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SUMMARY

Using induced pluripotent stem cells (iPSCs) to understand the mechanisms of neurological 

disease holds great promise; however, there is a lack of well-curated lines from a large array of 

participants. Answer ALS has generated over 1,000 iPSC lines from control and amyotrophic 

lateral sclerosis (ALS) patients along with clinical and whole-genome sequencing data. The 

current report summarizes cell marker and gene expression in motor neuron cultures derived from 

92 healthy control and 341 ALS participants using a 32-day differentiation protocol. This is the 

largest set of iPSCs to be differentiated into motor neurons, and characterization suggests that cell 

composition and sex are significant sources of variability that need to be carefully controlled for in 

future studies. These data are reported as a resource for the scientific community that will utilize 

Answer ALS data for disease modeling using a wider array of omics being made available for 

these samples.

In brief

In this article, 433 iPSCs from control and ALS patients were differentiated into motor neurons 

and profiled by immunocytochemistry and RNA-seq. Results reveal sex and cell composition to be 

among the strongest drivers of gene expression variation, with a higher percentage of Islet1+ cells 

observed in male ALS patient-derived cultures.

Graphical Abstract
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INTRODUCTION

The use of induced pluripotent stem cell (iPSC)-derived motor neurons to model genetic 

and sporadic forms of amyotrophic lateral sclerosis (ALS) is founded on the idea that the 

human-specific nature of these models will help to elucidate molecular mechanisms of 

disease and provide a paradigm for drug screening and discovery.1 Although it may be 

possible to use a smaller number of patient lines when modeling genetic forms of ALS, 

where isogenic lines can be produced as controls,2 this becomes more complicated when 

modeling sporadic ALS (SALS) with mixed etiologies. One study from Japan has shown 

that 32 ALS patients compared with 6 controls was sufficient to distinguish specific subsets 

of SALS patients.3 However, differences in ethnic diversity between the USA and Japan 

may create a wider variation in iPSC biology that could increase the number of patients 

required to resolve additional disease-specific mechanisms.4 In order to overcome and 

inform these issues fora diverse population of patients, a far larger set of iPSC lines and their 

differentiated motor neurons are required. Answer ALS (https://www.answerals.org) was 

established with the goal of making 1,000 iPSC lines from patients with all forms of ALS 

that have deep clinical data along with whole-genome sequencing (WGS) and multi-omics 

on differentiated motor neurons.5

In this study, 433 iPSC lines were differentiated into motor neurons using an optimized 

32-day protocol selected based on extensive discussions with the scientific community.6 

Neuronal cell marker staining and gene expression patterns were analyzed in motor neuron 
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cultures. Exploratory analyses and modeling with patient covariates were then used to 

reveal the major confounding variables and challenges associated with these large patient-

derived iPSC differentiation studies as resources for the community. Interestingly, ALS 

participants generated significantly more motor neurons than control patients based on 

Islet 1 (ISL1) staining, but unsupervised principal component analysis (PCA) showed no 

clear overall separation of ALS versus control participants, and very few differentially 

expressed genes (DEGs) were detected. However, the correlation of principal components 

(PCs) with biological and technical covariates revealed high correlations of various PCs 

with the percentage of S100B+ cells. Additional subsets of genes were highly correlated 

with the staining data and other experimental and patient-specific covariates, such as iPSC 

origin (T cell versus non-T cell), C9orf72 expansion, and a large number of residual genes 

that represent patient-to-patient variability likely driven by genetic differences. Interestingly, 

among the most prominent covariates was sex, which drove a transcriptomic signature that 

could completely separate males and females and was associated with a large number of 

differentially expressed autosomal and sex-linked genes.

RESULTS

Characterization of the main resource

The experimental design is summarized in Figure 1A and the concept and an overview 

of the Answer ALS project has been recently published.5 For this study, peripheral blood 

mono-nuclear cells (PBMCs) were collected from 433 individuals (Table S1) enrolled in 

the Answer ALS clinical study and reprogrammed into iPSCs using established methods.7 

Within the ALS patient lines, there was the expected distribution of self-reported disease-

causing mutations in genes such as C9orf72 and superoxide dismutase 1 (SOD1), with 

the majority of cases being sporadic with no known disease-causing mutations (Figure 

1B). WGS revealed similar numbers of pathogenic/likely pathogenic (P-LP) and in silico 
predicted damaging (IS-D) coding variants across the genomes of healthy control, SALS, 

and familial ALS (FALS) patients (Table 1). However, more subjects in the FALS group 

harbor P-LP (28.1%) and IS-D (40.6%) variants in 33 ALS-associated genes (see STAR 

Methods for genes) compared with other patient groups. Unexpectedly, several healthy 

control participants also carry P-LP (15.4%) or IS-D (9.6%) coding variants in one or more 

of the ALS genes, similar to the proportion of SALS patients carrying P-LP (14.6%) and 

IS-D (11.1%) ALS variants.

Control and ALS patient iPSCs were differentiated using a standardized 32-day direct 

induced motor neuron protocol in 6-well plates in 50 batches of 5–14 patients using a 

method based on dual SMAD inhibition and ventral patterning6 (Figure S1A). In order to 

determine any drift within the differentiation protocol or confounding technical variability 

in the RNA sequencing (RNA-seq) analysis, we included a set of batch technical controls 

(BTCs—a control line differentiated in bulk, aliquoted, and included with each RNA-seq 

run as technical reference) and batch differentiation controls (BDCs—the same control line 

differentiated with each batch of patient lines) (Figures 1A and 1C). Replicate wells were 

dissociated and used for the RNA analysis and immunocytochemistry, which was performed 

and analyzed using high-content imaging. Differentiated motor neuron cultures were 
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heterogeneous and consisted mainly of neurons based on staining for SMI-32/neurofilament 

heavy chain and tubulin beta-III (TUBB3) (Figure 1D). Although there were no observed 

GFAP-positive cells resembling reactive astrocytes, most cultures had cells with a flat 

morphology that were highly reactive for S100B, suggestive of an astrocyte-like phenotype8 

(Figure 1D). Positive staining for ISL1 suggested cultures contained putative motor neurons 

(Figure 1D). Surprisingly, ALS cultures had significantly more ISL1+ motor neurons than 

controls—17.0% ± 0.4% versus 14.1% ± 0.8% of total cells (mean ± SEM) (Figure 1E). 

Further quantification and separation into male and female lines showed that the higher 

percentage of ISL1 in ALS samples was primarily due to a significantly higher percentage 

of ISL1+ cells specifically in male ALS samples versus all other groups (Figure S1B). 

Additionally, the motor neuron progenitor marker NKX6–1 (Figure S1C) and the general 

neuronal marker TUBB3 (Figure S1D) were also similarly enriched in male ALS samples 

versus all other groups. Quantification of SMI-32, Nestin, and S100B staining showed 

no significant differences between ALS and control groups or between male and female 

participants (Figures S1E–S1G). Temporal analysis of a subset of lines (n = 8) revealed 

S100B+ cells to be present as early as day 18 and significantly more abundant at day 32 and 

day 46 in motor neuron cultures (Figure S1H).

T cell and non-T cell reprogramming leads to specific gene expression in motor neuron 
cultures

Reprogramming PBMCs into iPSCs was based on methods that favored both lymphoid 

T cells and myeloid non-T cells.7,9 We initially attempted to avoid T cells; however, 

reprogramming non-T cells was less efficient, and hence, using solely non-T cells was 

not feasible for iPSC production at scale. As such, iPSC lines in the Answer ALS cohort 

were derived from both T cells and non-T cells (Figure 2A). Given the genetic DNA 

rearrangements that occur in T cell development, we first asked whether the original 

cell type from which the iPSCs were derived had any effect on gene expression in 

the differentiated motor neurons. Interestingly, T cell receptor genes TRDC and TRGV9 
were significantly upregulated, and TRBC2 and TRAC were significantly downregulated 

in non-T versus T cell-derived samples (Figures 2B and 2C). PCA based on these four 

genes showed a clear separation of motor neuron samples along PC1 depending on the 

cell of origin (Figure 2D). Receiver operating characteristic (ROC) curve analysis using 

PC1 coordinates to classify samples revealed these 4 genes to be outstanding predictors 

of the original somatic cell of origin of each iPSC-derived motor neuron sample (Figure 

2E). Interestingly, there were occasionally some differentiated motor neuron cultures with 

abnormally high levels of POU5F1/OCT4 expression (Figure 2F), which were nearly all 

in cultures differentiated from T cell-derived iPSCs (Figure 2G). These were also clearly 

outliers on the global PCA generated using all expressed genes (Figure 2H) and were 

removed from the analyses.

Overall gene expression patterns and controlling for batch differences

Using PCA to determine overall gene expression patterns revealed that in the final set of 

patients, PC1 accounted for 44.6% of the variation in gene expression (top 500 highly 

variable genes [HVGs]) with PC2 representing 12.5% of the variation (Figure 3A). There 

was no clear separation of ALS patients from controls in either of these PCs or any 
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separation of genetic and non-genetic forms of ALS. However, two distinct clusters occurred 

in the PCA completely separated along PC2, which were subsequently determined to be 

male and female participants. We next determined how consistent the differentiation method 

was by projecting the batch control samples onto the original PCA, which resulted in the 

BTCs clustered almost entirely in one location (Figure 3B, green) with a mean Spearman 

correlation coefficient of 0.98 (Figure 3C), suggesting very little technical variability in the 

RNA-seq assay due to sample prep, sequencing chemistry, and read processing. Also, most 

isogenic BDCs clustered in a similar region of the PCA (Figure 3B, salmon) with a mean 

Spearman correlation coefficient of 0.97 (Figure 3C), indicating high reproducibility of the 

method across 49 independent differentiations. Although there was overall individual patient 

variation spread across PC1 and PC2 (Figure 3B, gray), ingeneral, the anisogenic individual 

patient samples also correlated well with each other (Spearman correlation = 0.95; Figure 

3C), suggesting that the differentiation protocol provides robust, high-quality, and consistent 

differentiations, even across patient cell lines. These results are well within the ENCODE 

recommended replicate concordance among isogenic and anisogenic samples.10

We next asked which genes contributed to variation in the BTCs and BDCs. In the 

BTCs, small nucleolar RNAs and mitochondrial genes were the most variable (Figure 

3D), likely reflecting variation associated with measuring genes with large expression 

values. Gene ontology (GO) analysis of the HVGs in the BTCs (Table S2) showed 

significant enrichment for mitochondrial-associated GO terms (Figure S2A). This was 

similar for the BDCs; however, there was also high variation in collagens, cadherins, 

and contactins along with genes involved in Wnt and Notch signaling (Figure 3E; Table 

S3), suggesting that expression of these genes are susceptible to small differences in the 

differentiation parameters (e.g., plating density, exact media composition, and substrate 

differences between batches). Enriched GO terms in the BDC variable genes confirmed 

that extracellular matrix (ECM) and cell adhesion pathways were the dominant drivers of 

variation (Figure 3F). A heatmap of the top 20 HVGs in the BDCs revealed that a select few 

early batches and the very last differentiation batch drove much of the variation and were 

enriched in the expression of the top HVGs (Figure 3G). Interestingly, these highly variable 

batches coincided with the BDC samples having the highest percentage of S100B+ cells by 

staining (Figure S2B), suggesting that the high variability in these genes and pathways is 

likely attributable to differences in cell composition.

To establish whether the gene expression patterns represented in the PCA were reproducible 

for additional patients, 26 subjects were re-run with 13 control and 13 ALS samples split 

roughly equally between males and females. iPSCs were thawed and 32-day motor neurons 

were differentiated for the 26 samples in 3 sets of repeat batches. Raw counts of the first and 

second differentiation of subjects were combined and normalized. Unsupervised hierarchical 

clustering revealed that 9 of the repeat sample pairs clustered most closely together while 

the remaining pairs were more distant (Figure S2C). Multidimensional scaling revealed 

that many of the repeat samples clustered together as nearest neighbors (Figure S2D), 

and additional estimates of similarity by Spearman’s correlation (Figure S2E) or simple 

error ratio estimate (SERE)11 scores (Figure S2F) showed that gene expression for the intra-

individual (self) repeats was significantly more correlated than inter-individuals (non-self). 

These results suggest that the repeat pairs were more similar than would have happened by 
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chance; however, it was clear that for over half the cases there were stochastic factors that 

drove the same patient line to differentiate into a slightly different culture composition.

Main drivers of variance in motor neuron cultures

In order to determine the covariates contributing most to individual gene variation, we used 

variance partitioning12 to estimate the percentage of gene expression that could be explained 

by technical and clinical variables associated with each sample. The differentiation batch 

was responsible for an average of 8.7% of the overall variance in gene expression—the 

highest percentage of all the covariates that were assessed (Figure 4A). The next highest 

contribution to variance was the number of S100B+ cells in each culture. Interestingly, 

analysis of the staining data revealed a high correlation between glial/progenitor markers 

(S100B and Nestin) and among neuronal markers (TUBB3, SMI-32, ISL1, and NKX6–

1), as shown in the pairwise correlation matrix (Figure 4B). Feature selection of the top 

500 HVGs was performed to identify the strongest drivers of sample clustering and find 

any PCs significantly correlating with various patient clinical and experimental covariates. 

Analysis of 12 covariates within the first 6 PCs revealed that the percentage of S100B+ 

cells in each culture was significantly correlated with PC1 (Figure 4C). Plotting PC1 

and PC2 and coloring samples by percent S100B+ cells reveals that samples are largely 

ordered along PC1 by the level of S100B cells in each culture (Figure 4D). Surprisingly, 

there was no strong correlation of batch with any of the first 6 PCs despite this variable 

contributing significantly to gene expression variation. These findings suggest that gene 

variance associated with batch-to-batch variation is somewhat random and that the global 

clustering of samples is more dependent on cell composition and other participant variables.

We next examined genes that correlate with S100B staining and identified several in which 

the percent of S100B+ cells could explain over 50% of the variation in gene expression 

(Figure S3A). Interestingly, several genes including COL5A2 were more highly correlated 

with %S100B+ staining than the expression of S100B itself (Figure S3B), suggesting that 

the RNA-protein relationship for this gene and many others is not always tightly correlated. 

In other cases, such as for ISL1, there was a more robust gene-protein relationship where 

staining explained variation in ISL1 gene expression better than any other gene (Figures 

4E and 4F). For other staining markers, NKX6–1 protein was also highly correlated with 

its own RNA, whereas Nestin protein staining was most correlated with genes such as 

CHMP2B, and TUBB3 staining with EEF1A1 and BDNF gene expression (Figure S3C). 

Interestingly, C9orf72 mutation status best-explained variance in C9orf72 gene expression 

(Figure S3D), and patients with C9orf72 hexanucleotide repeat expansion (HRE) had 

significantly less overall C9orf72 gene expression (Figure 4G), supporting previous studies 

showing a loss of function due to the expanded repeats.13–15 Comparing C9orf72 patients 

with healthy controls or all other ALS patients revealed only a small number of DEGs 

(Figure S3E). The sample batch explained significant amounts of variation in ribosomal and 

small nucleolar RNA genes (Figure S3F) that overlapped with many of the HVGs present 

in the BTC and BDC samples. A large proportion of variation in several genes could be 

explained by sequencing depth (Figure S3G), and notably, sex could explain nearly all the 

variation in a number of genes, many being X- and Y-linked (Figure S3H). The disease 

status of the participant (ALS versus control) only explained an average of 0.22% of the 
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variation in total gene expression (Figure 4A) and a maximum of approximately 15% of the 

variation of any single gene (Figure S3I). Lastly, correlating the age of the patients at iPSC 

sample collection with day 32 motor neuron gene expression showed very little association, 

with age at sample collection only able to explain a maximum of 5.7% of variation in any 

individual gene, the lowest of any of the covariates we tested (Figure S3J), supporting that 

age of the patient at iPSC production only minimally affects downstream gene expression of 

iPSC-derived tissues.

Gene expression related to sex separated males and females in motor neuron cultures

A large subset of the HVGs that separated motor neuron samples was associated with 

sex. Following the top 500 HVG feature selection, males and females were completely 

separated along PC2 (Figure 5A), suggesting that even with all the other variations from 

cell composition and batch differences, this covariate had a significant effect. Interestingly, 

even in the absence of in vivo hormonal signaling, iPSC-derived motor neurons have strong 

gender-specific gene expression patterns. To determine whether this sex effect was also 

observed in human tissue in vivo, we evaluated RNA-seq data from post-mortem human 

samples from ALS subjects using data from Prudencio et al.16 and from the New York 

Genome Center. In brain samples,16 the largest separation was based on the tissue profiled 

(frontal cortex versus cerebellum), with sex separating subjects along PC2 with 5% of the 

variance (Figure 5B). Sex also separated human post-mortem thoracic spinal cord samples 

along PC2, which accounted for 9% of the variance in gene expression (Figure 5C). In 

both cases, there was a clear separation of samples according to sex, validating that sex 

differences in neuronal gene expression are not simply an artifact of iPSC reprogramming 

and differentiation. The distinct clustering of male versus female samples appeared to 

be driven mainly by X- and Y-linked genes; however, PCA using only autosomal genes 

revealed weaker but still significant correlations between sex and PC clustering (Figure 

S4A). Plotting samples along the two highest correlated autosomal-only PCs (PC4 and 

PC7) revealed significantly more overlap between sexes (Figure S4B) compared with 

PCA including sex-linked genes (Figure 5A); however, differential gene expression testing 

between male and female samples uncovered 1,016 DEGs, the majority of which were 

autosomal (Figure 5D; Table S4). To confirm these findings were not simply a product of 

random sample noise, sample sex labels were randomly shuffled resulting in an average 

of 53% correctly labeled samples (Figure 5E) and only 4 DEGs (Figure 5F) across 467 

permutations, suggesting that the large number of DEGs found in male-female comparison 

are true biological sex differences. XIST expression was significantly higher in female 

samples compared with males (Figure 5G), but female samples displayed higher variation 

in expression with several samples exhibiting low XIST levels, possibly reflecting issues 

with X chromosome inactivation (XCI). However, an analysis of XCI status confirmed 

that nearly all female samples display normal XCI with X-linked gene dosage comparable 

to males (Figure S4C), which is in line with previous reports assessing XCI in human 

iPSCs and their differentiated progeny.17 By comparing the expression level of each X-

linked gene in females with the average expression in male samples (Figure S4D), we 

identified a small number of female samples (n = 4) that display aberrant expression of 

X-linked genes and have an XX:XY expression ratio >1.2, indicating some erosion of 

XCI. Given the small number of samples that appear to be affected, defects in XCI are 
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unlikely to be a major driver of the sex-dependent differences we observe in our dataset. 

As expected, XX:XY expression ratios were negatively correlated with XIST levels (Figure 

S4E), but surprisingly, several female samples maintained normal X-linked gene dosage 

despite expressing low levels of XIST (Figure S4F). Conversely, many Y-linked genes 

such as ZFY were significantly enriched in male samples (Figure 5G); however, the gene 

most often associated with sex determination, SRY,18 was very lowly expressed and only 

detectable in 78 of 252 male samples (Figure S4G), suggesting alternative drivers of sexual 

dimorphism in motor neurons. Mapping of the DEGs between males and females shows 

they are distributed across all chromosomes with several interesting genes displaying sex-

specific differences (Figure S4H). For example, the neurodevelopmental gene DCX and the 

Alzheimer’s-associated APOE gene had higher expression in females (Figure 5H), whereas 

genes encoding cytoskeletal intermediate filaments such as NEFM and DES were higher in 

males (Figure 5I).

ALS gene signatures in motor neuron cultures

Given the significant sex differences in day 32 motor neurons and lack of a clear ALS versus 

control difference when using all participants, differential gene expression testing was run 

separately in males and females. Although very few DEGs were detected when using all 

participants or females only, 132 genes were downregulated and 220 genes were upregulated 

in male ALS versus male controls (Figures 5J and 5K; Table S5). No significant pathway 

enrichment was detected in the downregulated genes; however, inflammatory pathways 

related to TNF and NF-κB signaling were significantly enriched in the upregulated genes in 

male ALS samples (Figure 5L). Given the emergence of dysfunctional cryptic splicing as a 

potentially fundamental ALS disease mechanism, we also analyzed samples for cryptic exon 

(CE) inclusion in two commonly associated ALS genes: STMN219,20 and UNC13A.21,22 

Although we did not detect significant STMN2 CE inclusion in any of the day 32 motor 

neuron cultures (data not shown), most samples did have detectable UNC13A CE inclusion 

(Figure 5M). However, the percent spliced in (PSI, ψ) of UNC13A CE was quite low at less 

than 0.1% PSI in all samples with no statistically significant differences observed between 

ALS and control or between males and females.

We also sought to identify any genes that correlate with ALS patient clinical data that could 

potentially be used as predictive classifiers. We therefore performed a random 80/20 split 

of the ALS patient samples into training (n = 264) and validation (n = 66) groups and 

performed variance partitioning in the training group using revised ALS Functional Rating 

Scale (ALSFRS-R) progression rate, age at symptom onset, and site of disease onset as 

covariates (Figure S5A). This allowed us to identify several genes in which a portion of 

the variation of expression in day 32 iPSC-derived motor neurons could be explained by 

the patient clinical data, including a number of genes related to ALSFRS-R progression 

rate (Figure S5B). Several of these genes such as HSPBAP1 and NUP188 were positively 

correlated with ALSFRS-R slope, with lower expression correlating with faster disease 

progression (Figure S5C). Interestingly, HSPBAP1 has previously been observed to be 

downregulated in ALS patient motor cortex samples compared with healthy controls23,24 

and NUP188 has been identified as a TDP-43 target.25 Several genes were also negatively 

correlated with ALSFRS-R slope (Figure S5D). ALSFRS-R progression rates ranged from 
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approximately −3.0 to + 0.8 in the training set (Figure S5E), with the median value 

of −0.54 used to delineate fast and slow progressors. Using the top 7 genes that most 

highly correlated with ALSFRS-R slope, we generated PCA plots of ALS samples in the 

training set (Figure S5F) and used ROC curves to estimate the performance of the model to 

separate fast and slow progressors along PC1. Using this approach, we obtained a borderline 

acceptable classifier model for predicting disease progression rates from day 32 motor 

neuron gene expression (AUC = 0.66, p = 3e–4; Figure S5G). The distribution of ALSFRS-

R progression rates was similar in the validation set (Figure S5H) and patients were plotted 

along PC1 (Figure S5I) according to the expression of the 7 genes identified in the training 

group. Applying the classifier model to this set confirmed the significant, but borderline 

acceptable predictive ability of the model to separate fast and slow progressors using an 

independent cohort of patients (AUC = 0.68, p = 0.042; Figure S5J). We also analyzed 

several genes that have been previously identified by GWAS and expression quantitative 

trait loci (eQTL) studies to correlate with disease progression (TTN26) or disease onset 

(ACSL527 and ZNF512B28) and found no correlation in our dataset (Figure S5K).

DISCUSSION

This resource article describes the large-scale differentiation of motor neurons from ALS 

and control iPSC lines and the subsequent profiling by cell marker expression and 

bulk RNA-seq, with the goal of understanding whether there are biological or technical 

covariates that may be critical to subsequent data analytics and disease subtyping. Through 

extensive quality control measures, we showed three major sources that could account for 

variation related to the reprogramming process and/or differentiation to motor neurons: (1) 

differences between T cell and non-T cell reprogramming, (2) occasional aberrant persistent 

expression of OCT4/POU5F1, and (3) a small subset of cells expressing S100B. Further, 

we found that sex separated out the data into two distinct subgroups independent of disease 

status. Intriguingly, significantly more ISL1+ motor neurons were found in the ALS cases 

compared with controls, which when further analyzed was driven partly by the finding that 

males in general generated more motor neurons compared with females.

T cells versus non-T cells

Numerous methods exist to generate iPSCs from PBMCs. Isolating and expanding CD34-

positive cells has been used by several groups29 but requires ex vivo expansion of cells 

before reprogramming, which increases the possibility of proliferation-related genomic 

alterations. We previously developed a protocol for direct reprogramming of PBMCs 

without CD34 expansion.7 Given that T cells have genetic rearrangements required for 

a diverse repertoire of T cell receptors, we initially attempted to avoid reprogramming 

T cells. However, to meet the demand for large-scale generation of iPSC lines for the 

Answer ALS program, we ultimately reprogrammed both non-T cells and T cells into 

iPSCs. This proved more practical, but we observed that several T cell receptor-related 

genes were differentially expressed in motor neuron cultures. One potential problem for 

iPSC differentiation is the persistence of OCT4/POU5F1 or other pluripotency genes in 

differentiated cells. We screened for reprogramming factors and as expected, nearly all were 

downregulated following differentiation except for occasional lines that continued to highly 
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express OCT4. Over 90% of high OCT4-expressing motor neuron cultures were from iPSCs 

derived from T cells, although mechanisms underlying this phenomenon are unclear. Many 

iPSC lines in the ALS disease modeling community have been fibroblast-derived. However, 

the improved cytogenetic stability of PBMC-derived versus fibroblast-derived iPSCs,9 

combined with their ease of collection and lack of expansion requirement, make PBMCs 

a preferable source of iPSCs at scale. Additionally, a patient’s genetics typically override 

the differences caused by a somatic cell of origin, and differentiation propensities are not 

suspected to be influenced by whether the iPSC line was fibroblast or blood-derived30 

suggesting that the PBMC source of iPSCs in this dataset should not confound comparisons 

with other datasets using fibroblast-derived iPSCs.

Challenges with differentiation at scale

Differentiating a large number of iPSC lines to a specific neuronal phenotype is difficult at-

scale and for practical reasons required batches of cells to be differentiated over an extended 

time period. When a single line was differentiated, split into reference vials, and used with 

each RNA-seq assay as a technical control, variation was very low, indicating the RNA-seq 

assay is very consistent. As a further control, the same patient line was differentiated with 

every batch (BDC) as an anchor to ensure the robustness of each round of differentiation. 

In general, the protocol was remarkably reliable with batch controls falling very closely 

together between each run. Interestingly, most genes that differed with multiple runs of 

the same participant line were related to ECM, cell adhesion, and Hox patterning. ECM 

has critical effects on neuronal differentiation,31 and it is possible that subtle differences 

in plating density, substrates, and other media components led to changes in differentiation 

reflected in random changes in ECM gene expression and anterior-posterior patterning. 

In addition to the gene expression profiles, immunocytochemistry demonstrated that there 

was a stochastic appearance of larger flat cells in some of the batch controls that did not 

have neuronal morphology and were positive for S100B—a calcium-binding protein mainly 

concentrated in astrocytes and activated following brain injury or in neurodegenerative 

disease.8 We found that the percentage of S100B+ cells was highly correlated with many 

collagen and ECM-related genes, suggesting the variable number of S100B cells may have 

contributed to the ECM changes and variation in batch control differentiations. The tightly 

associated expression of ECM genes such as collagens, syndecans, and matrilins with 

the percentage of S100B+ cells, combined with their large, flat morphology and lack of 

GFAP staining, suggests that these cells may more closely resemble non-neuronal glial or 

fibroblast-like cells.

S100B expression and sex are major covariates

PCA of all samples to identify clusters that correlated with any of the covariates showed 

two variables that displayed high correlation values (>0.7) and statistically significant 

correlations with various PCs. The first was percent S100B, which was highly correlated 

with PC1, and the second was sex along PC2, which could completely separate male and 

female samples. S100B was primarily found in non-neuronal cells in the cultures, indicating 

that controlling this aspect of differentiation could significantly decrease variation. This 

may be accomplished in future runs by cell sorting to eliminate S100B+ cells before the 

final analysis. The sex differences were interesting given that, in this model, cells are not 
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exposed to exogenous sex hormones, so any changes must come from the endogenous 

differences mediated by X and Y chromosomes. Indeed, many gene expression differences 

were associated with genes on the sex chromosomes; however, most DEGs were autosomal, 

suggesting a wider association of sex differences across the genome. It is known that the 

incidence of ALS is higher in men (average male:female ratio ≈ 1.3–1.5) and the onset of 

disease is earlier in men than women.32,33 In addition, male rodents with a SOD1 mutation 

have earlier onset and faster progression than females.34,35 Differences in onset and 

progression are intriguingly not affected by modifying hormonal interactions,34 suggesting 

there are intrinsic male-female differences that lead to sexually dimorphic ALS disease 

presentation that are unrelated to hormonal signaling. Despite differences in incidence, 

prevalence rates are similar in men and women if examining ALS patients who had not 

undergone a tracheostomy, but men have a significantly higher prevalence rate if patients 

who had undergone tracheostomy are included.36 Correlation of sex to motor phenotypes 

interestingly reveals an association of flail arm and respiratory phenotypes with males and 

bulbar phenotype with females, but the bulbar association is only through an interaction with 

age.37 A question in the iPSC field relates to whether variability in random X inactivation 

in female iPSC lines could confound data interpretation.38–40 Here, the data using iPSC-

derived motor neurons show a significant separation between males and females that does 

not appear to reflect simple variability in gene silencing due to reprogramming given the 

proper X-linked gene dosage observed in most female samples and the concordance with 

human post-mortem spinal cord and brain. The data instead reflect widespread inherent gene 

expression differences between male and female neuronal cells and tissues.41,42

Conclusions

Several papers have described cellular phenotypes in iPSC-derived motor neurons from 

ALS patients, although most have focused on specific ALS-causing mutations such as 

C9orf72 and SOD1.1,43 Although a significant increase in motor neurons observed in ALS 

samples could suggest that overproduction may occur in the disease, this finding could 

also be the result of unbalanced groups (92 control and 341 ALS). More control lines are 

needed to further establish this observation. There were clearly no strong global differences 

between ALS and control, suggesting that using this protocol, ALS and control individuals 

cannot be easily separated solely by assessing transcriptomic signatures. Furthermore, even 

when patients are grouped by C9orf72 HRE, a genetic mutation that explains the largest 

number of sporadic and familial ALS cases, only a small number of dysregulated genes 

are detected, highlighting the difficulties in discerning gene expression changes and ALS 

disease signatures attributable to this mutation. The striking sex differences in our data 

suggest that males and females may need to be analyzed separately, requiring twice as 

many subjects for equivalently powered studies. Taken together, it is likely that the inability 

to detect clear genome-wide clusters among ALS and control individuals using a single 

assay reflects the issues the field has had in identifying effective therapeutics. Furthermore, 

ALS is a complex disease with different ages of onset, progression rates, and distinctions 

between upper or lower motor neurons that may be selectively involved.44 Although the 

bulk transcriptomic analysis did not show a clear separation between ALS and control, 

we have previously shown using single-cell sequencing that motor neurons within complex 

mixed cultures do show specific gene sets enriched in ALS even when not accounting 
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for sex differences.45 For bulk data, clearly cell heterogeneity, patient sex, and likely 

genetic effects need to be accounted for in order to identify subtle disease signatures. 

Interestingly, independently analyzing males and females revealed several dysregulated 

genes and pathways specifically in the male ALS patient-derived cells. Given no significant 

differences were observed in percent S100B+ cells between ALS and control or males 

and females, the percentage of these cells in each culture is unlikely to be driving the 

differences. Samples from the same cultures analyzed in this study were processed and 

frozen for proteomics and ATAC-seq. Ultimately, the immunocytochemistry and RNA-seq 

data will need to be integrated with the full set of multi-omics data as well as clinical 

information using machine learning and network-based approaches. This combination may 

reveal more complex relationships between RNA expression levels, genomics, proteomics, 

and epigenomics that reveal disease-specific patterns and subgroups of individuals. We have 

systematically explored the current transcriptomics data for factors contributing to sample 

variability, which is likely confounding the identification of disease-relevant gene expression 

changes. Elucidation of these variables should allow the wider scientific community to better 

utilize our data and is a first step in the overarching goals of integrating all the Answer ALS 

data for disease modeling and therapy development.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to the 

lead contact, Clive Svendsen (clive.svendsen@cshs.org).

Materials availability—The iPSC lines used in this study can be searched and 

selected through the Answer ALS Data Portal (https://dataportal.answerals.org) which 

links to the cell line catalog at the Cedars-Sinai Biomanufacturing Center (https://

biomanufacturing.cedars-sinai.org) for order fulfillment.

Data and code availability—A large portion of the data used in this study is currently 

publicly available through the Answer ALS Data Portal (https://dataportal.answerals.org) 

following approval of a Data Use Agreement (DUA) form. At the time of writing, some 

sample files are in process of being added to the data portal but have not been formally 

released. However, all data and code used in this study will be made available by reasonable 

request to the lead contact following DUA approval.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Clinical data and blood samples were collected from patients at eight neuromuscular clinics 

across the USA (Cedars-Sinai Medical Center, Johns Hopkins, Massachusetts General 

Hospital, Ohio State, Emory University, Washington University, Northwestern University, 

and Texas Neurology) as part of the Answer ALS program. Subjects were allocated to 

experimental groups based upon clinical diagnosis of ALS. No statistical tests were used 

for sample size estimation as this was a unique study with no prior knowledge to perform 

a power analysis on. The study was approved by each site’s Institutional Review Board and 

patients provided written informed consent.
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METHOD DETAILS

iPSC generation and quality control—Patient enrollment, clinical data collection, 

blood sampling, and reprogramming and QC of iPSC lines has been described 

previously.5,7,9 Briefly, 5×106 PBMCs isolated from the buffy coat of patient blood 

samples were nucleofected with plasmids pEP4 E02S ET2K,46 pCXLE-hOCT3/4-shp53-

F,47 pCXLE-hUL,47 pCXLE-hSK,47 and pCXWB-EBNA148 using the Amaxa Human T 

cell Nucleofector Kit and Nucleofector 2D Device. Following nucleofection, cells were 

resuspended in either T cell media (X-VIVO 10 media supplemented with 30U/mL IL-2 

and 5 μl/well Dynabeads Human T-activator CD3/CD28) or non-T cell medium (αMEM 

supplemented with 10%heat inactivated FBS, 10 ng/ml IL-3, 10 ng/ml IL-6, 10 ng/ml G-

CSF, and 10 ng/ml GM-CSF), plated onto mitomycin treated mouse embryonic fibroblasts, 

and placed in a 37°C incubator. Two days after nucleofection, 2 mL/well of Primate ES 

Cell Medium supplemented with 5 ng/ml bFGF was added to the wells. Stem cell-like 

colonies, typically appearing between days 25–32, were mechanically isolated and plated 

onto Matrigel-coated plates in mTeSR1. Quality control of iPSC lines was carried out as 

reported5,7 and consisted of karyotyping, pluripotency testing, EBNA-related gene analysis, 

and short tandem repeat (STR) confirmation of cell identity.

TCRB and TCRG T cell clonality assay—Total genomic DNA was isolated from iPSC 

lines using a MagMAX™ DNA Multi-Sample Ultra 2.0 Kit (Applied Biosystems). TCRB 

and TCRG T cell clonality testing was carried out using an IdentiClone TCRB + TCRG T 

Cell Clonality Assay Gel Detection kit (Invivo-scribe). PCR products amplifying regions of 

gene rearrangement and translocation in the TCR-αβ and TCR-γδ loci were analyzed using 

6% TBE gel electrophoresis with gel red staining. iPSC lines with any detectable bands were 

considered T cell derived.

Differentiation of iPSCs to motor neurons—iPSCs in batches of up to 14 patient 

cell lines were thawed and cultured for 2–3 weeks before passaging for differentiation. 

Differentiation to motor neurons was performed using an optimized 32-day protocol6 

summarized in Figure S1A and detailed in Baxietal.5 Briefly, iPSCs were dissociated with 

Accutase and plated at 5×105 cells/well in Matrigel-coated 6 well plates in mTeSR1. 

Twenty-four hours later, at the start of differentiation (Day 0), mTeSR1 was replaced 

with Stage 1 media (1:1 mixture of IMDM:F12 supplemented with 1% NEAA, 2% B27 

supplement, 1% N2 supplement, 1% PSA, 200 nM LDN193189, 10 mM SB431542, and 

3 mM CHIR99021), exchanged daily for 6 days. On day 6, cells were dissociated with 

Accutase and re-plated at 7.5×105 cells/well in Matrigel-coated 6 well plates using Stage 

2 media with ROCKi (Stage 1 media supplemented with 0.1 uM ATRA, 1 uM SAG, and 

10 uM ROCKi/Y-27632). Twenty-four hours later, media was replaced with Stage 2 media 

without ROCKi. Stage 2 media was then replaced every other day until day 12. Starting on 

day 12, Stage 3 media (1:1 mixture of IMDM:F12 supplemented with 1% NEAA, 2% B27 

supplement, 1% N2 supplement, 1% PSA, 0.1 uM Compound E, 2.5 uM DAPT, 0.1 uM 

db-cAMP,0.5 uM ATRA, 0.1 uM SAG,200 ng/ml ascorbic acid, 10 ng/ml BDNF, and 10 

ng/ml GDNF) was exchanged every other day until day 32.
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RNA isolation, sequencing, and quality control—RNA isolation, QC, preprocessing, 

and data analysis was performed as previously described.5 Briefly, total RNA was isolated 

from each sample using the Qiagen RNeasy mini kit. RNA samples for each subject were 

entered into an electronic tracking system and processed at the University of California, 

Irvine GHTF. RNA was QCed using an Agilent Bioanalyzer and quantified by Nanodrop. 

RNA quality is measured as RIN values (RNA Integrity Number), and 260/280 and 260/230 

ratios to evaluate any potential contamination. Only samples with RIN >8 were used for 

library prep and sequencing. Library prep processing was initiated with total RNA of 1 

μg using a Ribo-Zero Gold rRNA depletion and Truseq Stranded total RNA kit. RNA was 

chemically fragmented and subjected to reverse transcription, end repair, phosphorylation, 

A-tailing, ligation of barcoded sequencing adapters, and enrichment of adapter-ligated 

cDNAs. RNA-seq libraries were titrated by qPCR (Kapa), normalized according to size 

(Agilent Bioanalyzer 2100 High Sensitivity chip). Each cDNA library was then subjected 

to Illumina (Novaseq 6000) paired end (PE), 100 cycle sequencing to obtain approximately 

50–65M PE reads. Fastq were subject to QC and reads with quality scores (>Q20) were 

collected and further analyzed. Reads were mapped to the GRCh38 reference genome using 

Hisat2 (v.2.2.1), QCed, and underwent normalization and transformation before further 

exploratory and differential expression analysis. Samples with suspected mislabeling of sex 

labels based on PCA clustering and Y-chromosome gene expression, and samples with 

abnormal expression of OCT4 are indicated in Table S1 and were largely excluded from 

analyses unless otherwise indicated.

Immunocytochemistry—For cell staining, a replicate plate of day 32 motor neurons was 

washed with phosphate buffered saline (PBS) and fixed with 4% paraformaldehyde for 10 

min at room temperature. After fixing, cells were washed with PBS and blocked for 1 hour 

at room temperature with 5% normal donkey serum and 0.2% Triton X-100 in PBS. After 

blocking, each well was incubated with primary antibody for 1 hour at room temperature. 

Following primary incubation, cells were washed with 0.1% Triton X-100 in PBS and then 

stained with secondary antibodies for 1 hour at room temperature in the dark. Following 

secondary incubation, each well was washed with 0.1% Triton X-100 in PBS. DAPI solution 

was then added for 3 minutes at room temperature to stain nuclei. Cells were then washed 

again with PBS and stored at 4 °C until image acquisition using an ImageXpress Micro XLS 

Widefield High-Content Analysis System (Molecular Devices) with 64 regions of interest 

captured per well. Primary and secondary antibodies and dilutions are listed in the key 

resources table. ALS-Control and Male-Female comparisons of percentage of cells staining 

positive for each marker were analyzed in Graphpad Prism using one-way ANOVA with 

Tukey’s HSD post-hoc analysis.

Figure design and visualization—Graphical illustrations depicting study overview and 

cell differentiation were designed and prepared with Biorender.com and Adobe Illustrator. 

Graphs, heatmaps, and other plots were generated with R and GraphPad Prism and 

assembled in Adobe Illustrator.
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QUANTIFICATION AND STATISTICAL ANALYSIS

RNA-seq data processing and differential expression testing—Raw RNA-

seq reads were mapped to GRCh38 (hg38) human reference genome using Hisat2. 

Lowly expressed genes with less than 1 average raw count per sample were 

filtered from the dataset and raw counts were normalized and transformed using the 

varianceStabilizingTransformation pipeline from the R package DESeq2. In order to extract 

disease signals in the presence of strong confounders, we used either stratification and 

regression approaches. For stratification, samples were subset to males or females only 

followed by two group comparisons (ALS vs control) using DESeq2. Although lower 

statistical power, robust comparison was still possible owing to the large cohort of samples. 

Statistical analyses were performed in R and differentially expressed genes were detected 

for each covariate using false discovery rate or Bonferroni adjustment for multiple testing 

correction.

Whole genome sequencing and coding variant analysis—Whole genome 

sequencing on patient PBMCs was performed at the New York Genome Center (NYGC) 

as previously described.5 Paired-end reads were aligned to GRCh38 reference and processed 

following the GATK best practices workflow. Participants with available WGS data were 

assessed for ClinVar/InterVar/Harms-annotated pathogenic or likely pathogenic (P-LP) 

coding variants in all genes or specifically in ALS associated genes. A similar assessment of 

in silico predicted damaging (IS-D) variants was also performed. In silico predictions were 

based on previous results generated using SIFT, PolyPhen2, LRT prediction, MutationTaster, 

MutationAssessor, FATHMM, and dbNSFP prediction tools.5 ALS-associated genes include: 

ALS2, ANG, ANXA11, ATXN2, C21orf2, C9orf72, CAMTA1, CCNF, CHCHD10, DAO, 
DCTN1, FIG4, FUS, HNRNPA1, HNRNPA2B1, KIF5A, MATR3, MOBP, NEK1, OPTN, 
PFN1, SCFD1, SETX, SOD1, SQSTM1, TAF15, TARDBP, TBK1, TUBA4A, UBQLN2, 
UNC13A, VAPB, and VCP. Differences between ALS and healthy control populations 

were determined using a Wilcoxon rank-sum test for total number of coding variants per 

individual, and a Pearson’s chi-squared test for proportion of individuals carrying P-LP and 

IS-D ALS gene coding variants.

Dimensionality reduction and sample clustering—Principal component analysis 

(PCA) was performed using prcomp function in R with default settings. Following variance 

stabilizing transformation in DESeq2, the top 500 highly variable genes (HVGs), were used 

as input for PCA and clustering of samples. All genes, minus those with a mean raw count 

of <1 per sample, were used as input in PCA for identifying high OCT4 expressing outlier 

samples.

Batch control sample analysis—PCA for the batch control samples was performed 

using the predict.prcomp function from the stats package in R to estimate the PC coordinates 

of the batch control samples within the original principal component space generated 

using all patient samples without batch controls. For Spearman’s rank coefficient of 

correlation, samples were first normalized using DESeq2 variance stabilizing transformation 

and analyzed using the correlate function from the stats package in R with method = 

“spearman”. To identify highly variable genes (HVGs) in batch control samples, counts 
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were normalized by library size using DESeq2 and a regression line was fit on the average 

estimates of gene expression and dispersion. Genes were then ranked by deviation from 

the fit and a chi-squared test with Bonferroni correction was used to calculate significance 

of deviation from the fit. Gene ontology (GO) enrichment of HVGs was conducted using 

DAVID Bioinformatics Resource. To avoid any biases from the large number of BTCs and 

BDCs contained in the dataset, batch control samples were removed from analysis for global 

sample clustering, variance partitioning, and differential gene expression testing.

Repeat sample analysis—To assess repeatability of individual patient differentiations, 

26 subjects were differentiated a second time to day 32 motor neurons starting from frozen 

iPSCs and reprofiled. Samples were chosen from multiple previous batches and were evenly 

split between ALS vs. control and male vs. female groups. Raw RNA-seq counts from 

the first and second rounds of differentiation were normalized with DESeq2 and Euclidean 

distance between samples was calculated using the dist function from the stats package in R. 

Multidimensional scaling of the distance matrix was performed using the cmdscale function 

from the stats package in R and visualized with the ggplot package. Spearman’s rank 

coefficient of correlation was calculated using the correlate function and Simple Error Ratio 

Estimates11 were used to confirm repeatability of biological replicates and were calculated 

in R.

Gene expression variance partitioning—Fraction of gene expression variation 

explained by each covariate was estimated by fitting a linear mixed model for each gene 

following the variancePartition package framework in R. Raw counts were first filtered of 

low expressors (<1 average count/sample) and normalized with DESeq2 variance stabilizing 

transformation. For model formula design, categorical variables (batch, sex, disease status, 

iPSC cell of origin, and C9orf72 carrier status) were modeled as random effect. Continuous 

variables (sequencing depth, staining data, and iPSC patient age) were modeled as fixed 

effect. iPSC patient age explained the least amount of gene variation of any of the covariates 

and was not included in the final variance partitioning model formula design.

Correlation of principal component clustering to covariates—Principal 

components were generated in R and eigenvectors were correlated against covariates through 

the eigencorplot function from the PCAtools package in R. The test statistic is computed 

with PCAtools and is based on the Pearson’s product moment correlation coefficient and 

follows a t-distribution with Bonferroni adjustment for multiple testing correction.

Human post-mortem RNA-seq analysis—For human post-mortem brain, the raw 

RNA-seq count matrix and meta data were downloaded from GEO (GSE67196). PCA 

was generated using the PlotPCA function in the DESeq2 R package. For human thoracic 

spinal cord samples, raw reads were obtained from NYGC and were QCed and pseudo 

aligned to GRCh38 (hg38) human reference transcriptome using GENCODE annotation. 

Transcript level expression was quantified using Kallisto and summarized to gene level 

using R package tximport. PCA was generated using PlotPCA function and visualized with 

ggplot2.
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X chromosome inactivation analysis—X chromosome inactivation status (XCI) was 

assessed in female samples essentially as described.17 Briefly, X-linked gene expression 

values were normalized and the male median of each gene was determined. Non-expressed 

and highly variable genes were excluded and XX:XY expression ratios were calculated for 

each X-linked gene by dividing expression in individual female samples by the male median. 

These values were plotted along the X chromosome coordinates as a moving average with 

a window of 50 genes. The median value of all X-linked genes was used as the average 

XX:XY expression ratio for the female samples.

Quantification of cryptic exon inclusion—Alignment was performed and BAM files 

were generated with STAR aligner and indexed using samtools. Regtool was used to 

generate junction files and intron clustering was done using LeafCutter. Novel intron 

inclusion (cryptic exon) of STMN2 and UNC13A was determined from the intron count 

file. Percent spliced in (PSI, y) values were reported by LeafCutter.

Classifier model for ALS progression rate—To identify genes predictive of ALS 

patient clinical data, ALS samples were randomly assigned to training and validation groups 

using the sample function in R using an 80/20 split, respectively. Variance partitioning was 

performed as described previously on the training group samples only, with site of onset 

modeled as random effect and age at symptom onset and ALSFRS-R disease progression 

slope modeled as fixed effects. The top 7 genes which ALSFRS-R slope explains the 

largest fraction of variation in expression were used to cluster samples by PCA. The median 

ALSFRS-R progression slope of −0.54 was used to separate patients into fast and slow 

progressors and ROC curves were used to determine the ability to separate fast and slow 

progressing ALS patients along the first principal component. The ROC model was then 

applied to the independent validation set which was withheld from the original analysis, to 

determine the accuracy of the model to classify patients into fast and slow progressing.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Large-scale generation and differentiation of control and ALS iPSCs to motor 

neurons

• Patient sex and cell culture composition are significant sources of variation

• Male ALS cultures have more motor neurons and enrichment of stress-related 

pathways

• Deposition of data and cell lines into public repository with additional multi-

omics
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Figure 1. Differentiation and characterization of human iPSC-derived motor neurons
(A) Schematic overview of sample collection, reprogramming, and differentiation of motor 

neurons from 433 human subjects.

(B) Summary of self-reported genetic mutations in ALS patient cohort.

(C) Breakdown of bulk RNA-seq samples used for analysis. Batch technical controls (BTCs) 

and batch differentiation controls (BDCs) were used to assess technical noise and variation 

in the differentiation protocol.

(D) Representative immunofluorescent images of day 32 iPSC-derived spinal motor neuron 

cultures from control and ALS patients. Scale bar, 200 μm.

(E) Quantification of percent ISL1+ cells of total DAPI-stained cells (**p < 0.01, unpaired 

two-tailed t test. Box represents interquartile range (IQR), line indicates median, and 

whiskers denote +/− 1.5*IQR).

See also Figure S1.
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Figure 2. Somatic cell used for iPSC reprogramming detectable in day 32 motor neurons
(A) Breakdown of known somatic cells used for iPSC reprogramming.

(B) Volcano plot of differentially expressed genes in day 32 motor neurons differentiated 

from non-T cell-derived iPSCs versus day 32 motor neurons differentiated from T cell-

derived iPSCs (*p < 0.05, DESeq2 Wald test with Bonferonni correction).

(C) Normalized expression of the top differentially expressed genes (Box represents 

interquartile range (IQR), line indicates median, and whiskers denote +/− 1.5*IQR).

(D) PCA of day 32 motor neurons using the 4 genes shown in Figure 2C and colored by the 

type of somatic cell from which the iPSCs were derived.

(E) Classification of sample origin using a receiver operating characteristic (ROC) curve 

based on the PC1 coordinates in Figure 2D (AUC = 0.98, p = 1.21e54, Mann-Whitney U 

test).

(F) Several day 32 motor neuron samples displayed aberrant expression of the pluripotency 

factor OCT4/POU5F1 at more than 100 times the interquartile range of the dataset (red 

dashed line).

(G) The majority of OCT4 outliers were from samples originally derived from T cells.

(H) High OCT4-expressing samples are mainly clustered as outliers in global principal 

component analysis.
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Figure 3. Analysis of batch control samples identifies HVGs associated with technical noise and 
protocol variation
(A) Clustering of samples by principal component analysis (PCA) with data normalization 

and removal of BTC, BDC, and outlier samples.

(B) Projection of BTC and BDC samples along PC1 and PC2 in the global clustering of 

samples shown in Figure 3A.

(C) Spearman correlation between samples (****p < 0.0001, one-way ANOVA with 

Tukey’s HSD post hoc test).

(D) Grouping of HVGs identified in BTCs.
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(E) In addition to small RNA molecules, HVGs in BDC samples include genes associated 

with the extracellular matrix, signaling, neurotransmitter receptor expression, and various 

other genes.

(F) Gene ontology (GO) enrichment of HVGs in BDC samples.

(G) Heatmap of top 20 HVGs in BDC samples ordered by batch.

See also Figure S2.
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Figure 4. Correlating RNA-seq data with covariates reveals S100B and sex as leading descriptors 
of variance in the transcriptomic data
(A) Results of a linear mixed model used to estimate the proportion of variation in each gene 

attributable to technical and biological variables included in the metadata.

(B) Pearson correlation analysis of the staining data.

(C) Correlation of principal components to sample covariates (*p < 0.05, **p < 0.01, ***p < 

0.001, two-tailed t test with Bonferroni correction).

(D) Coloring samples in PCA by the percentage of cells expressing S100B.

(E) Top 10 genes in which percent ISL1+ cells explain the most amount of gene variation.
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(F) Correlation of ISL1 gene expression to ISL1 staining data.

(G) C9orf72 gene expression in healthy control, C9orf72 hexanucleotide repeat expansion 

carriers, and all other ALS subjects (****p < 0.0001, one-way ANOVA with Tukey’s HSD 

post hoc test. Box represents interquartile range (IQR), line indicates median, and whiskers 

denote +/− 1.5*IQR).

See also Figure S3.
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Figure 5. In vitro and in vivo sex differences in neuronal cultures and tissues
(A) PCA using the top 500 most variable genes separates male and female day 32 motor 

neuron samples along PC2.

(B and C) Male-female differences in human post-mortem (B) brain and (C) spinal cord.

(D) Differential gene expression analysis reveals 1,016 genes differentially expressed 

between male and female samples (p < 0.05, DESeq2 Wald test with Bonferroni correction).

(E) Histogram showing the proportion of correctly labeled samples following random 

shuffling of sex labels in 467 permutations.

(F) Histogram of the number of DEGs from 467 reshuffles of the sex class label.
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(G) X- and Y-linked genes show striking male-female differences in expression. (Box 

represents interquartile range (IQR), line indicates median, and whiskers denote +/− 

1.5*IQR.)

(H and I) Many autosomal genes show enrichment specifically in (H) female or in (I) male 

samples (DESeq2 Wald test with Bonferonni correction).

(J and K) Analysis of differentially expressed genes (DEGs) between ALS and control 

reveals subsets of genes that are (J) downregulated or (K) upregulated specifically in male 

ALS versus male control.

(L) Pathway enrichment of the upregulated DEGs in male ALS samples uncovers pathways 

related to TNF and NF-κB signaling (Fisher’s exact test with Benjamini-Hochberg false 

discovery rate [FDR] correction, FDR < 0.1).

(M) UNC13A cryptic exon expression shown as percent spliced in (PSI, ψ) in day 32 motor 

neuron cultures.

See also Figures S4 and S5.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-SMI-32/Neurofilament H (1:1000) Biolegend Cat#801701; RRID:AB_2564642

Goat anti-Human Islet-1/ISL1 (1:250) R&D Systems Cat#AF1837; RRID:AB_2126324

Mouse anti-NKX6.1 (1:1000) DSHB Cat#F55A10-s; RRID:AB_532378

Goat anti-NKX6.1 R&D Systems Cat#AF5857; RRID:AB_1857045

Rabbit anti-TUBB3/Tubulin Beta-III (1:1000) Abnova Cat#PAB7874; RRID:AB_1716633

Rabbit anti-Nestin/NES (1:1000) Sigma-Aldrich Cat#ABD69; RRID:AB_2744681

Mouse anti-S100B (1:250) Sigma-Aldrich Cat#S2532; RRID:AB_477499

Donkey anti-Rabbit IgG Alexa
Fluor™ 488 (1:1000)

ThermoFisher Scientific Cat#A-21206; RRID:AB_2535792

Donkey anti-Mouse IgG Alexa Fluor™ 568 (1:1000) ThermoFisher Scientific Cat#A-10037; RRID:AB_2534013

Donkey anti-Rabbit IgG Alexa Fluor™ 647 (1:1000) ThermoFisher Scientific Cat#A-31573; RRID:AB_2536183

Donkey anti-Goat IgG Alexa
Fluor™ 647 (1:1000)

ThermoFisher Scientific Cat#A-21447; RRID:AB_2535864

DAPI (4’,6-Diamidino-2-Phenylindole, Dilactate) (0.1 ug/mL) ThermoFisher Scientific Cat#D3571, RRID:AB_2307445

Chemicals, peptides, and recombinant proteins

X-VIVO 10 Serum-free Hematopoietic Cell Medium Lonza Cat#04–380Q

MEMα ThermoFisher Scientific Cat#12561056

Primate ES Cell Medium Reprocell Cat#RCHEMD001

mTeSR1 media StemCell Technologies Cat#85850

IMDM ThermoFisher Scientific Cat#12440061

Ham’s F-12 Nutrient Mix ThermoFisher Scientific Cat#11765062

MEM Non-Essential Amino
Acids Solution (100X)

ThermoFisher Scientific Cat#11140050

B-27™ Supplement (50X), serum free ThermoFisher Scientific Cat#17504044

N-2 Supplement (100X) ThermoFisher Scientific Cat#17502048

Pen-Strep-Antimycotic (PSA) ThermoFisher Scientific Cat#15240062

LDN193189 Cayman Chemicals Cat#17502048

SB431542 Cayman Chemicals Cat#13031

CHIR99021 Xcess Biosciences Cat#M60002

All-Trans Retinoic Acid (ATRA) Stemgent CAT#04–0021

Smoothened agonist (SAG) Cayman Chemicals Cat#11914

Y-27632 (ROCKi) StemCell Technologies Cat#72308

Compound E Sigma-Aldrich Cat#565790

DAPT Cayman Chemicals Cat#13197

Dibutyryl-cAMP (dbcAMP) Sigma-Aldrich Cat#28745

L-Ascorbic acid Sigma-Aldrich Cat#A4403

BDNF PeproTech Cat#450–02

GDNF PeproTech Cat#450–10
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REAGENT or RESOURCE SOURCE IDENTIFIER

Human IL-2 Recombinant Protein ThermoFisher Scientific Cat#PHC0026

Human Recombinant IL-3 StemCell Technologies Cat#78040.1

Human Recombinant IL-6 StemCell Technologies Cat#78050.1

Human Recombinant G-CSF StemCell Technologies Cat#78012.1

Human Recombinant GM-CSF StemCell Technologies Cat#78015.1

Dynabeads Human T-Activator CD3/CD28 ThermoFisher Scientific Cat#11161D

Accutase Sigma-Aldrich Cat#SCR005

Fetal Bovine Serum (FBS), qualified ThermoFisher Scientific Cat#10437028

Matrigel® Growth Factor Reduced (GFR) Corning Cat#354230

Critical commercial assays

TaqMan™ hPSC Scorecard™

Panel, 384-well
Thermo Fisher Scientific Cat#A15870

IdentiClone® TCRB + TCRG T Cell
Clonality Assay - Gel Detection

Invivoscribe Cat#92000010

Amaxa Human T cell Nucleofector® Kit Lonza Cat#VVPA-1002

MycoAlert® Mycoplasma Detection Kit Lonza Cat#LT07–118

Deposited data

RNA sequencing data, WGS data, and patient clinical information Answer ALS Consortium dataportal.answerals.org

Oligonucleotides

Epstein-Barr virus nuclear antigen (EBNA), forward primer Integrated DNA Technologies GGTCCCGAGAATCCCCATCC

Epstein-Barr virus nuclear antigen (EBNA), reverse primer Integrated DNA Technologies TTCATGGTCGCTGTCAGACAG

GAPDH, forward primer Integrated DNA Technologies GTGGACCTGACCTGCCGTCT

GAPDH, reverse primer Integrated DNA Technologies GGAGGAGTGGGTGTCGCTGT

Recombinant DNA

pEP4 E02S ET2K Yu et al.46 RRID:Addgene_20927

pCXLE-hOCT3/4-shp53-F Okita et al.47 RRID:Addgene_27077

pCXLE-hUL Okita et al.47 RRID:Addgene_27080

pCXLE-hSK Okita et al.47 RRID:Addgene_27078

pCXWB-EBNA1 Okita et al.48 RRID:Addgene_37624

Software and algorithms

R Project for Statistical Computing CRAN RRID:SCR_001905

tidyverse CRAN RRID:SCR_019186

ROCR: Classifier Visualization in R CRAN RRID:SCR_008551

DESeq2 Bioconductor RRID:SCR_015687

edgeR Bioconductor RRID:SCR_012802

biomaRt Bioconductor RRID:SCR_019214

variancePartition Bioconductor RRID:SCR_019204
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REAGENT or RESOURCE SOURCE IDENTIFIER

karyoploteR Bioconductor RRID:SCR_021824

PCAtools Bioconductor N/A

Hisat2 Github RRID:SCR_015530

STAR aligner Github RRID:SCR_004463

LeafCutter Github RRID:SCR_017639

Samtools htslib.org RRID:SCR_002105

DAVID Bioinformatics Resource david.ncifcrf.gov RRID:SCR_001881
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