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Analytical insights into optimality and
resonance in fish swimming

Saba Kohannim and Tetsuya Iwasaki

Mechanical and Aerospace Engineering, University of California Los Angeles, 420 Westwood Plaza, Los Angeles,
CA 90095, USA

This paper provides analytical insights into the hypothesis that fish exploit

resonance to reduce the mechanical cost of swimming. A simple body–fluid

fish model, representing carangiform locomotion, is developed. Steady swim-

ming at various speeds is analysed using optimal gait theory by minimizing

bending moment over tail movements and stiffness, and the results are

shown to match with data from observed swimming. Our analysis indicates

the following: thrust–drag balance leads to the Strouhal number being pre-

determined based on the drag coefficient and the ratio of wetted body area

to cross-sectional area of accelerated fluid. Muscle tension is reduced when

undulation frequency matches resonance frequency, which maximizes the

ratio of tail-tip velocity to bending moment. Finally, hydrodynamic resonance

determines tail-beat frequency, whereas muscle stiffness is actively adjusted,

so that overall body–fluid resonance is exploited.
1. Introduction
Fish swim by generating thrust through interactions between their body move-

ment and the surrounding water. Studies of fish locomotion aim to understand

how fish choose a frequency and pattern (gait) of tail oscillation, how thrust is

generated efficiently through hydrodynamic forces, and how body shape and

muscle activation are adjusted to regulate swim speed. Fish locomotion has

been investigated using various methods, including kinematic and biomechanical

data analysis of live fish, swimming experiments using flexible fish body models,

and computational/experimental analyses of oscillating foils in fluids. Several

theories have been formulated using these methods.

One prevalent theory is that fish minimize mechanical bending cost, or

maximize thrust, by tuning their natural frequency to the tail-beat frequency

[1,2]. Studies suggest that fish use their muscles, skin and tendons to alter

their body stiffness to achieve the required natural frequency [3,4]. Previous

studies on the relationship between tail-beat frequency, amplitude and speed

have concluded a linear relationship between speed and frequency [5,6]. Exper-

imental data on pumpkinseed sunfish suggest that fish increase their flexural

stiffness to increase their tail-beat frequency to achieve faster swimming

speeds, while maintaining constant tail-tip amplitudes [7].

Thrust production in swimming has been analysed through vortex structure

and energy expenditure of the wake. Experiments on foils oscillating in fluids

have demonstrated that maximum thrust occurs when the non-dimensional

Strouhal number is within 0.25–0.35 [8], agreeing with values observed in biology

of 0.2–0.4 [9]. Optimum hydrodynamic efficiency is achieved when foil oscillation

frequency coincides with the frequency of maximum spatial amplification of

unstable wake [10], or ‘wake resonance frequency’ [11,12].

The goal of this paper is to provide simple analytical explanations for why

fish choose a specific gait and oscillation frequency when swimming at a

steady-state velocity. We first hypothesize that the natural gait is optimal and

minimizes a mechanical cost. For instance, the natural gait may be minimizing

muscle tension, power consumption, body shape curvature or a combination

thereof. Furthermore, we hypothesize that resonance is exploited in reducing

the cost. Because both frequency tuning and hydrodynamic wake resonance

have been observed, this resonance probably depends on both body and
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Figure 1. Top view of a fish model. A large main body is constrained to move along the x-axis, and two oscillating panels represent the flexible tail section.
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fluid dynamics. In contrast to previous works that focused on

individual aspects of the biomechanics and hydrodynamics

of swimming, this paper presents an integrative view of

fish swimming mechanisms, based on a simple model

of body–fluid dynamics.

The primary analysis focuses on saithe (Pollachius virens)

swimming. Carangiform locomotion of saithe has been studied

using Lighthill’s slender body theory by [13–15], which

modelled saithe as a continuous dynamic beam under hydro-

dynamic forces and moments. Here, we develop a discrete

model using three rigid bodies with two rotational joints that

only permit lateral oscillation. We consider standard form

drag on the whole body and added-mass effect on the tail for

thrust generation [16–18] to model the resistive/reactive hydro-

dynamic forces. To determine whether natural swimming gait

is optimal, we compare numerical results from model-based

analysis with data from observed swimming. We find optimal

gaits using the approach developed in [19], where tail motion

is optimized to achieve a given average velocity with minimal

mechanical cost. This simple method allows us to develop

analytical insights into the connection between optimality

and resonance, plus various properties, including Strouhal

number, power consumption and Froude efficiency.

Our analyses suggest the following. The Strouhal number

can be predetermined by the fish’s body geometry, and is inde-

pendent from the gait and swim speed. The total power

consumption in steady swimming is equal to twice the thrust

power, regardless of the gait or oscillation frequency, and is

only a function of velocity and fluid drag coefficient. Thus,

the minimum-power optimal gait is not well defined. Minimiz-

ing the fish’s body curvature resulted in a trivial solution and is

not discussed. However, the optimal gait which minimizes

bending moment or muscle tension closely resembles observed

swimming gait. Furthermore, minimizing muscle tension

explains the observed tendency of increasing tail-beat frequency

and stiffness to achieve higher velocities, while maintaining

constant tail amplitude. The optimal frequency occurs at the

resonance which maximizes the ratio of tail-tip velocity

to bending moment; this resonance results from both the

body resonance and the fluid resonance.
2. Material and methods
2.1. Body – fluid interaction model
Saithe fish exhibit carangiform locomotion, where undulation is

concentrated in the posterior half of the body. In our study, we

use a simple model (see appendix A for details) with three rigid

bodies and two rotational joints (figure 1), representing a heavy

head/trunk region (‘main body’) and undulating precaudal and

caudal regions (‘tail’). The main body of the fish, with centre of

mass at (xo, yo), is assumed to move only in the x-direction, with

no rotation or translation in the y-direction, such that its motion

is solely described by the position xo and velocity v :¼ � _xo. This

assumption is reasonable for studying carangiform locomotion

along a straight line. Tail motion is described by the angular
displacements of the oscillating panels u: ¼ (u1, u2) and is gener-

ated from the net effects of hydrodynamic forces and muscle

bending moments.

The muscle bending moments consist of active and passive

components [20]. The active component (u1, u2) results from

the difference in antagonistic left/right muscle tensions and is

directly controlled through motoneuron activation. The passive

component results from co-contraction of left/right muscles

plus intrinsic elasticity of the tissues, and is modelled pro-

portional to the curvatures (angular displacements) at the two

joints with proportionality constants (stiffnesses) k1 and k2.

Undulatory motion of fish is driven by anterior muscles in the

precaudal region, and the resulting wave is propagated down

the tail through the body’s passive stiffness [21–23]. To make

our model similar to live fish, we allow the tail to oscillate pas-

sively; the active muscle bending moment u1 is applied only at

the anterior joint, with the posterior joint assumed passive, i.e.

u2(t) ; 0, unless otherwise noted.

In carangiform locomotion of saithe, with Reynolds number

(Re) between 2 � 105 and 8 � 105 [13], thrust generation is domi-

nated by reactive forces from water inertia [18]. Therefore, we

consider only reactive thrust in the tail and resistive drag

acting on the main body. The drag force fo is proportional to

the fish’s total (main body and tail) wetted surface area Aw

and the square of the velocity v, with drag coefficient cD,

which is approximately 0.01 for swimming fish [18]. The mean

thrust necessary to balance the drag is generated reactively in

the undulating sections. In inviscid flow, this reactive force

arises from the volume of water accelerated by the panels. The

mass of the accelerated fluid adds to the fish’s body mass, for

a total effective mass. We assume the volume of water accelerates

in the lateral y-direction while sliding along the body in the tan-

gential direction, so its x-position remains constant (figure 2).

The reactive force fi is normal to the panel, and its lateral com-

ponent is proportional to the acceleration and mass of the

water slice [24]. The fluid mass mAi is equal to the mass of the

nominal cylindrical volume of water multiplied by the added-

mass coefficient cAi , accounting for dependence of fluid flow

on the tail shape. This reactive force model is equivalent to the

spatial discretization of Lighthill’s slender-body theory [16,25].

With the model for hydrodynamic forces and torques, nonlinear

equations of motion (EOMs) are derived from first principles of phy-

sics as in [26]. To gain insights into swimming mechanisms, we

simplify the EOMs assuming small oscillation angles. Additionally,

we consider steady-state swimming at a constant average speed v
resulting from periodic body movements u, and take the average

over a cycle to remove acceleration. Consequently, we obtain two

simplified EOMs. The first equation shows how the muscle bending

moment u results in body motion u, and the second equation shows

the force balance between the total drag and the average thrust.

A detailed derivation of the EOMs is given in appendix A. Velocity

fluctuations are ignored in the first EOM, adding limitations to the

model. However, the simplification helps us find important pro-

perties in steady swimming otherwise hidden in a complicated

mathematical model.

2.2. Model parameters
We fix model parameters using data on the body dimensions, kin-

ematics and observed gaits of live saithe provided by [13,14].

According to the data, a saithe, on average, travels approximately
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Figure 2. Hydrodynamic forces acting on the body model. Two snapshots at different time instants are shown with a lateral offset for clarity. The main body
experiences resistive drag force fo. The tail receives reactive hydrodynamic forces, f1 and f2, owing to the mass of fluid pushed in the lateral direction of the oscillating
body. In steady swimming, the average reactive forces in the x-direction (thrust) balance the resistive drag. Reactive forces in the y-direction would balance the
lateral resistive drag on the main body (not shown) if it were not constrained to only move in the x-direction. (Online version in colour.)

Table 1. Averaged body dimensions and kinematic data from saithe.

total body length lb ¼ 0.40 m

total body mass m ¼ 11.3lb
3 kg m23

wetted surface area Aw ¼ 0.401lb
2

tail-beat period t ¼ 0.278 s

tail-beat amplitude h ¼ 0.083lb

swimming speed v ¼ 0.86lb/t

20 cm
12 cm8 cm

Figure 3. Approximated side view of saithe.

Table 2. Model parameters.

tail panel 1 tail panel 2

length 2l1 ¼ 8 cm 2l2 ¼ 12 cm

height d1 ¼ 6.09 cm d2 ¼ 3.75 cm

mass m1 ¼ 177 g m2 ¼ 67.9 g

fluid volume/length A1 ¼ 0.0182lb
2 A2 ¼ 0:0174l2

b

added-mass coefficient cA1 ¼ 1 cA2 ¼ 2:53

drag coefficient cD ¼ 0.009

water density r ¼ 1000 kg m23

t = 0

t /8

t /4

3t /8

t /2

Figure 4. Snapshots of observed swimming gait over a half cycle [13], with
period t, during steady-state swimming.
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86% of its body length in one tail-beat cycle. Therefore, a 40 cm

saithe swims at approximately 1.2 m s21 with a frequency of

3.5 Hz. The body dimensions of saithe and kinematic data,

averaged over 13 video sequences, are given in table 1. Based on

the distribution of amplitude of movement along the body, we

approximate the main body to be 50% of the entire length,

and approximate the undulating precaudal region and caudal tail

fin to be 40% and 60% of the posterior half, respectively. The

fish’s side view is given in figure 3, with body parameters in

table 2.

The saithe’s natural gait is described by the distribution of

amplitude and phase of movement along the body length.

Two observed gaits at two swim speeds are given in [13]. Snapshots

of one observed gait, travelling at 1.2 m s21 with an oscillating

frequency of 3.49 Hz, are shown in figure 4, where the tail angles

unat(t) were determined by spatial discretization. For a 40 cm

fish, the tail-tip amplitude ymax is approximately 3.3 cm. We

define the non-dimensional frequency, called the Strouhal num-

ber, as St¼ fh/v, where f is the tail-beat frequency in hertz, and

h¼ 2ymax is the peak-to-peak tail-tip amplitude. For an average

fast-swimming saithe, the Strouhal number is about 0.20. This

value is at the low end of the 0.2–0.4 range observed in fish and

cetaceans [27].

The fluid drag depends on the cD. According to Sundnes [28],

this value is approximately 0.01 for salmon and herring swimming

at Re � 106. The averaged cD calculated from saithe data in [13] is

cD � 0.009, and we use this value for our analysis. The thrust gen-

erated in the undulating tail sections depends on added-mass

coefficients cA1
and cA2

. The precaudal tail section is close to a rec-

tangular panel, and it is reasonable to approximate the added-mass

coefficient cA1
� 1; however, the caudal tail shape is not close to a

rectangle, and calculating the exact value of cA2
is tedious. To find

a reasonable value for cA2
, we compute the value that balances

thrust and drag forces for the two observed gaits provided by

Hess & Videler [13]. Figure 5 plots the lines in the ðcA1
; cA2
Þ plane

on which the thrust and drag balance for the two observed gaits.

Averaging cA2
values at cA1

¼ 1 gives cA2
¼ 2:53. The fluid force

parameters used in our analysis are summarized in table 2,

where Ai is the cross-sectional area of the cylindrical fluid acceler-

ated by the ith tail panel. Note that, with this body division, A1

and A2 are approximately equal, leading to insightful results later.
2.3. Optimal gait analysis
Various periodic forcing of the bending moment results in different

tail oscillation patterns (gaits), which may lead to different charac-

teristics (e.g. efficiency) of swimming. To determine whether

natural swimming gait is optimal, we compare the frequency and

body oscillation shape observed in natural swimming with optimal

gaits that minimize certain cost functions while maintaining a

steady swimming speed.

Optimal gaits are specified as follows. We apply a sinusoidal

bending moment at the anterior tail joint. The amplitude and fre-

quency of the driving input are constrained, so that the model

fish swims at a prescribed average velocity in the steady state, bal-

ancing thrust and drag. Among those satisfying this constraint, we

choose the bending moment that gives the smallest value of a

selected cost function. The optimal input and hence the optimal
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gait at a prescribed velocity are thus determined for a given set of

body and fluid parameters. We have examined various cost func-

tions, including the power consumption and body curvature, and

we found that choosing the smallest amplitude of active bending

moment gave the optimal gait closest to the observed motion; the

result of this case will be reported below. The theory developed

in [19] directly provides an analytical expression for the optimal

gait (see appendix A for details). We will exploit the theory to

gain insights into swimming mechanisms.

The same active bending moment can generate tail oscillations

of different shapes depending upon the tail stiffness. Therefore, the

stiffness value can have a large impact on the swimming perform-

ance. While observations and experiments in the literature provide

preliminary results on how body flexibility varies with body pos-

ition and speed, they do not provide actual values for live saithe

body stiffness that can be used to determine k1 and k2 in our

model. In fact, stiffness values are probably actively adjusted for a

given speed through co-contraction of left/right muscles [2]. To

test this hypothesis, we set k1 to be a reasonable scalar multiple of

k2, and include k2 in the optimal gait problem as an adjustable

parameter. We examine cases with various ratios k1/k2, for a sensi-

tivity study, because a definite relationship between the body

flexibility at various points on the body is not known.

Overall, the frequency and amplitude of sinusoidal active bend-

ing moment u1 and tail stiffness k2 are optimized to achieve a given

average speed with minimum amplitude of u1, whereas hydro-

dynamic and body geometry/mass parameters, and the stiffness

distribution over the body, k1/k2, are fixed. The optimization is

repeated for various swim speeds in a range observed in saithe

swimming to determine whether the observed gaits can be

explained by optimality. When we examine hydrodynamic reson-

ance in §3.2.3, the procedure is modified by assuming that the

fish body has no mass or stiffness and both tail joints are driven

by active muscle bending moments. In this case, tail stiffness par-

ameters are set to zero (k1 ¼ k2 ¼ 0), and frequency, amplitudes

and phases of bending moments u1 and u2 are adjusted to minimize

the sum of squares of the bending moment amplitudes.
3. Results
3.1. Intrinsic properties of steady fish swimming
Various tail oscillations of different frequency, shape and

amplitude lead to steady swimming at various speeds.
There are certain properties that are shared by all swimming

behaviours. This section presents such gait-independent

intrinsic properties.

3.1.1. Strouhal number
For the saithe model, with parameters given in §2.2, the vir-

tual mass per unit length for panel 1 is roughly equal to that

for panel 2, i.e. A1 ffi A2 ¼: Ao. In this case, the thrust–drag

balance equation can be simplified to give the following

expression for the ratio of the locomotion velocity v to the

maximum lateral tail-tip velocity vt:

v
vt
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ao

2cDAw

s
: ð3:1Þ

Equation (3.1) implies that the average swimming velocity is

proportional to the maximum tail-tip velocity, with a constant

determined from only the fish’s body geometry and hydro-

dynamic force parameters. If a fish has a large cD or a large

wetted area Aw, a higher tail-tip velocity vt is required to

achieve a given speed v. The relationship expressed in (3.1)

agrees with observations from biology. Data on carangiform

locomotion of live scombroid fish show a linear relationship

between swim speed and tail speed [29,30]. This relation-

ship was calculated by [31] to be v/vt ¼ 1.21 for steady

swimming, and v/vt ¼ 1.9 for swimming starting from rest.

Tail velocity also appears to be directly proportional to swim

velocity in anguilliform swimming of eel [32]. In our model,

we obtain v/vt ¼ 1.57, similar to the expressions found by

[31], whereas live fish observation gives v/vt ¼ 1.44 [14].

The Strouhal number, St ¼ h/(vt), can be interpreted as

the ratio of peak-to-peak tail amplitude h to the distance tra-

velled over a cycle, vt. Because the maximum tail-tip velocity

is vt ¼ ph/t for sinusoidal oscillations, the Strouhal number

can also be viewed as the ratio St ¼ (1/p)(vt/v), leading to

the expression

St ¼ 1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cD �

Aw

Ao

s
: ð3:2Þ

The relationship (3.1) between the locomotion velocity

and tail-tip velocity makes St predetermined based on the

fish’s body geometry and fluid parameters, and independent

of gait and velocity. Slow propulsion with fast tail beat

(higher St) results from a larger wetted area Aw, larger cD,

and/or a smaller amount of water pushed by the tail Ao.

The saithe model has St ¼ 0.2, which is close to values

observed for live saithe. If the virtual masses per unit

length are not equal, i.e. A1= A2, the expression for St in

(3.2) remains with a new definition for Ao,

Ao :¼ A2 þ ðA1 � A2Þ
vm

vt

� �2

;

where vm is the maximum lateral velocity of the posterior

joint. Consequently, St may vary with the distribution of

lateral velocity along the body.

3.1.2. Power consumption and Froude efficiency
In the literature, power consumption and Froude efficiency

have been calculated using Lighthill’s reactive theory for

a continuum fish body model. In this study, we calculate

these quantities using our discrete model. The calculated

values will not be perfectly accurate owing to the model
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simplifications, but provide new analytical insights into

efficiency associated with swimming dynamics.

Basic power equations are obtained by multiplying the

force EOM by velocity:

E ¼ W þ Rþ V; D ¼ Pv; ð3:3Þ

where E is the power supplied by the muscle, W is the power

lost into water, R is the rotational kinetic power, V is the elas-

tic potential power, D is the power loss owing to viscous fluid

drag and P is the thrust force. The bars indicate the average

over a cycle. These quantities are defined in appendix A.

During steady swimming, the average kinetic and potential

energies are constant. Thus, averaging the first equation in

(3.3) yields E ¼W , indicating that the muscle power supply

E is equal to the power lost into water W . Refer to appendix A

for further details. The second equation in (3.3) shows that

the thrust power gained by the body through reactive hydro-

dynamic forces equals the power loss owing to drag during

steady swimming.

With the analytical formulae for W and P, one can verify

through integral by parts that W ¼ 2Pv. This implies

E ¼ 2cv3, where c :¼ cDrAw=2 is the fluid drag coefficient.

Thus, the average total power consumption E is estimated to

be twice the power required for towing the fish body, and is

independent of the body gait and oscillating frequency. There-

fore, it does not make sense to optimize the gait to minimize

power consumption because the total power E is determined

only by the velocity v and the fluid drag coefficient c, which

are fixed in this analysis. The expression for E arises from the
work done to push fluid both axially and laterally, as explained

in §4.1. For saithe, the power consumption at a nominal speed

1 m s21 is estimated to be E ¼ 0:58 W. The average power

consumption was calculated in [14] to be 0.0014 rlb
5T23,

which equals 0.61 W for a 0.4 m fish swimming at 3.5 Hz.

The Froude efficiency, or propulsive efficiency, is the ratio of

useful power output to the total power consumption,

h :¼ Pv=E. According to our result E ¼ 2Pv, the Froude effi-

ciency is always equal to h ¼ 1/2, regardless of the swimming

gait, speed, hydrodynamic parameters and body geometry.

3.2. Optimal gait analysis
3.2.1. Natural gait is optimal
This section examines whether the observed gait of saithe is opti-

mal with respect to a certain cost function. The previous section

revealed that total power consumption and Froude efficiency are

independent from gait, and not appropriate cost functions for

characterizing the natural gait in terms of an optimality. As an

alternative, we minimize the muscle tension or bending

moment cost. We solve for the optimal periodic body shape

(amplitude and phase), oscillation frequency and tail flexibility

such that steady swimming at a desired average velocity is

achieved. We compare the optimal gaits at various speeds

with data on live saithe swimming provided by [13,14] to exam-

ine optimality of the natural gaits. We also determine the role

that body stiffness, driving frequency and tail-tip amplitude

play in varying the desired speed.

The results of the optimal gait calculations (figure 6)

show that the optimal frequency vo increases linearly with
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locomotion velocity v. The optimal stiffness, k2o , exhibits

polynomial growth with an increase in velocity. It can be ana-

lytically verified that optimal vo and k2o are proportional to v
and v2, respectively. The tail-tip amplitude ymax, however,

remains constant, keeping the Strouhal number also constant.

The results from the optimal gait closely match the data of

live saithe when the precaudal stiffness is approximately

85% of the caudal stiffness. Snapshots of the optimal body

motion are shown in figure 7 for k1 ¼ 0:85k2o , where the fish

is swimming with an oscillation frequency of 3.52 Hz. The

swimming motion in figure 7 closely resembles the obser-

ved swimming in figure 4. Thus, saithe appears to minimize

active muscle bending moment during steady-state swimming

by adjusting its gait, tail-beat frequency and body stiffness.
3.2.2. Optimal gait exploits resonance
We will present an analytical explanation for the optimal fre-

quency vo and why it is proportional to swimming speed. We

theorize that both body resonance and fluid resonance are

exploited in natural swimming. As in §3.1.1, we use the fact

that our model saithe features A1 ffi A2 :¼ Ao to understand

how optimal, and hence natural, gait exploits resonance.

When a sinusoidal bending moment of frequency v is

applied to the anterior tail joint, the tail tip oscillates laterally

at the same frequency. For a unit amplitude of the bending

moment, the maximum tail-tip velocity depends on the

driving frequency, and is given by the absolute value of

the so-called frequency response, denoted by jQð jvÞj. Accord-

ing to the optimal gait theory, the minimum amplitude of

bending moment that achieves average speed v is given by

max
t
ju1ðtÞj ¼

pv � St
jQð jvÞj :

Thus, the optimal frequency that minimizes the active muscle

tension cost is the resonance frequency that maximizes the

tail-tip velocity for a given magnitude of the bending

moment. Because swimming speed is proportional to maxi-

mum tail-tip speed, (3.1), we can also interpret the resonance

with the frequency that maximizes the ratio of swimming

speed to input torque magnitude.

To verify the existence of resonance, we consider the

optimal locomotion example shown in figure 7, where

the optimal frequency is vo ¼ 3.52 Hz. The plot of the

amplification factor jQð jvÞj as a function of frequency v is

shown in figure 8. There is a well-defined resonance

peak that maximizes jQð jvÞj at 3.51 Hz. Because of the

slight difference between A1 and A2, there is a
negligible difference between the optimal frequency vo and

the resonance frequency.
3.2.3. Hydrodynamics and body flexibility resonate
The previous two sections have shown that a swimming saithe

exploits resonance to achieve a desired speed with minimal

muscle load. This section explores the origin of the resonance.

When the fish body is flexible, there may exist a peak resonance

of the transfer function Q( jv) that is close to the fish body’s

natural frequency. But, it is possible that this resonance is also

related to a hydrodynamic resonance due solely to the fluid.

We separately examine these two possible sources of resonance.

Without fluid, resonance exists within the fish body

itself, resulting from the body’s inertia and stiffness. For the

swimming fish shown in figure 7, the first two resonance

frequencies of the body are 1.12 and 6.13 Hz, which are of

the same order as the resonance frequency vr ¼ 3.52 Hz

for the coupled body–fluid system at velocity 1.2 m s21, but

are not very close. Alternatively, the resonance frequencies

can be defined using the effective inertia containing both

body and added mass. This corresponds to the resonance

frequencies of the body in still water, which are at 0.49 and

3.29 Hz. Therefore, the tail-beat frequency of optimal (and natu-

ral) swimming is close to the second natural mode of oscillation

resulting from body flexibility and total effective mass.

To study hydrodynamic resonance, we remove the fish

body’s mass and stiffness, and assume that the fish model

can achieve an arbitrary tail motion through bending

moment inputs at both joints. In this case, the transfer function

from bending moments to lateral tail-tip velocity, denoted by

QF(s), contains the fluid inertia and skewed damping owing

to fluid flow. Although the body lacks stiffness, there is still a

well-defined peak that maximizes the gain of QF(s), as shown

in figure 9. This resonance occurs at vr ¼ 2.4 Hz, which is

reasonably close to the natural swimming frequency at

3.5 Hz. Figure 10 depicts snapshots of the optimal gait when

there is no body mass or stiffness. Because the optimal fre-

quency is 2.4 Hz, and the swimming speed is 1.2 m s21, the
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Figure 9. The gain of QF( jv) over a range of frequencies, where QF(s) is the
transfer function from the muscle bending moments (u1, u2) to the tail-tip
velocity when the fish has no body mass or body flexibility. There is a peak,
or resonance frequency, at vr ¼ 2.4 Hz. (Online version in colour.)
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Figure 10. Snapshots of the hydrodynamically optimal gait. The conditions
are the same as those for figure 7, except the fish model has no body
mass or body stiffness, and both joints receive bending moment inputs.
The optimal oscillation frequency is 2.38 Hz.
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Figure 11. Diagram of the energy transfer that occurs between the fish
muscles, the main body and tail, and water. E is the total power supplied
by muscle, Y is the rate of work done by tail to water in the lateral direction,
Pv is the thrust power returned by water to tail and D is the power loss
owing to resistive drag. (Online version in colour.)
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tail-tip amplitude is larger than in observed swimming, so the

Strouhal number remains at 0.2.
4. Discussion
The results in this paper are derived from a simple fish swim-

ming model, with hydrodynamic forces modelled as static

functions of relative velocity and acceleration. Owing to the

approximations, our results may not be exactly accurate in

a quantitative sense, and we remain cautious when interpret-

ing the results. Nevertheless, the model presumably captures

essential dynamics of fish swimming, and the results should

provide a basic understanding of swimming mechanisms.

The results are applicable when the body can be roughly sep-

arated into a main body and tail sections, the main body’s

lateral motion is negligible compared with the tail motion,

and a reactive force model for thrust generation is valid.

4.1. Power equality for lateral kinetic loss and thrust
The total power used in swimming is found to be invariant over

various gaits; it is always equal to 2cv3, twice the power loss

owing to resistive drag, regardless of the hydrodynamic par-

ameter values, and is proportional to the swimming speed

cubed. Therefore, power optimality cannot be the reason why

fish consistently choose particular gaits. Note, however, that
the ‘total power’ we examined is the mechanical power

output from muscle that is eventually dissipated into water;

power loss associated with muscle activation is not considered.

If the activation cost is considered, it may perhaps explain the

natural gait by power optimality.

Fish swim by transferring a supply of power between

their muscles, their tail and the water. Figure 11 shows a dia-

gram of this energy transfer. First, muscles provide a total

average supply of power, E, to the tail, through bending

moment input. The tail transfers this energy to the water as

the rate of work Y done in the lateral direction; E ¼ Y. The

water then gains a portion as kinetic power, T, and returns

the rest, Pv, to the tail for thrust generation; Y ¼ T þ Pv.

The thrust power is eventually dissipated as heat, D, through

resistive drag on the body; Pv ¼ D. Overall, the total power

supplied by muscle is lost into water in two forms,

E ¼ Dþ T. The loss owing to drag, D ¼ cv3, is a price to be

paid regardless. The additional loss, T, is the overhead cost

required when generating thrust by pushing water in the lat-

eral direction. A major finding of our analysis is that, to

generate thrust power Pv, the fish has to waste the same

amount of power in the lateral direction as the rate of kinetic

energy gained by water; T ¼ Pv.

Because of the equality between kinetic power T and thrust

power Pv, our result predicts that the ratio of useful power to

total power, known as the Froude efficiency, h :¼ Pv=E, is

exactly 1/2, regardless of the gait, swim speed or driving fre-

quency. Biological data [14] indicate that h is in the range

0.52–0.72 for steadily swimming saithe, which is larger than

the predicted value 1/2. We suspected that a large portion

of the error is attributed to the model approximation, and

studied the power transfer of the original nonlinear model

from which the simpler model was derived. The original non-

linear model contains trigonometric terms of u, including the

nonlinear acceleration term for reactive hydrodynamic forces

as in reference [25]. As expected, simulations of the nonlinear

model give more realistic values of Froude efficiency that are

larger than or less than 1/2, depending on the gait, frequency

and speed. Thus, we predict h � 1/2 for swimming with small

oscillation amplitude. Higher Froude efficiency (h . 0.8) of

thunniform swimming [33] cannot be predicted by our

model, because the main thrust source is lift force rather than

added-mass effect [34].
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4.2. Invariance of Strouhal number
The Strouhal number St describes the wake structure in fish

swimming. Fish and cetaceans generally swim with St between

0.2 and 0.4, with the saithe St lying on the lower end of this

interval [27]. Biological data of a variety of fish, including

dace, trout, goldfish and jack mackerel, have pointed to a

linear relationship between oscillation frequency and swim

speed, and a direct relationship between tail-tip amplitude

and body length. Based on these results, various studies

have concluded that St remains constant for a fixed ratio of

swim speed to tail-beat frequency v/v [5,35]. According to

our analysis, thrust–drag balance requires the ratio of swim

speed to maximum tail-tip speed v/vt, and therefore St, to be

a constant depending on only the fish’s body geometry and

hydrodynamic parameters. The optimality for small tension

then explains the observed proportionality of frequency and

constancy of tail-tip amplitude with respect to speed.

Interestingly, Eloy [36] observed that St is a function of a

single parameter called the Lighthill number Li :¼ cDAw=b2,

where b is the tail-tip height. If the volume of fluid accelerated

by the tail is estimated by a circular cylinder of diameter ab
with a constant a depending on the tail geometry, then the

cross-sectional area of the added mass is Ao ¼ p(ab/2)2,

and the formula in (3.2) reduces to St ¼ ð2=pÞ3=2
ffiffiffiffi
Li
p

=a, expli-

citly showing the dependence of St on Li. Moreover, this

simple formula with a � 0.5 explains the (Li, St) relationships

for many species in figure 4 of [36]. While [36] interpreted the

result through power optimality, our analysis derives this

formula from thrust–drag balance without optimality.

Experimental data from oscillating foils in fluids have

demonstrated maximum Froude efficiency h for St in the

range of 0.25–0.35 owing to efficient thrust development

[8,12,37]. There is an apparent discrepancy between these

results and our results, which state that St is independent of

gait optimality. This discrepancy arises because the literature

defines wake resonance as the maximum spatial amplification

of unstable flow, whereas our St results follow from the

assumption of thrust–drag balance. In the oscillating aerofoil

experiments, the flow speed is fixed independently of the

imposed amplitude and frequency, and hence thrust and

drag may not balance. Our results predict that if the flow

speed is adjusted to achieve thrust–drag balance, then the St
will remain fairly constant.

4.3. Optimality of natural swimming
To determine whether the periodic body motion in natural

swimming is optimal, we found the gait that minimizes

muscle bending moment, and compared the results with data

of live saithe swimming. The model was adjusted to have an

active anterior tail and a passive caudal tail fin, to capture

the anatomy of live fish. Because no data are available on the

body stiffness of swimming saithe, we included the stiffness

as an optimization parameter, with a fixed ratio of precaudal

stiffness k1 to caudal stiffness k2. Our choice to adjust stiffness

while keeping k1/k2 constant was based on the observation

that local body flexibility is related to the muscle activation

level and body curvature at the site.

The total bending stiffness is determined by the active

and passive stiffness of the muscle–tendon–skin system

and the vertebral column stiffness [3,38]. Experimental results

on stiffness properties of blue marlin [39] and longnose gar

[4] suggest that caudal intervertebral joints have a higher
stiffness than precaudal joints, and increasing bending

amplitude increases body stiffness. In swimming fish, the

ratio of bending amplitudes at 50% to 70% of the body

length is approximately 0.80 and 0.55 for curvature and

strain of mackerel [40] and 0.63 for curvature of saithe [13].

These studies indicate that the stiffness in the caudal region

should be greater than the precaudal region owing to

higher curvature/strain. Consistent with these results, com-

parison of model-predicted optimal gaits with observed

gaits of live saithe suggested that the precaudal stiffness k1

is about 85% of the caudal stiffness k2.

The results demonstrated that the characteristics of natu-

ral gaits over a range of swimming speeds can be explained

by the optimality of the minimum bending moment. In

particular, the data collected from live saithe swimming indi-

cated that the oscillation frequency linearly increases with

speed, whereas tail-tip amplitude remains constant. These

properties are captured by the optimal gaits with frequency

and amplitude values close to observations (figure 6). The

linearly increasing frequency can be explained in terms of

optimality, together with resonance mechanisms. The con-

stancy of the amplitude then follows from the constancy of

the Strouhal number. Because these numerical results match

tendencies observed in live fish swimming, and the optimal

body shape is close to the observed gait, we stipulate that

the optimal gait which minimizes muscle tension can explain

carangiform locomotion.
4.4. Resonance mechanisms underlying swimming
An essential question in animal locomotion is how animals

choose a specific oscillation frequency to achieve a desired

velocity. Most biological observations hint at the exploitation

of natural dynamics associated with the interaction of the

(flexible) body and environment in order to reduce energy

consumption [41]. Additionally, experimental data from

oscillating foils have demonstrated the existence of a ‘wake

resonance’, which maximizes thrust production [8]. Numeri-

cal and experimental studies of flexible foils oscillating in

fluids have found resonance peaks to be a function of

imposed flow and wing rigidity [42,43]. Based on these

results, we predicted that natural fish swimming is exploiting

some type of resonance, owing to a combination of natural

body frequency and hydrodynamic resonance. Our results

confirmed this prediction. We found that natural gait is opti-

mal with respect to minimum bending moment, and the

optimal gait exploits resonance to maximize the tail-tip

velocity. Therefore, we conclude that there are resonance

mechanisms underlying natural swimming gaits.

The results demonstrated that a fish swims faster by

increasing its oscillation frequency. Because the tail oscillation

exploits resonance, the body adjusts its stiffness, so that the

resonance frequency matches the frequency required to

achieve a desired speed. This result agrees with the frequency

tuning theory observed in animals [4,7,41]. The model ana-

lytically predicts that optimal tail-beat frequency v and tail

stiffness K are proportional to v and v2, respectively, and

the optimal tail-beat amplitude stays constant over a range

of swimming speeds. Many fishes exhibit the proportionality

and constancy properties [8], hence our result may suggest

resonance exploitation in general fish swimming.

A remaining question is: what is the origin of the resonance?

Consider a virtual experiment in which the fish body is fixed in



Table 3. List of model variables (i ¼ 1, 2).

xo x-position of the centre of mass (CM) of the main body

xi x-position of the CM of the ith panel

yi y-position of the CM of the ith panel

ui angle between the ith panel and the x-axis

ui bending moment applied at joint i

wi velocity of fluid pushed by the ith panel in the y direction

ai acceleration of fluid pushed by the ith panel
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a flow tank to experience fluid flow at velocity v. If a sinusoidal

bending moment of fixed amplitude is applied to flip the tail,

then there is a frequency where the amplitude of the lateral

tail velocity is maximum; this is the resonance observed in

figure 8. In §3.2.3, we found that this resonance is still observed

when we remove the body mass and stiffness. Thus, the origin

of the overall resonance may be traced to the dynamics without

body. Because this peak is purely owing to fluid effects, we call

it a hydrodynamic resonance. However, its relation to the so-

called wake resonance [12] is not obvious, because the latter is

unrelated to muscle bending moment.

The hydrodynamic resonance found in §3.2.3 may be

explained by the natural oscillation resulting under no

muscle moment input, thereby making a possible connection

to the wake resonance. With no input or body inertia/stiffness,

the tail motion is governed by natural dynamics with complex

eigenvalues; therefore, an ideal fish body with no mass/stiff-

ness can naturally oscillate in a flow without muscle input.

The natural oscillation could be exploited to resonate the tail

motion with the input excitation. The period of the natural

oscillation can be analytically derived for the simplified case,

in which the precaudal and caudal panels are assumed equal

(l1 ¼ l2, A1 ¼ A2), as follows:

tnat ¼
14p

12
ffiffiffi
3
p

� �
lt
v

� �
ffi 2

lt
v

� �
; ð4:1Þ

where lt is the total tail length. As expected, the natural fre-

quency vnat :¼ 2p=tnat is close to the resonance frequency;

for instance, vnat ¼ 2.84 Hz for v ¼ 1.2 m s21 and lt ¼ 0.2 m.

The analytical formula (4.1) shows that the natural oscillation

is presumably related to how water travels across the tail.

The tail flips from left to right in roughly lt/v seconds, equal

to the time it takes for water to flow through the length of

the tail. Thus, the caudal tail may take advantage of the

water accelerated by the precaudal section.

We have found that both hydrodynamic resonance and

body resonance exist separately, and they are reasonably close

to the overall resonance and hence to the cycle frequency of

natural swimming. While body resonance frequency can be

adjusted by active muscle stiffness, hydrodynamic resonance

frequency is determined essentially by the ratio of the swim-

ming speed to the total tail length. Therefore, our results

suggest the following mechanisms underlying natural

swimming: body geometry determines the hydrodynamic

resonance to be exploited for swimming at a desired speed,

muscle stiffness is actively adjusted in proportion to the speed

squared, so that body resonance is roughly aligned with the

hydrodynamic resonance, then the muscle bending moment

drives the tail to excite the overall body–fluid resonance.
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Appendix A
The saithe fish is modelled with a main body and two undu-

lating panels with two rotating joints, as described in §2.1.

The variables are summarized in table 3. The resistive drag

force fo and reactive forces and torques fi and ti acting on

the body are modelled as

fo ¼ �sgnð _xoÞc _x2
o ; fi ¼

mAi ai

cos ui
; ti ¼ �

mAi l
2
i

3

� �
€ui;
for i ¼ 1, 2, where

c :¼ 1

2
cDrAw; mAi :¼ rVicAi ¼ rð2liÞAi;

Vi :¼ p
di

2

� �2

ð2liÞ; Ai :¼ p
di

2

� �2

cAi :

The kinematic and dynamic equations are given by

x1 ¼ xo þ lo þ l1 cos u1; mo €xo ¼ gx1 þ fo þ j;

x2 ¼ x1 þ l1 cos u1 þ l2 cos u2; m1 €x1 ¼ f1 sin u1 � gx1 þ gx2 ;

y1 ¼ yo þ l1 sin u1; m2 €x2 ¼ f2 sin u2 � gx2 ;

y2 ¼ y1 þ l1 sin u1 þ l2 sin u2; m1 €y1 ¼ � f1 cos u1 � gy1 þ gy2 ;

wi ¼ _yi� _xi ui; m2 €y2 ¼ � f2 cos u2 � gy2 ;

ai ¼ €yi� €xi ui � 2 _xi _ui;

J1
€u 1 ¼ ~u2� ~u1þt1 � ðgx1 þ gx2Þl1 sin u1 þ ðgy1 þ gy2Þl1 cos u1;

J2
€u 2 ¼ � ~u2þt2 � gx2

l2 sin u2 þ gy2
l2 cos u2;

where j is an external force acting on the main body,

Ji :¼ mil2i =3 is the ith panel’s moment of inertia, gxi and gyi

are constraint forces owing to the neighbouring panel(s),

and ~ui are the total bending moments containing the effects

of active muscle and body flexibility,

~u1 ¼ u1 þ k1u1; ~u2 ¼ u2 þ k2ðu2 � u1Þ:

The dynamic equations involving mi €xi and mi €yi can be

solved for the constraint forces gxi and gyi ; these expressions

are substituted into the equations involving mo €xo and Ji€ui to

derive nonlinear EOMs.

We consider the situation where j regulates the swim

speed such that _xoðtÞ ¼ �v with a constant v . 0. The average

of the external force j(t) over one cycle should be zero such

that average thrust balances average drag,

�j ¼ 0 ¼ f1 sin u1 þ f2 sin u2 þ fo;

where the notation z for a t-periodic signal z means the

average �z :¼ ð1=tÞ
Ð t

0 zðtÞdt. Assuming small ui ¼ OðeÞ and

neglecting Oðe2Þ terms in the tail motion equation

and Oðe3Þ terms in the thrust–drag balance equation, we

find the following simplified EOM in vector form,

J€uþ 2vG _uþ Ku ¼ Bu;

uTGT€uþ cv2 ¼ 0;
ðA 1Þ

where J, G, K and B are constant 2 � 2 matrices representing

the moment of inertia of the total effective mass, coefficient

for reactive hydrodynamic torque, body stiffness and trans-

formation from bending moment to inertial torque,

respectively. The matrices are defined by
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J :¼ LðMþMAÞL
3

þ FTðMþMAÞF;

F :¼ l1 0
2l1 l2

� �
; B :¼ �1 1

0 �1

� �
;

G :¼ FTMA;
M :¼ diagðm1;m2Þ;

MA :¼ diagðmA1 ;mA2Þ;

K :¼ BKoBT ;
Ko :¼ diagðk1; k2Þ;
L :¼ diagðl1; l2Þ;
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where u;u [ R2 are stacked vectors of ui and ui for i ¼ 1, 2,

respectively. This two-input case with u [ R2 is considered

in §3.2.3. In all other analyses, the tail is assumed passive

(u2(t) ; 0), and u and B are redefined as u :¼ u1 and

B :¼ �1 0½ �T.

The optimal gait problem is formulated as follows. We

apply sinusoidal bending moment ui(t) ¼ a isin(vt þ bi),

where a2 ¼ 0, if the posterior joint is passive. Through the

first equation in (A 1), the tail motion u is determined as a

function of frequency v, amplitudes ai and phases bi. Many

choices of (v, ai, bi) yield u satisfying thrust–drag balance,

or the second equation in (A 1). Among those, we choose

(v, ai, bi) that gives the smallest value of a1
2 þ a2

2. The tail

motion u resulting from this input is the optimal gait. The

theory [19] indicates that the optimal frequency is given

by v that maximizes the largest eigenvalue of matrix Z,

and the optimal amplitudes/phases are specified by the

corresponding eigenvector, where

Z :¼ P�vðGþ GTÞPvðv=vÞ2

2c
; PðsÞ :¼ ðJs2 þ 2vGsþ KÞ�1B;
and Pv :¼ Pð jvÞ is the frequency response of the transfer

function from bending moment u to tail angle u. In §3.2,

the transfer function Q(s) is defined by QðsÞ :¼ slTPðsÞ, and

QF(s) is obtained by setting M ¼ K ¼ 0 in Q(s), where

l [ R2 is a stacked vector of panel lengths.

Power equations (3.3) are obtained by multiplying (A1)

by _u
T

and v, where

E :¼ _u
T

Bu; R :¼ _u
T
J€u; V :¼ _u

T
Ku; W :¼ 2v _u

T
G _u;

D :¼ cv3; P :¼ �uTGT€u:

The rate of work done by the tail to water is X ¼ �vuTf and

Y ¼ _yT f in the x- and y-directions, respectively. f [ R2 is the

force vector with entries f1 and f2, and y [ R2 is the lateral dis-

placement vector similarly defined. Following from the

definitions, W ¼ Y and all muscle power E ¼ W is lost as the

rate of work Y done by the tail to water. Part of this power is

returned from water to tail in the x-direction as the thrust

power; Pv¼ 2X. Hence, the difference T :¼ Y� Pv is the

translational kinetic power gained by the fluid from the oscillat-

ing tail; T ¼ wTf , where w is the lateral fluid velocity.
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