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ABSTRACT OF THE THESIS 

Development of Probabilistic Algorithms for Unobtrusive Sleep Monitoring using 

Epidermal Electronic System – A Pilot Study 

by 

Varsha Vijayan 

Master of Science in Bioengineering 

University of California, San Diego, 2014 

Professor Todd Prentice Coleman, Chair 

 

Traditional sleep monitoring involves obtaining a polysomnography which uses a 

minimum of six channels of electrodes to record the following biosignals – 

electroencephalography, electrooculography, electromyography, electrocardiography and 

other channels for measuring respiration. This multimodality physiological monitoring 

poses a lot of discomfort for the person undergoing sleep recording and disrupts the natural 

sleep owing to the bulk of electrodes and wires used for acquiring the signals, in turn 

defeating the purpose of monitoring sleep as it naturally occurs. Using a novel, thin, 

flexible Epidermal Electronic System, unobtrusive sleep monitoring can be performed. Ten 

healthy adults underwent concurrent sleep EEG recording with epidermal electrodes and 
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conventional electrodes to perform a pilot study, to characterize how similar the clinically 

relevant aspects of sleep EEG are under the two different recording technologies. Time – 

frequency spectrogram estimates that can balance temporal and spatial resolution required 

to understand the EEG acquired from different electrode technologies have been 

developed. Hypnograms have been generated using state-space probabilistic modeling of 

sleep EEG from epidermal and conventional electrodes. The outputs of the sleep staging 

estimators are compared using probabilistic clustering algorithms that operate on the 

estimates. The outcome of our research demonstrates the capability of epidermal electrodes 

that can potentially be used as an acquisition cum analysis screening tool for sleep 

disorders.  
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Chapter 1 – Introduction 

1.1 Motivation 

Sleep disorders are becoming a global epidemic. According to research led by 

Warwick Medical School, an estimated 150 million adults are suffering from sleep 

disorders in the developing world [1-1]. Exclusively in the US, a CDC survey has estimated 

that about 50-70 million adults suffer from chronic sleep and wakefulness disorders [1-2]. 

The economic burden of this issue is around $15.9 billion annually [1-3], in addition to 

another $100 billion or more of indirect costs involved in property destruction, litigation, 

hospitalization and death resulting from sleep disorders and sleep deprivation.  These 

estimates clearly show the magnanimity of the problem and why we should be moving 

towards tackling it. If left unsolved, the problem of sleep disorders can adversely affect the 

productive lives of the active, working population of the world in addition to a host of other 

problems that come along. 

For uncovering sleep disorders, the principal diagnostic tool in clinical practice is 

polysomnography. It refers to the continuous monitoring of various neurophysiological and 

cardiorespiratory variables, over the course of a night for studying normal and disturbed 

sleep patterns. Electroencephalographic, electrooculographic and electromyographic 

monitoring provide the basis for staging the epochs (30-second time windows) of signals 

into wakefulness and various sleep patterns. In addition to the 3-modalities of recording 

mentioned above, there are other channels of sensors and electrodes for detection of airflow 

at the nose and mouth by means of thermistors. Analysis of breathing patterns is performed 

by signals recorded from sensors placed around the ribcage and abdomen. In addition, pulse 
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oximetry, the electrocardiogram and the combined application of several other 

measurement techniques allow the assessment of normal and abnormal physiological 

events in relation to sleep structure. People typically visit exclusive sleep labs that have 

been designed for the purpose of conducting a polysomnography test. About 1 million such 

sleep studies are conducted every year, all of which involve the usage of cumbersome and 

unwieldy instruments attached all over the body of the patient, which inevitably disrupts 

the normal sleep pattern [1-4]. Indeed, sleep research protocols routinely require two nights 

of recordings, with the first night not scored because of the issues related to sleep disruption 

from wearing the sleep equipment. This is known as the first-night effect. Also, 

conventional polysomnography is expensive, time-consuming, labor-intensive and sleep 

labs have long waiting lists for overnight PSG studies [1-5]. Apart from this, the sleep 

scoring schematic for PSG is mostly manual. An expert clinician (somnologist) manually 

looks at the multi-channel recording and assigns a sleep stage to each epoch according to 

R&K methodology or rules framed by AASM. This technique, in addition to the 

disadvantages mentioned above, is subjective and in the presence of multiple scorers is 

prone to significant inter-scorer variability [1-6, 1-7]. Automatic sleep scoring techniques 

have been in research for over four decades [1-8]. Most of these are computer-assisted 

manual scoring methodologies. Existing commercial PSG scoring software tools have 

neither been tested nor verified upon wide population – that is healthy or has chronic sleep 

disorders. An added problem is that there is a lack standard methodology to compare the 

different sleep scoring software tools as the approach followed by each of these algorithms 

is different.  
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Hence, there is a persisting need for an easy-to-wear, portable system that can 

perform sleep monitoring unobtrusively. The system must also give a read-out of objective 

sleep scoring that can been used by healthy human population in addition to those with 

chronic sleep disorders.  

In this thesis, the capabilities of novel, flexible electronic tattoos (epidermal 

electrodes) are tested for the purpose of sleep monitoring. Simultaneous sleep EEG data 

collected from 10 subjects is analyzed and hypothesis testing is performed on the data. 

Hidden Markov model based probabilistic modeling is employed to automatically estimate 

the sleep staging. The results of modeling and hypothesis testing indicate that epidermal 

electrodes could be a promising alternative to conventional electrodes as a seamless sleep 

monitoring device that comes along with powerful analytics for objective sleep scoring.   

1.2 Organization of the thesis 

Chapter 2 gives an overview of the background of sleep physiology and relevant 

literature review of previous experimental studies. Chapter 3 deals with the description of 

the materials and protocols used in this project. The mathematical framework of the thesis 

is covered in chapter 4. The results of hypothesis testing are shown in chapter 5. Discussion, 

conclusion and future directions are part of chapter 6.
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Chapter 2 – Background 

 2.1 Sleep Architecture 

The basic structural organization of normal sleep is called the sleep architecture. 

There are two main types of sleep – non-rapid eye movement (NREM) and rapid eye 

movement (REM). NREM sleep is divided into stages 1, 2, 3 & 4 according to R&K. Stages 

3 & 4 were recently combined into a single stage 3 by AASM in 2007 [2-1]. Each sleep 

stage has unique characteristics of variations in electroencephalography (brain waves), 

electrooculography (eye movements) and electromyography (muscle tone). As sleep is 

primarily a neural process, observation of brain activity has been the key aspect of 

uncovering sleep cycles. This has been done through the characterization of changes using 

electroencephalographic (EEG) recordings that trace the electrical patterns of brain 

activity. The NREM and REM sleep stages alternate cyclically throughout the night.   

A hypnogram is a graph representing stages of sleep as a function of time. Shown 

below is a hypnogram of a healthy individual’s normal night’s sleep. 

 

Figure 2.1: Hypnogram of healthy subject’s normal sleep architecture [2-2] 
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2.2 Sleep Stages 

This section gives a brief overview of the physiological and electrical 

manifestations of changes occurring during each sleep stage [2-3, 2-4, 2-5]. 

2.2.1 Non-Rapid Eye Movement Stage – 1 

The transition between being awake and beginning to sleep is represented by 

NREM sleep stage 1. It lasts 1-7 minutes in the initial cycle, constituting 2-5% of total 

sleep and is easily interrupted by a disruptive noise or light. This stage is characterized by 

transition from alpha waves (8-13 Hz) to theta waves (4-7 Hz) of EEG. Slow, asynchronous 

eye movements may be observed at this stage. Sudden twitches and hypnic jerks may be 

associated with onset of sleep during this stage.  

2.2.2 Non-Rapid Eye Movement Stage – 2 

The NREM sleep stage 2 accounts for 45-55% of the total sleep episode. It lasts for 

a duration of 10-25 minutes in the initial cycle and lengthens in successive cycles. Sleep 

spindles, which represent periods where the brain is inhibiting processing to keep the 

sleeper in tranquil state, characterize stage 2. These spindles occur in 12-14 Hz band of 

EEG. In addition, K-complexes, that suppress cortical arousal to stimulus and promote 

memory consolidation, also belong to stage 2. Muscular activity measured by EMG 

decreases, so do the eye movements (EOG). 
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2.2.3 Non-Rapid Eye Movement Stage – 3 

The NREM sleep stage – 3 is also known as slow wave sleep (SWS), most of this 

stage occurs during the initial duration of the night. In the first cycle, this stage lasts for 

about 20-40 minutes and in subsequent cycles the duration shortens. This stage has 

 

Figure 2.2: A fictional EEG showing a sleep spindle and K-complex in NREM 

stage 2 sleep [2-6] 

 

dominant delta wave (0-3 Hz) activity in EEG. EOG and EMG activity are almost absent. 

2.2.4 Rapid Eye Movement Stage 

The REM sleep stage is characterized by low voltage, high frequency, saw-tooth 

shaped EEG, rapid eye movements and muscle atonia (extremely relaxed state of skeletal 

muscles). This stage accounts for about 20-25% of the total sleep duration. During the 

initial cycle, REM period lasts for only about 1-5 minutes and it becomes subsequently 

prolonged as sleep episode progresses. Vivid dreams occur during this stage. Since the 

physiological parameters of REM sleep stage resemble that of normal, waking 

counterparts, this is also referred to as paradoxical sleep. 
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  Figure 2.3: Behavioral states during different phases of sleep [2-4] 

2.2.5 Sleep Cycles 

NREM stage 1 marks the beginning of a sleep episode. It progresses through to 

stages 2, 3 and finally to REM after which the same pattern of cycling continues throughout 

the night until the person wakes up. NREM sleep constitutes about 75-80% of total time 

spent in sleep while REM sleep constitutes about 20-25%.  In a healthy adult, REM sleep 

duration increases as the night progresses and is the longest in the last one-third of the sleep 

episode. An opposite trend is observed in the case of deep sleep (stage 3). As the sleep 

episode progresses through the night, NREM stage 2 dominates and NREM stage 3 (slow 

wave sleep) disappears eventually. 

2.3 Polysomnography - The current gold standard 

diagnostic tool in clinical practice 

 Polysomnography (PSG) is the principal diagnostic tool in clinical practice for 

uncovering the sleep architecture of a subject. It is a comprehensive recording of 

biophysiological changes that occur during sleep. 
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Figure 2.3: A subject undergoing polysomnography recording [2-7] 

 The polysomnography recording entails monitoring of patients in an exclusive 

sleep facility using an array of medical equipment. Specially trained sleep technologists 

perform polysomnography for the diagnosis and treatment of sleep disorders. The standard 

diagnostic PSG requires the recording and evaluation of sleep stages and arousals, 

respiration, limb movements, snoring, oximetry, body position, and cardiac rhythm 

disturbances. Hence, a polysomnogram will typically record a minimum of 12 channels 

requiring a minimum of 22 wire attachments to the patient [2-8]. The corresponding 

measurements that are recorded as part of a polysomnography test are a minimum of the 

following modalities: three channels for EEG, two for eye movements – EOG, one for chin 

muscle tone – EMG, one each for the belts which measure chest wall movement and upper 

abdominal wall movement, accelerometer based devices for limb movement, one to 

measure air flow, one for oxygen saturation and one or two for heart rate and rhythm. This 

cumbersome multimodality recording, in addition to disrupting the natural sleep rhythm of 

the subject [2-8], is very expensive. Typically, only a single night or two nights of 

polysomnography are recorded. Sleep is a very dynamic process; the pattern of sleep 
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recorded multiple nights is more useful than a single night recording. Multiple recording 

using PSG is very challenging due to all the disadvantages that it comes with, as mentioned 

earlier. In light of this, newer portable monitoring devices with reduced number of channels 

of recording are currently beginning to come to use [2-9]. For instance, some of these 

devices require only 3 to 4 channels: air flow, pulse oximetry and other respiratory 

recordings. Because of the absence of EEG, EOG, EMG, these devices do not stage sleep 

according to electrophysiological protocols (of AASM): they are exclusively used only for 

screening for sleep apnea, leaving out other sleep disorders. In addition to portable 

monitors with reduced number of channels, the technique of actigraphy [2-10] has been 

used as an alternative to PSG.  It is an objective, indirect measurement of sleep and 

wakefulness. It uses movement as a substitute for wakefulness and hence, is prone to 

misinterpreting quiet wakefulness as sleep. The commercially available movement-based 

sleep monitoring devices are Actiwatch – 64, Fitbit, Jawbone UP to name a few. The 

demerits of these different sleep recording methodologies has led to research in devices 

that use only single – channel EEG. 

2.4 Literature Review 

Shambroom et al. [2-11] performed a validation study of a single-channel frontal 

EEG (approximately, Fp1-Fp2) based wireless sleep monitoring system by collecting time-

synchronized sleep data simultaneously using their system along with PSG and actigraphy 

(ACT). The study was conducted on 29 healthy volunteers. Their wireless system (WS) 

used proprietary dry silver-coated fabric sensors in a headband to collect signals from 

single bipolar channel Fp1-Fp2. The collected electrophysiological signals included 
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contributions from EEG, EOG and frontalis muscle EMG. The best estimate of the sleep 

score using their wireless system was based on R&K method of scoring, which is calculated 

from the recorded EEG signal using an artificial neural network that uses time and 

frequency dependent features. The sleep stage is reported every 30s (1 epoch). A reduced 

set of sleep stages including wakefulness, light (stage 1 & 2), deep (stage 3 & 4) and REM, 

were reported. Epoch – by – epoch agreement between two PSG scorers and the wireless 

system was evaluated – (PSG1 vs. WS, PSG2 vs. WS) and (PSG1 vs. PSG2). WS 

agreement with each of the two PSG scores for sleep/ wakefulness was 92.6% and 91.1%, 

ACT agreement with PSG was 86.3% and 85.7%. The PSG scorers’ agreement with each 

other for sleep stages was 83.2%, and for sleep/ wakefulness was 95.8%. The findings of 

this validation study indicate that the single-channel EEG based WS may provide an easy 

to use and accurate complement to other established technologies for measuring sleep in 

healthy adults. 

D. Popovic et al. [2-12] performed a validation study investigating the accuracy 

and limitations of automatic sleep scoring and EEG arousals in Fp1-Fp2 montage. 29 

healthy adults underwent the study in which the scalp EEG (C3–A2, C4–A1, Fz–Oz, Cz–

Oz), left and right EOG, submental EMG, the Fp1–Fp2 signal and the signal from a 

respiration belt were acquired using an ambulatory PSG recorder. The forehead electrodes 

were placed on the frontal eminences, approximately 1 cm laterally from the Fp1 and Fp2 

positions of the 10–20 system. The algorithm performs spectral decomposition of the input 

signal, computes descriptors of sleep macro and microarchitecture, performs artefact 

detection and classifies 30-s epochs into one of the five stages – wake, REM, NREM1, 

NREM2, NREM3. Of the total number of recordings, about 10 subject recordings were 
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chosen for training the algorithm and the rest were used for validating the algorithm. The 

scoring of the validation group was done at five levels: (i) by a referent scorer in accordance 

with AASM guidelines, (ii) by the same scorer blinded to the data for rescoring only Fp1-

Fp2 recording 6 months later, (iii) by the same expert scorer who rescored all the recordings 

in the data 1 year later, (iv) by another expert scorer who observed AASM rules and (v) by 

the automatic algorithm. The agreement between the algorithm and reference scoring 

(81%) was comparable to the between inter-rater agreement (83%) or agreement between 

referent scoring and rescoring of only the frontopolar derivation 6 months later (80.7%). 

The findings of this research work validate the efficacy of automatic scoring of sleep stages 

and arousals using just single frontopolar channel EEG as method of assessing sleep 

architecture in healthy adults.  

The two research studies outlined above, show the potential of using single-channel 

EEG for long-term sleep monitoring. Our research, as part of this thesis, is motivated by 

the above mentioned studies for frontopolar EEG signal acquisition and automatic sleep 

scoring.  
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Chapter 3 – Materials & Protocol 

The principal sleep monitoring diagnostic tool, polysomnography is unwieldy and 

it disrupts the natural sleep, defeating the purpose of sleep monitoring in itself as mentioned 

in the previous chapters. The novel epidermal electronic system based sensors developed 

in our lab has features that indicate to be a promising alternative to the existing electrode 

system. In this pilot study, we simultaneously recorded single – channel sleep EEG from 

two different technologies of electrodes, namely, conventional electrodes and epidermal 

electronic system from the same forehead location by placing the electrodes in close 

proximity to each other. The reason behind performing the study is to test our hypothesis 

of whether epidermal electronic system and conventional electrodes record similar EEG 

signals for sleep monitoring.  

3.1 EEG Sensing and Recording Equipment 

3.1.1 Electrodes 

This electrodes under investigative comparison in the study are epidermal 

electrodes and conventional pre-gelled Ag/ AgCl electrodes.  

3.1.1.1 Epidermal Electronic System 

The epidermal electronic system (EES) has remarkable advantages of being 

extremely low profile and thus less likely to impact sleep quality negatively during 

recording. The development of EES has been described in the Science paper “Epidermal 

Electronics” [3-1]. The EES conforms to the contour of the human epidermis, and can be 
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used to record electrophysiological activity such as electrocardiography (ECG), 

electromyography (EMG), electroencephalography (EEG), electrooculography (EOG). 

The EES is a very slim, comfortably worn, non-invasive device. Flexibility and 

stretchability, the key mechanical properties inherent to the EES device, enable it to stick 

to the skin. All materials of the EES that contact the skin are biocompatible and consist of 

elemental gold, polyimide and silicone.  In the work that originally introduced the EES, 

Dr. Coleman’s group found that the EES could be worn for 24 hours without irritation of 

the skin or degradation of the data from the device. This is particularly relevant for sleep 

monitoring that requires the EES to be left on the skin for long hours. The unique 

mechanical characteristic of the devices (total thickness < 300 um, total weight < 0.09 g) 

enable them to be easily laminated onto the skin, and conform to the contours of the skin. 

 

Figure 3.1: Epidermal Electronic Sensors (EES) - is mechanically invisible to the 

user wearing it, like a temporary tattoo. It is ultra-thin (< 300 um), ultra-light 

 (< 0.09 g) and deforms with the skin. 

3.1.1.2 Conventional Electrodes 

The conventional electrodes are pre-gelled silver-silver chloride (Ag/ AgCl) 

electrodes. For the initial 11 out of the 14 subjects recruited for this experimental study, 

GS26 pre-gelled disposable sensors were used. It has a snap-on 10mm sized sensor pellet, 

pre-gelled with a 0.5% saline based gel and embedded into a paper thin, clear adhesive 

disc. This electrode has about 1-inch outer diameter [3-2]. This particular conventional 
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electrode was chosen because of its small size and ease of application in the relatively less 

exposed skin area available in the mastoid region. However, the shelf-life of these 

electrodes was observed to be less than 2 months, since the recordings that were performed 

after that duration were observed to be of poor quality. Because of the deteriorated signal 

quality beyond the expiration date of the electrode and lack of rigorous skin prep of the 

subject, 3 of the 14 recordings could not be included in the study. 

                                 

Figure 3.2a: GS26 pre-gelled Ag/ AgCl electrode Figure 3.2b: Ambu BlueSensor N 

pre-gelled Ag/ AgCl electrodes 

For the final 3 out of 14 subjects recruited for the recordings used for arriving at an 

inference, Ambu ® BlueSensor N was used as the conventional electrode (shown in Figure 

3.2b). The dimensions of the measuring area of the sensor material is about 95 mm2, which 

is comparable to the sensor previously used. It has features including highly conductive 

wet gel, offset connector and superior adhesion for medium-term application and with 

comfortable foam backing, the electrode is easy to use and gentle to the skin [3-3].  

At a high level, Figure 3.3 shows a comparison plot indicating the level of 

performance measurement of our epidermal electronic system (with and without analytics) 

with respect to the existing electrodes. 
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3.1.2 Avatar EEG Recorder 

Each of the two types of electrodes were connected to a separate portable, pocket-

sized, eight channel EEG recorder known as Avatar EEG. This recorder has a removable 

memory card with 8GB-32GB capacity that can store weeks of recording 

 
 

Figure 3.3: Comparing the level of performance measurement of epidermal 

electronic system. 

of signals for offline analysis and can be used for over 24 hours of continuous recording 

without battery draining problems [3-4]. The recorder also has provision for software 

configurable gain adjustment. It weighs 60 grams and has dimensions of 76X53X38 mm. 

The sampling rate was set to 500 Hz. In order to have an unbiased, simultaneously parallel 

recording of sleep EEG from two different sensor electrodes, two separate recorders were 

required because each one of the recorder has provision for only a single ground. The 

recorder is compliant with American Academy of Sleep Medicine (AASM) guidelines for 

staging sleep and is ideal for sleep studies, post traumatic studies involving sleep and sleep 

disturbances. 
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Figure 3.4: Pocket-sized Avatar EEG recorder 

3.2 Subject recruitment 

Naval Health Research Center (NHRC) Institutional Review Board (IRB) approval 

was obtained for protocol ID NHRC.2013.0017 titled “Collection of waking and sleep EEG 

from normal, healthy civilian population for comparison with data from military 

populations with PTSD and TBI” (abbreviated title – “Normative Waking and Sleep 

EEG”). The subjects were recruited through word-of-mouth description of the sleep study 

research that was going to be conducted. After the subjects expressed initial interest and 

volunteered to participate in the study, a phone call assessment was conducted to check if 

they satisfied all the inclusion criteria and dissatisfied the exclusion criteria mentioned in 

the IRB. It was also ensured that subjects participating in the study have no bed partner, or 

will be able to sleep alone for the nights of the sleep monitoring to minimize artificial sleep 

disruptions. Self-reporting of the subjects was relied upon for the inclusion/ exclusion 

criteria.  

Inclusion criteria 

-  Age group 18-50 
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- Any ethnic background 

- Smokers and caffeine-drinkers will be permitted 

Exclusion criteria 

- Current psychiatric or neurological disorders 

-  Under medication in the recent 2 years (‘medication’ refers to chronic use of any 

prescription substance for mood or physiological regulation, with the exception of birth 

control) 

- Taking or have taken anti-depressants, anti-anxiety or anti-psychotic medication 

for longer than 1 year in the past and within 2 years of enrolling in the study 

- Problems with falling or staying asleep 

- A history of skin allergies or a history of extreme sensitivity to cosmetics or lotions 

- Using sleep aids such as Ambien or other prescription or over the counter 

substances, except for rare instances of normalizing sleep during travel between time zones 

- Battle field experience 

A voluntary consent form was signed by the subjects before beginning the study. 

In addition, the subjects were given a detailed explanation of the procedures and they 

clarified their doubts before the experiment began. After signing the consent form, the 

subjects were given 4 questionnaires that inquired them about their sleep, personality, 

anxiety, feelings – emotions as well as psychological health. These were: the Patient Health 

Questionnaire (PHQ-8) for depression, Beck Anxiety Inventory, a personality assessment 

questionnaire and a sleep quality index questionnaire. After completing the questionnaires, 

the subjects were given the option of wearing the sleep devices with the help of the 

researcher or were allowed to observe a demonstration and were given written instructions 

of how to wear the sleep devices at home. Signatures were obtained for taking a photograph 
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and/ or video recording of them after wearing the sleep devices – which would eventually 

be used in paper publications and research presentations. Based on the above outlined 

procedures, we had recruited 14 subjects for our study, of which only 10 subject recordings 

were used for making inference. The details on sources of error are given in chapter 6. 

3.3 Electrode placement 

3.3.1 Skin preparation 

The actual preparation for wearing the devices begins with the skin prep. The 

regions of skin where the electrodes were to be placed were prepped by gently abrading 

the skin with NuPrep or 3M Red Dot Trace Skin Prep to increase signal clarity by 

decreasing skin impedance and enhancing signal transmission [3-5]. We avoided using 

alcohol for skin preparation since it is known to dehydrate the skin causing impedance to 

rise. A thin layer of conductive, non-irritating, hypoallergenic and bacteriostatic Signa gel 

[3-6] was applied to the epidermal electrodes before applying onto the skin. 

3.3.2 Electrode montage 

 

Figure 3.5: Electrode placement on the subject 

A total of three Tegaderm (a 3M Health Care product approved for clinical usage) 

mounted EES stickers were applied on the subject’s skin. One EES Tegaderm sticker was 
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placed on the forehead and two more EES Tegaderm stickers were placed with one behind 

each ear on the mastoid bone location to record EEG. The reference electrode was placed 

behind the left ear while the right ear location was assigned to be the ground. In the regions 

as close as possible (side-by-side) to where EES stickers had been placed, a conventional 

pre-gelled disposable silver-silver chloride (Ag/ AgCl) surface electrode was applied – to 

facilitate simultaneous recording from both of the systems. The reason behind choosing 

mastoid montage was to have ease of application and removal of electrodes in non-hairy 

areas. The left mastoid reference is commonly used as it provides a location for robust 

attachment of the electrode with low impedance [3-7]. In addition to that, the mastoid 

montage framework was also in place for a study at the naval health research center for 

studying the sleep architecture of PTSD patients. Since this study will eventually evolve 

into comparing the sleep architectures of healthy subjects vs. those with PTSD, the 

montage was retained to have mastoid reference.  

The subjects were instructed to blink 20 times when they lie down and know they 

were about to sleep. This is to facilitate synchronization of the epidermal and conventional 

EEG signals to know where exactly the starting point of sleep recording is. 

 

Figure 3.6: Eye blink synchronization signal of one subject 
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3.4 Overall setup 

 

Figure 3.7: Overall representation of acquisition setup 

3.4.1 Recording protocol 

Full recordings from EES and conventional electrodes were collected on each 

subject from the instant when the two systems were time synchronized, after which the 

recording began and the recording continued until the instant in the morning when the 

subject woke up (the subject ideally had a minimum of 5 hours and maximum of 9 hours 

sleep). After the subject woke up, EES and conventional electrodes were removed by the 

subjects themselves. The total duration of the subject’s involvement in the study was 

between 6 and 10 hours for each recording. The subjects were compensated for 

participating in the study using funding provided by Naval Health Research Center. The 

EES and conventional electrode sleep data were saved in secure servers in the locked 

Neural Interaction Laboratory (NIL) at UCSD.  Access is password-protected and given 

only to members of the research team.  
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Chapter 4 – Probabilistic Modeling 

4.1 Signal acquisition and processing 

The collected EEG signal was stored in binary data file (.rec) format in the storage 

memory card of avatar EEG recording device. This file was first converted to .csv file using 

a python script. The .csv file was then loaded into Matlab software (MathWorks Inc., 

Natick, MA), and was converted into .mat file.  

The sampling rate of avatar EEG recorder was set to 500 Hz. Mean centering was 

performed to remove any low frequency drift. Due to large size of the data and existing 

artifacts, the EEG signal was first transformed to capture useful information, as part of the 

feature extraction process. We employed a technique that used wavelet transforms to 

extract the power spectral properties of EEG. As the time-frequency decomposition begins, 

a 2.5s overlapping window, sliding every 0.5s with between-window-shift of 3s, is applied 

to the raw EEG signal to obtain the localized power spectral density (PSD). Consequently, 

we have about 7194 data points for every hour of sleep recording. The obtained power 

values were made non-complex and converted to log-scale (expressed in dB) to normalize 

the large power differential between low and high frequency power. To minimize the 

distortions with conversion to dB when power approaches zero, a moving average filter 

was applied to smooth over every 6 seconds (twice the size of between-window-shift). The 

line frequency noise was eliminated by using a 60-Hz notch filter. These steps gave rise to 

f X T power feature matrix with f frequency bins corresponding to 1000 for 0-250 Hz and 

T time windows depending on the total number of hours of sleep recorded.  

In our sleep study paradigm, we define 4 sleep states – wake, REM, light and 
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deep. NREM stages 1 and 2 have been combined to form a single ‘light’ sleep stage. 

Dominant frequency bands corresponding to specific sleep states were defined. We choose 

n=4 frequency bands: 1Hz-3Hz, 10.15Hz-15.75Hz, 20Hz-30Hz, 35Hz-50Hz, which jointly 

contain 99% of the power of EEG waves [4-1, 4-2, 4-3, 4-4]. Also, it is well known that 

human sleep is characterized into different stages based on the frequency content of the 

delta-wave, theta-wave, alpha-wave, beta1-wave and beta2-wave, which are similar to our 

frequency bands. Hence, the features contained within these bands should provide enough 

discrimination power for stage classification [Table 4.1]. However, it is important to note 

that the frequency band definitions are not universally standardized.  

Table 4.1: Dominant frequency bands corresponding to different sleep stages 

under consideration 

Dominant Sleep Stage 

(Possible X values) 

Dominant frequency 

band (Possible Y values) 
Frequency Range (Hz) 

Wake (W) Gamma (γ) 35 – 50 

REM (R) Beta (β) 20 – 30 

Light (L) Sigma (σ) 10.15 –  15.75 

Deep (D) Delta (δ) 1 – 3 

 

           Using the extracted power feature, time – frequency spectrogram is plotted. Based 

on qualitative visual analysis of the spectrogram shown in Figure 4.1, it looks very similar 

for the conventional and epidermal scenarios. We then go on to build the mathematical 

framework for sleep staging using the extracted feature from the conventional and 

epidermal EEG signals. 
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Figure 4.1: Time-frequency spectrogram plot of sleep EEG acquired using 

epidermal electrode for one subject.  

4.2 Markov Process Modeling 

Consider X to be a random variable taking on values in some state space (e.g. the 

discrete values W, R, L, and D pertaining to wake, REM, light, deep). A random process 

is a collection of random variables indexed through time: Xi = {X1 … XT}.  

A Markov chain or a Markov process is a random process where the future, Xi+1 

is independent of the past, X1:i−1 given the present Xi. The effect of the past on the future 

is summarized by the state Xi, which changes from one time to the next according to given 

transition probabilities. In this discussion, the state space is finite. Moreover, we assume 

stationary transition probabilities (e.g. they do not depend on time). Markov chain models 

can be applied to any dynamical system whose evolution over time involves uncertainty, 

provided, the state of the system is suitably defined [4-5]. 
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Figure 4.2: A Markov Chain with 2 states labeled𝐗𝟏, 𝐗𝟐 with selected state 

transitions. 

If a1, … aT (for example, a1 = 1, a2 = -3, …, aT = 10) are the values assumed by X1, 

…XT, then, by definition of Markov chain,  

𝐏(𝐗𝐢 = 𝐚𝐢| 𝐗𝐢−𝟏 = 𝐚𝐢−𝟏, 𝐗𝐢−𝟐 = 𝐚𝐢−𝟐 … , 𝐗𝟏 = 𝐚𝟏) = 𝐏(𝐗𝐢 = 𝐚𝐢| 𝐗𝐢−𝟏 = 𝐚𝐢−𝟏)  (1) 

Markov chains can be described by a matrix of state transition probabilities Q 

whenever the state happens to be ai-1, there is a probability Q that the next state is equal to 

ai. Mathematically, this is represented by the equation below, 

         𝐐(𝐚𝐢−𝟏, 𝐚𝐢) ≜ 𝐏(𝐗𝐢 = 𝐚𝐢|𝐗𝐢−𝟏 = 𝐚𝐢−𝟏), 𝐢 ≥ 𝟐               (2) 

 

Figure 4.3: Two-state transition matrix 

Thus, the probability law of the next state Xi+1 depends on the past only through 

the value of the present state Xi. The transition probabilities must be nonnegative and sum 

to 1. 

∑ 𝐐𝐢𝐣 = 𝟏 𝐟𝐨𝐫 𝐚𝐥𝐥 𝐢𝐧
𝐣=𝟏      (3) 

where n represents the total number of possible states. 

The initial state distribution, the probability mass function (PMF) on X1, is given by π 

          𝛑(𝐚𝟏) ≜ 𝐏(𝐗𝟏 = 𝐚𝟏)     (4) 
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4.3 Hidden Markov Model 

A hidden Markov model (HMM) is a statistical model pertaining to two random 

processes, X and Y, where X is a Markov chain as described above and Y is a “noisy 

version” of X. In essence, we cannot observe the Markov process X1:T but we can observe 

another process Y1:T that is statistically coupled to X1:T  

We describe the coupling of Y to X according to the following definition.  At any 

time i: 

𝐏(𝐘𝐢 = 𝐛𝐢|𝐗𝟏:𝐓 = 𝐚𝟏:𝐓, 𝐘𝟏:𝐢−𝟏 = 𝐛𝟏:𝐢−𝟏) = 𝐏(𝐘𝐢 = 𝐛𝐢|𝐗𝐢 = 𝐚𝐢) ≜  𝐑(𝐚𝐢, 𝐛𝐢)    (5) 

This is a fundamental assumption for HMM which means “Yi is a noisy version of only 

Xi”. 

 

Figure 4.4: Structure of HMM 

HMM permits analysis of non-stationary multivariate time series by modeling state 

transition probabilities (Q) and probability of observation of a state (R). This relates to 

sleep staging in that: (a) the relationship between the previous sleep stage and next sleep 

stage obeys a Markov relationship and (b) we do not directly observe the state of sleep; 

rather, we observe electrical rhythms of the brain that are statistically linked to the 
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underlying states. As sleep physiology possesses properties of successive stage transition, 

HMM is a promising model for sleep staging. 

4.3.1 Elements of HMM 

 n: number of states in the model (for example, for sleep, n=4 pertaining to wake, 

REM, light, deep).  

 T: total duration of time recorded.  T is an integer.  For example, we would have 

X = {X1 = a1, X2 = a2, … , XT = aT} where T total time steps and each state at 

time i, given by ai, can take one of n values. 

 π: initial state probability distribution, that is, P(X1 = a1).  

 Q: state transition probability matrix, that is, P(Xi+1 = ai+1|Xi = ai) 

 R: likelihood parameters for P(Yi = bi|Xi = ai) 

Given appropriate values of n, π, Q and R, the HMM can be used as a generator to 

give an observation sequence: 

Y = Y1 Y2 Y3 … YT 

The set of {π, Q, R} are collectively referred to as Hidden Markov Model 

Parameters. The collection is usually denoted by , that is,  = {π, Q, R}.  

4.3.2 Sleep Modeling with HMM 

Within the context of sleep, hidden random variable (X) represents the sleep stages. 

X is modeled as a discrete random variable. It can take 4 values corresponding to the 

defined sleep states according to our sleep study paradigm as shown here:  

X: {Wake (W), REM (R), Light (L), Deep (D)} 
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The continuous random variable Y represents relevant features of the EEG. At any 

time i, Yi is a 4-dimensional random variable.  The kth component of Yi, given Yi,k, 

corresponds to the log power in frequency band k from a previous Table 4.1.  For example, 

Yi,1 corresponds to the log power in frequency band gamma, Yi,2 corresponds to the log 

power in frequency band beta, etc.  We model Yi as a 4-dimensional Gaussian random 

variable, whose parameters are given by a 4-dimensional expectation vector and a 4 x 4 

covariance matrix.   

The most important way to characterize a random variable is through the 

probabilities of values it can take [4-5]. For a discrete random variable, such as X, these 

are captured by the probability mass function (PMF) of X.  Denote PX(a) as the probability 

of the event {X=a}. Analogously, for a continuous random variable, denote fY(v) as the 

probability density of Y at v.  For random processes, we index random variables and the 

associated labels by time.  For example, a2 =  3 means that at time unit 2, the sleep stage 

was in state 3 (corresponding to light) and we denote this probability byPX2
(a2). 

The initial probability distribution represents the probability mass values that the 

hidden random variable X can take at the beginning of the activity of sleeping, when the 

subject usually transitions from wake to one of the sleep states. Based on fair assumption, 

we assign a probability value of 1 to wake stage and 0 to the rest, to start with. The PMF 

values are assigned in the order of Wake, REM, Light and Deep. 

Set of states = {W, R, L, D} 

       = {1, 0, 0, 0} 
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The state transition probability matrix Q represents how probable it is to stay in the 

same sleep state and/ or transition from one sleep state to another. For short probability 

durations of time between samples, the probability of staying in the same sleep state is 

higher than transitioning into other states [4-6]. If there exists a group of states that have 

low transition probabilities to stay at the same states and high probabilities to transit to 

each other, the number of states may be higher than necessary for HMM to model the 

training data [4-6]. A typical value of Q can be obtained from the literature [4-7].  

 

Figure 4.5: Typical value of Q matrix 

Mathematically, this can be written as in equation (2). For instance, given that the 

sleep state at previous time window is wake, the probability that the next sleep state is light 

is given by the matrix element (1, 3), as in the equation below: 

𝐐(𝟏, 𝟑) = 𝐏(𝐗𝐋|𝐗𝐖) = 𝟎. 𝟐𝟒 

Each row represents the PMF values of hidden variable X for one particular sleep 

stage, so every row adds up to 1. Shown in Figure 4.6 is the PMF for the case when current 

state is wake (W). The next state could be wake or REM or light or deep. This explanation 

can be extended to other sleep states represented in other rows of Q matrix. 
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Figure 4.6: PMF values given that the current sleep state is wake (W) 

It should be noticed that the given transition probability matrix is constrained based 

on well-studied sleep physiology of healthy subjects [4-8]. Transitioning from wake to deep, 

REM to deep and deep to REM sleep states is impossible, so these are assigned a probability 

value of 0. 

 

Figure 4.7: Sleep Stages – constrained state transition diagram for healthy 

subjects 

 

The observed random variable Y corresponds to the log power feature extracted 

from the defined dominant frequency bands of EEG representative of different sleep states. 

Because EEG is a continuous time-series signal, the likelihood probability density R, where 

R(b|a) =  P(Yi = bi|Xi = ai) , in which given X, Y is modeled as a multi-variate Gaussian 
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whose conditional expectation is reflected in Table 4.1 and is defined by mean vector (µ) 

and covariance matrix (∑). R is the density of the Gaussian.  

At time i, Yi  is a length-4 vector.  

𝐘𝐢 = [𝐘𝐢
𝛄 

𝐘𝐢
𝛃

 𝐘𝐢
𝛔 𝐘𝐢

𝛅] 

Where Yi corresponds to, for example Y = [1.61 1.18 -0.07 -2.44] 

The likelihood matrix R is thus defined, for instance in the case when X = W as,  

𝐏(𝐘𝐢|𝐗 = 𝐖) =  𝓝(𝛍𝐖, 𝚺𝐖)     (6) 

where μW = [μW
γ

 μW
β

 μW
σ  μW

δ ] represents the mean vector given the sleep state is wake 

and ΣW represents the covariance matrix. For instance, μW can take values [1.76 1.43 0.98 

0.24]. 

To reiterate, Y is modeled as Gaussian represented by a mean µ and variance Σ. 

If b = [bγ bβ bσ bδ], then 

    𝐟𝐘|𝐗(𝐛|𝐚) =  
𝟏

√𝟐𝛑𝐝𝐞𝐭𝚺𝐚
𝐞(−

𝟏

𝟐
(𝐛−𝛍𝐚)𝐓𝚺−𝟏(𝐛−𝛍𝐚))

  (7) 

Each element in the mean (µ) vector represents the probability density value of a particular 

frequency band given a particular sleep state.  

Example, for wake stage – the mean vector (μW) looks like 

 

Figure 4.8: Representation of mean vector given sleep state = wake 
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For instance, the average log power in band γ during wake stage is represented by 

µγ|W. And given a specific sleep state, a covariance matrix (Σ𝑎) describes how different 

frequency distributions co-vary with each other. 

The typical values of the mean vector µ and covariance matrix ∑ have been chosen 

based on literature – backed evidence of the presence of dominant frequency bands in 

specific sleep stages given in the feature table 4.1. 

 

Figure 4.9a: Each column represents typical mean (µ) vector values 

 

Figure 4.9b: Typical covariance matrix (∑) values 

This sums up the initialization of the HMM model parameters. 

4.4 The Likelihood Function 

Given the observation sequence Y = {Y1 = b1, Y2 = b2, …, YT = bT} and a model θ 

= {π, Q, R}, it is necessary to efficiently compute the likelihood function P(Y; θ) – the 

probability of the observation sequence given the model. The likelihood function, is the 

probability of recorded data as a function of unknown parameter. 
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In the case of HMM, this is obtained from the joint distribution by marginalizing over the 

hidden variables X = {X1 = a1, X2 = a2,  …, XT = aT} 

                                               𝐋(𝛉) = 𝐏(𝐘|𝛉) =  ∑ 𝐏(𝐘, 𝐗|𝛉)𝐗                        (8) 

The likelihood function provides an objective means of assessing the “information” 

in a sample of data about the model parameter θ [4-9]. We would like to derive a summary 

that gives us a sense about the shape of the likelihood. This is provided by the maximum 

likelihood estimate. 

4.4.1 Maximum Likelihood Estimation 

For a fixed set of data and underlying statistical model, the method of maximum 

likelihood selects the set of values of the model parameters that maximizes the likelihood 

function. Intuitively, this maximizes the agreement of the selected model with the observed 

data [4-10]. For each sample point (b1, b2, …, bn), let θ*( b1, b2, …, bn) be a parameter 

value of which L(θ) attains a maximum as a function of θ for fixed (b1, b2, …, bn).  

θ*(b1, b2, …, bn) is a maximum likelihood (ML) estimator (MLE) of the parameter 

θ [4-9]. In particular, if L(θ) is differentiable, we can consider  

𝛛𝐋(𝛉)

𝛛𝛉
= 𝟎                     (9) 

and check the conditions on 

  
𝛛𝟐𝐋(𝛉)

𝛛𝛉𝟐
≤ 𝟎                       (10) 

to be sure that the estimate defines a maximum. This would mean that for a one-

dimensional problem, verifying that the second derivative was negative. In likelihood 
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analyses, it is usually easier to work with log of the likelihood function, called the log-

likelihood (log L(θ) , LL(θ)) instead of L(θ).  

Hence, computing the MLE can often be formulated as finding θ* which solves the 

score equation: 

                                            
𝛛𝐋𝐋(𝛉)

𝛛𝛉
= 𝟎                                      (11) 

From the total probability theorem, the log-likelihood function can be written as 

    𝐋𝐋(𝛉) = 𝐥𝐨𝐠𝐋(𝐘𝟏, … , 𝐘𝐓; 𝛉) = 𝐥𝐨𝐠(∑ ∑ … ∑ 𝐏(𝐗𝟏, … , 𝐗𝐓, 𝐘𝟏, … , 𝐘𝐓;  𝛉)𝐗𝐓𝐗𝟐𝐗𝟏
)         (12) 

The method of maximum likelihood estimates θ, which is unknown and is referred 

to as the true value of the parameter, by finding a value of θ* = �̂�𝐌𝐋𝐄 that maximizes LL(θ). 

  This method of estimation defines a maximum likelihood estimator of θ, if any maximum 

exists 

                                         �̂�𝐌𝐋𝐄 =  𝐚𝐫𝐠𝐦𝐚𝐱
𝛉

𝐋𝐋(𝛉)                         (13) 

 An MLE estimate is the same regardless of whether we maximize the likelihood 

or the log-likelihood function, since log is a monotonically increasing function. 

Given that our objective is to find θ̂MLE according to equation (13), the likelihood 

function parameterized by a nonrandom and unknown quantity θ, finding θ̂ directly from 

equation (12) is computationally intractable due to an exponential number terms to sum 

over  [4-11]. Also, if the likelihood function has multiple local maxima, then any hill-

climbing procedure can have problems with oscillating between multiple local maxima and 

never converge. 
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4.4.2 The Expectation – Maximization (EM) Algorithm  

The expectation – maximization (EM) algorithm is an iterative method for finding 

maximum likelihood estimates of parameters in statistical models, where the model 

depends on unobserved latent variables. 

The EM iteration alternates between performing an expectation (E) step, which 

creates a function for the expectation of the log-likelihood evaluated using the current 

estimate for the parameters, and a maximization (M) step, which computes parameters 

maximizing the expected log-likelihood found on the E step. These parameter-estimates 

are then used to determine the distribution of the latent variables in the next E step [4-12]. 

4.4.2.1 Reason for using EM algorithm for finding the parameters 

of HMM 

If we have a HMM and we model θ = {, Q, R}. State space model for the latent 

process X is governed by –  

                                   𝐏(𝐱𝟏, … , 𝐱𝐓;  𝐐) = (𝐱𝟏) ∏ 𝐐(𝐱𝐢|𝐱𝐢−𝟏)𝐓
𝐢=𝟐                       (14) 

Q parameters pertaining to θ are related to the transition matrix values in the state-space 

model. 

At each time i, Yi is observed, which is a noisy version of Xi. The statistical model 

relating Yi to Xi is termed the observation equation, of the form: 

                                   𝐏(𝐲𝐢|𝐲𝐢−𝟏, … , 𝐲𝟏, 𝐱𝟏, … , 𝐱𝐓;  𝛉) = 𝐑(𝐲𝐢|𝐱𝐢)                              (15) 

If y1, …, yT has been observed, then the joint distribution on the latent process and the 

observed process is given by 

𝐏(𝐱𝟏, … , 𝐱𝐓, 𝐲𝟏, … , 𝐲𝐓; 𝛉) = 𝐏(𝐱𝟏, … , 𝐱𝐓; 𝛉)𝐏(𝐲𝟏, … , 𝐲𝐓|𝐱𝟏, … , 𝐱𝐓;  𝛉) 
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⇒  𝐏(𝐱𝟏, … , 𝐱𝐓, 𝐲𝟏, … , 𝐲𝐓; 𝛉) = 𝛑(𝐱𝟏) ∏ 𝐐(𝐱𝐢|𝐱𝐢−𝟏)𝐑(𝐲𝐢|𝐱𝐢)
𝐧
𝐢=𝟐                       (16) 

Denoting the joint distribution as P(y1, … yT; θ) where θ = {π, Q, R} and considering the 

set of values that can be taken by X = {W, R, L, D} (n = 4), attempting to do brute – force 

maximum-likelihood estimation by maximizing the log-likelihood with respect to θ is 

easily seen to become a very complicated calculation with no analytical result as shown in 

the equations below. (eq. 17 from [4-11]) 

𝐥𝐨𝐠 𝐏(𝐲𝟏, … 𝐲𝐓;  𝛉) = 𝐥𝐨𝐠(∑ … ∑ 𝛑(𝐱𝟏) ∏ 𝐐(𝐱𝐢|𝐱𝐢−𝟏)𝐓
𝐢=𝟐 𝐑(𝐲𝐢|𝐱𝐢)

𝐧
𝐱𝐓=𝟏

𝐧
𝐱𝟏=𝟏 )                 (17) 

𝐥𝐨𝐠 𝐏(𝐲𝟏, … 𝐲𝐓;  𝛉) = 𝐥𝐨𝐠(∑ … ∑ 𝐏(𝐱𝟏, … , 𝐱𝐓, 𝐲𝟏, … , 𝐲𝐓;  𝛉)𝐧
𝐱𝐓=𝟏

𝐧
𝐱𝟏=𝟏 )                         (18) 

This is why the EM algorithm is seen to useful. EM algorithm has the following 

favorable properties: 

• It always converges to a local maximum of the likelihood function 

• If the likelihood function has only one local maximum (which is also the 

global maximum), it will always converge to it.  

Determining a method to adjust the model parameters,  = {π, Q, R}, to maximize 

the probability of the observation sequence given the model, P(Y;) is the most difficult 

problem of HMMs [4-13]. For any finite observation sequence as training data (which in 

our case, is the power feature extracted from EEG signal acquired using epidermal or 

conventional electrode), we can choose  = {π, Q, R} such that P(Y;) is locally maximized 

as a function of theta using an iterative procedure such as the Baum – Welch   algorithm 

(which is just a special case of EM algorithm) [4-14]. 

Given the hidden variable X = (X1 = a1, …, XT = aT) and the observed variable Y 

= (Y1 = b1, …, YT = bT), we can define P̃ as the probability of being in state ai at time i and 
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state ai+1 at time (i+1), given the model () and observation sequence (Y). P̃ can be 

mathematically represented as 

                            �̃� = 𝐏(𝐗𝐢 = 𝐚𝐢, 𝐗𝐢+𝟏 = 𝐚𝐢+𝟏|𝐘𝟏:𝐓, 𝛉)                              (19) 

Maximizing the likelihood function can be expressed as 

                            𝐦𝐚𝐱
𝛉

𝐋(𝛉) =  𝐦𝐚𝐱
�̃�

𝐦𝐚𝐱
𝛉

𝐉(𝛉, �̃�)                    (20) 

This leads us into the iterative procedure of maximizing P̃ as part of the expectation step 

(E – step) and maximizing  as part of the maximization step (M – step). 

E – Step: is the process of calculating the posterior on x given y. It is nothing more 

than finding a conditional distribution, as defined by equation (20). Since Y = (Y1, …,YT) 

is fixed, we use the law of conditional probability to calculate the P̃ matrix containing 4T 

entries (corresponding to n = 4 discrete latent states) for the M-step.  

Using equation (20), by virtue of Baum – Welch algorithm, we can efficiently 

calculate the conditional probabilities:  

P̃(X1, X2) = P(X1, X2|Y1, … , YT;  θ) (containing 16 entries) 

P̃(X2, X3) = P(X2, X3|Y1, … , YT;  θ) (containing 16 entries) 

P̃(XT−1, XT) = P(XT−1, XT|Y1, … , YT;  θ) (containing 16 entries) 

This gives a total of 16T entries instead of 4T entries. Only 16T entries are required 

to implement the EM algorithm.  

The M – step uses the hidden variables estimated in the previous E – step to identify 

the optimum θ values corresponding to the estimated hidden states.  

The E – step can be summarized as  
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                    �̃�[𝐤] =  𝐚𝐫𝐠𝐦𝐚𝐱
�̃�

𝐉(�̂� [𝐤 − 𝟏], �̃�)                              (21) 

and the M – step can be represented as 

                                 �̂�[𝐤] =  𝐚𝐫𝐠𝐦𝐚𝐱
𝛉

𝐉(𝛉, �̃�[𝐤])                                                (22) 

This end result of EM algorithm gives rise to an optimum set of values P̃∗ and * 

 

(Repeat until convergence when the ML parameters are found) 

The EM algorithm always converges to a fixed point and that fixed point is a local 

maximum to the likelihood function. The convergence condition is given as –  

‖𝛉[𝐤] −  𝛉[𝐤 − 𝟏]‖  <  𝜀                     (23) 

Where  is assigned a small tolerance value. Pictorially, the EM algorithm can be depicted 

as shown in Figure 4.10.  

 

Figure 4.10: EM algorithm 

where initial guess = initial guess on the parameters of the model (θ = {π, Q, R}) 
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The ML estimate of the parameters obtained using the EM algorithm are consistent 

with what makes physiological sense according to feature Table 4.1 and Q matrix as shown 

in figure 4.5.  

In case of our sleep study paradigm, once the EM algorithm converges to the 

reestimated parameter values {π̂, Q̂, R̂}  from the observed EEG signal data, we use another 

mathematical technique called the Maximum a Posteriori (MAP) sequence estimation to 

identify the hidden sleep staging. 

4.5 Maximum a Posteriori sequence estimation 

Given the observation sequence Y = Y1,…,YT and the model , the question arises 

as to how to identify one corresponding state sequence X = X1, …, XT that is the best 

explanation of the observations. This is addressed by the technique of Maximum a 

Posteriori (MAP) sequence estimation.  

The MAP procedure obtains a point estimate (single value that serves as the “best 

guess/ estimate”) of an unobserved quantity on the basis of empirical data. Given the data, 

the MAP procedure employs an optimization that incorporates a prior belief over the 

quantity one wants to estimate. Given the entire set of observation values Y1:T  =  b1:T, the 

MAP rule that gives the best sequence estimate of the hidden random process Xn is 

mathematically represented as: 

 �̂�𝐌𝐀𝐏
𝐓 =  𝐚𝐫𝐠𝐦𝐚𝐱

𝐚𝟏𝛜{𝟏,…,𝐧},…,𝐚𝐓𝛜{𝟏,…,𝐧}
𝐏(𝐗𝟏:𝐓 = 𝐚𝟏:𝐓|𝐘𝟏:𝐓 = 𝐛𝟏:𝐓;  𝛉)                             (24) 

Where at every time point, Xi = ai can take values from 1:n possible states and T 

indicates the total number of time points. Here θ represents the result of EM algorithm, 
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θ̂MLE. For a large n, finding the most likely path involves nT different possible sequences 

to search over to perform the maximization. This is computationally infeasible [4.15]. 

4.5.1 The Viterbi Algorithm 

The MAP sequence estimate is implemented using a computationally efficient 

Viterbi algorithm. This algorithm helps in finding the most likely sequence of hidden states 

(Viterbi Path) – by interpreting the shortest path from source to destination (first time point 

to the last or Tth time point). It utilizes the principle of backward induction (also termed 

dynamic programming) for the purpose of finding the most likely sequence efficiently. The 

path begins with state value ai-1 at time i-1 and ends at state φ at time T+1. The shortest 

path from ai to φ is determined based on the ‘cost-to-go’ function (denoted by J) which is 

defined for every possible state transition from one time point to the next.   

Assuming the time axis is from {0, …, T+1} rather than being {1, …, T} and 

hardwiring a0 =  and aT+1 = , we represent the distance between state at time i and state 

at time i+1 as di(ai−1, ai). MAP sequence estimate as computed using the Viterbi algorithm 

is given by: 

�̂�𝐌𝐀𝐏
𝐓 =  𝐚𝐫𝐠𝐦𝐚𝐱

𝐱
𝐏(𝐱|𝐲) =  𝐚𝐫𝐠𝐦𝐢𝐧

𝐱
−𝐥𝐨𝐠 𝐏(𝐱|𝐲)                 (25a) 

where  𝐝𝐢(𝐚𝐢−𝟏, 𝐚𝐢) =  − 𝐥𝐨𝐠[𝐐(𝐱𝐢|𝐱𝐢−𝟏) 𝐑(𝐲𝐢|𝐱𝐢)]                 (25b) 

                      �̂�𝐌𝐀𝐏
𝐓 =  𝐚𝐫𝐠𝐦𝐢𝐧

𝐚𝟏𝛜 {𝟏,…,𝐧},…,𝐚𝐓{𝟏,…,𝐧}
∑ 𝐝𝐢(𝐚𝐢−𝟏, 𝐚𝐢)

𝐓+𝟏
𝐢=𝟏                     (26) 

Intuitively, this can be explained using an analogy that if the shortest path from 

Chicago to Los Angeles goes through Minneapolis, then the shortest path from 
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Minneapolis to Los Angeles must be along the same shortest path. Formally, considering 

the optimal MAP estimate x̂MAP
T = (a1

∗ , … , aT
∗ ), for every i for which 1 ≤ i ≤ T:  

                              ∑ 𝐝𝐣(𝐚𝐣−𝟏
∗ , 𝐚𝐣

∗)  ≤ 𝐓+𝟏
𝐣=𝐢 ∑ 𝐝𝐣(𝐚𝐣−𝟏, 𝐚𝐣)

𝐓+𝟏
𝐣=𝐢                               (27) 

For all (ai, ai+1, … aT, aT+1) for which ai = ai* and aT+1 =  

The model parameters that are used for computing the distance metric are obtained 

using EM algorithm.  

Inner Workings of Viterbi  

The computation process moves backwards in time – beginning at the (T+1)th time 

point with the cost function to go to all the states at the Tth time point assumed to be 0. The 

minimum distance (d) to transition from each state of the Tth time point to every possible 

state of the (T-1)th time point is calculated based on Q and R matrix values. The minimum 

cost function for transitioning from each state is based on the minimum distance value 

summed with the cost function for the previous transition. The optimal decision of cost and 

state value are stored. The iterative process is repeated until the first time point. In our case, 

distances are logs of probabilities. Based on the minimum cost function, the shortest path 

is traced. Hence the optimal sequence satisfying x̂MAP    
T = {a1

∗ , a2
∗ , … , aT

∗ }  is obtained. 

 

Figure 4.11: Most likely sequence estimation using Viterbi Algorithm (Source: 

Wikimedia Commons) 
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Figure 4.12: Hypnogram plot built for one subject 

4.6 Comparison of two electrode technologies 

In this pilot study, the ultimate goal is to compare the efficacy of a novel epidermal 

electronic sensor against already established conventional electrodes for the purpose of 

sleep monitoring. Given this aim, the comparison can be performed at three levels – input 

to the HMM (power features), parameter space (, Q, R) and output sleep staging. This 

framework is shown in figure [4-13]. In this thesis, we compare the two systems at the 

input level, by performing a hypothesis test on the input power features of the two 

technologies. 
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Figure 4.13: Framework for comparison of two electrode technologies 

4.6.1 A note on hypothesis testing  

In hypothesis testing, we have two different explanations of data.  One explanation, 

the null hypothesis (H0), corresponds to a class of statistical models that pertain to 

“happening by chance”.  The other explanation, the alternate hypothesis (H1), corresponds 

to a different class of statistical models that pertain to some hypothesized structure in the 

statistical properties of the data [4-16].  For instance, in our case, we want to compare two 

different explanations of our EEG and epidermal data.  One explanation is that the 

simultaneous recording are statistically independent and came from chance.  The other 

hypothesis is that they both reflect an underlying “true EEG signal” plus noise.  When we 

perform hypothesis testing, we observe data and first take some pre-processing of the data, 

by forming a “test statistic” (for example, in our case, a covariance/mean-squared-

error/correlation-coefficient between epidermal and conventional EEG).  With this test 

statistic, we attempt to understand how likely we could have observed this from one 

hypothesis or another.  In general, we form the test statistic so that it is on one extreme 
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under the null hypothesis (e.g. small) and on the other extreme under the alternate 

hypothesis (e.g. large).  Typically, we are attempting to test a hypothesis that the data is 

explained by the alternate hypothesis but we must first be skeptics.  Specifically, before we 

can declare that our findings are statistically significant, we have to first make sure that the 

probability that it – or something more extreme - skeptically happened by chance is 

sufficiently small. A p-value gives us exactly that calculation: the probability, under the 

null hypothesis, that the test statistic would have been what we observed or something more 

extreme.  If the p-value is sufficiently small (e.g. below 0.05), then we “reject” the null 

hypothesis and can confidently declare that what we have observed is indeed statistically 

significant.  If, on the flipside, the p-value is not sufficiently small, then we fail to reject 

the null hypothesis.   

4.6.2 Nonparametric hypothesis test 

In general, to calculate a p-value, we have to know the probability distribution of 

the test statistic under the null hypothesis.  In many situations with non-stationary 

physiological data (such as EEG), we do not a priori have a model for what this probability 

distribution is.  Nonparametric tests are performed when certain assumptions cannot be 

made about the data that they are drawn from a specific probability distribution [4-17]. 

These are based upon empirical distribution and the underlying model can grow in size 

according to the complexity of the data, hence these are said to be more robust than 

parametric hypothesis tests.  

In our setting, we assume that the conventional electrode is recording “signal + 

noise”.  We have different hypothesis about the epidermal electrodes, H0 being that they 
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just record noise and H1 being that they record signal + noise.  So in summary, we have the 

following models for our hypothesis test: 

 H0: Under the null hypothesis, conventional electrode records ‘EEG signal 

+ noise’ whereas epidermal electrode records only ‘noise’ 

 H1: Under the alternate hypothesis, we propose that both conventional and 

epidermal electrodes record ‘EEG signal + noise’ 

We make the observation that under the null hypothesis, the epidermal electrode 

signals are statistically independent of conventional recordings.  On the flipside, under the 

alternate hypothesis, because they both contain a “signal + noise”, they will not be 

statistically independent.  We used this observation to guide our selection of 3 test statistics, 

all of which have extreme values on the independent side, as compared to the dependent 

side.  Each test statistic takes as input EEG wave forms from a conventional electrode as 

well as an epidermal electrode and is given as follows: 

A. Mean squared error between epidermal and conventional waveforms 

B. Covariance between epidermal and conventional waveforms 

C. Correlation coefficient between epidermal and conventional waveforms 

Note that for test statistic A: it should be large under H0 and small under H1.  For test 

statistics B and C: they should be small under H0 and large under H1. 

4.6.2.1 Methodology (Bootstrapping) 

Bootstrapping is employed as the method to contruct the hypothesis test. Since 

boostrapping technique is distribution – independent, it provides a convenient, indirect 

method to assess the properties of the distribution underlying the sample [4-18]. The usage 
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of this technique is justified based on the experiement we performed in which our 

observations, namely, the EEG signals are independent and identically distributed (i.i.d.) 

for every subject in the population. The idea behind bootstrapping is that the inference 

about a population from sample data can be modeled by resampling the sample data and 

performing inference on [4-19]. It works by treating the inference of true probability 

distribution J, given the original data, as being analogous to inference of empirical 

distribution of 𝐽, given the resampled data. Since 𝐽 is known, the accuracy of inferences 

regarding 𝐽 from the resampled data can be assessed. If 𝐽 is a reasonable approximation of 

J, then the quality of inference on J can in turn be inferred.  

In the case of our data, we have 10 simultaneously recorded sleep EEG signals from 

epidermal and conventional electrodes, giving rise to a total of 10 actual pairs of data. The 

bootstrapped pairs of data are obtained by combining epidermal electrode data of one 

subject with conventional electrode data of another subject.  Note that when calculating 

test statistics in this manner, because they are different subjects, and thus the conventional 

waveform is statistically independent of the epidermal one, this is a sample from the null 

hypothesis.  Because we have 10 subjects, this allows for 10*(10-1)=90 different pairs 

pertaining to independent samples of the test statistic under H0.   Note that the bootstrapped 

data correspond to the test statistics calculated using the non-actual pairs of data, as shown 

in the yellow matrix elements in the figure below. 

Using the bootstrapped samples, we construct a histogram of the bootstrapped test 

statistics, contributing to the distribution under the null hypothesis H0.  

 



46 
 

  

 

Figure 4.14: Illustration of what the bootstrapped data constitutes (yellow 

boxes) 

The value of the test statistic as calculated using the original pair of EEG, for 

instance, subject 1 epidermal vs. conventional is plotted alongside the bootstrapped 

histogram. A one-tailed statistical significance test is performed to calculate the p-value of 

the chosen test statistic and make inferences based on the result of the calculation. The 

distribution for the hypothesis test is obtained by performing bootstrapping under the null 

hypothesis (H0).  

Recalling that the power of EEG contains T time windows (for every 30 s epoch), 

we consider frequency bins ( f = 709) corresponding to the bands of frequencies of interest 

in our sleep study paradigm, which is 0-50 Hz. The power matrix used for comparison is 

of f X T  dimension.  

YEPI and YCONV are the EEG power matrices of f X T dimension.   

At time window t,  

              𝐘𝐄𝐏𝐈(𝐭) =  𝛍𝐭
𝐄𝐏𝐈 +  𝛆𝐭   (Under H1)                         (28) 

Where 𝜇𝑡
𝐸𝑃𝐼 represents the power signal across 0-50 Hz at time window t, for epidermal 

electrodes and 𝜀𝑡 represents Gaussian noise such that 𝜀𝑡 ~ 𝒩(0, 𝜎𝜀
2) 

Similarly for conventional electrodes,  
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                  𝐘𝐂𝐎𝐍𝐕(𝐭) =  𝛍𝐭
𝐂𝐎𝐍𝐕 +  𝐞𝐭 (Under H1)              (29) 

et represents Gaussian noise such that et  ~ 𝒩(0, σe
2) 

4.6.2.2 Rationale behind the choice of test statistics 

Mean squared error (MSE) of an estimator measures the average of the square of 

errors, that is the difference between the estimator and what is estimated [4-20]. It is a risk 

function that corresponds to the expected value of the squared error loss.  

If �̂� is a vector of n predictions, and Y is a vector of true values then MSE is 

mathematically represented as  

                                                𝐌𝐒𝐄 =  
𝟏

𝐧
 ∑ (�̂�𝐢 − 𝐘𝐢)

𝟐𝐧
𝐢=𝟏               (30) 

In the case of our hypothesis test, the squared error (SE) distance (d(t)) between the 

power feature values of epidermal (equivalent to the predicted value) and conventional 

(equivalent to the true value) is given as  

                          𝐒𝐄 =  𝐃(𝐭) =  ‖𝐘𝐄𝐏𝐈(: , 𝐭) − 𝐘𝐂𝐎𝐍𝐕(: , 𝐭)‖𝟐                          (31) 

Where t represents each time window 

D(t) is a vector of [1 X T] dimension 

The MSE across all time windows is 𝑀𝑆𝐸 (𝑆𝐸)  ≝ 𝑇𝑆(𝑌𝐸𝑃𝐼 , 𝑌𝐶𝑂𝑁𝑉) 

                            𝐓𝐒𝐚(𝐘𝐄𝐏𝐈 − 𝐘𝐂𝐎𝐍𝐕) =  
𝟏

√𝐓
 ∑ 𝐒𝐄(𝐭)𝐓

𝐭=𝟏              (32) 

The estimator of MSE in our case is the power feature.  

 

Intuitively, if MSE is zero, the estimator (YEPI) predicts the observations of 

parameter (YCONV) with prefect accuracy. In reality, MSE should be close to zero if the two 
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EEG signals being compared are similar and the measurement noise is small. The actual 

epidermal vs. conventional EEG signal is compared against the bootstrapped distribution.  

         Covariance is a measure of how much two random variables vary with respect to 

each other [4-21]. The covariance is positive, if greater or smaller values of one variable 

correspond to the respective greater and smaller values of another variable. Conversely, if 

the variables show opposite behavior, then the covariance is said to be negative. If the 

covariance is zero, then the random variables are uncorrelated. 

Mathematically, the covariance between two jointly distributed real-valued random 

variables x and y is defined as –  

          𝛔(𝐱, 𝐲) = 𝐄[(𝐱 − 𝛍𝐱)(𝐲 − 𝛍𝐲)]                 (33) 

Where the expected value (mean) of the random variable can be written as µx = E[x] and 

µy = E[y] 

 

Figure 4.15: Building power vector to calculate the covariance 

Considering covariance as a test statistic to estimate if epidermal and conventional 

electrodes record similar EEG signal, hypothesis test is performed on the power feature. 

Using similar rationale as in the case of MSE, we can represent covariance as 

     𝐓𝐒𝐛(𝐘𝐄𝐏𝐈, 𝐘𝐂𝐎𝐍𝐕) =  
𝟏

√𝐟𝐓
 ∑ [(𝐘𝐄𝐏𝐈

𝐟,𝐓 −  𝛍𝐄𝐏𝐈)(𝐘𝐂𝐎𝐍𝐕
𝐟,𝐓 −  𝛍𝐂𝐎𝐍𝐕)]𝐟𝐓

𝐭=𝟏             (34) 



49 
 

  

The normalized version of covariance is correlation coefficient [4-22]. It is a 

measure of linear correlation dependence between two random variables X and Y giving a 

value included and between +1 and -1; where 1 is total positive correlation, -1 is total 

negative correlation and 0 is no correlation. It is defined as the covariance of two variables 

divided by the product of their standard deviations.  Mathematically, correlation coefficient 

ρX,Y is given as 

                                   𝛒𝐗,𝐘 =  
𝐜𝐨𝐯(𝐗,𝐘)

𝛔𝐗𝛔𝐘
                               (35) 

Considering correlation coefficient as another test statistic,  

                       𝐓𝐒𝐜(𝐘𝐄𝐏𝐈, 𝐘𝐂𝐎𝐍𝐕) =  
𝐓𝐒𝐛

𝛔𝐄𝐏𝐈𝛔𝐂𝐎𝐍𝐕
                             (36)  

 

The results of comparison are shown in the next chapter.
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Chapter 5 – Results 

In this chapter, we give an overview of the subject descriptors, preprocessing 

results, time – frequency plots and results of the hypothesis tests. 

5.1 Subject descriptors 

Based on the inclusion criteria given in section 3.1, 14 subjects were recruited. The 

table below shows the descriptive details of each subject. 

Table 5.1: Subject descriptors 

Subject 

# 
Age Gender 

Medical 

Problems 

Sleep 

deprived 

Completed 

study 

Hours 

captured 

Data 

Included 

in the 

study? 

1 35 M No No Yes ~8 Yes 

2 22 F No No Yes ~5.5 Yes 

3 20 F No No Yes ~8 Yes 

4 28 M No No Yes ~8 Yes 

5 25 M No No Yes ~8.5 Yes 

6 35 M No No Yes ~7 Yes 

7 25 F No No Yes ~8 Yes 

8 34 M No No Yes ~8 Yes 

9 23 M No No Yes ~7 Yes 

10 21 M No No Yes ~7 Yes 

11  26 M No No Yes ~8 No 

12  23 F No No Yes ~8 No 

13 21 M No No Yes ~8 No 

14  23 M No No Yes ~8 No 

 

Although the last four subjects completed the sleep recording, they weren’t 

included in the pool of data used to perform hypothesis tests on to arrive at an inference 

because of the following reasons: 
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• Subjects 11, 12 – skin impedance was very high and the signal was 

completely saturated  

• Subjects 13, 14 – one of the avatar amps had issues only in these two 

recordings with signal sampling and storage 

• Subject 11, 13, 14 – shelf life of the first electrode (GS26, section 2.x) was 

exceeded resulting in signal saturation 

5.2 Raw EEG Plot 

The raw EEG data from epidermal and conventional electrodes are plotted 

simultaneously for comparison. It can be noticed from figure [5.1] that the raw EEG signal 

from epidermal electrode is prone to more drift in comparison with its counterpart from the 

conventional electrode. 

The two EEG signals are high – pass filtered using least – square linear phase FIR 

filter of cut-off 0.5 Hz.  Shown below is an example of filtered and unfiltered versions of 

simultaneously recorded signal from a subject.  

 

Figure 5.1: Unfiltered vs. Filtered Signals 
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5.3 Time – frequency spectrogram 

The raw signals are processed and EEG power is extracted, time – frequency 

spectrogram is plotted. Reproducing one part of the figure from section 4, figure 4.1. 

 

 

Figure 5.2: Time-frequency spectrogram plots of conventional and epidermal 

electrodes for one subject. Qualitatively, they are similar. 

 

5.4 Hypnogram 

 Based on the mathematical framework we have defined, hypnograms are generated 
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for each subject. One example figure of the hypnogram, repeated from Figure 4.12 is here. 

For this subject, the hypnograms built for sleep EEG signals acquired using the two 

electrodes are similar.    

 

 

Figure 5.3: Hypnogram plots of one subject 

5.5 Results of hypothesis tests 

Recalling the hypothesis test,  

H0: Under the null hypothesis, conventional electrode records ‘EEG signal + noise’ 

whereas epidermal electrode records only ‘noise’ 

H1: Under the alternate hypothesis, we propose that both conventional and epidermal 

electrodes record ‘EEG signal + noise’ 
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The figures below show each of the three classes of test statistics (red lines), along 

with the bootstrapped test statistic distribution under the H0.  

 

Figure 5.4a: Histogram of bootstrapped mean squared error (MSE) 

 

Figure 5.4b: Histogram of bootstrapped covariance 
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Figure 5.4c: Histogram of correlation coefficient 

Table 5.2: P-values of the chosen 3 test statistics 

Subject 

# 

P-value of 

MSE 

P-value of 

Covariance 

P-value of 

Correlation 

Coefficient  

1 0.010989011 0.010989011 0.010989011 

2 0.010989011 0.010989011 0.010989011 

3 0.351648352 0.010989011 0.010989011 

4 0.659340659 0.010989011 0.010989011 

5 0.010989011 0.010989011 0.010989011 

6 0.010989011 0.010989011 0.010989011 

7 0.010989011 0.010989011 0.010989011 

8 0.010989011 0.010989011 0.010989011 

9 0.010989011 0.010989011 0.010989011 

10 0.010989011 0.010989011 0.010989011 

 

Test statistic A 

The MSE values of subject 3 and 4 are in a range comparable to that of the 

bootstrapped MSE values. Hence, their p-values are large. This could also probably be 
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because the statistical power values of the number of subjects that the study has been 

performed on and the bootstrapped samples are very less.  

For the other subjects, the p-value = 0.01. Based on this value, H0 can be rejected 

for 8 subjects. In these cases, the alternate hypothesis that both epidermal and conventional 

electrodes record EEG signal + noise is more plausible. 

Test statistic B 

For covariance, based on the p-value = 0.01 H0 can be rejected and H1 can be stated 

to be the more plausible alternative. Epidermal and conventional electrode EEG signals co-

vary well with each other.   

Test statistic C 

P-value = 0.01 for all subjects. H0 can be rejected. Correlation coefficients of 

epidermal and conventional signals are positive.  

Based on these experimental results, it can be seen that epidermal electrodes have the 

capability to function as effectively as conventional electrodes.  
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Chapter 6 – Discussion 

In this chapter, we give an overview of the possible sources of error, future directions and 

potential impact of this research.  

6.1 Sources of error 

Based on the problems encountered while conducting the experiment, the following 

observations have to be carefully considered for future studies. Skin preparation is highly 

crucial for long – term recording EEG signal during sleep. Abrading the skin with 3M red 

dot trace prep was found to be very effective in most of the subjects. However, because 

some subjects had given us a subjective statement that they were allergic to skin abrasion, 

effective skin prep was not always possible. This led to a high skin impedance and signal 

saturation shortly after the recording began. This is the reason why the recordings of subject 

11 and 12 could not be included in the simultaneous study.   

 

Figure 6.1: Saturated EEG signal from conventional electrode due to 

insufficient skin prep in one subject (#12) 
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The shelf life of pre-gelled Ag/ AgCl electrodes is about a month once the package 

is opened [6-1]. Using electrodes from pouches that were opened more than a month 

earlier, may not be a good experimental practice. 

The reliability and consistency of the EEG recorder should be thoroughly tested. In 

two instances, one of the EEG recorders did not record for the entire duration of the night.  

One more source of error is that the gold (epidermal) electrodes are very neutral 

and thus can accumulate charge, leading to DC drift. This, in comparison to conventional 

Ag/ AgCl electrodes, gives rise to a lot more drift based on empirical evidence and can be 

a challenge. Having a silver material based epidermal electrode might overcome the 

problem. 

6.2 Future directions 

As of now, the comparison between the two electrode technologies has been done 

only at the input EEG power feature level. Comparison of epidermal and conventional 

electrodes at the remaining levels, such as using KL divergence to compare the two sets of 

parameter values 𝜃 = {𝜋, 𝑄, 𝑅} or comparing the MAP sequence estimate outputs 

(hypnograms) are steps in the future direction. Another step will be to validate both the 

EEG data with the help of an expert clinician (somnologist) and also to validate the 

algorithm using available online datasets such as the Physionet. We also intend to extract 

EOG and EMG signals from the existing single-channel EEG for validating the duration 

of specific sleep stages based on the changes in EOG and EMG. An all forehead montage 

of recording, reference and ground will also be tested for less obtrusive studies with 

epidermal electronics. In addition, a rigorous validation study comparing 



59 
 

  

Polysomnography (PSG) vs. epidermal electronics performed on a number of subjects as 

supported by statistical power calculations is part of the future steps to be taken.  

6.3 Potential Impact 

Abnormal sleep patterns are inherently linked to impending neurodegenerative 

disorders. Ideally, if people can take home a portable sleep recording device that is easy – 

to – wear, it can be used to record sleep on a day-to-day basis. Having a regularly monitored 

sleep data every single night makes it more plausible to have enough data to compare and 

come up with objective markers of disorders that have serious ties with sleep. Markers of 

PTSD, predictions of drugs used for depression treatment and early diagnosis of 

Alzheimer’s disease before clinical symptoms come to the surface could possibly be 

detected.  

 

Figure 6.2: Futuristic wireless single-channel EEG based unobtrusive, seamless 

sleep monitoring device
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