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ABSTRACT OF THE DISSERTATION 

Air Pollution, Non-Pharmaceutical Interventions Policy, Vaccination and Coronavirus Disease 

2019 (COVID-19) and Epidemiology of Lung and Upper Aerodigestive Tract Cancers 

 

by 

 

Fang Fang 

Doctor of Philosophy in Epidemiology 

University of California, Los Angeles, 2022 

Professor Zuo-Feng Zhang, Chair 

 

Background: The original Ph.D. dissertation proposal was to study PM2.5 and lung and UADT 

cancers, however, due to COVID-19 pandemic, we have added epidemiological studies of 

COVID-19 and still studied PM2.5 and risk of lung and UADT cancers. Long-term exposure to 

fine particulate matter (PM2.5) is an established risk factor for many adverse health outcomes via 

different mechanisms, and thus predisposes individuals and populations to elevated risks of both 

infectious and chronic health outcomes. Previous studies reported the association between PM2.5 

exposure and COVID-19 outcomes based on arbitrarily cut-off points. This study investigated 

this association during the first two surges of the pandemic and examined whether non-

pharmacologic prevention initiatives might intervene this association. In addition, though 
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vaccines against SARS-CoV-2 were safe and effective, its community-wide impacts on reducing 

COVID-19 incidence and mortality corresponding to the predominant strain in the population 

have not yet been studied. Lastly, we aim to confirm the association between PM2.5 and lung 

cancer susceptibility in Los Angeles, as well as addressing whether PM2.5 is associated with 

UADT cancers susceptibility, which have been understudied.  

Objective and Specific Aims: We aimed to evaluate the association between ambient PM2.5 

exposure and COVID-19 incidence and lung and UADT cancer susceptibility. The specific aims 

were: (1) to estimate the association between long-term exposure to ambient PM2.5, facemask 

mandates, stay home orders and COVID-19 incidence in the United States during the first two 

surges; (2) to estimate the association between SARS-CoV-2 vaccines coverage and COVID-19 

incidence and mortality in the United States during the Alpha, Delta, and Omicron 

predominance; and (3) to estimate the association between long-term exposure to ambient and 

indoor PM2.5 and lung and UADT cancers susceptibility. 

Study Design and Population: For Specific Aims 1 and 2, we employed a nation-wide ecologic 

study design, including more than 3,000 counties in the US. Analyses were conducted to 

estimate the associations between ambient PM2.5, non-pharmacologic prevention initiatives, 

including facemask mandates and stay-home policies, and vaccination coverage at the county-

level and COVID-19 incidence and mortality. The study utilized publicly available data. In 

Specific Aim 3, we aimed to estimate the association between air pollution and susceptibility of 

lung and UADT cancers, using a population-based case-control study in the Los Angeles 

County. The study included 577 lung cancer cases, 565 UADT cancers cases, and 983 controls 

after applying exclusion criteria.  
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Statistical Methods: For Specific Aim 1, we fit negative binomial models to assess COVID-19 

incidence in association with PM2.5 and policies during the first two surges of SARS-CoV-2 

pandemic, as of September 12th, 2020. Stratified analyses by facemask policy and stay home 

policy were also performed. For Specific Aim 2, generalized estimating equations were used to 

estimate associations between US county-level cumulative complete vaccination rates and 

booster distribution and the daily change in county-wide COVID-19 risks and mortality during 

Alpha (April 23rd – July 2nd, 2021), Delta (July 3rd – December 1st, 2021) and Omicron 

(December 2nd, 2021 – March 25th, 2022) predominance. For both Aims, models were adjusted 

for potential confounders at both county and state level. A 2-week lag and a 4-week lag were 

introduced to assess vaccination rates impact on incidence and mortality, respectively. For 

Specific Aim 3, unconditional logistic regressions were applied to estimate the association 

between air pollution, including ambient PM2.5 one-year before diagnosis, exposure to household 

air pollution, and an air pollution index, and lung and UADT cancers’ susceptibility, adjusting 

for potential confounders.  

Results: For Aim 1, after adjusting for county-level and state-level potential confounders, each 

1-µg/m3 increase in annual average concentration of PM2.5 exposure was associated with an 

increase in COVID-19 risk (relative risk (RR) = 1.0756, 95% CI: 1.0376, 1.1149). Facemask 

mandates and stay home policies were inversely associated with COVID-19 with adjusted RRs 

of 0.8466 (95% CI: 0.7598, 0.9432) and 0.9193 (95% CI: 0.8021, 1.0537), respectively. The 

associations between PM2.5 and COVID-19 were consistent among counties with or without 

preventive policies. For Aim 2, among 3,073 counties in 48 states, the average county population 

complete vaccination rates of all age groups were 50.79% as of March 11th, 2022. Each 

percentage increase in vaccination rates was associated with reduction of 4% (RR = 0.9607, 95% 
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CI: 0.9553, 0.9661) and 3% (RR = 0.9694, 95% CI: 0.9653, 0.9736) in county-wide COVID-19 

cases and mortality, respectively, when Alpha was the dominant variant and after adjusting for 

potential confounders. The associations between county-level vaccine rates and COVID-19 

incidence diminished during the Delta (RR = 0.9988, 95% CI: 0.9964, 1.0011) and Omicron (RR 

= 0.9969, 95% CI: 0.9919, 1.0019) predominance. Vaccination coverage was associated with 

slightly decreased COVID-19 mortality (RR = 0.9934, 95% CI: 0.9889, 0.9980) when Delta was 

the most prevalent strain, but with a marginal increase in COVID-19 mortality (RR = 1.0061, 

95% CI: 1.0022, 1.0101) when Omicron was circulating. During the Omicron predominance, 

each percent increase in people receiving a booster shot was associated with reduction of 6% 

(RR = 0.9356, 95% CI: 0.9235, 0.9479) and 4% (RR = 0.9595, 95% CI: 0.9431, 0.9761) in 

COVID-19 incidence and mortality in the community, respectively. For Specific Aim 3, each 1-

µg/m3 increase in ambient PM2.5 one-year before diagnosis was associated with elevated risks in 

lung (odds ratio (OR) = 1.02, 95% CI: 0.98, 1.06) and UADT (OR = 1.04, 95% CI: 1.00, 1.09) 

cancers susceptibility, adjusting potential confounding factors.  

Conclusions and public health implications: These results add evidence to the associations 

between PM2.5 with COVID-19 incidence and with lung and UADT cancers susceptibility. Thus, 

our results underscore the health hazards associated with increased ambient PM2.5 and may be 

informative for policymaking and program planning for continuing to improve air quality. 

Moreover, the non-pharmacologic prevention initiatives and increasing vaccination coverage are 

shown to be effective in reducing COVID-19 incidence and mortality during different outbreaks 

of the SARS-CoV-2 variants, indicating both NPIs and vaccination are essential decisions in 

better preparation for the next surge of COVID-19 and even for the next emerging pandemic in 

the future.  
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CHPATER 1. INTRODUCTION AND BACKGROUND 

1.1 Coronavirus Disease 2019 (COVID-19) 

1.1.1 Overview 

Coronavirus Disease 2019 (COVID-19) is a human-to-human transmissible disease caused by 

the SARS-CoV-2 virus and was first discovered in Wuhan, China in December 2019 [3]. On 

March 11th, 2020, the World Health Organization (WHO) declared COVID-19 as a global 

pandemic [4]. Major modes of transmission include direct, indirect, or close contact with 

infectious respiratory fluid, airborne, and fomite [5, 6]. Once infected, the viral structural spike 

(S) protein of SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) receptor of 

the target cells, including nasal and bronchial epithelial cells [7]. The progression of the infection 

leads to endothelial barrier disruption, dysfunctional alveolar-capillary oxygen transmission, and 

impaired oxygen diffusion capacity and further triggers the viral inflammatory responses [8]. 

COVID-19 infection may cause respiratory symptoms, such as cough, shortness of breath or 

difficulty breathing, and congestion or runny nose, fever or chills, fatigue, muscle or body aches, 

new loss of taste or smell, or digestive symptoms, such as vomiting or diarrhea [9]. While most 

people have mild symptoms and can self-recover [10], severe symptoms, and even death, can be 

developed, especially among groups at high risk, including older adults, people with medical 

conditions, and pregnant or recently pregnant people [11].  

1.1.2 COVID-19 in the United States 

COVID-19 was the third leading cause of death, after heart disease and cancer, for two 

consecutive years from 2020 to 2021 [12]. As of May 27th, 2022, COVID-19 has caused 

83,712,396 infections and has claimed 1,001,313 lives in the United States. The excess deaths 

since February 1st, 2020, were estimated to be 1,124,728. There were roughly 5 major surges in 
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the United States. The cut-off dates for each surge were May 28th, 2020, September 12th, 2020, 

July 2nd, 2021, and December 1st, 2021 [13]. The majority cases during the latter two surges were 

attributable to the Delta (B.1.617.2) variant [14] and the Omicron (B.1.1.529, BA.1, BA.1.1, 

BA.2 or BA.3) variant [15], respectively, which are classified as the Variants of Concern by the 

United States Centers for Disease Control and Prevention (CDC) [16].   

 

1.2 Lung Cancer 

1.2.1 Global Burden of Lung Cancer 

According to the WHO 2020 GLOBOCAN, lung cancer was estimated to be the second most 

common cancer diagnosed, following breast cancer, and the most common cause of death from 

cancer. Over 65% of both new lung cancer cases and deaths were males, among whom lung 

cancer was the most common cancer diagnosed and the leading death due to cancer, while it was 

the third most common cancer and the second leading cancer mortality among females. In 2020, 

more than 2 million incident cases of lung cancer, accounting for 11.4% of all cancer diagnosis, 

were diagnosed and the high fatality rate pushed the death toll to over 1.7 million, contributing to 

18% of deaths due to cancer, globally [17]. The GLOBOCAN estimates were similar to those 

reported by epidemiological studies [18].  

Lung cancer is known to have high mortality and poor survival. To assess cancer survival, the 

CONCORD-3 study utilized information from 322 population-based cancer registries in 71 

countries and territories from 2000 to 2014 and estimated the age-standardized 5-year net 

survival of different cancer types. For most countries, the age-standardized 5-year survival was 

between 10-20%, while higher survival rates were observed in more developed areas. Japan had 
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the highest survival rates at 32.9%. Other than regional disparity in lung cancer survival, 

temporal improvement of survival has also been observed. Even though the trend of lung cancer 

survival has been leveled off in recent years, the improved 5-year survival rates from 2010 to 

2014 have been observed in 21 countries, comparing to the rates between 1995 and 1999. 

Moreover, such survival rate increased by more than 10% in China and Korea. The regional 

discrepancy and temporal survival change not only reflected the result of clinical practices and 

health care efficiency, but also might be due to other issues, such as screening availability, 

overdiagnosis, and better follow up of certain registries [19].  

1.2.2 Lung Cancer in the United States 

Similar to the global lung cancer pattern, lung cancer is among the top cancers and poses a heavy 

burden in the United States. Lung cancer is the 3rd most common cancer and the leading cause of 

cancer death, accounting for 235,760 (12%) of newly diagnosed cancer and 131,880 (22%) of 

cancer deaths in 2022. The trend of incidence and mortality in the US have been declining in 

recent decades. Male has higher risks of developing and dying from lung cancer than females. 

The 5-year relative survival from 2012 to 2018 in the US was 22.9% [20] and the US had the 

fourth highest survival rate in the world [19]. In general, cancer survival rates decrease as stage 

at diagnosis advances. In the case of lung cancer, the 5-year relative survival with diagnosis at 

localized stage was 61.2%, comparing to the survival rate of 7.0% for those diagnosed at distant 

stage. Unfortunately, due to the current practice, more than half (55%) of lung cancer were 

diagnosed at distant stage [20]. However, due to the implication of lung cancer screening in 

2013, which is annual screening for lung with low-dose computed tomography in previous or 

current smokers [21], we will expect lung cancer to be diagnosed at earlier stages in coming 

years. As a result, we might expect the 5-year relative survival to increase in the US. 
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1.2.3 Histological Types of Lung Cancer 

Lung cancer could be broadly classified as small cell lung cancer, non-small cell lung cancer, 

and some other less common subtypes. Among all these subtypes, non-small cell lung cancer 

makes up of about 80% to 85% lung cancer cases and could be further defined as 

adenocarcinoma (40% of cases), squamous cell carcinoma (25% to 30% cases), large cell 

carcinoma (10% to 15% cases), and other less common carcinoma types, based on the cell where 

the tumor originated [22]. 

Squamous cell carcinoma used to be the most prevalent subtype in males. In recent years, the 

incidence of squamous cell carcinoma and the one of adenocarcinoma were converging and 

nowadays in many countries, including the US, adenocarcinoma surpassed squamous cell 

carcinoma and became the most common subtype in males. Meanwhile, adenocarcinoma 

remained the most common subtype of lung cancer in females. Since adenocarcinoma is also the 

most common subtypes of lung cancer among nonsmokers, other factors besides smoking 

attribute to the development of adenocarcinoma [23, 24].  

In addition, shift of smoking pattern and tobacco manufacturing also explain the trends of lung 

cancer subtypes. Women started smoking later than men. As a result, while the trends of overall 

lung cancer and squamous cell carcinoma are decreasing in men, such trends are increasing in 

women. Application of filter lead to deeper inhalation and a more peripheral distribution of 

smoke in the lung. Therefore, more cancer at peripheral sites, such as adenocarcinoma would be 

observed than central tumors, such as squamous cell carcinoma [25]. Composition of tobacco 

products also shifted from polycyclic aromatic hydrocarbons (PAHs), which induces squamous 

cell carcinoma, to tobacco-specific N-nitrosamines, which stimulates the development of 

adenocarcinoma [26]. Although smoking increases risks of all subtypes of lung cancer, the risk 
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of squamous cell carcinoma increases more rapidly after starting smoking than the risk of 

adenocarcinoma. Similarly, after smoking cessation, the risk of squamous cell carcinoma also 

decreases more rapidly than the one of adenocarcinoma [27, 28].  

1.2.4 Risk Factors for Lung Cancer 

As previously mentioned, both the trends of lung cancer, which reflect the patterns of tobacco 

consumption, and the increasing risk of all subtypes of lung cancer due to smoking indicate that 

tobacco is a major risk factor for lung cancer. The adverse health effects, including lung cancer, 

of tobacco smoking have been thoroughly studied since the publication of the 1964 Surgeon 

General Report on smoking and health [29, 30]. Tobacco smoke not only include smoking any 

type of cigarette, but also cigar smoking and pipe smoking [31, 32]. As the leading risk factor for 

lung cancer development, it was estimated to account for 90% of lung cancer cases [24] and 80% 

of lung cancer deaths [31]. The longer duration and greater intensity further increase lung cancer 

risks [26]. 

Among non-smokers, exposure to environmental tobacco smoking and radon may account for 

the majority of lung cancer cases in the US, while indoor air pollution still plays a role in less 

developed countries, where coal or solid fuels are used for cooking and heating [33]. Other 

environmental exposure, such as ambient air pollution, radiation and asbestos, and certain 

occupational group, including coal gasification, coke production, iron and steel founding, 

aluminum production, painting and rubber production industry, are associated with elevated lung 

cancer risks [34].  
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1.3 Upper Aerodigestive Tract Cancers 

1.3.1 Overview 

Upper aerodigestive tract cancers (UADTs) include head and neck cancer (HNC) and esophageal 

cancer. HNC indicates all cancers occurring in the nasal and oral cavities, such as oral cavity, 

nasopharynx, oropharynx, hypopharynx, larynx, paranasal sinuses and nasal cavity, and salivary 

glands [35]. 

1.3.2 Global Burden of Upper Aerodigestive Tract Cancers 

Although each HNC sites accounts for small number of cases, combining all these subsites 

makes HNC the 6th most common cancer and the 7th most common cause of death from cancer in 

the world, equivalent to 931,931 new HNC diagnoses and 467,119 HNC deaths for both sexes in 

2020. Males have a higher risk of developing HNC, accounting for 75% of incident cases and 

HNC mortality [17]. Other than sex, the heterogeneous risk and mortality of HNC are also 

observed among countries and among different cancer sites. The cancer of lip and oral cavity had 

the highest risks at 4.0 cases per 100,000 people, followed by laryngeal cancer and pharyngeal 

cancers, and the nasopharyngeal had the lowest incident rate at 1.2 cases per 100,000 people. 

Two thirds of HNC cases were in developing countries. Especially, the Indian subcontinent 

shared a great burden of cancers of the lip and oral cavity [36]. The estimated survival for HNC 

was about 49% based on the GLOBOCAN 2018 estimation. The global trends of both HNC 

incidence and mortality increases, with the exception of the US, where a decreasing mortality 

rate was observed [36]. 

Esophageal cancer, including squamous cell carcinoma and adenocarcinoma, had a similar 

profile of global incidence and mortality as HNC. There were 604,100 estimated incident cases 
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and 544,076 mortality due to esophageal cancer in both sexes. Though esophageal cancer was 

ranked the 8th most common cancer and the 6th most common cancer deaths, the uneven sex 

distribution was again observed in esophageal cancer. About 70% incident cases and esophageal 

cancer mortality occurred in men [17]. Based on the CONCORD-3 study, the 5-year net survival 

of esophageal cancer was between 10% to 30% in most countries. There were 12 countries with 

the 5-year survival more than 20%, including Japan, where the highest survival of 36% was 

observed. Comparing to the period of 1995 to 1999, the 5-year net survivals during 2010 to 2014 

increased by at least 4% in 17 countries, whereas Korea experienced the greatest improvement in 

survival at 12.5% [19]. 

1.3.3 Upper Aerodigestive Tract Cancers in the United States 

According to the Surveillance, Epidemiology, and End Results (SEER) data, HNC is the 10th 

most common cancer diagnosed, accounting for 66,470 cases after combining the cancer of oral 

cavity and pharynx and laryngeal cancer, in 2022. Consistent with the global HNC patters, HNC 

is more common in males, who have 2.7 times and 4.9 times risks in oral cavity and pharyngeal 

cancer and in laryngeal cancer comparing to females, respectively [37, 38]. More than 80% HNC 

cases in the US occurred in the oral cavity and pharynx. The incidence and mortality trends have 

leveled off since 1992 [38], because the declining incidences of oral cavity and hypopharyngeal 

cancers have been cancelled out by the rising incidence of oropharyngeal cancer, especially 

among population under age of 45 [39]. Half (50%) cases were diagnosed at regional stage, 

where the 5-year relative survival was 69.0% and the overall survival was 68.0% from 2012 to 

2018 [38]. Cancer of larynx has displayed declining trends in both incidence and mortality since 

1992. More than half (52%) cases were diagnosed at localized stage, where the 5-year relative 

survival was 78.3%. However, since the 5-year relative survival for both regional and distant 
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stage were lower than the ones of oral and pharyngeal cancers, laryngeal cancers had a lower 

overall 5-year relative survival at 61.0%. Unlike lung cancer and oral and pharyngeal cancers, 

women with laryngeal cancer had poorer prognosis than men [37]. 

Even though esophageal cancer is classified as one of the UADT cancers, it does show a 

different pattern than HNCs. Esophageal cancer is not a common cancer type in the US, 

accounting for 20,640 cancer diagnosis in 2022, and even rarer in females. The 5-year relative 

survival rate was 20.6% during the 2012 to 2018 period, which was similar to the one of lung 

cancer during the same period. Although half cases were diagnosed at localized or regional 

stages, the 5-year relative survivals for these stages were lower than the ones of lung cancer and 

the 5-year relative survival for distant stage of esophageal cancer was 5.7%, which was 

comparable to the one of lung cancer with metastasis [40]. 

1.3.4 Histological Types of Upper Aerodigestive Tract Cancers 

Most HNCs occur in the oral and nasal cavities, where the lining are epithelial cells, and 

therefore the histological types are squamous cell carcinoma, accounting for 90% of HNC cases 

[36]. The exception is cancer originated from the salivary glands, which contain many different 

cell types. Thus, the histological types of cancer of salivary glands are very diverse. However, 

such cancer is rare in the US [41]. Esophagus is a muscular tube connecting pharynx and 

stomach. Though four consistent layers, including adventitia, muscle, submucosa, and mucosa, 

are found along the esophagus [42], the composition of cell types alters gradually from the 

proximal part to the distal part of the organ. The upper part of esophagus, which is also known as 

the cervical esophagus, consists of striated muscle  and the distal esophagus contains smooth 

muscles [43]. While the squamous cell carcinoma distributes evenly in the upper and middle 

third parts of the esophagus, the majority of adenocarcinoma occurs at the lower third of the 
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esophagus [44]. Though squamous cell carcinoma has higher burden globally, the incidence of 

adenocarcinoma exceeds the one of squamous cell carcinoma and becomes the predominant 

subtypes in certain countries, including the US. Men have higher incidence for both subtypes, 

but the gender disparity is more pronounced in adenocarcinoma [45]. In addition, while 

squamous cell carcinoma is more common among blacks, whites have higher incidence of 

adenocarcinoma [46].    

1.3.5 Risk Factors for Upper Aerodigestive Tract Cancers 

Both smoked and smokeless tobacco products increase the risk of HNC [36] and both intensity 

and duration are important measurements for the risk of HNC [39]. About three quarters of HNC 

cases could be attributable to tobacco and alcohol use [35, 47]. Though exposing to either of the 

risk factors increases the risk of HNC, more than multiplicative interaction has been observed 

and simultaneous alcohol and tobacco use poses a larger threat, especially for oral and 

pharyngeal cancers [47]. Sustained infection caused by certain strains of human papillomavirus 

(HPV), such as HPV-16 and HPV-18, further stimulates carcinogenesis [36]. Increase intake of 

fruit and vegetable and reduced consumption of red meat might have a protective association 

with HNC [48], while consumption of salted fish, hot spices, and certain processed food, which 

containing nitroso compounds and volatile nitrosamines, is associated with elevated HNC risks 

[35]. Heavy bacterial load resulted from poor oral hygiene, exposure to radiation, including 

ultraviolet light, and chronic irritation to the lining of the mouth would also increase the risk of 

HNC [49]. Due to the heterogeneity of cancer site, there are specific risk factors for different 

sites. For example, Epstein-Barr virus is an important risk factor for nasopharyngeal carcinoma, 

but not for other HNC sites. Last but not least, even with effective local therapy, HNC patients 
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are at higher risks of second primary cancer at the upper aerodigestive tracts due to the dense 

lymph systems around the region [36].  

Other than tobacco use and radiotherapy among breast cancer survivors, two subtypes of 

esophageal cancer have distinct sets of risk factors. Chronic irritation and inflammation are 

important cause for squamous cell carcinoma. Such irritation could be caused by tobacco 

smoking and substantial alcohol intake, which accounts for 90% of squamous cell carcinoma 

cases in the world. Similar to HNC, synergic effects of two exposures have been reported. 

Chronic irritation could be also caused by medical conditions such as achalasia, esophageal 

diverticuli, tylosis, Plummer-Vinson syndrome and esophageal injury due to frequent 

consumption of extremely hot beverages and ingestion of lye or other caustic fluids. 

Adenocarcinoma displays a different profile for risk factors. Barrett’s esophagus, reflux, and 

obesity increase the risk of adenocarcinoma, while these risk factors are not associated with 

squamous cell carcinoma [50]. 

 

1.4 Fine Particulate Matter 

1.4.1 Overview 

Fine particulate matter (particles with aerodynamic diameter equal to or less than 2.5 µm in 

diameter, PM2.5) may affect disease via a variety of mechanisms such as altering immune 

response, increasing oxidative stress, causing inflammatory injury, inducing mutagenicity, and 

introducing respiratory tract damage [51-53].  

Both size and components of PM matter. Particles between 5 and 10 µm in diameter are likely to 

deposit in the trachea bronchial tree. Those from 1 to 5 µm could travel down to the respiratory 
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bronchioles and the alveoli where gas exchange occurs. These particles can affect gas exchange 

and even penetrate the lung and enter blood stream. Particles less than 1 µm behave similarly to 

gas molecules. Composition of PM also varies due to the pollution sources, ranging from 

inorganic chemicals to biological components. Some of these chemicals, such as heavy metals 

and polycyclic aromatic hydrocarbons, are carcinogenic. The adverse health effects of PM 

include lung cancer, respiratory symptoms, cardiovascular disease, preterm birth, low-birth 

weight, and emergency and hospital admission, have been established [54].  

1.4.2 Ambient Particulate Matter 

In 2013, the WHO has categorized both ambient air pollution and particulate matters (PM) in 

ambient air pollution as known carcinogen to humans. Particularly, clear associations between 

PM and lung cancer have been reported by various studies. Air pollution is regarded as the most 

widespread environmental carcinogen [55]. Moreover, government interventions, such as 

restricting the pollution industry and enforced vehicle emission test, are required to reduce air 

pollution level. In 2015, over 4 million deaths and over 283,000 deaths due to lung cancer could 

be attributable to PM. In the US, ambient PM is the 6th leading risk factor for deaths, which 

accounts for over 88,000 deaths [56]. Major sources of ambient air pollution include emission of 

motor vehicles, industrial processes, and power generation.  

The annual mean of the WHO guideline for PM2.5 is 5 µg/m3 and the 24-hour mean is 15 µg/m3 

[57]. In 2005, the WHO estimated that about 89% of the world’s population live in areas where 

annual PM2.5 mean concentration exceeded 10 µg/m3, the WHO guideline at that time [58]. The 

PM2.5 pollution was more severe among middle-income countries such as China and India, 

especially around urban areas resulted from industrialization and increasing number of vehicles 

on roads [59].  
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1.5 Gaps in Literature 

Detailed description of literature review and gaps in literature will be presented in the following 

chapters with each of the aims. Table 1-1 provides an overview of current literature in related 

topics. Briefly, timely evidence on the association between long-term exposure to air pollution, 

especially PM2.5, and COVID-19 incidence is accumulating in the US and in Europe, however 

based on arbitrary cut-off points of the pandemic. With the progression of COVID-19, more 

extensive data would allow us to examine whether COVID-19 incidence was associated with 

long-term exposure to PM2.5 during each surge of the pandemic and whether it might be 

modified by the implementation of preventive interventions, such as facemask mandates or stay 

home policies.  

While vaccine efficiency was well studied at individual level, this study fills in the gap of the 

impact of vaccination on community-wide SARS-CoV-2 cases and COVID-19 mortality and 

addresses the impacts of vaccination within the entire community not just among those 

vaccinated. Moreover, it is worth examining whether and by how such impact might differ 

corresponding to different dominant strains in the community, especially in the light of vaccine 

waning and different breakthrough rate for each variant.  

Though studies tried to investigate that association between air pollution and lung cancer risk or 

mortality, the results are somewhat inconsistent among studies, not to mention the magnitude, 

suggested by the large I2 value of 53.0% for PM2.5 [60]. Moreover, most of these studies covered 

population across a variety of geographic regions and over different periods of time, so that the 

source of emission and the levels of exposure might be different. Especially, the composition of 
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PM, which may be associated with different health effects, could change overtime or in different 

geographic regions. Hence, due to the heterogeneity of the association, it might not be 

appropriate to simply apply these findings to other populations. Limited evidence was available 

on the association between ambient air pollution and UADT cancers and most of these studies 

were underpowered. To our knowledge, this is the first study to examine the associations 

between ambient PM2.5 and lung and UADT cancers susceptibility utilizing population-based 

data in Los Angeles with the availability of individual-level confounders and addressing the 

indoor air pollution at the same time.  

 

1.6 Hypotheses and Specific Aims 

Above-mentioned gaps in literature were addressed using a nation-wide ecologic study and a 

population-based case-control study with three specific aims listed below.  

Specific Aim 1. To estimate the association between long-term exposure to ambient PM2.5, 

facemask mandates, stay home orders and reported incident COVID-19 cases, based on the 

surveillance case definitions by the CDC [61], in the United States during the first two surges.  

Specific Aim 1.1. To estimate the association between long-term exposure to ambient PM2.5, 

and reported COVID-19 cases in the United States during the first two surges by state 

implementation of facemask mandates and stay home policies. 

Hypothesis 1. US county-level reported COVID-19 incidence is positively associated with long-

term exposure with ambient PM2.5, but inversely associated with state-level non-pharmacologic 

prevention initiatives (NPIs), such as facemasks mandates or stay home policies.  
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Hypothesis 2. The associations between long-term exposure to ambient PM2.5 and reported 

COVID-19 cases in the United States during the first two surges differ by the status of facemask 

mandates or stay home orders.  

 

Specific Aim 2. To estimate the association between SARS-CoV-2 vaccines coverage and 

reported COVID-19 cases and mortality in the United States during the Alpha, Delta, and 

Omicron predominance 

Specific Aim 2.1. To estimate the association between proportion of booster uptake and reported 

COVID-19 cases and mortality in the United States during the Omicron predominance. 

Hypothesis 2. County-level SARS-CoV-2 vaccines coverage is associated with reduced COVID-

19 incidence and mortality.  

Hypothesis 2.1. The protective associations between county-level SARS-CoV-2 vaccines 

coverage and COVID-19 incidence and mortality diminish overtime.  

Hypothesis 2.2. The protective associations between county-level SARS-CoV-2 vaccines 

coverage and COVID-19 incidence and mortality vary by the most dominant strain in the US.  

Hypothesis 2.3. Increased county-level SARS-CoV-2 booster uptake in the population is 

associated with reduced COVID-19 incidence and mortality. 

 

Specific Aim 3. To estimate the association between long-term exposure to ambient and indoor 

PM2.5 and lung and UADT cancers susceptibility using a population-based case-control study in 

Los Angeles.  
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Hypothesis: Exposure to either long-term ambient PM2.5 or indoor air pollution is associated with 

increased susceptibility of lung and UADT cancers.  
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CHAPTER 2. LONG-TERM EXPOSURE TO PM2.5, FACEMASK MANDATES, STAY 

HOME ORDERS AND COVID-19 INCIDENCE IN THE UNITED STATES 

2.1 Introduction 

As of September 12th, 2020, COVID-19 has infected 6,353,677 people in the United States [13]. 

To avoid the human-to-human transmission of the pathogen, the US Centers for Disease Control 

and Prevention (CDC) recommends social distancing, face masking, and good hygiene practices 

[62]. Each state also implements different policies in order to slow down the spread of the 

disease [63]. A meta-analysis including 21 studies showed the efficacy of face masks in 

preventing respiratory virus transmission. The protective effect of facemask use against 

respiratory virus infection was 64% and a 47% risk reduction was observed among non-

healthcare workers. Among the studies included, one study observed a 96% reduction of 

COVID-19 risk among Chinese healthcare workers using facemasks [64]. A recent study also 

demonstrated face coverings as effective preventive measures in slowing down the viral 

transmission via droplets by mimicking cough-generated airborne particles in an indoor 

environment. The study showed that surgical and K95/KN95 masks reduced cough droplets 

dramatically [65]. By utilizing COVID-19 cases from 190 countries between January 23rd, 2020, 

and April 13th, 2020, non-pharmacologic prevention initiatives (NPIs), such as mandatory masks, 

quarantine, distancing and traffic restriction, were inversely associated with the reproduction 

number of COVID-19. The reductions in reproduction numbers were −15.14% (from −21.79% to 

−7.93%) for mandatory facemask and −42.94% (from −44.24% to −41.60%) for distancing. 

When two or more interventions were implemented simultaneously, a greater decrease in the 

reproduction number of COVID-19 was observed [66]. Severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2) was identified as the definitive infectious agent; however, social 
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and environmental factors, such as air pollution, may also play a contributory role in the 

transmission of the virus in human population [67]. 

PM2.5 may affect disease via a variety of mechanisms such as altering immune response, 

increasing oxidative stress, causing inflammatory injury, inducing mutagenicity and introducing 

respiratory tract damage [51-53]. Moreover, ambient air pollution was associated with various 

infectious outcomes, such as deaths due to lower respiratory infection [56], elevated fatality of 

severe acute respiratory syndrome (SARS) in China [68], increased risk of influenza [69], and 

upper respiratory infections incidence and hospital admission for respiratory infections [70]. In 

addition, SARS-CoV-2 can remain viable in aerosols for hours [71] and air particles are 

suspected to be capable of carrying the virus and facilitating its spread [72].  

Table 2-1 summarizes current literature on the association between air pollution and COVID-19 

outcomes. Studies in Northern Italy and among cities in China reported positive correlations 

between short-term exposure to PM2.5 and COVID-19 outcomes [73-77]. A Korean study 

concluded temporal association between COVID-19 incidence and other air pollutants, but not 

with PM2.5 [78]. Exposure to long-term PM2.5 was associated with COVID-19 mortality after 

controlling for different confounders [79-84]. In the United States, Wu et al. showed that each 1-

µg/m3 increase in long-term PM2.5 exposure (2000–2016 annual average) was associated with 

11% increase in COVID-19 mortality [79], which was also affected by the presence of other 

hazardous air pollutants [80]. Hendryx et al. showed a positive association between long-term 

PM2.5 and COVID-19 prevalence and fatality as of May 31st, 2020, by applying a linear 

regression model [84]. Timely evidence on the association between long-term exposure to air 

pollution, especially PM2.5, and COVID-19 incidence is accumulating in the US and in Europe 

based on arbitrary cut-off points of the pandemic. With the progression of COVID-19, more 
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extensive data would allow us to examine whether COVID-19 incidence was associated with 

long-term exposure to PM2.5 during each surge of the pandemic and whether it might be 

modified by the implementation of NPIs, such as facemask mandates or stay home policies. 

 

2.2 Methods  

Data sources are summarized in Table 2-2. Specifically, county-level COVID-19 incidence data 

was obtained from Johns Hopkins University, Center for Systems Science and Engineering 

Coronavirus Resource Center (CSSE). County-level confirmed numbers of cases of 3,261 

counties across the US have been updated daily utilizing the data from the CDC and state 

departments of health since January 21st, 2020 [13]. The fewest 7-day average daily confirmed 

cases (20,764 cases on May 28th and 34,596 cases on September 12th, 2020) corresponded to the 

lowest point after each of the first two surges and thus marked the end of that surge. In this 

study, we used the cumulative incidence cases of COVID-19 reported in each county up to May 

28th, 2020, and up to September 12th, 2020. 

County-level annual average of PM2.5 between 2000 and 2016 as well as county-level covariates 

were available on a GitHub repository. The data utilized in the study assessing COVID-19 

mortality and long-term exposure to PM2.5 was published by Wu et al. on this repository and was 

publicly available [79]. Briefly, van Donkelaar et al. estimated the ground-level concentration of 

PM2.5 using a chemical transport model and satellite observation calibrated using ground-level 

observation across North America [85].  

County-level socioeconomic and demographic variables in 2016 were available from the US 

Census/American Community Survey. The 2020 behavioral factors such as prevalence of adult 
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tobacco smoking and adult obesity were publicly accessible on the County Health Rankings & 

Roadmaps program, a program of the University of Wisconsin Population Health Institute 

aiming to provide a reliable and sustainable source of local data [86]. State average was used to 

replace missing values at county-level prevalence for smoking and obesity. State-wide policy of 

facemask mandates and stay home orders were collected and maintained by Boston University 

School of Public Health [63]. The New York Times summarized reopening policy for each state 

[87]. Up to date data on total tests performed in each state are available on the COVID tracking 

project [88]. A total of 165 counties were excluded because of the lack of a valid Federal 

Information Processing Standard code (n = 10) or missing covariates (n = 155). After exclusion, 

a total of 3,096 counties were eligible and included in the study.  

This study aimed to estimate how COVID-19 incidence was associated with county-level long-

term exposure to ambient PM2.5 and with state policies of facemask mandates and stay home 

orders during the first surge (as of May 28th, 2020), during the second surge (between May 29th, 

2020, and September 12th, 2020) and cumulatively (as of September 12th, 2020). Since the 

COVID-19 temporal relationship with long-term exposure to PM2.5 is different from that with 

preventive interventions, separate negative binomial models were applied. Models were adjusted 

for potential confounders (Equation 1 and 2).  

log���Incidence��

= β�  +  β�PM�.�  +  β� populatoin density +  β! percentage of poverty

+  β% median house value +  β� meidan household income

+  β( percentage of owner occupied property +  β* percentage of African American

+ β, percentage of Hispanic +  β. percentage of population less than high school education

+  β�� smoke rate +  β�� obese rate +  β�� percentage of male

+  β�! percentage of people with age of 65 and above

+  β�%duration since first case reported + β��reopening + β�(pausing reopened

+ β�* total tests performed + β�, facemask mandate +  β�. days of stay home order

+ offset�log�population��  

(1)
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log�E�Incidence��

= β� + β�PM�.� +  β� populatoin density +  β! percentage of poverty

+  β% median house value +  β� meidan household income

+  β( percentage of owner occupied property +  β* percentage of African American

+ β, percentage of Hispanic +  β. percentage of population less than high school education

+  β�� smoke rate +  β�� obese rate +  β�� percentage of male

+  β�! percentage of people with age of 65 and above

+  β�%duration since first case reported + β��reopening + β�(pausing reopened

+ β�* total tests performed + β�, facemask mandate +  β�. stay home order

+ β��incidence 14 days prior + offset�log�population��  

(2)

 

County-level annual average of ambient PM2.5 between 2000 and 2016 was used as a measure for 

long-term exposure to PM2.5. Equation 1 was used to investigate the association between 

exposure to long-term PM2.5 and COVID-19. We adjusted for duration since the first case 

reported, population density, poverty, education, proportions of African Americans and Hispanic 

Americans, owner occupied property, median house value, median household income, gender, 

population older than 65 years old, and prevalence of tobacco smoking and obesity at county 

level and state-level variables, including policies of facemask mandates and the duration of stay 

home orders, total test results reported and reopening status. To examine the association between 

intervention policies and COVID-19 incidence as in equation 2, facemask mandates and stay 

home orders were measured as binary variables. Their values as of May 28th, 2020, were used to 

examine the association during the first surge and the values as of September 12th, 2020, were 

used for the second surge and for both surges cumulatively. This also applied to other variables 

that changed over time, including duration since the first case reported, duration of stay home 

orders, total tests reported and reopening status. To address the potential reserve causation that 

policies might be a result of elevated COVID-19 incidence, we additionally controlled for 

COVID-19 incidence 14-days prior (as of May 14th, 2020, for the first surge and as of August 

28th, 2020, for the second surge and for the cumulative analysis). To account for the correlation 
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within each state, we applied the robust error estimation [89]. Stratified analyses by facemask 

mandates and stay home orders were performed by applying equation 1 to evaluate their effect 

measure modification on the association between PM2.5 and COVID-19 incidence. Relative risk 

(RR) and 95% confidence interval (CI) were reported. Analyses were performed in SAS 9.4 

(SAS Institute Inc., Cary, NC, USA). 

 

2.3 Results 

A total of 3,096 counties across the United States are included in this study and their 

characteristics are presented in Table 2-3. As of September 12th, 2020, the average COVID-19 

incidence was 1.65%, with a median of 1.29%. Counties with COVID-19 incidence greater than 

the national median had higher average annual PM2.5 concentration, earlier occurrence of the first 

case, more tests performed, and were less likely to be reopened. Higher population density, 

higher proportion of African Americans and Hispanic, population in poverty, population with 

less than a high school education and less owner-occupied properties were also observed in 

counties with increased incidence of COVID-19. 

Table 2-4 shows the association found between ambient PM2.5 and COVID-19 infection after 

adjusting for potential covariates. Overall, each 1-µg/m3 increase in annual average 

concentration of PM2.5 was associated with increase in the cumulative COVID-19 risk, with a RR 

of 1.0756 (95% CI: 1.0376. 1.1149). This association was consistent over two surges of the 

pandemic, with a RR from 1.0506 (95% CI: 0.9857, 1.1197) to 1.0852 (95% CI: 1.0361, 1.1366) 

for each 1-µg/m3 increase in PM2.5. 
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In counties eligible for this study, 1,853 were located in states that had ever issued a facemask or 

face covering mandate. The RR of COVID-19 incidence for a county located within a state 

requiring facemask was 0.8466 (95% CI: 0.7598, 0.9432) as of September 12th, 2020, after 

controlling for incidence case number 14 days prior (August 28th, 2020) and other covariates 

(Table 2-4). A similar association was observed during the second surge (between May 29th and 

September 12th, 2020), with RR of 0.8360 (95% CI: 0.7298, 0.9577). However, facemask 

mandates seemed to have little impact on the incidence during the first surge (as of May 28th, 

2020), with the RR of 0.9889 (95% CI: 0.8667, 1.1283).  

State-wide stay home policy (ever) was issued in 2,659 counties. After adjusting for incidence of 

August 28th and other covariates, we observed reduction in COVID-19 incidence among the 

counties with effective stay home policy, with a RR of 0.9193 (95% CI: 0.8021, 1.0537) (Table 

2-4). Stay home policy showed similar protective effect during the second surge (RR = 0.9168, 

95% CI: 0.7833, 1.0730) and this effect was stronger during the first surge (RR = 0.7615, 95% 

CI: 0.5619, 1.0321). 

Since facemask mandates and stay home policy might be potential effect modifiers on the 

association between PM2.5 and COVID-19, we performed stratified analyses by facemask policy 

(ever issued/never issued) and by stay home policy (ever issued/never issued). Results are shown 

in Table 2-5. Though the incidence associated with 1-µg/m3 increase in PM2.5 seemed to be 

similar overall and during the first surge, this association was enhanced among counties locating 

in state with a facemask policy (RR = 1.1161, 95% CI: 1.0640, 1.1708) compared to those not 

requiring a facemask (RR = 1.0417, 95% CI: 0.9905, 1.0955). Those counties locating in a state 

without an effective stay home order experienced higher COVID-19 risk associated with 1-

µg/m3 increase in PM2.5 (RR = 1.4050, 95% CI: 1.2961, 1.5230 for the first surge; RR = 1.1543, 
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95% CI: 1.1016, 1.2095 for overall), whereas slight increase was still observed overall (RR = 

1.0798, 95% CI: 1.0386, 1.1226) and during the first surge (RR = 1.0186, 95% CI: 0.9565, 

1.0848) in counties with an effective stay home order. 

 

2.4 Discussion 

Our study utilizing data up to September 12th, 2020, from 3,096 counties across the United States 

suggested that each 1-µg/m3 increase in long-term PM2.5 was associated with a 7.56% increase in 

COVID-19 incidence. Our data also suggested that preventive interventions, including facemask 

mandates and stay home orders, reduced the risk of COVID-19 by 15% and 8%, respectively. 

However, implementation of facemask mandates or stay home orders did not modify the 

association between long-term exposure to PM2.5 and COVID-19 incidence. The potential 

mechanisms for the impact of PM2.5 include (1) long-term exposure to PM2.5 might lead to 

chronic inflammation in the respiratory pathway, which predisposes individuals to COVID-19; 

(2) chronic exposure to PM2.5 might impair cilia, which acts as the first line of defense; as a 

result, people with abnormal cilia might be more vulnerable to any viral infection [85]; and (3) 

finally, PM2.5 exposure induces the over-expression of angiotensin-converting enzyme 2 (ACE2), 

which is the receptor SARS-CoV-2 binds to; this might also lead to increasing susceptibility to 

be infected [7, 90]. 

These findings built on earlier findings by showing that long-term exposure to PM2.5 is a risk 

factor and by showing that the levels of exposure to PM2.5 in the US are sufficiently high to 

increase the risk of COVID-19. Our results were consistent with the association between long-

term exposure to PM2.5 and COVID-19 mortality. Wu et al. reported that each 1-µg/m3 increase 
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in long-term PM2.5 was associated with 11% increase in COVID-19 mortality using the same 

exposure window and geographic location [79]. Our finding that long-term exposure to PM2.5 

increased the risk of COVID-19 using the negative binomial models was consistent with the 

positive correlations reported by studies in Europe and in the US, employing different statistical 

models (Table 2-1) [81-84]. Thus, we provided an alternative perspective to examine such 

association when the linear assumption between COVID-19 incidence and PM2.5 concentration 

might not hold.  

Previously, a study in the US, using county-level data as of May 31st, 2020, applied a linear 

regression model and suggested that an additional 23.5 COVID-19 cases were associated with 

each 1-µg/m3 increase in 2016 annual average PM2.5 concentration [84]. We confirmed the 

positive correlation and updated the COVID-19 incidence cases as of September 12th, 2020. 

Other than using an arbitrary cut-off point, we examined the trend of the pandemic and selected 

the date corresponding to the end of each surge. Moreover, we applied a longer exposure 

window from 2000 to 2016 to better represent the long-term PM2.5 exposure than using a single-

year average concentration. Potential bias due to disease progression was addressed by including 

additional confounders, such as days since the first case reported. In addition, we also consider 

the potential effect modification by facemask mandates or stay home orders.  

This is the first study to examine how the association between long-term PM2.5 exposure and 

COVID-19 incidence may be affected by state prevention policies, including facemask mandates 

and stay home policy. Importantly this study suggests a mitigation effect of stay home and face 

mask policies. Facemask mandates showed stronger protective effect toward later course of the 

pandemic (Table 2-4). This might be because the consciousness of wearing face coverings in 

public and the supply of face coverings increased as the pandemic progressed. Wearing 
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facemasks is an effective way of preventing viral transmission via coughing droplets [65] and 

reduces infection of COVID-19 among health care workers [64]. Moreover, stay home order 

seemed to be more effective at the beginning of the pandemic (Table 2-4) and, as the virus 

spread slowed down, states tended to terminate such orders. This diluted the associations we 

observed for the later stage of the pandemic. Stay home orders, also known as lockdown, was 

associated with reduced air pollution in many countries [72, 91-96], including the US [93]. 

During lockdown, reduced overall mortality was observed in China [94]; less excess life cancer 

risk was estimated in India [95]; and saving due to reduced morbidity might meanwhile relieve 

economic loss [97]. Therefore, stay home orders might help to alleviate the burden of COVID-19 

incidence via the reduction of virus transmission among individuals as well as reduced exposure 

to air pollution, which is a risk factor for COVID-19.  

The study was subject to several limitations. First, due to the nature of the ecologic study design, 

the results might be vulnerable to ecologic fallacy. In addition, we might still have residual 

confounding even after controlling for county-level and state-level covariates. Moreover, our 

exposure data for PM2.5 ends in 2016, which was 4 years before the pandemic. However, the 

previous exposure may still serve as an indicator for more recent ambient exposure and our result 

was consistent with the positive findings between short-term PM2.5 exposure and COVID-19 

incidence previously reported [73-76]. Implementation of and compliance with facemask 

mandates and stay home policies might cause misclassification. However, this would dilute the 

effect and lead to more conservative estimates on the preventive effects. Though the incidence 

14 days prior was controlled when assessing the association of policies, reverse causation might 

still be an issue, moving estimates towards the null.  
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Further research should examine whether some of the elevated risk experienced by communities 

of color and low-income communities in the US is due to higher exposure to air pollution. 

Potential policy implications of these findings include (1) the importance of further lowering the 

long-term exposure to PM2.5 in the US and (2) the heightened importance of stay home and face 

mask policies among populations with air population exposure. 

Our study added evidence that long-term PM2.5 exposure increased reported COVID-19 cases in 

the community during each of the first two surges and cumulatively as of September 12th, 2020, 

in the US. Although both state-level implementation of facemasks mandates and stay home 

orders were effective in preventing the spread of COVID-19, no clear effect modification was 

observed with long-term exposure to PM2.5 on the risk of COVID-19. 
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CHAPTER 3. IMPACT OF SARS-COV-2 VACCINES ON COVID-19 INCIDENCE AND  

MORTALITY IN THE UNITED STATES 

3.1 Introduction 

Since being recognized in December, 2019, the Severe Acute Respiratory Syndrome coronavirus 

2 (SARS-CoV-2) pandemic has caused more than 479 million cases and six million deaths 

worldwide [98]. The United States has been particularly affected, with almost 80 million 

Coronavirus 2019 (COVID-19) infections and 972 thousand deaths reported as of March 25th, 

2022 [13]. Though a number of non-pharmacologic prevention initiatives (NPIs) have been 

introduced to slow SARS-CoV-2 transmission [1], vaccines are now recognized as among the 

most effective means for preventing COVID-19 cases and deaths [99]. 

Three vaccine preparations are authorized for use in the US. The BNT162b2 vaccine (Pfizer, Inc. 

and BioNTech) and the mRNA-1273 (Moderna) vaccine have full US Food and Drug 

Administration (FDA) approval [100, 101], while JNJ-78436735 (Janssen Pharmaceuticals) is 

available under an emergency use authorization. All three vaccines are effective in preventing 

SARS-CoV-2 infections and COVID-19 associated diseases, hospitalizations, and deaths [102-

104], though vaccine effectiveness wanes over time and breakthrough infections occur [99, 105].  

Numerous studies have demonstrated that SARS-CoV-2 vaccines are effective in preventing 

COVID-19 infections and disease in individuals outside of clinical trials, including among health 

care workers, first responders, individuals attending ambulatory clinics, veterans, and in nursing 

homes [106-108]. However, vaccine waning has been reported, especially after 6 months being 

fully vaccinated [109-111]. Vaccine effectiveness also varies by SARS-CoV-2 variant. Omicron, 

the most recent predominant variant, evades infection- or vaccination-induced immunity more 
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effectively than Delta variant, and correspondingly has higher rates of breakthrough infections or 

disease reported compared with other variants [109, 111-113]. With the previous recognition of 

waning vaccine immunity and the rise of Delta as the predominant SARS-CoV-2 variant in the 

US, the FDA authorized the emergency use of one or two boosters for COVID-19 vaccines, 

including the use of a heterologous booster [114-116]. Studies showed the effectiveness of 

vaccines improved after a booster dose, including against Omicron [111, 117, 118].  

Despite the proven safety and effectiveness of these vaccines, a substantial minority of the adult 

US population remains resistant to getting vaccinated [119]. To understand the impact of SARS-

CoV-2 vaccines, it is imperative to evaluate the impact of vaccination on community-wide 

SARS-CoV-2 cases and COVID-19 disease, not just among those vaccinated—a concept 

popularly referred to as “herd immunity” [120]. Moreover, it is worth examining whether and by 

how much such an impact might differ corresponding to different dominant strains in the 

community. To investigate the impact of population percentages of SARS-CoV-2 complete 

vaccination on community-wide COVID-19 case and mortality rates, we undertook an ecological 

analysis of US county vaccination rates on reported county COVID-19 cases and deaths, 

controlling for socioeconomic, demographic, comorbid conditions, rural/urban, air pollution, and 

related factors, the introduction of NPIs and the presence of most prevalent strain in the US  

 

3.2 Methods 

Poisson distribution with generalized linear models [121] were used to estimate associations 

between cumulative US county-level complete vaccination rates of all age groups and the daily 

change in county-wide COVID-19 incidence and mortality between April 23rd, 2021, and March 
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25th, 2022. The dates represent when Delta was first recognized in the US to the end of the study 

period. The analyses were divided into three periods to account for the most dominant strain in 

the US during each period. The first period was from April 23rd to July 2nd, 2021 before the Delta 

predominance and when Alpha was the most prevalent strain. Delta was responsible for the 

majority of reported US COVID-19 cases from July 3rd to December 1st, 2021. Between 

December 2nd, 2021 and March 25th, 2022, Omicron began circulating in the US and replaced 

Delta to become the dominant strain.  

All models were adjusted for the following potential confounders: annual average PM2.5 between 

2000 and 2018, population density, poverty, education, proportions of White, proportions of 

male, proportion of population older than 65 years old, owner-occupied property, median house 

value, median household income, percentage of people without health insurance, proportion of 

people living in rural area, prevalence of tobacco smoking, and obesity. All covariates were 

measured at the county level. State-level variables for NPIs policies (facemask mandates, stay 

home orders) also were included in models. Table 3-1 summarizes the data source.  

County-level COVID-19 incidence and mortality data were obtained from the Johns Hopkins 

University, Center for Systems Science and Engineering Coronavirus Resource Center (CSSE). 

CSSE collects county-level confirmed numbers of cases and deaths of 3,342 counties across the 

US from the US Centers for Disease Control and Prevention (CDC) as well as state departments 

of health since January 21st, 2020 [13]. 

County-level vaccine data were obtained from Covid Act Now. These data are derived from the 

US Department of Health and Human Services, the CDC, the New York Times, and official state 

and county dashboards. Data on vaccinations initiated, vaccination regimens completed and 

booster shots received were available for all 50 states [122]. To allow for the development of 
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protective immunity after vaccination, a two-week lag was introduced after people were 

completely vaccinated (a person vaccinated on June 18th was considered fully protected by July 

2nd). The two-week lag also was used to account for time between exposure and development of 

COVID-19 disease. To assess the impact of vaccination on COVID-19 mortality, a four-week 

lag was used (vaccinated by September 2nd to assess the impact on mortality on September 30th).  

County-level annual average of PM2.5 between the years 2000 and 2018, as well as county-level 

covariates, were available from the Atmospheric Composition Analysis Group [85]. County-

level socioeconomic and demographic variables for 2020 were available from the US 

Census/American Community Survey. 2020 data on the prevalence of adult tobacco smoking 

and adult obesity and the proportion of people living in rural area were accessible through the 

County Health Rankings & Roadmaps program [86]. State averages were used to replace missing 

values for county-level prevalence for smoking and obesity. State-wide non-pharmacologic 

prevention policies, including facemask use and stay home orders, were obtained from the 

Boston University School of Public Health [63].  

Counties with invalid Federal Information Processing Standards (n = 10), missing covariates (n = 

98), missing vaccination status with a 2-week (n = 113) or a 4-week (n = 122) lag, and negative 

change in incidence (n = 48) or in mortality (n = 70) possibly due to data entry error were 

excluded. As a result, data from 3,073 counties in 48 states were available to investigate the 

association between population vaccination rates and county-wide COVID-19 incidence and 

3,042 counties in 48 states to investigate the association between vaccination rates and COVID-

19 mortality. Among these eligible counties, 2,906 counties in 46 states and 2,876 counties in 46 

states also reported percentage of people receiving a booster shot during the Omicron 

predominance and were utilized to assess the association between booster coverage and COVID-
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19 incidence and mortality, respectively (Table 3-3). Relative risks (RR) and 95% confidence 

intervals (CI) are reported. Analyses were performed in SAS 9.4 (Cary, NC).  

 

3.3 Results 

Among the 3,073 counties across 48 states, the average county total population complete 

vaccination rate was 50.79% as of March 11th, 2022. Counties with complete vaccination rates 

above the national median (49.8%) had higher median house values, higher median household 

incomes, higher population density, and less population living in rural area compared with 

counties with vaccination rates below 49.8%. These counties also were more likely to be located 

in states where a facemask policy or a stay-home order was ever issued before July 2nd, 2021 

(Table 3-2).   

When Alpha was the dominant strain in the US, each percentage increase in a county’s total 

population complete vaccination rate was associated with a 4% decrease in county-wide COVID-

19 cases (RR = 0.9607, 95% CI: 0.9553, 0.9661) and with a 3% reduction in COVID-19 

mortality (RR = 0.9694, 95% CI: 0.9653, 0.9736). However, county-level complete vaccine 

coverage was not associated with decreases in COVID-19 cases during the Delta (RR = 0.9988, 

95% CI: 0.9964, 1.0011) and Omicron (RR = 0.9969, 95% CI: 0.9919, 1.0019) predominance. 

The association between complete vaccination rates and COVID-19 mortality declined to less 

than 0.1% (RR = 0.9934, 95% CI: 0.9889, 0.9980) when Delta accounted for the majority of 

reported cases in the US between July 3rd and December 1st, 2021. When Omicron began 

circulating, complete vaccination rate was associated with a slight increase of 0.6% in county-

level COVID-19 mortality (RR = 1.0061, 95% CI: 1.0022, 1.0101). In contrast to the 

associations between complete vaccination rates and COVID-19 outcomes during the Omicron 
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predominance, a 6% reduction in COVID-19 incidence (RR = 0.9356, 95% CI: 0.9235, 0.9479) 

and a 4% reduction in COVID-19 mortality (RR = 0.9595, 95% CI: 0.9431, 0.9761) were 

observed with each percentage increase in people receiving a booster shot at the county level 

(Table 3-3). 

 

3.3 Discussion 

Data from 3,073 counties across 48 states demonstrates that the associations between county-

level complete vaccination rate and COVID-19 incidence and mortality varied based on the most 

prevalent SARS-CoV-2 variant circulating in the US between April 23rd, 2021 and March 25th, 

2022 after adjusting for potential confounders. The protective associations between county-level 

complete vaccination rate and COVID-19 incidence and mortality were observed during the 

Alpha predominance, but such associations attenuated later when Delta or Omicron was the most 

prevalent strain in the US. However, after booster shots were available, the increase in the county 

percentage of people receiving a booster shot was associated with reduction in both COVID-19 

incidence and mortality between December 2nd, 2021 and March 25th, 2022.  

This study is among the first to show the population-wide association between SARS-CoV-2 

vaccination rate and COVID-19 incidence and mortality stratified by the predominant strain 

circulating in the country. The results show that county-level vaccination rate has different 

associations with COVID-19 incidence and mortality during different periods in the US. The 

protection was highest shortly after COVID-19 vaccines became widely available while Alpha 

was the predominant circulating strain and declined in later periods. This pattern might be due to 

the waning effect of the vaccines against infection over time within the community. A meta-



33 
 

analysis showed that though vaccine effectiveness against SARS-CoV-2 infections was reduced, 

vaccine remained highly efficient in protecting people from severe diseases due to COVID-19 

[110]. In addition, as vaccine uptake increased and cases declined, most states lifted their NPIs 

orders [63]. Without the protection of NPIs and given the waning of vaccine effectiveness, 

people became more susceptible to COVID-19 infection even when fully vaccinated. Besides the 

waning vaccine effectiveness, our results also suggest the association of vaccine coverage and 

COVID-19 incidence might depend on the most prevalent strain in the community. The 

protection of increased vaccination coverage against county-level COVID-19 incidence was not 

observed when Omicron circulation predominated, which has been shown to evade previous 

immunity more than Alpha or Delta [112]. In the light of the waning vaccine effectiveness and 

breakthrough cases, a booster shot has been recommended. Individual-level and experimental 

data demonstrate that a third dose of mRNA COVID-19 vaccines increases vaccine efficacy 

[111, 112]. Similarly, our results also suggest that the increasing uptake of a booster shot is 

associated with the reduction in community COVID-19 cases and deaths, indicating possible 

spillover protective effects as the percentage reductions in population COVID-19 cases and 

deaths generally exceeded the percentage increases in population proportion of people receiving 

a booster shot.  

The study was subject to several limitations. First, ecologic study designs are vulnerable to the 

ecologic fallacy. Therefore, caution is required when interpreting the study results, especially 

when extrapolating population findings to the individual level. In addition, we cannot rule out the 

possibility of residual confounding even after controlling for numerous county-level and state-

level covariates. Using COVID-19 reported cases may underestimate of the number of actual 

infections due to under-testing of asymptomatic patients, especially when self-tests became 
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widely available. However, alternative estimates for cumulative incidence, such as 

seroprevalence [123], also have limitations including sampling bias, test sensitivity and 

specificity, and the progress of the pandemic [124]. Our analysis was not able to assess the 

impact of the three different vaccines currently available in the US, which likely had different 

efficacies. Although a detailed distribution of different variants in the US was not available, we 

examined the associations stratified by the most dominant strain. Therefore, our results represent 

the associations between vaccine rates overall and COVID-19 incidence and mortality in the US 

for vaccines as actually deployed and SARS-CoV-2 variants as they circulated during the period 

of our analysis. 

Nevertheless, this study is the first to estimate the association between complete vaccination 

rates and COVID-19 incidence and mortality in the US general population using county-level 

data. This nation-wide study covers 3,073 counties in 48 states across the entire country, 

showing the population-based impact of increasing complete vaccination rates, as well as 

increasing percentage of those receiving a booster shot. Our results agree with the observation of 

waning effectiveness over time and higher infection breakthrough rates due to the Omicron 

variant. However, increasing the coverage of booster shot appear to be an effective way to 

protect individuals in the community and to potentially to achieve herd immunity.  



35 
 

CHAPTER 4. AIR POLLUTION AND LUNG AND UADT CANCERS 

SUSCEPTIBILITY IN LOS ANGELES 

4.1 Introduction  

Air pollution and particulate matters (PM) in ambient air pollution are known carcinogen to 

humans and are regarded as the most widespread environmental carcinogen [55]. Household air 

pollution (HAP) from solid fuels remained among the leading global risk factors for deaths and 

disability-adjusted life-years, accounting for 2.8 million deaths in 2015 [56].  

Studies have investigated the association between exposure to ambient air pollution and either 

incidence or mortality of lung cancer around the world, though there are still inconsistent 

findings [125-135]. These studies reported lung cancer incidence and mortality either separately, 

considering two as separate events of interest, or together, treating mortality as an indicator for 

incidence based on the high fatality of lung cancer [60, 136-141]. In the US, 5 perspective 

cohorts among general population [142-150] and two cohorts linking different registries [151-

153] investigated the association between air pollution and lung cancer incidence or mortality. 

Only one study examined how air pollution might affect lung cancer survival [154]. Meta-

analyses suggest about 10% increase in lung cancer risk associated with 10-µg/m3 increase in 

PM2.5 [137-139]. Such association appeared to be stronger among never or former smokers [141, 

147, 149].   

Though a study demonstrated a large increase in lung cancer susceptibility when accounting for 

various sources of HAP [155], many studies invested the association between lung cancer and 

HAP due to specific emission sources, such as biomass fuel burning and environmental tobacco 

smoking (ETS). Solid fuel use is associated with lung cancer in many developing countries [156-
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159]. In addition, females may be more vulnerable to develop lung cancer being exposed to solid 

fuels [160]. Environmental tobacco smoking (ETS) is another major source of HAP that is 

associated with increased risk of lung cancer [160-163]. 

Unlike the association between air pollution and lung cancer, few studies have investigated the 

association between air pollution and UADT cancers. A European study concluded a marginally 

positive association (HR = 1.05 per 5.0-µg/m3, 95% CI: 0.62, 1.77) between PM2.5 and UADT 

cancer risks [164]. Furthermore, studies in Asia found that increased PM2.5 was associated with 

specific sites of UADT cancers, such as nasopharynx [165], oral cavity [166], and esophagus 

[134]. However, a US study showed null associations between PM2.5 and site-specific UADT 

cancers mortality, probably due to the lack of power [167].  

Though the majority of studies were conducted in developing countries, studies suggested that 

the use of solid fuels is associated with increased risks of site-specific UADT cancers [168-174]. 

Positive associations between ETS exposure and specific site of head and neck cancer (HNC) 

were suggested [175-178]. In addition, a dose-response pattern was reported between ETS 

exposure and HNC [177, 179]. However, power is an issue to studies not only investigating the 

association between ETS and HNC [161, 180], but also the ones examining how ETS is 

associated with esophageal cancer [181, 182].  

Though studies tried to investigate that association between air pollution and lung cancer risk or 

mortality, the results are somewhat inconsistent among studies, not to mention the magnitude, 

suggested by the large I2 value of 53.0% for PM2.5 [60]. Moreover, most of these studies covered 

population across different geographic regions and over long period of time, which the source of 

emission might vary a lot. Especially, the composition of PM, which has different health effects, 
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could change. Hence, due to the heterogeneity of the association, it might not be appropriate to 

simply transpose findings to other populations. Limited evidence was available on the 

association between ambient air pollution and UADT cancers and most of these studies were 

under power. To our knowledge, this is the first study to examine the association between 

ambient PM2.5 and lung and UADT cancers susceptibility utilizing population-based data in Los 

Angeles (LA) with the availability of individual-level confounders and addressing the indoor air 

pollution at the same time.  

 

4.2 Methods 

The LA study, a population-based case-control study conducted in the LA county from 1999 to 

2004, was analyzed to investigate the association between air pollution and lung and UADT 

cancers. The study was approved by the Institutional Review Boards of University of California 

at Los Angeles (UCLA) and University of Southern California (USC). Informed consent was 

obtained from each participant. To meet the eligibility criteria for the LA study, all subjects were 

(a) residents of LA County at the time of diagnosis for cases or at the time of recruitment for 

controls; (b) between 18 and 65 years old during the study period, 1999 to 2004; and (c) English 

or Spanish speakers, or with translators at home.  

The USC rapid ascertainment system of the Cancer Surveillance Program for LA County is a 

population-based cancer registry for the LA County, collecting basic clinic and demographic 

information on all invasive cancer in the area, and was used to identify incident cases of lung and 

UADT cancers during the study period. Among cases, over 95% were histologically verified and 

the rest were confirmed by other diagnostic methods, such as magnetic resonance imaging and 
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computed tomography scan. Participation rates and the reasons for nonparticipation among 

eligible cases varied across different subsites. The participation rate for lung cancer was 39% and 

the lowest participation rate among UADT cancers was esophageal cancer at 35%, followed by 

laryngeal cancer (42%), pharyngeal cancer (45%), and oral cancer (54%). The nonparticipating 

reasons for lung cases were death (25%), refusal (16%), inability to establish contact (14%), ill 

health (5%), and refused permission by the case’s physician (1%) and the one for UADT cases 

were refusal (21%), inability to establish contact (18%), death (10%), and ill health (4%). 

Though there was no obvious difference in age and gender between enrolled cases and 

nonparticipating cases, African Americans had a lower participation rate comparing to other 

racial/ethnic groups. The LA study enrolled 611 incident lung cancer cases (ICD-O2 C33.9-

34.9), including 297 (49%) adenocarcinomas, 115 (19%) large cell carcinomas, 95 (15%) 

squamous cell carcinoma, 75 (12%) small cell carcinomas, and 29 (5%) lung cancers with other 

histologic types. Among 601 eligible participants diagnosed with UADT cases, there were 303 

oral cancers (C01.9-C09.9), 100 pharyngeal cancers (C10.0-C14.0, C30.0-C31.1), 90 laryngeal 

cancers (C32.0-C32.9), and 108 esophageal cancers (C15.1-C16.0). All 76 adenocarcinomas of 

UADT occurred at the site of esophagus, accounting for 69% of all esophageal cancers. Other 

histologic types of esophageal cancers were 32 (30%) squamous cell carcinomas and 2 (2%) 

cases with other histological types. The majority (465 cases or 94%) of other UADT cancers 

were squamous cell carcinomas and small portion (28 cases or 5%) were non-esophagus UADT 

cancers with other histological types [183].  

Eligible controls were selected from the general population and individually matched to cases on 

age decade, gender, and residential neighborhood. Individuals with previous diagnoses of lung 

and UADT cancers, indicated by Cancer Surveillance Program records and verified during 
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interview were excluded from control group. Controls were selected from a sequence of 30 to 40 

households in the same neighborhoods as cases based on a predefined algorithm. However, the 

household sequence was expanded if no eligible or willing controls were identified. The 

participation rates among controls were 72% and refusal (19%) and inability to establish contact 

(8%) were reasons for nonparticipation. Females were more likely to respond among controls 

[183]. A total of 1040 controls, including 562 controls matched to lung cancer cases and 478 

controls matched to UADT cases, participated in the study. 

In this study, based on the detailed information collected for tobacco use and alcohol drinking, 

smokers were defined as those smoking a total of at least 100 cigarettes in their lifetime and 

alcohol drinkers were those ever consumed at least one alcoholic drink (including beer, wine, or 

liquor equivalent to 14 grams of alcohol) per month for a period of at least six months. Pack-

years, one of which is equivalent to smoking 1 pack of cigarettes per day for 1 year, and drink-

years, one of which indicates consuming 1 alcoholic drink of any kind per day for 1 year, were 

used as cumulative measures of tobacco smoking and alcohol drinking.  

Address at diagnosis for cases and at reference date for controls were geocoded to latitude and 

longitude coordinates using address locators. Annual average concentration of ambient PM2.5 

concentrations from 1998 to 2018 at each geocoded address were obtained from the Atmospheric 

Composition Analysis Group [85]. PM2.5 concentration 1-year before the diagnosis or reference 

date was assessed.  

Solid fuel used for cooking or heating included use of fireplace, wood, coal, oil and kerosene, 

since adulthood and exposure to ETS since adulthood were obtained from the questionnaire. 
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Exposure to HAP would be defined as being exposed to any of these two sources since 

adulthood.  

Air pollution index (API) was computed based on exposure to any HAP since adulthood, 

including exposing to above-mentioned solid fuels for cooking or heating or exposing to ETS at 

home, and exposure to ambient PM2.5 based on the tertile score (0 for tertile 1, 1 for tertile 2, and 

2 for tertile 3).  

Among 611 lung cancer cases, we excluded those who cannot be geocoded (n = 6), with missing 

PM2.5 (n = 21), missing covariates (n = 2), and missing ETS (n = 2) and HAP (n = 3) since 

adulthood. Among 601 UADT cancers cases, we excluded those who cannot be geocoded (n = 

3), with missing PM2.5 (n = 26), missing covariates (n = 3), and missing ETS (n = 3) and HAP (n 

= 1) since adulthood. Among 562 controls matched to lung cancer cases, we excluded those who 

cannot be geocoded (n = 1), with missing PM2.5 (n = 24), and missing covariates (n = 1), missing 

ETS (n = 1) since adulthood. Among 478 controls matched to UADT cancers cases, we excluded 

those with missing PM2.5 (n = 26), and missing covariates (n = 1), and missing ETS (n = 3) since 

adulthood. As a result, the final analytical set included 577 lung cancer cases, 565 UADT cancer 

cases, 535 lung cancer controls, and 448 UADT cancers controls.  

To account for the potential overmatching or selection bias due to matching on residential 

neighborhood, we used two sets of control, the combined control and the swapped control (i.e., 

using UADT controls for lung cancer analysis and lung cancer controls for UADT analysis), to 

assess the association between air pollution and lung and UADT cancer susceptibility. 

Unconditional logistic models were used to assess the association between lung and UADT 

cancers and ambient PM2.5, exposure to ETS or HAP since adulthood, and air pollution index 
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(API). Ambient PM2.5 was measured as continuous (per 1-µg/m3) and using median (below 

median: ≤ 19.1 µg/m3 vs. above median: > 19.1 µg/m3) and tertiles (Tertile 1: ≤ 17.9 µg/m3; 

Tertile 2: 17.9 µg/m3 < PM2.5 ≤20.9; and Tertile 3: > 20.9 µg/m3) of the combined controls.  

Unconditional logistic regression models were adjusted for potential confounders, including age, 

gender, education (less than high school, high school, some college, college, or graduate school), 

race/ethnicity (non-Hispanic White, African American, Hispanic, or Other), smoking 

(ever/never), packyears, drink-years, block group median household income in 1999 (obtained 

from census data), and ambient or indoor air pollution (if applicable). Stratified analyses were 

performed by the potential effect modifiers, such as histologic types, gender, and smoking status. 

Relative risks (RR) and 95% confidence intervals (CI) are reported. Analyses were performed in 

SAS 9.4 (Cary, NC). 

 

4.3 Results 

A total of 577 lung cancer cases, 565 UADT cancers cases, and 983 combined controls eligible 

in this study are included in this study and their characteristics are presented in Table 4-1. 

Briefly, cancer patients had higher smoking packyears, drank more alcohol, less likely to receive 

college or higher degree, and more likely to be in the other race/ethnicity group. Lung cancer 

patients had even higher smoking prevalence and longer smoking packyears, while UADT 

cancer cases had longer alcohol drinking drink-years and were more likely to be males.  

Table 4-2 shows the association between air pollution, measured as ambient PM2.5 one-year 

before diagnosis, household air pollution (HAP, measured as exposure to solid fuel or ETS after 

adulthood), and air pollution index (API), and lung and UADT cancers susceptibility.  
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After adjusting for potential confounders, a slight increase of 2% in lung cancer risk was 

observed associated with each 1-µg/m3 increase in ambient PM2.5 concentration one-year before 

diagnosis, with a odds ratio (OR) of 1.02 and 95% confidence interval (CI) from 0.98 to 1.06, 

when comparing to the combined controls. People residing in areas experiencing the highest 

tertile (> 20.9 µg/m3) of PM2.5 concentration had elevated risk in lung cancer with an OR of 1.12 

(95% CI: 0.82, 1.54), comparing to the first tertile (PM2.5 concentration ≤ 17.9 µg/m3). This 

association was not observed among people living in the second tertile (17.9 < PM2.5 

concentration ≤ 20.9 µg/m3), with an OR of 0.98 (95% CI: 0.72, 1.33). When using controls 

originally matched to UADT cases (UADT controls), the results were similar. The association 

was consistent after stratifying by histologic types (Table 4-3). However, the association between 

each 1-µg/m3 increase in ambient PM2.5 concentration and lung cancer susceptibility were 

enhanced a little bit among males (OR = 1.06, 95% CI: 1.00, 1.12) comparing to females (OR = 

0.98, 95% CI: 0.93, 1.04). Both the second tertile (OR = 1.07, 95% CI: 0.68, 1.67) and the 

highest tertile (OR = 1.49, 95% CI: 0.95, 2.33) showed increased risk in lung cancer 

susceptibility among males, but not among females (Table 4-9). After stratifying by smoking 

status, nonsmokers experienced a 6% increase in lung cancer risk associated with 1-µg/m3 

increase in ambient PM2.5 (OR = 1.06, 95% CI: 0.98, 1.15), while the association tended to be 

null (OR = 1.00, 95% CI: 0.96, 1.05) for those who ever smoked (Table 4-15). However, the 

interactions between PM2.5 and smoking seemed to be null on the multiplicative scale (Table 4-

21).   

The association between lung cancer susceptibility and HAP (OR = 0.87, 95% CI: 0.67, 1.14) 

and API (OR = 0.82, 95% CI: 0.58, 1.18) seemed to be null, even showing inverse associations, 

after adjusting for potential confounders (Table 4-3). After stratifying by histologic types, HAP 
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remained independent from lung cancer susceptibility, other than among those with squamous 

cell carcinoma, with an OR of 1.17 (95% CI: 0.65, 2.12) (Table 4-5). API seemed to be 

associated with increased risk in large cell carcinoma (OR = 1.14, 95% CI: 0.51, 2.55), but 

inversely associated with the small cell lung cancer risk (OR = 0.46, 95% CI:0.21, 1.01) (Table 

4-7). Exposure to HAP seemed to be inversely associated with lung cancer susceptibility among 

males (OR = 0.71, 95% CI: 0.49, 1.03) and such association seemed to be null among females 

(OR = 1.06, 95% CI: 0.72, 1.58) (Table 4-11). Gender did not alter the association between lung 

cancer risk and API (Table 4-13). Nonsmoker (OR for HAP = 1.14, 95% CI: 0.68, 1.89; OR for 

API = 1.21, 95% CI: 0.63, 2.31) tended to be more vulnerable from HAP or any source of air 

pollution than smokers (OR for HAP = 0.78, 95% CI: 0.57, 1.08; OR for API = 0.69, 95% CI: 

0.44, 1.08) (Table 4-17 and Table 4-19). 

After adjusting for potential confounders, an increase of 4% in UADT cancers risk was observed 

associated with each 1-µg/m3 increase in ambient PM2.5 concentration one-year before diagnosis, 

with an OR of 1.04 (95% CI: 1.00, 1.09), when comparing to the combined controls. After 

categorizing PM2.5 into tertiles, both second tertile (OR = 1.37, 95% CI: 1.02, 1.86) and the 

highest tertile (OR = 1.69, 95% CI: 1.25, 2.29) were associated with increased risks in UADT 

cancers. Such associations were strengthened when using controls originally matched to lung 

cancer cases (lung controls) (Table 4-2). Similar patterns were observed when stratifying by 

different UADT subtypes (Table 4-4), by gender (Table 4-10), and by smoking status (Table 4-

16). There is no evidence for interaction between PM2.5 and smoking on the susceptibility of 

UADT cancers (Table 4-22). 

Unlike lung cancer, exposure to HAP (OR = 1.09, 95% CI: 0.85, 1.39) and API (OR = 1.42, 95% 

CI: 0.99, 2.02) were associated with increase susceptibility in UADT cancers (Table 4-2). HAP 
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seemed to be a risk factor for head and neck cancers, but not for esophageal cancers (Table 4-6). 

The risk associated with API does not alter too much across different UADT subtypes (Table 4-

8). When stratifying by gender, exposure to HAP was associated with UADT susceptibility 

among females (OR = 1.51, 95% CI: 0.95, 2.40), but not among males (OR = 0.94, 0.71, 1.27) 

(Table 4-12). Females also experienced more profound impact on UADT cancer risks due to API 

(OR = 2.70, 95% CI: 1.21, 6.03), comparing to males (OR = 1.16, 95% CI: 0.77, 1.74) (Table 4-

14). Similar patterns were observed among nonsmokers (OR for HAP = 1.41, 95% CI: 0.95, 

2.10; OR for API = 1.67, 95% CI: 0.95, 2.85) comparing to among smokers (OR for HAP = 

0.92, 95% CI: 0.67, 1.25; OR for API = 1.27, 95% CI: 0.78, 2.06) (Table 4-18 and Table 4-20). 

 

4.4 Discussion 

In this population-based case-control study in Los Angeles (LA), we examined the association 

between both ambient and indoor air pollution and lung and UADT cancers susceptibility. Our 

results suggest that ambient PM2.5 is associated with both lung and UADT cancers susceptibility.  

Consistent with previous studies [125, 127-130, 137-139, 184], we observed increased risk of 

lung cancer susceptibility associated with ambient PM2.5 exposure, but the 95% CI included the 

null. As a population-base case-control study in LA, the study location represents a more 

homogenous source of air pollutant emission comparing to studies across multiple study sites. 

Therefore, the magnitude of the association might not be comparable across studies, as shown by 

the large heterogeneity when pooling different studies [139]. Another California study, the 

California Teacher Study (CTS) did not conclude the association between lung cancer mortality 

and PM2.5 among female teachers (HR = 0.95, 95% CI: 0.70, 1.28), since only 234 lung cancer 
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deaths were identified during their follow up [148]. Though different methods of exposure were 

applied, our findings also indicated that the OR of lung cancer associated with 1-µg/m3 increase 

in PM2.5 is 0.98 (95% CI: 0.93, 1.04) among 291 female lung cancer cases. In addition, the 

stronger association between PM2.5 and lung cancer risks among nonsmokers were observed in 

the Nurses’ Health Study [149] and the extended Harvard Six Cities Study [147]. Consistently, 

we also observed a marginally increase in cancer risks associated with PM2.5 among nonsmokers, 

but not among people who ever smoked. However, we might lack power to conclude the 

potential interaction between PM2.5 and smoking on the susceptibility of lung cancer.  

The positive association between UADT cancers susceptibility support the findings reported by 

the ESCAPE cohort, though their 95% CI included the null [164]. The ESCAPE study also 

showed the association by histological types, that UADT squamous cell carcinoma (HR = 1.16 

per 10-µg/m3, 95% CI: 0.78, 1.72), but not UADT adenocarcinoma (HR = 0.55 per 10-µg/m3, 

95% CI: 0.09, 3.50), was associated with PM2.5 [160].  In a recent study using the SEER data, 

positive associations also were reported in different subsites, including oral (Incidence rate ratios 

(IRR) = 1.18, 95% CI: 1.03, 1.36), esophagus (IRR = 1.08, 95% CI: 0.88, 1.32), and larynx (IRR 

= 1.19, 95% CI: 0.97, 1.46), but not in cancer occurred in nose (IRR = 0.57, 95% CI: 0.35, 0.93) 

[184]. However, both nasopharyngeal cancer and oral cancer were associated with higher level 

of PM2.5 in Taiwan [165, 166]. In our study, no obvious difference was observed between 

different subsites of UADT cancers due to the limited sample size but support the positive 

association among UADT squamous cell carcinoma.  

Exposure to HAP since adulthood, combining solid fuel used for heating or cooking and ETS, 

was categorized into a binary variable. The data collected were without accounting for exposure 

intensity and duration, which might be vulnerable to potential measurement error, leading to 
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spurious observation of the associations between HAP and lung and UADT cancers, as reported 

by other studies previously [155, 157-160, 162, 163, 168-176, 178, 179, 185]. In addition, only 

very small proportion of participants were exposed to solid fuel used for heating or cooking 

during adulthood in our study, therefore the results of exposure to HAP were mainly over-

weighted by the exposure to ETS. After stratifying by smoking status, there seems to be a 

positive association between exposure to HAP and both cancer types among nonsmokers, 

however, the association remained null among smokers possibly due to a very strong effect of 

active smoking on both cancers. The slight increase in lung cancer risk among females 

associated with HAP during adulthood supports the observation that the association between 

household ETS and lung cancer was more profound among females [163]. However, our study 

lacks power to make a solid conclusion when stratifying by smoking status and by genders.  

There are several limitations in our study. Though we used different control sets to access the 

association between air pollution and lung and UADT cancers susceptibility, the results might 

still be vulnerable to selection bias due to the overmatching based on residential neighborhood. 

Such bias tends to attenuate the observed association towards the null due to lack of variation, 

leading underestimation. In such a case, the associations observed in our study should be 

conservative estimations. In addition, we could not rule out the possibility of measurement error, 

as discussed briefly before for the HAP measurement. Since we only have participants’ 

residential addresses at diagnosis or on the reference date, we could not accurately estimate the 

long-term ambient PM2.5 concentration and we assumed that the moving pattern was 

nondifferential between cases and controls before diagnosis or the reference date. Due to the 

availability of PM2.5, we could only apply a 1-year lag between exposure assessment and cancer 

diagnosis, which might not be sufficient given the long latency of cancer development. 
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Moreover, the air pollution index was intended to show the increase in susceptibility associated 

with additional source of air pollution based on the additive effect. It might be hard to interpret, 

but at least we could use a simple index to quantify overall effect of both ambient and indoor air 

pollution. Though we tried to adjust for potential confounders at individual and block group 

level, there still might be possibility of residual or unknown confounding. Sample size might also 

be an issue to detect associations in some subgroup analyses. False positive findings might be 

resulted due to multiple comparisons. In addition, the PM2.5 concentration is relatively high 

during the recruitment period of this study, comparing to current air pollution level in the LA 

county, which increased our chance to detection the association with our outcomes.   

Nonetheless, our study is one of the earliest studies to investigate both ambient and household air 

pollution at the same time and its association with lung and UADT cancers susceptibility in the 

LA county and highlights the importance of improving air quality to reduce the susceptibility of 

lung and UADT cancers. 
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CHAPTER 5. CONCLUSIONS AND PUBLIC HEALTH IMPLICATIONS 

Table 5-1 summarizes methods and findings of this study. In conclusion, this study suggests that 

air pollution is associated with both COVID-19 incidence, and lung and UADT cancers 

susceptibility. Ambient air pollution, the most widely spread carcinogen [55], may affect 

diseases via a variety of mechanisms such as altering immune response, increasing oxidative 

stress, causing inflammatory injury, inducing mutagenicity, and introducing respiratory tract 

damage [51-53]. It is also associated with adverse health effects, such as lung cancer, diseases in 

respiratory symptoms, including asthma and pneumonia, cardiovascular disease, preterm birth, 

low-birth weight, and emergency and hospital admission [54], as well as various infectious 

outcomes [56, 68-70]. However, individuals had little control over the ambient air pollution. 

Therefore, government and environmental agencies should set up proper public policy and 

regulations and enforce the policy implementation, which are essential to protect citizens from 

adverse effects associated with elevated PM2.5 and to reduce the burden of healthcare systems, 

especially during an emerging outbreak, as we observed at the beginning of the SARS-CoV-2 

pandemic. Thus, our results underscore the health hazards associated with ambient PM2.5, which 

may be crucial for policymaking and program planning for improving air quality.  

In addition, this study also adds evidence to the associations between PM2.5 exposure and lung 

and UADT cancers susceptibility, highlighting the importance of identifying environmental 

factors. While future studies should verify the present associations, the interaction between 

environmental risk factors, including PM2.5, and established risk factors for lung and UADT 

cancers, such as smoking and alcohol use, should also be examined for a better understanding of 

lung and UADT cancers etiology. Thus, effective prevention strategies to reduce lung and 

UADT cancers incidence can be developed for public health promotion.  
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Moreover, state-level non-pharmacologic prevention initiatives, such as facemask mandates and 

stay home orders, were effective in slowing down the spread of the SARS-CoV-2 during the first 

two surges of the COVID-19 pandemic. Though vaccine waning and breakthrough cases were 

observed, the protective effect of county-level cumulative complete vaccine coverages during the 

Alpha predominance and the protection from increasing booster coverages during the Omicron 

predominance highlight the importance to keep vaccine status up-to-date and suggest the 

‘spillover’ effect to other individuals in the community. Hence, our results suggest that though 

not complied by every individual in the community, non-pharmacologic prevention interventions 

and increased up-to-date vaccination coverage still protect the community from COVID-19. This 

may be helpful in better preparation for the next surge of COVID-19 outbreak and even for the 

next emerging pandemic in the future.  

  



  

50 
 

TABLES 

Table 1-1. Overview of Gaps in Literature  

 COVID-19 in the US Lung cancer 
UADT 
cancers 

 Incidence Mortality Susceptibility Susceptibility 

Long-term ambient PM2.5 Few - Yes Few 

  interact with smoking - - Few No 

Facemask mandates No - - - 

  modify the association with PM2.5 No    

Stay home orders No - - - 

  modify the association with PM2.5 No    

Vaccine coverage No No - - 

  by dominant variant strains No No - - 
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Table 2-1. Literature Review on Air Pollution and COVID-19 

Study Area Study Period Statistical Model Findings 

Northern 
Italy [73] 

February 24th, 
2020 – March 
13th, 2020 

Recursive binary 
partitioning tree 
approach 

Daily PM10 exceeding 50 µg/m3 with a 15-day 
lag was a significant predictor for COVID-19 
incidence 

Chinese 
cities 
(Wuhan, 
Xiaogan and 
Huanggang) 
[74] 

January 25th, 
2020–
February 29th, 
2020 

Poison regression 
adjusting for other air 
pollutants and 
meteorological 
variables in each city 

Daily PM2.5 was positively associated with 
COVID-19 incidence with RR from 1.036 to 
1.144. The association with PM10 was 
negative with RR between 0.915 and 0.964. 
Results for other pollutants (SO2, CO, NO2, 
and 8-hour O3) were not consistent among the 
study sites. 

Chinese 
cities 
(Wuhan and 
Xiaogan) 
[75] 

January 26th, 
2020–
February 29th, 
2020 

Univariate linear 
regression 

PM2.5 and NO2 were positively associated 
with COVID-19 incidence 4 days later in both 
cities, while PM10 and CO were inconsistent 
between cities. 

120 Chinese 
cities [76] 

January 23rd, 
2020–
February 29th, 
2020 

Generalized additive 
model adjusting for 
meteorological 
variables with city 
fixed effects 

PM2.5, PM10, NO2 and O3 with a 2-week lag 
were positively associated with COVID-19 
incidence, while SO2 was negatively 
associated. A 10µg/m3 increase in PM2.5 with 
a 2-week lag was associated with a 2.24% 
increase in COVID-19 incidence. 

49 Chinese 
cities [77] 

As of March 
22nd, 2020 

Multivariate linear 
regression model 
adjusting for GDP per 
capita and hospital beds 
per capita 

Both short-term (01/15/2020 – 02/29/2020) 
and long-term (2015–2019) exposure to 
elevated PM2.5 and PM10 were associated with 
increased COVID-19 fatality. A 0.24% and a 
0.61% increase in COVID-19 fatality were 
associated with 10-µg/m3 increase in short-
term and long-term PM2.5, respectively. 

7 
metropolitan 
cities and 9 
provinces in 
Korea [78] 

February 3rd, 
2020–May 
5th, 2020 

Generalized additive 
model adjusting for 
meteorological 
variables, location and 
date 

Significantly temporal associations were 
observed between COVID-19 incidence and 
daily NO2, CO and SO2, but not with PM2.5, 
PM10 or O3. 

3089 
counties in 
the United 
States [79] 

As of June 
18th, 2020 

Negative binomial 
fixed model adjusting 
for 20 covariates 

Each 1-µg/m3 increase in long-term PM2.5 
exposure (2000–2016 annual average) was 
associated with 11% increase in COVID-19 
mortality. 
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Table 2-1. Literature Review on Air Pollution and COVID-19 (continued) 

Study Area Study 

Period 
Statistical Model Findings 

3223 counties 
in the United 
States [80] 

As of July 
11th, 2020 

Negative binomial 
fixed model adjusting 
for other pollutants as 
well as county 
characteristics 

HAPs was associated with increase COVID-
19 mortality. Each 1-µg/m3 increase in long-
term PM2.5 exposure (2000–2014 annual 
average) was associated with 7% increase in 
COVID-19 mortality 

355 
municipalities 
in the 
Netherlands 
[81] 

As of June 
5th, 2020 

Linear regression 
controlling for 
covariates 

Long-term exposure to PM2.5 and NO2 were 
positively associated with COVID-19 
outcomes, including incidence and mortality, 
but not with SO2. Each 1-µg/m3 increase in 
long-term PM2.5 exposure (2015–2019) was 
associated with 9.4 more COVID-19 cases, 
3.0 more hospital admissions, and 2.3 more 
deaths. 

71 Italian 
provinces 
[82] 

As of April 
27th, 2020 

Spatial correlation Positive correlations were observed between 
COVID-19 incidence and long-term exposure 
(2016–2019) to NO2, PM2.5, PM10 and O3. 

20 Italian 
regions and 
up to 110 
provinces 
[83] 

As of March 
31st, 2020 

Multiple linear 
regression 

Both long-term exposure (2017 annual mean) 
to PM2.5 and PM10 were associated with 
COVID-19 incidence. Each 1-µg/m3 increase 
in PM2.5 was associated with 0.26 increase in 
base-10 transformed COVID-19 incidence. 

3108 counties 
in the United 
States [84] 

As of May 
31st, 2020 

Linear regression with 
adjusting for county-
level covariates 

PM2.5 (2016 annual mean) and diesel PM 
were associated with both COVID-19 
incidence and mortality. Additional 23.5 
cases and 1.08 deaths were associated with 
each 1-µg/m3 increase in PM2.5. 
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Table 2-2. Summary of data sources 

Sources Description 

Johns Hopkins University Center for Systems 
Science and Engineering Coronavirus Resource 
Center (CSSE)[13] 

Cumulative county-level confirmed cases 
and deaths up to September 12th, 2020 

GitHub repository by Wu et al. [79] Annual average PM2.5 concentration between 
2000 and 2016 

The US Census/American Community Survey County-level socioeconomic and 
demographic variables in 2016 

The County Health Rankings & Roadmaps 
program[86] 

Country-level behavioral variables and 
rural/urban status in 2020 

Boston University of Public Health[63] State-level policy of face masks mandates 
and stay home orders before September 12th, 
2020 

The COVID tracking project [88] State-level total tests performed 

The New York Times [87] State-level reopening policies 
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Table 2-3. Characteristics of Counties (n = 3,096) by COVID-19 Risk 

County Characteristics 

Total 

(n = 3,096) 

COVID risk 

≤1.29% 

(n = 1,548) 

COVID 

risk >1.29% 

(n = 1,548) 

Mean (SD) Mean (SD) Mean (SD) 

Risk of COVID-19 as of 9/12 (%) 1.65 (1.60) 0.69 (0.34) 2.62 (1.78) 

Average ambient PM2.5 (µg/m3) 1 8.40 (2.52) 7.49 (2.49) 9.32 (2.20) 

Days since first case reported 163 (28) 156 (35) 170 (17) 

Total test results reported by state (1000 
tests) 

2333 (2394) 2114 (2415) 2553 (2353) 

Duration of stay at home issued by state 48 (40) 54 (44) 41 (35) 

State stay-home order 2, n (%)    

  Ever issued 2659 (85.89) 1312 (84.75) 1347 (87.02) 

  Never issued 437 (14.11) 236 (15.25) 201 (12.98) 

State facemask policy 2, n (%)    

  Ever issued 1853 (59.85) 964 (62.27) 889 (57.43) 

  Never issued 1243 (40.15) 584 (37.73) 659 (42.57) 

State reopening status, n (%)    

  Reopened 1225 (39.57) 815 (52.65) 410 (26.49) 

  Reopening 580 (18.73) 248 (16.02) 332 (21.45) 

  Pausing or reversing reopening plan 1291 (41.70) 485 (31.33) 806 (52.07) 

Population density per square mile 
427.39 

(2184.38) 
201.44 (720.43) 653.34 (2987.47) 

African Americans population (%) 8.02 (14.07) 2.14 (5.07) 13.89 (17.35) 

Hispanic Americans population (%) 7.54 (12.28) 5.14 (8.61) 9.94 (14.69) 

Population living in poverty (%) 10.46 (5.90) 9.39 (5.36) 11.54 (6.20) 

Population over 65 years old (%) 18.43 (4.50) 19.85 (4.28) 17.01 (4.27) 

1 Annual average of PM2.5 between 2000 and 2016.  
2 State stay-home order and facemask mandates ever issued before 12 September 2020. 
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Table 2-3. Characteristics of Counties (n = 3096) by COVID-19 Risk (continued) 

County Characteristics 

Total 

(n = 3096) 

COVID risk 

≤1.29% 

(n = 1548) 

COVID 

risk >1.29% 

(n = 1548) 

Mean (SD) Mean (SD) Mean (SD) 

Male (%) 50.07 (2.20) 50.25 (1.93) 49.90 (2.43) 

Population with less than high school 
education (%) 

21.28 
(10.68) 

18.23 (9.53) 24.32 (10.90) 

Owner occupied properties (%) 74.92 (8.41) 77.05 (6.94) 72.80 (9.18) 

Median house value ($1000) 
136.31 
(91.08) 

137.13 (88.39) 135.49 (93.71) 

Median household income ($1000) 
49.30 

(13.41) 
50.04 (11.87) 48.57 (14.75) 

Ever smokers (%) 17.43 (3.54) 16.95 (3.44) 17.92 (3.57) 

Obesity (%) 32.86 (5.41) 32.11 (5.09) 33.61 (5.62) 

1 Annual average of PM2.5 between 2000 and 2016.  
2 State stay-home order and facemask mandates ever issued before 12 September 2020. 
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Table 2-4. Adjusted relative risks of COVID19 associated with 1-µg/m3 increase in PM2.5, 

facemask policy and stay home policy 

 

RR 

(95% CI) 

(95% CI with robust SE) 
Surge 1 (as of 

May 28th, 2020)3 
Surge 2 (between May 29th and 

September 12th, 2020)4 
Cumulative (as of 

September 12th, 2020)4 

PM2.5
1, per 

µg/m3 

1.0506 
(1.0269, 1.0747) 
(0.9857, 1.1197) 

1.0852 
(1.0696, 1.1011) 
(1.0361, 1.1366) 

1.0756 
(1.0612, 1.0901) 
(1.0376, 1.1149) 

Facemask policy2 
  Never issued  Reference  

  Ever issued 
0.9889 

(0.9180, 1.0652) 
(0.8667, 1.1283) 

0.8360 
(0.8030, 0.8704) 
(0.7298, 0.9577) 

0.8466 
(0.8166, 0.8776) 
(0.7598, 0.9432) 

Stay home policy2 
  Never issued  Reference  

  Ever issued 
0.7615 

(0.6928, 0.8370) 
(0.5619, 1.0321) 

0.9168 
(0.8664, 0.9701) 
(0.7833, 1.0730) 

0.9193 
(0.8734, 0.9677) 
(0.8021, 1.0537) 

1Model 1 adjusts for population density, poverty, education, proportions of African Americans, 
proportions of Hispanic Americans, owner occupied property, median house value, median 
household income, smoking prevalence, obesity prevalence, population over 65 years old, 
gender, days since first case reported, total test results, duration of safer at home policy, 
facemask policy, and reopening status.  
2Model 2 adjusts for all covariates in model 1 + incidence of COVID19 up to 14 days prior (May 
14th, 2020 for surge 1 and August 28th, 2020 for surge 2 and cumulative) and PM2.5.  
3State stay-home order and facemask mandates ever issued before May 28th, 2020.  
4State stay-home order and facemask mandates ever issued before September 12th, 2020. 
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Table 2-5. Adjusted relative risks of COVID-19 associated with 1-µg/m3 increase in PM2.5 

by facemask policy and by stay home policy. 

 

RR 

(95% CI) 

(95% CI with robust SE) 

Surge 1 (as of May 

28th, 2020)4 

Surge 2 (between May 28th 

and September 12th, 2020)5 

Cumulative (as of 

September 12th, 2020)5 

Face mask policy1 

  Never issued 
1.0426 

(1.0144, 1.0717) 
(0.9645, 1.1270) 

1.0417 
(1.0165, 1.0675) 
(0.9905, 1.0955) 

1.0547 
(1.0293, 1.0807) 
(1.0109, 1.1004) 

  Ever issued 
1.0854 

(1.0327, 1.1407) 
(0.9817, 1.2000) 

1.1161 
(1.0958, 1.1368) 
(1.0640, 1.1708) 

1.0852 
(1.0673, 1.1034) 
(1.0420, 1.1301) 

Stay home policy 

  Never issued2 
1.4050 

(1.2885, 1.5319) 
(1.2961, 1.5230) 

1.1056 
(1.0406, 1.1746) 
(1.0478, 1.1665) 

1.1543 
(1.0870, 1.2257) 
(1.1016, 1.2095) 

  Ever issued3 
1.0186 

(0.9947, 1.0431) 
(0.9565, 1.0848) 

1.0970 
(1.0803, 1.1140) 
(1.0441, 1.1526) 

1.0798 
(1.0648, 1.0949) 
(1.0386, 1.1226) 

1Model 1 adjusts for population density, poverty, education, proportions of African Americans, 
proportions of Hispanic Americans, owner occupied property, median house value, median 
household income, smoking prevalence, obesity prevalence, population over 65 years old, 
gender, days since first case reported, total test results, duration of safer at home policy, and 
reopening status.  
2Model 2 adjusts for population density, poverty, education, proportions of African Americans, 
proportions of Hispanic Americans, owner occupied property, median house value, median 
household income, smoking prevalence, obesity prevalence, population over 65 years old, 
gender, days since first case reported, total test results, facemask policy, and reopening status.  
3Model 3 adjusts for all covariates in model 2 + duration of safer at home.  
4State stay-home order and facemask mandates ever issued before May 28th,2020.  
5State stay-home order and facemask mandates ever issued before September 12th, 2020. 
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Table 3-1. Summary of data sources 

Sources Description 

Johns Hopkins University Center for Systems 
Science and Engineering Coronavirus Resource 
Center (CSSE) [13] 

Cumulative county-level confirmed cases 
and deaths up to March 25, 2022 

Covid Act Now [122]  Cumulative county-level number of people 
completely vaccinated and number of 
completed vaccinated people receiving 
booster up to March 11, 2022 

Atmospheric Composition Analysis Group [85] Annual average PM2.5 concentration between 
2000 and 2018 

The US Census/American Community Survey  County-level socioeconomic and 
demographic variables in 2020 

The County Health Rankings & Roadmaps 
program [86]  

Country-level behavioral variables and 
rural/urban status in 2020 

Boston University of Public Health [63]   State-level policy of face masks mandates 
and stay home orders before July 2nd, 2022 
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 Table 3-2. Characteristics of counties (n = 3,073) in 48 states as of March 25th, 2022 

 Mean (SD) 

 All 

Vaccination rate 
≤ 49.8% as of 
March 11th, 

2022 

Vaccination 
rate > 49.8% 
as of March 
11th, 2022 

No. of county in No. of states 
3,073 in 48 

states 
1,542 in 40 

states 
1,531 in 48 

states 
Incidence of COVID-19 as of 
3/25/20221, % 

24.22 (5.70) 24.35 (5.66) 24.08 (5.73) 

Incidence of COVID-19 as of 
12/1/20211, % 

15.96 (3.98) 16.67 (3.80) 15.24 (4.03) 

Incidence of COVID-19 as of 
7/2/20211, % 10.22 (3.07) 10.54 (2.93) 9.92 (3.16) 

Mortality of COVID-19 as of 
3/25/20222, %  

0.36 (0.16) 0.41 (0.16) 0.31 (0.15) 

Mortality of COVID-19 as of 
12/1/20212, % 

0.28 (0.14) 0.32 (0.14) 0.24 (0.13) 

Mortality of COVID-19 as of 
7/2/20212, % 0.20 (0.11) 0.22 (0.11) 0.18 (0.11) 

Full vaccination rate as of 
3/11/20223, % 50.79 (11.90) 42.48 (6.00) 60.17 (8.54) 

Full vaccination rate as of 
2/25/20223, % 50.45 (11.83) 41.19 (5.96) 59.77 (8.48) 

Full vaccination rate as of 
11/17/20213, % 

44.51 (12.13) 35.92 (7.87) 53.17 (9.13) 

Full vaccination rate as of 
11/3/20213, % 

43.85 (12.32) 35.03 (8.17) 52.26 (9.33) 

Full vaccination rate as of 
6/18/20213, % 32.06 (11.06) 24.82 (7.67) 38.99 (9.21) 

Full vaccination rate as of 6/4/20213, % 30.24 (10.64) 23.46 (7.62) 36.81 (8.89) 

Booster rate as of 3/11/20223, % 22.41 (8.24) 17.07 (4.16) 28.18 (7.65) 

Booster rate as of 2/25/20223, % 21.91 (8.12) 16.68 (4.12) 27.57 (7.57) 

Average ambient PM2.5
4, µg/m3 7.86 (2.18) 7.92 (2.16) 7.80 (2.19) 

Ever smokers, % 17.48 (3.56) 18.32 (3.36) 16.63 (3.54) 

Adult obesity, % 32.90 (5.42) 33.94 (5.01) 31.85 (5.61) 

Population living in poverty, % 14.66 (6.18) 15.82 (5.90) 13.49 (6.24) 

Population density, No. per square mile 206.44 (916.43) 59.56 (111.88) 
354.38 

(1276.72) 
1COVID-19 cases out of total population in each county 
2COVID-19 deaths out of total population in each county 
3Number of people fully vaccinated out of total population of all age groups in each county 
4Annual average of PM2.5 between 2000 and 2018 
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Table 3-2. Characteristics of counties (n = 3,073) in 48 states as of March 25th, 2022 

(continued) 

 Mean (SD) 

 All 

Vaccination rate 
≤ 49.8% as of 
March 11th, 

2022 

Vaccination 
rate > 49.8% 
as of March 
11th, 2022 

Owner occupied properties, % 72.08 (8.22) 73.18 (7.23) 70.97 (8.98) 

Adults with less than high school 
education, % 

12.74 (5.80) 14.33 (5.60) 11.13 (5.55) 

White Americans population, % 77.05 (17.58) 79.63 (15.88) 74.45 (18.78) 

African Americans population, % 8.83 (14.21) 8.56 (13.96) 11.04 (14.45) 

Hispanic population, % 9.72 (13.63) 8.41 (11.59) 9.11 (15.31) 

Median house value, ×$1,000 25.22 (66.44) 8.56 (10.31) 42.00 (90.52) 

Median household income, ×$1,000 68.30 (16.73) 62.19 (11.42) 74.46 (18.84) 

Population over 65 years old, % 19.28 (4.72) 19.54 (4.34) 19.02 (5.07) 

Male, % 50.05 (2.38) 50.27 (2.65) 49.82 (2.05) 

Uninsured population, % 9.48 (5.04) 10.81 (4.96) 8.14 (4.76) 

Population living in rural, % 58.53 (31.38) 69.28 (26.18) 47.67 (32.46) 

State stay-home order before 7/2/2021, n (%) 

  Ever issued 2192 (71.33) 1013 (65.69) 1179 (77.01) 

  Never issued  881 (28.67) 529 (34.31) 352 (22.99) 

State facemask policy before 7/2/2021, n (%) 

  Ever issued 2299 (74.81) 991 (64.27) 1308 (85.43) 

  Never issued  774 (25.19) 551 (35.73) 223 (14.57) 
aCOVID-19 cases out of total population in each county 
bCOVID-19 deaths out of total population in each county 
cNumber of people fully vaccinated out of total population of all age groups in each county 
dAnnual average of PM2.5 between 2000 and 2018 
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Table 3-3. Adjusted relative risks of COVID-19 incidence and mortality associated with 

additional people fully vaccinated and with additional people receiving a booster dose per 

100 population between April 23rd, 2021 and March 25th, 2022 stratified by the most 

dominant variant 

 Relative Risk (95% Confidence Interval) 

Dominant variant 
Alpha (April 23rd – 

July 2nd, 2021) 
Delta (July 3rd – 

December 1st, 2021) 

Omicron 
(December 2nd, 

2021 – March 25th, 
2022) 

Incidence1 

Fully vaccinated 

(n = 3,073 in 48 states) 
0.9607 

(0.9553, 0.9661) 
0.9988 

(0.9964, 1.0011) 
0.9969 

(0.9919, 1.0019) 
Booster 
(n = 2,906 in 46 states) 

N/A N/A 
0.9356 

(0.9235, 0.9479) 

Mortality2 

Fully vaccinated 
(n = 3,042 in 48 states) 

0.9694 
(0.9653, 0.9736) 

0.9934 
(0.9889, 0.9980) 

1.0061 
(1.0022, 1.0101) 

Booster 
(n = 2,876 in 46 states) 

N/A N/A 
0.9595 

(0.9431, 0.9761) 
1Model 1 adjusts for annual PM2.5 concentration between 2000 and 2018, percentage of adults 
smokers, percentage of obese adults, percentage of people living under poverty, population 
density, percentage of owner occupied properties, percentage of adults with less than high 
school education, percentage of White population, median household income, median house 
value, percentage of population over 65 years old, percentage of male, percentage of 
population without an insurance, percentage of population living in rural area, stay home 
orders before July 2nd, 2021 (ever/never) and facemask mandate before July 2nd, 2021 
(ever/never); fully vaccination rate and booster rate were assessed two weeks prior the end of 
each period 
2Model 2 adjusts for all covariates in model 1; fully vaccination rate and booster rate were 
assessed four weeks prior the end of each period 
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 Table 4-1. Characteristics (n = 2,125) by cancer status  

 
Combined 
controls 

Lung cancer 
cases 

UADT cancers 
controls1 

UADT cancer 
cases 

Lung cancer 
controls1 

Total no. of subjects 983 577 448 565 535 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 
PM2.5 concentration 1 year before 
diagnosis, µg/m3 18.81 (3.26) 18.97 (3.21) 18.90 (3.24) 19.30 (3.16) 18.74 (3.29) 

Age, year 49.85 (7.30) 52.25 (5.39) 48.82 (8.33) 50.42 (7.57) 50.64 (6.21) 
Smoking, packyears 9.84 (16.35) 31.56 (25.27) 10.15 (16.15) 22.91 (24.28) 9.58 (16.53) 

Alcohol drinking, drink-years 28.93 (61.98) 
55.20 

(136.44) 
32.53 (65.29) 

100.06 
(202.31) 

25.91 (58.97) 

Block group median household income 
in 1999, $1,000 dollar 

54.07 (25.60) 51.96 (25.93) 53.98 (26.23) 51.04 (24.35) 54.98 (25.05) 

 N (%) N (%) N (%) N (%) N (%) 

Gender 
  Male 585 (59.51) 286 (49.57) 330 (73.66) 426 (75.40) 255 (47.66) 
  Female 398 (40.49) 291 (50.43) 118 (26.34) 139 (24.60) 280 (52.34) 

Education 
  Less than high school 115 (11.70) 104 (18.02) 51 (11.38) 125 (22.12) 64 (11.96) 
  High school 178 (18.11) 150 (26.00) 71 (15.85) 138 (24.42) 107 (20.00) 
  Some college 266 (27.06) 175 (30.33) 127 (28.35) 147 (26.02) 139 (25.98) 
  College 191 (19.43) 81 (14.04) 84 (18.75) 93 (16.46) 107 (20.00)  
  Graduate school 233 (23.70) 67 (11.61) 115 (25.67) 62 (10.97) 118 (22.06) 

Race/Ethnicity 
  Non-Hispanic White 587 (59.72) 333 (57.71) 268 (59.82) 314 (55.58) 319 (59.63) 
  African American 98 (9.97) 94 (16.29) 43 (9.60) 68 (12.04) 55 (10.28) 
  Hispanic 201 (20.45) 68 (11.79) 93 (20.76) 108 (19.12) 108 (20.19) 
  Other 97 (9.87) 82 (14.21) 44 (9.82) 75 (13.27) 53 (9.91) 
1Controls originally matched to UADT cancers were used to assess the susceptibility of lung cancer and controls originally matched 
to lung cancer were used to assess the susceptibility of UADT cancer 
2Solid fuel for heating includes fireplace, wood, coal, oil and kerosene 
3Solid fuel for cooing includes charcoal, wood, and coal stove 
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Table 4-1. Characteristics (n = 2,125) by cancer status (continued) 

 Combined controls 
Lung cancer 

cases 
UADT cancers 

controls1 
UADT cancer 

cases 
Lung cancer 

controls1 
Total no. of 
subjects 

983 577 448 565 535 

Smoking 
  Never 445 (45.27) 101 (17.50) 198 (44.20) 164 (29.03) 247 (46.17) 
  Ever 538 (54.73) 476 (82.50) 250 (55.80) 401 (70.97) 288 (53.83) 

Solid fuel2 for heating since adulthood 
  No 967 (98.37) 566 (98.09) 437 (97.54) 558 (98.76) 530 (99.07) 
  Yes 16 (1.63) 11 (1.91) 11 (2.46) 7 (1.24) 5 (0.93) 

Solid fuel2 for cooking since adulthood 
  No 982 (99.90) 574 (99.48) 448 (100.00) 557 (98.58) 534 (99.81) 
  Yes 1 (0.10) 3 (0.52) 0 (0.00) 8 (1.42) 1 (0.19) 

Exposure to environmental tobacco smoking since adulthood 

  No 469 (47.71) 202 (35.01) 223(49.78) 229 (40.53) 246 (45.98) 
  Yes 514 (52.29) 375 (64.99) 225 (50.22) 336 (59.47) 289 (54.02) 

Exposure to solid fuel or ETS since adulthood 

  No  459 (46.69) 195 (33.80) 216 (48.21) 221 (39.12) 243 (45.42) 
  Any  524 (53.31) 328 (66.20) 232 (51.79) 344 (60.88) 292 (54.58) 
1Controls originally matched to UADT cancers were used to assess the susceptibility of lung cancer and controls originally matched 
to lung cancer were used to assess the susceptibility of UADT cancer 
2Solid fuel for heating includes fireplace, wood, coal, oil and kerosene 
3Solid fuel for cooing includes charcoal, wood, and coal stove 
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Table 4-2. Associations between air pollution and lung and upper aerodigestive track cancers susceptibility 

Variable 
Lung 

cancer, 
N (%) 

Combine
d 

controls, 
N (%) 

Adjusted 
OR (95% 

CI) 

UADT 
cancers 

controls1

, N (%) 

Adjusted 
OR (95% 

CI) 

UADT 
cancers, 
N (%) 

Combine
d 

controls, 
N (%) 

Adjusted 
OR (95% 

CI) 

Lung 
cancer 

controls1

, N (%) 

Adjusted OR 
(95% CI) 

PM2.5 concentration one-year before diagnosis2,3 
Per 
µg/m3 

577 
(100.00) 

983 
(100.00) 

1.02  
(0.98, 1.06) 

448 
(100.00) 

1.02  
(0.97, 1.07) 

565 
(100.00) 

983 
(100.00) 

1.04  
(1.00, 1.09) 

535 
(100.00) 

1.04  
(1.00, 1.09) 

Below 
median 

258 
(44.71) 

486 
(49.44) 

Reference 
222 

(49.55) 
Reference 

240 
(42.48) 

486 
(49.44) 

Reference 
264 

(49.35) 
Reference 

Above 
median 

319 
(55.29) 

497 
(50.56) 

1.18  
(0.91, 1.53) 

226 
(50.45) 

1.24  
(0.90, 1.72) 

325 
(57.52) 

497 
(50.56) 

1.32  
(1.04, 1.69) 

271 
(50.65) 

1.27  
(0.96, 1.70) 

Tertile 1 
185 

(32.06) 
331 

(33.67) 
Reference 

141 
(31.47) 

Reference 
144 

(25.49) 
331 

(33.67) 
Reference 

190 
(35.51) 

Reference 

Tertile 2 
196 

(33.97) 
327 

(33.27) 
0.98 

(0.72, 1.33) 
156 

(34.82) 
0.89  

(0.60, 1.31) 
191 

(33.81) 
327 

(33.27) 
1.37  

(1.02, 1.86) 
171 

(31.96) 
1.52  

(1.07, 2.15) 

Tertile 3 
196 

(33.97) 
325 

(33.06) 
1.12  

(0.82, 1.54)  
151 

(33.71) 
1.05  

(0.71, 1.56) 
230 

(40.71) 
325 

(33.06) 
1.69  

(1.25, 2.29) 
174 

(32.52) 
1.79  

(1.26, 2.54) 
p-value 
for 
trend 

  0.46  0.79   < 0.01  < 0.01 

1Controls originally matched to UADT cancers were used to assess the susceptibility of lung cancer and controls originally matched to 
lung cancer were used to assess the susceptibility of UADT cancer 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, drink-years, block group median household 
income in 1999, and ambient or indoor air pollution (if applicable) 
3PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), 
tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and tertile 3(> 20.9 µg/m3) 
4Air pollution index was computed based on exposure to any source of household air pollution since adulthood, including solid fuels for 
cooking or heating and environmental tobacco smoking (yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, 
Tertile 3 = 2) 
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Table 4-2. Associations between air pollution and lung and upper aerodigestive track cancers susceptibility (continued) 

Variable 

Lung 
cancer, 
N (%) 

Combined 
controls, 
N (%) 

Adjusted 
OR (95% 

CI) 

UADT 
controls1, 

N (%) 

Adjusted 
OR (95% 

CI) 

UADT 
cancers, 
N (%) 

Combined 
controls, 
N (%) 

Adjusted 
OR (95% 

CI) 

Lung 
controls1, 

N (%) 

Adjusted OR 
(95% CI) 

Exposure to household air pollution, including solid fuels or ETS since adulthood2 

No  
195 

(33.80) 
459 

(46.69) 
Reference 

216 
(48.21) 

Reference 
221 

(39.12) 
459 

(46.69) 
Reference 

243 
(45.42) 

Reference 

Any  
382 

(66.20) 
524 

(53.31) 
0.87  

(0.67, 1.14) 
232 

(51.79) 
0.80  

(0.57, 1.11) 
344 

(60.88) 
524 

(53.31) 
1.09  

(0.85, 1.39) 
292 

(54.58) 
1.14  

(0.86, 1.52) 
Air pollution index2,3 

0 
68 

(11.79) 
157 

(15.97) 
Reference 

69 
(15.40) 

Reference 
58 

(10.27) 
157 

(15.97) 
Reference 

88 
(16.45) 

Reference 

≥1 
509 

(88.21) 
826 

(84.03) 
0.82  

(0.58, 1.18) 
379 

(84.60) 
0.68  

(0.44, 1.07) 
507 

(89.73) 
826 

(84.03) 
1.42  

(0.99, 2.02) 
447 

(83.55) 
1.50  

(1.00, 2.25) 

1 
175 

(30.33) 
331 

(33.67) 

0.72 
 (0.49, 
1.07) 

152 
(33.93) 

0.60  
(0.37, 0.98) 

156 
(27.61) 

331 
(33.67) 

1.15  
(0.78, 1.69) 

179 
(33.46) 

1.20  
(0.77, 1.87) 

2 
207 

(35.88) 
315 

(32.04) 
0.93  

(0.63, 1.37) 
143 

(31.92) 
0.79  

(0.48, 1.29) 
214 

(37.88) 
315 

(32.04) 
1.58  

(1.07, 2.33) 
172 

(32.15) 
1.67  

(1.07, 2.60) 

3 
127 

(22.01) 
180 

(18.31) 
0.85  

(0.55, 1.31) 
84 

(18.75) 
0.69 

(0.40, 1.18) 
137 

(24.25) 
180 

(18.31) 
1.75  

(1.15, 2.67) 
96 

(17.94) 
1.96  

(1.20, 3.18) 
P-value 
for 
trend 

  0.93  0.60   < 0.01  < 0.01 

1Controls originally matched to UADT cancers were used to assess the susceptibility of lung cancer and controls originally matched to 
lung cancer were used to assess the susceptibility of UADT cancer 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, drink-years, block group median household 
income in 1999, and the ambient or indoor air pollution (if applicable) 
3PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), 
tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and tertile 3(> 20.9 µg/m3) 
4Air pollution index was computed based on exposure to any source of household air pollution since adulthood, including solid fuels for 
cooking or heating and environmental tobacco smoking (yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, 
Tertile 3 = 2) 
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Table 4-3. Associations between PM2.5 concentration1 one-year before diagnosis and lung 

cancer susceptibility by histologic types 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Non-small cell lung cancer (n = 476) 

Per µg/m3 476 
(100.00) 

983 (100.00) 
1.02  

(0.98, 1.06) 
448 (100.00) 

1.01 
(0.96, 1.7) 

Below 
median 

212 
(44.54) 

486 (49.44) Reference 222 (49.55) Reference 

Above 
median 

264 
(55.46) 

497 (50.56) 
1.21(0.92, 

1.59) 
226 (50.45) 

1.26 (0.90, 
1.77) 

Tertile 1 
151 

(31.72) 
331 (33.67) Reference 141 (31.47) Reference 

Tertile 2 
164 

(34.45) 
327 (33.27) 

0.98 (0.71, 
1.36) 

156 (34.82) 
0.88 (0.59, 

1.32) 

Tertile 3 
161 

(33.82) 
325 (33.06) 

1.13 (0.81, 
1.57)  

151 (33.71) 
1.03 (0.68, 

1.56) 
p-value for 
trend 

  0.46  0.87 

Squamous cell carcinoma (n = 90) 

Per µg/m3 90 
(100.00) 

983 (100.00) 
1.05 (0.95, 

1.15) 
448 (100.00) 

1.02 (0.91, 
1.13) 

Below 
median 

40 (44.44) 486 (49.44) Reference 222 (49.55) Reference 

Above 
median 

50 (55.56) 497 (50.56) 
0.96 (0.55, 

1.70) 
226 (50.45) 

0.91 (0.48, 
1.75) 

Tertile 1 21 (23.33) 331 (33.67) Reference 141 (31.47) Reference 

Tertile 2 37 (41.11) 327 (33.27) 
1.20 (0.60, 

2.40) 
156 (34.82) 

1.02 (0.47, 
2.25) 

Tertile 3 32 (35.56) 325 (33.06) 
1.55 (0.77, 

3.11)  
151 (33.71) 

1.07 (0.48, 
2.42) 

p-value for 
trend 

  0.21  0.86 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and household air pollution since 
adulthood 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-3. Associations between PM2.5 concentration1 one-year before diagnosis and lung 

cancer susceptibility by histologic types (continued) 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Adenocarcinoma (n = 282) 

Per µg/m3 282 
(100.00) 

983 (100.00) 
1.02  

(0.97, 1.07) 
448 (100.00) 

1.02  
(0.96, 1.08) 

Below 
median 

124 
(43.97) 

486 (49.44) Reference 222 (49.55) Reference 

Above 
median 

158 
(56.03) 

497 (50.56) 
1.35  

(0.99, 1.85) 
226 (50.45) 

1.39  
(0.95, 2.03) 

Tertile 1 
100 

(35.46) 
331 (33.67) Reference 141 (31.47) Reference 

Tertile 2 92 (32.62) 327 (33.27) 
0.93  

(0.64, 1.35) 
156 (34.82) 

0.89  
(0.57, 1.39) 

Tertile 3 90 (31.91) 325 (33.06) 
1.13  

(0.81, 1.57)  
151 (33.71) 

0.99  
(0.63, 1.57) 

p-value for 
trend 

  0.78  0.97 

Large cell carcinoma (n = 104) 

Per µg/m3 104 
(100.00) 

983 (100.00) 
1.00  

(0.92, 1.08) 
448 (100.00) 

0.98  
(0.90, 1.07) 

Below 
median 

48 (46.15) 486 (49.44) Reference 222 (49.55) Reference 

Above 
median 

56 (53.85) 497 (50.56) 
0.92  

(0.56, 1.53) 
226 (50.45) 

0.88  
(0.49, 1.60) 

Tertile 1 30 (28.85) 331 (33.67) Reference 141 (31.47) Reference 

Tertile 2 35 (33.65) 327 (33.27) 
0.92  

(0.50, 1.68) 
156 (34.82) 

0.78  
(0.39, 1.56) 

Tertile 3 39 (37.50) 325 (33.06) 
1.27  

(0.70, 2.31)  
151 (33.71) 

1.00  
(0.49, 2.00) 

p-value for 
trend 

  0.41  0.99 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and household air pollution since 
adulthood 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-3. Associations between PM2.5 concentration1 one-year before diagnosis and lung 

cancer susceptibility by histologic types (continued) 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Small cell lung cancer (n = 72) 

Per µg/m3 72 
(100.00) 

983 (100.00) 
1.01 

(0.92, 1.11) 
448 (100.00) 

1.00  
(0.89, 1.12) 

Below 
median 

31 (43.06) 486 (49.44) Reference 222 (49.55) Reference 

Above 
median 

41 (56.94) 497 (50.56) 
1.07  

(0.59, 1.95) 
226 (50.45) 

0.99  
(0.48, 2.03) 

Tertile 1 21 (29.17) 331 (33.67) Reference 141 (31.47) Reference 

Tertile 2 27 (37.50) 327 (33.27) 
1.10  

(0.55, 2.21) 
156 (34.82) 

0.96  
(0.42, 2.17) 

Tertile 3 24 (33.33) 325 (33.06) 
1.12  

(0.55, 2.39)  
151 (33.71) 

0.81  
(0.33, 2.00) 

p-value for 
trend 

  0.71  0.65 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and household air pollution since 
adulthood 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-4. Associations between PM2.5 concentration1 one-year before diagnosis and upper 

aerodigestive track cancers susceptibility by histologic types 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

UADT squamous cell carcinoma (n = 413) 

Per µg/m3 413 
(100.00) 

983 (100.00) 
1.04  

(1.00, 1.09) 
535 (100.00) 

1.04  
(1.00, 1.09) 

Below 
median 

176 
(42.62) 

486 (49.44) Reference 264 (49.35) Reference 

Above 
median 

237 
(57.38) 

497 (50.56) 
1.34  

(1.02, 1.75) 
271 (50.65) 

1.29  
(0.95, 1.74) 

Tertile 1 
104 

(25.18) 
331 (33.67) Reference 190 (35.51) Reference 

Tertile 2 
142 

(34.38) 
327 (33.27) 

1.38  
(0.99, 1.91) 

171 (31.96) 
1.48  

(1.02, 2.16) 

Tertile 3 
167 

(40.44) 
325 (33.06) 

1.71  
(1.23, 2.38)  

174 (32.52) 
1.81  

(1.24, 2.63) 
p-value for 
trend 

  < 0.01  < 0.01 

Oropharyngeal squamous cell carcinoma (n = 320) 

Per µg/m3 320 
(100.00) 

983 (100.00) 
1.03  

(0.99, 1.08) 
535 (100.00) 

1.03  
(0.98, 1.08) 

Below 
median 

138 
(43.13) 

486 (49.44) Reference 264 (49.35) Reference 

Above 
median 

182 
(56.88) 

497 (50.56) 
1.33  

(0.99, 1.19) 
271 (50.65) 

1.27  
(0.92, 1.76) 

Tertile 1 83 (25.94) 331 (33.67) Reference 190 (35.51) Reference 

Tertile 2 
112 

(35.00) 
327 (33.27) 

1.34 
(0.93, 1.93) 

171 (31.96) 
1.44  

(0.96, 2.15) 

Tertile 3 
125 

(39.06) 
325 (33.06) 

1.65  
(1.15, 2.36)  

174 (32.52) 
1.73  

(1.15, 2.59) 
p-value for 
trend 

  < 0.01  < 0.01 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and household air pollution since 
adulthood 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-4. Associations between PM2.5 concentration1 one-year before diagnosis and upper 

aerodigestive track cancers susceptibility by histologic types (continued) 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Nasopharyngeal squamous cell carcinoma (n = 46) 

Per µg/m3 46 
(100.00) 

983 (100.00) 
1.08  

(0.96, 1.21) 
535 (100.00) 

1.06  
(0.94, 1.21) 

Below 
median 

18 (39.13) 486 (49.44) Reference 264 (49.35) Reference 

Above 
median 

28 (60.87) 497 (50.56) 
1.07  

(0.54, 2.15) 
271 (50.65) 

0.97  
(0.46, 2.04) 

Tertile 1 9 (19.57) 331 (33.67) Reference 190 (35.51) Reference 

Tertile 2 10 (21.74) 327 (33.27) 
0.98  

(0.36, 2.66) 
171 (31.96) 

0.92  
(0.32, 2.69) 

Tertile 3 27 (58.70) 325 (33.06) 
2.07  

(0.86, 4.97)  
174 (32.52) 

2.11  
(0.82, 5.46) 

p-value for 
trend 

  0.06  0.07 

Esophageal squamous cell carcinoma (n = 32) 

Per µg/m3 46 
(100.00) 

983 (100.00) 
1.10  

(0.95, 1.28) 
535 (100.00) 

1.11  
(0.95, 1.29) 

Below 
median 

15 (46.88) 486 (49.44) Reference 264 (49.35) Reference 

Above 
median 

17 (53.13) 497 (50.56) 
0.98  

(0.41, 2.37) 
271 (50.65) 

1.04  
(0.42, 2.59) 

Tertile 1 7 (21.88) 331 (33.67) Reference 190 (35.51) Reference 

Tertile 2 15 (46.88) 327 (33.27) 
2.30  

(0.82, 6.42) 
171 (31.96) 

2.60  
(0.86, 7.86) 

Tertile 3 10 (31.25) 325 (33.06) 
1.50  

(0.47, 4.72)  
174 (32.52) 

1.81  
(0.54, 6.05) 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and household air pollution since 
adulthood 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-4. Associations between PM2.5 concentration1 one-year before diagnosis and upper 

aerodigestive track cancers susceptibility by histologic types (continued) 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Esophageal adenocarcinoma (n = 68) 

Per µg/m3 68 
(100.00) 

983 (100.00) 
1.05  

(0.96, 1.14) 
535 (100.00) 

1.04  
(0.95, 1.14) 

Below 
median 

33 (48.53) 486 (49.44) Reference 264 (49.35) Reference 

Above 
median 

35 (51.47) 497 (50.56) 
1.18  

(0.67, 2.05) 
271 (50.65) 

1.07  
(0.59, 1.95) 

Tertile 1 20 (29.41) 331 (33.67) Reference 190 (35.51) Reference 

Tertile 2 20 (29.41) 327 (33.27) 
1.19  

(0.57, 2.38) 
171 (31.96) 

1.30  
(0.62, 2.72) 

Tertile 3 28 (41.18) 325 (33.06) 
1.72  

(0.88, 3.37)  
174 (32.52) 

1.84 
(0.89, 3.79) 

p-value for 
trend 

  0.11  0.10 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and household air pollution since 
adulthood 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-5. Associations between exposure to solid fuel or environmental tobacco smoking 

since adulthood and lung cancer susceptibility by histologic types 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR1 
(95% CI) 

UADT 
controls2, N 

(%) 

Adjusted OR1 
(95% CI) 

Non-small cell lung cancer (n = 476) 

No  
164 

(34.45) 
459 (46.69) Reference 216 (48.21) Reference 

Any  
312 

(65.55) 
524 (53.31) 

0.91  
(0.69, 1.20) 

232 (51.79) 
0.82  

(0.58, 1.16) 

Squamous cell carcinoma (n = 90) 

No  
26 

(28.89) 
459 (46.69) Reference 216 (48.21) Reference 

Any  
64 

(71.11) 
524 (53.31) 

1.17 
(0.65, 2.12) 

232 (51.79) 
1.03  

(0.53, 1.99) 

Adenocarcinoma (n = 282) 

No  
102 

(36.17) 
459 (46.69) Reference 216 (48.21) Reference 

Any  
180 

(63.83) 
524 (53.31) 

0.98  
(0.71, 1.35) 

232 (51.79) 
0.87  

(0.59, 1.28) 

Large cell carcinoma (n = 104) 

No  
36 

(34.62) 
459 (46.69) Reference 216 (48.21) Reference 

Any  
68 

(65.38) 
524 (53.31) 

0.76  
(0.46, 1.27) 

232 (51.79) 
0.64  

(0.35, 1.15) 

Small cell lung cancer (n =72) 

No  
20 

(27.78) 
459 (46.69) Reference 216 (48.21) Reference 

Any  
52 

(72.22) 
524 (53.31) 

0.90  
(0.48, 1.69) 

232 (51.79) 
0.62 

 (0.29, 1.29) 
1Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and PM2.5 concentration one year 
before diagnosis 
2Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 

 

  



73 
 

Table 4-6. Associations between exposure to solid fuel or environmental tobacco smoking 

since adulthood and upper aerodigestive track cancers incidence by histologic types 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR1 
(95% CI) 

Controls for 
Lung Cancer2, N 

(%) 

Adjusted OR1 
(95% CI) 

UADT squamous cell carcinoma (n = 413) 

No  
159 

(38.50) 
459 (46.69) Reference 243 (45.42) Reference 

Any  
254 

(61.50) 
524 (53.31) 

1.19  
(0.91, 1.55) 

292 (54.58) 
1.24  

(0.91, 1.69) 

Oropharyngeal squamous cell carcinoma (n = 320) 

No  
122 

(38.13) 
459 (46.69) Reference 243 (45.42) Reference 

Any  
198 

(61.88) 
524 (53.31) 

1.13  
(0.84, 1.51) 

292 (54.58) 
1.18  

(0.84, 1.65) 

Nasopharyngeal squamous cell carcinoma (n = 46) 

No  
17 

(36.96) 
459 (46.69) Reference 243 (45.42) Reference 

Any  
29 

(63.04) 
524 (53.31) 

1.90  
(0.94, 3.83) 

292 (54.58) 
1.85  

(0.87, 3.96) 

Esophageal squamous cell carcinoma (n = 32) 

No  
15 

(46.88) 
459 (46.69) Reference 243 (45.42) Reference 

Any  
17 

(53.13) 
524 (53.31) 

0.50  
(0.22, 1.13) 

292 (54.58) 
0.51 

(0.21, 1.25) 

Esophageal adenocarcinoma (n = 68) 

No  
28 

(41.18) 
459 (46.69) Reference 243 (45.42) Reference 

Any  
40 

(58.82) 
524 (53.31) 

0.86  
(0.49, 1.51) 

292 (54.58) 
0.87 

(0.48, 1.58) 
1Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, 
drink-years, block group median household income in 1999, and PM2.5 concentration one year 
before diagnosis 
2Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancer 
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Table 4-7. Associations between air pollution index1 and lung cancer susceptibility by 

histologic types 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Non-small cell lung cancer (n = 476) 

0 53 (11.13) 157 (15.97) Reference 69 (15.40) Reference 

≥1 
423 

(88.87) 
826 (84.03) 

0.90  
(0.62, 1.33) 

379 (84.60) 
0.72 

(0.45, 1.16) 

1 
152 

(31.93) 
331 (33.67) 

0.84  
(0.55, 1.27) 

152 (33.93) 
0.68  

(0.40, 1.14) 

2 
167 

(35.08) 
315 (32.04) 

0.95  
(0.62, 1.44) 

143 (31.92) 
0.76  

(0.45, 1.29) 

3 
104 

(21.85) 
180 (18.31) 

0.97  
(0.61, 1.52) 

84 (18.75) 
0.75  

(0.42, 1.33) 
P-value for 
trend 

  0.78  0.63 

Squamous cell carcinoma (n = 90) 

0 7 (7.78) 157 (15.97) Reference 69 (15.40) Reference 

≥1 83 (88.21) 826 (84.03) 
0.89  

(0.37, 2.14) 
379 (84.60) 

0.69  
(0.25, 1.90) 

1 24 (26.67) 331 (33.67) 
0.64  

(0.24, 1.70) 
152 (33.93) 

0.67 
(0.22, 2.00) 

2 36 (40.00) 315 (32.04) 
0.93  

(0.35, 2.31) 
143 (31.92) 

0.58  
(0.20, 1.74) 

3 23 (25.56) 180 (18.31) 
1.29  

(0.49, 3.42) 
84 (18.75) 

0.94  
(0.30, 2.94) 

P-value for 
trend 

  0.17  0.84 

Adenocarcinoma (n = 282) 

0 38 (13.48) 157 (15.97) Reference 69 (15.40) Reference 

≥1 
244 

(86.52) 
826 (84.03) 

0.85  
(0.56, 1.29) 

379 (84.60) 
0.70 

(0.42, 1.16) 

1 92 (32.62) 331 (33.67) 
0.77  

(0.49, 1.23) 
152 (33.93) 

0.63  
(0.36, 1.10) 

2 96 (34.04) 315 (32.04) 
0.90  

(0.57, 1.43) 
143 (31.92) 

0.75  
(0.43, 1.32) 

3 56 (19.86) 180 (18.31) 
0.93  

(0.56, 1.55) 
84 (18.75) 

0.74  
(0.40, 1.38) 

P-value for 
trend 

  0.85  0.69 

1Air pollution index was computed based on exposure to any source of household air pollution 
since adulthood, including solid fuels for cooking or heating and environmental tobacco smoking 
(yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, Tertile 3 = 2) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, and block group median household income in 1999 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-7. Associations between air pollution index1 and lung cancer susceptibility by 

histologic types (continued) 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Large cell carcinoma (n = 104) 

0 8 (7.69) 157 (15.97) Reference 69 (15.40) Reference 

≥1 96 (92.31) 826 (84.03) 
1.14  

(0.51, 2.55) 
379 (84.60) 

0.87  
(0.34, 2.21) 

1 36 (34.62) 331 (33.67) 
1.20  

(0.51, 2.83) 
152 (33.93) 

1.02  
(0.38, 2.74) 

2 35 (33.65) 315 (32.04) 
1.06 

(0.44, 2.52) 
143 (31.92) 

0.75  
(0.27, 2.06) 

3 25 (24.04) 180 (18.31) 
1.19  

(0.48, 2.96) 
84 (18.75) 

0.80  
(0.28, 2.33) 

P-value for 
trend 

  0.88  0.45 

Small cell lung cancer (n = 72) 

0 10 (13.89) 157 (15.97) Reference 69 (15.40) Reference 

≥1 62 (86.11) 826 (84.03) 
0.46  

(0.21, 1.01) 
379 (84.60) 

0.31  
(0.12, 0.79) 

1 14 (19.44) 331 (33.67) 
0.24  

(0.09, 0.63) 
152 (33.93) 

0.20  
(0.07, 0.62) 

2 31 (43.06) 315 (32.04) 
0.70  

(0.30, 1.63) 
143 (31.92) 

0.44  
(0.16, 1.22) 

3 17 (23.61) 180 (18.31) 
0.51  

(0.19, 1.30) 
84 (18.75) 

0.29  
(0.09, 0.91) 

P-value for 
trend 

  0.88  0.27 

1Air pollution index was computed based on exposure to any source of household air pollution 
since adulthood, including solid fuels for cooking or heating and environmental tobacco smoking 
(yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, Tertile 3 = 2) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, and block group median household income in 1999 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-8. Associations between air pollution index1 and upper aerodigestive track cancer 

susceptibility by histologic types 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

UADT squamous cell carcinoma (n = 413) 

0 45 (10.90) 157 (15.97) Reference 88 (16.45) Reference 

≥1 
368 

(89.10) 
826 (84.03) 

1.45  
(0.98, 2.13) 

447 (83.55) 
1.53  

(0.99, 2.36) 

1 
109 

(26.39) 
331 (33.67) 

1.12  
(0.73, 1.72) 

179 (33.46) 
1.16  

(0.72, 1.88) 

2 
156 

(37.77) 
315 (32.04) 

1.63  
(1.07, 2.48) 

172 (32.15) 
1.70  

(1.06, 2.74) 

3 
103 

(24.94) 
180 (18.31) 

1.86  
(1.18, 2.93) 

96 (17.94) 
2.07  

(1.24, 3.48) 
P-value for 
trend 

  < 0.01  < 0.01 

Oropharyngeal squamous cell carcinoma (n = 320) 

0 37 (11.56) 157 (15.97) Reference 88 (16.45) Reference 

≥1 
283 

(88.44) 
826 (84.03) 

1.28  
(0.85, 1.94) 

447 (83.55) 
1.32 

(0.83, 2.08) 

1 81 (25.31) 331 (33.67) 
0.96  

(0.60, 1.52) 
179 (33.46) 

0.96  
(0.58, 1.61) 

2 
127 

(39.69) 
315 (32.04) 

1.54  
(0.98, 2.42) 

172 (32.15) 
1.55  

(0.94, 2.56) 

3 75 (23.44) 180 (18.31) 
1.56  

(0.95, 2.57) 
96 (17.94) 

1.74  
(0.99, 3.03) 

P-value for 
trend 

  < 0.01  < 0.01 

Nasopharyngeal squamous cell carcinoma (n = 46) 

0 4 (8.70) 157 (15.97) Reference 88 (16.45) Reference 
≥1 42 (91.30) 826 (84.03) - 447 (83.55) - 
1 9 (19.57) 331 (33.67) - 179 (33.46) - 
2 15 (32.61) 315 (32.04) - 172 (32.15) - 
3 18 (39.13) 180 (18.31) - 96 (17.94) - 
P-value for 
trend 

  -  - 

1Air pollution index was computed based on exposure to any source of household air pollution 
since adulthood, including solid fuels for cooking or heating and environmental tobacco smoking 
(yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, Tertile 3 = 2) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, and block group median household income in 1999 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-8. Associations between air pollution index1 and upper aerodigestive track cancer 

susceptibility by histologic types (continued) 

Cancer 
type 

Cases, N 
(%) 

Combined 
controls, N (%) 

Adjusted OR2 
(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Esophageal squamous cell carcinoma (n = 32) 

0 3 (9.38) 157 (15.97) Reference 88 (16.45) Reference 

≥1 
29 

(90.63) 
826 (84.03) - 447 (83.55) - 

1 
12 

(37.50) 
331 (33.67) - 179 (33.46) - 

2 
11 

(34.38) 
315 (32.04) - 172 (32.15) - 

3 6 (18.75) 180 (18.31) - 96 (17.94) - 
P-value for 
trend 

  -  - 

Esophageal adenocarcinoma (n = 68) 

0 8 (11.76) 157 (15.97) Reference 88 (16.45) Reference 

≥1 
60 

(88.24) 
826 (84.03) 

1.08  
(0.49, 2.41) 

447 (83.55) 
1.11  

(0.48, 2.56) 

1 
19 

(27.94) 
331 (33.67) 

0.80  
(0.33, 1.96) 

179 (33.46) 
0.80  

(0.56, 2.05) 

2 
26 

(38.24) 
315 (32.04) 

1.37  
(0.58, 3.27) 

172 (32.15) 
1.40  

(0.19, 3.51) 

3 
15 

(22.06) 
180 (18.31) 

1.26  
(0.49, 3.26) 

96 (17.94) 
1.38  

(0.50, 3.79) 
P-value for 
trend 

  0.27  0.22 

1Air pollution index was computed based on exposure to any source of household air pollution (yes 
= 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, Tertile 3 = 2) 
2Models adjust for age, gender, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, and block group median household income in 1999 
3Controls originally matched to lung cancer were used to assess the susceptibility of UADT cancer 
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Table 4-9. Associations between PM2.5 concentration1 one-year before diagnosis and lung 

cancers susceptibility by gender 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Male 

Per µg/m3 286 
(100.00) 

585 (100.00) 
1.06  

(1.00, 1.12) 
330 (100.00) 

1.08 
(1.01, 1.16) 

Below 
median 

124 
(43.36) 

293 (50.09) Reference 173 (52.42) Reference 

Above 
median 

162 
(56.64) 

292 (49.91) 
1.45  

(1.00 2.11) 
157 (47.58) 

1.73  
(1.12, 2.67) 

Tertile 1 89 (31.12) 199 (34.02) Reference 113 (34.24) Reference 

Tertile 2 92 (32.62) 190 (32.48) 
1.07  

(0.68, 1.67) 
111 (33.64) 

1.12  
(0.97, 1.86) 

Tertile 3 
105 

(36.71) 
196 (33.50) 

1.49  
(0.95, 2.33)  

106 (32.12) 
1.58  

(0.94, 2.67) 
p-value for 
trend 

  0.07  0.08 

Female 

Per µg/m3 291 
(100.00) 

398 (100.00) 
0.98  

(0.93, 1.04) 
118 (100.00) 

0.94  
(0.86, 1.02) 

Per µg/m3 
134 

(46.05) 
193 (48.49) Reference 49 (41.53) Reference 

Below 
median 

157 
(53.95) 

205 (51.51) 
0.99  

(0.68, 1.43) 
69 (58.47) 

0.83  
(0.49, 1.40) 

Above 
median 

96 (32.99) 132 (33.17) Reference 28 (23.73) Reference 

Tertile 1 
104 

(35.74) 
137 (34.42) 

0.86  
(0.55, 1.34) 

45 (38.14) 
0.60  

(0.32, 1.16) 

Tertile 2 91 (31.27) 129 (32.41) 
0.85  

(0.54, 1.34)  
45 (38.14) 

0.58  
(0.30, 1.13) 

p-value for 
trend 

  0.49  0.11 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, block group median household income in 1999, and the household air pollution 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-10. Associations between PM2.5 concentration1 one-year before diagnosis and upper 

aerodigestive track cancers susceptibility by gender 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Male 

Per µg/m3 426 
(100.00) 

585 (100.00) 
1.04  

(0.99, 1.09) 
330 (100.00) 

1.02  
(0.97, 1.08) 

Below 
median 

186 
(43.66) 

293 (50.09) Reference 173 (52.42) Reference 

Above 
median 

240 
(56.34) 

292 (49.91) 
1.35  

(1.00 1.81) 
157 (47.58) 

1.17  
(0.81, 1.68) 

Tertile 1 
116 

(27.23) 
199 (34.02) Reference 113 (34.24) Reference 

Tertile 2 
137 

(32.16) 
190 (32.48) 

1.24  
(0.86, 1.79) 

111 (33.64) 
1.28  

(0.81, 2.01) 

Tertile 3 
173 

(40.61) 
196 (33.50) 

1.70  
(1.18, 2.45)  

106 (32.12) 
1.61  

(1.03, 2.52) 
p-value for 
trend 

  < 0.01  0.03 

Female 

Per µg/m3 139 
(100.00) 

398 (100.00) 
1.05  

(0.97, 1.13) 
118 (100.00) 

1.08  
(1.00, 1.16) 

Below 
median 

54 (38.85) 193 (48.49) Reference 49 (41.53 Reference 

Above 
median 

85 (61.15) 205 (51.51) 
1.29 

(0.83, 2.01) 
69 (58.47) 

1.45  
(0.90, 2.33) 

Tertile 1 28 (20.14) 132 (33.17) Reference 28 (23.73) Reference 

Tertile 2 54 (38.85) 137 (34.42) 
1.75  

(1.00, 1.11) 
45 (38.14) 

2.17  
(1.21, 3.91) 

Tertile 3 57 (41.01) 129 (32.41) 
1.76  

(1.00, 3.10)  
45 (38.14) 

2.14  
(1.16, 3.92) 

p-value for 
trend 

  0.06  0.02 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, block group median household income in 1999, and the household air pollution 
3Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancer 
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Table 4-11. Associations between exposure to solid fuel or environmental tobacco smoking 

since adulthood and lung cancer susceptibility by gender 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR1 

(95% CI) 
UADT 

controls2, N (%) 
Adjusted OR1 

(95% CI) 

Male 

No  
106 

(37.06) 
283 (48.38) Reference 161 (48.89) Reference 

Any  
180 

(62.94) 
302 (51.62) 

0.71  
(0.49, 1.03) 

169 (51.21) 
0.70  

(0.46, 1.08) 

Female 

No  89 (33.58) 176 (44.22) Reference 55 (46.61) Reference 

Any  
202 

(69.42) 
222 (55.78) 

1.06  
(0.72, 1.58) 

63 (53.39) 
0.88  

(0.51, 1.53) 
1Models adjust for age, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, block group median household income in 1999, and PM2.5 concentration one year before 
diagnosis 
2Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-12. Associations between exposure to solid fuel or environmental tobacco smoking 

since adulthood and upper aerodigestive track cancers susceptibility by gender 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR1 

(95% CI) 
Lung controls2, 

N (%) 
Adjusted OR1 

(95% CI) 

Male 

No  
174 

(40.85) 
283 (48.38) Reference 122 (47.84) Reference 

Any  
252 

(59.15) 
302 (51.62) 

0.94  
(0.71, 1.27) 

133 (52.16) 
0.95  

(0.66, 1.36) 

Female 

No  47 (33.81) 176 (44.22) Reference 121 (43.21) Reference 

Any  92 (66.19) 222 (55.78) 
1.51  

(0.95, 2.40) 
159 (56.79) 

1.58 
(0.95, 2.62) 

1Models adjust for age, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, block group median household income in 1999, and PM2.5 concentration one year before 
diagnosis 
2Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancer 
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Table 4-13. Associations between air pollution index1 and lung cancer susceptibility by 

gender 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Male 

0 32 
(11.19) 

97 (16.58) Reference 59 (17.88) Reference 

≥1 
254 

(88.81) 
488 (83.42) 

0.87  
(0.53, 1.44) 

271 (82.12) 
0.95  

(0.54, 1.66) 

1 
87 

(30.42) 
199 (34.02) 

0.71  
(0.41, 1.23) 

113 (34.24) 
0.76  

(0.41, 1.41) 

2 
106 

(37.06) 
182 (31.11) 

1.09  
(0.63, 1.90) 

95 (28.79) 
1.27  

(0.68, 2.39) 

3 
61 

(21.33) 
107 (18.29) 

0.90  
(0.49, 1.65) 

63 (19.09) 
0.91  

(0.46, 1.81) 
P-value 
for trend 

  0.60  0.59 

Female 

0 
36 

(12.37) 
60 (15.08) Reference 10 (8.47) Reference 

≥1 
255 

(87.63) 
338 (84.92) 

0.80  
(0.48, 1.33) 

108 (91.53) 
0.37 

(0.16, 0.86) 

1 
88 

(30.24) 
132 (33.17) 

0.78  
(0.44, 1.37) 

39 (33.05) 
0.39  

(0.16, 0.97) 

2 
101 

(34.71) 
133 (33.42) 

0.81  
(0.46, 1.42) 

48 (40.68) 
0.34  

(0.14, 0.83) 

3 
66 

(22.68) 
73 (18.34) 

0.82  
(0.44, 1.53) 

21 (17.80) 
0.40  

(0.15, 1.08) 
P-value 
for trend 

  0.66  0.11 

1Air pollution index was computed based on exposure to any source of household air pollution 
since adulthood, including solid fuels for cooking or heating and environmental tobacco 
smoking (yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, 
Tertile 3 = 2) 
2Models adjust for age, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, and block group median household income in 1999 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-14. Associations between air pollution index1 and upper aerodigestive cancer 

susceptibility by gender 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Male 

0 50 (11.74) 97 (16.58) Reference 38 (14.90) Reference 

≥1 
376 

(88.26) 
488 (83.42) 

1.16  
(0.77, 1.74) 

217 (85.10) 
1.03  

(0.62, 1.72) 

1 
115 

(27.00) 
199 (34.02) 

0.89  
(0.57, 1.41) 

86 (33.73) 
0.81  

(0.46, 1.42) 

2 
163 

(38.26) 
182 (31.11) 

1.39  
(0.89, 2.19) 

87 (34.12) 
1.17  

(0.67, 2.05) 

3 98 (23.00) 107 (18.29) 
1.39  

(0.85, 2.29) 
44 (17.25) 

1.34  
(0.72, 2.50) 

P-value 
for trend 

  0.03  0.10 

Female 

0 8 (5.76) 60 (15.08) Reference 50 (17.86) Reference 

≥1 
131 

(94.24) 
338 (84.92) 

2.70  
(1.21, 6.03) 

230 (82.14) 
3.65  

(1.57, 8.46) 

1 41 (29.50) 132 (33.17) 
2.41  

(1.02, 5.67) 
93 (33.21) 

3.02  
(1.23, 7.39) 

2 51 (36.69) 133 (33.42) 
2.59  

(1.11, 6.06) 
85 (30.36) 

3.90  
(1.60, 9.55) 

3 39 (28.06) 73 (18.34) 
3.50  

(1.44, 8.52) 
52 (18.57) 

4.58  
(1.78, 11.70) 

P-value 
for trend 

  < 0.01  < 0.01 

1Air pollution index was computed based on exposure to any source of household air pollution 
since adulthood, including solid fuels for cooking or heating and environmental tobacco 
smoking (yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, 
Tertile 3 = 2) 
2Models adjust for age, education, race/ethnicity, smoking (ever/never), packyears, drink-
years, and block group median household income in 1999 
3Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancer 
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Table 4-15. Associations between PM2.5 concentration1 one-year before diagnosis and lung 

cancers susceptibility by smoking status 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Nonsmokers 

Per µg/m3 101 
(100.00) 

445 (100.00) 
1.06  

(0.98, 1.15) 
198 (100.00) 

1.07  
(0.97, 1.17) 

Below 
median 

37 (36.63) 223 (50.11) Reference 102 (51.52) Reference 

Above 
median 

64 (63.37) 222 (49.89) 
1.53  

(0.92 2.56) 
96 (48.48) 

1.55  
(0.84, 2.85) 

Tertile 1 27 (26.73) 144 (32.36) Reference 64 (32.32) Reference 

Tertile 2 30 (29.70) 155 (34.83) 
1.12  

(0.59, 2.12) 
71 (35.86) 

1.19  
(0.55, 2.60) 

Tertile 3 44 (43.56) 146 (32.81) 
1.34  

(0.73, 2.47)  
63 (31.82) 

1.46  
(0.69, 3.07) 

p-value for 
trend 

  0.33  0.31 

Smokers 

Per µg/m3 476 
(100.00) 

538 (100.00) 
1.00  

(0.96, 1.05) 
250 (100.00) 

1.00  
(0.94, 1.07) 

Below 
median 

221 
(46.43) 

263 (48.88) Reference 120 (48.00) Reference 

Above 
median 

255 
(53.57) 

275 (51.12) 
1.08  

(0.79, 1.47) 
130 (52.00) 

1.11  
(0.74, 1.66) 

Tertile 1 
158 

(33.19) 
187 (34.76) Reference 77 (30.80) Reference 

Tertile 2 
166 

(34.87) 
172 (31.97) 

0.97  
(0.68, 1.39) 

85 (34.00) 
0.86  

(0.54, 1.38) 

Tertile 3 
152 

(31.93) 
179 (33.27) 

1.08  
(0.74, 1.57)  

88 (35.20) 
0.97  

(0.59, 1.58) 
p-value for 
trend 

  0.70  0.89 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, drink-years, block group median 
household income in 1999, the household air pollution and packyears if applicable 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-16. Associations between PM2.5 concentration1 one-year before diagnosis and upper 

aerodigestive track cancers susceptibility by smoking status 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Nonsmokers 

Per µg/m3 164 
(100.00) 

445 (100.00) 
1.03  

(0.97, 1.10) 
247 (100.00) 

1.03  
(0.96, 1.10) 

Below 
median 

68 (41.46) 223 (50.11) Reference 121 (48.99) Reference 

Above 
median 

96 (58.54) 222 (49.89) 
1.28  

(0.86, 1.91) 
126 (51.01) 

1.20  
(0.76, 1.90) 

Tertile 1 42 (25.61) 144 (32.36) Reference 80 (32.39) Reference 

Tertile 2 52 (31.71) 155 (34.83) 
1.27  

(0.77, 2.10) 
84 (34.01) 

1.26  
(0.72, 2.21) 

Tertile 3 70 (42.68) 146 (32.81) 
1.51  

(0.92, 2.49)  
83 (33.60) 

1.44  
(0.82, 2.53) 

p-value for 
trend 

  0.11  0.21 

Smokers 

Per µg/m3 401 
(100.00) 

538 (100.00) 
1.05  

(1.00, 1.11) 
288 (100.00) 

1.06  
(0.99, 1.12) 

Below 
median 

172 
(42.89) 

263 (48.88) Reference 143 (49.65) Reference 

Above 
median 

229 
(57.11) 

275 (51.12) 
1.34  

(0.98, 1.84) 
145 (50.35) 

1.31  
(0.90, 1.90) 

Tertile 1 
102 

(25.44) 
187 (34.76) Reference 110 (38.19) Reference 

Tertile 2 
139 

(34.66) 
172 (31.97) 

1.52  
(1.04, 2.22) 

87 (30.21) 
1.83  

(1.16, 2.87) 

Tertile 3 
160 

(39.90) 
179 (33.27) 

1.83  
(1.25, 2.69)  

91 (31.60) 
2.09  

(1.33, 3.30) 
p-value for 
trend 

  < 0.01  < 0.01 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3); tertile 1 (≤ 17.9 µg/m3), tertile 2 (17.9 < PM2.5 ≤ 20.9 µg/m3), and 
tertile 3(> 20.9 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, drink-years, block group median 
household income in 1999, the household air pollution and packyears if applicable 
3Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancer 
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Table 4-17. Associations between exposure to solid fuel or environmental tobacco smoking 

since adulthood and lung cancer susceptibility by smoking status 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR1 

(95% CI) 
UADT 

controls2, N (%) 
Adjusted OR1 

(95% CI) 

Nonsmokers 

No  56 (55.45) 272 (61.12) Reference 128 (64.65) Reference 

Any  45 (44.55) 173 (38.88) 
1.14 

(0.68, 1.89) 
70 (35.35) 

1.26  
(0.68, 2.32) 

Smokers 

No  
139 

(29.20) 
187 (34.76) Reference 88 (35.20) Reference 

Any  
337 

(70.80) 
351 (65.24) 

0.78  
(0.57, 1.08) 

162 (64.80) 
0.63  

(0.42, 0.96) 
1Models adjust for age, gender, education, race/ethnicity, drink-years, block group median 
household income in 1999, PM2.5 concentration one year before diagnosis and packyears if 
applicable 
2Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-18. Associations between exposure to solid fuel or environmental tobacco smoking 

since adulthood and upper aerodigestive track cancers susceptibility by smoking status 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR1 

(95% CI) 
Lung controls2, 

N (%) 
Adjusted OR1 

(95% CI) 

Nonsmokers 

No  88 (53.66) 272 (61.12) Reference 144 (58.30) Reference 

Any  76 (46.34) 173 (38.88) 
1.41  

(0.95, 2.10) 
103 (41.70) 

1.46  
(0.93, 2.29) 

Smokers 

No  
133 

(33.17) 
187 (34.76) Reference 99 (34.38) Reference 

Any  
268 

(66.83) 
351 (65.24) 

0.92  
(0.67, 1.25) 

189 (65.63) 
0.96 

(0.65, 1.39) 
1Models adjust for age, gender, education, race/ethnicity, drink-years, block group median 
household income in 1999, PM2.5 concentration one year before diagnosis and packyears if 
applicable 
2Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancer 
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Table 4-19. Associations between air pollution index1 and lung cancer susceptibility by 

smoking status 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

UADT 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Nonsmokers 

0 17 (16.83) 91 (20.45) Reference 44 (22.22) Reference 

≥1 84 (83.17) 354 (79.55) 
1.21  

(0.63, 2.31) 
154 (77.78) 

1.29  
(0.59, 2.80) 

1 25 (24.75) 149 (33.48) 
0.97  

(0.46, 2.04) 
68 (34.34) 

0.93 
(0.38, 2.25) 

2 39 (38.61) 144 (32.36) 
1.39  

(0.68, 2.83) 
59 (29.80) 

1.64  
(0.80, 3.84) 

3 20 (19.80) 61 (13.71) 
1.36  

(0.59, 3.14) 
27 (13.64) 

1.41  
(0.50, 3.96) 

P-value 
for trend 

  0.26  0.21 

Smokers 

0 51 (10.71) 66 (12.27) Reference 25 (10.00) Reference 

≥1 
425 

(89.29) 
472 (87.73) 

0.69 
(0.44, 1.08) 

225 (90.00) 
0.49  

(0.27, 0.90) 

1 
150 

(31.51) 
182 (33.83) 

0.62  
(0.38, 1.01) 

84 (33.60) 
0.46  

(0.24, 0.89) 

2 
168 

(35.29) 
171 (31.78) 

0.79  
(0.48, 1.29) 

84 (33.60) 
0.54  

(0.28, 1.04) 

3 
107 

(22.48) 
119 (22.12) 

0.69  
(0.41, 1.16) 

57 (22.80) 
0.48  

(0.24, 0.96) 
P-value 
for trend 

  0.60  0.17 

1Air pollution index was computed based on exposure to any source of household air pollution 
since adulthood, including solid fuels for cooking or heating and environmental tobacco 
smoking (yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, 
Tertile 3 = 2)2Models adjust for age, gender, education, race/ethnicity, drink-years, block 
group median household income in 1999 and packyears if applicable 
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-20. Associations between air pollution index1 and upper aerodigestive cancer 

susceptibility by smoking status 

 
Cases, N 

(%) 
Combined 

controls, N (%) 
Adjusted OR2 

(95% CI) 

Lung 
controls3, N 

(%) 

Adjusted OR2 
(95% CI) 

Nonsmokers 

0 24 (14.63) 91 (20.45) Reference 47 (19.03) Reference 

≥1 
140 

(85.37) 
354 (79.55) 

1.67  
(0.98, 2.85) 

200 (80.97) 
1.53  

(0.85, 2.78) 

1 49 (29.88) 149 (33.48) 
1.54  

(0.86, 2.78) 
81 (32.79) 

1.42  
(0.74, 2.73) 

2 54 (32.93) 144 (32.36) 
1.54  

(0.85, 2.79) 
85 (34.41) 

1.38  
(0.71, 2.70) 

3 37 (22.56) 61 (13.71) 
2.39  

(1.23, 4.66) 
34 (13.77) 

2.36  
(1.10, 5.10) 

P-value 
for trend 

  0.02  0.05 

Smokers 

0 34 (8.48) 66 (12.27) Reference 41 (14.24) Reference 

≥1 
367 

(91.52) 
472 (87.73) 

1.27  
(0.78, 2.06) 

247 (85.76) 
1.53  

(0.87, 2.67) 

1 
107 

(26.68) 
182 (33.83) 

0.94  
(0.56, 1.60) 

98 (34.03) 
1.10  

(0.60, 2.04) 

2 
160 

(39.90) 
171 (31.78) 

1.56  
(0.92, 2.63) 

87 (30.21) 
1.89  

(1.03, 3.49) 

3 
100 

(24.94) 
119 (22.12) 

1.46  
(0.84, 2.53) 

62 (21.53) 
1.82  

(0.96, 3.48) 
P-value 
for trend 

  0.02  < 0.01 

1Air pollution index was computed based on exposure to any source of household air pollution 
since adulthood, including solid fuels for cooking or heating and environmental tobacco 
smoking (yes = 1, no =0) and exposure to ambient air pollution (Tertile 1 = 0, Tertile 2 = 1, 
Tertile 3 = 2) 
2Models adjust for age, gender, education, race/ethnicity, drink-years, block group median 
household income in 1999 and packyears if applicable 
3Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancer 
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Table 4-21. Interactions between PM2.5 concentration1 one-year before diagnosis and 

smoking on lung cancer susceptibility  

Smoking 
status PM2.5 

Cases, 
N (%) 

Combined 
controls, N 

(%) 

Adjusted 
OR2 (95% 

CI) 

UADT 
controls3, N 

(%) 

Adjusted 
OR2 (95% 

CI) 

Non-
smokers 

Below 
median 

37 
(6.41) 

223 (22.69) Reference 102 (22.77) Reference 

Non-
smokers 

Above 
median 

64 
(11.09) 

222 (22.58) 
1.63  

(1.02, 2.62) 
96 (21.43) 

1.64  
(0.94, 2.86) 

Smokers Below 
median 

221 
(38.30) 

263 (26.75) 
4.54 

(2.98, 6.92) 
120 (26.79) 

4.85 
(2.90, 8.09) 

Smokers Above 
median 

255 
(44.19) 

275 (27.98) 
4.68 

(3.05, 7.20) 
130 (29.02) 

5.01  
(2.98, 8.43) 

p-value for 
interaction 

   0.09  0.16 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, drink-years, block group median 
household income in 1999, and the household air pollution  
3Controls originally matched to UADT cancers were used to assess the susceptibility of lung 
cancer 
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Table 4-22. Interactions between PM2.5 concentration1 one-year before diagnosis and 

smoking on UADT cancers susceptibility  

Smoking 
status PM2.5 

Cases, 
N (%) 

Combined 
controls, N 

(%) 

Adjusted 
OR2 (95% 

CI) 

UADT 
controls3, N 

(%) 

Adjusted 
OR2 (95% 

CI) 

Non-
smokers 

Below 
median 

68 
(12.04) 

223 (22.69) Reference 121 (22.62) Reference 

Non-
smokers 

Above 
median 

96 
(16.99) 

222 (22.58) 
1.36  

(0.93, 2.00) 
126 (23.55) 

1.25  
(0.81, 1.93) 

Smokers Below 
median 

172 
(30.44) 

263 (26.75) 
1.34 

(0.93, 1.92) 
143 (26.73) 

1.33 
(0.88, 2.01) 

Smokers Above 
median 

229 
(40.53) 

275 (27.98) 
1.70 

(1.18, 2.46) 
145 (27.10) 

1.70 
(1.12, 2.59) 

p-value for 
interaction 

   0.78  0.94 

1PM2.5 concentration among combined controls: below median (≤ 19.1 µg/m3) and above 
median (> 19.1 µg/m3) 
2Models adjust for age, gender, education, race/ethnicity, drink-years, block group median 
household income in 1999, and the household air pollution  
3Controls originally matched to lung cancer were used to assess the susceptibility of UADT 
cancers 
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Table 5-1. Summary of study methods and findings 

Specific 

Aims 

Aim 1 Aim 2 Aim 3 

Outcomes COVID-19 Lung and UADT 
cancers 

Incidence Incidence and mortality Susceptibility 
Exposure PM2.5 and non-

pharmacologic preventive 
initiatives 

 

Vaccine coverage 
 

PM2.5, household air 
pollution, and both 
ambient and indoor 

air pollution 
Sample size  3,096 counties 3,073 counties 577 lung cancer 

cases, 565 UADT 
cancers cases, and 

983 controls 
Source of 
population 

The United States Los Angeles county 

Statistical 
methods 

Negative binomial 
regression 

Poisson with generalized 
linear models 

Unconditional logistic 
regression 

Evidence 
added 

Long-term exposure PM2.5 

associated increase 
county-level COVID-19 
incidence during the first 
two surges of COVID-19 

pandemic in the US 
State-level facemasks 

mandates and stay home 
orders were effective 

Associations between 
complete vaccination and 
booster and COVID-19 
incidence and mortality 
during Alpha, Delta, and 
Omicron predominance 

Associations of both 
ambient and 

household air 
pollution with lung 

and UADT 
susceptibility 

Limitations Ecologic fallacy, residual confounding, reliability on 
publicly available data 

Overmatching, 
measurement error, 

low power in 
subgroup analyses 
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