
UCLA
UCLA Electronic Theses and Dissertations

Title
Privacy Auditing of Tabular Synthetic Data Generators Using Membership Inference Attacks

Permalink
https://escholarship.org/uc/item/8b51r154

Author
Kim, Nicklaus

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8b51r154
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Privacy Auditing of Tabular Synthetic Data Generators

Using Membership Inference Attacks

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Statistics

by

Nicklaus Jun Kim

2023

© Copyright by

Nicklaus Jun Kim

2023

ABSTRACT OF THE THESIS

Privacy Auditing of Tabular Synthetic Data Generators

Using Membership Inference Attacks

by

Nicklaus Jun Kim

Master of Science in Statistics

University of California, Los Angeles, 2023

Professor Guang Cheng, Chair

Synthetic data is a promising technology with numerous benefits for data sharing and ma-

chine learning workflows, such as augmenting available data, bolstering fairness, and im-

plementing privacy. As synthetic data becomes more and more prevalent, understanding its

methodology and strengths and weaknesses in regards to the above promises becomes crucial.

This thesis in particular explores the privacy implications of generative models for synthetic

data by investigating whether these models deliver on their proposed privacy guarantees. We

analyze the increasingly popular GAN-based methods for generating synthetic data, includ-

ing CTGAN, DP-CTGAN, and PATE-GAN. To investigate the privacy delivered by these

methods, we focus on the approach of adversarial privacy auditing, which utilizes a toolbox

of adversarial attacks to detect privacy leakage in (differentially private) algorithms. We

aim to extend previous work in privacy auditing, which typically focuses on general machine

learning algorithms, to the scarcely examined case of synthetic data generators by analyzing

a range of models and datasets. Our goal is to demonstrate the need for further exploration

and application of privacy auditing in the scenario of synthetic data, provide insights by

ii

comparing behavior across different datasets, and offer simulation results for future inves-

tigations into various privacy preservation patterns. For example, experimental results on

various datasets and target data records reveal differences in privacy outcomes, highlight-

ing the important role of the data, independent of the synthetic data generator, in privacy

preservation. The findings highlight the importance of data-centric privacy evaluations and

the need for further work to achieve a truly tight privacy analysis. This research hopes to

serve as a foundation for further studying adversarial privacy auditing and possibly for the

development of robust defenses against privacy leakage in the future.

iii

The thesis of Nicklaus Jun Kim is approved.

Qing Zhou

Yingnian Wu

Guang Cheng, Committee Chair

University of California, Los Angeles

2023

iv

To my family who have always supported me: my mother, father, sister, and grandmother.

And to the friends who have laughed and whined with me along the way.

v

TABLE OF CONTENTS

1 Introduction . 1

2 Background . 6

2.1 Tabular Data . 6

2.2 Synthetic Data Generators . 7

2.3 Differential Privacy . 12

3 Methodology . 15

3.1 Linkability and Membership Inference . 16

3.1.1 Effective Epsilon . 18

3.2 Threat Modeling Framework . 20

3.2.1 Data Knowledge . 20

3.2.2 Generator Knowledge . 21

3.2.3 Attacker Goal . 21

3.3 Shadow Modeling Attack . 21

3.3.1 Feature Set Classifier . 23

3.3.2 Groundhog Attack . 24

4 Experiments . 25

4.1 Experiment Setup . 26

4.1.1 Generators . 26

4.1.2 Datasets . 27

4.1.3 Attack Settings . 29

vi

4.2 Results . 30

5 Conclusion . 38

5.1 Future Work . 39

References . 41

vii

LIST OF FIGURES

4.1 Comparing different generators on random targets from Texas dataset. 32

4.2 Comparing different generators on random targets from Census dataset. 33

4.3 Comparing different generators on random targets from Adult dataset. 33

4.4 Random vs. outlier targets from Texas dataset. 35

4.5 Random vs. outlier targets from Census dataset. 36

4.6 Random vs. outlier targets from Adult dataset. 36

viii

LIST OF TABLES

4.1 Overview of Dataset Characteristics . 29

4.2 Effective Epsilon by Dataset and Generator . 37

ix

ACKNOWLEDGMENTS

Thank you to the Department of Statistics and Data Science at UCLA for giving me op-

portunities to fund my degree and for helping me through unconventional means to grow

and apply my academic potential. There are also several individuals in particular to whom I

owe an acknowledgement for their contributions to the successful completion of this research

endeavor. First, I would like to express appreciation to my advisor, Professor Guang Cheng,

and my other committee members for the guidance and support they provided throughout

the duration of this project. I am also grateful to Dr. Chi-Hua Wang, whose mentoring

and advice have played a pivotal role in helping shape this paper. Finally, I would like to

thank my colleagues in my lab with whom I participated in many valuable discussions. I am

fortunate to have spent time in an academic environment with such peers and mentors.

x

CHAPTER 1

Introduction

Synthetic data is an emerging new technology that brings several potential benefits to data

processing and analysis. It is being rapidly developed and adopted into many modern ma-

chine learning pipelines which demand vast amounts of data, and some experts even estimate

that in a few years’ time, synthetic data may actually overshadow real data in terms of vol-

ume. Therefore, it is becoming increasingly prudent to develop research on synthetic data

methodology and understand its strengths and weaknesses and overall behavior in compar-

ison to the true, raw data. Some of synthetic data’s valuable use cases include bolstering

data volume for ever-increasing data requirements in deep learning, improving fairness of

decision-making systems, dealing with class imbalances for categorical features, and imple-

menting overall data privacy, among others. Privacy in particular has garnered much atten-

tion, both by researchers and the general public alike, due to the recent boom in personal

data collection and sharing. Much of privacy is dictated by whether we happen to expose

any sensitive information about a given individual in a dataset; for example, when handling

demographic or healthcare data, it is extremely important to ensure no individual’s sensitive

details are being leaked. Privacy can be formally defined in many ways, depending on the

particular data usage scenario (e.g., querying a database, data release to the public domain,

or machine learning model training), but overall, the most commonly used metric for privacy

is differential privacy [2]. Differential privacy strives to serve as an ironclad guarantee of the

privacy of a given algorithm, promising that the probability of an outcome of a computation

or analysis remains nearly the same whether any given individual’s data is included or ex-

cluded from the dataset. Thus, a malicious attacker can not make any inference or draw any

1

conclusions from that individual’s data. The level of differential privacy added by a given

mechanism is calibrated based on a privacy parameter called epsilon (ε), which controls the

level of privacy protection. A larger ε value imposes looser privacy constraints while a smaller

ε indicates stronger privacy protection but may lead to decreased fidelity to the original data

or less downstream utility on statistical tasks using the newly privatized data. To achieve

differential privacy, various mechanisms and techniques have been developed, including data

perturbation, noisy querying, and most recently, synthetic data.

While many methods have been developed to solve the privacy problem, the hope is

that synthetic data can be a ”catch-all” solution to data privacy. The promise of synthetic

data is its ability to take any real, raw dataset, capture important properties, and provide a

way of repeatedly generating or sampling data of user-specified size which has preserved the

properties at hand. Additionally of course, the synthetic data can also serve as a privacy

mechanism as well, protecting the vulnerable real data. Simply put, a synthetic generation

pipeline will consist of two core pieces: a fitting step where we fit the model in question to

our raw dataset and a sampling step where we are able to continually sample data records

which are evidently not real yet, when analyzed on a sample-level, will maintain many of

the desired essential characteristics, like privacy.

To this point in its research and development history, synthetic data has been overwhelm-

ingly applied to image and text data, particularly given recent leaps in computer vision and

natural language processing. However, the majority of data out there is of the tabular form,

where data records are organized in a table format with a mix of numeric, categorical, and

other feature types. It is therefore prudent to focus efforts on tabular synthetic data to meet

the current demands of data in industry and academia alike today. Also, apart from the fact

that it is the most prevalent form of individual data, tabular data can arguably be considered

the most crucial form of data for which we would like to guarantee privacy. For instance,

consider healthcare data such as electronic health records, or EHRs; both of these types of

data come in tabular form and contain extremely sensitive information about individuals.

2

Naturally, one’s intuition would be to suppose that since synthetic data is constructed in a

way such that none of its records directly represents an actual individual, it is automatically

private for all intents and purposes. However, this is not necessarily the case. First, it

is crucial to define what is meant by “privacy.” Countless metrics have been proposed as

measuring sticks for data privacy, each with its own strengths and weaknesses under different

use cases, but it is needless to say that no matter what, the question of privacy comes down

to a lot more, even if the synthetic data records themselves appear to be “fake” and not

corresponding to any real individual. One commonly studied example of this principle is the

fact that many generative models have been shown to be prone to copying the original data

they are trained on, due to overfitting [15]. Particularly for use cases such as healthcare

data, we would like to ensure that the generative model at hand is not simply copying the

real, original data [23]. In addition to data copying, there may also exist many other possible

breaches to a dataset’s or an individual’s ”privacy” that are related to questions of statistical

inference, estimation, etc. In later sections we will see in further detail how outcomes such

as the performance of predictive models may be indicators of violated privacy in synthetic

data.

The above discussion serves to show that the numerous proposed privacy metrics may

offer different angles on what privacy actually means, whichever privacy metric we use.

This leads us to naturally begin to wonder how we actually use privacy metrics, such as

differential privacy, in the assessment of synthetic data generation models. While some

work has been done on evaluating vulnerability of models [18] and even on private machine

learning methods, such as gradient clipping [9], to this point the corresponding analysis on

synthetic data models is sparse. We would like to further investigate the underlying privacy

of generative models for synthetic data in particular – namely, can we confirm (or deny) that

a given synthetic data mechanism is actually delivering on its promise of privacy?

The common procedure for evaluating privacy guarantees is referred to as privacy audit-

ing. Privacy auditing may be performed on a given algorithm as a means of assessing and

3

validating the actual level of privacy protection provided by a differentially private algorithm

for synthetic data. It involves analyzing the data released by a privacy-preserving mechanism

to determine whether the mechanism adheres to the desired privacy guarantees. Overall, pri-

vacy auditing plays a crucial role in ensuring that a mechanism meets the intended privacy

objectives, helping to verify whether the privacy guarantees claimed by the data generat-

ing algorithm are effectively implemented and upheld. Privacy auditing can involve various

techniques and methodologies. For example, an audit may include analyzing the privacy pa-

rameters, such as epsilon (ε), used in differentially private algorithms and checking whether

theoretical bounds on ε are being satisfied. Furthermore, privacy auditing may involve con-

ducting statistical tests or simulations to assess the robustness of the privacy protection

mechanisms. This can involve measuring the likelihood of re-identification attacks, assessing

the accuracy of query results, or evaluating the overall privacy-utility trade-off.

In recent years, alongside work in adversarial machine learning, some have proposed an

adversarial approach to privacy auditing. Notably, Stadler et al. [19] suggest a systematic

framework for this adversarial auditing process, providing a quantitative evaluation of the

privacy gained from synthetic data publishing and a comparison to the privacy preservation

of previous techniques for data anonymization. In contrast to previous approaches, which

were model-specific and relied upon similarity metrics between real and synthetic data, this

framework is able to evaluate the privacy risks of synthetic data publishing itself. Specifically,

by assessing the expected privacy gained or lost under various adversarial attacks, e.g.,

membership inference attacks, we can produce comparative studies of privacy risk across

different choices of synthetic data generation mechanisms. A recent extension to this was

proposed by Houssiau et al. in [7] and the associated framework TAPAS, which is available

as an open-source Python package. This new framework contains the evaluation framework

first proposed by Stadler et al. but additionally offers a large suite of different attacks and

other choosable scenarios for performing an adversarial auditing of a given generator. We

utilize this framework to produce the results and visualizations in this paper, but it should be

4

noted that there exist many alternative frameworks and packages which offer a very similar

toolbox of implementations and assessments of attacks.

We wish to extend upon these previous works as well as others in the privacy audit-

ing literature and provide an in-depth look at this privacy auditing process in practice by

applying it to a wider range of datasets and synthetic data generators, particularly those

which are commonly used and offer the best performance in other metrics of synthetic data,

such as distributional fidelity and predictive performance on downstream machine learning

tasks. By doing so, we hope that we can (1) introduce simulation results which may serve as

a launchpad for larger-scale experiments and investigation into the true privacy offered by

several key synthetic data generators; (2) provide insightful findings by comparing behav-

ior under adversarial attacks on different datasets and, importantly, different data records;

(3) demonstrate the need for further exploration and application of privacy auditing when

adopting models advertised as being private to a certain degree. Overall, since privacy au-

diting as a field is still new and undeveloped, creating techniques to assess the vulnerability

of differentially private algorithms to various attack scenarios and designing robust defenses

against those attacks are important aspects of privacy auditing, and we hope to provide a

strong starting basis for researching such topics in more depth.

5

CHAPTER 2

Background

In this section we give an overview of the core concepts in synthetic data and privacy, some

related work, and other preliminary ideas.

2.1 Tabular Data

A tabular dataset D can be said to contain Nc continuous columns {C1, . . . , CNc} and Nd

discrete columns {D1, . . . , DNd
}, where each column is a random variable. These random

variables follow some joint distribution, which we can write as P(C1:Nc , D1:Nd
). The columns

of the dataset represent the features or variables of our data, and there is some underlying

joint data distribution over all of these features. We regard each row or record rj, j ∈

{1, . . . , n}, as an observation “sampled” from the joint distribution. A related notion is

that of a marginal; many popular synthetic data generation algorithms utilize marginals and

subsequent conditional distributions in order to generate data.

In the above definition, we have limited our discussion of features in a tabular dataset

to only continuous and discrete types. Of course, other variable types are quite prevalent in

data, such as character/text and time-series data. For the intents of synthetic data, each of

these other data types is typically dealt with in a particular, prescribed way such that we

can usually just treat them as being either continuous or discrete. For instance, it is quite

common for categorical character columns – e.g., ”degree type” being one of ”High School”,

”Bachelor’s”, ”Master’s”, etc. – to be encoded using a technique such as one-hot encoding.

6

After such a preprocessing or encoding, the column will essentially be an ordinary discrete

column and no longer of a special data type (i.e., text).

2.2 Synthetic Data Generators

When discussing methods for synthesizing data, there are a few competing philosophies for

the generation algorithm design; the differences among the approaches essentially come down

to the question of how to treat a row of the table. This treatment, in turn, dictates under

what logic we may fit a model to real rows and sample synthetic rows.

One philosophy for synthetic data generation is that of marginal-based methods, perhaps

the most fundamental and straightforward approach. Marginal-based methods generate

synthetic data by modeling the marginal distributions of each column independently. For

example, one popular approach is histogram-based methods, which involve partitioning the

data into bins and estimating the probability density function for each bin. Samples are

then generated by randomly selecting a bin, then randomly sampling from the estimated

probability density function for that bin. To generate synthetic data, we may then sample

from each estimated distribution to create each new row for the tabular dataset. That is,

to obtain each synthetic row, we sample the synthetic values for each column individually

from the marginals. It is also possible to extend this approach to using not just single

column, or one-way, marginals, but also higher-order marginal distributions in order to

capture the statistical dependencies and other relationships among columns. For instance,

two-way marginals would capture the correlation between two given columns of a tabular

dataset [20]. Some popular marginal-based methods include Noisy Histogram [8], IndHist

[17], and MST [13], which was adapted from the winning algorithm from the 2018 synthetic

data competition hosted by the National Institute of Standards and Technology (NIST)1.

1https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/past-prize-challenges/2018-
differential-privacy-synthetic

7

Related to marginal-based methods is the notion of methods based on graphical models.

Graph-based methods model the dependencies between variables using a graph structure.

Each node Xi in the graph represents a variable, and the edges between nodes represent

the dependencies between variables. One popular approach is to use a Bayesian network

[6] to represent the graph structure and conditional probability distributions, as in [25]

and [14]. Mathematically, a Bayesian network can be represented as a directed acyclic graph

(DAG), where each node represents a variable (i.e., column of the dataset), and each directed

edge represents a conditional dependence between the two variables. The joint probability

distribution over all variables in the network can then be written as

P(X1, X2, . . . , Xn) =
n∏
i=1

P(Xi | pa(Xi)),

where Xi is the i-th variable, and pa(Xi) represents the parents of Xi in the graph. To

generate synthetic data, we can sample from the joint distribution over all variables in the

network, conditioned on the observed data. This family of methods is rather similar in spirit

to the marginal-based methods discussed above but differs in that we are now assuming some

knowledge of a structure of conditional independence (or dependence) relations which can be

conveniently exploited and captured in a graphical model. Overall, marginal-based methods

typically assume that each column is independent, while graph-based methods model the

dependencies between variables using a graph structure. The choice of marginal-based versus

graph-based methodology will depend on the specific problem and the properties of the data

that need to be captured.

Next, in recent years, there has been a proliferation of methods based on generative

adversarial networks (GANs) [5]. Of course, in the landscape of generative modeling as a

whole, GANs have dominated data generation in computer vision and fostered much re-

search; recently, a number of researchers have adapted GANs to the task of synthetic data

generation for tabular data as well. GANs are a popular deep learning architecture, where

the basic idea is to train two neural networks simultaneously: a generator network, which

produces synthetic data samples, and a discriminator network, which distinguishes between

8

real and synthetic data samples. The generator is trained to produce samples that are in-

distinguishable from real samples, while the discriminator is trained to correctly classify

real and synthetic samples. This leads to a training process which can be described as a

two-player minimax game between the generator and the discriminator, where the objec-

tive function for the generator is to minimize the probability of the discriminator correctly

classifying synthetic samples, while the objective function for the discriminator is to maxi-

mize the probability of correctly classifying real and synthetic samples. This can be written

mathematically as

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z))],

where G is the generator network, D is the discriminator network, x represents a real data

sample, z represents a random noise vector, pdata(x) is the distribution of real data, and

pz(z) is the distribution of the noise vector.

During training, the generator takes a noise vector as input and produces a synthetic

sample. The discriminator then classifies this sample as real or synthetic, and the error

is backpropagated through both networks. The generator is updated to produce samples

that fool the discriminator, while the discriminator is updated to better distinguish between

real and synthetic samples. Once the GAN has been trained, the generator can be used

to produce synthetic data samples. To do this, a noise vector is sampled from the noise

distribution and passed through the generator. The output of the generator is a synthetic

sample that can be used as if it were a real sample. Methods utilizing GANs specifically for

the tabular synthetic data generation task offer improvements for tabular data in particular;

we go into further detail on such methods below.

Other categories of synthetic data generators exist and continue to be proposed, such

as methods based on variational autoencoders (VAEs) like TVAE [21] and diffusion-based

methods like STaSy [11]. Since we do not cover any of these methods in this paper, we omit

further elaboration on these models but just wanted to mention them here for completeness.

9

In summary, there exist several candidates for classes of generators, falling into a few different

schools of thought regarding how to treat a row of the data, for example:

• Marginal-based: A table row is a series of low(er)-dimensional marginal distribu-

tions/an observation of a probabilistic graphical model.

• Graph-based: A table row is an observation of a probabilistic graphical model.

• GAN-based: A table row is an encoded representation vector.

In this paper, we will focus our attention on GAN-based methods, due to the fact that

they are at the forefront of tabular synthetic data generators, both in development and

applicability, and they possess the most accessible research in other data domains (vision,

text) from which we may draw influence and apply to the tabular case. Specifically, we will

be looking at the behavior of the following GAN-based methods: CTGAN, DP-CTGAN,

and PATE-GAN.

The conditional tabular GAN, or CTGAN, was first proposed by Xu et al. [21] and

adapts the GAN algorithm for the purpose of generating tabular data. CTGAN is effective

for generating synthetic tabular data in particular because it offers several key advantages in

contrast to vanilla GANs: handling categorical data, handling continuous data, conditional

generation, robust training.

Tabular data often contains categorical variables, which can be difficult to handle in

traditional GANs. CTGAN uses a technique called “embedding” to represent categorical

variables as continuous values, making them easier to work with in a GAN framework. CT-

GAN can also handle continuous variables in tabular data, which is a critical feature for

generating realistic synthetic data. CTGAN uses a special normalization technique called

“min-max normalization” to ensure that the continuous variables in the synthetic data have

similar ranges to the original data. The min-max normalization technique scales the contin-

uous variables in the original data to the range [0,1]. Let xi be a continuous variable in the

10

original data, xmin and xmax be the minimum and maximum values of xi, respectively. Then

the min-max normalization of xi is given by

x̂i =
xi − xmin

xmax − xmin

.

The normalized value x̂i now lies in the range [0,1], which makes it easier to work with in a

GAN framework.

Tabular data often has underlying dependencies between variables, and CTGAN can

model these dependencies using a conditional GAN architecture. The ability to generate

data based on specific conditions is particularly useful in many applications where specific

data distributions need to be preserved. In conditional GANs, the generator G takes both

random noise z and a set of conditioning variables y as inputs, and generates synthetic

data x̂ = G(z, y). The conditioning variables provide additional information about the

data distribution that the generator can use to generate more realistic synthetic data. In

CTGAN, the conditioning variables are used to specify the properties of the data that need

to be preserved in the generated samples.

Lastly, CTGAN uses a novel loss function that includes a “hinge” loss term, which helps

stabilize the training of the GAN. This loss function helps to prevent the generator from

producing unrealistic, “unfaithful” data samples, which is a common problem in many GAN

applications. The hinge loss is a loss function that penalizes the generator if it generates

data that is distributionally too far from the original data. In CTGAN, the hinge loss is

defined as

LHinge = max(0,m−D(xreal) +D(G(z, y))),

where D is the discriminator, xreal is a real data sample, G is the generator, z is random

noise, y is the conditioning variable, and m is a hyperparameter that controls the margin of

the hinge loss. The hinge loss ensures that the generator produces data that is close to the

original data distribution and is particularly effective in stabilizing the training of GANs.

The CTGAN synthetic data generator as described in detail above can be extended to a

11

generator which incorporates differential privacy. (We discuss differential privacy in further

detail in Section 2.3.) First proposed by Fang et al. [4] for application to medical data in

particular, the DP-CTGAN achieves differential privacy by clipping the training gradient,

which bounds the gradient norms, and injecting noise. The injection of noise can be carefully

calibrated using a variety of methods – there exist numerous mechanisms for noise addition,

each with rigorous differential privacy guarantees. Some popular mechanisms are the Laplace

mechanism and Gaussian mechanism [3]. To allocate the privacy budget, DP-CTGAN makes

use of the privacy accountant to keep track of privacy loss.

Following the success of the CTGAN, DP-CTGAN, and other similar models, Yoon et

al. [24] proposed an alternative adaptation of GANs for synthesizing tabular data in the

PATE-GAN. PATE-GAN involves the use of the PATE, or Private Aggregation of Teacher

Ensembles, framework [16]. Specifically, in the PATE-GAN, the typical GAN discriminator

is replaced by a PATE mechanism so that the discriminator is differentially private. We omit

further details of DP-CTGAN and PATE-GAN here for brevity.

2.3 Differential Privacy

The job of a synthetic data generator G is to approximate/estimate the aforementioned

joint probability distribution P over the continuous and discrete columns of a dataset D. A

synthetic data generator is a function that takes as input a real dataset D(r) ∈ D and outputs

a synthetic dataset that satisfies certain requirements such as preserved column similarity,

high utility, etc. Formally, we may write a synthetic data generator as a randomized function

G : Ω × D 7→ D, which takes as input a real dataset R and outputs a synthetic dataset

G(R) = S. Here, the set Ω denotes a probability measure space, where typically random

variables are defined as functions of Ω – we can view this as the ”seed” of the randomized

mechanism.

Of course, given a generator, we are very much interested in somehow quantifying its

12

guaranteed or delivered privacy level in its generated synthetic samples. This brings us to

the natural extension of desiring differentially private synthetic data generators, which are

designed to come with the guarantee of differential privacy. The current ”gold standard” for

measuring privacy is differential privacy. Differential privacy is applicable to any randomized

mechanism or algorithm M (including, for example, a synthetic data generator G as seen

above).

Theorem 1 Let D,D′ be two neighboring datasets differing in exactly one entry. A random-

ized algorithm M : Ω × D 7→ S is (ε, δ)-differentially private if for all S ⊆ Range(M) = S

and all D,D′:

Pr[M(D) ∈ S] ≤ exp(e)Pr[M(D′) ∈ S] + δ.

If δ = 0, we say that the algorithmM is ε-differentially private. It is somewhat common

to see simply ε-differential privacy in many applications and theoretical studies. Differential

privacy has been shown to possess several useful corollaries which are particularly valuable

when discussing synthetic data. We include the most relevant results, the post-processing

theorem [3] and sequential composition theorem [10], here.

Corollary 1 (Post-processing) Let M : Ω × D 7→ S be a randomized algorithm that is

(ε, δ)-differentially private. Let f : S 7→ S ′ be an arbitrary randomized function. Then

f ◦M : Ω×D 7→ S ′ is also (ε, δ)-differentially private.

From the above, together with the original definition of (ε, δ)-differential privacy, we can

derive the fact that (ε, 0)-differential privacy – or simply ε-differential privacy – composes in

a straightforward way, so that composing two ε-differentially private mechanisms results in a

mechanism that is (2ε)-differentially private. Formally, we can see that this behavior carries

out in the general sense, so that we may ”compose” the ε and δ parameters of differential

privacy when composing more than one mechanism.

13

Corollary 2 (Sequential Composition) Suppose we have k (ε, δ)-differentially private mech-

anisms M1, . . . ,Mk. Then, the composition of these k mechanisms, where each Mi is

(εi, δi)-differentially private, yields a mechanism that is (
∑

i εi,
∑

i δi)-differentially private.

Lastly, again following from the above corollary in conjunction with our formal definition

of differential privacy, we can define a notion called group privacy.

Corollary 3 (Group Privacy) Any (ε, 0)-differentially private mechanism M is (kε, 0)-

differentially private for groups of size k. That is, for all datasets D,D′ differing in k

entries (cf. D,D′ differing in one entry in differential privacy) and all S ⊆ Range(]M),

Pr[M(D) ∈ S] ≤ exp(kε)Pr[M(D′) ∈ S] + δ.

In a nutshell, the above result states that the strength of the privacy guarantee level

decreases linearity with the size or cardinality of the group in question.

Usually when the differential privacy of a given algorithm is discussed or analyzed, the

associated guarantee of privacy is very arbitrary and unproven. In other words, an algo-

rithm is usually proposed to be differentially private at a certain level of ε (and δ), with

no theoretical results to underpin that promise. Of course, some well-studied algorithms do

have proven results regarding privacy, but these results typically come well after the initial

proposal of the method and are always method-specific results. This may lead to many

such algorithms not being truly, say, ε-differentially private as advertised, due to a bevy of

potential issues either in theory or in the available implementation of the method. How,

then, can we quantify and/or confirm the true level of differential privacy, or of ”privacy” in

general?

14

CHAPTER 3

Methodology

In order to perform a rigorous privacy audit, we make use of the adversarial framework

as in [7, 19]. Namely, we utilize a quantitative framework for assessing privacy gain – or

conversely, leakage – using an adversarial attacking toolbox. In this setting, we will use the

following notation: the real dataset R, the synthetic dataset S, the synthetic data generator

G with G(R) = S, a target record rt, an adversary A, and the adversarial advantage AdvA.

We suppose that the adversary A is given S and aims to use it to infer sensitive information

about the real individual rt. By simulating attacks by the adversary A on a selected target

record rt, we can capture AdvA, i.e., how much including rt in the published data increases

this individual’s privacy risk. We can then define our notion of privacy gain as the added

benefit of publishing synthetic dataset S in place of the real one R for the given target record

rt. Formally, we consider the difference between the adversarial advantage with access to S

versus R:

PG := AdvA(R, rt)− AdvA(S, rt).

A high value of PG indicates that publishing S in place of R substantially reduces the privacy

risk for a given target rt. We reiterate that this measurement is done on a by-record basis

and depends on the choice of rt. This is beneficial in that it allows us to assess privacy in the

worst-case scenario versus just the ”average-case,” which is more or less what metrics like

differential privacy do overall. That is, we can now investigate privacy on a per-individual

level, rather than just at the sample level, so we can find some rt which gives better or

worse PG than others and therefore find a worst case privacy measurement for some choice

15

of rt. As a result, we may investigate phenomena such as disparate privacy gain [12], among

others.

Next, we must formally define this adversarial advantage AdvA used in the calculation

of privacy gain above. In order to do so, we first need to choose an attack scheme, which we

introduce in the following.

3.1 Linkability and Membership Inference

A linkage attack (also called linkability) refers to the ability to link together two or more

target records belonging to the same individual from different datasets. In essence, linkage

attacks aim to determine whether a target record rt is present in some sensitive dataset, in

our case the real dataset R. This may enable adversaries to attach an identity to a record

that has supposedly been de-identified in the synthetic dataset S.

We can model the risk of linkability as a membership privacy game between a data holder

and an adversary A, as in [18].1 In the context of synthetic data, we formalize linkability as

an instance of the membership inference attack in the following way. Suppose we have the

real data R of n records, drawn from a population R with real data distribution DR, and we

sample synthetic data S from a SDG trained on R: G(R) = S. The adversary wants to infer

whether some given rt ∈ R using only S. Then, we can outline the membership inference

game in Algorithm 1.

1As a note, linkability cannot be fully measured through membership inference; linkability is actually a
stronger privacy breach. In fact, establishing a successful linkage between a target rt and some records in a
dataset R implies membership of rt in R. However, the opposite is not true: even if membership of rt in R
is established, the attacker still does not know which records of R are directly linked to rt.

16

Algorithm 1 Linkability/membership inference game

Require: Target record rt ∈ R

Sample real data R ∼ Dn−1
R .

Draw st ∼ {0, 1}.

if st = 0 then

Add random record rr ∼ DR\rt .

R← R ∪ rr.

else if st = 1 then

Add target record R← R ∪ rt.

end if

Fit generator G on R.

Sample synthetic data S ∼ DmG(R).

Assign X ← S.

Make a guess ŝt ← AL(X, rt,P).

Now that we are equipped with the procedure for carrying out membership inference, we

can define the adversary’s advantage specific to this particular case of linkability. As in [22],

we may write the linkage adversary’s advantage as

AdvL(X, rt) := 2P
[
AL(X, rt,P) = st

]
− 1

= P [ŝt = 1|st = 1]− P [ŝt = 1|st = 0] ,

where X may represent a real or synthetic dataset. For each target rt, the adversary will

instantiate the game multiple times and this (linkage) adversary advantage can be measured,

conditioned on the challenger’s choice of X. If the full raw dataset R is published, then the

adversary can simply check whether rt ∈ R and its ”guess” will be totally deterministic; that

is, AL(R, rt) = 1. If instead the synthesized dataset S is published, then the adversary must

perform a sort of binary classification on whether rt ∈ R, using the features of S. Using

this classification paradigm, we can consider the above expression for AdvL(X, rt) as the

17

difference between the true positive rate and the false positive rate. We cover the details on

how to actually train the classifier in Section 3.3.

We can also write the privacy gain of publishing the synthetic data S in place of the raw

data R with respect to the particular risk of linkability:

PG = AdvA(R, rt)− AdvA(S, rt) = 1− AdvL(S, rt).

A privacy gain of PG = 0 indicates that the adversary infers the presence of the target rt

in R with perfect accuracy regardless of whether they are given access to R or S. If on the

other hand, observing S gives the adversary no advantage in inferring the target’s presence

(AdvL(S, rt) = 0), then PG = 1. In [22], the authors also propose a bound on the expected

advantage of the adversary, which we can then extend to the specific case of linkability:

AdvL ≤ eε − 1⇐⇒ PG ≥ 1− (eε − 1) = 2− eε.

3.1.1 Effective Epsilon

Much like privacy gain, effective epsilon is another useful metric that may be used to measure

or quantify privacy under an adversarial attacking framework using membership inference

attacks [9]. Effective epsilon, denoted εeff , is essentially used to evaluate and compare

the actual privacy protection level achieved by an ε-differentially private algorithm. As

with privacy gain, the εeff metric assesses per-record privacy and not just sample-wide

privacy; that is, we can now use εeff to quantify privacy by individual records instead of

only evaluating a single ε value for the entire dataset. Typically, however, as we shall see,

effective epsilon is calculated (much like ordinary ε in differential privacy) by taking a worst-

case approach across different scenarios. Effective epsilon can be calculated using various

methods, such as the moments accountant or the advanced composition theorem, depending

on the specific algorithm and scenario at hand. We refer the reader to [9] for further details

on the computation process for εeff upon which we rely in this paper.

To derive an expression for εeff , we first recall that the adversary wants to classify whether

18

rt ∈ R. The adversary is looking to solve this classification problem and therefore, there

exist some associated classification accuracy metrics. We make use of these classification

metrics in order to define εeff . Specifically, there exists a trade-off between an attacker’s

true positive rate and false positive rate, a relationship which applies even in the worst-case

attack model of exact data knowledge [10]. Then, Theorem 2 below gives us a lower bound

on the value of ε under the given attack scenario.

Theorem 2 Let M : Ω × D 7→ O be a randomized mechanism satisfying (ε, δ)-differential

privacy and d, d′ ∈ D be neighboring datasets (d
∼
= d′). Then, for any randomized attacker

A : Ω×O 7→ {d, d′},

eε ≥ max

(
TPA − δ
FPA

,
1− FPA − δ

1− TPA

)
,

where TPA = P[A(M(d)) = d] and FPA = P[A(M(d′)) = d] are true and false positive

rates, resp.

In general, the inequality in Theorem 2 is not tight; next, we can define εeff by taking the

upper bound over all attackers, so that

εeff (δ; d, d
′) := log sup

A:Ω×O7→{0,1}
max

(
TPA − δ
FPA

,
1− FPA − δ

1− TPA

)
.

εeff can be used to prove that a privacy analysis is tight and can measure privacy protection

in different contexts, i.e., under different assumptions about the attacker A. Specifically,

many synthetic data generators G are made differentially private with respect to their pa-

rameters θ, usually through the adding of noise during training. As sampling the model is a

form of post-processing, S = Gθ(R) is equally (ε, δ)-differentially private, but this guarantee

is likely not tight, as sampling introduces additional randomness. Thus, εeff can help to

quantitatively evaluate more realistic privacy guarantees. For instance, one straightforward

use case of εeff would be to compare it to the promised ε level of different generators – or

more generally, any ε-differentially private algorithm.

19

3.2 Threat Modeling Framework

In our adversarial evaluation of privacy, we are working with a wide variety of assumptions

and scenarios for our analysis. To ensure that the evaluation is done in a way that is

contextual, we can formalize these assumptions by using the threat model framework. A

threat model, or attack model, lays out the setup in which our attacks are performed and

the knowledge which we assume the adversary holds. Under a given threat model, an attacker

must then learn its ”guess” function, i.e., AL. The threat model we use, as in [7], is modular

and consists of three parts which can be modified independently of one another: knowledge

of the dataset R, knowledge of the synthetic data generator G, and the attacker’s goal. We

now outline each of these and their various possible settings.

3.2.1 Data Knowledge

Recall that the adversary is always in full possession of the full synthetic dataset S and is

trying to guess whether the target rt was used to fit the generator G that output S. Moreover,

the adversary may hold additional, possibly uncertain knowledge about the real dataset R.

This leads us to consider two types of knowledge the adversary may have on the original

dataset R. In auxiliary data knowledge, the adversary has access to an auxiliary dataset

that is row subsampled from R; the remaining unsampled rows make up the testing set for

evaluating a trained attack. Using the auxiliary dataset, the adversary is able to generate

datasets from the same distribution as R. This is the setup found in [18, 19] as well as other

similar works. By contrast, in exact data knowledge, the adversary knows that R is one of

two datasets differing in exactly one entry; the adversary knows the entire dataset except the

membership of the target rt. Exact data knowledge is a “worst-case” attack model and can

be used to audit privacy in the context of differential privacy due to its worst-case nature,

however it is not a very realistic assumption of the adversary.

20

3.2.2 Generator Knowledge

There exist several possible options for the amount of knowledge the adversary has on the

synthetic data generator G:

• White-box: The attacker has exact knowledge of G and has access to trained parameters

of the model θ, e.g., weight and bias terms of a neural network, of G.

• Black-box: The attacker has exact knowledge of G and can call G on arbitrary datasets

but has no information on parameters θ.

• No-box: The attacker has no knowledge about the generator.

3.2.3 Attacker Goal

The last piece of the threat model is the attacker goal. As mentioned in a previous section,

our attack goal in this work is that of linkability, or more specifically, membership inference.

In a general sense, membership inference attacks (MIAs) are a class of adversarial attacks

that aim at inferring whether a target record is in some dataset (rt ∈ R). Another common

attacker goal is that of attribute inference attacks (AIAs), in which the adversary, for a

target attribute a and incomplete target record rt which is missing a, seeks to infer the value

of a. Lastly, a less common type of attack is the reconstruction attack, where, as the name

suggests, the adversary aims to reconstruct the entire real dataset R. These attacks are not

very deeply explored at the moment, while membership inference and attribute attacks are

commonly investigated in the privacy literature regarding synthetic data.

3.3 Shadow Modeling Attack

Finally, now that we have considered various metrics for success in privacy auditing and set up

our threat model, we must somehow model a way for the adversary to make its classification

21

“guess” AL(X, rt,P). Specifically, in our case of membership inference, formulating this

guess function amounts to guessing whether the target record rt is in the real dataset R, as

we have previously mentioned. Also, the adversary has black-box access to the generator G

training algorithm and a training dataset R ∼ DnR (or possibly a reference dataset from an

auxiliary distribution RA ∼ DlR).

Given rt, the adversary can learn the guess function AL as shown in Algorithm 2, ac-

cording to the formulation in [19]. Note the similarities between this procedure and that of

Algorithm 1.

Algorithm 2 Shadow Modeling Attack

Require: Target record rt ∈ R

Sample multiple training sets Ri of size n from the reference dataset RA.

for Ri do

Train a generator g(Ri) using the same training procedure as G.

Sample multiple synthetic datasets S of size m from g(Ri).

Assign the generated datasets the label s = 0.

end for

for Ri do

R′i ← Ri ∪ rt.

Train a generator g(Ri) using the same training procedure as G.

Sample multiple synthetic datasets S of size m from g(R′i).

Assign the generated datasets the label s = 1.

end for

Train a classifier AL on the labeled synthetic datasets.

Output a guess ŝt ← AL(S, rt,P).

Mounting a successful black-box membership attack (e.g. shadow modeling attack) on

a generative model G is very challenging because the adversary needs to identify the influ-

22

ence a single record rt has on the high-dimensional data distribution Dg(R) as opposed to a

low-dimensional confidence vector. That is, the adversary essentially wants to distinguish

between two distributions, DR∪rr and DR∪rt , using just a single observation S ∼ Dmg(R). One

proven way to tackle this high-dimensional classification problem is to use a classifier based

on a feature set.

3.3.1 Feature Set Classifier

We have seen that the attack’s guess function AL(S, rt,P) amounts to training a classifier

over sets, namely the sets DR∪rr and DR∪rt . However, this is a very high-dimensional problem

and one that is problematic to solve directly. To reduce the effects of high dimensionality

and sampling uncertainty on this classification problem, the adversary can apply feature

extraction techniques. That is, instead of training a classifier DR∪rr and DR∪rt directly on S,

we can distinguish feature vectors extracted from those datasets synthesized by generators

trained with versus without the target, DR∪rr and DR∪rt .

A feature set is a function f(X) = F that takes as input a dataset X from the high-

dimensional data domain and outputs a numerical vector F that maps X into a lower-

dimensional feature space. For our purposes, the success of an attack on a synthetic data

generator using feature set F depends on two factors: (1) whether the presence of the target

rt has a detectable impact on any of the features in F and (2) whether the synthetic dataset

has preserved these features (and hence, preserved the target’s signal) from the raw data.

As feature sets, we can try several different sets:

• Naive feature set with simple summary statistics, FNaive

• Histogram feature set that contains the marginal frequency counts of each data at-

tribute, FHist

• Correlation feature set that encodes pairwise attribute correlations, FCorr

23

3.3.2 Groundhog Attack

The shadow modeling attack, as detailed in Algorithm 2, has several selectable settings,

namely the choice of classification algorithm and the choice of feature set to use. In [19],

the authors, after sufficient experimentation with these settings, were able to conduct com-

parisons of which choices yielded the best performance for the shadow modeling attack.

Therefore, we are able to define the “Groundhog attack” simply as a sub-case of the shadow

modeling attack for membership inference, where we specifically use a Random Forest clas-

sifier with 100 estimators using the Gini impurity splitting criterion. The choice of feature

set F is left open and unconstrained in the Groundhog attack and we are free to explore this

aspect further.

24

CHAPTER 4

Experiments

In this section, we provide an overview of some experimental results we obtain as a result of

running a privacy audit using a shadow modeling attack, as described in previous sections,

on various algorithms for generating private synthetic data. To perform our experiments,

we utilize the open-source Python package TAPAS [7]; this framework contains a toolbox of a

wide variety of different adversarial attacks, including an implementation of the “Groundhog

attack.” TAPAS also comes equipped with many customizable options for running a privacy

audit and computing and evaluating the resulting privacy metrics. We expand upon TAPAS

and its library of threat model pieces in several ways; our main addition is to introduce the

use of other generators not incorporated by the original framework.1 Namely, TAPAS requires

a generator that is well-defined within its class structure so that it may repeatedly call said

generator during the process of an adversarial audit (i.e., while training an attack), so we

integrate our generators of interest (CTGAN, DP-CTGAN, and PATE-GAN) directly into

the audit pipeline.

While the main focus of our audits will naturally be on comparing performance across

generators to see which may be optimal at preserving privacy, we will indeed also investigate

the privacy results across our different datasets and different target records as well. We

apply the Groundhog attack in TAPAS to multiple different datasets as a comparative study,

whereas previous works only look at certain common datasets in isolation. Essentially, we will

be evaluating a “matrix” of results in which each dimension/axis corresponds to a different

1as of June 12, 2023

25

aspect of the audit to customize: the generator attacked, the dataset used, and the target

record chosen. We begin by describing in detail the different choices we examine for each of

these aspects.

4.1 Experiment Setup

4.1.1 Generators

For the purposes of this study, we look at a handful of the most prevalent, widely used

generators in research and industry. In particular, we will analyze the resulting privacy of

CTGAN, DP-CTGAN, and PATE-GAN. We note that one of the above listed methods,

CTGAN, is not a differentially private generator, while the other two are as such. Also, we

reiterate that we choose three GAN-based methods here; this lies in line with the current

state-of-the-art for generative modeling, where much attention has been paid to GANs and

their extensions in recent years, at least up until the recent rise of the transformer and its

associated models. (Unfortunately, the transformer itself has not yet readily been adapted

to our use case of a tabular synthetic data generator, at least with any great success over

other classes of models, so we must omit it in our investigations.) In particular, we wish

to pay attention especially to PATE-GAN since to the best of our knowledge, this method

has not been thoroughly examined for privacy leakage by any existing work – besides some

brief mention in [19] – yet is one of the most used synthetic data generators in practice,

known both for its high fidelity/utility of synthetic samples and its relative computational

efficiency.

For the differentially private methods, we try several different values for the privacy

parameter ε, setting three levels ε = 0.5, 1, 3. We do this so that we can analyze how the

estimates for εeff , and therefore the εeff versus ε relationship, may change for stricter or

looser ε constraints on private models. Also, ε = 1 in particular appears to be an accepted

baseline of sorts in the existing literature for a strong yet realistic privacy guarantee. We

26

note that for some of the instances, choosing a relatively high ε value causes computational

bottlenecks, so we err on the side of smaller ε analyses. For each of the generators, we

use the base, open-source implementations and keep the default settings for any tunable

hyperparameters, with the exception of decreasing the number of epochs (default 300) for

computational efficiency reasons.

4.1.2 Datasets

We consider three datasets in total for our simulation experiments: Census2, Adult [1], and

Texas3. We consider these datasets as they each come from a setting in which privacy is

extremely important, namely personal demographic data and healthcare data. The Census

dataset comes from the Office for National Statistics’ 2011 England & Wales 1% Microdata

Teaching File and covers various demographic data. The Adult dataset is a classic benchmark

for tabular data in machine learning publications and looks at demographic data focused on

various predictors that may influence individuals’ incomes, which is the variable of interest.

The Texas dataset captures hospital stays in the state of Texas and includes measurements

such as length of stay and costs.

It is often important when dealing when data synthesis tasks with tabular data to con-

sider other features of the original data, such as the cardinality of categorical attributes,

ranges of continuous attributes, quantity of rare/unique real values, and so on. We present

detailed information on each dataset at hand below in Table 4.1, and we shall see that

such characteristics may play a role in how the nature of the generated data differs on a

case-by-case basis in regards to privacy.

The Census dataset contains an anonymized sample of 1% of the responses to the 2011

census conducted by the government of the United Kingdom. It consists of approximately

2https://www.ons.gov.uk/census/2011census/2011censusdata/censusmicrodata/microdatateachingfile

3https://www.dshs.texas.gov/texas-health-care-information-collection/health-data-researcher-
information/texas-inpatient-public-use

27

570,000 observations of 15 categorical attributes, which are typical census measurements

such as education level, family type, region, etc. Each of the categorical attributes has been

label encoded so that each possible value of a given attribute is some positive integer, hence

the data file has been anonymized since the one-to-one correspondence between the encoded

label and the actual feature value is unknown to the public. For computational reasons, we

choose to keep only a subset of 10,000 of the original records for our analysis but keep all of

the columns intact – running privacy audits with full, large datasets is very computationally

expensive!

The Adult dataset is a widely used dataset for classification tasks in machine learning

research. It contains anonymized information about individuals from the 1994 U.S. Census

database and the goal of models built using the dataset is typically to predict whether

a person’s income exceeds $50,000 per year based on the various personal attributes. The

Adult dataset is often used for training and evaluating machine learning models, as it provides

a realistic scenario for predicting income levels based on demographic and socioeconomic

attributes. The dataset, much like Census, includes features such as age, education level,

marital status, occupation, race, gender, capital gain, capital loss, and more. Lastly, it

contains approximately 32,000 records with 18 columns.

The Texas dataset contains data on hospital stays in the state of Texas and includes

information such as days stayed and costs of care. This dataset comes in many different

forms, but we use the version which contains 1,000 observations (this dataset is sometimes

referred to as Texas1000 for this reason) so that we have lower computational cost as well as

a different magnitude of dataset size for comparison to the previous datasets. Texas differs

in that it contains continuous, numerical features in addition to discrete, categorical ones.

To be precise, Texas consists of 18 columns, 6 of which are real-valued and continuous; the

12 discrete columns are a mix of integer-valued and character data.

28

rows # cols # discrete

Census 10,000 15 0

Adult 32,000 18 0

Texas 1,000 18 6

Table 4.1: Overview of Dataset Characteristics

4.1.3 Attack Settings

When defining the threat model as a whole, we must designate the value of certain special

hyperparameters for the attack; we outline our choices for our experiment runs here. First,

when defining the adversary’s data knowledge, we designate auxiliary data knowledge, using

a 0.5 splitting proportion and dividing the original dataset into two equal parts, one as an

auxiliary dataset from which to sample real datasets during the attack and one as the testing

set. Each dataset we sample during the attack process, both real and synthetic, consists of

1,000 records, with the exception of Texas, where we only take 100 records due to its smaller

size. We generate 100 datasets Rj from the auxiliary data knowledge to train the attacks,

meaning we instantiate the linkability/membership inference game, as outlined in Algorithm

1, 100 times. In addition, we generate 100 datasets from the testing set in order to evaluate

and test the attack after it has been trained. We keep these settings constant throughout

all of the simulations unless stated otherwise.

As our attack function AL(·), we use the shadow modeling attack procedure as detailed

earlier in this paper; more specifically, we use the Groundhog attack. We use this attack for

each of the different generators and datasets for uniformity. As part of the Groundhog attack,

we must specify a feature-based set classifier and in turn, we must specify a choice of feature

set(s) to use in order to extrapolate features from the high-dimensional data distributions.

The feature sets we investigate include the naive set, the histogram set, and the correlation

set; we may consider these feature sets individually as in [19], or in conjunction with one

another. By default, we use the combination of these three feature sets.

29

Lastly, to define the threat model for our attack, we must select a target record rt. In the

following experiments, we explore two different classes of these targets: random and outlier.

The first is rather self-explanatory, while the second is somewhat open-ended. Finding outlier

records in a tabular dataset of mixed columns (i.e., discrete and continuous features) is a

high-dimensional problem with many possible choices. For simplicity, we crudely select our

outlier records by applying the Isolation Forest algorithm4, a popular algorithm for outlier

detection in tabular datasets, although we could also corroborate these designated outliers

with the output of some other outlier detection algorithms. The selection of outliers from a

high-dimensional data distribution resulting from a tabular, mixed-type dataset is an open-

ended problem with many possible solutions; we present only one such idea here. With that

being said, the following analyses predominantly look at randomly chosen targets rt, unless

otherwise noted.

4.2 Results

We are now able to run our Groundhog attack privacy audit on a selected target record

from our choice of dataset and choice of synthetic data generator. We now go over some

results and take a comparative look at privacy under different such choices. In particular,

we will want to compare the performance of different generators since in the end, we would

ideally want privacy auditing to help decide which generator is best (in terms of privacy) for

a given use case. First, we can apply our attack on each dataset using each of the generators;

for these attacks, we select five target records at random. Our choice of generators for each

dataset differs slightly due to some computational issues. For example, we must omit PATE-

GAN from our attack on Texas and instead choose to replace it with the “Raw” generator;

this generator returns a row subsample of the original dataset and can be regarded as the

most trivial generator, as it just copies some original records to its “synthetic” dataset. We

4We use the implementation in Python’s scikit-learn, with no tuning done on the hyperparameters.

30

can visually compare important statistics such as the classification accuracy and area under

the receiver operating characteristic curve (AUC) and the privacy gain (PG), which we

previously introduced, for each of these attacks on the three datasets. We plot our results in

Figure 4.1, where we evidently see that the attack outcomes differ greatly from one dataset

to another. In this plot, the values of the points in the legend simply refer to indices of the

dataset which we use to refer to each target rt.

In the Texas dataset, we see that CTGAN offers virtually no privacy, even when compared

to the Raw generator. This signals that the inclusion of any given target rt is traceable from

the synthetic data to the real data, even more so than if the attacker were simply given some

random records directly from the real data. DP-CTGAN, here using ε = 1, does appear to

uphold privacy, as the highest AUC we observe for the attack is only just above 0.6. We can

also see some instances of an εeff measurement, particularly for DP-CTGAN. A couple of

the points are above the threshold ε = 1, signaling that the privacy promise is not being fully

upheld. Not all target record results have an associated estimate of εeff on these plots; this

is due to either a very high εeff beyond the bounds or numerical issues with floating-point

precision, resulting in εeff =∞.

The Census and Adult plots, on the other hand, show a rather different pattern. For all

of the generators, the attack accuracy is quite low, even for the CTGAN generator, which

does not come with any explicit privacy guarantees. This suggests that perhaps rather than

the generator choice being the most important component, it is actually the dataset one is

using which plays the largest role in privacy evaluations. It appears that the Texas dataset

is very susceptible to privacy attacks across the board for different genertors, however the

same analysis for Census and Adult shows close to no attack success. This is indicative of a

more data-centric nature of privacy preservation than one might have expected; instead of

generators having clear advantages or disadvantages, the dataset at hand is the predominant

influencer of privacy leakage under adversarial attacks, holding all else constant.

For the Census and Adult datasets we again primarily look at the benchmark level of

31

Figure 4.1: Comparing different generators on random targets from Texas dataset.

ε = 1. The resulting privacy gain in these cases is close to 1 with only slight deviations,

regardless of the choice of generator. Additionally, the estimated εeff is not below the

theoretical value for all of the instances. In investigating εeff , we usually want to see values

close to the theoretical value of ε, not necessarily just lower values. This is because if the

εeff estimates are much lower than ε, this is a potential sign that our privacy analysis is

not tight or that the attack used is sub-optimal and requires further selection and tuning.

Indeed, in Figures 4.2 and 4.3, some of the εeff points are much lower than the ε = 1 line,

so there may be some further work required to perform a fully tight privacy analysis.

Results such as those we have presented above are straightforward and replicable for

different settings and hyperparameter choices using the adversarial auditing tools offered by

TAPAS; this serves as a template from which we are able to construct other, more detailed and

specific analyses. For instance, we have discussed the choice of target record rt. Since any

adversarial attack we run on a generator is by its nature dependent on the target record, this

is an influential choice we can make. For each choice of this rt, we instantiate a given attack

32

Figure 4.2: Comparing different generators on random targets from Census dataset.

Figure 4.3: Comparing different generators on random targets from Adult dataset.

33

and receive a set of resulting metrics, such as the aforementioned AUC and privacy gain

measurements. Because of this, different choices of rt should be expected to yield different

levels of resulting attack success; some records in the dataset will be more traceable, even

through data synthesis, than others.

For example, it is a natural guess that outlier records would be easier to attack and infer

membership of, since we might expect that an outlier has a heavier influence on the resulting

synthetic data distribution obtained from a generator than the average random record, and

thus be more detectable even after model fitting. We can observe this phenomenon as in

Figure 4.4, which displays the attack metrics resulting from attacks on random versus target

records from the Texas dataset for the different generators. From these plots, we are able

to see that for the differentially private method DP-CTGAN, there is a noticeable difference

in privacy gain and attack AUC between attacks on random rt and attacks on selected

outlier rt. The disparity between random and outlier targets is largest for the DP-CTGAN

model with ε = 1, where the privacy gain is close to 1 for randomly chosen targets and just

around 0.7 for outlier targets, which is actually a substantial difference. It is evident that

the ε-differential privacy guarantee does not hold evenly across all examples in the dataset

and that the differentially private generator sometimes struggles more to “anonymize” these

outlier records.

We can again extend this exploration to the other datasets, however, and see that the

pattern of outlier targets leaking more privacy than randomly chosen ones does not necessar-

ily always hold. In Figures 4.5 and 4.6, we examine attacks on random versus outlier rt for

the other two datasets under a suite of generators. Evidently, whether rt is an outlier or not

does not have the same influence on the final outcome of the privacy audit, compared to our

observations for the Texas dataset. This mirrors our observations for the randomly chosen

rt in Figures 4.1-4.3 – namely, that the Texas dataset audits gave distinctly different results

compared to the audits for the Census and Adult datasets. It is apparent that outliers are

more apparent to the adversary when attempting to infer membership in R using S in certain

34

Figure 4.4: Random vs. outlier targets from Texas dataset.

datasets compared to others. This sensitivity to outlier tracing would likely come down to

various factors and metadata of a given dataset, such as number of continuous versus discrete

columns and quantities such as range of numerical columns and cardinality of categorical

ones. Of course, how traceable an outlier is would also have to be assessed while keeping

in mind the criteria and methodology used to select said outliers. Overall, we postulate

that for datasets such as Texas which have several real-valued, continuous columns, outliers

are “farther” away from the center of the high-dimensional data distribution, thereby mak-

ing them stronger and more extreme outliers than outliers from a data distribution where

each dimension corresponds to a categorical column. The cardinality of categorical columns

would also likely play a role; if the cardinality of a particular categorical column were to be

very large, then the distribution of the column would approach the behavior of a real-valued

column.

Lastly, using our experiment setup, we can provide empirical estimates for the value of

εeff for all of the generators we tested and for each dataset. In the estimation of εeff , we

35

Figure 4.5: Random vs. outlier targets from Census dataset.

Figure 4.6: Random vs. outlier targets from Adult dataset.

36

are able to select which conducted attacks to include in the computation of the confidence

bounds. For instance, in Table 4.2, we have the results of estimating εeff for each of the

differentially private generators, at each designated ε level of privacy on the different datasets.

The estimated values we present in the table simply correspond to the mean/average εeff

we get for all of the attack iterations run on the (dataset, generator) combination at hand.

As previously mentioned, we would like to see the εeff estimates for a given ε-differentially

private synthetic data generator be very close to the theoretical value of ε. We note the

omission of εeff results for some cases of (generator, dataset) pairings; in most cases, this

is due to computational constraints or, in the case of Texas with the PATE-GAN models,

due to the base implementation of this algorithm not being applicable to datasets of smaller

size.

DP ε = 0.5 DP ε = 1 PATE ε = 0.5 PATE ε = 1

Texas 0.374 0.744 - -

Census 0.605 - 0.756 0.921

Adult - - 0.386 0.889

Table 4.2: Effective Epsilon by Dataset and Generator

37

CHAPTER 5

Conclusion

Privacy auditing is a new but important subfield of synthetic data and serves as a promising,

much-needed supplement to theoretical differential privacy. Unlike other areas of secure or

private machine learning where results are often empirical observations that appear true

without formal justification (e.g., defenses to adversarial examples), the appeal of differential

privacy is that it gives provably correct results. The privacy auditing process serves as a

useful way to validate the true level of differential privacy of a synthetic data generator and

has several advantageous qualities, such as being applicable to checking privacy on a per-

observation basis as opposed to the per-sample nature of most or all other privacy metrics

(including differential privacy). Even in many quantitative works on privacy, the authors

only look at arbitrary cases and surface-level experiments in their investigation of privacy.

The main appeal of privacy auditing, if done rigorously, is that it can be used to establish

lower bounds on the ε parameter of differential privacy.

We have examined one proposed scheme for privacy auditing of a machine learning model

and applied it tp the particular use case of auditing synthetic data generators. While a truly

extensive and thorough privacy audit of such complex models would require many runs, a

large number of trial datasets and target records, and vast computational resources in order

to truly optimize the attacks and approach the desired “worst-case” privacy scenario, we

have been able to show in our analysis promising insights into the behavior of some of the

most popularly used generators and their privacy guarantees. Naturally, algorithms which

offer differential privacy yielded higher privacy gain under adversarial auditing than non-

38

private algorithms. Due to various issues, e.g., sometimes implementations of synthetic data

generators are flawed, so-called private algorithms did not always cover differential privacy

guarantees. We saw this behavior on the individual record level, assessing the privacy gain

and membership inference attack accuracy, among other metrics, for each selected target

record. We then postulated that outlier records are much more susceptible to attacks and

privacy leakage than most randomly chosen records, constituting a disparate vulnerability

between different targets under an adversarial attack. While both of these above points is

sometimes true, in actuality, much of the divergence in attack performance often came down

to characteristics of the source dataset, sometimes even more so than the characteristics of

the synthetic data generators themselves.

5.1 Future Work

The most obvious place to start for further studies into this topic is conducting a more

robust investigation of privacy attacks to apply; membership inference was chosen due to

its prevalence in the privacy literature, however attribute inference, singling out, and re-

construction could also be considered when analyzing the privacy delivered by a particular

generator. Even within membership inference and linkability, a truly rigorous audit would

apply a panoply of attacks, in addition to the Groundhog attack which we used in this paper,

to get closer to the worst-case attack scenario and get a tighter bound on the privacy level

ε. The ideal scenario would be to build a library of attacks and have the ability to select

and refine attacks based on certain specifications of the problem at hand, such as dataset

characteristics and metadata. In fact, analyzing the impact of dataset properties on attack

success and overall privacy audit results would also be an avenue for future exploration. In

a data-centric view of privacy auditing, it seems that characteristics of the dataset at hand

are often an incredibly important aspect of the problem, possibly even more important than

the generative model being assessed in the first place. Beyond this, during the actual attack

39

procedure, knowing how to systematically select “vulnerable” outlier records also remains

a deep question that is being explored in high-dimensional statistics. Lastly, any practi-

cal real-world application of a synthetic data generator would also certainly require careful

consideration of that generator’s fidelity or utility on downstream machine learning tasks.

While not discussed here, this is a crucial part of analyzing or comparing different generators

and much more work is needed to fully understand not just privacy, but also the dynamics

between utility and privacy, so that we may eventually assess the privacy-utility tradeoff to

distinguish between synthetic data generators.

40

REFERENCES

[1] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[2] Cynthia Dwork. Differential privacy. In Michele Bugliesi, Bart Preneel, Vladimiro
Sassone, and Ingo Wegener, editors, Automata, Languages and Programming, pages
1–12, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

[3] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Found. Trends Theor. Comput. Sci., 9:211–407, 2014.

[4] Mei Ling Fang, Devendra Singh Dhami, and Kristian Kersting. Dp-ctgan: Differentially
private medical data generation using ctgans. In Martin Michalowski, Syed Sibte Raza
Abidi, and Samina Abidi, editors, Artificial Intelligence in Medicine, pages 178–188,
Cham, 2022. Springer International Publishing.

[5] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron C. Courville, and Yoshua Bengio. Generative adversarial nets. In
NIPS, 2014.

[6] David Heckerman. A tutorial on learning with bayesian networks, 2022.

[7] Florimond Houssiau, James Jordon, Samuel N. Cohen, Owen Daniel, Andrew Elliott,
James Geddes, Callum Mole, Camila Rangel-Smith, and Lukasz Szpruch. Tapas: a
toolbox for adversarial privacy auditing of synthetic data, 2022.

[8] Bill Howe, Julia Stoyanovich, Haoyue Ping, Bernease Herman, and Matt Gee. Synthetic
data for social good, 2017.

[9] Matthew Jagielski, Jonathan Ullman, and Alina Oprea. Auditing differentially private
machine learning: How private is private sgd?, 2020.

[10] Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for
differential privacy, 2015.

[11] Jayoung Kim, Chaejeong Lee, and Noseong Park. Stasy: Score-based tabular data
synthesis, 2023.

[12] Bogdan Kulynych, Mohammad Yaghini, Giovanni Cherubin, Michael Veale, and
Carmela Troncoso. Disparate vulnerability to membership inference attacks, 2021.

[13] Ryan McKenna, Gerome Miklau, and Daniel Sheldon. Winning the nist contest: A
scalable and general approach to differentially private synthetic data, 2021.

[14] Ryan McKenna, Brett Mullins, Daniel Sheldon, and Gerome Miklau. Aim: An adaptive
and iterative mechanism for differentially private synthetic data, 2022.

41

[15] Casey Meehan, Kamalika Chaudhuri, and Sanjoy Dasgupta. A non-parametric test to
detect data-copying in generative models, 2020.

[16] Nicolas Papernot, Shuang Song, Ilya Mironov, Ananth Raghunathan, Kunal Talwar,
and Úlfar Erlingsson. Scalable private learning with pate, 2018.

[17] Haoyue Ping, Julia Stoyanovich, and Bill Howe. Datasynthesizer: Privacy-preserving
synthetic datasets. Proceedings of the 29th International Conference on Scientific and
Statistical Database Management, 2017.

[18] R. Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership infer-
ence attacks against machine learning models. 2017 IEEE Symposium on Security and
Privacy (SP), pages 3–18, 2016.

[19] Theresa Stadler, Bristena Oprisanu, and Carmela Troncoso. Synthetic data – anonymi-
sation groundhog day, 2022.

[20] Yuchao Tao, Ryan McKenna, Michael Hay, Ashwin Machanavajjhala, and Gerome Mik-
lau. Benchmarking differentially private synthetic data generation algorithms, 2022.

[21] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramachaneni. Mod-
eling tabular data using conditional gan. In Neural Information Processing Systems,
2019.

[22] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in
machine learning: Analyzing the connection to overfitting, 2018.

[23] Jinsung Yoon, Lydia Drumright, and Mihaela Schaar. Anonymization through data
synthesis using generative adversarial networks (ads-gan). IEEE Journal of Biomedical
and Health Informatics, PP:1–1, 03 2020.

[24] Jinsung Yoon, James Jordon, and Mihaela van der Schaar. PATE-GAN: Generating
synthetic data with differential privacy guarantees. In International Conference on
Learning Representations, 2019.

[25] Jun Zhang, Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, and Xiaokui
Xiao. Privbayes: Private data release via bayesian networks. ACM Trans. Database
Syst., 42(4), oct 2017.

42

