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ABSTRACT: The development of a colloidal synthesis procedure
to produce nanomaterials with high shape and size purity is often
a time-consuming, iterative process. This is often due to
quantitative uncertainties in the required reaction conditions
and the time, resources, and expertise intensive characterization
methods required for quantitative determination of nanomaterial
size and shape. Absorption spectroscopy is often the easiest
method for colloidal nanomaterial characterization. However, due
to the lack of a reliable method to extract nanoparticle shapes
from absorption spectroscopy, it is generally treated as a more
qualitative measure for metal nanoparticles. This work demonstrates a gold nanorod (AuNR) spectral morphology analysis
tool, called AuNR-SMA, which is a fast and accurate method to extract quantitative structural information from colloidal
AuNR absorption spectra. To demonstrate the practical utility of this model, we apply it to three distinct applications. First, we
demonstrate this model’s utility as an automated analysis tool in a high-throughput AuNR synthesis procedure by generating
quantitative size information from optical spectra. Second, we use the predictions generated by this model to train a machine
learning model to predict the resulting AuNR size distributions under specified reaction conditions. Third, we apply this
model to spectra extracted from the literature where no size distributions are reported and impute unreported quantitative
information on AuNR synthesis. This approach can potentially be extended to any other nanocrystal system where absorption
spectra are size dependent, and accurate numerical simulation of absorption spectra is possible. In addition, this pipeline could
be integrated into automated synthesis apparatuses to provide interpretable data from simple measurements, help explore the
synthesis science of nanoparticles in a rational manner, or facilitate closed-loop workflows.
KEYWORDS: machine learning, automated analysis, Au, nanorods, nanoparticle synthesis, high-throughput

INTRODUCTION
Gold nanorods (AuNRs) have drawn significant research
efforts due to their applications in cancer cell imaging and
treatment, particularly in the development of photothermal
therapies,1−9 surface-enhanced raman spectroscopy,9−12 and
photovoltaic devices.9,13,14 These applications rely on the
localized surface plasmon resonance (LSPR) of AuNRs, which
is highly dependent on the shapes and sizes of these
nanoparticles.9,15−17 The LSPR of AuNRs is tuned primarily
by changing the ratio of length to width, or aspect ratio (AR),
of the nanorods.15−17 Applications of AuNRs thus require the
synthesis of these particles with a high shape yield and narrow
size distributions. However, it remains a challenge to
quantitatively understand the impact of AuNR synthesis
parameters on the resulting AuNRs.18 Quantitatively determin-
ing the size and shape distributions of AuNRs requires direct
measurement using electron microscopy, which is a time,
resource, and knowledge intensive task,19,20 limiting the
amount of data that can be gathered to train models to

predict synthesis outcomes.21 Although progress has been
made automating the size measurement of metal nanoparticles
from transmission electron microscopy (TEM) images,19,20,22

the hardware required for the automation of TEM image
collection is not widely available.23 Therefore, we have built an
automated analysis model that can extract population level size
information from absorption spectroscopy as a tool for more
scalable analysis of AuNRs.

Recent work has found success predicting the sizes of
individual AuNRs from single particle absorption spectra24 and
has found limited success at matching individual simulated
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single particle absorption spectra to samples with very narrow
size distributions.25 However, it remains a challenge to provide
accurate population level size information for experimental
spectra from a sample with a wide size distribution of AuNRs
or where spherical AuNPs (AuNS) are also present. An
analytical method that can determine AuNR size and shape
distributions from absorption spectra and overcome issues
related to impure samples26,27 creates opportunities for
developing interpretable models of AuNR synthesis.

Here, we overcome these challenges by focusing on the
regions of the spectrum where degeneracies from AuNS and
left over unreacted growth solution are minimized and
selecting spectra according to a series of internal uncertainty

metrics. We also enable the prediction of population-level
statistics by fitting a 2D Gaussian ensemble of simulated AuNR
spectra directly to the measured spectrum. This is carried out
using an optimization model that minimizes the difference
between an ensemble simulated spectrum and the experimental
spectrum. This approach provides much more information on
the AuNR sample than existing techniques, which focus on
matching single particle simulated spectra to an experimental
spectrum.

We showcase the utility of our automated spectral AuNR
morphology analysis in three applications:

1. automating the analysis of one-pot seedless high-
throughput AuNR synthesis,

Figure 1. Outline of the SMA showing (a) how a 2D matrix of AuNR sizes was numerically simulated and (b) entered into a matrix with
identical dimensions to (a). The fitted population distribution is projected onto a 2D matrix (c) and combined with (b) via a dot product to
produce the simulated mixture spectrum (d). This step is repeated with different population distributions (c) until the simulated mixture
spectrum (d) achieves the best possible fit to the inputted experimental spectrum. More details on this process can be found in the
Supporting Information, section “Spectral Morphology Analysis Outline”.

Figure 2. Accuracy of the SMA. (a−d) Sample AuNR spectrum (a) and an example of the model output in 1D (b−d). The predicted length
distribution (b) is shown in red, the predicted diameter distribution (c) is shown in blue, and the predicted AR distribution (d) is shown in
purple. The predicted distributions are plotted over histograms produced by manually measuring AuNRs taken from TEM images. For our
41 validation samples, the accuracy of their size parameters is shown in (e−h). The predictions are colored by whether they came from our
high-throughput samples (blue) or literature spectra (orange). μLength (e) and σLength (f) are the length mean and standard deviation,
respectively. μAR (g) and σAR (h) are the AR mean and standard deviation, respectively. (i) Histogram of the overlap between the predicted
2D distribution in length and diameter space and the true distribution, with the mean overlap indicated with a dashed red line.
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2. training machine learning models to predict AuNR
synthesis outcomes,

3. imputing quantitative synthesis data from literature
spectra for which population level size data were not
reported.

The first two applications comprise a highly active field of
research, and AuNP synthesis has already been developed to
include prediction of absorption spectrum from synthesis
condition, and to rationally design conditions for a specified
spectrum.28−31 However, these procedures focus on relating
the conditions to the resulting spectrum28−30 or on AuNS
synthesis and analysis.31 This limits the abilities of these

procedures to produce fundamental synthesis knowledge about
how synthesis conditions lead to changes in the AuNP
morphology, particularly under previously unexplored reaction
conditions. More broadly, there is very limited quantitative
information regarding how the AuNR synthesis conditions
change the resulting AuNR sizes. In recent years, a few
studies18,28 have attempted to fill in this gap, but these have
focused on the seed-mediated synthesis method for AuNRs.
Therefore, we focus on the one pot, or seedless,32 synthesis
procedure, and combine the AuNR spectral analysis method
we developed with liquid handling synthesis and character-
ization robots to build an automated synthesis and analysis

Figure 3. Application 1�2D representations showing how changing synthesis condition impacts the produced length mean (a), length
standard deviation (b), AR mean (c), and AR standard deviation (d), generated using AuNR-SMA. The contour plots show how each of the
four size parameters changes with the ratio of hydroquinone to initial NaBH4 (x-axis) and the AgNO3 concentration (y-axis). The black dots
show where experiments have been conducted and predicted. Application 2�accuracy of the ML model trained to predict synthesized size
distributions from reaction condition. This model is trained on the high-throughput experiments from Application 1 labeled by AuNR-SMA
and augmented by the labeled high-throughput synthesis data used to validate AuNR-SMA. The model’s accuracy on length mean (e), length
standard deviation (f), mean AR (g), and AR standard deviation (h) are shown. Training accuracy is shown in blue while accuracy on test
data is shown in orange. Application 3�distributions of size parameters from the 64 unlabeled literature spectra predicted in this work.
Histograms of length means (i), length standard deviations (j), mean aspect ratios (k), and AR standard deviations (l) are shown.
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pipeline. We then utilize this pipeline to build a quantitative
understanding of the seedless AuNR synthesis procedure and
train machine learning models capable of predicting sizes and
aspect ratios from initial concentrations of reagents. Using this
model, we demonstrate the rich quantitative information that
can be extracted from simple measurements and how this
information can be applied to nanomaterials discovery.

RESULTS AND DISCUSSION
Automated AuNR Size Distribution Analysis. UV/vis/

NIR absorption spectroscopy was selected as the analytical
method for size distribution inference due to the ease of high-
throughput characterization and the ability of absorption
spectroscopy to simultaneously measure the absorption of
every particle in the colloid. Additionally, absorption spectros-
copy can be used without sample purification, which can
significantly alter the sample’s size distribution. Our spectral
morphology analysis (SMA) model uses numerically simulated
absorption spectra of single AuNRs to determine the length,
diameter, and AR distributions of simulated AuNRs that most
accurately reproduce the experimental spectrum. As such, this
model can provide not only the mean lengths and aspect ratios
of the sample but also ensemble level information. An outline
of this model is shown in Figure 1.

The predictions of this model were validated by TEM
analysis of 20 samples from a high-throughput synthesis
experiment and 21 spectra extracted from the literature. Using
AutoDetect-mNP,20 we determined the size and shape
distributions of AuNRs in each sample and compared them
to the predictions generated from our model. The predictions
of the literature spectra were compared to the size distributions
reported in the paper. The accuracy of the predictions on our
41 validation spectra is shown in Figure 2.

Figure 2 shows an example set of outputs provided by this
model and their validation against known measurements in 1D.
Figure 2a−d shows a sample AuNR spectrum (a) and the
predicted length (b), diameter (c), and AR (d) distributions
plotted over histograms produced by manually measuring
AuNRs taken from TEM images. The model outputs each of
these 1D predictions as well as the 2D prediction in length and
diameter space, as shown in Figure 1c. Using the size
parameters produced by the model, the mean and standard
deviation of lengths, diameters, and aspect ratios, we can
determine the accuracy of this model by comparing to
measured TEM images taken in this work or presented in
the literature. Figure 2e−h shows these comparisons for length
mean (e), length standard deviation (f), AR mean (g), and AR
standard deviation (h). In general, the length means and AR
standard deviations are quite accurate, showing very few
samples outside of a 20% error line in either direction. The
mean AR is highly accurate for the samples extracted from the
literature, while showing a characteristic overestimation in our
high-throughput synthesis samples. This can be attributed to
changes in the tip geometry of the AuNRs caused by the
synthesis developed by ref 33. Errors in length standard
deviation can be attributed to the inherent difficulty in
determining the ground truth of this parameter and the
relatively low impact this parameter has on the overall
appearance of the spectrum. More details can be found in
the Supporting Information, section “Spectral Morphology
Analysis Details”.

As the distributions shown in Figure 2b−d are challenging to
use as a model accuracy metric over an ensemble validation set,

in this work, we express the accuracy as a comparison between
the predicted 2D distribution of lengths and diameters and the
measured distribution. We do this by calculating an overlap
coefficient34 between the predicted size distribution and the
true distribution in length and diameter space (Figure S1). In
the case of our high-throughput samples, where manual TEM
measurements are available, the true distribution was projected
onto a normal distribution to ensure accurate comparison with
literature distributions, where only means and standard
deviations are reported (Figure S2). For literature spectra,
where the individually measured TEM particles are not
available, the overlap was determined by calculating a
distribution based on the reported AuNR means and standard
deviations for length and diameter. Using this validation, this
model has been shown to produce a predicted distribution
which has a high degree of overlap. The average overlap across
all the validation spectra is shown to be around 0.3 in Figure 2,
showing that on average, this model is able to reasonably
reproduce the population distribution of AuNRs present in the
colloid (Figure S3).
Application 1�High-Throughput Synthesis Size

Mapping. By systematically varying concentrations of
AgNO3, hydroquinone, initial NaBH4, and total NaBH4 (see
Methods section-High-Throughput Synthesis) and utilizing
our automated SMA model on the spectra of the resulting
samples, we were able to determine trends in sizes and size
distributions of the AuNRs. This high-throughput synthesis
reaction produced 48 samples where rods were successfully
synthesized. Of these 48 samples, six spectra could not be
processed by our SMA due to high prediction uncertainty or a
longitudinal peak at too high energy (Figure 4). Using the
successfully fit samples, a synthesis map of the size parameters
predicted from their absorption spectra, labeled by their
reaction conditions, is shown in Figure 3a−d. The x-axis shows
the ratio of hydroquinone to the first addition of NaBH4,
which was chosen due to the combination of these two
conditions controlling the growth kinetics, which has been
shown to be responsible for changing morphology in AuNR
synthesis.35 Additionally, interactions with the weak and strong
reducing agents have also been shown to impact the sizes and
yield of AuNRs.18 AgNO3 concentration was visualized on the
y-axis due to myriad observations that AgNO3 concentration is
essential to controlling AuNR morphology.18,36,37

The predicted lengths show that at low AgNO3 concen-
tration, the maximum length produced with any combination
of hydroquinone and NaBH4 produces AuNR lengths from 30
to 50 nm. However, at higher concentrations of AgNO3,
lengths of 70−90 nm can be produced for specific hydro-
quinone and NaBH4 ratios. As these resulting sizes are much
less common for this synthesis procedure, one may be inclined
to attribute this less common result to an error in the SMA.
However, one of the two sets of conditions resulting in longer
AuNRs contains two samples with the same ratio of reaction
conditions, and those produced mean length predictions that
were less than 10 nm apart, making it unlikely that a simple
large error in the model is responsible for this result. Overall,
we demonstrate that our model can be integrated into high-
throughput experiments as an automated size distribution
prediction tool, generating quantitative data on the fly. This
allows for rapid detailed analysis and enables the possibility of
closed loop workflows for the robotic AuNR synthesis.
Application 2�ML Prediction of Sizes from Reaction

Conditions. Besides enabling a more quantitative under-
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standing of AuNR synthesis, the ability to predict synthesis
outcomes enhances synthetic exploration and optimization. By
combining our synthesis and analysis pipeline with machine
learning, we used reaction conditions to predict the resulting
AuNR size distributions. Specifically, averages and standard
deviations of the lengths and aspect ratios are predicted. We
use a data set containing 73 samples, where reaction conditions
were labeled by their resulting AuNR sizes. This data set was
generated by augmenting the AuNR-SMA predictions from
Application 1 with the labeled high-throughput synthesis data
used to validate AuNR-SMA. We use the following algorithms,
as implemented in scikit-learn,38 to attempt to predict the
output parameters from synthetic inputs: Elastic Net, Bayesian
Ridge Regression, Kernel Ridge Regression, Support Vector
Regression, Random Forest Regression, and Gradient Boosting
Regression. Generally, random forest regression models
outperformed k-nearest neighbor, support vector regression,
kernel ridge regression, Bayesian Ridge regression, and elastic
nets for most of this data set. Gradient boosting regression
delivered similar results, though support vector regression
performed better for predicting lengths and k-nearest neighbor
models performed best for AR standard deviations (see Table
S2). The models were reasonably well predictive for AR and
standard deviations of aspect ratios, with test R2 values of
around 0.7 and ∼10% errors (Figure 3e−h). While length and
length standard deviations were less well predicted, error
ranges were similar to those of AuNR-SMA. Previous work
using machine learning has shown the ability to predict
spectral alignment of AuNRs in seeded growth synthesis.28,29

We show here that it is possible to integrate the information
gained from SMA with machine learning methods to directly
predict the size and aspect ratios of AuNRs from their
synthesis conditions in a one-pot, seedless growth procedure.
In principle, this analysis routine could also be used in tandem
with kinetic models to produce scientific machine learning
models of particle growth.39

Application 3�Extraction of Size Information from
Literature AuNR Spectra. In addition to this model’s utility
as an automated analysis tool for AuNR synthesis and our
ability to generate predictions of AuNR morphology produced
from reaction conditions, we also turn this model to the AuNR
synthesis literature to impute size information from published
spectra without direct size measurements. Our extraction
produced 64 unlabeled literature spectra that were successfully
fit by our model (Figure 3i−l). The most common aspect
ratios reported in the literature were observed between 4 and
5, with a non-negligible spread higher into ARs of 5−6,
although very few are seen greater than 7. Similarly, AuNR
lengths of 30−70 nm are far more commonly seen in the
literature than longer lengths, although rods greater than 100
nm have been successfully synthesized. Looking in detail at
three synthetically interesting outliers that are predicted to
have lengths >100 nm and where we found TEM images of
similar synthesis outcomes in the same report,33,40,41 the first
comes from a publication reporting syntheses that result in
rods with length >100 nm,33 the second most likely has a
length of roughly 90 nm,42 and the third has TEM images
showing rods with roughly 50 nm length.40 A further detailed
comparison and discussion of potential external factors that
can induce errors in predictions can be found in the
Supporting Information. Overall, we demonstrate that our
model can be used to impute missing size and size distribution
information from previous literature reports, contributing to a

richer data ecosystem, allowing more in-depth analysis, and
enabling machine learning based on previous literature results.

OUTLOOK
The above results have demonstrated the effectiveness of
physics-based models to quantitatively predict the morphology
of AuNRs in a colloidal sample from their absorption
spectrum. It should be noted that this architecture is optimized
for predicting AuNR samples when the colloid contains either
pure AuNRs or mixtures of AuNRs and AuNS, where the
AuNS are present in a small enough fraction that the
longitudinal peak intensity is higher than that in the transverse
region. If the fraction of AuNS is higher than this, or if other
shapes of AuNPs are present in non trivial amounts, i.e., cubes,
triangles, or pyramids, this architecture may struggle to
accurately predict the AuNR sizes present in the colloid.
This architecture may be extended to other colloidal
nanoparticle samples provided the basic principles of this
approach are met. First, the optical spectral parameters must
change in response to the nanoparticle size/shape. This is true
in many nanoparticle systems, particularly those with strong
plasmonic excitation in the vis/NIR regions. These include
other types of gold nanoparticles, including cubes42 and
triangles.43 Beyond gold nanoparticles, this size/shape depend-
ence on optical properties is seen in other noble metal
nanoparticles, namely, silver44 and copper45 nanostructures, as
well as quantum dots46 and perovskite nanoparticles.21 It must
also be true that simulation procedures are or can be developed
to be accurate enough to account for these changes and match
the corresponding experimental spectra. Another practical
experimental consideration is that if other unpredictable
experimental factors change the spectrum, these must be
separable from the spectrum or accounted for by fitting only a
specific part of the spectrum, as was carried out in this work.
For the full high-throughput synthesis and analysis pipeline
presented here to be extendable, the above criteria must be
met, and the nanoparticle size parameters must be tunable via
the synthetic conditions.

CONCLUSIONS
In this work, we have developed AuNR-SMA, a physics-based
automated SMA tool for colloidal AuNR samples. This model
is able to predict the AuNR sample’s length and AR mean and
standard deviation with a high degree of accuracy, producing
population level information on the produced AuNR sample
from its absorption spectrum. We validated this model by
comparing its predictions to measured AuNR size distributions
extracted from TEM images and spectra labeled with size
distributions extracted from the literature. We show this
model’s wide range of applications by utilizing it as an
automated analysis tool in high-throughput AuNR synthesis,
generating training data for rational synthetic design machine
learning models, and as a literature mining tool to increase the
volume of quantitative knowledge available on AuNR syn-
thesis. Through these applications, we elucidate quantitative
information about seedless AuNR synthesis using hydro-
quinone and the relationships between the reaction conditions
and the size outcomes. In principle, this approach can be
extended to any other nanocrystal system where the absorption
spectra are size dependent, and accurate numerical simulation
of the absorption spectra is possible.
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METHODS
Materials. Hexadecyltrimethylammonium bromide (CTAB,

98.0%) was purchased from TCI America. Hydrogen tetrachlor-
oaurate trihydrate (HAuCl4·3H2O, 99.9%), silver nitrate (AgNO3,
99.0%), and sodium borohydride (NaBH4, 99.99%) were obtained
from Sigma-Aldrich. Diglycol methyl ether (diglyme 99.5%) was used
to dissolve NaBH4 and was purchased from Sigma-Aldrich. Hydro-
quinone (99%) was purchased from Sigma-Aldrich. NaBH4 powder
was stored in a nitrogen glovebox. HAuCl4·3H2O, hydroquinone, and
AgNO3 were stored in a vacuum desiccator at room temperature.
Deionized water was used for all aqueous solutions. All chemicals
were used without further purification.
Automated Size Prediction from Absorption Spectra. AuNR

morphology prediction from absorption spectra of colloidal samples is
based on the basic optical properties of colloidal samples of AuNRs.
In short, the overall spectrum can be approximated as a sum of the
absorption of each particle in the colloid, provided nothing else is
absorbing or scattering in the energy range of the spectrum. It then
becomes possible to determine the sizes of AuNRs present in a sample
by fitting the relative contribution of AuNRs of different sizes and
finding the distribution that best rebuilds the sample’s spectrum.
These assumptions serve as the basis of our SMA.

The basis set for spectral fitting in our model consists of
numerically simulated single particle spectra of AuNRs from the
scuff-em simulation procedure, which simulates absorption spectra
using boundary-element methods, as shown in Figure 1a,b.47 The
accuracy of these simulations and their ability to accurately reproduce

a full experimental absorption spectrum have been shown by
comparison with TEM measurements (Figure S4). These single
particle spectra of individual nanorods have a Lorentzian line shape,
although it should be noted that the shape of the ensemble spectrum
is determined by the size distribution rather than the individual line
shape (Figure 1b,d). The SMA uses these single particle spectra to
reproduce a colloid’s absorption spectrum by generating a size
distribution based on AuNR mean length/standard deviation, mean
diameter/standard deviation, and the correlation between the length
and diameter distributions. This distribution is then applied to the
basis set, building an ensemble spectrum corresponding to the
predicted size distribution, as shown in Figure 1c,d. This procedure
varies the predicted AuNR size distribution and returns the values of
the five parameters that build the best fit, indicating the predicted
population of AuNRs in this sample as well as the χ square between
the fitted and experimental spectrum as a measure of how well the fit
has replicated the experimental spectrum. In cases where there are
multiple stable fits, unless specified otherwise, the prediction is the fit
that has the lowest χ square value between the two spectra. The
accuracy of this model at predicting size distributions across a broad
range of size parameters has been validated by manual TEM analysis
by our group and extracted spectra from literature results on AuNR
synthesis.40,48−67 The model imposes certain physical assumptions on
the population distribution to prevent theoretically possible but
physically highly unlikely populations from being returned as the best
fit. These assumptions are

Figure 4. Steps the overall SMA uses to determine how, or if, an input spectrum is fit and whether the results of that fit are expected to be
accurate. Briefly, the model first determines whether the input spectrum is complete (a,b) discarding incomplete spectra. The model then
determines if the longitudinal peak is before or after 795 nm (c,d) discarding spectra with peak wavelengths shorter than 795 nm. Finally,
the model determines whether the spectra have been measured out to the baseline (e,f) and use a different fitting procedure in each of these
cases (g,h). The model then outputs a 2D distribution of the AuNRs fitted to the sample (i). Rational for selecting the 795 nm cutoff is
shown in (j) and the validity of the differing methods for the measured baseline and the discarding of uncertain spectra are shown in (k,l).
The overlap metric used in (j−l) is the overlap of the predicted AuNR population and the measured AuNR population using TEM, and a full
description of this metric can be found in Figure S1. A detailed description of the full model workflow can be found in the Supporting
Information, section “Spectral Morphology Analysis Details”.
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1. there is some degree of correlation between the lengths and
diameters in the 2D population distribution, and the degree of
correlation is fit as a part of the fitting process,

2. the population distribution is normally distributed for both
lengths and diameters, and

3. the standard deviation is capped to prevent nonphysical
parameters, for example, standard deviations so large the tails
extend into regions where there are no simulated spectra.

To account for situations where there has been low shape yield and/
or not fully cleaned samples, resulting in unreacted growth solution
still present in the colloid, the spectrum is fit from 795 nm onward,
rather than using the full spectrum. This allows the model to be
applicable to colloids producing low shape yield of AuNRs as it
removes the degeneracy around the transverse peak, where intensity
originates from undesirable AuNS and the transverse mode of AuNRs.
795 nm was selected as the cutoff by determining the location where
our training data maximized accuracy and number of spectra fit by the
procedure, which are roughly inversely proportional. This is shown in
Figure 4j, and a more detailed description of these steps and their
justification is found in the Supporting Information, section “Spectral
Morphology Analysis Details”.
Automated Size Prediction Model Validation. The accuracy

of our size prediction model was validated using samples generated
from a high-throughput AuNR synthesis run and spectra extracted
from the literature. Our validation high-throughput synthesis
procedure produced 20 samples deemed suitable for validation.
This required at least moderate shape purity as many reaction
conditions in our high-throughput experiment produced a significant
number of AuNS. The criteria for moderate shape purity was that the
ratio between the transverse plasmon peak at roughly 520 nm, where
AuNS absorption occurs, and the longitudinal peak intensity had to be
less than one. Additionally, only samples following the filtering criteria
set out in Figure 4 were fit. All of the validation high-throughput
samples fitting the selection criteria were fit successfully. At least 500
particles were measured for each high-throughput synthesis sample by
taking between 50 and 100 TEM images. The particles were then
measured using AutoDetect-mNP, an automated size and shape
detection algorithm for TEM images of metal nanoparticles.20

In the case of the literature spectra, 86 spectra were extracted with
reported size information. Of these, 19 were discarded due to either
highly irregular synthesis conditions deemed likely to impact the
spectra (i.e., large volumes of biological additives) or noted systematic
errors in spectral processing (spectra that did not baseline subtract the
H2O peak in the NIR, etc.). 12 were discarded due to the spectra
being incomplete, determined by the longitudinal peak ending before
the fwhm of the peak. 10 were discarded due to the reported size
parameters being outside the range of the lower bound of our
diameters, denoted by a threshold set 1 nm higher than our lowest
diameter value, 5 nm. This threshold was chosen due to observations
that fitted populations with the mean diameter lower than 6 nm often
had appreciable density in regions where there were no simulated
spectra. Four additional spectra were discarded due to their
longitudinal peak being too high in energy (see Figure 4c,d). 17
were returned as too uncertain to be fit (see Figure 4g), and an
additional 3 failed due to the values hitting the bounds of the
prediction space. This resulted in 21 literature spectra that were added
to our validation set of labeled spectra. The full validation set
contained 41 labeled spectra, which are listed in Figure 2.
Manual AuNR Synthesis. AuNRs were prepared using a

modified version of the procedure described by Vigderman and
Zubarev.33 In a general synthesis, aqueous solutions of CTAB,
HAuCl4, and AgNO3, in that order, were added to a 1 mL glass vial
with a stir bar. Then, an aqueous solution of hydroquinone was added
to the reaction mixture to reduce Au(III) to Au(I), inducing a color
change from yellow to clear. After waiting 10 min, a solution of
NaBH4 dissolved in diglyme and sonicated for 10 min was added to
the solution under rapid stirring to induce the formation of AuNRs.
Stirring was then stopped after half an hour, and the solutions were
allowed to grow overnight to ensure that the reaction had completed.

Then, each solution was centrifuged at 10,000 rpm for 30 min and
resuspended in DI water under gentle sonication to disperse the
pellet.
Absorbance Spectroscopy. UV−vis absorption spectroscopy of

the synthesized AuNRs was conducted using a Shimadzu UV-3600
double beam spectrometer. Samples were prepared by resuspending
the centrifuged sample in 1 mL of DI water and then diluting 300 μL
of this sample with 2.7 mL of DI water. Before measurements, a
background spectrum was recorded and subtracted by using a cuvette
filled with 3 mL of DI water.
Transmission Electron Microscopy. Images of the AuNR

samples were taken with an FEI Tecnai T20 transmission electron
microscope equipped with a Gatan RIO16IS camera and a LaB6
filament. All images were recorded under 200 kV accelerating voltage.
Samples were prepared for TEM by drop casting from the 3 mL
sample used for absorption spectral analysis, which was found to have
the appropriate concentration, onto a carbon support with 400 copper
mesh. Samples were dried overnight by placing them under vacuum.
High-Throughput Synthesis. High-throughput synthesis of

AuNRs was performed by using a Hamilton Microlab NIMBUS4
liquid handling robot. For high-throughput synthesis, fresh aqueous
solutions of CTAB (100 mM), hydroquinone (60 mM), HAuCl4 (4
mM), AgNO3 (5 mM), and NaBH4 (0.3 mM) were prepared for each
run. These solutions were then added to single use 1 mL glass vials in
the order DI H2O, CTAB, HAuCl4, AgNO3, hydroquinone, and
NaBH4 while the entire plate was heated to 30 °C and shaken at 300
rpm. Shaking continued for half an hour after the final addition was
completed, and the plate was then left undisturbed for 4 h. The
samples were then removed from the plate and placed in a dark
cabinet and wrapped in aluminum foil to continue reacting overnight.

Several components of the typical hydroquinone seedless synthesis
procedure33 were changed to produce a reaction that was compatible
with our liquid handling synthesis robot setup. The overall scale of the
reaction was significantly decreased to ensure that a 96-well plate
could be used for high-throughput synthesis, optimizing the number
of reactions achieved with each run. This necessitated the use of 1 mL
vials, producing 0.5 mL of sample, which is roughly a factor of 20
below the volume produced by the previously reported procedures.
Additionally, to maximize the liquid handling precision of the
NIMBUS robot, the minimum volumes for each reagent are
maintained at 5 μL, necessitating a lower concentration of stock
solutions such as NaBH4. Diglyme was chosen as a polar, aprotic
solvent to eliminate background reactions of NaBH4 with H2O. This
work found NaBH4 to be stable in diglyme for over 24 h (Figure S5).
The enhanced stability also allows for more flexibility with the
reaction procedure, allowing reactions to be performed with multiple
additions of NaBH4 and potentially allowing options for more
advanced procedures, such as AuNR synthesis with a syringe pump.
Finally, the stability of the stock solution allows for improved
reproducibility of the synthesis procedure, potentially overcoming a
chronic problem in the field (Figures S5 and S6).

ASSOCIATED CONTENT

Data Availability Statement
The data set of simulated AuNR spectra, the high-throughput
synthesis reaction conditions, resulting spectra, size predic-
tions, and TEM images used for analysis, literature spectra, size
predictions, true sizes, and reaction conditions (when
applicable) and the code generating the size prediction
model can be found at https://github.com/smglsn12/AuNR-
SMA.
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