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ABSTRACT OF THE THESIS 

 

Towards Generalizable Machine Learning in Neuroscience 

 

by 

 

Paul Y. Wang 

 

Master of Science in Physics 

University of California San Diego, 2021 
 

Professor Gabriel Silva, Chair 
Professor Henry Abarbanel, Co-Chair 

 

 Machine learning and neuroscience have enjoyed a golden era of prosperity over the past 

decade as the perfect confluence of technological advances have enabled extraordinary 

experiments and discovery. Though tightly intertwined in the past, advances in both fields have 

largely diverged such that the application of deep learning techniques to microscopic neural 

systems remains relatively unexplored. In this thesis, I present work bridging recent advances in 

machine learning and neuroscience. Specifically, relying on recent advances in whole-brain 

imaging, we examined the performance of deep learning models on microscopic neural dynamics 
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and resulting emergent behaviors using calcium imaging data from the nematode C. elegans. We 

show that neural networks perform remarkably well on both neuron-level dynamics prediction and 

behavioral state classification. In addition, we compared the performance of structure agnostic 

neural networks and graph neural networks to investigate if graph structure can be exploited as a 

favourable inductive bias. To perform this experiment, we designed a graph neural network which 

explicitly infers relations between neurons from neural activity and leverages the inferred graph 

structure during computations. In our experiments, we found that graph neural networks generally 

outperformed structure agnostic models and excel in generalization on unseen C. elegans worms. 

These results imply a potential path to generalizable machine learning in neuroscience where pre-

trained models are evaluated on unseen individuals. 

 



 1 

1. Background 
 

 

1.1. Introduction 

 

 Constructing generalizable models in neuroscience poses a significant challenge because 

systems in neuroscience are typically complex in the sense that dynamical systems composed of 

numerous components collectively participate to produce emergent behaviors. Analyzing these 

systems can be difficult because they tend to be highly non-linear in how they interact, can 

exhibit chaotic behaviors, and are high-dimensional by definition. As such, indistinguishable 

macroscopic states can arise from numerous unique combinations of microscopic parameters, i.e. 

parameters relevant to lower scales of organization. Thus, bottom-up approaches to modeling 

neural systems often fail since a large number of microscopic configurations can lead to the same 

observables (Golowasch et al. (2002); Prinz et al. (2004)). 

Because neural systems are highly degenerate and complex, their analysis is not 

amenable to many conventional algorithms. For example, observed correlations between 

individual neurons and behavioral states of an organism may not generalize to other organisms or 

even to repeated trials in the same individual (Fregnac (2017); Churchland et al. (2010); 

Goldman et al. (2001)). Hence, individual variability of neural dynamics remains poorly 

understood and a fundamental obstacle to model development as evaluation on unseen 

individuals often leads to subpar results. Nevertheless, neural systems exhibit universal behavior: 

organisms behave similarly. Motivated by the need for robust and generalizable analytical 
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techniques, researchers recently applied tools from dynamical systems analysis to simple 

 

Figure 1.1: Time derivatives of calcium traces projected  onto  each  individual  organism’s 
principal components. Distinct loops correspond to manifolds in latent space where colors 
correspond to behavior assigned in Kato et al. Reproduced with permission from Brennan and 
Proekt (2019). Copyright has been obtained. 

organisms in hopes of discovering a universal organizational principle underlying behavior. 

These studies, made possible by advances in whole-brain imaging, reveal that neural dynamics 

live on low-dimensional manifolds which map to behavioral states (Prevedel et al. (2014); Kato 

et al. (2015)). This discovery implies that although microscopic neural dynamics differ between 

organisms, a macroscopic/global universal framework may enable generalizable algorithms in 

neuroscience. Nevertheless, the need for significant hand-engineered feature extraction in these 

studies underscores the potential of deep learning models for scalable analysis of neural 

dynamics. 
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Figure 1.2: (A) Calcium signals recorded in one animal for∼15 minutes by Kato et al. (2015). 
Each row represents a single neuron. The top 15 rows (above the red line) correspond to neurons 
unambiguously identified in all animals (shared neurons). (B)Sample trace with corresponding 
behavioral state colored. (C) Neural dynamics of two neurons for specific behavior states. 
Colored solid lines are the mean activity for each animal, and the black dashed line is the mean 
activity for all animals. Shaded colored regions show 95% confidence intervals. (D)Probabilities 
that neural dynamics from different individuals were drawn from the same distribution. (E) 
Attempt by Brennan and Proekt (2019) to decode onset of backwards locomotion using neural 
dynamics for each animal and averaged neural dynamics across other four animals. Reproduced 
with permission from Brennan and Proekt (2019). Copyright has been obtained. 
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1.2. Universality/Generalizability in C. Elegans 

 

The motor action sequence of C. elegans is one of the only systems for which 

experiments on whole-brain microscopic neural activity may be performed and readily analyzed. 

As such, numerous efforts have focused on building models that can accurately capture the 

hierarchical nature of neural dynamics and resulting locomotive behaviors (Sarma et al. (2018); 

Gleeson et al. (2018)). Taking advantage of this, Kato et al. (2015) investigated neural dynamics 

corresponding to a pirouette, a motor action sequence in which worms switch from forward to 

backward crawling, turn, and then continue forward crawling. Their analysis showed that most 

variations (~65%) in neural dynamics can be expressed by three components found through 

principal component analysis (PCA) and that neural dynamics in the resulting latent space trace 

cyclical trajectories on well-defined low dimensional manifolds corresponding to the motor 

action sequence (Figure 1.1). By identifying individual neurons, an experimental feat, these 

authors further determined that these topological structures in latent space were universally 

found among all five worms imaged in their study.  

Following Kato et al. (2015), the authors published several studies focusing on global 

organizational principles of C. Elegans behavior (Nichols et al. (2017); Kaplan et al. (2020); 

Skora et al. (2018). Building on two of these works, Brennan and Proekt (2019) found consistent 

differences between each individual’s neural dynamics, precluding the use of established 

dimensional reduction techniques. For example, among 15 neurons uniquely identified among all 

5 worms, only 3 neurons displayed statistically consistent behavior (Figure 1.2D). Examples of 

inconsistent behavior for unequivocally identified neurons (ALA and RIML) are shown in Figure 

1.2C where the average of ALA’s activity fails to resemble the behavior of any worm and where 
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RIML’s activity is consistent among all animals during dorsal turns, but inconsistent during 

reverse crawling. Resulting from these discrepancies, topological structures identified by 

performing PCA on each worm's neural activity were no longer observed when data from all 

worms was pooled together.  

 

 

Figure 1.3: (A) Rendering of calcium imaging experiment where activity of neurons in the head 
of the worm is recorded. Coloured arrows show main motor action behavioral states. (B) and (C) 
Resulting manifold from Brennan and Proekt (2019). (B) Manifold constructed from activity of 
four worms with coloured lines indicating neural activity of fifth worm.(C)Manifold constructed 
from neural activity of uniquely identified neurons (n=15) shared among all 5 worms. Black 
arrows correspond to cyclical transition of motor action sequence and colors correspond to motor 
action states. Modified with permission from Brennan and Proekt (2019). Copyright has been 
obtained. 

 
To address this issue, Brennan and Proekt (2019) introduced a new algorithm, 

asymmetric diffusion map modeling (ADMM), which maps the neural activity of any worm to 

an universal manifold (Figure 1.3). To achieve this, ADMM first performs time-delay 
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embedding of neural activity into phase space. Next, a transition probability matrix is 

constructed by calculating distances between points in phase space using a Gaussian kernel 

centered on the subsequent timestep. Finally, this asymmetric diffusion map is used to construct 

a manifold representative of neural activity. Contrasting conventional dimensional reduction 

techniques, ADMM allowed quantitative modeling by mapping neural activity from the manifold 

and enabled the prediction of motor action states up to 30 s ahead. Despite its success, the 

algorithm heavily relies on hyperparameters, such as embedding parameters, which are difficult 

to justify and tune. 

 

 

1.3. Deep Learning in Neuroscience and Graph Neural Networks 

 

With the success of convolutional neural networks, researchers successfully applied deep 

learning to numerous domains in neuroscience (Glaser et al. (2019) including MRI imaging 

(Lundervold and Lundervold (2019)) and connectomes (Brown and Hamarneh (2016)) where 

algorithms can predict disorders such as autism (Brown et al. (2018)). Similarly, brain-computer 

interfaces (BCI) are a well-studied field related to our work as they focus on decoding 

macroscopic variables from measurements of neural activity. These studies generally involve 

fMRI or EEG data, which characterize neural activity on a population level, to varying amounts 

of success (Bashivan et al. (2015); Kwak et al. (2017); Mensch et al. (2017); Makin et al. 

(2020)). Regardless, a challenge for the field is developing generalizable algorithms to 

individuals unseen during training (Zhanget al. (2019)). 
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Although the application of deep learning to neuroscience has proved successful, a 

resounding question is whether or not a more suitable inductive bias exists that may further guide 

the development of deep learning models. Historically, the recent resurgence of interest in deep 

learning can be attributed to the development of the convolutional neural network which seeks to 

exploit translational invariance within the data. Building upon this, Cohen and Welling (2016) 

proposed that invariances within a dataset should motivate the construction of group equivariant 

neural networks where operations within the neural network are specifically chosen to be 

equivariant to the assumed group symmetry. Originally, Cohen and Welling (2016) developed 

equivariant neural networks for the p4m and p4 group. Subsequently, equivariant neural 

networks were developed for the SO(3) group (Cohen et al. (2018)) and gauge transformations 

(Haan et al. (2020)).  

Returning to the subject of neuroscience, the question remains whether or not a suitable 

inductive bias exists. Biophysically, neural systems can be modeled as a graph wherein vertices 

and edges correspond to neurons and synapses. Thus, when designing neural networks for 

machine learning neural systems, we can consider the inherent graph structure of the system and 

design an inductive bias equivariant to symmetries of the graph (generally node permutations or 

the Sn group). Yet, substantial challenges bar the simple formulation of a neural system as a 

graph. First, neural systems can become extremely large resulting in high computational 

requirements. Second, imaging techniques measure neural activities at varying levels of 

granularity. For instance, techniques such as EEG or fMRI measurements measure population 

level dynamics where the structure of interactions is not explicitly known. Finally, physical 

connections between neurons (the connectome) have only been mapped for few organisms, and 

the relationship between functional and physical connectivity remains tenuous. With these 
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challenges in mind, we consider whether or not a graph can serve as a favourable inductive bias 

when machine learning on neural activity measured from C. Elegans worms. Fortunately, the 

connectome of C. Elegans is relatively small, neuron-level measurements can be readily acquired 

through calcium imaging, and the physical connectome has been completely mapped in 

numerous studies. Thus, we hypothesize that designing an equivariant neural network for node 

permutations may serve as a favourable inductive bias. 

Machine learning on non-Euclidean space remains a substantial challenge in machine 

learning; however, recent developments with graph neural networks have significantly advanced 

techniques when machine learning on graph-structured data. These graph neural networks 

combine message passing computational methods with the universal approximator ability of 

neural networks, circumventing issues with stability which plagued previous message passing 

algorithms. Specifically, graph neural networks (GNNs) are a class of neural networks that 

explicitly use graph structure during computations through message passing algorithms where 

features are passed along edges between nodes and then aggregated for each node (Scarselli et al. 

(2009); Gilmer et al. (2017); Battaglia et al. (2018)). To demonstrate the equivariance of GNNs 

to node permutations, Kipf and Welling (2016) proved that one-hop message passing 

approximates spectral convolutions on graphs. Their work prompted a resurgence of interest that 

have led to numerous breakthroughs in studying the representational power of GNNs. Most 

notably, Xu et al. (2018) showed that the discriminative power of GNNs can match the lauded 

Weisfeiler-Lehman isomorphism test, potentially outperforming other machine learning 

techniques for graphs. In comparison, Dehmamy et al. (2019) demonstrated that GNNs are 

extremely sensitive to design choices when learning graph moments. Nevertheless, from an 

applied perspective, GNNs have been widely successful in a wide variety of domains including 
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relational inference (Kipf et al. (2018); Lowe et al. (2020); Raposo et al. (2017)), node 

classification (Kipf and Welling (2016); Hamilton et al. (2017)), point cloud segmentation 

(Wang et al., 2019), and traffic forecasting (Yu et al. (2018); Li et al. (2018)). 

While we use the physical connectome in some of our experiments, we primarily focus 

on inferred connectivity computed through relational inference to design the structure of our 

graph. In particular, relational inference remains a longstanding challenge with early works in 

neuroscience seeking to quantify correlations between neurons (Granger (1969)). Modern 

approaches to relational inference employ graph neural networks as their explicit reliance on 

graph structure forms a relational inductive bias (Battaglia et al. (2016); Battaglia et al. (2018)). 

In particular, our model is inspired by the Neural Relational Inference model (NRI) which uses a 

variational autoencoder for generating edges and a decoder for predicting trajectories of each 

object in a system (Kipf et al. (2018)). By inferring edges, the NRI model explicitly captures 

interactions between objects and leverages the resulting graph as an inductive bias for various 

machine learning tasks. This model was successfully used to predict the trajectories of coupled 

Kuramoto oscillators, particles connected by springs, the pick and roll play from basketball, and 

motion capture visualizations. Subsequently, the authors developed Amortized Causal 

Discovery, a framework based on the NRI model which infers causal relations from time-

dependent data (Lowe et al. (2020)). 

Aside from our work, several studies have successfully applied GNNs on various tasks 

such as annotating cognitive state (Zhang and Bellec (2019)), and several frameworks based on 

graph neural networks have been proposed for analyzing fMRI data (Li and Duncan (2020); Kim 

and Ye (2020)). 
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2. Enabling Generalizable Machine Learning through Graph Neural 
Networks 
 

 

2.1. Introduction 

 
In this work, we examine the performance and generalizability of deep learning models 

applied to the neural activity of C. elegans (round worm/nematode). In particular, C. elegans is a 

canonical species for investigating microscopic neural dynamics because it remains the only 

organism whose connectome (the mapping of all 302 neurons and their synaptic connections) is 

completely known and well-studied (White et al. (1986); Bargmann and Marder (2013); 

Varshney et al. (2011); Cook et al. (2019)). Furthermore, the transparent body of these worms 

allows for calcium imaging of whole brain neural activity which remains the only imaging 

technique capable of spatially resolving the dynamics of individual neurons (Wen and Kimura, 

2020). Leveraging these characteristics and insight gained from previous studies, we developed 

deep learning models that bridge recent advances in neuroscience and deep learning. 

Specifically, we first demonstrate state-of-the-art performance for classifying motor action states, 

e.g. forward and reverse crawling, of C. elegans from calcium imaging data acquired in previous 

works. Next, we examine the generalization performance of our deep learning models on unseen 

worms both within the same study and in worms from a separate study published years later. We 

then show that graph neural networks exhibit a favourable inductive bias for analyzing both 

higher-order function and microscopic/neuron-level dynamics in C. elegans. 
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2.2. Model 

 

 In this section, we first present the general framework of our behavioral state 

classification and trajectory prediction models. Next, we detail the implementation of our neural 

network models. 

 

 

Figure 2.1: (A) Visualization of temporal graph. Inset shows 𝑥! plotted against 𝑡 where the top is 
the calcium trace, and the bottom is its derivative. The dashed line intercepts the feature vectors 
at 𝑡" = 𝑡 + 1 and denotes 𝑥!#$%. (B) and (C) are simplified visualizations of the MLP and GNN 
models respectively. 

 

2.2.1. Framework 

 We define the set of trajectories (calcium imaging traces) for each worm as 𝐗& =

{𝐱%, … , 𝐱', … , 𝐱(}& where α denotes the label of the individual, 𝑛 the name of the neuron, 𝑁 
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 the total number of neurons, and 𝒗! the feature vector of the neuron. In our case, 𝐱' ∈ ℝ)×+ 

corresponds to time-dependent normalized calcium traces and their derivatives for each neuron 

where 𝑇 is the total number of timesteps. Likewise, 𝑥!,# 	 ∈ ℝ+ 	corresponds to the features of 

neuron 𝑛 at timestep 𝑡. Finally, the behavioral states of an individual are encoded as 𝒂& =

(𝑎%, … , 𝑎# , … , 𝑎))& where a behavioral state 𝑎 is assigned for each timestep 𝑡. 

Separate models were developed for each task: behavioral state classification and 

trajectory prediction. In both cases, data from a worm α is structured as a temporal graph 𝓖- 	=

(𝒢%, … , 𝒢# , … , 𝒢))- 	 (Figure 2.1A) where each timestep is represented by a static graph whose 

nodes correspond to neurons. Following the notation above for worm α, the trajectories of each 

neuron's calcium traces are encoded as node features 𝒙!, and the behavioral state of the worm is 

interpreted as a graph feature 𝑎#. For behavioral state classification, our model consists of the 

following: 

𝑯&,# = 𝑓?𝑿&,#A (1) 

𝒑&,# = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥?𝑯&,#A (2) 

aH&,.  =  argmax?𝒑&,.A  (3) 

where 𝑿&,# corresponds to node feature vectors for worm α at timestep 𝑡, 𝑓 is an universal 

approximator/neural network model (described in the next section), 𝑯𝜶,𝒕 	 ∈ 	ℝ1 	corresponds to 

embedded features, 𝒑&,# is the probability that the worm is in one of 𝑘 motor states (Figure 

2.2D), and 𝑎H&,# is the most probable/predicted state. 

For trajectory prediction, we developed a Markovian model for inferring trajectories of a 

consecutive timestep: 

𝑯&,# = 𝑓?𝑿&,#A (4) 

𝑿Q-,.$% = 𝑿-,# +𝑯-,# (5) 
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where 𝑓 is the same as before,  𝑯𝜶,𝒕	is the predicted change of the trajectory and can be 

interpreted as Δ𝑿Q-,., and 𝑿Q-,.$%	is the predicted value of the subsequent timestep. When 

predicting multiple timesteps, the predicted value of the previous timestep is substituted for 𝑿&,#. 

We also experimented with non-Markovian models like recurrent neural networks (RNNs) for 

which a hidden state is included for each timestep. 

The structure of our framework allows us to substitute various models for 𝑓. While we 

include results from several neural networks, we focus on two representative models: a multi-

layer perceptron (MLP) agnostic to graph structure (Figure 2.1B) and a graph neural network 

(GNN) which explicitly computes on an inferred graph (Figure 2.1C). 

 

2.2.2. Neural Network Models 𝒇: MLP and GNN 

Our MLP model aggregates (sums or concatenates) the features of a graph and feeds the 

aggregated features into a 2-layer MLP neural network: 

𝑯23# = 𝑔45678::;7?𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑥%, … , 𝑥!, … , 𝑥<)A (6) 

where 𝑔45678::;7 is a 2-layer MLP. Contrasting the MLP model, our GNN relies on message 

passing between connected nodes and contains an encoder for edge weights 𝐴=>: 

𝑽 = 𝑔!2?@(𝑿) (7) 

𝐸=> = 𝑔@?4@ ^𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛?𝒗= , 𝒗>A_ (8) 

𝐴=> = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑?𝐸=>A (9) 

where in equation (7),  𝑽 = (𝒗%, … , 𝒗!, … , 𝒗<) corresponds to the embedding of each node's 

features through the MLP 𝑔!2?@. Next, the edge embedding 𝐸=> is computed by aggregating all 

pairs of node embeddings followed by the MLP 𝑔@?4@. Finally, applying the sigmoid function to 
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the edge embedding 𝐸=> produces edge weights 𝐴=> normalized between 0 and 1. 𝑨 can be 

interpreted as an inferred weighted adjacency matrix where 𝐴=> denotes the edge weight between 

nodes 𝑖 and 𝑗 such that 𝑖 = 𝑗 denotes a self-edge. The edge weights either dynamically change in 

each timestep's inferred graph 𝒢# or remain fixed for the whole temporal graph 𝓖- of an 

individual worm. If the edges are static for the temporal graph, the aggregation step in equation 

(8) also averages hidden features across all timesteps such that 𝑽 = %
)
∑ 𝑔!2?@(𝑿#))
#A% . Note that 

in this case, the edge encoder is given all timesteps 𝑿& in equation (1) and equation (4) instead of 

just one timestep. 

After edges are encoded, the GNN performs a message passing (10) and aggregation step 

(11): 

𝑴 = 𝑨𝑿 (10) 

𝑯23# = 𝑔45678:4!!?𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝑴)A (11) 

As mentioned before, our MLP and GNN models can be substituted for 𝑓 in equation (1) 

and equation (4). Depending on the task, the dimension of 𝐻23# for the MLP (6) and GNN (11) 

models differs. For behavioral state classification, 𝑯23# ∈ ℝ1 whereas for trajectory prediction, 

𝑑𝑖𝑚(𝑯23#) = 𝑑𝑖𝑚?𝑿&,#A such that 𝑯23# ∈ ℝ<×+. 

Theoretically, an arbitrary number of message passing steps can be implemented; 

however, we did not find any improvements when using more than one step. In addition, we find 

that performance improves when using concatenation instead of summation during the 

aggregation step. 
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2.3. Experiments 

 

Our experiments were performed with data acquired in Kato et al. (2015) and Nichols et 

al. (2017). We summarize various details about the data in this section; however, we direct the 

reader to each respective publication for specific experimental details. 

 

2.3.1. Calcium Imaging 

Kato et al. (2015) showed that neural activity corresponding to the motor action sequence 

lives on low dimensional manifolds. To record neuron level dynamics, they performed whole-

brain genetically encoded Ca+$ imaging with single-cell-resolution and measured ~100 neurons 

for around 18 minutes. They then normalized each calcium trace by peak fluorescence and 

identified neurons using spatial position and previous literature (Altun et al., 2002–2020). Aside 

from imaging freely moving worms, the authors also examined robustness of topological features 

to sensory stimuli changes, hub neuron silencing, and immobilization. For simplicity, we limited 

our experiments to data collected on freely moving worms. 

Nichols et al. (2017) focused on differences in neural activity of C. elegans while awake 

or asleep and studied two different strains of worms, n2 (11 total worms) and npr1 (10 total 

worms). Because experiments in both studies were performed by the same group, most 

experimental procedures were similar, allowing us to easily process data to match the Kato 

dataset. While this dataset includes imaging data of each worm during quiescence, for 

consistency with the Kato dataset, we only included data before sleep was induced. Furthermore, 

we pooled results for both strains of worms as we did not notice any statistically relevant 

differences between them. 
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2.3.2. Dataset Enlargement 

Although our data for each worm is relatively small (~3000-4000 timesteps), our datasets 

contained calcium traces from numerous worms. In total, 5 worms were measured in Kato et al. 

(2015) and 21 worms were measured in Nichols et al. (2017). Taking advantage of the large 

number of worms measured, we experimented with dataset enlargement where our models were 

trained on pooled data from different numbers of worms in the Kato dataset. Similarly, we 

pooled data from all 21 worms from the Nichols dataset; however, we use this dataset only 

during evaluation- i.e. the model never sees this dataset in training. In this way, we define the 

"seen" population as worms whose data was seen in training and the "unseen" population as 

worms the model did not see during training. More details about how datasets were used in our 

experiments can be found in the following section. 

To perform dataset enlargement, we separately trained the models on each worm in the 

seen population for each epoch. In other words, we independently optimized the loss function for 

each worm in every epoch. We followed this procedure such that batch normalization was 

separately performed on each worm's features. This technique was motivated by experiments 

where batch normalization on data from individual worms improved both test set and 

generalization accuracy. In contrast, performing batch normalization on pooled data from all 

worms greatly decreased model performance.  

 

2.3.3. Data Processing 

We normalized the calcium trace of each neuron and its derivative to [0,1]. 

Normalization was performed for the entire recorded calcium trace of a worm instead of within 
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each batch because the relative magnitudes of the traces have been found to contain graded 

information about the worm's behavioral state (e.g. crawling speed).  

For the seen population, we separated each calcium trace of approximately 3000-4000 

timesteps into batches of 8 timesteps where each timestep corresponds to roughly 1/3 of a 

second. We chose batch sizes of 8 timesteps because visualization of calcium traces showed that 

most local variations occur within this time frame. Moreover, 8 timesteps roughly corresponds to 

3 seconds which is about the amount of time a worm needs to execute a behavioral change. 

Finally, the batches were shuffled before being divided into 10 folds later used for cross-

validation, ensuring that each fold is representative across the whole dataset.  

When evaluating on the unseen population, we treat the data differently for each task. For 

behavioral classification, we infer the behavioral state of the system using data from one 

timestep. As such, we do not split the data and simply run the model separately on each timestep 

of the worm's calcium traces. In contrast, for trajectory prediction, we split the calcium traces 

into batches of 16 timesteps and evaluate the model on all batches. 

To compare with previous works, we performed our experiments on uniquely identified 

neurons between the datasets that we investigated. Identifying specific neurons is an 

experimental challenge, and as such, only a small fraction of neurons were unequivocally 

labeled. A total of 15 neurons were uniquely identified between all 5 worms measured in the 

Kato dataset: (AIBL, AIBR, ALA, AVAL, AVAR, AVBL, AVER, RID, RIML, RIMR, RMED, 

RMEL, RMER, VB01, VB02). In addition, the Nichols dataset contained data from 21 worms 

with 3 uniquely identified neurons shared among all worms in both datasets: (AIBR, AVAL, 

VB02). 
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2.4. Results 
 

Following Brennan and Proekt (2019), we used data from Kato et al. (2015) for 

training/evaluating our models and data from Nichols et al. (2017) as an extended evaluation set. 

Because whole brain imaging is incredibly difficult, our datasets were relatively small. To 

address this, we experimented with dataset enlargement by combining data from multiple worms 

in the Kato dataset during model training. For all experiments, we performed 10-fold cross 

validation on all permutations of worms in our training set. More details, along with 

supplemental experiments, can be found in Appendix A. 

 

Table 2.1: Classification Accuracy of Forward and Reverse Crawling 

 Seen Population Unseen Population 
(Kato) 

Unseen Population 
(Nichols) 

Brennan and Proekt 
(2019) 

83 81 ---- 

SVM 98.8 ± .4 82.8 ± 7.6 79.0 ± 11.7 

MLP 99.3 ± .6 93.9 ± 10.3 88.9 ± 11.4 

GNN (Connectome) 99.5 ± .6 96.8 ± 4.3 85.5 ± 12.9 

GNN 99.5 ± .5 97.7 ± 3.1 95.5 ± 6.4 

 



 20 

 

Figure 2.2: (A; B) Classification accuracy of our GNN and MLP models where black vertical 
lines show statistical spread. (A): Classification of 7 motor action states within the Kato dataset. 
(B): Classification of 4 motor action states on both the Kato and Nichols datasets. (C) Confusion 
matrix. Percent occurrence of predicted states against labeled states when evaluating on the 
Nichols dataset. (D) Mapping of behavioral states between the Kato and Nichols dataset. 

 
2.4.1. Behavioral State Classification 

Our first experiment compared the performance of our models to state-of-the-art results 

reported in Brennan and Proekt (2019). Specifically, this experiment involved the classification 

of only two motor action states, forward and reverse crawling. Along with our models described 
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above, we also experimented with a support vector machine (SVM) and a GNN which computes 

with edges derived from the physical connectome (White et al., 1986). In particular, we 

incorporated the connectome into our model to investigate whether physical/structural 

connections between neurons can serve as a favourable inductive bias for our GNN. Our results 

are shown in Table 2.1 where “Seen Population” denotes test set accuracy after training on the 

same worm and “Unseen Population” denotes evaluation/generalization accuracy on worms 

unseen during training.  

Our deep learning models clearly outperformed the SVM and state-of-the-art results, 

demonstrating the ability of our models to successfully classify behavioral states and generalize 

to other worms. Interestingly, the SVM matched the performance of our deep learning models on 

the seen population; however, its generalization performance on unseen individuals was 

significantly worse than our deep learning models. As such, the SVM distinctly illustrates 

challenges of individual variability for model development in neural systems despite the 

simplicity of our experiments which involve the same set of unequivocally identified neurons. 

Similarly, our GNN using edges derived from the connectome performed well on the seen 

population but generalized worse than when using inferred edges.  We hypothesize that the 

detrimental effect of using the connectome may be attributed to the distinction between 

inferred/functional and structural connectivity. In particular, the connectome maps physical 

connections between neurons which is generally conserved between different individuals. In 

contrast, individual variability of neural activity implicitly implies that the inferred/functional 

connectivity is unique to individuals (See A.4.3).  

Following the previous experiment, we applied our MLP and GNN models to the harder 

task of classifying all behavioral states labeled in the Kato dataset (Figure 2.2A). Within this 
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dataset, 7 states were labeled: Forward Crawling, Forward Slowing, Reverse 1, Reverse 2, 

Sustained Reverse Crawling, Dorsal Turn, and Ventral Turn. In comparison to the Kato dataset, 

only 4 states were labeled in the Nichols dataset: reverse crawling, forward crawling, ventral 

turn, and dorsal turn. For compatibility, we mapped the 7 states of the Kato dataset to 4 states of 

the Nichols dataset when using the Nichols dataset as an extended evaluation set (Figure 2.2D).  

Despite the harder task of classifying 7 states, our models achieved a classification 

accuracy of ∼92% on the same worm (Figure 4A). Moreover, our GNN trained on three worms 

in the Kato dataset generalized with an accuracy of 87% (Figure 2.2B) when classifying 4 states 

on the remaining unseen worms. This substantially exceeds the performance of our MLP model 

and Brennan and Proekt (2019) who report an 81% cross-animal accuracy on two states. 

Nevertheless, both MLP and GNN models generalized equally well (∼70%) to the 21 unseen 

worms of the Nichols dataset. These experiments consistently demonstrate that our GNN 

exceeds the performance of state-of-the-art techniques and also often exceeds the performance of 

our baseline MLP model. 
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Figure 2.3: (A) Mean squared error (MSE) of the GNN and various MLP models evaluated on 
the Nichols dataset. All models were trained using data from one worm or five worms in the 
Kato Dataset. (B) Table of mean MSE values for all models for 1, 8, and 16 timesteps. 

2.4.2. Neuron-Level Trajectory Prediction 

For trajectory prediction, we predicted each neuron’s calcium trace and its derivative 

(normalized to [0,1]) for 8 timesteps during training (seen population) and 16 timesteps during 

evaluation/validation (unseen population). While training our Markovian models, scheduled 

sampling was performed to minimize the accumulation of error (Bengio et al., 2015). When 

evaluating on the unseen population, the model was given one timestep as the initial condition 

after which the model predicts 16 timesteps. In addition to our Markovian models, we also 

experimented with RNN implementations trained with burn-in periods of four timesteps (12 

timesteps during training and 20 timesteps during evaluation). Our experiments primarily 

focused on generalization performance of our models on the extended evaluation/Nichols dataset 

(Figure 2.3).  

Predicting neuron-level trajectory using deep learning is fairly novel since advances in 

whole-brain imaging are recent and limited to few organisms. Nevertheless, neural systems 

generically fall under the category of dynamical systems where each neuron is described by a 
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differential equation such that neural activity can be modeled as a system of coupled differential 

equations. Under this formulation, the task of trajectory prediction involves learning the 

underlying physical laws in order to predict the time evolution of the system. To quantify the 

predictive power of our models, we evaluated the mean squared error (MSE) of each prediction 

timestep relative to the true trajectory. In the context of our Markovian model, this metric 

measures the error of the predicted transition matrix which time evolves the state of the system 

and, by extension, demonstrates the ability of our models to learn the underlying physical laws of 

the dynamical system.  

Several challenges limited the predictive power of our models. Most prominently, our 

system is inherently non-linear and potentially chaotic, a fact further exacerbated by the nature of 

calcium imaging which is notoriously noisy and an indirect measurement of neural activity. In 

addition, our datasets are relatively small in spite of our dataset enlargement technique. Resulting 

from these challenges, the performance of our model is poor, especially in comparison to that of 

models in data assimilation which leverage apriori knowledge of the dynamical system (Meliza 

et al. (2014); Moye and Diekman (2018)). Nevertheless, inspecting the MSE as a function of 

prediction step (Figure 2.3) reveals that our models are able to learn how the system transitions 

up to a short timescale. Moreover, increasing the number of worms included during training 

(dataset enlargement) also improved the generalization performance of our MLP and GNN 

models. Perhaps most surprising, our Markovian GNN outperformed all MLP models and their 

derived RNN variants. We attribute this result to the largely deterministic nature of neural 

dynamics, characterized by sparse bifurcations on the latent manifold, and the inductive bias of 

GNNs. As a result, given 1 timestep, our GNN outperformed all other models including RNN 

variants which were given 4 burn-in timesteps. Therefore, we conclude that our GNN displays a 
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favorable inductive bias in contrast to graph-agnostic models for the task of predicting 

microscopic dynamics. 

 

 

2.5. Discussion 

 

For both tasks, our GNN consistently matched or exceeded our MLP model which we 

accredit to its favourable inductive bias. Kato et al. (2015) established that projecting neural 

dynamics onto three principal components for each worm reveals universal topological structures; 

however, attempts to project neural dynamics onto shared principal components of all worms 

failed to display any meaningful structure. Thus, variability in each worm’s neural activity, 

corresponding to low dimensional manifolds in latent space, is represented by different linear 

combinations of neurons. In other words, relevant topological structures in latent space are loosely 

related by linear transformations of node features. We speculate that our GNN’s performance 

stems from its explicit structure of message passing along inferred edges which is analogous to 

learning linear transformations of node features (see equation (10)). Based on our experimental 

results, we further speculate that this inductive bias proves favourable on both microscopic and 

macroscopic machine learning tasks in neural systems.  

Interestingly, our model’s performance was not significantly impacted by using 3 neurons 

(∼1% of all neurons) instead of 15 (∼5% of all neurons). This is not surprising because neurons 

strongly coupled to the motor action sequence retain most information (Gao and Ganguli, 2015), 

a fact consistent with Brennan and Proekt (2019) who found that strategically choosing 1 neuron 

retains∼75% of the information contained in the larger set of 15 neurons.  
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Finally, as a critical question, we ask whether our model’s performance stems from 

choosing a stereotyped organism that is well studied and biologically simple, or if our results imply 

a path towards generalizable/universal machine learning in neural systems. While the 

neurophysiology of C. elegans is quite complex, the motor action sequence we studied is relatively 

simple, especially in comparison toother organisms and cognitive functions. Moreover, organisms 

are adaptive and capable of learning new behavior, a fact not represented in our dataset. However, 

a recent astounding study (Gallego et al. 2020) measured neural dynamics in monkeys trained to 

perform action sequences and determined that learned latent dynamics live in low-dimensional 

manifolds that were conserved throughout the length of the study. By aligning latent dynamics, 

their model accurately decoded the action of monkeys up to two years after the model was trained 

despite changes in biology (e.g. neuron turnover, adaptation to implants). Consequently, we posit 

that techniques similar to those used in our model may broadly apply to more complex organisms 

and functions. 

 

 

2.6. Conclusion 

 

In this study, we examined the ability of neural networks to classify higher-order function 

and predict neuron level dynamics. In addition, inspired by global organizational principles of 

behavior discovered in previous studies, we demonstrated the ability of neural networks to 

generalize to unseen organisms. Specifically, we first showed that our models exceed the 

performance of previous studies in behavioral state classification of C. elegans. Next, we found 

that a simple MLP performs remarkably well on unseen organisms.  Nevertheless, our graph neural 
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network, which explicitly learns linear transformations of node features, matched or exceeded the 

performance of graph agnostic models in all experiments. These experiments demonstrate that our 

models are capable of successful evaluation on unseen organisms, both within the same study, and 

in a separate experiment spaced years apart. Finally, our results show that dataset enlargement 

through the inclusion of more individuals can significantly improve generalization performance in 

microscopic neural systems.  

We note that our results of generalization on both higher-order functions and neuron-level 

dynamics (macroscopic and microscopic) suggests wide applicability of our technique to 

numerous machine learning tasks in neuroscience and hierarchical dynamical systems. A 

promising research direction is the hierarchical relationship between neuron-level and population-

level dynamics. Breakthroughs in this direction may inform machine learning models working 

with population-level functional and imaging techniques, such as EEG or fMRI, which are readily 

available and widespread. In addition, in this study, we only focused on simple machine learning 

tasks and imaging data taken under similar experimental conditions. Further studies using GNNs 

may involve more complex tasks such as those involving graded information in neural dynamics, 

changes in sensory stimuli, acquisition of learned behaviors, and higher-order functions comprised 

of complicated sequences of behavior. From a machine learning perspective, the development of 

a recurrent graph neural network for the edge encoder with a suitable attention mechanism may 

aid model generalization. Additional work is also needed in examining and improving model 

performance on arbitrary sets of neurons as neuron identification is experimentally challenging 

and limited to small systems. 
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Appendix A. Supplemental for Chapter 2 

A.1 Model Selection 

 

The two final models included in the main text were chosen for their performance and 

simplicity. Nevertheless, we experimented with numerous established models which were easily 

substituted for f. For GNNs, we primarily used the excellent Pytorch Geometric library (Fey and 

Lenssen, 2019). Tested modules include the GIN-0/GIN-𝜖	(Xu et al., 2018), Graph Sage (Hamilton 

et al., 2017), GAT (Velickovic et al., 2018), and Global Attention (Li et al., 2015). In particular, 

we expected the GIN to outperform the other modules because its expressiveness has been shown 

to aid transfer learning (Hu et al., 2020); however, because our edges are not explicitly known, we 

essentially applied the GIN on a fully connected graph. Under this formulation, the GIN-0 simply 

symmetrizes node features after a message passing step which is similar to the aggregation step of 

our MLP. We also found that the GIN-was prone to overfitting. Finally, we tested the GAT which 

is similar to our model when edges are dynamically inferred each timestep. As a result, we found 

that the GAT performs equally well on trajectory prediction but performs slightly worse on 

behavioral state classification. 

 

A.2 Model Implementation 

 

A.2.1 Neural Networks 

The two-layer MLP corresponding to g in the main text comprised of linear layers followed 

by elu activation functions. We also applied batch norm on the output of the two layers. The Node 
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MLP in the main text refers to individual MLPs for each node. To construct RNN variants, we 

added an LTSM unit before the MLP. We performed some minor hyperparameter optimization as 

our combinatorial cross-validation was computationally expensive. Overall, we found our models 

relatively robust to different hyperparameters. For trajectory prediction, we used hidden layers 

with 256 dimensions. On the other hand, for behavioral state classification, we used hidden layers 

with 16 dimensions. Furthermore, we determined that dynamic edges evaluation worked better for 

trajectory prediction; however, globally evaluated edges for each worm resulted in better 

performance for behavioral state classification. Finally, for trajectory prediction, we chose to 

optimize the mean square error (MSE). For behavioral state classification, we optimize the 

negative loglikelihood (NLL). 

 

A.2.2 Support Vector Machine 

For the SVM, we used a linear SVM module from sci-kit learn (Linear SVC). Although 

SVMs with linear kernels are significantly less expressive than that with non-linear kernels, we 

chose a linear kernel as our test set accuracy implies that behavioral states are linearly separable. 

The SVM was trained with the same loss function until a tolerance of 1E-5 was achieved. 

 

A.3 Experimental Procedures 

 

For the extended evaluation set, we chose prelethargus data where 4 states were labeled: 

reverse, forward, dorsal turn, and ventral turn. For compatibility with the training dataset, we 

mapped reverse 1, reverse 2, and sustained reverse crawling to the reverse state. Similarly, we 

mapped forward crawling and forward slowing to forward. In addition to the 7 or 4 labeled states, 
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there was another labeled state for unknown behavior or quiescence. This state comprised a very 

small portion of our data, and during training and evaluation, we ignore the result when the target 

is unknown. For all experiments in the main text, we perform 10-fold cross validation on all 

possible permutations of worms in our training set (Kato dataset). For example, on our experiments 

trained on two worms, the possible permutations of worms are the following: {(1, 2), (1, 3), (1, 4), 

(1, 5), (2, 3), (2, 4), (2, 5), (3, 4),(3, 5), (4, 5)}. Experiments labeled with “Train on 2 worms” 

involved models trained separately on each of these permutations. Each permutation then involved 

10-fold cross validation where the test set was left out when performing hyperparameter 

optimization. In particular, for our experiments on behavioral state classification, we used 1 fold 

as the test/ “leave-out” set and 1 fold for the validation set which was used for optimization and as 

a metric for stopping training. On the other hand, our experiments on trajectory prediction were 

focused primarily on generalization performance instead of test set accuracy so we used 1fold as 

the validation set and evaluated on all worms in the extended validation set (Nichols dataset). As 

a note, we also attempted experiments where data from the extended dataset was used as a 

validation set. Under this condition, we found that the MLP performed significantly better; 

however, we were concerned that the MLP was overfitting to the validation set so we chose not to 

include those results. We performed our experiments on with an Intel i9 9900k CPU and Nvidia 

GeForce RTX 2080Ti graphics card. Since our models are relatively simple, we were able to train 

the model on data from one worm in one batch. Nevertheless, the number of worms and cross-

validation procedure was very computationally expensive. As such, training and evaluating each 

model required roughly a week or two of continuous computation. For optimization, we used the 

Adams optimizer with a learning rate of10−3. We decayed the learning rate with by a factor of .25 

if the loss did not improve after 50 epochs. We then trained for 800epoch and saved the model 
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with the lowest validation loss. For scheduled sampling (used during trajectory prediction), we 

adopted a linear decay which terminated at 300 timesteps. 

 

A.4 Additional Experiments 

 

We performed numerous experiments to verify our results and examine the performance 

of our model on diverse machine learning tasks. We did not perform rigorous cross validation for 

the following experiments. 

 

A.4.1 Experiments without AVA 

Referees of Brennan and Proekt (2019) were concerned with behavioral state classification 

where AVA neurons were included. In particular, these neurons were used by Kato et al. (2015) 

to define behavioral state through trajectory clustering in latent space. Referees commented that 

classifying behavioral states with neurons used to define those states was akin to circular 

reasoning. We would like to note that Kato et al. (2015) verified their assigned behavioral states 

through recorded videos, minimizing risks that assigned behavioural states differ from reality. 

Nevertheless, we followed Brennan and Proekt (2019) and performed an experiment excluding 

AVA neurons in which we found no noticeable difference in model performance. 

 

A.4.2 One-hot encoding of edges  

To enforce a sparsity on the edges, we experimented with one-hot encoding by adding a 

scaling factor within the softmax. We found that our GNN achieved similar test accuracies as in 

the main text. However, our GNN failed to generalize well to unseen worms. Following our 
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discussion in the main text, we believe that one-hot encoding was detrimental to generalization 

because it effectively results in a permutation matrix which simply permutes node features. This 

is counter to previous studies where topological structures are related by more general linear 

transformations. 

 

A.4.3 Comparison of inferred edges to known connectome 

Inferring the connectivity between neurons in neural systems remains a key challenge in 

neuroscience. Because C. Elegans is among few organisms whose connectome mostly or 

completely known, we decided to compare the inferred edges of our model to the connectome of 

C. Elegans. Ultimately, we found no similarities between our inferred edges and the connectome. 

In neuroscience, two types of connectivity are defined: structural and functional. Structural 

connectivity refers to physical connections between neurons whereas functional/effective 

connectivity corresponds to observed connections (Horwitz, 2003).  The exact methods for 

determining either metrics remains heavily contested. Regardless, in the context of C. Elegans, 

each worm generally has the same structural connectivity; however, differences in neural activity 

implies a different functional connectivity exists for unique individuals. Since the connectome 

relates to the structural connectivity, we believe that our inferred edges are a poor proxy for the 

connectome. On a more abstract level, our graph neural network works with a subset of neurons 

such that a inferred edge may not correspond to a direct correlation, but may rather represent higher 

order correlations with unseen neurons. 
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