pay for each possible product attribute, scaled into dollars.  This 
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might be done, for example, through conjoint analysis and user design, as described by Dahan 

and Hauser (2002). We further assume that this assessment also measures the perceived benefit 

the customer realizes by taking delivery immediately (as with products already in inventory) as 

opposed to having to wait for delivery of custom goods.  Thus we can find each customer’s 

dollar-scaled utility for any given product, be it a standard product, or any of the customized 

versions available. 

Let cj denote product j’s cost and pj its price, such that mj ≡ pj – cj denotes the firm’s 

dollar markup on product j.  Here, product j can be a standard product (or any one of the 

standard products, if there are multiples standard offerings) or any one of the custom products. 

Within each iteration of the marketing model we assume cost is independent of pricing – by 

accounting for overage and underage costs in the operations model described in §4, and then 

iterating to find a solution that is consistent between the marketing and operations models as 

described in §5, we ultimately incorporate these costs into marketing’s pricing decision. 

Let r i
j denote customer i’s expected dollar-equivalent utility for product j, excluding the 

attribute of price: we refer to r i
j as customer i’s reservation price for product j. If viewed 

deterministically, then given the choice of buying product j or buying nothing, customer i buys at 

a price below r i
j [cf., Schmidt and Porteus (2000)].  An alternate approach that we use here is to 

treat the purchase decision as probabilistic, using the logit formulation as described by Ben-

Akiva and Lerman (1985) and Guadagni and Little (1998), such that r i
j can be viewed as the 

price at which “noise” is equally likely to push the customer’s purchase decision one way or the 

other (r i
j is the point at which she has a 50% probability of buying product j if her only other 

choice is to buy nothing).  

Define d i
j ≡ r i

j – cj as the discriminating markup; it is the markup the firm could achieve 

in selling product j to customer i if it could perfectly price discriminate at the individual 

customer level (to the first degree), under deterministic customer choice.  Customer i’s net utility 

from buying product j at price  pj is (r i
j – pj) = (d i

j – mj), since d i
j ≡ r i

j – cj and mj ≡ pj – cj.  It is 

this expression, (d i
j – mj), for net utility that we employ in our logit-based choice probabilities. 

                                                                                                                                                             
4 The design of the stock product(s) and customization options impact profitability in their own right, but those 

analyses are outside the scope of the present article.  We take these decisions as a constraint on our optimization. 
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We assume each customer’s net utility is scaled by a “price-sensitivity parameter” β i, 

such that the net dollar value customer i attaches to product j is β i (d i
j – mj) + ε i

j where ε i
j is a 

random error term assumed to be distributed Gumbel, i.e. double exponential, such that ε i
j – ε i

k 

is distributed logistically; hence the standard logit formulation applies.  Let P i
j denote customer 

i’s probability of purchase for product j.  Given t choices, a customer’s probability of purchase of 

product j is, following the logit formulation:  

 P i
j = exp[β i(d i

j – mj)] / Σ
t
k=1[exp(β i[d i

k – mk])]. 
(1)

In addition to its choice of buying one of the t products, we assume the customer has the 

option to buy nothing from the firm.  For this option, exp(β i[d i
j – mj]) = exp(β i[0]) = 1.   

To aid in determining the firm’s pricing strategy, we state in Lemma 1 a version of the 

“constant absolute markup property” that follows from this formulation.  This property is noted 

in Anderson, et al. (1992), p. 251, in a somewhat different context – we include in Appendix I a 

proof in the setting of our model.  

LEMMA 1. If customer i is, in isolation, choosing between buying any one of t products offered 
by a single firm or buying nothing from the firm, the firm should price all t products 
at the same absolute dollar markup, denoted by m*.  The implicit solution for m*, 
which exists and is unique, is given by: 
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(3)

Lemma 1 does not appear to be a well-known result, so a brief interpretation seems 

appropriate.  When considering only one customer in isolation, the firm finds it optimal to price 

all products at a constant absolute dollar markup.  If it deviates from m* by, say, increasing the 

markup of product i, there are several competing consequences.  It gets higher margin on product 

i, but reduces i’s expected unit sales (i.e., its probability of purchase).  In turn it increases the 

expected unit sales (and profit) derived from each of the other products, but diminishes total 

expected unit sales.  Thus it is not clear which effect will dominate – Lemma 1 suggests there is 

always a profit loss by deviating from m* for any product. 

 
10



At first glance it may appear that the firm fails to take advantage of a customer’s 

preferences by pricing all products at equal markups.  Such intuition is misguided: if the 

customer strongly prefers any one product j (relative to the firm’s cost for that product), then d i
j 

will be relatively high, yielding, per (3), a relatively high P i
j.  Linking this back to (2), a product 

that is strongly preferred (leading to a relatively high P i
j) will dominate in determining the 

markup m*.  In other words, the firm will set the markup largely based on the product(s) that are 

most favored by the customer.  Products that are not so well liked by the customer will get the 

same markup, and accordingly will not likely be purchased.  Rewriting (2) as: 

 ( ) 11*
1

=−⋅⋅ ∑ =

t

j
i
j

i Pm β , 
(4)

we take note of the trade-off between its three terms.  The first term is the markup m*, the 

second is the customer’s price sensitivity β i, and the third term (1 – Σ
t
j=1 P i

j) is the probability 

that the customer doesn’t buy from the firm.  Given some β i, if the customer has a high 

probability of not buying (i.e., if the firm’s products are not strongly preferred), then the firm has 

to “price low” to compensate.  If the customer has a high probability of buying, the firm can 

“price high” to take advantage of its well-liked product(s).  If the customer is more price-

sensitive (i.e., if β i is higher), then the firm must reduce price or face reduced sales.  

Next, consider the firm’s pricing strategy when it creates its product assortment by 

adding or deleting individual features (i.e., options) from a “base unit.” For example, automobile 

manufacturers might typically suggest a retail price for a base configuration, along with prices 

for individual options (the firm may also quote deductions from the base price if certain features 

are deleted).  We assume the cost of any finished unit is equal to cost of the base unit plus the 

cost of the supplemental features.  

COROLLARY 1. Given the situation described in Lemma 1, it is optimal for the firm to 

price the base unit at cost plus m*, and price each option to be added or deleted at cost.  

Corollary 1 suggests that the firm needn’t optimize the price of each individual option, 

but only the price of the base unit.  Of course, the base-unit price accounts for the desirability of 

the product, which depends to some extent on the menu of upgrade options that accompany it.  

The notion of pricing all options at cost seems counterintuitive.  While outside the scope of this 

paper, further investigation is merited, as such pricing does not appear to be widely practiced.  
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For example, it might help address the complex task of optimizing product assortment that many 

researchers have addressed (cf., Chong, et al. (2001)). 

To simplify our model, we adopt the “representative customer” approach to duplicate, or 

approximate, the aggregate results of the entire population.  Ben-Akiva and Lerman (1985) 

describe the representative customer approach in their discussion of aggregate forecasting 

techniques, and Anderson, et al. (1992) discuss its validity.  One interpretation is that ε i
j is not a 

random error term, but rather, it accounts for differences in the way various customers value 

product j.  That is, the representative customer approach is valid if the differences in customer 

evaluations of a given product are distributed Gumbel.  Another possible interpretation is that 

customers are all part of the same market segment (i.e., all customers are, for practical purposes, 

“identical”).  From here on, we simply use β and dj (without superscripts) to denote the 

characteristics of the representative customer.   

In our situation, the customer must, at one level, choose between buying a standard 

product off-the-shelf or ordering a custom product, and must, at another level, make a choice 

regarding each and every option (if buying custom).  Since logit requires that the various 

alternatives be “equally dissimilar” (to avoid the “red bus/blue bus” paradox), we assume the 

customer has selected her most-preferred5 custom product, and likewise her most-preferred 

standard product and we focus on the customer’s choice between, a) her most-preferred standard 

product, b) her most-preferred custom product, and c) buying nothing.  Accordingly, we now 

restrict our consideration of j to j∈{c, s}, where c denotes the customer’s representative custom 

product and s denotes the (representative) standard product.6  Given corollary 1, we assume the 

firm prices the base custom product to achieve markup mC*, and then prices all options at cost.  

Similarly, the markup for a standard product (or products) is denoted by mS*.   

                                                 
5 Alternately, we might assume the customer picks a “representative” custom product, where this 

representative product is assumed to encapsulate the customer’s preferences toward all custom 
products, similar to the way the representative customer is assumed to encapsulate the characteristics 
of all customers.  

6 This restriction ignores the endogeneity of the firm’s pricing decision with the customer’s selection of 
her most preferred product. That is, the customer cannot select her representative custom product until 
prices are set, and the firm cannot set prices before it knows the customer’s representative custom 
product. We assume either these are solved simultaneously, or that an iterative approach is used.  An 
alternate approach would be to formally apply a nested logit model (see Guadagni and Little (1998)).  
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Let µ j denote the expected demand for product j over the population of N customers, then 

µ j = Σ
N
i =1 P i

j with variance of demand σ j
2 = Σ

N
i =1 P i

j (1 – P i
j), since each purchase choice can be 

thought of as a Bernoulli event.   

The operations model in the upcoming section requires the variance of demand only for 

the custom products, which we denote by σ2.  

THEOREM 1. The optimal absolute dollar markups for the standard and custom products are 
equal, as given by (2).  As , demand for custom units ~N → ∞ ( 2,cN )µ σ  and 
expected demand for standard  units is Sµ  with: 

 CC PN ⋅=µ , ( )CC PPN −×⋅= 12σ , and SS PN ⋅=µ . (5)

Assuming a relatively large population N, demand for each product at any given set of 

prices will approach normality, since under the representative customer assumption, the success 

probabilities are homogeneous, and the well-known normal approximation of the binomial 

distribution applies.  Numerical analysis suggests that the optimal markup of Theorem 1, m*, is 

convex decreasing in the cost of each product, asymptotically approaching 1 β  as the purchase 

probabilities vanish (i.e., as costs become excessive or as willingness-to-pay disappears).   

To analyze the Timubuk2 data, in §6 we employ a numerical approach.  Given the 

distributions of β i and  d i
j, we search numerically for the optimal markups mS

* and mC
* yielding 

the highest profit µ S mS
* + µC mC

*.  The demand curve is found by using (5) to find each 

(potential) customer’s purchase probability for each type of product (standard and custom), and 

summing these to find total expected demand for each type. We do not rely on the representative 

customer approach in our analysis of the Timbuk2 data, but normality still applies since by 

Liapounov (see DeGroot (1975), p. 229), the sum of Bernoulli events with heterogeneous 

success probabilities is normally distributed as the number of events approaches infinity. While 

in our observations we have found the profit function to be well-behaved, a numerical search 

ranging from zero markup to the point where demand falls to zero can be performed to insure 

that the point of maximum profit is located within some arbitrary value ε.  Using the logit 

formulation in this fashion we are able to estimate the mean and variance of the normal demand 

distribution for each type of product, given a set of customer preferences, products, and prices. 

 
13



In summary, we use the marketing model, employing either the analytical approach or the 

numerical approach, to find the point of maximum profit, and feed the associated demand 

expectations and variances into the operations model which we describe next.   

4. Operations Model  

We develop a simple operations model to gain insights regarding the operations issues, 

given the demand parameters specified by the marketing model for both standard products and 

custom products.  We consider a single-period model where demand is realized over T 

subperiods, with T being the lead time to stock retail inventory of standard products. At the 

beginning of each subperiod, the firm receives its orders for customized products and must 

deliver them by the end of that subperiod. We do not account for holding costs. 

Let cµ  and µs denote the mean demands for custom and standard products each 

subperiod, respectively (as determined by the marketing model).  Demands for standard products 

from retailers are assumed to total exactly Tµs units due at the end of the period. Our assumption 

of deterministic demand for standard products is a modeling simplification but uses the rationale 

that retail orders are for restocking inventories, where lead times for such orders are T superiods 

and once an order is accepted, it can’t be altered. Demands for custom products are assumed to 

be independently and identically distributed following a normal distribution ( )2~ ,c cF N µ σ  in 

each subperiod.  

We consider two strategies. The first is a focused strategy, under which an efficient 

production resource focuses on making standard products in MTS mode, and a flexible 

production resource focuses on making custom products via MTO. Given our assumption that 

demand for standard units is deterministic, the firm will set efficient capacity at exactly µs per 

subperiod. The firm will hold a flexible capacity exceeding expected demand for custom 

products if the underage (shortage) cost for customized products is significantly higher than the 

overage cost, experiencing relatively low utilization of its flexible capacity.  

As an alternative to a focused strategy, we consider spackling, a dual-strategy of MTO 

and MTS production that utilizes only flexible capacity but in such a manner that production is 

greatly smoothed (allowing for increased utilization, and thus increased efficiency of the flexible 

capacity). With spackling, the firm first meets its demand for custom products and then uses 
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leftover flexible capacity as needed in making standard products (where a standard product is 

merely one particular version of a customized product). The firm holds only flexible production 

capacity, making standard products as a lower-priority filler to smooth out (or spackle) the more 

unpredictable production that is triggered by demand for customized products.  

We can equivalently describe the firm’s choice between focused and spackling strategies  

as being one of setting production capacities for efficient and flexible resources. A focused 

strategy acquires strictly positive amounts of both types, while a spackling strategy acquires only 

flexible capacity. Let KE and KF denote the capacities of the efficient and flexible resources, 

respectively, where one unit of capacity can make exactly one unit of one product per sub-

period.  Let Eθ  denote the fixed cost per subperiod for a unit of efficient capacity (used only in 

the focused strategy to make standard units) and Fθ  be the fixed cost of flexible capacity (used 

in the focused strategy to make custom units, and in the spackling strategy to make both standard 

units and custom units), and let cE and cF  denote their respective variable production costs per 

unit. Since efficient capacity can only make standard products, θE and cE can be used in a 

straightforward manner to determine the average cost of standard units.  However, 

interpretations of θF and cF merit some clarification. Recall from the marketing model that we 

can view a custom product as some base product plus or minus a set of options. Without loss of 

generality, we define such base product to be the standard product.  Also, recall that we assume 

we achieve the same markup on all custom products, such that we effectively sell all options at 

cost and simply set the markup on the base product. Similarly, here we assume θF and cF apply 

to the base (standard) product and we ignore all costs of features added (or subtracted) from the 

base.  

The firm’s decision is as follows.  At the beginning of the period (i.e., the first subperiod) 

the manufacturer sets efficient and flexible capacities KE and KF (if the firm chooses KE = 0, i.e., 

to spackle, then we simply denote flexible capacity by K). Let
1

T
T i cX X

=
= ∑  denote the (random) 

demand for custom products over T subperiods where ~c cX F  and ~T TX F

K

. If capacity is 

insufficient to meet demand, expensive production (or outsourcing) is used at a variable cost of 

cP per unit. (We will show in the next section how cC and cS, as used in the marketing model, are 

related to cE, cF, and cP.)  For the spackled production case we assume cµ << ; the firm always 
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has sufficient capacity each subperiod to meet customized orders, i.e.,  iX K i< ∀ .  (See Figure 

2.) (Significant demand for standard units will justify this assumption, since the capacity is used 

first to meet demand for customized products, but must also meet demand for standard products.) 

) ( )F P Fc c− − 

F

In the case where there are separate flexible and efficient capacities focusing on 

customized and standard products, respectively, the optimal flexible capacity is as determined 

from the traditional newsvendor problem with (* 1
F c P FK F c c θ−= − . The optimal 

capacity for efficient production is simply *
E sK µ= , per our earlier assumption of deterministic 

demand for standard products. 

In the spackled-production case, K units are produced in total in each subperiod until 

sT µ units of standardized products have accumulated: iX  units of customized products and 

 units of standard products. If demand over the T subperiods for customized products is 

less than 

iXK −

( )sT K µ− , the firm makes sT µ  standard units and then stops producing standard 

products for the remaining subperiods.  If period demand for customized products is greater than 

( )sT K µ− , then there is a shortfall of standard products which is filled with expensive 

(outsourced or overtime) production at an incremental cost of cP c−  per unit. We balance the 

fixed costs of capacity with the shortfall cost to determine the optimal capacity K.   

We make the following assumptions: 

(A 1) , , , , 0P F E F Ec c c θ θ > .  All production costs are greater than zero. 

 (A 2) F Fc Pcθ+ < : We avoid the uninteresting case where the firm would never invest in 

flexible capacity. 

Theorem 2 below suggests that the firm’s optimal capacities, KE * and KF *, depend on 

the premium for flexible production, ( ) ( )F F E Ec cθ θ+ − + .  In preparation for Theorem 2, define 

V as follows (interpretation follows the theorem):  

( ) ( ) ( )( )* *
F P F

s

T T z c c L z
V

T

σ θ

µ

− + −
≡          (6) 
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where ( ) ( )(* 1
P F F P Fz c c cΦ θ−= − − − )c

V

, the standardized variate for the given fractile and 

is the standard normal loss function.  ( )L z

THEOREM 2. The optimal capacities KE
* and KF

 * are: 

Case A: 

  If ( ) ,  then ( )F F E Ec cθ θ+ − + ≥

 

KE
 * = sµ  and 

KF
 * = ( ) ( )1 /c P F F P FF c c c cθ− − − −    

       *
c zµ σ= +   

 

 

Case B: 

   If  ( ) , then ( )F F E Ec cθ θ+ − + < V

 

KE
 * = 0  and 

K*=KF
 * = ( ) ( )11 /T P F F P FF c c c c

T sθ µ− − − −   +  

       *1
c s z

T
µ µ σ= + +   

 

Case A corresponds to the case of individual capacities focused on standard and custom 

products while Case B corresponds to production spackling, where there is only flexible capacity 

but it is used in a dual sense: part of it is used in response to orders while the remainder is used 

to produce to inventory, capitalizing on the schedule flexibility of MTS orders. Safety capacities 

for the two cases are ( )*  and 1z T *zσ σ , respectively.   

In Theorem 2, V determines the boundary between Case A and Case B, and this 

effectively defines the boundary between the columns in Figure 1.  That is, Figure 1 suggested 

spackling is preferred if the cost premium for flexible production is “low,” and Theorem 2 

defines “low” – anything below V.  The definition of V implies that spackling is most compelling 

when demand for custom products is more variable (σ  is large), the lead-time for production of 

standard units is long (T is large), demand for standard products is low ( Sµ is small), the penalty 

for insufficient capacity is high (cP – cF is large), and, of course, when the premium for flexible 

production is small ( ( ) ( )F F E Ec cθ θ+ − +  is small). This implies spackling is relevant for 

manufacturers of customized products who struggle to achieve high utilization due to high 

shortage costs along with highly variable demand, but who also have at least some demand for 
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standard units.  While we have not accounted for holding costs in our model, we note also that 

spackling is less attractive when holding costs are high for standard products since significant 

MTS inventory may accumulate over the T subperiods. 

By setting optimal capacities we implicitly establish average costs, cC and cS (as 

delineated in §5), to be fed back to the marketing model in an iterative process described in the 

next section. 

5. Joint Solution to the Marketing and Operations Models 

Separately, the marketing model and the operations model each determine optimal profits 

given their inputs, but without iteration the two solutions generally do not coincide because the 

average cost used by the marketing model may not be the same as the average cost that is 

subsequently derived by the operations model. Likewise, the demand parameters used by the 

operations model may not the same as those subsequently derived by the marketing model. 

Jointly, a closed-form solution for the combined marketing and operations models is not 

achievable given that we do not have a closed-form solution for the demand curve with the logit 

model. However, for a given set of inputs into the marketing model we can solve it numerically, 

feeding the results into the operations model, whose results we feed back into the marketing 

model, and so on.  If such iteration results in convergence, then the optimal decisions of the 

operations and marketing models will be jointly consistent. That is, at the point of convergence 

the two models will consistently account for average costs and demands, and yield the same 

expected profit.  

We describe an iterative method used successfully with the empirical data and numerical 

examples described in §6.  With this method we iterate to find the jointly consistent optimal 

solution assuming spackling is used, and separately iterate to find the consistent solution for the 

case of focused facilities, assuming each solution converges.  Then we compare the two 

solutions and pick the one offering the higher profit, thus determining whether spackling or 

focused production is preferred. This process has been shown in our examples to be consistent 

with Theorem 2 (for example, if the solution is to spackle, then Theorem 2 says spackling is 

optimal when V is calculated using the demand parameters suggested by the convergent 

spackling result).  
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First consider the case of spackling: the total expected cost, as derived from the 

operations model, is comprised of the fixed cost, T θF [µC + µS + z* σ / √T], plus the expected 

variable cost T cF (µC + µS), plus the expected shortage cost, incurred when leftover demand for 

standard units is filled with expensive emergency production, (cP – cF) √T σ L(z*).  Let vSpackling 

 ≡ σ / (µC + µS) denote the coefficient of variation in total demand. From Theorem 1 we find:  

vSpackling = √ (exp(β dC) [β m* exp(β m*) – exp(β dC) ] / √N) / [exp(β dC) + exp(β dS)]. (7) 

We determine an average unit cost for both standard and custom units, which are built in 

the same facility, by dividing total expected cost by total mean demand, T (µC + µS), to attain: 

cS = cC = θF + cF + vspackling [(√T)–1 [z*θF + (cP – cF) L(z*)]]. (8) 

We call this the fully-absorbed cost, and use cS = cC as calculated by (8) in the subsequent 

iteration of the marketing model. Note that this cost is a function of vspackling, which is an output 

of the marketing model; all other parameters that go into calculating cS = cC are unaffected by the 

marketing model.   

Applying similar logic to the case of focused production (where an efficient facility 

produces standard products and a flexible one makes custom products), the fully-absorbed unit 

cost of a standard product is cS = θE + cE (there are no overage or underage costs).  Let 

vfocus ≡ σ / µC denote the coefficient of variation in demand for custom products.  From (5): 

vfocus = √ ( [β m* exp(β m*) – exp(β dC) ] / [N exp(β dC) ] ). (9) 

And the fully-absorbed unit cost of a custom product is:  

cC = θF + cF + vfocus [(z*θF + (cP – cF) L(z*)]. (10) 

Using these costs, the iterative process for spackling, or for focus, proceeds as follows.  

Without loss of generality, assume we start with the marketing model. In the ith iteration we input 

costs cC
i and cS

i into the marketing model, which determines a coefficient of variation in demand 

vi (we use vi to denote vi
focus in the case of focus and vi

spackling in the case of spackling) and the 

expected demands.  Inputting vi into (8) if iterating to find the spackling solution, or into (10) if 

iterating to find the solution for focus, determines new costs cC
i+1 and cS

i+1, which are returned to 

the marketing model to find vi+1.  In the case of focus, cS
i+1 = cS

i (standard products aren’t 

affected by iteration), and in the case of spackling cS
i = cC

i, such that in either case we need only 

concern ourselves with how one cost changes from iteration to iteration: in the case of focus let 

ci ≡ cC
i and in the case of spackling let ci ≡ cC

i = cS
i. The profit derived from the combined sales 
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of standard and custom products, as calculated from the marketing model, is a function of the 

input cost ci, such that we denote this profit by πi(ci).   

Recall from the marketing model that the coefficient of variation in the ith iteration, vi, is 

a function of the customers’ probabilities of purchase, which in turn are functions of differences 

between discriminating and actual markups, which are determined by the prices set by the firm 

and its average cost.  Thus given the customer preferences, vi is a function of cost ci, and can be 

expressed as vi(ci).  Plugging vi(ci) into (8) or (10), as appropriate depending on whether we are 

considering spackling or focus, we find ci+1 is linearly increasing in vi(ci) such that based on this 

chain of dependencies we use the notation ci+1 = g(ci). 

Effectively, the marketing and operations models each find the optimal profit given their 

inputs; the problem reduces to one of finding the average cost ci and coefficient of variation vi(ci) 

that do not change from one iteration to the next. Consider the case of spackling – if ci converges 

in the iterative process, then vi(ci) also converges (given that vi(ci) is well-behaved, which we 

assume), and we say the marketing and operations models are consistent for the case of 

spackling.  Similarly for the case of focus. 

For ci ≥ 0, we make the following assumptions, which we have found to hold in our 

limited numerical studies:  

ASSUMPTION (A1):  g(ci) is strictly positive, continuous, smooth, differentiable, and strictly 

convex with 
( )

lim
i

i

ic

g c
c→∞

= ∞ .   

ASSUMPTION (A2):  πi′(ci) ≤ 0: the profit as derived by the marketing model goes down as the 

cost input into the marketing model ci increases. 

Given (A1) and (A2), either there is a most-profitable point of convergence, denoted by 

c∞, where the optimal solution to the operations model is consistent with the optimal solution to 

the marketing model, or there exists no solution that is consistent to both the marketing and 

operations models.  To see this, without loss of generality, first consider the case of spackling.  

As illustrated in Figure 3, clearly, if g(ci) > ci ∀ ci, then c∞ does not exist and there exists no 

profitable consistent solution for spackling.  If c∞ exists, then it is the most profitable consistent 

solution for spackling, since any other consistent solution will offer less profit, given πi′(ci) ≤ 0.  

Similar logic holds for the case of focus.  If c∞ exists for both spackling and focus, and if the 
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most profitable of these yields a positive profit then it is the optimal profitable consistent 

solution.  If c∞ exists for only spackling or only focus, and profit is positive under this solution, 

then it is the most profitable consistent solution.  If none of the above holds, or if c∞ does not 

exist for either spackling or focus, then there is no profitable consistent solution.   

Figure 3   Convergence of Numerical Solution 
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In our numerical studies, we approximate the value of c∞ or determine that it does not 

exist by using the following algorithm (we do so individually for the case of spackling and for 

the case of focus).  Without loss of generality, begin iteration with the marketing model. Pick an 

arbitrarily small number ε (the smaller you pick ε, the closer c∞ will be approximated, if it 

exists).  Set i = 1 and c1 = 0. Use the marketing model to find v1(c1), then set i =2 and find c2 = 

g(c1).  (Given that g′(ci) < 1 from (A1), we find that, should c∞ exist, 0 < ci < ci+1 < c∞.)  Then:  

1) Use the marketing model to find vi(ci) at the point of maximum profit. 

2) Find ci+1 = g(ci).  

3) Check if ci+1 – ci > ci – ci–1.  If so, stop: c∞ does not exist.   

4) Check if ci+1 – ci < ε.  If so, stop: ci+1 is an approximation of c∞.  If not, set i = i 

+ 1 and return to step (1). 

Note that if c∞ exists, ci+1 would also converge to c∞ for any initial value c1 that is less 

than what is labeled in Figure 3 as the unstable equilibrium. The unstable equilibrium is a 

possible second point where the marketing and operations models are consistent, but where the 
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profit is less than at the earlier (stable) equilibrium point c∞, since πi′(ci) ≤ 0.  Further, the initial 

choice of c1 must exactly match this point for it to be an equilibrium (an initial choice of c1 

above the unstable equilibrium results in divergence). Accordingly, in our algorithm we use an 

initial starting point of c1 = 0.  

6. Empirical Analysis and Examples 

6.1. Marketing Model 

Timbuk2’s launch of a new laptop bag offered a setting in which to apply some of our 

model concepts.  We first analyzed data from a three-stage study to determine customer 

preferences, allowing us to calculate each individual’s probability of purchase as a function of 

price, delivery time, and bag features.  From this, along with cost information, we numerically 

searched to find the firm’s optimal pricing and the accompanying expected sales of custom and 

standard bags, along with an estimate of the variance in sales. 

The three-stage analysis consisted of the following steps.  First, 297 MBA students at 

MIT participated in an adaptive conjoint analysis, as described by Dahan, et al. (2002). The 

conjoint survey involved nine attributes, including size (medium or large), color (red or black), 

type of closure of the laptop sleeve (a full flap or a small tab), and six “on-off” attributes (by on-

off we mean the bag either included the attribute or lacked it).  The on-off attributes were a logo, 

a holder for a cell phone, a holder for a personal digital assistant, a laptop sleeve, a mesh pocket, 

a bottom boot, and a carrying handle separate from the shoulder strap.  From the conjoint we 

were able to determine part-worths for each attribute (how much each attribute adds to a 

customer’s reservation price, as compared her reservation price for the product without that 

attribute).  However, from the conjoint data alone we could not determine a customer’s 

reservation price for a bag in its entirety (the conjoint did not give the customer the option to buy 

nothing).  To do so, we incorporated data from the second and third stages. 

In the second stage, each student was given $100 to spend on a self-configured 

customized bag.  If the student configured a bag priced for less than $100, she received a cash 

refund of the difference.  The third stage consisted of a follow-up survey in which the student 

indicated the probability that she would have actually purchased her customized bag, and 

identified her delay penalty for having to wait for the MTO bag.   
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a) Finding reservation prices:  Here we lay out the process whereby we used data from 

all three stages to find r i
j, customer i's reservation price for bag j, j∈{c,s}, where the subscript s 

denotes the standard bag and c denotes the customer’s preferred custom bag, all scaled into 

dollars.  Our analysis is based on the assumption that reservation prices for individual attributes 

are additive – that is, a customer’s reservation price for any custom bag is assumed to be equal to 

her reservation price for a standard bag, denoted by r i
S, plus her part-worths for those attributes 

incorporated into the custom bag but not present in the standard bag, minus her part-worths for 

those attributes present in the standard bag but absent in the custom bag. (The ten attributes are 

the nine included in the conjoint survey, plus delivery via MTS versus MTO.)  Without loss of 

generality, define a standard bag to be a black, large-sized bag with a small tab and a boot, 

offered via MTS. (The features of the standard bag(s) could be selected through combinatoric 

optimization methods, taking into account the possibility of the custom bag option; in the 

Timbuk2 experiment these four options were selected because they were preferred by the 

majority of potential buyers.)  

We utilize the logit formulation described in §3 and summarized by (1).  We assume the 

β i’s are equal to the individual price part-worths as measured by the conjoint analysis.  That is, 

β i is the relative importance of price to individual i, calculated as the change in utility due to 

price as a percentage of the total possible spread in utility for the product, including the effect of 

changing all of its attributes.  (The raw data indicated some customers were irrational in that 

their price sensitivity was negative – indicating they had higher utility for a higher-priced bag.  

We followed the sometimes-used approach of adjusting these negative sensitivities to a minute 

positive number, resulting in the high concentration of customers with price importance just 

above zero.)  Two alternative approaches that could have been used to estimate the 

heterogeneous β i’s are to use the Hierarchical Bayes method (c.f. Allenby and Rossi (1999)) or 

to assume that β is homogeneous across consumers and estimate it using the maximum 

likelihood fit method. 

In stage three, customer i identified P i
C, her purchase probability for her customized bag 

when offered at some markup mC, with not buying as the only alternate choice. Since P i
C, mC, 

and β i are known, we solve (1) algebraically for d i
C, the discriminating markup that individual i 

attributes to her ideal customized bag design, and in turn can find r i
C = d i

C + cC.  
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Let r i
C-features denote the net sum of customer i’s part-worths for those attributes of her 

preferred custom bag that differ from the attributes of the standard bag.  Since r i
C-features can be 

determined from the conjoint analysis along with the survey question regarding MTO delay cost, 

customer i’s reservation price for a standard bag can readily be calculated as r i
S = r i

C – r i
C-features, 

and since we know the firm’s costs, from r i
S we can deduce the discriminating markup for a 

standard bag, denoted by d i
S.   

 b) Adding the Standard Bag to the Choice Set: In the three-stage study described 

above, the customer’s only had the opportunity to buy a custom bag – we now add the 

(hypothetical) option to purchase a standard bag.  To do so we assume independence of 

irrelevant alternatives (IIA).  That is, if we originally found a customer would purchase her 

custom-designed bag at a given price with probability x, and not purchase with probability (1 – 

x), yielding a ratio of [x / (1 – x)], then adding the choice a standard bag does not change this 

ratio (since there is some probability of buying the standard bag, adding it to the choice set 

reduces the probabilities of buying the custom bag, and not buying, by the same fraction). 

c) Expected Demand Function: Using the data set containing each customer’s beta and 

reservation prices (for standard and custom products), we find the demand curves for the 

standard and custom products.  Figure 4 shows an example as a function of markups mS and mC.  

Since markups are functions of costs, and since the costs change with each iteration of the model 

(as described in §5), the demand curves also change with each iteration.  The curves shown 

below are those for the jointly-consistent spackling solution, where we find c = $16.23 at the 

point of convergence.  (The “optimal point” in Figure 4 is where maximum profit is achieved, as 

will be described shortly.)  Note that lowering the price of one type of product decreases demand 

for the other type, and that demand is somewhat less sensitive to price for the standard product 

relative as compared to that of the custom product.  As a result, the shape of the total demand 

surface is more similar to that of the demand surface for custom products.   

d) Price Optimization: From the sales volumes and markups in Figure 4 we calculate 

total profit and find the point at which it is maximized, as shown in Figure 5.  The coefficient of 

variation v is identified as shown in Figure 6, to be fed into the operations model along with the 

mean demands.  Note that v is increasing in markups.  This likely contributes to the observed 

convexity of g(ci): as cost increases (as ci increases), the prices (markups) as derived by the 

marketing model tend to increase, which increases vi, which increases ci+1 = g(ci). 
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Figure 4   Expected Demand for Standard and Custom Products, and in Total 
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Figure 5  Expected Profit as a Function of Markups 
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Figure 6   Coefficient of Variation in Total Demand 
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6.2. Operations Model 

Following the algorithm of §5, we feed the results of the marketing model into the 

operations model and solve numerically, in iterative fashion.  Timbuk2’s options are to spackle, 

using its existing flexible manufacturing capacity in San Francisco to produce both standard and 

custom bags, or to focus, taking advantage of less expensive off-shore production for sourcing of 

standard products (custom units cannot be produced off-shore because of excessive lead-times). 

Efficient off-shore production has estimated costs of θE = $11.50 and cE = $2.50.  Given 

E cEθ +  = $14, we examine the how the cost of domestic flexible production impacts the choice 

of spackling versus focus. In all scenarios evaluated, results converged in 3 or fewer iterations 

between the marketing and operations models when using ε = $0.01.  We assume a subperiod to 

be one day and a period to be one month (T = 31). 

First we examine Timbuk2’s preferred strategy (spackling versus focus) as a function of 

the fixed cost of flexible capacity, θF, assuming cF  = $5.  Figure 7 shows Timbuk2’s expected 

profits. Spackling is preferred as long as θF < $11.13.  In other words, the sum of fixed plus 

variable costs for flexible capacity can be about 15% higher than that for efficient capacity and 

Timbuk2 will still be better off souring all products from its domestic flexible facility.  At this 

point of indifference between spackling and focus, cost c is $16.23 for spackling and cost cC is 
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$16.88 for focus.  Spackling increases utilization of the flexible capacity, reducing the combined 

per-unit costs of overage and underage from 75 cents ($16.88 – $16.13) to 10 cents ($16.23 – 

$16.13).   

Figure 7 Effect of Fixed Cost of Flexible Capacity on the Choice of Spackling vs. Focus 
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Continuing to assume the efficient resource costs are θE = $11.50 and cE = $2.50, we next 

examine the choice of spackling versus focus as a function of how much of the cost of flexible 

production is fixed, i.e., the ratio ( )F F Fcθ θ + .  For example, Figure 8 shows profits and 

optimal capacities for varying ratios given θF + cF =$16.13.  Note in the second frame of Figure 

8 that total capacity is lower under spackling, as one might expect, due to the pooling effects. 

Spackling facilitates greater capacity utilization, but this is of lesser advantage if most of the cost 

is variable (the cost is not incurred unless demand materializes).  If a high percentage of capacity 

is fixed, spackling becomes more attractive than a set of focused facilities. 
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Figure 8   Profits and Capacities as Determined by How Much of the Cost is Fixed   
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We also performed comparative statics associated with the parameters T, cP, and the 

magnitude of the β ’s.  In summary, we found that spackling becomes more beneficial as T and 

cP increase, but with diminishing effects (this is intuitive due to the “square-root law” of pooling 

efficiencies).  Regarding the magnitude of the β’s, over the range of cutting their magnitude in 

half to doubling them, we found that lower price sensitivity (lower β’s) favors spackling but in a 

relatively minor way. 

In comparing our results to Timbuk2’s actual practice we must consider several 

shortcomings of our model.  First, our “customer base” may not be reflective of the actual 
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customer base (MIT students may not be representative of the actual customer population).  

Additionally, our stylized model provides insights into the various tradeoffs involved, but will 

not completely capture all nuances of an ongoing, multi-period problem. Also, we do not model 

the effects of double marginalization, leaving that extension for future research. Further, there 

are many considerations outside our model that Timbuk2 may want to consider in making its 

strategic decision of spackling versus focus, including the impact of sourcing overseas on its 

company culture and brand image. 

7. Conclusion   

Motivated by the experiences of Timbuk2, a manufacturer of messenger bags, we have 

sought to gain insight as to when the practice of spackling, involving the use of a flexible 

production facility to produce both standard and customized products, is preferred to focus, 

where an efficient resource makes the standard items and a flexible factory produces the custom 

units. Our model suggests that spackling is the preferred strategy as long as the cost premium of 

the flexible resource is “not too high.” In the case of Timbuk2, this means the firm should 

spackle as long as the cost premium is less than about 15%.  

We approach the question of spackling versus focus from a joint operations-marketing 

perspective.  The advantage of such an integrated approach is that it offers the firm a way to link 

its strategic production decisions to customer preferences and actions. For example, many 

production models have previously examined how to operate given a certain level of demand 

variability.  In other words, production reacts to the level of demand variability inherent in the 

marketplace.  Here we show how the firm’s production decisions (along with its marketing 

decisions) can lead to an increase (or reduction) in demand variability. That is, decisions 

impacting product cost also impact expected demand and its associated variability when fed back 

through the marketing model.  On the marketing side, models have examined pricing as a 

function of customer preferences and costs, but here we show that marketing decisions 

themselves have an impact on cost, by impacting capacity acquisitions.  Further, through our 

iterative process, we show how marketing’s pricing decisions will change as a result of 

consideration of overage and underage implications. 

In our Timbuk2 example, we found greater demand for custom products than for standard 

products.  In the reverse situation, where demand for standard products dominates that for 
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customized configurations, one might envision a more elaborate “multi-layered” spackling 

strategy.  Here the firm would start with a layer of efficient capacity to produce most of the 

standard products in a constant stream (for example, sourcing them off-shore). On top of this 

focused and efficient production volume, the firm would add a layer of spackled (local) 

production to meet the periodic (say, daily) MTO orders for custom products.  As in the case of 

“traditional” spackling that we described herein, it would also use the local flexible capacity to 

produce standard products when capacity is available, such that its flexible facility also runs at 

near-full capacity utilization.  We leave the determination of optimal capacity levels under this 

strategy to future work.  We also leave to future work extensions of our model that address the 

many simplifying assumptions we have made herein.  

On the one hand, there seems to be heightened interest in customized products, possibly 

due to the successes of companies such as Dell, as well as to the spread of the Internet. The 

Internet facilitates customization because it allows rapid, two-way communication between the 

firm and its customers, facilitating product configuration and pricing, and media-rich 

conceptualization of product alternatives by customers (Dahan and Hauser (2002)).  This attracts 

customers who can thus attain a better product fit or who simply prefer to configure their own 

products, despite having to wait for delivery and/or pay a higher price.   

On the other hand, some customers still prefer to buy standard products off-the-shelf, and 

firms face significant production challenges in simultaneously satisfying demand for both 

standard and custom products.  For example, the automotive industry has been talking about the 

“10-day car” or “3-day car” for over a decade (where a custom order would be filled in x-days), 

but in the U.S. firms still generally sell the bulk of their cars off-the-lot.   

In practice, determining how to best meet customer needs and preferences for standard 

and/or custom products involves many issues and trade-offs.  Our model hopefully provides 

some insights into the role that marketing and operations factors play this decision making 

process, and helps identify those situations where spackling is an attractive strategy. 

 

 

Appendix:  Proofs 

Proof of Lemma 1. 
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We apply the technique of Anderson et. al. to our context.  Let n denote the number of products 

offered to a customer, and N the number of customers.  We suppress the superscripts denoting 

the customer. 

The firm maximizes its profit, π, given by:  

1

n

i i
i

N m P
=

π = ∑  
(11)

Note that (i
i i

i

P P P
m

β∂
=

∂
1)−  and i

i j
j

P PP
m

β∂
=

∂
 for i ≠ j.  The first order conditions (FOC), with 

respect to mi, result in: 

1

(1 )
n

i j j
ji

NP m P m
m

β
=

∂π
= + −

∂ ∑ iβ = 0 ∀ i. 
(12)

Noting N Pj ≠ 0 ∀ i, manipulation of (12) yields:  

1

1 (1 )
n

i j
j

m mβ
β =

= + ∑ jP   ∀ i.  
(13)

From (13), mi = mj ≡ m* ∀ i, j.  Replacing mi and mi with m* ∀ i, j  in (13), m* is the solution to: 

1

1*
(1 )

n

j
j

m
Pβ

=

=
− ∑

  (14)

Need yet to prove the existence and uniqueness.  (Again, their 7.10.1 is a very slightly 

different context, I believe.) 

To prove the FOC result in a globally optimal solution, we show there exists a lower 

boundary at which profit is everywhere increasing with each margin, 

0
1

(1 ) 0
i

n

m i j j
ji

NP m P
m

β=
=

∂π
= + >

∂ ∑ , and show (in the next paragraph) there exists an upper 

boundary at which profit is everywhere decreasing with each margin, that is there exists an m  

such that 0
im m

im =

∂π
<

∂
 for all j m≤m  where j ≠ i.  Given the conditions at these two boundaries, 

the global maximizing set of prices must lie strictly within the interior they define, i.e., all 

markups must be strictly greater than zero and strictly less than m .  Since mi = mj ≡ m* ∀ i, j is a 

solution, and the only solution, to the FOC, it must lie within this interior and must be the global 

maximizing set of prices. 
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Next we show the existence of m .  Assuming it exists, let jm m≥  ∀ j, and let im m= . 

Then 
1
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m m i j j
ji

NP m P m
m

β β=
=
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∂ ∑  ≤ 
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NP m Pβ
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Note that 
1

0 (1 )
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j
j

Pβ β
=

< − <∑  such that we can find 

1

1

(1 )
n

j
j

m
Pβ

=

>
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Proof of Corollary 1. 

Define the base unit to be any product j with cost cj.  Consider any other product k with cost ck.  

By Lemma 1,  m* = pj
* – cj = pk

* – ck.  Thus pk
* – pj

* = ck – cj.  That is, the optimal incremental 

price for the feature set that transforms product j into product k equals the incremental cost of 

that feature set. 

Proof of Theorem 1. 

The Theorem follows directly from Lemma 1, along with the normal approximation to the 

binomial distribution. 

Proof of Theorem 2. 

Let  be the expected loss function and ( ) ( ) ( )i K
n K x K f x dx

∞
= −∫ i ( )L z be the standard normal 

loss function. 

Total expected costs over the period for the traditional case (A) are: 

( ) ( ) ( )
( )

,  
,  

E E E s E E
E

E E E E s

K T c T K K
C K

K T c K
sθ µ µ

θ µ
+ + − ≤=  + >

, and 

( ) ( ) ( ) ( )
( ) ( )

F
F F F F c P F c F c cK

F F F c P F c F

C K T K c c c x K f x dx

T K c c c n K

θ µ

θ µ

∞ = + + − −  
= + + −  

∫ c
 

Total expected costs over the period for the spackled-production case are: 

( ) ( ) ( ) ( )( ) ( )( )s

T T
F F c s P F c s c cT K

C K TK c T c c x T K f x dx
µ

θ µ µ µ
∞

−
= + + + − − −∫ T T

c  

( ) ( ) ( )F F c s P F TT K Tc c c n Kθ µ µ= + + + − . 

The functional form of C K  and( F ) ( )C K  is the traditional newsvendor equation from which the 

optimal values for the capacities are readily derived: 
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( ) ( )

( ) ( )

*

* 1

1* 1 1
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)

 

where ( ) ((* 1
p F F p Fz c c cΦ θ−= − − − )c , the standardized variate for the given fractile. 

To find the lower bound for cE and spackled production, we note that spackled production will 

be preferred when ( ) ( ) ( )* * *
E FC K C K+ >C K , or ( ) ( ) ( )* * *

E FC K C K+ −C K >0. 

Since  ( ) ( ) ( )* * *
E FC K C K C K+ −

( ) ( ) ( ) ( ) ( ) ( )* * * *
s E E F F F c p F c F F F c s p F TT c T K c c c n K T K Tc c c n Kµ θ θ µ θ µ µ = + + + + − − − + − −   

( ) ( ) ( ) ( ) ( )( )* ** *
E s F F F s F E P F c F TT K K T c c c c Tn K nθ µ θ θ µ= + − − − + − − K  

( ) ( ) ( ) ( )( )1
E s F c F c s s F E P FT z z T c c c c L z

T
θ µ θ µ σ θ µ µ σ µ σ

  = + + − + + − − + − −  
  

T T , 

this difference is greater than zero when 

( ) ( ) ( ) ( ) ( )( )1 1F F E E F P F
s

c c T z c c L z Vσθ θ θ
µ

+ − + > − + − ≡ . 
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