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SLENDER PRESTRESSED CONCRETE COLUMNS
Abstract
Samuel Aroni
August 1966

This thesis deals with slender prestressed concrete columns under
eccentric loading. The work includes both experimental tests and analytical
developments and investigation of the behavior of the columns through the
full range of loading.

Tests on thirty-six slender eccentrically loaded, hinged, axially
prestressed concrete columns are reported. The variables investigated were
eccentricity, slenderness and prestress, each at three levels. The testing
was performed in a special frame, with application of axial shortening and
measurement of the resultant load. This enabled measurements to be made
past the maximum buckling load, up to material failure.

The theoretical analysis was based on the cotangency criterion,
and used a finite element approach and numerical techniques suitable for
computer application. A computer program was developed to perform all the
calculations. Good agreement was obtained between experimental and
theoretical loads and deformations both before and in the post-buckling
regions. The computer program proved to be a versatile tool for further
theoretical analyses of the effects of tensile and compressive concrete

strength, effect of initial curvature and of area of steel.
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are introduced.

LIST OF SYMBOLS

xii

The symbols used in this thesis are generally defined when they

The most frequenly used symbols are listed below.

Note

that concrete compressive strains and stresses are taken as positive.

concrete area, bxd

area of prestressing steel (two wires)
height of finite element, see Fig. 26
width of column cross-section

concrete resultant force

total depth of column cross-section
distance between steel wires, see Fig. 1
cover to steel wires, see Fig. 1

depth of concrete compressive stress block

distance from tangent at mid-height to nodal point i, see Fig. 26

initial concrete modulus of elasticity in compression
steel modulus of elasticity

concrete modulus of elasticity in tension
eccentricity of load

critical eccentricity

criterion function in upper bound solution, see Egn.
resul tant steel forces

concrete compressive stress

average concrete prestress

(F3)



xiii

fé = concrete cylinder strength
z f; - maximum concrete compressive stress in flexure
; fs = steel stress
ié ft = concrete ultimate tensile stress
‘; im = initial central deflection
; K = k/d_

| k = distance from compression face to position of C, see Fig. Bl
i

£ = length of column

~ ] ¢' = initial column length, including prestress and creep effects
; ﬂcr = critical column length
| M, = applied moment

MR = moment of resistance
n = number of nodal points, per half of column length
P = eccentric column load
P = maximum, critical, buckling load
P = material failure load
p = ratio of steel to concrete areas
r = radius of curvature
r = radius of curvature of i-th finite element
$1-84 = increments in Qn - (Ae)n plane, see Fig. Fl
S = vertical movement of i-th element, see App. E
V. = length of i-th element, see App. E
y. = load eccentricity at i-th nodal point

y = load eccentricity at column mid-height



xXiv

& = concrete compressive stress factor, see Fig. 22
B = concrete compressive strain factor, see Fig. 22
v = factor determining slope of concrete compressive strain-stress
curve, past maximum stress, see Fig. 22
Al = length of finite element
Af' = initial length of finite element, see App. E

ASm = 1ncrements of central deflection

€ =€ =~ €
A 4 1
. - . d’
ACc = 3 t02) d
AE = NAE+NE
d C
]w Aej = value of central A€, at j-th columnwise iteration

O = column deflection

6m = central deflection
- el = concrete strain at tension face
ké 62,63 = concrete strains at level of steel wires
|
‘: 64 = concrete strain at compression face
“ 614 = concrete strain at mid-depth, from release to testing
623 = concrete strain at compression face, from release to testing
; J EC = concrete compressive strain
| epr = prestress strain applied to the steel
; €C2,€C3 = concrete creep strains, from release to testing, at level of steel
f-[ EO = concrete compressive strain at maximum stress
-
~§ ES = steel strain
ii 52,553 = steel strains of the two rows of wires
1 Et = maximum concrete tensile strain
| Eu = concrete compressive ultimate strain
8, = rotation at i-th nodal point



Chapter 1. INTRODUCTION

1.1 General

There seems little need to emphasize the importance of the
engineering member subjected to compression. While our understanding of the
load—-carrying capacity of compression members, and the associated phenomenon
of instability, has only been developing in the last 200 years, we do have
columns built almost 5000 years ago still standing in Egypt.

1t is of interest to review the outlook of the ancients towards
the design of such members. Thus Vitruvius, an architect during the reign

of the Roman Emperor Augustus or possibly Titus has the following to say

E
about the Greek colonists in Asia Minor:(l)

"There they began to erect fanes, and constitute
temples to the immortal gods. First they erected the
temple of Apollo Panionios, in the manner they had
seen it in Achaia; which manner they called Doric, because
they had seen it first used in the Dorian cities. 1In
this temple they were desirous of using columns; but
being ignorant of their symmetry, and of the proportions
necessary to enable them to sustain the weight, and give
them an handsome appearance, they measured the human foot
of a man to be the sixth part of its height, they gave that
proportion to their columns, making the thickness of
the shaft at the base equal to the sixth part of the height,
including the capital. Thus the Doric column, having the
proportion, firmness and beauty of the human body, first
began to be used in buildings.

"Afterwards, to construct the temple of Diana, they
sought a new order from the same traces, copying the
gracefulness of women, and making the thickness of the
columns an eighth part of their height, in order to give
them a taller appearance. Thus arose the invention of
these two different orders; one of a masculine appearance,
naked and unadorned; the other imitating the slenderness
and fine proportion of women. But posterity, improving in
ingenuity and judgement, and delighting in more graceful
proportions, fixed the height of Doric columns at seven
times their diameter; and of the Ionige at eight and a half.
This latter order was called Ionic, because it was first
used by Ion.

*Superscript numbers refer to the list of References.
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"The Third which is called Corinthian, is in imitation of
the delicacy of virgins; for in that tender age, the limbs are
formed more slender and are more graceful in attire.”

The above ''design' method, trial and error based on the imitation
of nature, continued well into recent times. The foundation stone of column
) (2) . (3 .

theory was laid by Euler in 1759. Van den Broek (1947) gives an
interesting commentary, as well as a translation of part of Euler's classic
(4) . . . :
paper. Young (1807) was the first to give the analysis for eccentrically
loaded and initially curved columns. However, during most of the 19th century
little use was made in engineering practice of these theoretical developments.
Without s proper understanding of all the variables influencing instability
and a clear division between material and instability failures, there was
little apparent agreement between experiments and theory. Many empirical
5
relationships, for various materials, were developed during the period.( )
Euler's theory for the bifurcation load of a slender axially
.y (6) . . . .
loaded column was extended by Considere in 1889, to a non-linear inelastic
material. Considere suggested the use of a reduced modulus of elasticity,
somewhere between the elastic and the tangent modulus, and conducted some
column tests in support of the theory. Independently, during the same
7 .
vear, Engesser( ) proposed the tangent modulus as the proper one for use in
Euler's equation. Later, however, apparently influenced by Jasinski's
criticism, Engesser (1895) changed to a reduced modulus, which was a function

of not only the material properties but the shape of the cross-section as

well., Explicit expressions for this reduced modulus, namely the "double



" s 8
modulus, were derived by Karmgk( ) in 19106. The controversy Dbetween the
tangent modulus and the double modulus continued for another generation,
with experimental results favouring the tangent modulus load, which is

(9,10)

lower than the double modulus one. 1In 1946, Shanley explained this

t 1 . . > 11
column paradox and reconciled the two theories. Simple in retrospect,( )
the above controversy highlights the subtleties and misconceptions that have
arisen in column theory throughout its historical development.
A most significant contribution to the determination of the

. : s (8) )
buckling load of an eccentrically loaded column was Karman's paper in
1910. This was a general non-linear theory based on the actual stress-strain
relationship of the column material. The deflected shape of the column,
which is of critical importance in column instability, was determined
by numerical integration of angle changes along the column length, using
moment-curvature relationships, for increasing load increments., This
procedure was very laborious but free of any assumptions regarding the
, (12)
column deflected shape. For hinged rectangular steel columns, Chwalla

/s
(1934) showed good agreement between Karman's theory and tests. Because
of the labor involved in the numerical integration, simplified deflected
shapes have been suggested. Thus, the use of a part of a cosine curve as
(13)

the deflected shape was proposed by Westergaard and Osgood (1928) and
employed by many investigators since. With the development of the aircraft

industry and various other uses of slender structural elements much experi-

mental and theoretical work has accumulated and is well summarized in the



4) (15)

1iterature(1 and recent textbooks, e.g., Bleich and Timoshenko and
Gere.(lG)

In the field of reinforced concrete columns, the progress was much
slower. Additional problems existed related to material properties, cracking,
the actiomn: of longitudinal and lateral reinforcement, spiral and tied, and
types of failure. The A.C.I. column inveStigation{l7) (1930-1933), with over
500 tests, of axially-loaded short (length to least dimension ratio of 4/d
= 7.5) reinforced concrete columns provided a reliable basis for the design
of such elements.

Over 1,000 tests of eccentrically loaded short ({/d = 7.5 to 102
reinforced concrete columns have been reported in the literature. About one
half of these tests were made prior to 1920. The more important recent

18) (19) (20)

investigations were by Thomas(' (1938), Richart (1947), Andersen
(21) , ;
(1941, tested 70 columns) and Hognestad (1951). Hognestad tested 120
columns (4/d = 7.5) and obtained good agreement with the proposed theory,
based on an assumed non-linear stress-strain diagram, for both tensile and
: . 22)
compressive failures. Following the A.S.C.E.-A.C.I. Joint Committee Report
(1955) , most reinforced concrete column Codes in English-speaking countries
are based on the above work.
In the case of buildings and other structures of normal proportions,
the problem of buckling of reinforced concrete columns due to slenderness

is not significant. However, with modern developments the tendency is towards

more slender proportions. All this explains why so relatively 1ittle work



has been done on this problem, until recent years. One of the earliest
investigations was performed by Baumann(zg) (1934). He tested a total of
43 long columns {£/d = 12.0 to 40.7) including axially and eccentrically
loaded columns and some with end restraints. The use of experimentally
determined material properties and Karmgn’s analysis gave good agreement
between tests and theory. In a significant contribution, Broms and
Viest(24’25) {1958) presented theoretical analyses for both hinged and
restrained long reinforced concrete columns. Their theory for axially
loaded columns was based on the tangent modulus. For eccentrically loaded
columns they used an assumed cosine deflected shape and Hognestad's(21)
stress-strain curve, and extended its applicability to columns with either
equal or unequal end eccentricities. The basic buckling criterion (the
ncotangency criterion') was based on the cotangency, at the point of neutral
equilibrium, of the curves of applied and resisting moments versus deflection.
This criterion will be discussed in greater detail later. Broms and Viest

showed good agreement of the theory with test data from six independent

previous investigations, covering a total of 48 axially and 79 eccentrically

loaded columns and 6 columns with end restraints. The experimental in-
vestigations were by Baumann(zs) (1934), Thomas(26) (1939), Hanson and
.. 2 2
Rosenstrom(27) (1947), Ramboll( 8) (1951), Ernst, Hromadik and Riveland( 9
. (30)
(1953) and Gehler and Hutter (1954) .

More recent work has inevitably turned towards the computer for

(31

the laboricus computational part of the analysis. Thus, Pfrang and Siess

(1961) presented an analytic study of the long restrained reinforced concrete



column under eccentric load. Hognestad's stress-strain curve was again
usetl but no assumption made of the deflected shape. This was determined by
numerical integration in an iterative solution, using a computer progran,
Chang and Ferguson(gz) {1963) also used a computer program to
determine, by numerical integration, the deflected shape of long slender
concrete columns. Six columns were tested to verify the results obtained
from the numerical method, in particular the moment-curvature relation.
Reasonable agreement was found between theory and experiment. Their critical
column load was based on the maximum resisting moment of the column section
rather than on the cotangency criterion which leads to a larger critical
load at a smaller moment. In the paper this difference is obscured and no
reasons given for it. The point was brought into focus by Holley and

(33)

Mauch's discussion of the paper and Chang and Ferguson's arguments, in
defence, do not seem to justify changing the cotangency criterion which is
based on fundamental concepts.

The long restrained reinforced concrete column as part of a

(34)

rectangular frame was investigated by Breen and Ferguson (1964) and by
(35) . - ) ]

Breen (1965) . They used computer programs to develop the moment-

curvature-load relations and an iterative procedure, including numerical

integration for the determination of deflected shape, to solve the non-

linear indeterminate problem, The analysis was repeated with increasing load

and the program determined the instability load by its failure to attain an

equilibrium position at that load. Test results were presented which showed



reasonable agreement with theory.

The development of prestressed concrete, with the more efficient
use of materials, resulted in slender structural elements. The advantages
of long prestressed concrete piles and the speed and economy of using precast
elements, including columns, brought the need of investigating their buckling
behavior. The number of reported theoretical and experimental investigations
is much smaller, and of more recent origin, than for reinforced concrete
columns. A more detailed review of literature is given later and only a
number of general comments will be made here.

Prestressing a structural element the main aim of which is to

carry applied compressive load might seem an anomaly. It has been shown,

however, that prestressing does not reduce the load carrying capacity of
axially loaded columns and might even have a beneficial effect. It is forv
eccentrically loaded columns in particular that prestressing can be of
great advantage. Such elements, exhibiting a combination of beam and
column action, deflect from the very beginning of loading and prestressing
can improve their flexibility characteristics and allow them to reach a

j higher buckling load. It is obvious, however, that excessive prestressing
will lead to a premature material failure before the buckling load of the
column can be reached. How much prestress to apply to a particular column
:é to get a maximum load carrying capacity becomes one of the questions that

research must answer.



The theoretical and experimental problems of prestressed concrete
columns are similar to reinforced concrete but a number of additional
complications exist. The testing of eccentrically loaded columns involves
the application of a moment at the column ends. In pretensioned columns
the lack of prestress zlong the end development lengths can result in local
end failures unless special precautions are taken. In the actual structure,
the end moments come from the beams, the column can be prestressed mono-
lithically with the beams and no end trouble need arise. In the laboratory
specimen the problem is to find a way of preventing end failures without
disturbing the prestress in the rest of the column.

To observe the behavior of the column (deflections, strains and
loads) near and at the buckling load, the manner of testing is very importont.
Most of the reported tests on columns, reinforced and prestressed, have been
conducted in hydraulic testing machines. Under these circumstances, buckling
occurs suddenly, it is almost impossible to determine accurately the de-
flected shape at buckling and the post-buckling behavior can not be in-
vestigated. Also, two distinct types of failures can occur, namely material
and instability failure. When testing in a hydraulic testing machine, "each
type of failure is immediately followed by the other so that it is difficult
to say with certainty in the laboratory which has been the primary cause
of failure.”(36) These difficulties can be overcome if testing is per-
formed in a screw~-jack testing frame, where an axial shortening of the column

is applied and the resultant load measured.



The theoretical prediction of the buckling load of a long column
obviously necessitates the calculation of deflections and therefore the
knowledge of the concrete stress-strain relationship. For reinforced concrete
a body of knowledge has accumulated and such relationships can be assumed
with reasonable accuracy and confidence. In prestressed concrete an
additional variable is introduced. Here, between the time of release and
testing, the concrete is subjected to creep under the prestress and the effect
of this history on its stress-strain curve at testing is still a subject
for future research.

Finally, the use of digital computers in the analytical development
has’reduced the number of simplifying assumptions to be made. A deflected
shape need not be assumed and other factors could be considered, such as the
strength of concrete in tension, realistic material properties, initial
curvature and others. For the most efficient use of the computer, the theory
should be ''computer oriented’ with maximum benefit derived from suitable

numerical methods.

1.2 Objective and Scope of This Investigation

1t was the objective of this investigation to determine the
behavior of slender prestressed concrete columns under eccentric load
through the full range of loading from zero to material failure and including
a possible critical buckling load. The work includes both experimental tests
and analytical developments and considers the influence of a number of

variables on the behavior and buckling loads of the columns.
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(a) Experimental

A total of 36 long eccentrically loaded, hinged, axially prestressed
concrete columns have been tested. The columns were of model size, having a
cross-section of 2 in. x 3 in. and pretensioned by four high tensile steel
wires of 0.198 in. diameter. The columns were 3 ft. - 4 in., 5 ft. and
6 ft. - 8 in. long. The prestress was released at 14 days and the columns
tested at an age of 28 to 30 days. The testing was performed in a specially
designed frame, with the strain applied through a screw-jack and the resultant
load measured by a load cell. Measurements were thus taken past the buckling
load, if it occurred first, up to material failure. The deflected shape was
determined by dial readings at seven points along the column length and
strains on the concrete surface were measured around the mid-height section.

The following variables were investigated.

1. Eccentricity

Eccentricity to least dimension ratios: and 2.

s

QO f
PRy

€
d

2. Slenderness

Length to least dimension ratios: g = 20, 30 and 40,
3. Prestress
fc
Prestress to concrete strength ratios: ~7£ = 0.1, 0.3 and 0.5.
c

In addition to the 27 columns representing all the possible
combinations of the above three variables, 9 duplicates were tested. To
determine the properties of the column materials, 36 concrete cylinders,

12 concrete cubes and 12 tensile steel tests were performed. The concrete
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stress-strain relationship in compression was obtained on 12 of the 36

cylinders.

(b) Theoretical

For the theoretical asnalysis, a computer program was written,
which gives, for each particular column, the full load-deflection curve, the
buckling load, based on the cotangency criterion, and load-strain relations.

The analysis is based on a finite element approach and uses
iteration and suitable numerical methods. The deflected shape of the column
is established by assuming constant curvature within each of the short finite
elements. The two equations of statics are written at one particular point
in each of the finite elements. These simultaneous nonlinear equations,
involving the details of cross-section and assumed non-linear material
properties, are solved by successive approximations using Newton's method
of tangents. Iteration along the column length is used to satisfy the
boundary conditions. The resultant solution satisfies geometric compati—
bility but statics are satisfied only at selected points along the column
lengths. This introduces an approximation, for which, by a suitable
selection of these points, upper and lower bounds are obtained. The analysis
includes considerations of the initial shape of the column, the contribution
of the concrete in tension and a certain freedom in the selection of the
material stress-strain curves. The overall method is to develop the
ioad~central deflection curve by calculating the loads for increasing values

of central deflections. The maximum load represents the critical buckling

value.
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Comparison of experimental and theoretical critical loads showed
good agreement. Computer programs were also written and used for the
automatic plotting of load-deflection, load-strains and deflected column

shape of both experimental and theoretical values for each of the columns

tested. Good agreement was observed throughout the loading history.

Using the developed computer program further anaslysis of the effect
of variables on the critical load was performed. The variables investigated
were:

(1) effect of neglecting the tensile concrete contribution

(2) effect of initial curvature

. (3) effect of concrete compressive strength
‘ (4) effect of area of steel.
|

%
i
|
|
|
.
|
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Chapter 2. REVIEW OF LITERATURE ON PRESTRESSED CONCRETE COLUMNS

37
2.1 Breckenridge( ) (1953)

Breckenridge's study was one of the first reported experimental
investigations of prestressed concrete columns. At that time, a literature
survey revealed little information on the subject. There were, however,
interesting pioneering uses of prestressed columns. Three similar arch
bridges near Caracas in Venezuela,(ss) designed by‘Freyssinet, used pre-—
stressed columns of deep I ~ section of a maximum slenderness of 116
(equivalent g = 33.5 for a rectangular column.) Other examples were an
office building in Belgium(39) and three buildings in England(40’4l’42)
(slenderness of up to g = 37). The advantages of these columns are dis-
cussed in the references mentioned.

Breckenridge tested 10 model size columns of five different types
of rectangular cross-sections (from 3 in. x 3 in. down to 1-5/8 in. x 2 in.).
The column slenderness varied between g = 24,4 to 44.9, with the actual
lengths being 5 ft. - 10 in., to 6 ft. - 1 in. All but one of the columns
were prestressed by post-tensioning using a single, central, axial 1/4 in,
dia. high strength prestressing wire not bonded to the concrete.

The columns were tested under an axial load in a hydraulic testing
machine. The columns had hinged end conditions supplied by ball joint
arrangements. A special "eccentricity adjuster” was used at both column ends
to ensure an axial application of the load. The '"buckling criterion’ was

taken as the point at which an increase in load caused a decrease in strain

on one side of the column, as measured by SR-4 electrical resistance strain
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gages attached to the concrete surface. With this non-destructive buckling
criterion, a total of 68 axial load tests were performed on the 10 columns.
During this testing the prestress was varied with the fcp/fC ratio ranging

from O to 0.2. One of the columns, in addition to 14 axial tests, was also

tested three times under an eccentric load, with the eccentricities of g = !

1 1 . )

3 and g The eccentric tests used a prestress of about fcp/f = 0.2 and the
c

load was increased until the strain on the tensile face of the concrete was
reduced to zero.

A theoretical analysis was presented investigating the effect of
axial prestressing on the load that a slender column can carry. The analysis
was for a column with a single concentrically placed prestressing unit
which is not bonded but in contact with the concrete throughout its length.
Breckenridge assumed a linear elastic material and considered the forces
that the prestressing wire applies to the concrete. In addition to the
axial forces at the ends, which tend to buckle the column, as soon
as the column starts to bend, i.e., deflect from its straight shape,
there will be lateral forces acting along the column length, with the pre-
stressing wire resisting the bending. It was shown that the sum of the
moments at any point along the column due to the forces transferred from
the prestressing wire to the concrete is equal to zero. Thus, the con-
clusion was reached that the ''prestressing such as described (no matter
how great, just as long as it does not exceed the difference between the

eritical load and the ultimate compressive strength of the concrete) will

16 ’
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have absolutely no effect on the critical superimposed load which the column
will carry.” Some other methods of prestressing were considered, all leading
to the same conclusion. Experimentally, no effect of prestress on the axial
buckling load was observed. The axial test results were compared with Euler's
formula, using & reduced modulus of elasticity, obtained by dividing the
average stress at buckling by the average concrete strain. Though this
modulus is higher than either the tangent modulus or the 80% secant modulus,
as determined from concrete cylinder tests, nevertheless, the experimental
loads were higher than the theoretical values. There was a high variability
in the test results and even the average ratios of experimental to theoretical
loads for the five column types varied between 0.72 and 2.18. This
variability and higher test results are probably due to accidental eccen-
tricities, some friction at the ball joints and the repeated testing of
specimens.

For the few eccentric tests no real buckling analysis was presented.
In the range of testing, i.e., within the ”buckling criterion” used, good
agreement was obtained between stresses measured on the concrete surface
and those calculated from the secant formula.

In conclusion, repeated testing does not seem to be justified
for a material like concrete, with its non-linear inelastic stress-strain
relationship, if a proper definition of buckling is to be used, which is

needed as the ‘'cornerstone’ of any theoretical analysis.
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4-
2.2 Ozell and Jernigan( 3) (1956)

The objectives of this investigation were to study:

1. The relation between slenderness and ultimate strength of
prestressed concrete columns.

2. The establishing of an optimum value of ''p'', the ratio of

;
prestressing steel ares (AS) to net concrete area (Ac)"

3. The effect of lateral ties on the ultimate strength and the
general behavior of the columns.

4, The comparative ultimate strength of prestressed and reinforced

columns of approximately the same cross section and properties.

The experimentsl work consisted in the testing of 47 full-sized
columns. All but one of the columns were axially loaded in a hydraulic
testing machine, with a flat end at the bottom and a rounded end, through
a spherical loading block, at the top. All columns were of square cross-
section, 11 of 7-3/4 in. x 7-3/4 in. and 36 of 6 in. x 6 in. nominal sizes.
The columns were made up of 16 groups, each with triplicate specimens,
except one group which had two specimens. The range of variables investi-

gated were:

(a) Slenderness ratios:

£/d Number of specimens
10 5
15 3
20 18
30 15
32 6
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Actual column lengths varied between 6 ft. - 8 in. and 15 ft.

(b) The columns were pretensioned axially by means of Roebling seven-
wire strands of sizes 5/16, 3/8 and 7/16 in. The percentage of prestressing
steel (p) varied between 0.53 and 2.50%. This represented a variation of
prestress to concrete strength ratio (fcp/f;) of about 0.10 to 0.50. It
should be noted that, since the prestress in the strands was kept constant
at 140,000 p.s.i., the two variables of amount of steel and concrete pre-
stress are combined here into one.

(¢) There were 32 columns with lateral ties and 15 without.

(d) There were 41 prestressed columnsg and 6 reinforced. The reinforced
concrete columns had slenderness ratios of 20 (3 columns) and 30 (3 columns)
and a steel percentage of p = 3.56%.

The following conclusions were drawn from the test results:

1. Based on the average values of the groups of columns, it was concluded
that ''the optimum p value for £/d ratios of 20 and 30 is about 1.25%, which

t ¥
corresponds to about 0.25 fC precompression" i.e., £ /fC = 0.25. However,

cp
using the tabulated values of the replicas within each group, a statistical

analysis shows that the differences with p are not significant for 4/d = 20

and are just significant (at the 5% level) for £/d = 30,

2. Lateral ties were shown to have a beneficial effect. The columns without
ties had much larger lateral deflections although the average ultimate load

was almost the same for both series.
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3. TYor the axial loading of this investigation, prestressed concrete columns

with £/d = 20

whereas those

An

ultimate load

had lower ultimate strengths than reinforced concrete columns,
with £/d = 30 had almost the same strength.
approximate empirical formula was suggested to predict the

of short prestressed pretensioned columns:

Pu = 0.77 f; (AC - AS) - AS (k fs) (2.1)
where Pu ultimate strength of column, 1b.
f; = ultimate strength of concrete, p.s.i.
AC = cross-sectional area of column, sq. in.
AS = cross-sectional area of steel strands, sg. in.
k = reduction factor in strand stress due to column
deflection, per cent (i.e., reduction factor for
loss of prestress zat ultimate load)
fs = working stress in strand, p.s.1i.

This expression should be restricted to the ultimate axial load

of a square,

prestressed, pretensioned concrete column, with lateral ties,

¥

with p values between 1.2 and 2.0%, fc between 6,500 and 8,000 p.s.i and

2/d ratio up

to 20. For £/d of 30 a reduction factor of 0.90 was suggested,

Within the stated range of variables, fair agreement was obtained between

test results

and Eguation {(Z2.1).
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A theoretical study was also presented for axially loaded long
columns. It was assumed that the columns had an initial curvature. Assuming
also that the initial shape is sinusoidal and that the material is linearly
elastic, the initial central deflection can be calculated using Southwell’s(44)
plot. This requires the knowledge of the load-deflection relationship.
Using the experimental results a conservative value of the initial de-
flection was found to be £/417. An approximate expression was then used for
the central deflection y under any given load. This involved the calculated
initial central deflection and the Euler buckling load of the column. The
extreme concrete fiber stress was written as the sum of the axial and the
pending stresses, which involve the central deflection y. By substituting
the value of f; for the maximum extreme concrete fiber stress, the required
relationship between slenderness (which comes from the Euler buckling load)
and the ultimate load of the column was obtained. This procedure was shown
to give a lower bound to the experimental test results. It should be noted,
however, that the above procedure is mostly empirical. The calculated initial
deflection is a fictitious one, being based on a linearly elastic materdial.

It also requires the test results for its determination. Moreover, the
ultimate load is not based here on instability but on a material failure,
)

considered to be reached when the extreme fiber stress becomes equal to fC.

2.3 Zia(45) (1957)

Zia presented a theoretical analysis of the ultimate strength of

slender hinged prestressed concrete columns. He assumed an elasto-plastic
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compressive stress-strain curve for the concrete, as first proposed by

Jensen. The deflected shape of the column was assumed to be sinusoidal.

The criterion used for the ultimate load was not one of instability but

based on material failure, i.e., the load at which the maximum strain in

the column reaches the value of the concrete crushing strain. The theoretical
results were presented by means of appropriate curves and a favorable
comparison was obtained with the experimental results of Ozell and Jernigan.
On the influence of prestressing on the ultimate load, Zia felt that "too
little prestressing sacrifices the flexural resistance of the column and

too much prestressing penalizes its axial load carrying capacity."

2.4 Lin and Itaya(46) (1957)

Lin and Itaya reported on one full size column, tested in a
hydraulic testing machine as a demonstration for delegates to the World
Conference on Prestressed Concrete in San Francisco. The 16 in. octagonal
shape column was 25 ft. long, axially pretensioned with thirteen 3/8 in.
dia, 7-wire strands. The column was tested under an eccentric load and had

the following details

1

prestress: f /f = 0.12
cp’ ¢
load eccentricity: e/d = 0.25

slenderness: £4/d = 18-3/4
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Before cracking, the column was assumed to behave elastically
and the secant formula was used to calculate mid-height deflections. Beyond
cracking, plastic analysis was applied with elasto-plastic stress~strain
curves assumed for both steel and conérete. It was assumed that concrete
could take tension for stresses below the modulus of rupture and that its
ultimate compressive strain was 0.0031. Two methods of analysis were
presented. In method I the deflected shape of the column was obtained by
numerical integration using a derived moment-curvature relation, while me thod
11 was an approximate solution, assuming the deflected shape to be part of
a cosine wave, similar to Broms and Viest.(24) Using both methods, load-
deflection and load-strain curves were obtained. In this case both methods
indicated an instability failure. The buckling load was given by the maximum

of the load-deflection curve, which is the proper <c¢otangency criterion.

The ultimate loads obtained by various means were as follows.

Ult. load Kips % of test load
Experimental 390 100
Analytical, method 1 357 92
Analytical, method II 351 90
Elastic theory (assuming un- 333 85

cracked sections)

The relatively high experimental value was attributed to the possibility of
higher stfength of concrete in the column (as against the strength of 6x12
in. cylinders which was used in the analysis) or due to errors in the assumed

stress-strain relationships.
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Lin and Itaya concluded that 'needless to mention, much more
experimental data and analyses are necessary for the solution of this problem

of eccentrically loaded prestressed concrete columns. '

a7 (36,48)

2.5 H. R. Brown (1960), Hall (49,50)

(1961, 1962), Brown and Hall

(1965, 1966).

47 36,4
Brown's thesis( ) and the subsequent four papers( 6,48,49,50)

describe tests on 30 prestressed concrete columns. The columns were 3 in.

X 2 in. in cross-section, 66 in long (4/d = 33) and axially pretensioned
with four 0.2 in. dia. high tensile steel wires. The cross-sectional details
of these columns are the same as of the columns tested in the present
investigation. The variables investigated were

1

prestress: fcp/fC of 0, 0.15, 0.31, 0.47 and 0.62

1 1 1 3

and load eccentricity: e/d of O, 30" 8 4’ 4

and 2. Testing was performed
in a hydraulic testing machine, so that deflections and strains at buckling
could be determined only approximately.

An initial difficulty was encountered in columns with large
eccentricities. These columns exhibited premature end failures and this
was attributed to lack of prestress in the finite bond development length at
both column ends. Collars and serrated-wedge grips did not solve the
problem, which was finally overcome by an additional post-tensioning
operation after the release of the initial pretensioning. In this laborious

operation, each wire was post-tensioned individually and anchored at each

end with a barrel grip. For the sake of uniformity, this operation was
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performed on all columns, regardless of eccentricity. In the opinion of

the writer, the post-tensioning probably destroyed the bond over a significant
portion of the column length and introduced inaccuracies in the column
prestress;, particularly for large prestress values.

(47)

Brown presented an approximate analytical solution based on
Hognestad's(zl) stress~strain curve for concrete, the proper cotangency
criterion and a modified cosine deflected shape at buckling. He assumed the
actual radius of curvature at column mid-height, under the buckling load, to
be only 0.72 times the value calculated from the cosine curve. The value of
0.72 was obtained from the experimental results by extrapolating to the
conditions at buckling. A comparison of experimental buckling loads with the
theoretical value% showed reasonable agreement for prestress values (fcp/f;)
up to about 0.30. For higher prestress the disagreement was very significant,
the experimental loads increased with the prestress while the theoretical
values decreased. This discrepancy was attributed to variation of basic
concrete properties (stress-strain curve parameters) with prestress. While
such a variation might well exist, the writer believes that the observed
discrepancy is, in this case, due to the post-tensioning experimental procedure.

Hall(se) presented a suggested analytic method which uses a
deflected shape determined by numerical integration and assumes that the

curvature can be represented by the second derivative of the deflection.

However, no theoretical results were given.
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(51)

2,6 Bakhoum, Samaan, Aboul Eid, Antar and Esmat (1962)

A very brief report is presented of test results on six eccentrically
loaded columns (tested by Antar). All columns were 15x20 cm. in cross-
section, £/d = 30, e/d = 2.5 and varying amount of steel, both tensioned
5 mm. wires and untensioned 1/2 in. and 3/8 in. dia. steel. From the
arrangement of the steel it would appear that the columns were eccentrically
prestressed but no details are given.

The authors claim that "The failure of long columns eccentrically
loaded is sometimes referred to as eccentric buckling. However, the ultimate
load is usually reached long before any condition of elastic instability is
approached. We have merely to consider the effect of the additional moment
due to deflection at failure.'' The writer strongly disagrees with these
statements; the presence of instability in most cases, though not linearly
elastic instability, is amply demonstrated by tests described later in this
thesis.

Comparison between test results and ultimate loads computed on
the basis of the above approach, using a rectangular compressive stress
distribution in the concrete and a simplified analytic method, shows
satisfactory agreement. Here, this agreement is probably due to the high
eccentricity ratio and possibly high prestress.

(52) (53)

2.7 Moreadith (1964), Zia and Moreadith (1966)

This work dealt with an analytical investigation of load carrying

capacity of rectangular prestressed concrete columns. No testing was in-
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volved and the primary purpose of the investigation was to determine the
effects of various parameters on the column strength. These included concrete
strength, steel ratio (with the steel always prestressed to the same value),
slenderness ratio and eccentricity of load.

The analysis of axially loaded columns made use of the generalized
Euler equation with the tangent modulus of elasticity.

The analysis of eccentrically loaded columns assumed a Hognestad(21)
type of concrete stress-strain curve, neglecting tension and with the maximum
compressive stress equal to the cylinder strength, and an elasto-plastic
stress-strain curve for the steel. Small deflections were assumed and the
curvature taken equal to the second derivative of deflection. The method

(32)

of analysis was similar to that of Chang and Ferguson, however, a proper

cotangency criterion was used. This took the form of
di/d = 0
L/ Y

where Y = midheight deflection of column,

The procedure was to determine the maximum, critical, length for a column
of given cross-section under a given load and end eccentricity. This was

achieved by varying the midheight column deflection. Numerical integration

was used to obtain the deflected shape of the column. Thus, the method is

most suitable for the construction of curves relating the critical load to

k_ i various parameters rather than the investigation of the behavior of a given
column both before and after buckling. A limitation of the analysis is

the assumption that the steel is always stressed to the same value (an
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effective steel stress of 140,000 p.s.i. was used, after all losses.) A

1
change of prestress (fcp/fc) thus requires a change in the steel percentage

and the two parameters, steel prestress and steel area, are not separated.

Some of the conclusions reached were:

1
1. For short columns with low strength concrete (fC = 4,000 p.s.1i),

heavy prestress is detrimental to column strength.
2. The greatest advantage of prestressing lies with the slender
columns under large eccentric load (maximum e/d considered
was 0.50).
(53)

3. Simple design procedures were suggested for short (4/d =< 10)

and intermediate (10 = 4/d s 30) columns.

(52)

| 4. It was considered that ''the results of available experi-

mental investigations of prestressed concrete columns are too

limited to offer comparisons with the theoretical results of
this work. There is a definite need for more carefully con-
ducted experimental programs to substantiate the results of

T

this investigation.'

4
| 2.8 K. J. Brown(5 ) (1965)

Brown reported the testing of 65 pin-ended prestressed concrete
columns (13 axially loaded and 52 eccentrically loaded). The columns had a
rectangular cross-section of 3-1/2 in. x 4 in. and were reinforced with
4 x 1/4 in. dia. mild steel rods, one deformed Macalloy high tensile pre-

stressing bar (1/2 in., or 5/8 in. dia.) and lateral ties. Other details were:
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1. slenderness: £/d of 5, 15, 22 and 29
(actual lengths 12, 50, 75 and 100 inches)

1

2. concrete quality: fC = 4,800 p.s.i. (average).
H
3. prestress: axial: fcp/fc approx. 0.25 to 0.30,eccentric:

bar eccentricities of d4/7 and 2d4/7.

4. load eccentricities: e/d of 1/7, 2/7 and 3/7.

The longest columns were - tested in a special test rig with the
load applied by turnbuckle. All other columns were tested in a hydraulic

machine.

The analytical calculation of the ultimate column load used

two main assumptions:

(a) that the critical concrete compressive strain at failure was
0.00180, due to both prestress and load.
(b) that the total deflection due to prestress and loading at mid-

2
height under critical conditions was given by £ a/15 where

£ = length of column, a = 0.00180/c and ¢ = depth of neutral

axis from extreme compression fibres.

The first above assumption was based on the experimental critical
compressive strains, which had an average of 0.00180 (range 0.00120 to

0.00280, standard deviation 0.00025). 1In addition a parabolic stress-

strain curve was assumed for the concrete, with a maximum stress of 0.85

1
fC at the maximum 0.00180 strain. The prestressing steel was assumed to




pe a linearly elastic material. With all these assumptions, the problem
reduces to the solution of the two equations of equilibrium at mid-height
and the compatibility equation (based on Bernoulli's hypothesis). A cubic
equation results for the depth of the neutral axis (c) and this is solved
graphically by successive approximations.

Comparison of experimental and theoretical ultimate loads showed
close agreement. The average ratios of Pexp./Pth. were 1.00 and 1.06, with
standard deviations of 0,04 and 0.08, for the axislly and eccentrically
ioaded columns respectively. Brown also applied his analytical method to
162 test columns reported in ten previous investigations. These were mostly
short reinforced concrete columns, both axially and eccentrically loaded.
For all the 227 test columns the average ratio of test to calculated ultimate
1oad was 1.01 with a standard deviation of 0.09. However, it should be
emphasized that this analytical method is basically empirical, it does not
include an instability criterion, could not bhe extended to columns with end
restraints and could not predict the column behavior either before or after
the maximum, critical load.

Among the conclusions reached from Brown's experimental work were
the following:

1. With axial prestress, an increasc in ultimate load was obtained
when the load eccentricity was high enough (e/d =3/7).
9. Fccentric prestress is beneficial for columns of higher slenderness

and load eccentricity. An increusse in eccentric prestress resul ted
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in a reduced ultimate strength for the lower load eccentricities
up to e/d = 1/7, hardly altered ultimate strength when e/d = 2/7
and resulted in greater ultimate load carrying capacity when e/d

was equal to 3/7.

(55)

2.9 Kabaila and Hall (1966)

This paper presents an analytical solution of the instability
of unrestrained prestressed concrete columns with end eccentricities. The
cotangency instability criterion is used, curvature is taken equal to the
second derivative of deflection and the column deflected shape is determined
using arithmetic integration with central difference expressions. A con-
tinuous stress-strain curve is adopted for the concrete, including some
contribution in tension. Kabaila and Hall considered it unnecessary to
adopt a critical concrete compressive strain as a criterion of material
failure. Instead they used the maximum moment that can be developed at
the critical mid-height section, which represents a condition of local
instability. It should be emphasized, however, that when a column is
subjected to loads less than the critical load, in the unstable post-buckling
region, the maximum moment of the section will not suffice to determine the
point of material failure.

The anslytical results were compared with Brown‘s(36’47’48’49’50)
tests (see Section 2.5 above). To explain the observed increases in critical

loads with increase in prestress, the secant modulus of elasticity and the

cylinder strength, which are used in the concrete stress-strain curve, were
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assumed to increase with prestress, according to expressions suggested by

(56,57)

Brettle Nevertheless, analytical values compared well with experi-

1
mental results for values of prestress only up to 0.30 £ , i.e., in about
c

the same prestress range as Brown‘s(ge) original approximate analysis.
Kabaila and Hall concluded that 'the divergence of the experimental results
for higher values of prestress throws doubt on the range of validity of the
two latter [Brettle's| equations, indicating that further research is

necessary in this field. It is the writer's opinion that the divergence

is mainly due to Brown's post-tensioning experimental procedure.

2.10 Conclusions

The nine investigations described above probably represent the
bulk of the published work on hinged prestressed concrete columns, axially
and eccentrically loaded, in the thirteen years since Breckenridge's study
in 1953. They contain a total of 159 tests on prestressed columns, as well
as theoretical methods, though some do not use proper instability

(37,43,45,51,54) (58)

criteria. ’ Neveritheless one must agree with Itaya's

(1965) conclusion that "additional research, both theoretical and experi-

mental, is urged to determine the effects of many variables on these columns.

There does not seem to be an analytical method, predicting the
behavior of columns over the full loading range including post-buckling,
which has been substantiasted by tests over a wide range of variables., Some
questions have been raised in the range of high prestress and the manner

of testing of almost all the columns reported does not provide data on the



]
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post-buckling behavior, which becomes important when the column is part of

an indeterminate frame. Analytical methods could be developed which are
particularly suitable for computer use and which could be extended to re-
strained columns. It is hoped that the present investigation will contribute

to some extent towards the solution of the above mentioned problems.
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Chapter 3. EXPERIMENTAL WORK

3.1 Introduction

This chapter describes the experimental work of the present in-
vestigation, which consists of 36 prestressed concrete columns and material
control tests.

The variables investigated were eccentricity, slenderness and
prestress. The scope of the experimental work has been discussed in Section

1.2. The total number of columns tested for each variable were

3

1
eccentricity: g =82 and 2 - 10, 17 and 9 columns respectively

slenderness: = 20, 30 and 40 - 12 columns each

)
0
ko BNoMEN

prestress: = 0.1, 0.3 and 0.5 - 12 columns each.

N

3.2 Column Details

The details of the column cross-section are shown in Fig. 1.
The average measured dimensions were b = 3 in. and d = 2.02 in., with
maximum deviations of + 0.02 in. The prestressing steel consisted of four
high tensile steel wires of 0.198 in. diameter, with

AS = area of two wires = 0.0616 sg. in. The items varied were

il

eccentricity: e 1/4 in., 1-1/2 in. or 4 in,

length: £ = 40, 60 or 80 in.

i

prestress: f

concrete axial prestress
cp

1l

nominal 500, 1,500 or 2,500 p.s.i.
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The load was applied by means of loading heads at each column
end. The loading head details are shown in Fig. 2. Three sizes are in-
volved, depending on eccentricity, and a photograph of the loading heads
is shown in Fig. 7. The loading heads were made of alloy tool steel {(Balfour
steel "Kite N.S.S.3" hardened to Rockwell C45; composition 1% C, 0.3% Si
and 2% Mn) and the Knife-edges (3/8 x 3/8 in. inserts) of 1% Carbon Tool
Steel (hardened to Rockwell C55). The screwed inserts, the use of which
will be explained later, were of mild steel, case hardened.

A group of six columns, ready for testing, including all three

lengths, eccentricities and prestresses, is shown in Figs. 3 and 4.

3.3 Materials

(a) Concrete
The nominsl design strength of the concrete mix was 5,000 p.s.i.
The proportions, by weight, of the mix materials are shown in Table 1. The

mix had a8 slump of 1/2-1 in.

Table 1. Concrete Mix Details

Material Proportions by Weight, Dry Condition
Coarse Aggregate 2.7

Sand 1.8

Cement 1

Water 0.45

5.95
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The coarse aggregate was a rounded river gravel, of 3/8 in.

maximum size. The material gradings are given in Table 2.

Table 2, Material Gradings

Sand Coarse Aggregate
Sieve Size Cumulative Percentage Retained
3/4 in. 0] 0
3/8 in. 0 35
3/16 in. 3 94
No. 7 13 99
No. 14 29
No. 256 51
No. 52 75
No. 100 93
No., 200 98

No admixtures were used,

(b) Steel

The prestressing wires were of high tensile steel, 0.198 in,
diameter and 0.0308 sg. in. in cross-section. The average ultimate strength
of the wire, as determined from twelve tests in a 10 ton capacity Amsler
testing machine, was 3.45 tons (250,900 psi) with a coefficient of variation
of 0.66%. The stress-strain relation of the prestressing steel will be

discussed later.
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3.4 Manufacture of Test Specimens

1. Columns
(a) Prestress

The prestressing bed used had overall dimensions of 29 ft. x
3 ft. 6 in. This allowed six columns to be made at the same time, with
three columns sharing the same prestress, as shown in Fig. 5. The prestressing
bed was bolted down to a structural floor,

Each wire was stressed individually with a Gifford-Udall pre-
stressing jack of 13,000 1b. capacity. ¥Fig. 6 shows the prestressing pro-
cedure. The wires were anchored with suitable barrels and split cone
wedges. Provision was made for independent adjustment of each wire and for
the joint release of the four wires of each row of columns. The required
prestress was achieved by measuring the total elongation over a wire length
of 27 ft. - 4 in. A depth micrometer, reading to 0.001 in., was used for
the measurement (see Fig.®H). Suitable allowance was made for the sag in the
wire, as determined from initial tests on wires with electrical resistance
strain gages. Table 3 gives the details of steel stresses and total
elongations for the three prestress values. The steel strains and stresses

are based on an assumed value of 20% losses to time of testing.:
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(c)

Nominal(a) Steel Prestress Values(b)
Nominal Concrete Total
Prestress Ratio Prestress Strain (epr) Stress Elongation
]
-4
f f i i in,
( Cp/ c) (fcp) psi (x 10 1) psi in
0.1 50@{ 10.34 30,440 0.340
0.3 1508 31.12 91,315 1.021
0.5 2500 52.15 152,190 1.710
(a) . ‘ ' )
Based on design value fC = 5,000 psi.
(b)
Before assumed 20% losses.
(c)

For 27 ft. - 4 in. length of wire.

The wires were stressed the day before and adjusted at the time

of casting. The prestress was released at 14 days after casting.

(b) Formwork

Specially made steel formwork was used for the casting of the

columns (see Fig. 5). The formwork had removable sides, bolted to the base

at frequent intervals. The base was made of a channel section welded to a

steel plate. The depth of the formwork was the required column width of

2 in.



(c) Casting
ii The concrete was mixed in a 1-1/2 cu. ft. capacity 'Cumflow' mixer,
each batch containing 250 1b. of weighed materials. The mixer was first
buttered with 1/3 of batch quantities. Before water was added, the materials
were mixed dry, and the total mixing time was 4 minutes. The casting of a
group of six columns involved two concrete batches. Out of each batch the
three columns of a prestress line were cast, as well as three 6x12 in., cylinders
and one 6 in. cube. The three columns, cast from the same batch and sharing
the same prestress, were one each of the three lengths and usually one each
of the three eccentricities.

Before placing the concrete, the forms were lightly oiled and
the wires cleaned with Carbon Tetrachloride. The concrete was thoroughly
compacted in the forms using a pencil vibrator, and finished to a smooth

surface. The horizontal position of the forms was such that the top surface

represented the compression side in the subsequent testing.

(d) End Anchorage

The aim of the additional end anchorage was to achieve full

prestress at the very ends of the columns, by preventing, at release, the

l
|
|
|

|

|
|
i
|

wire slip in the usual bond development length. This was done using inserts

screwed into the loading heads (see Figs. 2 and 7) and barrels fixed to the
wires, which could bear against the inserts.
Each barrel was attached to the wire with two split cone wedges.

The wedges had to be driven in with a force equal to or greater than the
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maximum subsequent load in the wire. This required the development of
special tools and procedures. Bolt clippers ("Record” brand No. 604, overall
length about 42 in.) with a large mechanical advantage (over 80 to 1) were
adapted by suitable machining of the jaws. High tensile pieces were designed,
with a round end, to maintain an applied axial load on the wedges with the
closing of the jaws. Split, high tensile steel, washers were used to follow
the wedges, if necessary, into the barrels. The adapted bolt clippers, with
a barrel and wedges, end pieces and split washers are shown in the photograph
of Fig. 8. To check the force applied by the bolt clippers to the wedges,
tests were performed using a short piece of mild steel bar with an electric
resistance strain gage and these indicated a load above 2.5 tons,

Fig. 9 shows the procedure followed before the casting of the
columns. With the inserts screwed most of the way into the loading head,
and the loading head moved away along the formwork base, a barrel was
attached to each of the four wires. When the loading head was back in
position, a gap remained between the inserts and the loading head, with a
washer between them (Fig. 9 (b) ). The side forms were then attached and the
concrete placed as described above. Just before the release of prestress,
at the age of 14 days, the inserts were screwed out to be in firm contact
with the barrels, through the washers. To facilitate free rotation of the
inserts they were initially protected with an anti-seize, anti-frictional,
compound (Molybond GA50)., Care was taken to avoid the application of

additional prestress by the movement of the inserts against the barrels.
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When the wires were now released, the end anchorage prevented slip and the

full prestress was developed over the whole column length.

(e) Curing

Subsequent to casting the columns were cured under wet burlap
for 3 days. On the 3rd day the formwork sides were removed and the columns
left in the prestressing bed, under atmospheric conditions, until release
of prestress at 14 days. From 14 days until 27 days the columns were cured
under water, at 700 F, During this period the steel loading heads, the
end barrels and any strain measuring points attached to the columns were
protected with multi-purpose heavy grease. The columns were removed from
water on the 27th day and kept at 70O F during the attachment of additional

strain and deflection points until testing at an age of 28 to 30 days.

2. Cylinders and Cubes

Three 6x12 in. cylinders and one 6 in. cube were made from each
batch of concrete (each three columns cast). Steel forms were used (see
Fig. 5 (a) ) and the cylinders were compacted in three layers. The same
curing timetable was used as for the columns. The cube was tested at 14
days, to determine the concrete strength before the release of prestress,
The cylinders were tested at the same age as the columns {one each at 28,

29 and 30 days).
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3.5 Testing Methods

1. Columns
The 36 columns were made and tested in six groups of 6 columns
each. The testing was performed over a period of 4 months. Each group of
six columns contained two of each lengths, usually two of each eccentricity
and two prestress values (one for each batch of three columns), which were
randomized over the testing period. Each column was denoted by a label, for

e.g., C1 20 cl, where C_ stands for the first batch of group C, 20 denotes

1

the slenderness ratio (g), ¢ signifies the highest of the three eccentricities

(denoted a, b and ¢ in increasing order) and 1 stands for the nominal pre-

1

stress ratio fcp/fC = 0.1, The chronological order in which the groups were

made and tested was B, C, A, D, E and F.

(a) Testing Frame

A special testing frame was developed for the column specimens.
Photographs of the frame are shown in Fig. 10. It consisted of two 13 ft,
- 10 in. high legs, each made up of two 8 in. x 3 in. channels, with a
stiffened 15 in. x 6 in. I-beam placed as a cross-beam between them. The
clear distance between the legs was 2 ft. - 3-3/4 in. The cross-beam was
attached by six 3/4 in. bolts to each leg and it was possible to adjust its
height to suit the column specimen being tested. Each leg was welded, at
its lower end, to two horizontal channels which were bolted to a structural
floor. A 20 ton capacity, 5 in., travel, screw jack was attached to the lower

flange of the cross-beam. The jack was held by four screws to a 1/2 in., thick
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OVERALL VIEW
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(b) LOAD MEASURING LOWER END

FIG.10 TESTING FRAME



plate which, in turn, was bolted to the cross-beam flange (two 1/2 in. bolts).
With the bolts loose, provision was made for the horizontal movement of the
plate and jack, for adjustment purposes. The load was applied by the screw
jack through a 1 in. wide knife-edge (using a 1/2 in. square high speed
tool steel insert hardened to Rockwell C50), which wes placed centrally in
the 3 in. wide insert of the loading head (see Fig. 11 (8) ). A similar
knife-edge was used to support the bottom loading head (see Figs. 10 and
11 (b) ). The bottom knife-edge was located on top of a load cell, by
means of a 3/4 in. dia. steel ball. To prevent lateral movement of the
knife-edge special straps were used, which were designed to contribute no
restraint in the vertical direction. The average maximum observed lateral
movement was 0,021 in,

The load cell (Philips PR9226) had a rated capacity of 10 tons.
The heart of the load cell was a chrome-nickel steel pressure billet fitted
with four strain gages in a Wheatstone bridge circuit. The bridge output
was read on a portable transistorized high precision strain indicator
(Huggenberger Tepic Indicator Type IT1). The indicator could be read to
a strain of 10“6, with the smallest division being 10w5. Before testing,
the load cell and indicator were calibrated in a 10 ton Amster hydraulic
testing machine. The behavior was linear ovexr the full range with a factor
of 11,07 1b. / 10m6 strain reading (gage factor setting of 2.0). The load
cell was specified to be accurate to 0.1% of rated load i.e., + 11 1b. Thus,
the cell and indicator were of compatible accuracy, approximately + 10 1b.

over the full locad range.
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(b) BOTTOM END, LOAD CELL KNIFE EDGE
FIG. 11 END DETAILS OF COLUMN [N TESTING FRAME
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(iii) Strains along column length:

Eight columns were instrumented with strain gages on the com-
pression face along the centre line over the full column length. The eight
columns included a1l combinations of length and prestress except column 30a.
Columns C12Oc1 and C22033 can be seen in Figs. 3 and 4. The purpose of
these gages was to determine the strain variation along the length at
release of prestress and at the end of the curing period. These gages were

not read during load testing.

(c¢) Deflection Measurements

? After removal from water curing and before testing, the initial
deflected shape of the columns was determined by measuring, to an accuracy

of 1/64 in., from a thin wire stretched between the column ends.
‘ To determine the deflected shape during loading, an independent
scaffalding was erected to which dial gages were attached (see Fig. 10 (a) ).
The dial gages were read to 0.001 in. and had 2-1/4 in. travel. Machined

extension arms enabled the dial gages to be moved horizontally to follow

the deflected column, if necessary. The column deflection was measured at

seven points spaced at £/8 intervals along the column length. Small aluminum
disks were glued to the concrete the day before testing to provide a smooth
bearing surface for the dial gages.

In addition to the above 7 dial gages, one gage each determined

| the vertical movement of the screw jack (see Fig. 11 (a) ) and checked the

stability of the lower knife-edge by measuring the horizontal movement

(see Fig. 11 (b) ).
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Testing Procedure

The following procedure was followed in the column testing:
Using a plumb~-bob, the knife-edges were checked to be in the same
vertical line and adjusted if necessary by horizontal movement
of the screw jack.

The column was inserted in the proper position between the knife-
edges under 28 very small load, 10-20 1lb,, the dial gages set in
position and all zero readings taken.

An axial shortening was applied to the column by the screw jack
and the load read on the strain indicator. There was an initial
increase in load followed by relaxation and load drop. A
condition of equilibrium was assumed to exist when the rate of
load drop was less than 10 lb. per 30 seconds. At that stage

all readings of strain, deflection and load were taken. Also

the cracking on the tensile side was observed with a small
magnifying glass.

Additional increments of axial shortening were applied and the

above procedure repeated until material failure occurred.

At the beginning of loading equal load increments were aimed at

was desired. The above equilibrium criteria was followed at all loads and
the total time of testing, per column, varied from 1 hr. 40 min. to 6 hr.

10 min,, with an average of 3 hr., 10 min. Thus, a group of six columns

A total of 10 to 15 increments
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was tested over three days, with two columns tested each day.

The above testing procedure has a very significant feature. If
an instability critical load is reached, before material failure, this simply
represents a maximum load. With continued applications of axial shortening,
the equilibrium loads decrease and the column is in a state of unstable
egquilibrium. However, due to the physical boundary conditions provided in
the testing frame, the column does not actually buckle but remains ''stable’,
enabling all readings to be taken and the post-critical range to be
determined. Finally, a stage was reached when material failure occurred,
with the concrete crushing in compression. If the material failure occurred
before a drop of load, this represented a primary material failure and not
instability.

Figs. 13, 14 and 15 show three columns, of different lengths and
eccentricities, at four stages of loading. Note that column C120c1 failed
by primary material failure and the other two by instability. Note also

the significant straightening out on unloading after failure.

2. Cylinders and Cubes

The twelve 6 in. cubes were tested in compression in a 200-ton
capacity Dennison hydraulic testing machine. The tests, at 14 days, were
made to determine the strength of the concrete before release of prestress.

Twenty-four 6 x 12 in. cylinders, out of the total of thirty-six,
were also tested in the 200-ton machine, at a constant rate within the

standard range of 20 to 50 psi per second. The remaining twelve cylinders
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were used to determine the concrete stress-strain curve in axial compression.
The instrumentstion used is shown in Fig. 16. It consisted of two steel rings
attached to the concrete by three screws at a gage length of 6 in. over the
central part of the cylinder. During testing, with the vertical straps

shown in Fig. 16 removed, the contraction over the 6 in. was measured by two
dial gages reading to 0.0001 in. The testing was performed in a 100-ton
capacity Amster hydraulic testing machine, with dial readings taken every 2

to 4 tons until failure. The strain was calculated from the average of the
two gages. The testing to failure took an average of 20 minutes. All

cylinders were capped with dental plaster before testing. The ages at

| testing were 28, 29 or 30 days, with twelve cylinders tested at each age.

3. Steel wire specimens

Twelve tensile tests were performed on the 0.198 in. dia. pre-
~w stressing wire. The testing was done in a 1l0-ton capacity Amsler machine
| (minimum reading to 0.005 tons, about 10 1b.). The strain was determined
i over a gage length of 20 in., with an instrument similar in principle to
the one in Fig. 16. Two dials were read, each to 0.0001 in. which

corresponds here to a strain of 5x10—5. Readings were taken at intervals

|
l of 0.1 to 0.3 tons up to failure.
|
|
|
|
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3.6 Test Results

1. Columns
The experimental data, for all 36 columns, are listed in Table 4.
The table is composed of three main parts. The first part (column details)
tabulates the label of each column and the values of the three variables in-
vestigated, namely length, eccentricity and nominal prestress. The state of
the columns just before testing is given under "initial conditions' and the

results of testing under "test results'.

(a) Initial conditions

The first strain determinations were made during the end
anchorage operation of moving the inserts out in firm contact with the
barrels fixed to the wires. This was done at 14 days, just before the

release of prestress.
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Table 4. Experimental Data

Notes

Column label (eg. A12Oc3):
Al denotes the first batch of group A

20 denotes the 4/d value

if

i

¢’ denotes the eccentricity: ''a' stands for e/d

1

b" stands for e/d

i

11 11

¢ stands for e/d

N RW 00

1l

it i8S

3 denotes the nominal prestress:
1
"1" stands for nominal f /f = 0.1
cp C
H3H Ty LA LR 0‘3
775?1 11 1y LA 0'5

Average compressive strain of gages 1 and 4 (see Fig. 12) from before
release to beginning of testing.

Average compressive strain of gages 2 and 3 (see Fig. 12) from before
release to beginning of testing.

Average concrete prestress, calculated from strains Epr (Table 3) and

514 and a steel modulus of elasticity of 29.34x106 psi.

1
Based on experimental average fc = 5585 psi.

From time of beginning of loading to material failure.

Last readings before material failure.



o
o

*8 Average strain of gages 2 and 3 (see Fig. 12) from beginning of loading.
" *9 Deflection at mid-height from beginning of loading, excluding initial

defliection.
*10 Columns with duplicates,

*11 Cracking occurred after the maximum critical load.

i
i
|
i
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The effect of this operation, as measured on strain gages 1,2,3,4, Bl’BZ’
T and Tz, was negligible.

1

Table 5 gives the average strains, for the different gages, due to
release of prestress and during the water curing period. The individual

strains for each column (€ and <

14 ,23), from before release to beginning of

testing, are listed in Table 4.

*1
Table 5. Average Strains During Release and Curing

-4
Average Strains (x10 )

]
Condition and Gages Nominal Prestress (fcp/fc)

0.1 0.3 O.

(&3]

(a) Due to Release of Prestress

Average of gages Bl and T1 1.99 6.03 10.18
" " 82 and T2 2.30 6.97 11.35

" B 1 and 4 1.98 5.72 9.63

" " 2 and 3 2,13 6.79 11.11
Overall Averages 2.10 6.38 10.57

(b) During Water Curing (from after release to beginning of testing)

Average of gages Bl and Tl -0.55 2.10 5.23
" " B arT -0,39 2.63 5.99
o 20¢ Ay
" " 1 and 4 -0.19 1.99 4,49
" " 2 and 3 -0.27 3.28 5.60

Overall Averages ~-0.35 2.50 5.58
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Table 5 (Con't)

(c) Total (from before release to beginning of testing)

Average of gages B1 and Tl 1.44 8.13 15.41
! B, and T, 1.91 9.60 17.34
614 (av. of 1 and 4) 1.79 7.71 14.12
623 (av. of 2 and 3) 1.86 10.07 17.71
Overall Averages 1.75 8.88 16.15

*

1 . . o
Compressive strains taken positive.

It can be seen from Table 5 that, on release of prestress, the very
end gages B1 and T1 had somewhat lower strains than either gages B2 and T2
or the central 2 and 3. This is probably due to a small slip still occurring
at the column ends. Also, at the column mid-height, gages 2 and 3 (on the
top surface) had higher compressive strains than gages 1 and 4 (at column
mid-depth). The difference between these gages, which increased during
curing, is consistent with the observed initial deflected shape of the
columns with gages 2 and 3 being on the compression side. This difference
increased with the column prestress.

During the period of water curing, the strain changes are probably
due to two main effects. These are the creep under the prestress and the
expansion due to water intake. The columns with the lowest prestress (0.1)
can be seen to have an increase in strain, with the expansion predominating.

The strain readings taken along the full length of eight columns

showed little variation, except at the end gages B1 and Tl’ from the mid-height
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readings of gages 2 and 3. This was for both the curing period and the
total initial period from hefore release to beginning of testing.

The measured initial central deflections are listed in Table 4.
Their averages are also shown in Fig. 17, and are seen to increase with both
prestress and column length. The maximum average deflection was 0.43 in.,
representing 0.54% of the column length ( for g = 40 and maximum prestress.)

Due to the presence of initial curvatures the columns were in a

state of eccentric prestress. The average steel strain was

= - 3.1
s pr 14 ( )
and stress
f =E « (3.2)
s s
where ,
Qpr -~ steel prestress strain (Table 3}, tensile.
t14 = average (gages 1 and 4) concrete compressive strain from
before release to testing (Table 4).
- s . 6 .
E = steel modulus of elasticity, over the initial range (29.34x10° psi)
S
‘E The average actusl concrete presivess values can be calculated
|
; from
| fq A Es(a rnklé) A
i 1 = - 5 = b = (3 .3 )
| cp Av bd
| where,

| AS = the total area of steel {4x0.030% sq. in.)

| . . N
} A = area of concrete (bxd=t sq. 1in.)
i

| C
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and are given in Table 4. For the two higher prestress ratios, the values
are somewhat lower than the nominal prestress, the losses having been under-

i
estimated. The listed prestress ratios (fcp/fc) were calculated using the

t
average concrete strength of fc = 5,585 psi. The average values of the

actual prestress ratios were 0.092, 0.252 and 0.410, as compared with the

nominal 0.1, 0.3 and 0.5.

(b) Test Results

In addition to the data listed in Table 4, Appendix A presents
experimental results of load-central deflection and load-central strains
for the full range of loading up to material failure. The column deflected
shapes are also plotted both at initial conditions and the maximum critical
loads.

The cracking loads listed in Table 4 represent loads at which
the first crack was observed anywhere on the tensile side of the column.
The magnitude of the cracking load, relative to the maximum load of a
column, depends on length, eccentricity and column prestress. Not one
of the 10 columns of the smallest eccentricity 'a’ (e/d = 1/8) cracked
before the maximum load was reached. Columns 812031 and 812685 exhibited
material failure without having previously cracked.

The load Pcr represents the maximum load that each column was
able tb carry; it is the load at which stable eguilibrium of the column

ceased to exist.



|
.
|
|
i
|
|
.
5
{
{
|
|
|
|
s

The failure load Pf
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occurred with a concrete material compression

failure over an average length of 3 to 4 inches at the column mid-height.

For five columns

(812031, B

30c3, C12Ocl, E12Oa5 and E

2

failure load was also their maximum load.

are also listed in Table 4.

The measured axial movements of the screw jack, at Pcr

30cl) the material

and P

f ¥

These values include the effect of rotation of

the loading leads and thus are larger than the actual column shortenings

(see Fig.

11 (a) ).

The observed average (gages 2 and 3) maximum compressive strains at

column mid-height, under the critical load Pcr’ had an average value of

30.15x10 4

and a standard deviation of 12.18}(10“4

A statistical analy

sis

of variance showed significant differences with eccentricity, slenderness

and prestress.

Table 6.

The average values for each of these variables are shown in

The compressive strains at Pcr are seen to decrease with larg

slenderness and prestress and smaller eccentricity. The largest variat

is with eccentricity.

Table 6.

Average Maximum Compressive Strains at

Mid-Height of Columns, Under Pcr*l

er

ion

Number
of Average gtrain
Variable Columns (x 1079 Ratio
(a) Eccentricity:
a - e/d = 1/8 10 17.80 1.00
b - e/d = 3/4 17 31.95 1.79
c - e/d =2 9 40.55 2.28
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Table 6 (Con't)

(b) Slenderness:

£/d = 20 12 37.0 1.55
£/d = 30 12 29.65 1.25
g/d = 40 12 23.80 1.00

(¢) Prestress

1 - Nominal f /f = 0.1 12 35.45 1.36
cp ¢

3 -~ Nominal £ /f = 0.3 12 29.00 1.12
cp’ "¢

5 -~ Nominal f /f = 0.5 12 26.00 1.00
cp ¢

*From beginning of loading only.

The tabulated values of the average maximum compressive strains

at column mid-height, due to the failure load Pf, represent last readings

taken before the actual material failure. Thus they could be significantly
tower than the actual failure strains. To a much smaller extent this also
£

1

31 applies to the central deflections under P_. To estimate the total concrete
|
|

compressive strains at material failure, the initial strains 623 were added

v

to the strains due to P_. The average value of the total strains was 52.950
i %10 with a standard deviation of 8.57x10"4, A statistical analysis of

‘ variance showed the total strains not to be significantly affected by

J eccentricity, slenderness or prestress.

i A comparison of the test results for the nine pairs of duplicate
|

columns showed good agreement. Thus, the critical loads Pcr differed by an

average of 6.4%, with a range of 0.3% to 14,6%.
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2. Cylinders and Cubes

The average strength of the twelve 6 in. cubes, at 14 days, was
4,290 psi with a coefficient of variation (C.V.) of 10.6%.

The concrete stress-strain curves obtained from twelve 6x12 in.
cylinders, tested in a 100~ton machine, are shown in Fig. 18. The average
strength of these cylinders was 5,085 psi with a C,V, of 7.2%. The other
twenty-four cylinders, tested in a 200-ton machine, had an average strength
of 5,835 psi with a C.V. of 5.6%. The difference in strength between the
two groups was probably due to the different rates of testing. Thé overall
average strength of the thirty-six cylinders was 5,585 psi with a C.V.

of 9.8%.

3. Steel wire specimens

The ultimate s?rength of the twelve specimens was 250,900 psi
with a C.V. of 0.66% (range of 254,200 to 247,300 psi). The permanent
elongation, over a gage length of 20 in., had an average valus of 3%.

The best fit stress-strain relationship was obtained by linear
regression over four ranges from zero to ultimate. The resulting stress-
strain curve is shown in Fig. 19. The maximum range of observed strains,

for a given stress, varied less than + 5% from the regression lines.
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Chapter 4. THEORETICAL ANALYSIS

The theoretical analysis of eccentrically loaded prestressed con-

crete columns is developed and presented in this chapter.

4.1 Criteria of Instability

Eccentrically loaded columns deflect laterally from the very first
application of load. Thus, unlike in the axially loaded case, their in-
stability is not a question of bifurcation, i.e., neutral equilibrium at
which two positions of equilibrium are possible, straight and slightly
deflected. Instability here can be related to the equilibrium between the
applied moment (MA) and the moment of resistance (MR) at some critical section,
at which the deflection due to the load is . Equilibrium, of all types,

requires
M =M (4.1)
Depending on the relative increases of the two moments under an

infinitesimal increase in deflection, we can distinguish the three types of

equilibrium:

uMR BMA
(i) Stable equilibrium, at which 55 > 35 (4.2)
AM oM
(ii) Unstabl ilibri t whicl R < A (4.3)
ii nstable equilibrium, at which 55 55 .
and
GMR oM,
(iii) Neutral equilibrium, at which 5 % 3§ (4.4)
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The critical section is the one of maximum moment and the effects of the rest
of the column and its boundary conditions are reflected in the deflection &.
Consider now an eccentrically loaded pin-ended column, with equal
end eccentricities e (Fig. 20). The critical, maximum moment, section 'm"
is at column mid-height. The column is assumed to have an initial curved

shape.

At section m, the applied moment is given by

MA = P(e + 1m + 8m) = Pym (4.5)

Also, from the details of the column cross-section, material
stress-strain relations and some assumption about strain distribution (say

Bernoulli's assumption) the moment-load-curvature relation at section m can

be established

1
- L 4,
M. = £, ( — P) (4.6)
m
where
rm = radius of curvature at section m.

From geometry, for a given column, there is a relationship

between central deflection and curvature

1 ) 4.7)
r

For non-linear material properties, there are a number of procedures which
might be used to establish the deflected shape of the column, and thus

determine Equation (4.7). The following have been used:
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(i) step-by-step numerical integration of angle changes along the
column length, using the moment~load-curvature relation (4.6).
(ii) an assumed deflected shape, usually part of a cosine wave.
or (iii) finite elements, the use of which is developed in this

investigation.
Now, combining (4.6) and (4.7), we can write
M = f (5m, P) (4.8)

The critical load Péf’ at which (4.4) is satisfied, can next be
found by obtaining BMA/Bém = P and BMR/ébm, from (4.5) and (4.8)
respectively, and substituting into (4.4). For any other load P, a comparison
of the partial derivatives will indicate the type of equilibrium.

The procedure described above is, however, not the most convenient
one. The instability condition (4.4) can be expressed in equivalent mathe-
matical forms, which are more useful for analytic procedures. Four such
expressions will be developed, all of which are referred to as "cotangency

criteria’ of instability.

(a) Consider a given column under a changing load.

Fig. 21(a) shows moment-deflection curves, for various load
magnitudes. The applied moment (MA) curves, from Equation (4.5), are
straight lines from point O', which is the origin of Yo The slope of
each line is equal to the appropriate load P, The moment of resistance

(MR) curves, for the various loads, are a plot of Equation (4.8) and are
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shown dashed. We know from (4.1) that any point of intersection of the two
moment curves, for the same load, represents a possible condition of equilibrium.

Consider a low load magnitude P The point of equilibrium, point

1"

1, is a state of stable equilibrium since condition (4.2) is satisfied, i.e.

the slope of the tangent to the MR curve is larger than the slope of the
straight line MA curve. No other point of intersection exists between the

two moment curves, for load Pl’ since the MR curve is terminated by material
failure. Consider next an increase in load to P2. The two possible conditions
of equilibrium are points 2 and 4. A comparison of tangent slopes indicates
that point 2 represents stable equilibrium and point 4 unstable equilibrium,
under the same load Pz. The point of unstable equilibrium (pt. 4) occurs

at a much higher deflection value. If we further increase the load, the
difference in the deflections at which stable and unstable equilibrium

occurs becomes smaller. A load P3 is finally reached at which the MA curve

is tangential to the MR curve, point 3. Thus, point 3 satisfies (4.4) and

it represents a condition of neutral equilibrium. The equality of tangent

1

slopes leads to the name of "cotangency criteria."” The critical load, P ,

cr
is equal to P3 and the point of instability is represented by
gM - P (4.9)
J ym cr
; A load higher than P3 = Pcf’ say P4, can not find a position of

;} equilibrium since there is no intersection between the two moment curves,

To seek points of equilibrium for deflections higher than the deflection at
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PCr we have to decrease the magnitude of the load. This leads to conditions

of unstable equilibrium, such as point 4, under lower loads (P2 < PCr = PB)'

Thus, the critical load is a maximum and

= 0 (4.10)

The line 0-1-2-~3-4-5, joining all the points of equilibrium,
represents the moment-deflection relation for the particular column. Over
the segment 0-3 we have stable equilibrium, point 3 represents the critical
state of neutral equilibrium and the segment 3-5 describes unstable equi-’
librium. Note that the critical condition occurs at a moment below the
maximum and that point 5 represents material failure. The case illustrated
is one of primary instability. A column in which point 5 occurs before

point 3, i.e., before a decrease of load occurs, will fail by primary

material failure.

(b) Consider next a column under a given load but varying eccentricity.

The aim is to find the eccentricity for which the given load P
is the critical load. The MR - Sm curve, for load P, is shown in Fig. 21(b).

The MA curves are straight lines of equal slope, the change in eccentricity

being equivalent to a shift of the 0' origin. For a low eccentricity, el,

the two points of equilibrium 1 and 5 represent stable and unstable states

respectively. As the eccentricity increases to 82’ we still have the same

two states at points 2 and 4, now closer to each other. Further increase

of the eccentricity to a particular value e3 results in a state of neutral
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equilibrium at the point of equal tangents, point 3. Any larger eccentricity,

say e has no points of equilibrium. To proceed in the unstable segment,

4 ?

past point 3, the eccentricity has to be reduced from its maximum critical

value eCr = eS. Thus the point of instability is represented by
__._ge -0 (4.11)
ym

(c) Consider finally a column under a given load and eccentricity
but of varying length.

The aim is to find the column length for which the given load P,
under a given eccentricity e, is the critical load. Fig. 21(c) shows
MR—Sm curves for load P but different column lengths. The column length
is a parameter in the central deflection-curvature relation (4.7), which
is used in the derivation of Equation (4.8). Since load and eccentricity are
here prescribed, there is a unique applied moment curve, as shown. For
increasing Em, points on this straight line MA curve represent conditions
of equilibrium under varying length. Thus, point 1 is stable equilibrium
for the length ﬁl. Increasing Sm, point 2 also represents stable equilibrium,
but for a longer length Ez. Further increases of column length lead to a
length ﬂg for which the moment curves are cotangent at point 3. Therefore
this represents a point of neutral equilibrium and the critical length
zcr = ES, In other words, the given load P is the critical load for a

column of length ﬂs. No position of equilibrium is possible for a longer

column lengtﬂ, say £4. Further increases in 6m are possible, leading to
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uns table equilibrium with decreasing column lengths, for e.g., points 4
and 5 with £2 and El respectively. The point of instability, point 3, is
thus represented by 8 maximum length and

a4

= 0 (4.12)
dym

In summary, Equations (4.9), (4.10), (4.11) and (4.12) represent

different forms of the 'cotangency criteria’’ of instability. Equation (4.9)

(24)

;g was wrongly stated by Broms and Viest, with the moment derivative

(32)

equated to zero, and wrongly used by Chang and Ferguson. The maximum

load criteria, expressed by Equation (4.10), is used later in this investi-

(24,25)

gation. Eguation (4.11) was used by Broms and Viest and (4.12) by

(52,53)

Moreadith.

4.2 General Assumptions

The following general assumptions have been made in the analysis

of slender, hinged, axially prestressed concrete columns loaded with equal

end eccentricities:

1. The column cross-section was restricted to a rectangular
shape with two layers of prestressing steel placed
symmetrically about the centreline (see Fig. 1).

“f 2. Both concrete and steel were assumed to be non-

linearly elastic homogeneous materials.
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The steel stress-strezin curve used was as shown in Fig. 19,
which is a close idealization of the test data. Any other steel stress-
strain curve can be easily substituted in the analysis.

The theoretical concrete stress~strain curve is shown in Fig. 22,
It is supposed to be applicable for short-term testing and to include any
creep during testing but not during the period from release to testing. In
compression, the curve is based on Hognestad’s(21) assumption and is made
up of a parsbola and straight line. The initial tangent modulus of elasticity
is

1

6
Ec = (1.8 x 10" + 391 fc) psi (4.13)

and the parabola has the equation

€
f =% ¢ 1B (1 S (4.14)
c B c ¢ 2¢ ’
o)
where fc = concrete compressive stress, psi

EC = concrete compressive strain

O = stress scale factor
‘ £ = strain scale factor
| . .
‘ € = strain at maximum stress.

| ©

The maximum stress, at which the tangent to the parabola is horizontal, is

f =0.850 fC (4.15)

e = (4.16)
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The equation of the descending straight line is

w1 S - €
C o]

f = - R .
c fc (1 v 0.0038 B—EO ) (4.17)

and material failure was assumed to occur at a strain Eu' A straight line

relation was assumed for the concrete in tension, with a modulus of
1
elasticity Et and a2 modulus of rupture ft = 0.1 £ .
c
The curve described above actually represents a family of curves

1

and requires seven parameters, namely &, B, 7, € , fC, E_and ft’ for its

u t
. : . . (21)
full specification. In his original work, Hognestad neglected the con-

tribution in tension and used a compressive stress-strain curve, for any

1

fc, described by the following values

a=1.0
p=1.0
(4.18)
T = 0.150
and € = 0.0038.
u
3. Full bond was assumed to exist between the steel
and the concrete, from the time of release.
4, Allowasnce is made for the loss of prestress, due
. to creep, shrinkage and expansion, from the time
| of release to testing.
|
|
;‘i 5. The column can have an assumed initial shape. With
|

few changes any shape can be used in the analysis,
but the shape actually assumed was based on the

- experimental data.
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A number of possible ressons were investigated to explain the
observed initial deflections of the columns (see Table 4 and rig. 17), all
of whom had the top face, as placed, on the concave compression side of the
initial shape. The wires were accurately stressed and located and experi-
mental errors in these items could not, on their own, explain the observations.
The conclusion was reached that the most probable single reason is the
variation of concrete properties with the two inch depth of section, as
placed, the concrete at the bottom being better compacted and stronger.
This would create an effective prestress eccentricity and the type of initial
shape observed. Also, it follows that the initial moments and curvatures
are essentially uniform over the column length. Thus, the initial shape was
assumed to be circular.

The circular initial shape is confirmed indirectly in two ways.
First, the strain readings taken along the full length of the top face of
eight columns showed little variation., Secondly, using the measured strains,
from release to testing, the assumed constant initial radius of curvature r

for each column can be calculated from

€ - €
1 23 14
7= a7z (4.19)

Since the deflections are much smaller than the radius, the maximum central
initial deflection is given by

. _i B 2 (egg = &) (4.20)
m =~ 8r - 4d '
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This calculated deflection, based on a circular shape and measured central
initial strains, can now be compared with the observed initial central
deflection. The average ratio of calculated (from 4.20) to observed initial
central deflections was 0.98. Figs. A1l9 to A27 show both the observed
initial deflected shapes and the assumed circular curves. Good agreement
exists between the two.

6. Bernoulli's assumption is made, namely plane sections
are assumed to remain plane on bending.

7. The column is assumed to be divided into a relatively
large number of finite elements, each of constant
curvature, i.e., circular shape. Certain additional
assumptions were made, the details of which are given
later, which restrict the analysis to small rotations
and neglect the effect of axial strain on the deflected
shape of the column. In essence, the slopes were assumed
to be small enough for sin 6 = 9 and cos § = 1 to be used.
For the maximum observed slopes of about 10 degrees,
this introduces an error of about 1-1/2%. The
limitation introduced by this assumption can, if required,
be removed from the analysis with relative ease.

8. Shear deformations are neglected.
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4.3 Anslytic Procedure

1. Initial Conditions

Two initial condition cases can be distinguished, namely

(a) ‘Eccentric prestress, when there are initial curvatures

and deflections, and tle strains €14 and 623 are different, and
(b) Axial prestress, when €14 = Sa3 and the column is initially

straight with zero deflections.

We shall consider each case separately.

(a) Eccentric prestress

Fig. 23 shows the distribution, at column mid-<height, of strains
and stresses under initial conditions of eccentric prestress.

Note the different lines of zero concrete and steel strains and
the positive sign convention for concrete compressive and steel tensile
strains. Line AB is drawn from the initial strain values 614 and €23.

These strains, and the prestress epr’ determine the steel strains along the

two rows of prestressing steel. Thus

g
€52 = pr T C1a t (Sg3 T Sy g

g (4.21)
€63 T pr " f1a T (a3 T ) G

The steel forces (each representing the force in two bars) can be obtained

from the steel stress-strain curve

FS2 = f(€sz) and Fs3 = f(€s3) (4.22)
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The first equation, of force equilibrium, to be satisfied is

- ‘ (4.
Fo+Fga=C (4.23)

where C is the resultant of the concrete stress block. It is assumed that
the concrete compression extends over the full area of the cross-section
(bxd), neglecting the small steel area. The strains, which are related to
the concrete stresses through the stress-strain curve, are given by the line

CD. The position of this line is unknown and it is the aim of the analysis

to obtain the values of El and 64. An expression for C, in terms of el
and €40 is given by Equation (B6). Integration and substitution into (4.23)
give
, ) bdGEC Odei (e? - 62) . i o4
€gt € gt o 52 f; G, - 61) - (FSz + FsS) = (4.24)

where all symbols have been previously defined and the unknowns are 64 and

The second equation, representing moment equilibrium, is

Fs2 (d'+d’) + Fs3d = Ck = (Fs2+FSB) k (4.25)

The lever arm k is given by (B8). Integration and substitution
into (4.25) give

(R}

E4 y ) Fsz(d +d )+FSS d . 1 [ deEC (63 ES) .
(64 - el) (F52+F53) d (€4—€1)2 35(F52+F53) 41
bd & Ei 4 4
(el—e4) } =0 (4.286)

2 1
13.6
P fc (F52+F53)



- Equations (4.24) and (4.26) can now be solved by successive approxi-

mations, for El and €41 using Newton's method of tangents (see Appendix C).
Strains € and € can next be obtained from
c2 c3
d'+d"
€ = € - € - € S
c2 pr s2 4 * d A
" (4.27)
€ = € - < - € 4+ a JANNS
c3 pr s3 4 d
where
Ne = ’c4 - 61

The above strains, representing the difference between lines AB

and CD, are considered to be due to all the dimensional changes, creep,

| shrinkage, etc., from the time of release to testing. The contribution to

w curvature of these strains is measured by

d' _
A — 4.28
)3 ( )

c (QC3~tC2

and is assumed to remain constant during testing. The curvature at the
:W section, which is used to calculate deflections, is given by

JANRS

d
= 4,2¢
d { 33

e

where

A’td = Ai + ‘AZC

With the assumption of initial circular shape, the conditions
at all other sections are the same as that described above for the mid-

height.
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With application of load, the ''stress' strains €, and €, , and the
"stress curvature" Ac, will change. To obtain the "deflection curvature"

A€y, we have to add the constant "creep curvature' Ac , as shown above.

(b) Axial Prestress

This is a simplified case of the eccentric condition, with

€ = €,,- The strains and stresses are shown in Fig. 24. Equations (4.21)

14 23

and (4.22) can still be used to determine the steel strains and forces.

Since 54 = gl, we only have one unknown here. The condition of equilibrium

of forces, Equation (4.23), with C obtained from

C = bd f
C
leads’ to a quadratic equation in ¢4, the smallest root of which is
, S e 5
6.8 B fc [bd a EC bd & EC 2 4 bd & EC
€ = - JC—F—) - (F_+F__ ) ———r
Y paa Ei P P s2 837 g 4 g2 £

Here, we have no initial curvature or deflections and no "creep
curvature' to be added to calculate deflections due to load. However, the

equal creep -strains €c2

and €c3 still have to be considered in calculating

the steel strains and stresses during loading.

2. Equilibrium at a Section

We shall consider now the stress and strain distributions at

any cross-section of the column, under an eccentric load P. Our aim is to

(4.30)
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develop the two equations of equilibrium at the section.

Due to the discontinuities in the assumed concrete stress-strain
curve (Fig. 22), in both tension and compression, a strain distribution can
be classified as one of the seven cases shown in Fig. Di. Each case will
lead to somewhat different equations of equilibrium.

The strain and stress conditions for case 3 are shown in detail
in Fig. 25. Here, the minimum strain at the section, the tensile negative

strain € is taken to be larger than the modulus of rupture strain €t

1’

The section is not yet cracked and the compression zone is over a depth

4 =4 —4 (4.31)

The resultant concrete tensile force is

E, €

T = ~b(d-d ) —t—t (4.32)
C 2

since €1 is negative.

The two equations of equilibrium are

(4.33)

o)
+
Lo
+
fes]
+
=3
il
@]

and

d-d

. o 0" _ < — _d
FSZ(d +d ) +F53d + T(d 3 ) = ChP(y 5 ) v (4.34)

Using (4.31) and (4.32), substituting C and k from (B2) and (B4),

integrating and eliminating el with El:€4~A€, we finally get
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bd O EC ei Ec €4 bd Et ’2
P+F82+FSS S TEE T Ae (1 - —=——— ) + A (64 -ANe) =0 (4.35)
5.1 8 fF
[¢]
and
2
g, P4 E 2 4
' 1 1" _ oy e “As — -
Fsz(d +d7) +FS3 d P(y 2) + NG (e4 AE) (2+A£ )
bd? E_ EZ E <€, 6.8 P ,fc—l’a E.Sy
2{:5 ) ( 1 - ' ) ( 1 - ] ): 0
. AE : 5.1 B f 10.2 8 f£f -2 E €
c C c 4
(4.36)

- , .
The forces Fsz and FsS depend on 64, Ae, the known strains 602’

Ec?’ €pr and the known steel stress~strain curve. Thus, the two nonlinear

equations of equilibrium (4.35) and (4.36) are in terms of four variables,

namely P, y, €, and Ac, and can be written symbolically as

4
fl (?, €4 Ae) =0
and (4.37)
fz (P, vy, 64, Ne) = 0

Given any two parameters, Equations (4.37) can be solved simultaneously,
using Newton's method of tangents (App. C), for the remaining two unknowns.
Appendix D gives the details of the equilibrium equations (4.37)
for all seven strain distribution cases. |
After the solution of the equilibrium equations, the curvature
at the section can be determined from (4.29); using the obtained A¢ and the
constant "creep curvature' Ae , known from. the solution of the initial

conditions.
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3. Method of Solution

The aim of the analysis is to construct the P~5m (load-central
deflection) curve, as shown in Fig. 26(a). From the cotangency criteria
(4.10), the maximum load represents the required critical value Pcr' The
analysis is performed by considering small increments A@m of the central
deflection and obtaining the load corresponding to the prescribed deflection.
To increase the accuracy in the region of the critical maximum load, Aém
is divided into any desired number of smaller increments. The increments
of deflection are continued in the post-critical region until material
failure occurs, represented by the maximum strain at mid-height 64 reaching
the failure strain Eu

To calculate the load P corresponding to a given central de-
flection Bm, the column is divided into a number of finite elements. Due
to symmetry about the mid-height, we need only consider one half of the
column, which is shown in Fig. 26(b). The finite elements are connected at
nodal points, numbered 1 to n, and are assumed to be of constant curvature,
i.e., circular shape. Two adjacent elements have a common tangent at a
nodal point. The total number of elements, for one half of column length,

is (n-1), each of length

AL = 5421- (4.38)

=

The axial shortening of the column, due to P, is neglected. Thus, the finite
elements are assumed to remain of constant length Af during loading and

bending.
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The calculations start at the central nodal point 1, with a known

total deflection yr. The two equations of equilibrium at the point, Equations
il

(4.37), still contain three unknowns, namely P, 64 and A¢., To find the value

of Ae, columnwise iterations will be performed until the boundary condition

is satisfied at the top of the column. The first assumed value of A: is
based on a sine curve deflected shape

2

(6m+im) dt

Ae = m - A e (4.39)
£2 C

The two equations of equilibrium can now be solved at point 1 by Newton's

method, for the unknown P and 64, Using initial assumed values of P and ¢

g 7
appropriate equations of equilibrium are selected, out of the seven cases.

The position of nodal point 2 can now be determined (see Fig. 26(c)y ).
The tangent at point 1 is known to be vertical and finite element 1 is assumed

to be of the above constant curvature Ac, i.e., circular arc of radius r

1 b
from (4.29), and length Af. Thus, the change of slope over the finite
element length is

g, = ol (4.40)
2 rl

‘ and the horizontal deviation of point 2 from the vertical tangent is given by

| i d2 =T (1-cos @2) (4.41)
Using only the first two terms of the series expansion for cos 82, and

substituting (4.40) we get

q = =2 (4.42)
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The total deflection at point 2, y2, can now be calculated from
v, =y ~-d (4.43)

and the appropriate two equations of equilibrium solved for the ‘'stress
curvature'  Ac and the maximum strain €, at point 2, with the load P kept
constant at the value previously determined at nodal point 1. Thus, we

have the constant radius, r of element 2 and the slope at point 3 becomes

2 3
g, =6_  + — (4.44)

The horizontal deviation of point 3 is given by

2
AL .
d, = d. + A 92 + 2r2 (4.45)

In the above expression, the second term represents the contribution of the
slope at point 2 and the third term the contribution due to the curvature
of element 2, similar to d2 in Fig. 26(c¢) as given by (4.42). Equation (4.45)
contains the assumption of small rotations, i.e., the assumption that
sin 6=0 and cos H=1.

Next, we can again solve the appropriate two equations;of
equilibrium, this time at nodal point 3, for the unknowns A¢ and 64.

Similarly, we proceed to higher nodal points, using the general

recurrence relations

2 .
d. = d + AL B, + AL (4.46)
i -1 i-1 21
i-1
and
AN
O 780t T (4.47)
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j Finally, the total deflection yn, at the top nodal point n, is

determined

y =y -d (4.48)

y = e (4.49)

‘ can be checked. If this is satisfied, within a very small prescribed tolerance,
the value of P, which was determined at nodal point 1 and used at all other
f } points, represents the required load for the particular central deflection

ém and a point has been determined on the load-central deflection curve

(Fig. 26 (a) ). If (4.49) is not satisfied, the assumed value of A<, at
:;’ central nodal point 1, is changed and the whole procedure repeated again.
The value of A< for the j-th columnwise iteration, Atj, is calculated from

| A€

€ . ZMA‘\” 1
. . J- J
. Ae . o= A + (y -~e) . (4.50)
o ,.l - ~— . T
| J J n j-1 (yn e)j—l (yn e)j~2
where
(yn~e)_~] = error in top boundary condition, after the (j-1)th

iteration, which used A\, 1
J-

It is considered that the effects of assuming small rotations and
neglecting the axial shortening are very small., 1t is relatively easy to
remove these assumptions, if desired, and the correct expressions are

presented in Appendix E.
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To determine the material failure load Pf, the strain €4 is

checked after the solution of each load-central deflection point. When e4

exceeds the ultimate strain Eu’ an iteration is performed on the central

deflection Sm’ to find the value at which 64 = €u. The value of Sm for

the i~th iteration, is given by

fu” P
omy = omy o+ (Bmy o= Bm ) TS (4.51)
* 4230701
where
Bmi_l = the central deflection on the (i~1)th iteration, which

resulted in a maximum strain (64)1_ , when the boundary

1

conditions were satisfied.

The number of calculations involved, in the method of solution
described above, is too large for manual operations. Thus, a computer

program was developed and will be described later.

4, Lower and Upper Bounds

The assumption of finite elements, described above, obviously
introduces an approximation into the calculated loads. Let us examine the
nature of this approximation.

The assumed deflected shape of the column has continuous slopes
and satisfies the boundary conditions. However, the two equations of
equilibrium were only satisfied at the lower nodal point of each finite

element. Within each element this is the point of maximum moment and,
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therefore, maximum curvature, at least at or before the maximum load is
reached. Thus, the constant curvature assumed within each element is a
maximum of the actual curvatures and the column is assumed to be more flexible
than it actually is. This results in a load, which is lower than the correct
load. If we increase the number of elements, i.e., decrease the element
length A4, the load should increase and tend to the correct load as JAY/

tends to zero. Though no mathematically rigorous argument can be presented,
in this nonlinear problem, the calculations performed substantiate the

above expectation. Fig. 27 presents results of computer calculations of
eight columns of different length, eccentricity and prestress. The columns
had the same details as the experimental specimens and the meaning of the
labels is as described in Table 4. The maximum load Pcr’ calculated with

AL = 2.5 in., is taken as the basis for comparison (100%) for each column.
The loads for all columns are seen to increase linearly with the decrease

of element length, to Af = 1.25, 0.625 and 0.3125 in. for one column. No
large difference is seen between the various parameters and extrapolations to
zero element length indicate that the results with Af = 2.5 in represent a
lower bound by a maximum of 2%.

The arguments presented above suggest a way of obtaining upper
bound loads. This would result if, within each finite element, the assumed
constant curvature would be the minimum in the element, giving a column of
higher stiffness. A suitable method of analysis was developed, which

satisfies the equations of equilibrium at the top nodal point of each element,
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the point of minimum moment and curvature. A description of the method is
given in Appendix F. The procedure is more involved than the lower bound
solution and reguires much longer computer times. The upper bound results,
for column 2033, are shown in Fig. 27. The loads are seen to decrease with
the decrease of AJ, but the lower bound solution is closer to the correct
value, for any given AJS.

The same behavior, of both upper and lower bounds, can be seen
in Fig. 28, for loads representing 75% of the maximum load, in the stable
equilibrium region. However, the differences from the correct value are
smaller here than for the maximum load, shown in Fig. 27. This is probably

due to the more uniform curvature distribution at lower loads and moments.

4.4 Computer Program

A computer program was written to perform the analysis described
above. The listing of the program is presented in Appendix G. Some aspects
of the computer program will be discussed in this section.

1. Input

The input, for each column analyzed, consists of 36 items presented

on thirteen cards. The variables on each card are listed in Table 7.

Table 7. Computer Input

|
! Card
 ¢ Number Variables
| 1 Column label
?J 2 NF1, NF2, NF3, NF4, NF5, FACl, FACZ, E5, E6, E7
‘~ 3 b, d, d',d", A, f |«
s C
4 B, e, ¢ €

pr 23’ "14
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Table 7 (Con't)

Card
Number Variables
5 Ng, E1, E2, E3, Eu, Et
6 n
‘ 7 Z
| 8 e
i
| 9
11 ft
10 JANS
m
11 DINC
12 E4
13 Y

The input variables can be classified in four categories and have

(a) Column details

kl the following meaning.

"Column label' (e.g., A120C3) has been explained in Table 4.
| b,d,d',d", 4 and e have been defined in Fig. 1.
i1
f AS = cross-sectional area of two steel wires.
E (b) Material
; f;, a, B, 7, ft, €, and Et have been defined in Fig. 22.
E (¢) Program
f NF1 = 1 or O, is a flag which determines if the analysis results
g should be punched on cards, for graph plotting purposes,
|
|

in addition to the printed output. When NFl=1, the punched

cards are obtained.



NF2

NF4

NF5

FAC1

FAC2

El =

E2 =

E3

1l
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1l or O, is a flag which determines if the upper bound load
analysis should be performed. When NF1l=1, the upper bound
load is calculated.

1 or 0, is a flag which determines if the ''diagnostic
output’ should be printed. For cases when convergence
difficulties occur, and it is desirable to know the
intermediate iteration values NF = 1 will cause all this
data to be printed out.

1 or O, is a flag which determines if the calculation of
the lower bound solution should proceed after convergence
difficulties are encountered in the upper bound calculations.
NF4 = 0 terminates the calculations, if the upper bound
solution does not converge.

1 or 0, is a flag which determines the ''diagnostic output”
for the upper bound calculations only. NF5 = 1 will print
out all the intermediate values of the upper bound iterations.

= factor determining the (Ae)n mesh size in upper bound
solution (see Equation (F4) ).

= factor determining the@n mesh size in upper bound solution
(see Equation (F5) ).

allowable error in 64 and A€, in the iterative solution

of the equations of equilibrium.

allowable error in P, in the iterative solution of the
equations of equilibrium.

allowable error in the deflection boundary condition,

Equations (4.49) and (F2).
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E4 = allowable error in € = € at the point of material failure.

4 u’
E5 = allowable error in the slope boundary condition, equation
(F1) .
E6 = magnification factor for 61, in the criterion function

F, equation (F3).

E7 = factor used in the initial upper bound load assumption.

n = the total number of nodal points in half the column length.
Number of finite elements is (n-1).

A4 = finite element length, equation (4.38)

Aém = increment of central deflection

DINC = factor determining the reduced increments of central
deflection in the region of maximum critical load. Reduced
increment = Aﬁm/DINC.

(d) Prestress and initial conditions

Gpr = initial strain applied to the prestressing steel

&23 = concrete strain, from release to testing, on the

concrete compressive face at column mid-height.

614 = concrete strain, from release to testing, at the section

mid-depth, at column mid-height.

1
’ 2. Main Control
: This portion of the program contains most of the lower bound
1
|

solution. 1t controls the calculation of the initial conditions, the

columnwise iteration and the iterative solution of the equations of equilibrium.

|
|
i
1
o
.
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A limit of 50 iterations was set for the columnwise procedure to satisfy the
top boundary condition. If no convergence is obtained after 50 iterations a
diagnostic statement is printed out. The average number of columnwise
iterations was about two. No difficulties were encountered with columnwise
convergence that could not be overcome by a change of finite element length
or deflection increment.

A number of flags are used to control the calculations close to
the maximum critical load. When the load first decreases, the values are
reset to the previous deflection and the calculations continued with a
reduced deflection increment. If the load continues to decrease, a backward
reduced deflection increment is taken. Reduced deflection increments are

used until a maximum load is established.

3. Initial Conditions

The two cases of initial conditions have been described in
Section 4.3.1. We have
(a) Case A. This is eccentric prestress, requiring iteration of equations

(4.24) and (4.26) for the initial strains € and €4 using Newton's

method. The arbitrary initial values assumed for iteration are

and
(4.52)

1 0.75 (2 €14 - 523)

m
il
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(b) Case B. This is axial prestress, requiring no iteration. The strains

are calculated from equation (4.30).

4. Solution of Equilibrium Equations

The equilibrium equations (4.37) are solved by Newton's method of

tangents. There are two types of operations.

(a) Case A. Here equations (4.37) are solved for the unknowns P and 64.

This is required only at the column mid-height, nodal point 1. At the
beginning of the column analysis, for the first increment Abm, the
following initial values are assumed for iteration
2 3
it EC bd A@m
P = 5 (4.53)
124 (A6m+e)

and
INE P

e = (¢ ol 4.54

4 ( 4)int. 2 deC ( )
where

(e ). = € value obtained from the, solution of the initial

4" int. 4
conditions.
AE = assumed initial value for columnwise iteration, calculated

from equation (4.39).

Equation (4.53) is an adaptation of an approximate expression and (4,54)
assumes that the load P is carried by the concrete only. The initial values

of P and 64, used for iteration at all other deflection increments, are taken
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equal to the values of the solution at the previous deflection.

(b) Case B. In this case, equilibrium equations (4.37) are solved for the
unknowns 64 and Ac. The initial values for iteration are taken equal
to the respective magnitudes obtained in the solution of the previous,
lower, finite element.

In both cases, A and B above, there is first a selection of the
appropriate equations of equilibrium. The seven sets of equations (4.37)
are listed, together with the required partial derivatives. The iterations
are performed to the accuracy specified in the input, El for €4 and A¢ and
E2 for P. A limit of 500 iterations was set and, if no convergence is

obtained, a diesgnostic statement is printed out and the calculations for

the particular column terminated. Convergence difficulties, which occurred

in some cases, were overcome by reduced finite element lengths,

5, Material Failure

The material failure condition, at which 64 = Eu’ is obtained
by iteration on the central deflection Sm’ as described in Section 4.3.3
above. A specified total of five iterations are performed, which in most

cases result in the prescribed accuracy of E4.

\i 6. Upper Bound
| The upper bound calculations are programed according to the method
of solution described in Appendix F. The initial values for iteration of

equilibrium equations are taken equal to the lower bound solution at a
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neighbouring nodal point or the solution at the nodal point in question,
obtained during the previous columnwise iteration.

To satisfy the boundary conditions, errors of E5 and E3 are
allowed in equations (F1) and (¥2) respectively, during the first 10 column-
wise iterations. After the first 10 iterations, the accuracy requirements
are relaxed somewhat by specifying an allowable error on the combined
boundary condition F = 0 (see equation (F3) ) of E8 = (EGXEﬁ)Z + E32
A limit of 20 sets of columnwise iterations was set (each set made up of
seven points, as shown in Fig. F1), after which, if no convergence was
obtained, a diagnostic statement is printed out.

The convergence of the upper bound solution is more difficult
than the lower bound and a judicious selection is necessary of the factors

involved. An example of the numerical values used is (for column C22033 with

A€ = 2.5 in.)

FAC1=1.010 FAC2=1.001

E5=0.0005 E6=2.5 E7=1.06

7. Functions FORS and DEFORS

These are the functions listed in the two last pages of Appendix

‘52 Function FORS calculates the steel force Fs, used in the equilibrium
equations, for given steel strain es. The required partial derivative of the

steel force, for given steel strain, with respect to the strain, is cal-

culated by function DEFORS. The steel material properties, as shown in Fig.
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19, are used only in the above two functions. Thus, for a different steel
stress-strain curve, the only changes that need be made are in these two

functions.

8. Output

The printed output lists the input data and the analysis results
in the form of load, mid-height strains (on the tensile, mid-depth, and
compressive faces) and deflections at nodal points. The strains and
deflections listed are those due to load only.

The results are also available, on punched cards, if the input
flag NFl=1. Full diagnostic printed outputs can also be obtained, if
reguired.

The computer time, in minutes, used for the calculation of each

column, is also printed out.

9. Computer Times

The sverage time, per column, for the analysis of the thirty-
six experimental columns, with A¢f = 2.5 in., was 0.165 min. (range 0.06 -
0.68 min.). The upper bound solutions required much longer computer times.

Table 8 shows, as an example, the values for column C22033.



Table 8. Computer Times

(Column C22033)
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Ay Lower bound Upper bound
(in) (minutes) (minutes)
2.5 0.28 1.14
1.25 0.38 1.30
0.625 0.66 8.52
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Chapter 5. COMPARISON OF EXPERIMENTAL RESULTS WITH THEORY

The thirty-six columns tested experimentally were analyzed, using
the theory and computer program described earlier. The columns were analyzed
for the lower bound solution only, using individual values of length,
eccentricity, nominal prestress strain Epr (Table 3), and initial strains 614

and 623 (Table 4). Deflection increments Aﬁm, shown in Table 9, were selected
to give a ressonable number of points for each column and also to ensure

convergence. In addition, the following input values were used for all the

columns.

(a) Column details

b = 3.0 in. d = 2.02 in.
d' = 1.0 in. d" = 0.51 in.
A = 0.0616 sq. in. (area of two wires)

S

These were the average dimensions, as shown in Fig. 1

(b) Material

fé = 5,585 psi ft = 558.5 psi
6 .
E = 4.2x10 psi € = 0.0060
t u
= 1.176 B =1.0 Y = 0.050

The above cylinder strength fé represents the overall average of the thirty-
six cylinders tested. The modulus of elasticity in tension, Et’ was cal-

culated to be equal to the compressive modulus EC, obtained from Equation (4.13)
A number of different compressive stress-strain curves were tried, from the

family of curves of Fig. 22, and the one giving best agreement for the maximum
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loads had the psrameters listed above. The value of & = 1.176 represents a
maximum compressive stress of f; = fé and this is regarded appropriate for
horizontally placed members. The value of maximum strain Eu was selected

in view oif the experimental strain measurements at material failure load Pf.

(¢) Program

F1 - 0.5x10 " E2 = 1 1b.
E3 = 0.001 in. E4 = 0.00005
DINC = 4
and AL = 2.5 in.

5.1 Maximum Critical Load

The values of the theoretical maximum critical loads P are
cr

given in Table 9, which also lists the deflection increments AH used in
m

the analysis, the experimental critical losds and the ratio of experimental

to theoreticnl loads. Three of the five columns, that reached a maximum

| 1oad with material failure, are predicted by the theory to do so. The
theory predicts primary material failure in four other columns, which,
however, reached an experimental maximum before observed failure. 1In all

ihose Tour cases the observed failure load was 90 1b. or less from the

maxamum Lood,

| A histogram of the load ratios 1s shown in Fig. 29. The average
\ ratio was 1.018 (range: 0.821-1.123) with a standard deviation of 0.065.

|

| The anereement of the maximum critical loads is considered to be very good.

The average ratio i1s consistent with the theoretical load being: a lower

Lound . of about 2% below the limiting Af=0 value. The standard deviation
)
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Table 9. Comparison of Pcr Loads
*1 :
Column Experimental Theoretical Analysis Ratio
¥ an) A5m(in) P r(lb) cY exp./(Pcr)th
20c¢3 2,650 0.060 2,581*3 1.027
AiSOaB*z 10,430 0.020 10,123 1.030
140b3*2 3,100 0.200 3,042 1.019
A220b5 5,130 0.040 5,301 0.968
230c5* 1,980 0.120 2,093 0.946
24035 5,930*3 0.120 5,545 1.0869
12031*2 8,820 0.004 17,123 1.099
B130b1 3,890 0.160 3,465 1.123
14001 *9 1,630 0.320 1,529 1.066
220b3 4:,870*3 0.060 5,281*3 0.922
230c3 1,960 0.120 2,063 0.950
24033 5,970*3 0.120 6,237*3 0.957
l20c1 2,690 0.060 2,572 1.046
130a1 *2 11,660 0.020 11,022 1.058
140b1 2,670 0.200 2,499 1.068
22033*2 12,790 0.010 15,570 0.821
230b3 3,950 0,120 3,936 1.004
240c3 1,610 0.280 1,654‘*3 0.973
120c5 *9 2,810 0.040 2,521 1.115
130b5 *2 4,510 0.120 4,113 1.097
14035 *92 5,910 0.160 6,098 0.969
220b3*2 5,580 0.040 5,281 1.057
230b3*2 4,250 0.160 3,960 1.073
24Ob3 2,930*3 0.280 2,937 0.998
120a5 *9 13,100 0.020 13,592 0.964
E130b5 4,330 0.120 4,084 1.060
El40c5*2 1,880 0.200 1,774*3 1.060
220b1 5,090*3 0.060 5,062*3 1.006
230c1 2,010 0.120 1,993 1.009
24Oal *2 6,700 0.040 7,519*3 0.891
l2Ob1 *9 5,570 0.060 5,071 1.098
130b1 2 3,700 0.160 3,446 1.074
14Ob1 *9 2,500 0.240 2,492 1.003
220b5 5,310 0.040 5,288 1.004
23035 9,620 0.060 9,331 1.031
24Ob5 3,010 0.300 2,989 1.007

*1

For details see Table 4

Columns with duplicates

Material failure
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2D

compares favourably with those of other investigations. Thus, Hognestad
had a standard deviation of 0.058 for 120 short, eccentrically loaded, reinforced
concrete columns and Broms and Viest(24) calculated a value of 0.129 for 79
long, eccentrically loaded, columns from six different investigations. The
points in Fig. 29 are distinguished with respect to eccentricity. It can
be noted that, as could be expected, the lowest eccentricity 'a' has the
largest variasbility.

The above load ratios were analyzed statistically to determine if
they are significantly different with respect to any of the variables involved.
The analysis of variance results are shown in Table 10. The ratios are seen

not to be significantly different, and it can thus be claimed that the theory

is not biased with respect to the variables investigated.

Table 10. Analysis of Variance of PCr Ratios

Degrees

of Sum of Significant
Variable Freedom Squares Mean Square ¥ F(5% level)
Groups 5 0.0146 0.0029 0.75 2.62
Slenderness 2 0.0070 0.0035 0.89 3.40
Eccentricity 2 0.0130 0.0065 1.67 3.40
Prestress 2 0.0216 0.0108 2.77 3.40
Error 24 0.0937 0.0039

Total 35 0.1499
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5.2 Effect of Variables on Ppr

1. Prestress

Fig. 30 shows the variation of Pcr with prestress ratio, in a
dimensionless form, for the nine combinations of slenderness and eccentricity.
Note the reduced scale for the 20a columns. The values of prestress ratios,
for each column, are those presented in Table 4. Experimental and theoretical
points, or averages of duplicates, when available, are connected by straight
lines. The theoretical points do not lie on smooth curves since each is
calculated with its particular, experimentally observed, initial conditions
(values of €14, 623 and Epr)' The values of zero prestress were obtained
agsuming an initially straight shape. To illustrate the point, the
theoretical curve for column 40a was recalculated, using a smooth variation

of € and initial deflection i

14 o’ based on the average values of all the

columns. The data used for this curve are given in Table 11.

Table 11. Pcr Loads for Column 40a, with Average

Strains and Deflections

Prestress Initial Strain Strain Strain Theoretical P /bdf'

Ratio Deflection € € € P er ¢
£ /£ i (in.) 12, 23, PI4 °r

cp ¢ m (x10 ) (x10 ) (x10 7) (1b)

0 0 0] 0 0 6,684 0.197
0.03 0.011 0.58 0.72 3.37 6,917 0.204
0.06 0.026 1.17 1.5 6.74 7,026 0.207
0.092 0.047 2.0 2.59 10.37 7,037 0.208
0.125 0.078 2.9 3.88 14.5 6,959 0.205
0.150 0.106 3.9 5.24 17.8 6,846 0.202
0.175 0.138 4.8 6.54 21.0 6,715 0.198
0.252 0.234 7.85 10.6 31.12 6,346 0.187
0.410 0.428 13.1 18.5 52.15 5,527 0.163
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The agreement between the experimental and theoretical lines is
generally good, with the exception of column 20a3, which had the lowest
relative experimental Pcr' For columns of smallest eccentricity "a", increase
of prestress beyond a ratio of about 0.1 decreases significantly the value of
Pcr' However, prestress is beneficial over a small range of fcp/f; , up to
about 0.1. 1t seems reasonable to conclude that columns with some eccentricity
will have some prestress, no matter how small, which will give a Pcr higher
than that for zero prestress. The relative increase due to prestress, for
eccentricity ”a", is smallest for the shortest column 20. Columns of medium
eccentricity ”b”, acting as beam-columns, show an increase of Pcr with pre-
stress, with a maximum in the region of pr/f; = 0.3 to 0.35. Again, the
least relative benefit of prestress is for columns of £/d = 20. Finally, for
the largest eccentricity "¢'', prestress is seen to have no effect on columns

of slenderness 20. For the longer columns, PCr keeps increasing with pre-

stress, the increase being larger for the higher slenderness.

2. Eccentricity

The effect of eccentricity on pcr is illustrated in Fig. 31, for
a nominal prestress ratio of 0.1. The critical load decreases sharply with
increase of eccentricity. This decrease is larger, the shorter the column.
Good agreement exists between experimental and theoretical values, with the
theoretical lcads being on the lower side. The loads plotted for the medium

"p" eccentricity are averages of duplicate columns.
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Similar relations exist at the higher prestress values, the curves

for the three slenderness ratios being somewhat closer to each other.

3. Slenderness
Fig. 32 shows the variation of critical load with slenderness, for
a nominal prestress ratio of O0.1. Pcr is seen to decrease almost linearly with
increase in column length, the rate of decrease being largest for the smallest
eccentricity. As in Fig. 31, the values for eccentricity ''b" represent averages
of duplicate columns.
The relations for the higher prestress values are similar to

Fig. 32.

5.3 Material Failure Load

Table 12 presents experimental and theoretical values of the
material failure loads Pf and their ratios. A histogram of the load ratios
is shown in Fig. 33. The average ratio was 1.071 (range: 0.795-1.557) with
a standard deviation of 0.129.

The high average ratic, due to low theoretical values, is
probably caused by the assumed value of the maximum concrete strain eu’

Eu = 0.0060. Since, in most columns, the load is already decreasing before

material failure is reached, a lower Eu will result in higher theoretical

‘[ loads.
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Table 12. Comparison of Pf Loads
*1
Column Experimental Theoretical (P.) /(P )
Pf (1b) Pf (1b) " exp. £ th
A12003 2,630 2,581 1.019
13033 %9 8,840 6,558 1.348
14Ob3*2 2,830 2,523 1.122
A220b5 4,900 5,244 0.934
A230c5*2 1,950 2,090 0.933
24035 4,730 3,911 1.209
Blzoal*2 18,820 12,084 1.557
130bl 3,820 3,330 1.147
B14Oc1*2 1,610 1,525 1.056
220b3 4,800 5,244 0.915
230c3 1,960 2,063 0.950
24033 4,000 3,632 1.101
C120c1 2,690 2,572 1.046
C13Oal*2 7,570 6,121 1.237
C14Ob1 2,580 2,252 1.146
22033*2 10,770 12,805 0.841
C230b3 3,440 3,595 0.957
C240c3 1,570 1,616 0.972
120(:5 *9 2,780 2,521 1.103
130b5 *9 4,350 3,756 1.158
Dl4035 *9 4,590 4 165 1.102
220b3 *2 5,200 5,244 0.992
D230b3 *9 4,000 3,610 1.108
24Ob3 2,600 2,476 1.050
12Oa5 *2 13,100 12,309 1.064
E130b5 4,090 3,746 1.092
14005 *2 1,840 1.696 1.085
E220b1 5,000 5,062 0.988
23001 2,010 1,993 1.009
240a1 *2 3,240 4,073 0.795
Flebl *9 5,550 5,071 1.094
130b1 %92 3,610 3,316 1,089
F14Obl *0 2,360 2,248 1.050
220b5 5,180 5,234 0.990
F23035 8,500 6,989 1.216
F24Ob5 2,780 2,589 1.074

! For details see Table 4

*2

Columns with duplicsates
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5.4 Maximum Compressive Strain at Pcr

The maximum compressive strains at column mid-height, under the
critical load, experimental and theoretical, and their ratios, are given in
Table 13. The experimental strains represent the average readings of gages
2 and 3 (see Fig. 12). All the strains are due to load only and exclude
initial strains, caused by prestress and creep. A histogram of the strain
ratics is shown in Fig. 34. The average ratio was 0.963 (range: 0.584-1.340)
with a standard deviation of 0.189.

The comparison of strains is only fair. An analysis of variance
revealed that the strain ratios are not significantly different, at 5% level,
with respect to the parameters involved in the study. Local strains might be

expected to show a larger experimental variation than load measurements.

5.5 Load Deformation Curves

There are three types of curves, containing comparisons between
experimental and theoretical results, drawn by means of the computer and

presented in Appendix A.

1. Load-Central Deflection Curves

Figs. A1-A9 show experimental and theoretical load-central
deflection curves. The deflections plotted exclude initial deflections and
are due to the load only.

The general agreement is good, extending over the full range of
loading and including the post-critical region. In most cases the theoretical

curve, based on the lower bound solution, is below the experimental results.
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Table 13. Comparison of Maximum Compressive Strains at PCr

P S ——1 % 3 - n—4
Maximum Compressive Strain at PCr (x10 ) Strain Retio

Column™? Experimental Theoretical Exp./Th.

A120c3 41.9 56.84 0.737

AlSOaB *9 19.75 18.19 1.086

14Ob3 *9 20.0 18.92 1.057

A220b5 29,15 37.41 0.779

A230c5 26.75 45.82 0.584

A24Oas 17.75 17.88 0.993

12031 *9 19.9 22.22 0.896

B130b1 40.65 32.19 1.263

l40(:1 ¥ 50.95 50.70 1.005

220b3 37.7 42.72 0.882

230c3 41,15 57.11 0.721

24033 11.5 13.73 0.838

120c1 49.75 58.81 0.829

13081*2 17.05 13.73 1.242

C140b1 24.7 23.94 1.032

C22033 %92 20.0 24 .83 0.805

230b3 20.45 24.63 0.830

C24003 40.0 32.70 1.223

12005 *9 35.65 54 .43 0.655

130c5 *9 25.6 24.95 1.026

14025 9 16.75 17.26 0.970

D220b3*2 47.0 42.81 1.098
D230b3*2 27.75 24 .17 1.148

24Ob3 20.8 19.25 1.081

12035*2 26.7 27.89 0.957

130b5 27.25 24.27 1.123

14005 %9 30.9 27.36 1.129

E220b1 49,35 58.91 0.838

230c1 47.8 58.84 0.812

24031 *2 11.2 9.13 1.227

: l20b1 *2 48,2 58.83 0.819
% F13Ob1 *9 44.5 33.22 1.340
5 14Ob1 %2 21.4 24 .45 0.875
f 220b5 38.6 37.08 1.041
| 23035 17.25 20.861 0.837
; 24Ob5 19.7 21.86 0.901

*
L For details see Table 4

Columns with duplicates
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This situation is sometimes reversed in the post-critical region. Most
columns maintain a very high proportion of their maximum critical load, up
to material failure. Columns of low eccentricity exhibit a more drastic

reduction of load after the maximum is reached, at a much smaller deflection

than that of ultimate load. This tendency increases with increase in slender-

Lk}

ness. The effect of prestress, on columns of £/d = 40 and eccentricity a ,
is shown in Fig. 35. It can be seen that, in addition to a decrease in
maximum load, an increase in prestress has the effect of increasing the de-
flection at which the maximum load is reached. 1In the post-critical region
the curves are very close to each other. The fractional drop in load, from
the maximum, decreases with increase in prestress. The curves plotted in

Fig. 35 are from theoretical results only. Note that they differ in their

initial deflection.

2. Load-Central Strain Curves

These are shown in Figs. AlO0-Al18. The curves exhibit, in general,
very good agreement between experiment and theory, for tensile, compressive

and mid-depth strains.

3. Deflected Shape Curves

Figs. A19-A27 show a distorted plot of experimental and theo-
retical deflected curves. While the agreement of initial shape is good, the
curves at maximum load differ significantly, in some cases., The variability
is not so much in the shape of the column as in the magnitude of deflections.
should be noted, however, that the comparisons are made not at the same load,

but at the maximum load for each case, theoretical and experimental.

It
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Chapter 6. ANALYSIS OF VARIABLES

In addition to the theoretical analysis of the columns described
in Chapter 5, a total of 252 columns were analyzed, using the computer program,
to investigate the effect of four types of variables., The variables investi-

gated, and described in this chapter, are:

(1) effect of concrete tensile strength
(2) effect of initial curvature
(3) effect of concrete compressive strength

{(4) effect of area of steel.

6.1 Effect of Concrete Tensile Strength

To investigate the effect of concrete tensile strength on the
maximum critical load Pcr’ the thirty-six columns, the analysis of which was
presented in Chapter 5, were calculated again with ft:O' It was considered
interesting to investigate this aspect since most theoretical analyses,
published in the past, neglect the concrete strength in tension.

Table 14 presents the results of the analysis, as well as the
ratios of the maximum critical loads, with and without the contribution in
tension,

The concrete tensile strength can be seen to have a negligible
effect on Pcr' The average ratio of loads, in Table 14, is 1.004. However,
the effect depends significantly on the values of the three pzrameters in-

vestigated. The average ratios for these parameters, neglecting the duplicates,
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Table 14, Effect of Concrete Tensile Strength

| *1 Theoretical Analysis Ratio
| Column p with tension P without tension (P ) with/(P ) wi thout
- or (1b) cr (ib) or cr
| *3 *3
. A 20¢3 2,581 2,581 1.000
- A 30a3, 10,123 10,047 1.008
_ A14Ob3*2 3,042 3,029 1.004
A22Ob5 r,uOl 5,295 1.001
w A,30c5, 2,003 2,092 1.000
sk 24085 5,543 5,509 1.007
] 1208‘*2 17,123 17,019 1.006
| 130b1 5,450 3,464 1.000
B,40cl,, 1,529 1,529 1.000
220b3 5,281*3 :’3,279*3 1.0060
230@3 2,083 2,062 1.000
24083 6,237*3 6,165*3 1.012
120C1 2,572 2,572 1.000
13031*2 11,022 10,841 1.017
C 40bl 2,499 2,497 1.001
C22083 *9 15,570 15,510 1.004
230b3 3,936 3,928 1.002
C24Oc3 1,654*3 1,653*3 1.001
: D 20¢5, 2,521 2,520 1.000
. 130b5*2 4,113 4,101 1.003
. l40ﬂ5* 6,098 6,038 1.007
. 220b3 5,281 5,279 1.000
‘ DZ?Obs 3,960 3,952 1.002
- | 2409? 2,937 2,926 1.004
g 12085 13,592 13,560 1.002
- 1'3Ob5 4,084 4,072 1.003
’ El4OC5 *2 1,774*3 1 771 %3 1.002
220bl 5,062* 5,062 - 1.000
; 230C1 1,993 i, 993 1.000
24081*2 7 319 7,262*3 1.035
120b1 5,071 5,071 1.000
lﬂObl 3,446 3,445 1.000
14Ob1 o 2,492 2,489 1.001
2 220b5 5,288 5,282 1.001
i 23030 9,331 9,286 1.005
: 40b5 2,989 2,978 1.004

*
1 For details see Table 4

; *2 . .
i Columns with duplicates
| *3

Material failure
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are shown in Table 15. The ratios, and effect of tension, increase with
slenderness and decrease with eccentricity and prestress. Thus, the column

with the maximum ratio of 1.035 is 40al.

Table 15. Effect of Concrete Tensile Strength-Average Load Ratios

Load* Load* Nominal Load*
Slenderness Ratio Eccentricity Ratio Prestress Ratio
£/4a (e/d) £ _/f!
cp ¢
20 1.001 a(l/8) 1.011 0.1 1.007
30 1.004 b(3/4) 1.002 0.3 1.003
40 1.007 c(2) 1.000 0.5 1.003

*1
(Pcr) with tension / (Pcr) without tension

6.2 Effect of Initial Curvature

The effect of the column initial shape, curvature and deflection,
on the maximum critical load pcr’ was investigated by the analysis of eighty~
one columns. Each of the twenty-seven unique combinations of slenderness,
eccentricity and prestress, at the three levels used in the experimental study,
was analyzed with three values of initial central deflection, representing
0, 0.25% and 0.5% of the column length. An initial circular shape was
assumed for the columns. The values used in the analysis were the same as
in Chapter 5, except the initial central deflections. Also, the Epr strains
used were the same as before (Table 3), average values of ¢ were used

14

(Table 5, (c¢) ) and the 623 strains were calculated, for the required

deflections, from Equation (4.20).
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The results of the analyses are presented, in terms of load
ratios of initially deflected to initially straight columns, in Figs. 36,
37 and 38 for nominal prestress ratios of 0.1, 0.3 and 0.5 respectively.
It can be seen that the load ratios vary almost linearly with initisl central

deflection. The detrimental effect of initial curvature increases with longer

columns, shorter eccentricities d smaller prestress. For the largest initial
deflection considered, 0.5% of length, the maximum drop of load, for column

40al, is 36%. 1t is interesting to note thst for columns 20cl, 30cl, 20¢3,
30¢3 and 20c¢5, there is an increase in load with increase in initial de-
flection., All these columns reach their maximum load with material failure,
governed by cqzﬁu. With the assumptions made in the analysis, an increased
initial deflection leads to a lower initial strain 64, on the compressive
face, and therefore Lo a higher load capacity, when material failure is
governing the maximum load.

Some of the results are plotted again in Fig. 32, for the constant
slenderness of #/d = 30. It can be seen that the largest influence is

eccentricity. The effect of presiress also increases as the eccentricity

becomes smaller.

6.3 Effect of Concrete Compressive Strength

Twentv-seven columns, representing unigue combinations of the
¥ ”

three variables of slenderness, eccentricity, and prestress, were analyzed

with the same input data as in Chapter except each with two different

values of £', namely 3,500 and 7,500 psi. The values of ft = 0.1 fé were

IS



141

LOS0 T
20¢ o
o ~30c 206 o
- .L i @
e t40c
\Fao\ﬁ
406
e
2
0900 + CiE
29
=l <
Z|od
Z\
‘f 08s0 + Z|Q
S
| 35~
3
'\ \J
0.800 + )
o
T
of
0.750 T
0.700 +
PRESTRESS J“"/f}-, =0.|
—o=— MATERIAL FAILURE
0650 T
0.600 % {
0 0.25 0.5

INITIAL CENTRAL DEFLECTION (% OF LENGTH)

FIG.30 EFFECT OF INITIAL CURVATURE
(%o/e' =0.1)



LO50 T 142
—=® 20C¢
__@-———
1000 - ——— =9 o 30¢
N - . - 20pb
* 40¢
&l N\ S © 40b
0900+ I
<2
= § N
Z- .
x| ‘
0850+ £ |
% ! . - 20a
o’
o
] 0 1 i\
0800 9
S
- 30Qa
0750+
® 40 a
Q700+ f
PRESTRESS JF/f=0.3
— 0= MATERIAL FAILURE
06501
0.600 | }
O 025 0.5

INITIAL CENTRAL DEFLECTION (% OF LENGTH)

FI(¢. 37 EFFECT OF INITIAL CURVATURE
(feo [ 20.3)



143

1.050 1T
_20c
o (3) 5
Oc
1000 0 = ®
® (/ °
. 206 (40c
0.950“ '\
. 306
405
0900 + 3
g 2
a Oz
3T
0850+ |y
zZ|«
|
d B 3042
8004 3
0.800 Zl=~ 404
5|
U
Q. I~
-
0750 + %
0700+
fep/ v
0es0L PRESTRESS JF/{( 0.5
— o — MATERIAL FAILURE
0600 | y
0 0.25 0.5

INITIAL CENTRAL DEFLECTION (% OF LENGTH)

FI0.38 EFFECT OF INITIAL CURVATURE

($.0/8 208



0850 +

1050 —+

0.950 +

0.900 +

0.800 +

_ (Pr)WITH INITIAL DEFL
(R, )STRAIGHT

P

144

N b1
\
b5~ *

RATIO

0750 +
0.700 +
L/q = 30

—o— MATERIAL FAILURE
0650 +
0600 % t

o 025 o5

INITIAL CENTRAL PEFLECTION (9 OF LENGTH)

F10.39 EFFECT OF INITIAL CURVATURE

(0/d =30)



changed accordingly. The prestress and initial strains ep_, Ei and €
were kept at the observed experimental values for each column. Since the
experimental columns had an average fé = 5,583 psi, this assumption implies
the same creep from release to testing, irrespective of fé, and might be

in error.

The results of the analysis are presented in Table 16, where the
Pcr loads are given for the three values of fé , and also the load ratios
with respect to the load for the experimental fé = 5,585 psi. Increase in
fé is seen to decrease the number of columns that reach their maximum at
material failure. Thus, there are 10, 6, and 2 material failures with in-
creasing compressive strength. The compressive strengths of 3,500 and 7,500
psi represent -37.3% and +34.3% of the experimental fé = 5,585 psi. The
PCr loads, however, were affected to a smaller degree, the overall average
being -27% and +19.2% for the low and high strength respectively.

Table 17 shows the average load ratios for the three variables
investigated. The effect of compressive strength is greatest for columns of
low slenderness, low eccentricity and high prestress. Thus, column 20a5
(Table 16) exhibited changes in PCr of -43.4% and +38.1 for the low and
high strength concrete respectively. For this column, the PCr load ratios

are larger than the respective ratios of f;.
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Table 16. Effect of Concrete Compressive Strength
Load Ratios
(Pcr) / (Pcr)
Theoretical P _ 3,500 7,500/
- (Pcr) (Pcr)
Column fé:SPSOO psi fé:5,585 psi f;=7,500 psi 5,585 5,585
*2 *2 *2

A120C3 1,978 2,581 3,015 0.766 1.168
A13Oa3 6,830 10,123 12,473 0.675 1.232
A140b3 2,376*2 3,042 3,421 0.781 1.125
A220b5 3,701*2 5,301 6,528 0.698 1.231
A?SOCS 1,526 2,093 2,491 0.729 1.180
Aé4035 3,437 5,545 6,812 0.620 1.228
B12031 12,048 17,123 21,274 0.704 1.242
B, 30b1 2,803, 3,465 3,923 0.809 1.132
Bl40c1 1,265 1,529 1,720 0.827 1.125
B, 20b3 3,999, , 5,281, 6,258 0.757 1.185
B,.30¢3 1,621 2,063 2,378 0.786 1.153
B24083 4,577*2 6,237*2 7,414*2 0.734 1.189
cl20cl 2,059 2,572 2,958 0.801 1.150
C,30al 8,299 11,022 13,299 0.753 1.207
Cl40b1 2,105 2,499 2,758 0.842 1.104
C22033 9,900 15,570 20,128 0.636 1.293
C230b3 2,996 3,936 4,513 0.761 1.147
C240c3 1,301*2 1,654*2 1,881 0.787 1.137
D120c5 1,762 2,521 3,029 0.699 1.202
D 30b5 2,690 4,113 4,979 0.654 1.211
E12035 7,697*2 13,592 18,773 0.566 1.381
E14OC5 1,237*2 1,774*2 2,099 0.697 1.183
E220b1 4,052* 5,062*2 5,826 0.800 1.1561
E230C1 1,624 1,993 2,255 0.815 1.131
E,40al 5,821 7,519 9,022 0.774 1.200
F_30a5 5,248 9,331 12,139 0.562 1.301
F§40b5 2,007 2,989 3,513 6.671 1.175
*1

For details see Table 4

Material failure
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Table 17. Effect of Concrete Compressive Strength-Average Load Ratios

Variable

*
Average Load Ratio

fé:3,500 psi

£!=7,500 psi

(a) Slenderness (£/d)

20
30
40

{b) Eccentricity (e/d)

a (1/8)
b (3/4)
c (2)

(c) Prestress {(f /f')
e cp’ ¢

*1
(Pcr) / (Pcr)
£ 5,585

6.4 Effect of Area of Steel

0.714
0.727
0.748

0.669
0.753
0.767

0.792
0.743
0.655

1.223
1.189
1.163

1.253
1.162
1.160

1.160
1.181
1.234

A1l the columns involved in the experimental work described

earlier had the same steel area (AS/AC

by changing the stress in the steel wires.

= 2.05%).

The prestress was varied

To investigate the effect of

variation of steel area on the maximum load Pcr’ eighty-one additional

columns were analyzed. Each of the twenty-seven unique combinations of
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slenderness, eccentricity, and prestress ratio, were used three times with
varying steel stresses, and thus different steel areas. All columns were
assumed initially straight and the remsining details of cross-section,
material properties and program parameters were the same as in Chapter 5.
The three steel stresses used, assumed after all losses before testing, were
50, 100, and 150 ksi, representing approximately 20, 40 and 60% of the
ultimate steel stress of 250.9 ksi. The prestress ratios, 0.1, 0.3, and 0.5,
were also assumed to exist at testing and the required steel areas calculated
from Equation (3.3). The prestress strain Epr was calculated from the steel
stress, concrete prestress and concrete stress-strain curve.

The results of the analysis are presented in Figs. 40, 41, and
42, for the prestress ratios of 0.1, 0.3, and 0.5, respectively. In all
cases, for a given prestress ratio, an increase in the steel area results in
a higher maximum Pcr' The change in maximum load increases for lower
slenderness, lower eccentricity and higher prestress ratio. For the column
20a5, Pcr increased from 11,946 1b. with AS = 0.0564 sq. in. (two wires)
to 18,213 1b. with AS = 0.1692 sqg.in.

1t is interesting to note that the relation of the maximum
load Pcr and prestress ratio fcp/f; depends on the steel stress. Fig. 43
shows the results of column 20a, obtained from Figs. 40, 41, and 42, for
three steel stress values. Each point in Fig. 43 represents a different
area of steel. The maximum load decreases with increase in prestress ratio,
for high values of steel stress, and increases for the low stress. At a
steel stress of about 75 ksi, Per is approximately 15,800 1b., irrespective

of the prestress ratio.
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Chapter 7. SUMMARY AND CONCLUSIONS

1. An experimental investigation of the strength and behavior of
eccentrically loaded, prestressed concrete columns, has been described. Thirty-
six columns were tested and the variables of slenderness, eccentricity and
prestress, each at three levels, were investigated. A technique of end
anchorage was developed to ensure full prestress at the column ends. The
testing was performed in a special frame which enabled the investigation of
post-buckling behavior, by applying increments of axial shortening and
measuring the resulting loads.

2. An analytical method was developed, based on the cotangency

criterion and using finite elements and numerical computer techniques. The

calculation of the loads under applied, increasing, deformations is shown

to be a powerful technique to investigate the full range of loading, in-

cluding post-buckling.
3. Good general agreement was shown between the experimental

results and theory, over the full range of the variables investigated. The

% average ratio of maximum critical loads (Pcr)’ experimental/theoretical, was
1.018 with a standard deviation of 0.065. Material failure loads, which occ-
curred mostly after the maximum critical loads, had an average ratio of 1.071

and standard deviation of 0.129. The maximum compressive strains at critical
loads had an average ratio of 0.963 and standard deviation of 0.189. Statistical
analyses of variance showed no significant bias with respect to any of the

parameters investigated. Good agreement was also obtained between experimental

and theoretical load deformation curves.



|
o
|
]
|
1

4. The effect of prestress on pcr depends mainly on the eccentricity.
For low eccentricities, (e/d = 1/8), a maximum Pcr was reached at low prestress
ratios of about 0.1. For medium eccentricity (e/d = 3/4), a maximum pcr was
observed in the region of fcp/fé = 0,3 to 0.35, the least benefit of prestressing
being for shorter columns. For the largest eccentricity, e/d = 2, prestress
had no effect on the shorter columns; (/d = 20, while the longer columns

showed continued increase of P with prestress. With increase in eccentricity
T

and slenderness the critical loads dea¢ ., the maximum effect being on
shorter columns and columns with low eccentricity respectively.
5. The computer program, developed to perform the theoretical
analysis, proved a versatile tool for the anaslysis of further variables.
{(a) The concrete tensile strength was shown to have a
negligible overall effect on PCT, the maximum influence

being on long columns with low eccentricity and prestress.

{b) Changes in initial curvature had significant

cte oon P The detrimental effect of increased initial
T

ses wiih increase in slenderness and

doeflections 1ncre:
decrease of eccentricity and prestress.
(c) Increasing the concrete compressive strengih was
shown to be more effective in increasing the Pcr loads for
shorter columns with smaller eccentricities and higher prestress.
(d) 1In all cases, for a given prestress ratio, an increase

i:. the steel area resulted in a higher PC The change in Pcr

-
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is greater for lower slenderness, lower eccentricity and higher

prestresgs ratio. For some columns, the variation of Pcr with

prestress ratio, with the same steel stress but varying steel
areas, depends significantly on the level of the steel stress.

6. TFuture theoretical work should extend the analytical approach
presented in this thesis to columns with end restraints, time dependent load
and material characteristics, and eventually to the analysis of structures
with prestressed beams and columns. The availability of the post-buckling
behavior should be utilized for the analysis of the prestressed column as
part of an indeterminate structure.

7. Future experimental work is required to determine in a more
direct manner the stress-strain relation of concrete, under conditions
similar to those in the test specimens, and particularly accounting for the
previous history of creep under prestress from release to testing. Tests
are also needed on eccentrically-prestressed columns, prestressed columns
tested in double curvature, columns restrained elastically, and as parts

of structural frames, in which the restraint is nonlinear.
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APPENDIX A

Experimental and Theoretical Curves

This appendix contains 27 graphs which present both experimental
and theoretical results. All graphs have been drawn by computer plotting
prograems, each to a different scale in order to fill fully the available
spece. In every graph, X represents experimental results.

represents theoretical results.

There are three types of figures:

(a) Figs. A1-A9 : Load-Central Deflection

The deflections plotted are due to load only, excluding initial

deflections.

(b) Figs., Al0-Al18: Load-Central Strains

The compressive strains represent the average of gages 2 and 3,
the tensile strains the average of gages 5 and 6 and the strains between
them are the average of gages 1 and 4 (see Fig. 12). All strains plotted

are due to load only, excluding initial conditions.

(¢) TFigs. A19-A27 : Column Deflected Shape

One-half of the column shape is plotted, to a distorted scale,
at both initisl conditions and the maximum critical load. The experimental

and theoretical values of the critical loads are also given.

Note: The graphs presented in this appendix are a selection of 9 out of the
36 columns tested. Similar graphs for the remaining 27 columns can be found
in the original thesis at the University of California Engineering Library,

at Berkeley.
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C of a concrete stress block are presented in this Appendix.

Case 1

dc’ where dcs d, with zero stress at one end.

The magnitude of the stress block resultant is thus

Also, from the geometry of the stress-strain curve and taking moments

about the origin.

Thus

Average Stress =

General expressions for the magnitude and position of the resultant

Fig. Bl shows the two cases considered.

Properties of Concrete Stress Block

APPENDIX B
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Here the concrete compressive stress block extends over a depth

From the stress-strain curve:

L

,64

€
J/f 4 f de
C C

o

(B1)

(B2)

(B3)

(B4)
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fc f .fc+ w Ir z D
STRESS | KiCy srozis TR
" RESULTANT 0 RESULTANT
......... )
0 y
o -
A N
STRAIN €4 € €, STRAIN &4 €c
STRESS-STRAIN CURVES

£=K‘ﬁfc E’K d’

CONCRETE STRESS BLOCKS

CASE | CASE 2

FI@. Bl PROPERTIES OF CONCRETE
STRESS BLOCK
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Case 2

Here the stress block extends over the full section depth d, with

extreme strain values of el and €4.

Again,
1 €4
Average Stress = /ﬁ £ de (B5)
€,7¢ . c ¢
€1
and
¢
4
C = bd Jf f de (B6)
€47€1 . c ¢
1
Also, €
JF 4 f € de
€, ¢ ¢ ¢
- - - B
Kl(e4 El) €4 - (B7)
4
/ﬁ f de
. : c ¢
. 5
_ 1
% and finally
| 5
| 4
,m{ . /; fC ecdeC
k = Kd=d { 4. 1 J (B8)
; 1 € -€ €
41 (e, -€.) f 4t ae
_ 4 717 c ¢

The integrals can be evaluated after substitution of fcsf(ec).
Integration is carried out between the discontinuities of the stress-strain

curve and the separate integrals added up.
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APPENDIX C

Newton's Method of Tangents

The solution of simultaneous nonlinear equations can be performed
. . . . \ (59)
by successive approximations, using Newton's method of tangents, when

initial values are available which are sufficiently close to the roots.

Consider two nonlinear equations
f(x,y) =0 and h(x,y) =0 cn

and initial values xo, yO for the unknowns x and y.

The first approximations are then given by

x1 = Xo + H
c2)
= + G
yl y0
where
fo h o - ho f o
H - i’l’ — y7 (CS)
X,0y,0 X,0 y,0
and
x Oh ~ h Of
G = - , O X, O (C4)

h h f
X,0y,0 X,0y,0

In Equations (C3) and (C4):

= =h
fo f(Xo,yo)’ ho (xo’yo)



|
1
|
{
]
|
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and

Similarly, further approximations are calculated until H and G

are 3s small as required,
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APPENDIX D

Equations of Equilibrium at a Section

This appendix presents the equations of equilibrium at a section,

equations (4.37), for all seven strain distributions shown in Fig. DI1.

Case 1
C
P+F _+F _~C,_(2e¢ -Ne) - 3 [ (¢ —Ae)g - € 3} =0 (D1)
s2 83 2 4 AN 4 4
and
3 F _(da'+d") + F __d" - P(y-0.5d) e 3 (¢ ey
4 Ts2 s3 Yo o 4 4
c d P +F
e (P+F o+ Fg5) T a2 (prF _4F )
s2 s3
4 4
(64—Aﬁ) €,
- C 5 =0 (D2)
(Ne) (P+F52+FSB)
Case 2

2 3
- - ETANS SRS ¢ =-C_ € - = 0
PAF 4F = an [ CgmCy(e mae) € (e =Ae) THC 46 =Ch ey Cpg |
(D3)
and
S ' '+d" " - P(y-0.5d
iﬁ ) PSZ (d'+d )+FSS d (y 5d)
Ae d(P+F52+F53)
l " - 3 o — o 4 [ 2 [y 3 oy i -
- [ C15~C7(c4—A&) +(:8(\4 NE) +C16“4 C17“4 C18J =0

2
c F
A (P+FS2+ SS)

(D4)
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CASE | d .
0= €,< €, |
€
o0<eg=e, ! K‘ €4
CASE 2 ‘e,
0= ¢, < €,
€
i
€Ep< €E4= €, \’664
CASE 3 0

€< € <0 é.l\
0O < €4 % €0 \64
CASE 4 [\ 3

eléi
él £ éf i )
+

O<é€g=¢, \l@,

CASE 5 €
€ o

€ <€ <0 6,}\

€g < €4 €y \ :
CASE © [%

N ef[\

€ < €&y €L

€o < €4 = €, \ €4
CASE 7 | : , €o

€o = € < €y

€0< 64 ééu

NOTE : COMPRESSIVE STRAINS ARE
CONSIDERED POSITIVE .

FIo.DI  STRAIN DISTRIBUTION
SEVEN CASES



—Ae)z 1 =0

4
%) - P(y-0.5d)

14

)

4

- P(y-0.5d)

| Case 3
f:f e
. P+F _+F -1 [ e 2 (C.~C_ € ) - C. (e
s2 3 s 4 2 3 4 19 4
and
C. d €
" 19 2
F _(d'+d F _d" =N
g2(d'+d) + Fadm a2 (e -A0)" (24
3
¢ d CcC_ ~-C_ €
4 7 4
- (C_.~C_ ¢ ) (1 ) =0
2 —
Ae 2 3 4 C2 C 64
P+F _+F . + 1 [ C € 2 (c.-c. ) ] =
s2 " s83 N 20 4 2 3 4 -
and
C20d
I o F 11 - -
FSZ(d +d ) + s3 d  + B (C21+€4) P(y-0.5d)
Ne
3
! € d C_~-C_ ¢
| B 42 (CyCyep (1 - c7—c8 e4 ) =
‘ Ne 2 3 4
‘ Case 5
‘ P+F _+F + L [ C. (¢ —At)z - C_.~C € +C
; s2 83 NE 19" 4 . 22 713 4
! and
| C. d €
1 e 11 19 ~ - o~ 2 _i
Fsz(d +d ) + FSS d  + TAC (c4 Ne)T (2 + e
1 2 3
| B (Coe%a ™ Ca3 * Cp7 €4 + Cog 4 ) =
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(D5)

(D6)

(D7)

(D8)

(D9)

(D10)



Case 6
P+F _+F _ + L [Cc.  -C__~C.. € + C.,6 ¢ 2 ]l =0
s2 83 Ac¢ 20 22 713 "4 14 4 -
and
C20d
FSZ(d +d ) 4+ FS3 d + 5 (C21+€4) - P(y-0.5d)
JAXS
1 2 3
R (c26 €4 = Chq + 027 €, * Chg gy )y =20
Ne
Case 7
P+F52+F 3~ C13 + 2 C14 64 - C14 Ne =0
and
Fsz (d'+d ) + F53d - C24 - Cl4d 64 - P(y-0.5d) +
€ C
4 25 R 3 3
+2C14d _A—&—* + ;Zé- [(6.4 NE) 64:f-0,

as follows:

The subscripted constants, used in the above equations,

bdOE
Co = 38
bdQEcz
‘s " 10.2 82 ¢
’ c
2
C; =3 G
3
Cg =1 C3

are
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(D11)

(D12)

(D13)

(D14)
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APPENDIX E

Geometric Relations for Large Rotations

In the derivation of the geometric relations of Section 4.3.3
(Fig. 26(b) and (c)), the assumption was made that the rotations & were
small. Also the effect of axial strain on the column shape was neglected.
This appendix presents the general equations, which do not include the
above assumptions.

Fig. El(a) shows the deflected shape of half the column length.
For simplicity of presentation, the column is assumed to be initially
straight. In general the number of nodal points is n and the number of
finite elements (n-1). The initial length 4' includes prestress and creep

shortening. Thus

L' = 4 (1—61 ) (E1)

4

For the initial straight shape, the creep strains

= & = € (E2)

A = (E3)

th
Under a load P, the length of the i element becomes

€_+€
1

2

y)
Vi® Sy L1

ey ] (E4)
C
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ELEMENT (1),
OF CIRCULAR SHAPE,
ARC LENGTH V,

FIO.EI GEOMETRY OF LARGE
ROTATIONS
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‘J where

th
61 and 64 are the extreme fiber strains in the particular i

element,

The first element has boundary conditions d1 = 0, 81 = 0 and s, = 0,

where si denotes the vertical movement of the ith nodal point, due to load P.

From Fig. El(b)

%

& 6, = — (E5)
| 1
- - E6
dz r. (1 cos 92) (E6)
and
— v i
82 = A r, sin 92 (E7)
It can be shown, from geometric considerations, that the
recurrence relations are
Yi1
d =d [ sin 6, (sin 6. - sin 6, ) ] +
i i-1 cos 8 i- i i-1
i-1
r V.
i1 (1 - cos —ZL) (E8)
cos 6. T
i-1 i-1
vV,
6. =0 _ + —L (E9)
i i-1 'y
‘ i-1
; and
|
| S. =M+ S, - 1, (sin 6. - sin 6. _) (E10)
i i~1 i-1 i i-1
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Neglecting axial strains, i.e., assuming Vi = AL, assuming small

rotations, i.e., sin § = 6 and cos 8 = 1, and using
vV, vV, 2
o8 — =1 -3 (2
¢ r., 2 T,
i i

we can convert (E6) into (4.42), (E8) into (4.46) and (E9) into (4.47).

Finally, the correct boundary condition is

y, = € cos 6 (E11)

which becomes Equation (4.49) for small 6.
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APPENDIX F

Upper Bound Method of Solution

This appendix describes the method of obtaining upper bound load
solutions. These require the assumed constant curvature within each finite
element to be equal to the curvature obtained from the solution of equilibrium
equations at the top nddal point of the element. Thus, to obtain the upper
bound load P, for a given total central deflection ym, we must proceed from
the top of the column towards the mid-height (see Fig. 26 (b) ). There will

be now two boundary conditions to be satisfied at the mid-height, namely

6, =0 (F1)

and

y. -y =0 (F2)

and two parameters at the top of the column, the top slope Gn and the "stress
curvature” (Ae)n, to be obtained by iteration. This increases the difficulties
of the iteration procedure and requires the use of some special optimization
techniques. The calculation of the upper bound load, for each given value
of ym, is carried out immediately after the lower bound solution, for the
given deflection, has been obtained. Thus, the lower bound values are
available, where required, to serve as initial guesses in the upper bound
solution.

The method of solution follows the following steps, for a given

deflection ym:
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In the first iteration, values of load and top slope are assumed. The
load is taken to be E7xP, when E7 is an assumed factor, larger than unity,
and P is the lower bound solution. The assumed top slope in is obtained
from the lower bound slope, adjusted using the initial and final Qn

values for the upper bound solution at the previous deflection ym.

Using the above value of P and Yn =€ the appropriate equations of

equilibrium are solved, at the top nodal point n, for the strain (64)n

1
and the "stress curvature" (Ae)n .
1
Using the assumed en , the calculated (Aﬁ)n , and the known value of
1 1
dn’ the position of nodal point (n-1), i.e., the value of dn—l’ and

the slope Gn—l are determined from equations (4.46) and (4.47).
Next, the equations of equilibrium are solved at nodal point (n-1),

using Newton's method (App. C), for the unknown values of (Ae)(n_l) ,
1

d
an (64)(n_1)
1

The position of nodal point (n-2) is found next and the equations of
equilibrium solved as under step 3 above. This is repeated for each
lower nodal point until y1 and 91 are determined at nodal point 1.
The required boundary conditions (¥F1) and (F2) can now be checked
and, if these are not satisfied, further iterations are necessary.

For this purpose, a criterion function F is defined

2 2
F=(y) + (E6x6)) (F3)
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where

E6 = assumed numerical factor, to adjust the influence of 61

on F.

Since Yy and 91 depend on the values Qn and (Ae)n, F is a positive function
of these parameters (Fig. Fl1(a) ). The boundary conditions are satisfied
when F=0 and our aim is to determine, by iteration, the values of Gn and
(At)n which cause F to vanish, within a prescribed accuracy.

After the first iteration, the value F(l), at point 1 in Fig.

F1(b), can be calculated.

6. We aim next to determine the values of the F function in the vicinity
of point 1, so that the direction of the maximum slope on the surface
of the criterion function can be found, and we can proceed to iterate
towards the required point of F = 0. Thus, we use in turn the Gn and
Cﬁe)n coordinates of points 2, 3, 4, and 5, and proceed to nodal point
n to solve the equations of equilibrium, with the assumed (Aﬁ)n and
known yn = e, for the unknowns P and (64)n. Repeating steps 2, 3, and
4 above, for each point, we obtain the values of F(2), F(3), F(4), and

F(5). The location of points 2,3,4, and 5 is determined in relation to

the values of Qn and (Ae)n , by specifying the factors FACl and FAC2

1 1
used in
S1 = (A’:)n (FAC1 - 1.0) (F4)
1
and
S2 = en (FAC2 - 1.0) (F5)
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7. The magnitude and direction of the maximum slope at point 1 can now be
established, using central difference expressions. The maximum slope

is given by the gradient vector. Its magnitude 1is

_ oF 2 OF, 2
|vF l = JF'(éizgsy*) + (E%;—) (F6)
n n
where
OF _ F(4)-F(2)
A (Ag) - S1
n
and
OF _ F(5)-F(3)
el B S2

The direction ¢ is specified by
OF
o6
n

(F7)
|V 7|

cos ¢

and
OF
3(Ae)
) n

|VF|

sin ¢ (F8)

il

We proceed next to determine F(6) and F(7), where the coordinates

of points 6 and 7 are obtained from the direction ¢ and assumed

S3 S17 + 82

1l

D

(F9)
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8., To determine the position of point 1', the central point of the next

set of iterations, we first calculate an approximation to the second

derivative at point 1, in the direction of the maximum slope

Finaliy,

gv . E(6) - 2 F(1) + F(7) (F10)

54 = - —szii—L (F11)

The iterations are continued until, at any point in the procedure,

the boundary conditions (F1) and (F2) are satisfied, within a prescribed

accuracy.
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APPENDIX G

Computer Program

The listing of the computer program is presented in this appendix.

The program is written in FORTRAN IV and was executed on an IBM 7094 computer,

‘ at the Computer Centre, University of California at Berkeley.
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C ANALYSTS UOF SLENDER PRESTRESSED CONCRETE CULUMNS

R R R AR R R R R AR AR R R AR R R B R R SRR F R AR R A AR AR RN AR E R B AU N AR IR R D FR BN
DIMENSION DEFIN(99),0EL{S99),RADI(99),4W(99),CURI(99),EPSI4{99]),
IYI(99),THETA(99),POLEL(99),PRADI(99),PW({99),PCURI(99),PEPSI4(99),
2PYT(99),PTHLETA(SY) ,COLUMNI2) LDELT(99) UCURI{(99),URADI(991),
3UDEL (99 ) UTHETA(99),UEPST4(99),UW(99),UYI(99},F(8)
COMMON AS
CALL TIME (TI)

C INPUT AND OUTPUT 0OF DATA

161 READ 31, (COLUMNIIT),I=1,2)
31 FORMAT { 2A5)
READ 30LsNFL,NF2yNF3,NF4yNF5,FACL,FAC2,ES5,F6,t7
301 FORMAT (51445F10.0)
READ 324840401402, ASsFPRCH,ALPHA,BETA,EPSPR,EPS23,EPSL4
32 FORMAT  (T7F10.0)
READ 33,A3E1,E2+4E3,EPSUET NMAX,S,,FE,FT,DEFINC,DINC,E4,SLOPE
33 FORMAT (6F1C.0/14/7(F10,01))
PRINT 34, (COLUMN(I),1=1,2)
34 FORMAT (1H12A5)
It {(NF1) 807,807,808
808 PUNCH 998
398 FORMAT (6H -999.)
PUNCH 997, (COLUMN(T),I=142) yMAX
397 FORMAT (2A5,110)
807 PRINT 35:5,FB,D0,D01,D2,A5
35 FORMAT(22HODATA— CULUMN DETAILS F10.1,5F10.2, F10.4)
PRINT 36,FPRC,FT,ET,EPSU,ALPHA,RETA,SLOPE
36 FORIMAT (10H MATERTAL Fl0.0,F10.1,1PE15.2 ,0PF10.4,3F10.3)
PRINT 37,A,E1,c2+E3,NMAX,DEFINC,DINC,E4
37 FURMAT { 94 PROGRAM F10.2,E15.2 , F5.0, F10.3, [5,F10.3,F10.1,
1 F10.5)
PRINT 887,FACL,FAC2,E5,E6,E7
587 FORMAT (15H 2F10.43F10.5,F10.1,F10.2)
PRINT 38,EPSPR,EPS23,EPS14
38 FORMAT (344 PRESTRESS AND INITIAL CONDITIONS 3F15.6)

Ci-*k%%%***-}*{'{%l{--}**#**&*l}{#*i*l*******#****#****&*&#'}#%**I{

C CALCULATION OF CONSTANTS

CBar BB AR R R R R E R B R B AR R AR R A AR AN BRI R AR RN AR R A B R R R B RE R R E N RAR SR
D6=pD1+D2
D4=D1/D

EC=1800000.0+391.0#FPRC
EPSO=1.7#FPRC*BETA/EC
. EPST=FT/ET
| LAST=NMAX-1
| C2=6aD=ALPHA®EC/(2.0%BETA)
C3=C2%EC/(5.1%BETA=FPRC)
C7=2.0%C2/3.0
(8=0.75%(3 .
CY9=EPSO##2#(C2-C3#EPSQO) ’
Cl0=0.35#SLOPE=FPRC=ALPHA/(0.0038#BETA-EPSO)
C11=0.85%FPRC®=ALPHA+CL10#EPSO
Cl2=B%D#EPSO=(C11-C1lC*0.5%EPSO)
C13=B#D=Cl1

|
|
|
| D5=D2/D
|
|
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Cla=0,5%pr3=L 10

C15=EPSO=e3n (C7-C82EPSO)

Cle=0.5%(13

Cl7=2,0%L14/3.0

Clo=tPSOx=2#(L16~-CL7#EPSO)

Cl19=0.5#R%D%ET

C22=EPST==22(19

C21=2.0=#EPST/3.0

Cr2=C9-C1l2

C23=D={(C15-C18)

C2a4=0xC16

C25=0%017

Cib=0x022

C27=N=C13-C24

Cz28=C25-0xC 14

C29=C15~-C1H8

D3=Us/D

Eo=(Eb6x*ED ) xn24+E3en?
C#ﬁ-*{%%%%**%%&*%**ﬁ-ﬁ***%%ﬁ*ﬁ-%!}%*#******%**ﬁ-******%******%%%%
e MAIN CONTRUL

C**%%***%*%i%ﬂﬁ****{-%**#*}***&#*}*****%*********§****%****%*

SET FLAGS,; COUNTS AND SOME VARTABLES TU ZERO

[aNeRe]

NU=0
NEU=0
‘ KL=0

| KLM=0

z M=0

| Mg =()

{ K=

§ KK=0

* THETA(L)=0.0
| W(1)=0.0
| PP=0.0

|

|

|

P=0.0
NE=0
5‘“;}:2()
MF6=1

CHECK IF INITIAL CONDITIONS, AFTER CREEP, CORRESPOND TO AXTAL OR
ECCENTRIC PRESTRESS AND GU TU APPROPRIATE INITIAL CASE A DR B

OO

{F(ePS23-EPS14) 24142

HETURN AFTER CALCULATING INITIAL COMDITIUNS
SET AND CALCULATE SOME STRAINS RELATED TO INITIAL COMNDITIONS

PO O

102 EPS4I=FEPS4
; EPSLI=EPS]

- EPSCLI=EPSCL

_ EPSD2=EPSPR-EPSC2
CPSD3=EPSPR-£PSC3

OQUTPUT INITIAL CONDITION RESULTS

¢y Y Oy
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PRINT 39

39 FORMAT(1BHOANALYSIS RESULTS )
PRINT 40

40 FORMAT (92H LOAD £EPS1 EPSCL EPS4 DeY) D(2)
133 D(4) Di{5) D{6) Ot7i D{8)/95H
2 Ui9) D(10) D(11) DU12) D(13) D(l4) D(15)
36) )

PRINT 41,P4EPSTI EPSCLEPS4; (DEFIN(IMN)YyN=1,81)

41 FORMAT {(FT7.0U33F10.538F7.3)
IFILAST-2) 43,43,4/¢

42 [TF{LAST-17) 6264627,6217

6217 PRINT 44, (DEFIN{N), N=9,16)
GO TO 43

6£26 PRINT 44, (LoFInN(N)y, N=9,LAST)

44 FORMAT(3TH BF7.73)

c SET #A# VARIABLES T0O ZERC

43 Al=0
42=0
A3=0

C PUNCH RESULTS IF NF1=1

IF (NF1) 630,630,302

302 IF(LAST-17) 628,629,629

628 PUNCH 991,P,A14A3,A2,(DEFININ)yN=1,LAST)
GO TO 630

629 PUNCH 991,P,41,A3, A2, (DEFIN(N),N=1,16)

SET INITIAL STRAINS ANy CURVATURES FOR ALL ELEMENTS.
WIlL SERVE AS INITIAL VALUES FOR FIRST DEFLECTION INCREMENT

OO

630 DO 26 N=1,LAST
EPSTA4(N)=EPS4
26 CURT(N)=CUR

INITIAL VALUES OF LOAD, CURVATURE AND STRAIN
FOR FIRST DEFLECTION INCREMENT

aNeNeNe!

P={(3,14%2%cC#B820#x32DEFINC)/((DEFINC+E)#12.0%5%%2)
DEL(1)=CEFINC
CUR={DEL{1)I+DEFIN{(L) ) #D=(3.1416/S)#%2-CURCOR
EPS4=EPS4+CUR/2.0+P/(BxD=EC)

BEGINNING OF CALCULATIONS FOR PARTICULAR DEFLECTION DEL(1)
SET CURRENT yY=PARTICULAR YI{1}) AND CURRENT CUR=SINE APPROXIMATICN
GO TO CASE A TO CALCULATE LOAD P AND STRAIN EPS4 AT MID-HEIGHT

AN

500 YI(1)=E+DEFIN(L1)+DEL(])
CUR=(DEL{L1)+DEFIN{(1)}#D=(3.1416/S5)=2+2-CURCOR
¥Y=YI1(1)

GO 10 5

C RETURN FROM CASE A
L STORE VALUES OF EPS4,EPS1 AND CUR FOR FIRST ELEMENT (LOWER END)

DA

nel
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CALCULATE RADIUS UF CURVATURE

108 EPST4(1)=EP54
IF {NE3) HU9,809,810
510 PRINT 192 sCURSY»P,EPS4,EPS]
192 FORMAT (HH L08 HEZD.5)
0 rPS1l=tP5l
CURT (L) =CUK
RANDTIEL)Y=D/{(CURT(1}+CURCOR)

STaART DG LOUP FOR THE REMAINING ELEMENTS
CALCULATE DeFLeCTION AND ROTATION

U0 109 K=y NMAX
WINY=W(N=1L)Y+auTHETA(N=1)4+A=2/ (2, 0%RADI(N-1))
YI(N)I=YT (1) ~wW (W)
IF(N-NMAX) 110,111,111

110 THETAIN)=THETA(N-1)+A/RADTI(N-1)
DELIN)=YT(N)~DEFIN(N)-E
Y=YI{N)

AS THNITIAL GUESSES SET CURRENT CUR AND EPS4 £QUAL TO
VALUES OF LUWER ELEMENT

GO TO CASE B Tu CALCULATE CURVATURE CUR AND
STRATIN EPS4 FUR GIVEN P AND Y

CUR=CURITI{N=1)

cPS4=EPS14(4-1)

[FICUR)Y 12,799,13
799 CUR=0,C0001

O T 13

RETURN FROM CASE b
STURE VALUES OF EPRPS4 aND CUR, CALCULATE RADIUS OF CURVATURE

99 cPSIA4IN)=EPS4
[F (~F3) B1l,811s812
812 PRINT 142 SLUR, Y P,EPS4,EPSI]
182 FORMAT {HH 99 5020.59)
11 CURT (W )I=0UR
109 RACDI(N)=0/(CURT{N)+CURCCR)

CHECK ERROR [N BOUNDARY CONCITIONS
IF ERRUR SMALL ENOUGH wWe HAVE FINISHED FOR THIS DEL(1).
6O T 200
[F ERROR TGO LARGE PROCEED TO CHECK COUNT

111 ERRUR=YI{AMAX)~E

IF (NF3) RB13,813,814
214 PRINT 180, ERQAUR
120 FORMAT (10H  £RRUR E20.5)
813 IF(ABS (ERRGR)=-E3) 200,200,100
100 IF (NE) 170,170,169

FIRST COLUMNWISE ITERATION (NE=0), STORc ERROR AND CURI(L),
RESET FOR NEW APPRUXIMATION OF CUR, SET COUNT AND



C START NEW ITERATION BY GUING TO 52

170 CUR=CURI(1)+ERROR*G.0=D/5=%2
PERROR=£RROR
CURP=CURI(1)
NE=1
GO 10 52

SUBSEQUENT COLUMNWISE ITERATIONS.
IF COUNT EXCELOED TERMINATE B8Y GOING 7O 117
OTHERWISE CORRELT CURy SET Y AND EPS4 FOR MID-HEIGHT AND
START NEW ITERATION BY GUING TO 5 (SELECTION OF APPROPRIATE CASE A}

eNeleNalelel

169 1F (NE-50) 168,601,601

601 PRINT 602

602 FORMAT ( 25H COLUMN DOES NOT CONVERGE)
GO TO 117

168 NE=NE+1
CUR=CURI(1)+ERRUR® (CURP=CURI (1) )/ ( ERROR=PERROR)
CURP=CURI (1)
PERRUR=ERROR

52 Y=Y1(1)
IF (NF3) 815,815,816

816 PRINT 179 ,CUR,Y,P,EPS4,EPS]

| 179 FURMAT (8H 52  5c20.5)

. 815 EPS4=EPSI4(1)

| GO TO 5

PROCEED TO NEW SET OF CALCULATIONS (NEW P-Y PUINT)
CHECK FIRST IF Wk ARE IN THE PROCESS OF FINDING MATERIAL FAILURE POINT
EPS4=EPSU  {l.E. IF KL IS GREATER THAN ZERU)

IF KL=0, CHECK MAGNITUDE OF EPS4 AT MID-HEIGHT
1o IF SmMALL, CONTINUE TO 201
3. IF GREATEXR THAN EPSU, GO TUO 203
2. 1IF ECQUAL TO EPSUs SET KLM=1, PRINT AND TERMINATE

IF KL IS5 GREATER THAN ZER(O, CHECK IF WITHIN LIMIT ks
1. IF YES, PRUCEED AS UNDER 2. ABOVE
2. IF NC, PROCEED AS UNDER 3, ABOVE

sleNesleleNoNeleNoRaNal s

200 IF(KL) 53,53,54
54 [F{ABS (EPSU-EPSI4(1))~E4) 202,202,203
53 IF(EPSI4(1)-EPSU) 201,202,203

SET KLM=1 [F READY TO PRINT MATERTAL FATLURE AND TERMINATF

oRalal

fI 202 KLM=1

BEFORE PROCEEDING TO NtW SET OF CALCULATIONS, DUTPUT RESULTS

aNeNal

201 Al=EPSI1-EPSII
A2=EPST4(1)-EPS4]
A3={Al+A2)/2:0
PRINT 5B3PsA1,A3,A2,(DELINI;N=1,8) s NE
58 FORMAT ( F7.0,3F10.5,8F 7.35110)
IF(LAST-B) 61561:59
59 IF (LAST-17) 6314632,632
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632 PRINT 60, 0LL{N) s N=3;16)

G0 70 i
631 PRINT 50, {DELING aN=3,LAST)
&0 %U”VAT§57h BF7.3)

ReESET COLUMAWISE CUOUNT
61 NE=0
PoudCr ReSULTS TF NFL=1

Ir INF1} 639,63)5303
303 LU 992 N=1lyULALT
G932 DELTINI=DELIN)+DEFININ)
TF (LAaST=-17) 993,634,634
D33 PUNIH 991,P A1 A3, A2, (DELTINY N=1,LAST)
391 FORMAT{FIC .U, 3010 6/16F5.3)
o0 TU 539
034 PUNCH 99 1,PAL3A3 3 A {DELTIN) sN=14+16)

IF NFZ=1 GO TO CALCULATE UPPER BUUND
639 TF (NF2) 633,033,640

RACK FROM UPPER 0UND CALCULATIONS
CHECK FLAGS CONCLANED WITH CETERMINING HAXIMUM LOAD
WITH S#ALLER DEFLECTION INCREMENTS

I M) 62,62,40U
[F{M) 63,63,1200
IF{K} La4,64,600
TRIP=-PP) 300,300,700

CL
> W
£ N W

HeRE THe LOAD TS STILL INCREASING AND WE SHALL STORE PRESENT VALUES
TO RE ApLT TU RITuUrY AFTER THE MAXIMUM LUOAD IS PASSED

700 pp=0
WPSII:E)%H
D0 b Nzl NMAK
PRELI f)—ltL(»M
PRAUI(IN)=RADTA{N)
Pwih)=wli)
PCURTIN)=CURTN)
PEPSTIaiNI=CPST4(])
PYI(’\;):YI(T\;)

655 PTHETAIN)=THeTA(N)

COME HERED FROM 633 (0OR 73) IF mMM=1, WHICH IS AFTER
THE mAXIMUM LOAL HAS BEEN INVESTIGATED AND PRINTED OUT.
RHERe WE Nl STURz UNLY DEL AND EPSI4(1)

4C0 POELLLY=DEL(L)
PePST4all)=EPsIall)

AHEN KL™M=1, THE MATERIAL FAILURE POINT HAS BEEN PRINTED OUT AND
WE ARE READY TUO TERMINATE
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C
IF(KLM) 664,665,117
c
C INCREASE THE DEFLECTION BY THE REQUIRED INCREMENT
C RESET EPS4 TO MID-HEIGHT
C AND FINALLY RETURN TO 500 FCOR A NEW SET OF CALCULATIONS
C
66 DEL(L)=DEL{1)+DEFINC
EPS4=EPST4(1)
GO TO 500
C LR S S E S EEEEEREERERESSEREREEEE
C
C HERE THE LUAD HAS JUST DECREASED FOR THE FIRST TIME
C THEREFORE SET K=1
C
300 K=1
C
C RETURN TO PREVIOUS VALUES
C
1600 P=pP
EPSIL=PEPSII
; DO 67 N=1,NMAX
| DEL{N)=PDEL(N)
. RADI(N)=PPADT(N)
- WIN)=PWI(N)
_ CURTIN)I=PCURI(N)
! EPST4(N)=PEPSTI4(N)
1 YI(N)I=PYL(N)
- 67 THETAIN)=PTHETA(N)
- C
~l C CHECK [F THE LOAD HAS ODECREASED FOR THE FIRST TIME (M=0) OR
| C AFTER A PREVIOUS RETURN (M=1)
;;j C IF M=0, WILL INCREASE THE DEFLECTION HY GOING TO 1400
‘ w C IF M=1, WILL DECREASE THE DEFLECTION BY GOING T0O 1100
| ¢
‘;% IF(M) 140041400,1100
| C
| C INCREASEt THE DEFLeCTION BY REDUCED INCREMENT, RESET EPS4 AND
f C RETURN TO 5070 FUR A NEW SET OF CALCULATIONS
1
| C

1400 DEL{1)=0DEL(1)+DEFINC/DINC
| EPS4=EPSI4(1)
| GO TC 500

LR SRR R SR EREAEEEREESEEREESRESE

WE HAVE PREVIOUSLY RETURNED (K=1) AND ARE INVESTIGATING THE LOAD FuR
THE AEDUCED FORWAKD DEFLECTICN INCREMENTS
(IF KK=1, T.E. THE LOAD KEPT INCREASING, GUTQ 1500)
IF THE LOAD INCREASED, GO TO 800
IF THE LOAD IS THE SAME IT IS THE MAXIMUM, GO TO 1300
I+ THE LOAD DECREASED, GO 70 900

VYOI IO OO,

6500 TF(KK)} 68,68,1500
68 IF{P-PP) 900,1300,800

WE HAVE NOT RETURNED SUFFICIENTLY FAR, SET M=1, GU TO 1000 TO RESET

&Y Oy
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C PREYVIUUS vALUES AND PROCEED TU 1100

Q00 M=
LU TO 1000

CECREASE THE UEFLECTIUN BY THE REDUCED INCREMENT
RESET PS4 ANMD ReTURN TO 5CO0
FOX A NbEwW SET OF CALCULATIONS

YOOy

1100 CEL{L)=Cel {1)~-DErINC/DINC
EPSe=0pSTAa(L)
GO TO »uo

LR R R R R R R R R

Wit HAVE COME HERE FROM 62, AFTER HAVING RETURNED AT LEAST TWICE (M=1)
IF NEw LUAD STILL HIGHER, GO TUO 1100 AND RETURN FURTHER
IF Hew LCAD cQuAal O LUWER, THE MAXIMUM HAS BEEN REFACHED,GO TO 1300

YOO O

1200 IF(P=-PP) 1300,1300,1100

NREACHED

THE #MAXTIMUA LUAD HAS OF
ANG CONTINUE TO 400

£
OUTPUT 1T A ScCuad Tlve AN

YOO O

1300 Al=£PSTI-EPSTI
A2=EPS14(1)-EPSal
AZ=(AL+AZ2}/2.u
PRINT 69,0 A1,A3,A2, (DELIN),N=1,8) 4NE
69 FURMAT (F7.0,3F10.5 48F 7.3,110}
TFCLAST-8) 772,72,70
70 IF {LAST=17) 03546365036
636 PRINT 71,{DclL({N),N=9,16)
GO T 72
G35 PRINT 71, (DELEN)  N=9,LAST)
71 FURMAT{37H RET:3)
712 NE=0O

PUNCH ReSULTS IR NF1=1

OO O

IF (NFL1) 638,638,304

304 DO 8BI2 N=1,LAST

BG2 DELT(N)I=OEL(N)+DEFININ)
IF (LAST=17) 893,637,637

£93 PUNCH 991 ,P, AL, A3, A2, {DELT(N)4N=1,LAST)
G0 TO 638

637 PUNCH 991,P,AL3A3,A2, (CELT(N),,N=1,15)

WHEN KLM=1, THE MATERTAL FAILURE POINT HAS BEEN PRINTED 0OUT AND
WE AR ALADY TO TERMINATE

YOO

633 ITF(KLM)Y 73,73,11/

AT THIS POINT wk HAVE FINISHED INVESTIGATING MAXIMUM LOAD
SET MM=1 AND 5O TU 400 TO PROCEED WITH THe USUAL DEFLECTION INCREMENT

OO0

73 MM=1
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C
C THE LUAD HAS INCREASED AFTER RETURNING AND
C CONTINUING WITH REDUCED INCREMENT
C SET KK=1 AND GO TO 1400 FUR ADDITIUNAL FORWARD REDUCED INCREMENT
C

800 KK=1

GO TO 1400

C
C HERE KK=1 (I.E. THE LOAD HAS PREVIOUSLY INCREASED AFTER RETURNING)
C [F THE LOAD KEEPS INCREASING,
L GO TO 1400 FOR A FURTHER FORWARD REDUCEFD INCREMENT
C IF THE LGCAD IS SAME OR ULECREASES, THE MAXIMUM HAS BEEN REACHED
C GO TU 1300
C

1500 TF(P-PP) 1300U,1300,1400
Crosatatudn e AR B R R ER RS AR R RS AR R RS HE R AR RN B R R R BB RN H BN ES 880
C INITIAL CUNDITIONS CASE B
CR# B R BN R B R R U R AR R AR TR R R R R R R R B R R B R AR E R AR B R AR BRI NG U B R R B R B E RN
C
C CASE OF AXIAL PRESTRESS AFTER CREEP, DIRECT SULUTION POSSIRLE
C
1 EPSS¢Z=EPSPR-:PS14

EPSS3=EPSS2

Cl=FURS(EPSS2)+FURS{EPSS3)

EPS4=(2.0%2C2-5SQRT ({2.0%C2)##2-12,0=C3%C1))/(6.0%C3)

EPSL=EPS4

EPSCL=EPS4

EPSC2=EPS14-LPS4

EPSC3=EPSC?

CURIN=0.0

CURCOR=0.0

CUR=0.0

DU 74 N=1,LAST

74 DEFIN{N)}=0.0

GO TO 102
CH R AN AR AN R B RE AR R AR R T R R B R A SRR DAL BB A AR AR R BB AR DR B AR BN B R R B
c INTTIAL CONDITIUONS CASE A- SOLUTION BY NEWTONS METHOD

C*#*l**i***{***%***********#*ﬁﬁﬁ-*%ﬂ***i#*#******&**#ﬁ-**%ﬁ-*#*

C
C CASE OF ECCENTRIC PRESTRESS AFTER CREEP,
C ITERATICN SOLUTIUN FOR EPS4 AND EPS1

C PRELIMINARY CALCULATIONS

C

2 EPSS3=EPSPR-(EPS14+{EPSZ23-EPSL4)2D4)
EPSS2=EPSPR-{EPS14-({EPS23-EPS14)2D4)
CI=FORSU{EPSS2Y+FORSIEPSS3)
C4={FORSIEPSS2)#D6+FORS(EPSS3)=D2)/(D=C1)
C5=(2.0=%C2)/(3,0=C1)

C6=0.75=C3/C1

C
C INITIAL VALUES
c
EPS4=0.3=2EPS23
EPS1=({2.0#EPS14-EPSZ3)20.75
c

€ TTERATION BEGINS
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21 CUR=£PS4-EPS]
Bl=tPS4#e3-1:-PSlaa3
H2=cPS4sx4-7PSnag
FN1=C2#(EPS4+EPSLI-L3#R1/CUR-C1
FNZ2=tPS4/CUR-C4—(CH5#BL~-CH#R2) /CUR®=2
B3=3,0%C3/CUR
A4=C3/CURx%?
DEXFNI=C2-H3#EPS4#u2+R42B]
DEYFNTI=C2+03%EPS1wu2-84231
B5=2,0=(C5#81-L62B2)/CUR%=3
DEXFNZ==EPS1/CUR 82 -{3,0%CH5#EPS4#22~4, 0=C6=2FPS4##3) /CUR##2+R5
DEYFNZ=£PS4/CUR*#2~(4.0#C6#EPS1##3-3,08C5#EPS1#%2) /CUR#%2~R5
BOH=DCXFNL#DEYFN2-DEXFN22#DEYFNI
He (FN2#CCYFNL-FNLI®DEYFN2) /86
Ga(FNLI#DEXFN2-FNZ#DEXFNL) /B6
EPST1=EPSL+C
EPS4=EPS4+H
TELARS (H)-E1) 22422,21
272 TE(ARS (L)-F1) 244244521

VALUES wlTHIN PRRESCRIBEU BUOUNDS. CALCULATE CREEP CURVATURE CURCOR

[ e

24 CUR=EPS4-EPST
sPSCL=0.50(CP5S4+EPST)
EPSC2=EPSPR-EPSSZ-EPS4+D3xCUR
CPSU3I=EPSPR-EPSS3-LPS4+05%CUR
CURIN=CUR
CURCOR={EPSCI-EPSC2) /D4

CALCULATL IMITIAL DEFLECTIONS

[aNeRel

RADI(L)=D/{CURIN+CURCOR}
DEFIN(L)=S==2/{5.0=2A01(1))
RT=A/RACTI(L)

PR {sA/2.0

D0 729 N=2,LAST

WiN)=WIN-1)+ATHETA(N=1)+b8

THETAM(N)=THETA(N=1 )47

25 DEFIN(N)=DEFIN{L)-WIN)

GODOTO 107
{:%**%ﬂ%*&?l-%:»%%****#ﬁ**%****%#%%*&*%*4**%%&#{»&%%i&******ﬁ#***&*-:}
C SELICTION OF APPROPRIATLE CASE A
ﬁ‘ﬁ!—ﬁ*&%*&%*-ﬂé%§§#~§i~§#**iﬁ*#***ﬁ***i*%*%*%&*4*%%**%****%&%***

5 EPSI=EPS4~-CUR
IFLEPST) 27,28,28

27 TF(EPST+cPSY) 29530430

28 IF (cPS4) 617,616,616
ale IF (£PS1-EPSD) 61256125613
17 IF (EPSTHEPSS) 618,619,619
518 IF {(ePS1-EPSU) 9,9,11
519 IF (EPSLI-EPSQO) 8584510
612 TF{EPS4~-EPSO) 646457
13 IF (EPS4—~EPSG) 7,7,610

29 IF(EPS4=-cPSO) 9,9,11

30 IF(EPS4~-EPSD) 648,10
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| c CASE 1A

6 EPSS/2=CPSD2~EPS4+D3#CUR
IF (NF3) 817,817,818
818 PRINT 199 ,CUR;Y3PsEPS4,EPST
199 FORMAT (8H 1A 5£20.5)
817 EPSS3=tPSN3I-EPS4+D5%CUR
Bl1=P+FORS({FPSS2)+FNRS(EPSS3)
BT7T=DEFORS(EPSS2)+DEFORS(EPSS3)
BB=EPS4#23-FEPSlas3
FN1=R1-C2#(2.0%EPS4~-CUR)+C3%88/CUR
DEXFN1I=1.0
| DEYFNL==2,0#C2+3,0#( 34 (FPS4#22-EPS1#%2) /CUR-R7
- B2=CUR##2%H 1
| B3=R2#81
| B4=D=R1
B5=04=01
BO6=FORS(EPSS2)#D6+FORS(EPSS3)#D2-Pe{Y-0,5%D)
RO=EPS1l#24~FPS4nxg
FN2=EPS4/CUR-B6/B4—{CT#RB+C8%89) /82
DEXFNZ=(B6~B1l#{0.5%0-Y))/BS5+(C7*88+(C8%BI) /B3
DEYFN2=1.0/CUR+{B1#{(D6#DEFNRSIEPSS2)+D2#DEFORS(EPSS3) )~
1B62BT7)/B5~(R1#3,08CT7#(EPS42#2-tPS1#%2)+CT7#B8%07-31%4.0%CR+
2B8+CB#392pT)Y /B3
GO TO 12
C CASE 2A

s 7 EPSS2=EPSO2-EPS4+D3#CUR
. IF (NF3) 819,819,820
| B20 PRINT 198 4CUR,Y, P, EPS4,EPS]

‘ 198 FORMAT (8H  2A  5E20.5)
619 EPSS3=EPSO3-EPS4+D5xCUR

BL=P+FURS(EP552) +FURS(EPSS3)

B2=CUR**2%P 1

83=82%81

B4=N*R1]

RS=R4=B1
| BE=FORS(EPSS2)*D0o+FURS (EPSS3) #D2=P* (Y=0.5%D)
| BT=DEFORS (FPSS2) +DEFORS(FP5S3)
|
i

BE=EPS1#=2
BI9=BH*EPS]
} B10=C7-C8#EPSI
| Bli==Cl6+C17#FPS4
| B12=C29-H11#EPS4#%2-810%R39
| FN1=B1-((22-By*(C2-C3%EPS1)~EPS4=(Cl4#EPS4-C13))/CUR
, DEXFN1=1.0
. DEYFNL1=-BT7+(£PS1#(2.0%C2-3.0%C3#EPS1)-C13+2.0%C14%EPS4) /CUR
FN2=EPS4/CUR-8B6/B4-B12/82
DEXFN2=(R6~B1*(0.5%0-Y))/B5+B12/B3
DEYFN2=1.0/CUR+(B1#(D6*DEFORS{EPSS2)+D2*DEFORS(EPSS3) )~
1B6#87)/B5-(Blx*(-EPS4%(-2,0%C16+3,0%C17+*EPS4)+BB2(CB*EPS]~
23.0%810))+B12#87) /B3
GO T0 12
c CASE 3A

.
|
|
]

| 8 EPSS2=EPSD2-EPS4+D3#CUR
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197
221

824
196
823

222

IF (NF3) 821le821,827

PRINT 197 ZCURLYPL,EPS4,EPSL

FORMAT {(tH 3A S5E20.5)

EPSS3=EPSO3~-0P54+D5#CUR

Bl=P+FURSIEPSSZIT+FORSIERSSE)

Be2=C2-CixcPS4

R3A=EPS4un?

Pg=ClynsiPSlesns

Ro=C7-CB=EPS4

Bo=pS/H2

BI=2.0+EP54/0UR

BRB==C19«LPS1/13,0%{UR)

BO9=972%173

PI0=EPS1/CUR

RIL={0=EpPSa)/LUR=n?

FNL=R1-{39-B4)/CUR

DEXFNL=1,0
DEYENTI==00FOS(ePSS2)=0eFNRSIEPSS3)-EPS4x{2.0882-C32EPS4 ) /CUR+
12.0%C 9%y

FNZ2=FORS(EPSS2)Y2D6+F0ORS{EPSS3)#0D2-Ps{Y~0.0%))+
12E#EPSLarT~{1.0-16}%#B11%29

DEXFN2=D/2.0~Y
DEYFANRZ=—LA®OREFURISTEPSS2)I-02#DEFURS(EPSS2)+B2# (2. 0#R74+B10) -
1R L 1w lEPSA4x(3,0#02-4.08C3%EPS4)#(1.0-BH)+B32A2x(1,0+{B2#L8B-
2HoxC3Y/Rewwl))

50 19 12

CASE 4A

CPSS2=rPSD~LPS4+D3+CUR

IF (NF3) 823,823,824

PRINT 196 4CURSY$P,EPS4,EPS]
FURMAT (o 44 5020.59)
rPSS3A=EPSD3-FPS4+D5%CUR
B1=C?=-C3%tc PS4

B2=EPS4/0UN

R3I=NR2ufEPS4

Pa=C7-L8%:P54

Bo5=h4/81

Ho=D/0UR

BT=C20/CUR

g=R7*86

RY=Yy-13/2.0

$Fl0=80#x83

R11=R1LO*EPS4

B12=FORS(EPSSZ)

H13=F0OxS{EPSS3)
Bl14=DEFURS{EPSS2)
Blo=0ErRURS{EPSSS)
FN1=P+B12+4813+R7-B3=3]
DEXFN1I=1,0
DEYFNL==1314-315%-2,.0#32#01+B3=C 3
FN2=B12%06+4013#D2+4B8#(C21+EPS4)-P#R9-Bl1#B1l={1.0-65)
DEXFNZ2=—59
DEYFNZ2=—-D6#R14-02%1315+88-B1l0#(32,0#C2-4.0%EP54#C3)#{1.0-85])~
111 #81={(1.0-{C3=85-CB)Y/81)

GO TGO 12
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195
875

£28
194
£27

CASE 54

EPSS2=EPSD2-EPS4+D3=CUR
IF (NF3) 825,825,826
PRINT 195 ,CUR,YP,EPS4,EPS]
FORMAT (8H oA 5620.51)
EPSS3=£PSO3-cPS4+Do=LUR
B1=FORS({EPSS2)
B2=FUJRS{EPSS3)
B3=DerFURS(EPSS2)
Ba=DEFORS(EPSST)
Bo=2.0+CPS4/CUR
Bo=C1l9#EPS1/CUR
PT=R&#EPST

RB=0D#B6#P5/3.0

RI=Y-D/7 .0

B10=C13/CUR
Bll1=Cl4%xEPS4/CUR
b12=1.0/CUR®#2
B13=EPS4=n?

B14=813#£PS4

FN1=P+B1+B2+B7-(22/CUR-EPS4%(R10-B11)

DEXFN1=1.0

DEYFN1=-033-34+2.0%(B6+1311)~810

223

FN2=H1*D6+R2%D2+88%PS1-P#BI-B12#(C26#EPS4~C23+C27#R13+C28*

1f14)
DEXFNZ2=-89

DEYFNZ==D6*r3-02%B4+2,0%R8+D#B7/(3,0%CUR)-RB12#(C2642.08C27=»

LEPS4+3.0#C28%313)
CO 10 12
CASE 6A

EPSS2=PS02-EPS4+D3+CUR
IF (NF3) B2T,827,528
PRINT 194 ,CUR,Y, P EPS4,EPSI
FORMAT (8H 6A 5620.5)
EPSS3=EPSD3-EPS4+D5#CUR
Bl=FORS{EPSSZ2)
BZ2=FORS{EPSS3)
B3=DEFORS{EPSSZ)
B4=DEFORS(EPSS3)
B5=1.0/CtUUR==?

B6=R5+#C20=D

B7=C13/CUR
B8=C14#EPS4/CUR
B9=Y~-0/2.0

BlO0=EPS4==r2

Bll=8B10=#EPSY4

FN1=P+B14B2+{C20~-C22)/CUR+EPS4=(B8~B7)

DEXFNL=1.0
DEYFN1=-B3-R4-BT7+2,0*B8

FN2=R1#D6+B2#D2+B6={C21+EPS4)~P#B9-B5#(C26%EPS4-C234C27%R10+

1C28+811)
DEXFNZ2=-89

DEYFNZ2=-D6#B3-02%B4+B6-B5#(C26+2.0%C2T#EPS4+3,02L26%6510)

GO TO 12
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{ CASE TA

510 EPSS?=EPSD?-EPS4+D32CUR
[F (nNF3) 2943729, 830
#3330 PrINT 624 SsLUR:Y s PsEPS4,EPS]
624 FORMAT {8H TA 5£20.51)
29 £PSS3=EPSD3-tPS4+D5=CUR
B1=FUORS(EPSS2)
B2=FURS(EPSS )
A3=DEFORS{EPSSZ)
B4=DEF0ORSEPSS) :
‘ Lh=P+dl+a?
& PE=Y-0.5%0

BT=Peiip-n] #16-32%02
| BE=EPS4/LUR
- H9=p8=283
HlO=039%RR
Bll=(EPS4-CuR)/CUR
R1z2=R11%8B11
Bl3=912=1t11
FNL=RS-C13+2. 0 14#:PS4-C14sCUR
DEXFNI=1.0
PEYFN1=—53=-4944+2,0%C14
F2=B374C 74+ 01 4%xFPS4=2.0#0#014#B95CUR+C25#D10%CUR-C25«B1 3#CUR
DEXFAZ2=0864
DFYENZ= #0144, 0408 14#8843,.0%xC25#B9-3,0%L25=11124Do#d3+02#B4

GO T L2
I I I I e R R R R R R R R R RS
C SOLUT T 7Y NewWwTONS METHOD

Cﬁ-ﬁ'ﬁ-*«ﬁ**##*##Q%*«ﬁ***#i****%%**ﬁ*&%(-*{»%*#%*#%***%%**%**%*%%**k
172 RL=DEXFIL#EYFN2-0OEXFNZ2Z#DEYFNI
ME=ME+ 1
= EN2#DeYENL~FyleDEYFN2Y /8]
G NI #OEXFNZ=FNZ2#DEXFNLY/B31
IF (uF3) R31.,831,832
B32 PTNT 193,H,0,FNLsFN2,DEXFNLyDEYFHNL,DEXFNZ s DEYFN2
| 193 FUSKAT (7H A 10 5 8E12.4)
‘ H31 P=P4H
CPS4=EP S+l
|
1
i
|
|

[F (ime-500) 03,004,604

C

C IF H FEXCEEDS LIMIT START ANOTHER ITERATION 8Y GUING TO 5
GO3 IFUABS {HI-E2) 45445,

C

C CUUNT CYXCEFDFDL, TeERMINATE BY GOING TO 117

e

L4 PRINT 60D il
605 FURMAT { 254 CASE A DNOES wOT CONVERGE 110}
GO Tu Liv

IF ¢ EXCFEDS LIMIT START ANCTHER ITERATIUN BY GUING TU 5
OTHERWISE HAVE REQUIRED P AND EPS4. CALCULATE EPS1, RESET COUNT
AND PROCFED TU HIGHER rLEMENTS 8Y GUING TO 108

OR 305 (IF CALCULATING UPPER BOUND)

oSN eReEeie)
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- 45 IF{ABS (G)-El) 105,105:5
| 105 EPSL=EPS4—CUR
ME=0
IF{NU) 108,108,305
{:***ﬂ***%i*&*ﬁ**&ﬁ-§~%ﬁ-i‘r§§’§—**&ﬁ-*iﬂ-ﬁ§%i%l%#!%*i%&*%ﬁ»%%%éﬁ&%%&*%«ﬁ-&
C SELECTION OF APPROPRIATE CASE R
CI!&*#****#*%*%4&#ﬁ%%%-}*i*ﬂ-#@ﬂ»ﬁ*§§§§%§i~§/§-§§%&%%&ﬁﬁ%&&ﬁﬁ%*%%%%
13 EPS1=EPS4-CUR
IF(EPSL) 464,417447
46 IF(EPSTH+EPSL) 48,%49,49
47 1F (EPS4) 62156204620
| 620 IF {(EPS1-EPSO) 614561445615
j 621 IF (EPSTH+EPS4) 622,623,623
. 622 IF (EPSI-EPSG) 17,17,19
| 623 IF (£PSL-EPSO) 16516,18
614 IF(EPS4-EPSO) l4,14,15
615 IF (EPS4-LP50) 15,155,611
48 IF({EPS4-EPSQO) 17,417,109
49 IF(EPS4-EPSO) 16416,18
C CASE 1B

14 EPSS2=EPSD2-EPS4+D3=CUR
IF (NF3) B33,833,834

R34 PRINT 1P9 ,CUR;YsP,EPS4,EPSI

189 FORMAT (8H 14 5£20.5)

£33 EPSS3I=EPSD3I-EPS4+D5=CUR
B1=FORS{EPSS52)
R2=FORS(EPSS3)
B3=DEFORS{EPSS?)
R4=DEFURS(EPSS3)
B5=P+B1+82
R22=EPSl==?
B23=EPS4ewn

( R6=R23=EPS4

 ; R7T=B22=EtPS]1

| B8=B6-RT

| BI=BT7#EPS1-236#EPS4

| B10=C3#83/CUx

| Bll=Y-0.5%D
| B12=81%D6+R2%02-P=H11
B13=83+B4%

Bl4=CUR=#?2

Bl5=R14#%2
| Bl6=R3=D6+B4=D?2

B17=035#%2

R18=RBl4=35

RB19=C8#BY

B20=C7#88

$821=819+B20

FN1=85-C2#(2.0%FPS4-CUR)+BLO
| DEXFN1=B16/0D+C2-C3%(B8-3,0%R22#CUR) /CUR=#%2

| DEYFN1=-2.0%C2+3.0#C3#(EPS4=#2-EPS1##2)/CUR-BL3

FN2=EPS4/CUR-B12/(0#B5)-B21/B18

| DEXFN2=-EPS4/Bl4-{35#(D65#22R3+02%%22B4)~B12#B16)/{De=2+317)~

% 1{BR14#R5#(3,0#C7#822-4.0#CR#R7)-821#{(2.0=CUR#B5+B14=31+/0))/{B15=
! 2817}
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DEYFNZ=1 0/0URH (RS 2R3 16~8124R13}/(0#B171~(R583,08C7={#,31~-R221)+

181323 721-25%4,02C8238)/{B814%317)

Gt TO 20
C CAS: 78
C ___________________________________________________

19 EPSS2=£PSH2-cPS4+D3%LUR
IF {NF3) 839,835,830
£ 36 PRINT 1

158 3 CURSY s PEPS4,EPST
THE EURMAT { 3H ar Bed0.5)
Fda mPSSA=ERPSUA-EPSA+DL2CUR
Rla=FUORS{EPSH)
BIS=FORSIEPSS )
Rl=0+pP14+0 15
BH13=CUR=%x7?
He=013n10]
B3=r2xd]
Ba=ah]
Rh=R4gnil
Fo=R 1420 +R1o4D2-Pe{Y~0.5%0)
Blh=ubFU51:0552)
RYT7T=LEFORS{12553)
R7=3106+8 17
Hg=rPSlxs,/
HO=R&sEPS1
B10=C7-LruEPS]
Bll=—C1l6+017=P5S4
B2l=rPS4us/
B12=029-37212s811-89%810
B22=216=206+R17#0/7
Rlae=n22/D
R19=C22+403#R9-C2=2RE+EPS4a (L1 34-ClawEPS4)
RZ20=(2.0#C220PS51-3.0#C3#088) /CUR
FNT=R1I=-RL9/70UR
DEXFN1=218-P20+319/213
DEYFNL==37+#020~{C13-2.0#C14%2PS4) /CUR
FNZ2=£PS4/ClLiv=3n/B4-R12/R2
DEXFANZ2==20S84/73 13- (Ble(D6#a 22164022228 R17)-06xB22)Y/(DeRS) -
TUR13xn1»(3,0%38#B10-CR#RI)-(L29-RB21#B11-E9+110)=(2.0#CUR=B1+
2B13%318))/(73=813)
DEYFNZ2=1.0/CUR+ {1 »p22-B6#nT) /35~ (BRI (—EPS4#{—-2.,08C1H6+3.02C17%EP5S4
1)+R8#{C8sPS1-3,02B10)1)+B12#B871/83
50019 20
C CASE 38

16 EPSS2=tPSU2-FPS4+D3#CUR

[F (NF3) #37,837,838

H38 PRINT 1237 JCUR, Yy P EPS4,EPSL

1R7 FURSAT (M 33 5E£20.5)

837 CPSS3=EPSDI-LPS4+D55CUR
B22=FURS{PS852)
R23=FURS{EPSSE)
Bl=P+3224823

1 R2=02-C350P 5%,

| B3=EPS4uR,

Bz 7T-CHe"P 54

B6E=H5/B2




|
|
{
i
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BT=2,0+EPS4/CUR

BlO=EPS1/CUR

B8=0*C192B10/3.0

R3=R2aB3

BlbH=CRee)

Bll=0sEP54/816

Bl12=DEFCRS(EPSS2)

BI3=DEFORS{EPSS 3

i%izimi) e,ﬂr%l3

Bi5=Déen 124072313

B17=C192810=cP51

RP18=83/( Uﬂ

B19=83/61

BZGzﬁlgﬁﬁpgélf”%

FNI=R1-81820824817

DEXFNI=B15/0+319#B2-019%#810={2.0+810}
DEYFlemﬁié»”aO*tP%wiB?JCUR+C3*ﬂ18+2 0=C19%#810
FN2=B22#0D6+B232D2-P2(Y-0.5%0)+B817%87%D/2.0-39%B811#(1.0~86)
DEXFNZ=i 4= uﬁ%wiz+02*05*813*88*{ BIO# {B7+EPS4/CUR)-2.0%BT7 )+
12.0=08B7usRZ2#{]1.0~B6)
DEYFNZ=-B15+88B# (2. 0*BT7+810)~-RLI#(EPS42(3,02C2~4,.0%C3%EPS4)#
H1.0-861+B3232%(1.0+(R22C8-B5=C3)/B2=2%2))

GO 70 20

CASt 4B

EPSS2=EPSD2-EPS44+D3#CUR

IF {NF33 B39,839,840

PRINT 1836 SLURsY»PyEPS4,EPS]
FORMAT {3H 4H 5£20.5)
EPSS3=EPS0D3-cPS4+4D52CUR
Bl=C2~-C3=EP54

R2=£PS4/LUR

B3=R2#EFS54

Ha=LT7~-CR2EPS4

Bo=34/81

Be=D/CUR

B7=0207/CUR

Ba=37#85%

B20=RB2x=.

Blu=820=1

Bl1=810=EPS4

Bl12=FORS(EPS52])

B13=FORS(EPSS3)
Bla=0DCFURS(LEPSS2)
R15=DEFORS{EPSS3)

Ble=D3=814

Bl17=05=R15

Bi9=811/CUR
FN1=P+B124B13+RB/7/-B3=8]
DEXFN1=B8164B17-87/CUR+B20#B1
DEYFNI=-B14-315~2,02682+81+C3#83
FN2=R12#D6+B13#D2+88#(C21+EPS4)-P2{Y-D=0.5)-011+RB1%(1.0~-8B5)
DEXFNZ=B16#D06+B17#02-2.0#88% (L21+EPS4)/CUR+2.0#18319#831%(1,.0~-B5)
DEYFNZ2=—D#{b1o6+B817)+B8-Bl0O#(3.0#L2-4.0*EPS42C3)%(1.0-B5)~
iBli#81#{1.C-{C3=B5~-C8)/8B1)

GO 70 20
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18 EPSS?=ePS02-EPS4+D3#CUR
I (47 3) 541,841,842
847 PRINT 1825 JCUR,Y+PL,EPS4,EPST
LAs FORMAT (BH 58 3c020.5)
Fal £PSS3=eP503~-RPS4+D2#CUR
Al=FURS(EPSSZ)
S2=FORSLEPSS3)
BA=U0eFORS{=PSE2)
B4=DEFURS (PSS
. A=/ 0+EPS47CUR
\ Be=C19%LPS1/CUR
BTI=RoxeEPS ]
R21=36#0/7 3.0
RE8=B21 %15
B12=1.0/CUR=xe?
Bl13=£PS4ns?
Bla=R13%:PSy
lo=0%=.13
Bla=05%14
R17=0315+B316
R1B8=H312x(C206%PS4-C23+C2T#B313+028%314)
B19=C022+0134P54~-C 145813
B20=EPS4/CUN
FNL=P+BRL1+B240 /-0 22/0UR~-C13#R204C14%BL3/CUR
DEXFNLI=31o0+01&-nT/CUR-2.0%¥B6+812#319
GEYF{l==33-R4+2,0#06~-C13/CUR+2.,0#C14%B20
Fr2=018200+H2002+4+88 % PS1-P=(Y-0/2.0)-818
DEXFNZ=0A#R15+D2%R 1642 ,0#RB18/CUR+DB21#{(~2,0+EPS1/CUR2{1.0-B20)~
12.0%85)
DEYFNZ2==0#{R15+316)+2.0#38+5 72D/ (3.0#CUR)I-B12={C2642.0#C272EP54+
13.0#C28%1013)
GO TO 20
! CASE 68

19 EPSS2=EPSO2—EPS4+D3#CUR
[F (NF3)  HB&43,343,844
a4 PRINT  1d4 LU, Y, PsEPS4,EPS]
R4 FOIMAT (8H 613 9206 9)
343 EPSS3=EPSO3~EFS4+D5%CUR
BL=FORS(EPSS2)
B2=FURS(LPSSS)
B3=DFFORSIEPSSZ)
F4=DEFURS(EPSSY)
Hl17=1.u/CUR
RH=] 2% %2
B6=R5#0 204D
B1O=cPS4as?
‘ B11=810%EPSa
l B13=03+33+D5%K4
. BLA=R5#(C/62EPS4-(23+027#B10+C218#B11)
B15=020-022-(14#EPS4+C14#B10
Fivl=P+B1+R2+815%R12
DEXFNLI=1313-b5H#815
DEYFN1=-R3=84+(2,0C14%EPS4-C13)/CUR
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FNZ=312D6+B2aD2+B6#((21+4EPS4)~P2(Y¥Y~0.52D)1~-B1l4
DEXFNZ={D6##2%B3+D22%2#84)/D~-2.02B64#8122{L21+FPS54)14+2.0=B142B1?
DEYFNZ=-B13#D4+B6-B5#{C26+2.0%C27#EPS4+3.0#C28=B10)
GO TO 20
CASE 78
611 EPSS2=cPSDZ2~-EPS4+D3+CUR
IF (NF3) 845,845,846
846 PRINT 625 2LUR,Y,P,PS4,EPSI
625 FORMAT (8H 783 5820.5)
845 EPSS3=EPSD3-EPS4+D5#CUR
Bl1=FORS{EPSS2)
B2=FORS({EPSS3)
B3=DEFORS({EPSS2)
B4=DEFNORSIEPSS3)
Bu=P+B1+82
Be&=Y-0,5#0
H7=P#B6~-Bl#D6~B28D 2
BB=EPS4/CUR
BI=RB#BA
210=B9=88
BiEi=(EPS4~CUR)/CUR
B12=811=811
Bl3=812%311
FNL1=65-C13+2,0#C14#£PS4~Cla=#CUR
CEAFN1I=03#R3+D5#R4~-C14
DEYFN1=-B83~-04+2.0%#C14
FNZ=8T7+024+Da( 1 42EPS4~2.,0%02C 1 4#B89+CUR+CZ25#BI0*CUR-C?5#R] 3#CUR
DEXFNZ2=2.02#C25%#(B13-Bl0+3.0=2812/2.0142.0#D%C14519-06#03#R3-02#D5H=

iB4
DEYFNZ2=D#C14-4.0#NaCl4%BR+3,0#C252B9~3.,08C252812+D6%p3+D2%B4
GO Ty 20

EE A R EEZEEEEREXESEEEEEEEXEREEEEEEEEEEEEIEEEEEE EEE XX B X B JEE IR R F I
SOLUTION BY NEWTONS METEDD
IR EE RS EEEEEEEEEEEESEEEE SRS EEEEREESEREEFREEEEEEEEEEE S EEEE sy
20 BI=DEXFNI=DEYFNZ2~-DEXFN2=DEYFN]
ME=ME+ 1
H={FN2#DEYFNL-FHNL1#DEYFNZ2) /81
G={FNL#DEXFNZ-FN2=2DEXFNL) /1L
IF INF3}) 847,847,848
B4 PRINT 183,HGsFNLyFN2sDEXFNLZDEYFNL,DEXFN2,DEYFNZ /
183 FORMAT (7TH B H G 8tl2.4)
2847 CUR=CUR+H
EPS4=EPS4+0
IF (ME-500) 606:607,607

COUNT EXCEEDED, TERMINATE BY GOING T0O 117

607 PRINT 608 AUsN
608 FORMAT { 25H CASE B DOES NOT CONVERGE 2110)
GO0 70 117

If H AND G EXCEED LIMITS START ANOTHER ITERATION BY GOING TO 13

UTHERWISE HAVE REQUIRED CUR AND EPS4.

RESET COUNT AND PROCEED TO THE NEXT HIGHER ELEMENT BY GOING TO 99
Cr 308 (IF CALCULATING UPPER BOUND)



230

C

606 IF({ABS (H)-L£1) 504350413

50 TF (ABS (G)-E1) 609,609,13
609 ME=0
[F{NUQ) 889,889,888 .

889 [F{NU) 99,999,308
(R R i I I T '™
C CALCULATICNS FOR EPS4=EPSU

Ei******'b% T3t B % 3 3 30 3 30 30 36 3 B R W 3 B 3 4 3 S 9 36 3R 3F 36 90 36 3 B B 30 3E 3 3 3 3 3 4 3 46 9 3 B 3

CALCULATIGNS RY ITeRATINN. ADJUST VALUE OF DEFLECTION AND
PROCEED Ti RCALCULATE (GO TO 500)
TERMINATE ARTER 5 ITERATIONS (GO TO 202)

OGO

203 KL=KL+1
[FIKL=-5) 51,551,202
51 Al=DEL(L)
DELCL)=A1+(PDELLL)~AL Y= (EPSU~EPST4 (1))} /{PEPST4(1)}-EPSI4 (1))
EPS4=ePST4(])
PEPSTA4{L)=EPST4l])
PDEL(L1)=A1
NE=0
GO TO 50
I S i i I T I I I T I T T Iy
C CALCULATION OF UPPIR BOUND
Ot E R B R R E R R R RN R R R RN R R I R RN RN N R N AR E N RN RN HE R RN ER R
640 NU=1
C STORE
PS=P
EPSILS=EPSTT

COPY LilWeRr SDUND SOLUTION

OO

DO 340 n=1,nMAX
CURTINY=CURT ()
URADI(NY=RANT(N)
UDELINY=DEL ()
UTHETA(N)=THETAIN)
WEPSTG{ ) =EP514(N)
UWINDY =W (M)
340 UYI(NY=YL(N)
C CENTRAL OFFLFCTIUN FOR WHICH P IS BEEING SOUGHT
’ FE=YI(1)

C CALCULATE TOP SLOPE, CONSIDER AS INITIAL VALUE FOR SLOPE [TERATION
UTHLTA{NMAX)=UTHETA(LAST)#A/URADI (LAST)
IF(NFE) 890,890,891

890 THOTAT={(UTHETA{NMAX)#UTHPRE) /UTHGES
UTHSES=UTHETA{NMAX)
50 TO 894

891 THETAT=UTHETA(NMAK)
UTHGES=UTHETA(NMAX)

NF6=0

c

C INITIAL VALUES FUR TOP CURVATURE ITERATION
c

94 Y=t
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2951

P=P=E7
I=1
NUQ=1
IF (NF5) 849,849,850
850 PRINT 851, THETAT,P
851 FORMAT (12H UB START 2£20.5)

SET INITIAL GUESSES FOR CUR AND EPS4 BEFORE GOING TO CASE B

849 tPS4=UEPSI4(LAST)
CUR=UCURTI(LAST)
GO 1O 13

FIRST ITERATION
RETURN FROM CASE 3, PREPARE FOR CALCULATIONS OF LOWER ELEMENTS

288 NUU=0

SUBSEQUENT  ITERATIONS
RETURN FROM CASE A, PRuPARE FOR CALCULATIONS OF LOWER ELEMENTS

305 UEPST4(NMAX)=EPS4
IF {NF3) 852,892,853

853 PRINT 801,CUR,Y,P,EPS4,EPS1

501 FORMAT (10H BUL 5£20.5)

852 UCURTI(LAST)=CUR
UTHETA(NMAX)=THETAT
UWINMAX) =EE-E
URADTI(LAST) =0/ (UCURTILAST)+CURCOR)

START DO LCOP FOR THir REMAINING ELEMENTS

0O 309 N=1,LASTY
NN=NMAX~-N
UTHETA(NN) =UTHETA(NN+1)-A/URADI (NN)
UW(NN)=UWINN+ L) -A#UTHETA{INNMN) —Ax#2/ (2. 0URADI(NN))
UYT(NN)=EE-UW(NN)
UDEL(NN)=UYI(NN)=DEFIN(NN)-E
IFIN-LAST) 306,310,310
306 Y=UYT{NN)

SET INITIAL GUESSES, BEFUORE GOING TO CASE B TO SOLVE FOR
CUR AND EPS4 FUOR GIVEN P AND Y

CUR=UCURI(NN)
EPS4=UEPST4 (NN+1)
- IF{CURY '13,307,13
307 CUR=0.00001
GO TO 13

RETURN FROM CASE B, STORE VALUES

308 UEPSI4(NN)=EPS4

IF (NF3) B54,854,855
855 PRINT BO2,CURyYP+EPS4,EPS]
802 FORMAT (10H 802 5£20.5)
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£54 LUCURTINN=-1})=CUR
309 URADTINN=1)=0/(UCURTINN-1)+CURCOR)

C
G CHECK ©ERRORS IN BUUNDARY CONDITIUNS
C [F ERLORS SMALL ENDUGH WE HAVE FINISHED UPPER BCUND, GO 7O 319
C [F ERRORS TOH LARGE CONTINUE TTERATIONS
C
310 UePSI&{Ly=UEPSTI4(2)
UERRAOR=UYI (1 )~EE
I[F (NFS) RLE,B56, 857
B57 PRINT 803, UTHETA(1),P,UERR(OR
03 FORMAT  (29H UTHETALL)Y » P SUERRUR 3E20.5)
Bhe [FINEU-10) BI5,895,896
96 F{UI)=UERPROR=# 2+ (UTHETA( L) #lbH ) sn?
B1=F{1)
[F(RBL-E8) 847,897,312
#3937 ITFINFS) 319,319,898
298 PRINT B99, 1, (1) ,E8
H99 FORMAT (L3H  T.F(1).E8 [10,2E20.5)
S0 TU 319
295 IF (ABS{UERROR)I=-E3) 311,311,312
341 IF (ABS{LUTHETA(LY)Y=-ES) 319,319,312
: 312 GO T (459,860,361 38362,313,877,881),1
o {
C I=1
C
B559 F{LI=UERROP #2224 {UTHETAL L) #EQ) #32
THETAP=THETAT
HCURP=UCURTILAST)
S1=ygurP={FACL1-1.0)
S2=THETAP®(FALZ2~-1.0)
CurR=uCurRI(LAsSY)I=-S1/2.0
THOTAT=THET AP
THF(HFDS) RE44864,865
B6D PRINT BaL,, drU, THETAT ,CURZF 1) ,1
H66 FUIAAT (LOH F1) [1104322U0-55110)
Bo4g 1=2
S0 T 315
C
C [=2
C
P60 FIIY=UERRDE## 2+ {UTHZTA(L)sES ) #=?
CuR=ycune
THETAT={1eTAP=-S2/2.0
IF {(NFo) B63,863,868
B3 PRINT B694yNFEUs THETAT CURZF(T) 51
A6 FORMAT {10H F(2) [10,3620.2,110)
263 [=3
GUOTO 31s
C
C I=3
C

f6H1 FLII=UERROR =« 2+ (UTHETA(L1 ) *E6 ) #x2
CUR=UyCURP+51/2.0
THETAT=THETAP
IFINES) BTU.270,871

|
|
]
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871 PRINY BT72,NEU,THETAT,CUR,F{I},]
872 FORMAT (10OH F{3) 110,3£20.5,1101)
B70 I=4

GO TO 315

1=4

862 FLII=UERROR##Z+(UTHETA[1)=EH)ns2
CUR=UCURP
THETAT=THETAP+52/2.0
IF (NF5) 314,314,873
273 PRINT BT744NEU, THETAT,CURsF{I),1
874 FORMAT (10H Fig) [10,3E20.5,110]
314 [=5
GO 70 315

I=5
313 FUI)=UERROR##2+{UTHETA(1)#k6)2n2
CALCULATION UF DERIVATIVES AT POINT 1. PROCEEDL TO PUINT o

DFICUR=(F(4)-F(2)}/51
DFISLP=(F(5)-F(3))/52
DFIMX=SQRT(DF1SLP#224DF1CUR##2)
CAS=DFLSLP/UFLIMX
SEN=DF1CUR/DF1MX
S3=SQRT{S1=#»2+52=22)20,.5
CUR=UCURP+S3#5EN
THETAT=THETAP+S3%CAS
IF (NF5) 858,858,875

875 PRINT 876, NFUsTHETAT,CURF{T),I

876 FORMAT (10H FL5) [1043E20.5,110)
PRINT 885

885 FORMAT (54H DF1CUR DF1SLP DF1IMX CAS SEN
PRINT 8863;DFI1CURsDFISLP,DFIMX,CAS,SEN,yS3

886 FORMAT (6E15.5)

B58 1=6
GO 1O 315

I=6

BT77 F(I)=UERROR=#2+{(UTHETA(1)=E6) =2
CUR=UCURP-S3=#SEN
THETAT=THETAP-53=CAS
IF (NF5) 878,878,879

879 PRINT B880,NEU,THETAT,CUR,FI{]),]I

880 FORMAT (10H F(6) 110,3£20.5,110)

8718 I=7
GO 70 315

=7 NEXT SET UP NEW INCREMENT
881 F{I)=UERROR#%*2+(UTHETA(]1)=E6) #%2

DDIMX=(F{6)-2.02F{1}+F(7))/53=%2
S4=-DFLIMX/DD1IMX

233
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CUR=UCURP+S4#SERN
THETAT=THETAP+S54%CAS
IF (NF5) 882,882,883
BB3 PRINT 884 ,NEU; THETAT CUR,F{1) 1
BA4 FURMAT (LUK FLT) I10+3£20.5,110)
PRINT 901,DD1IMX
901 FORMAT (15H DOIMX E20.5)
882 I=1
IF INEU=-20) 31653174317
317 PRINT 312
318 FORMAT (300 COLUMN UB  DCES NUOT CONVERGE )
B6T NF2=0
GO TU 327
316 MEU=NEU+]
315 Y=E
EPSA4=UEPST4{AMAX)
GG TO 5

COUTPUT UPphkx BUUND ReSULTS

e N el

319 A1=UEPSI4(1)}-UCURI(1)~EPS1I
A2=UEPST4&(1)-£PSHI
A3=(AL+A2) /2.0
PRINT 321,PsALsA3,3A2, (UDELIN)yN=1,8)
321 FORMAT (FE.033F10.5,8F7.3)
[F (LAST=8) 322,322,323
323 [F (LAST-17) 324,325,325
325 PRINT 324, {UDEL(N) N=9,16)
| GO TO 327
| 324 PRINT 320, (UDEL(N),N=9,LAST)
- 326 FORMAT( 34H BFET7.3)
322 NEU=G

C POUNCH  RESULTS IF Nt=1

IF (NFL1) 327,327,328
328 DO 329 w=1,LAST
329 DELTUN)=uUREL(N)+DEFTIN{N]
[F {LAST=-17) 330,331,331
330 PUNCH 332,P,AL,A3,A2,(DELTIN)yN=1,LAST)
332 FORMAT (F1l0.0,3F1l0.6/16F5,.3)
G0 10 327
331 PUNCH 332,P3;AL,A3,A2,(DELT(N) N=1,16)

EXIT FROM UPPER BUOUND CALCULATIONS, GO TO 633

eNeRe

327 NU=0
UTHPRE=THETAT
P=py
cPSI1=£PSILS
GO TU 633
BRBURA SR REHER AR B RA AR TR A AR R B R B R AR R R AR

TERMINATE CALCULATIONS. PROCEED TO NEXT COLUMN (GO TO 101)

oo

i 117 CALL TIME(T)




9399

TU=T-TI

PRINT $99,TU
FORMAT(7H TIME= F10.2)
TI=T

60 T0O 101

END

235



[S¥]

STEEL FURCE'STRAIN RELATIONSHIP

FUNCTION FORS(EPS)

COMMON AS

IF(EPS)I?243,3

[FLEPS—0.0049575)4,4,45
FORS=AS+#EPS#29340000.0

RETURN
FORS=AS#(145454.0+426208CC0.0*(EPS~-0.004975) )
RETURN

[F{FPS-0.00863)8,8,9
FORS=AS#(196363.0+12610000.0#(EPS-0.,0069))
RETURN
FORS=AS®*(21218]1.0+40300CC.0#(EPS-0.00863))
RETURN

IF(EPS+0.0049575) 104444
[F(EPS+0.0069)111,12,12
TF(EPS+(.00863)113414,14
FORS=AS#{-145%454,0+26208000.0%(EPS+0.004975))
RETURN
FORS=AS#(-218181.0+4630CC0.0#(EPS+0.00863))
RETURN
FORS=AS*(-190363.0+1261CC00.0*(EPS+0.0069))
RETURN

END

236
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CALCULATION UF PARTIAL DERIVATIVES
FUNCTION DEFURS(EPDS)
COMMON AS
[FUABS {EPS)I~U.C049575) 1,142
GEFURS=AS®273340000.0
RETURN
IF(ABS (UPS)I—-0.0007) 3,3,4
LEFURS=AS®Z26208C00,0
RETURRN
[ECABRS (LPS)I-0.00B63) 545,6
DEFORS=A5212610000.4
RETURN
DEFURS=AS#463G0C0,0
RETURN
END
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