
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Sort-First, Distributed Memory Parallel Visualization and
Rendering

Permalink
https://escholarship.org/uc/item/8b75p47c

Authors
Bethel, E. Wes
Humphreys, Greg
Paul, Brian
et al.

Publication Date
2003-07-15

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8b75p47c
https://escholarship.org/uc/item/8b75p47c#author
https://escholarship.org
http://www.cdlib.org/

Sort-First, Distributed Memory Parallel Visualization and Rendering

E. Wes Bethela Greg Humphreysb Brian Paulc J. Dean Bredersond

aewbethel03@r3vis.com, R3vis Corporation, PO Box 979, Novato, CA 94948, USA and Lawrence Berkeley National
Laboratory, Mail Stop 50F, Berkeley CA, 94720, USA.

bhumper@cs.virginia.edu, Department of Computer Science, Universtiy of Virginia, PO Box 400740, Charlottesville
VA, 22904, USA.

cbrianp@tungstengraphics.com, Tungsten Graphics, 114 S. Prize Oaks Dr., Cedar Park TX, 78613, USA.
djdb@cs.utah.edu, Scientific Computing and Imaging Institute, University of Utah, 50 S Central Campus Drive,

Room 3490, Salt Lake City, UT 84112, USA

Abstract
While commodity computing and graphics hardware has
increased in capacity and dropped in cost, it is still quite difficult
to make effective use of such systems for general-purpose parallel
visualization and graphics. We describe the results of a recent
project that provides a software infrastructure suitable for general-
purpose use by parallel visualization and graphics applications.
Our work combines and extends two technologies: Chromium, a
stream-oriented framework that implements the OpenGL
programming interface; and OpenRM Scene Graph, a pipelined-
parallel scene graph interface for graphics data management.
Using this combination, we implement a sort-first, distributed
memory, parallel volume rendering application. We describe the
performance characteristics in terms of bandwidth requirements
and highlight key algorithmic considerations needed to implement
the sort-first system. We characterize system performance using a
distributed memory parallel volume rendering application, and
present performance gains realized by using scene specific
knowledge to accelerate rendering by reducing network traffic.
The contribution of this work is an exploration of general-
purpose, sort-first architecture performance characteristics as
applied to distributed memory, commodity hardware, along with a
description of the algorithmic support needed to realize parallel,
sort-first implementations.
CR Categories and Subject Descriptors: I.3.2 [Computer
Graphics]: Graphics systems - Distributed/network graphics;
C.2.4 [Computer-Communication Networks] Distributed systems
– distributed applications.

Additional Keywords: distributed memory visualization, parallel
visualization, parallel scene graph.

1. Introduction
In recent years, the increasingly favorable price to performance
ratio of commodity computing and graphics hardware has
provided an impetus for scalable visualization and rendering

research. One of the themes common to such research has been
techniques for realizing scalability of visualization and rendering
algorithms on distributed memory platforms. The work we
describe in this paper is similarly motivated and themed: use of
commodity computing and graphics hardware to realize scalable
visualization and rendering [Bartz et al. 2001; Law et al. 2001].
One emphasis in our approach is use of a sort-first architecture to
leverage a cluster of commodity graphics systems. Another is the
generality of the architecture to support a range of parallel
visualization and rendering applications, especially those in which
it is not possible for the entire renderable model to reside on each
rendering node, as would be the case if the entire scene were
simply replicated on all nodes.

Our sort-first architecture is realized through the extension and
combination of two separate yet complementary technologies. The
result is a highly flexible and scalable system. The rendering
infrastructure for our architecture is provided by Chromium, a
stream-oriented framework for manipulating streams of graphics
API commands on parallel architectures, including shared and
distributed memory systems [Humphreys et al. 2002].
Complementary to the graphics API is graphics and visualization
data management, which is provided by OpenRM Scene Graph
[Bethel et al. 2003; OpenRM 2000]. At the highest level of
abstraction is the parallel application itself, which performs
parallel I/O of scientific data, but which interfaces to OpenRM for
data management and rendering. OpenRM, in turn, performs
rendering by issuing OpenGL commands. Chromium then routes
the OpenGL commands to one or more distributed memory
rendering servers. The architecture of our implementation is
depicted below in Figure 1.

There are two motivations for leveraging scene graph technology
within the context of sort-first distributed memory parallel
visualization. First, the scene graph provides a high-level interface
for managing and rendering graphical data, freeing the application
developer from the details of lower level graphics API and
simplifying applications development. Second, the scene graph’s
processing infrastructure provides the opportunity to use problem-
or scene-specific knowledge to implement and accelerate
distributed memory rendering algorithms. Level-of-detail
techniques are a good example: portions of the scene that are “far
away” can be rendered using lower-resolution representations
than those closer to the viewer, thereby reducing rendering load.
As applied to scientific visualization, view-dependent processing
holds promise to accelerate end-to-end system performance by
allowing the application to avoid costly data I/O for regions that
are outside the view frustum or that are “too far away” to be of

interest. Scene graph systems provide the infrastructure to
implement such view-dependent processing in a general way.

The rest of this paper is organized as follows. First, we review
previous work in parallel visualization, comparing and contrasting
sort-last with sort-first approaches. Next, we describe our
approach, including implementation details. These
implementation details focus on the types of extensions needed
for a scene graph system to function effectively in a distributed
memory parallel environment, as well as a description of a two-
stage sorting algorithm used to perform hardware accelerated
volume rendering [Cabral et al. 1994] in a parallel environment.
The performance of a volume rendering application is presented
with a characterization of the data bandwidth requirements in the
parallel environment. We conclude with discussion and comments
about potential future directions.

Figure 1. Distributed Memory Parallel Sort-First Application
Architecture

2. Background and Related Work
The terms “sort-first,” “sort-middle” and “sort-last” are used to
describe where in the rendering pipeline graphics primitives are
distributed amongst multiple, parallel renderers [Molnar et al.
1994]. “Sort first” refers to primitive redistribution in object
coordinates, prior to transformation and conversion to Normalized
Device Coordinate (NDC) space [Foley et al. 1990]. “Sort
middle” refers to distribution after transformation to NDC space,
but before rasterization. “Sort last” refers to distribution of pixels,
and occurs after primitives have been rasterized. The advantages
and disadvantages of each approach can be characterized in terms
of bandwidth requirements, amount of duplicated work, and load
balance amongst the parallel renderers.

Sort-last has been a promising avenue for parallel visualization
research over the years. Earlier work in distributed memory
volume rendering [Lombeyda et al. 2001; Moreland et al. 2001;
Kniss et al. 2001; Heirich and Moll 1999; Neumann 1994] focuses
upon the communication costs in sort-last image assembly. In
these experiments, each application processing element (PE) is
responsible for rendering a subset of data into an image. All such

images are then combined into a final image. The data distribution
model used by these sort-last systems scales well for visualization,
especially when the visualization algorithms require minimal
interprocessor communication. In addition to computational
scalability, such parallel visualization algorithms typically scale
well in terms of required I/O bandwidth by distributing the cost of
expensive data read operations over many processors. Such I/O
scalability is highly desirable when rendering large, time varying
datasets.

Sort-last approaches have predictable and “well behaved”
communication patterns and loads. The term “well behaved”
means the bandwidth requirements and computational complexity
are a function of the image size and not the complexity or size of
the dataset or rendering technique. Communications patterns and
loads are predictable in that they can be estimated as a function of
P, the number of pixels in the image, and N, the number of
participating processors. Bisection bandwidth rates vary
depending upon the method being used, and represent the amount
of pixel traffic exchanged during the image composition process.
The total number of pixels transmitted in Binary Swap is

, as described in [Ma et al. 1994]. The implication is
that sort-last performance is a direct function of both the size of
the final image, well as the number of participating processors.
Most importantly, it is a linear function of P, which will dominate
in high-resolution display environments.

PN 333.043.2

In our target environment, which consists of commodity
computing, graphics and network components, sort-last
approaches will encounter two difficulties. The first is that the
high image resolutions of tiled display environments will have an
increasingly adverse impact upon performance. The second,
which is not surmountable, is that these graphics cards, which are
intended for use on desktop platforms, do not singly provide the
high resolution realized by arranging multiple display platforms
into a single logical tile. Related is that fact that CPU resource
requirements will grow linearly with image size when using
software image compositors.

While the limitations of sort-last algorithms for high-resolution
scalable displays are straightforward to identify and quantify, sort-
first approaches present their own set of challenges. Among them
is the fact that some visualization techniques (such as isosurface
generation) can generate a substantial amount of geometric data,
using more memory than either the original data or the final
image. In other words, one of the motivations to explore sort-first
approaches is to avoid sort-last limitations by transmitting
geometry rather than pixel data. In some cases, the amount of
geometry can grow quite large. The communication costs for sort-
first algorithms are a function of the scene itself, rather than the
final image size.

Another difficulty with sort-first concerns the non-uniform data
transmission patterns resulting when transmitting geometry from
application nodes to rendering servers. Sort-last exhibits relatively
uniform communication patterns. In contrast, sort-first can
produce highly non-uniform communication patterns depending
upon the scene. Worse, the communication patterns and loads can
vary from one frame to the next. This non-uniformity often
manifests in uneven, jittery frame rates and has an adverse impact
upon system usability. Earlier work in characterizing sort-first
parallelism [Mueller 1995] provides estimates that indicate much
less data is transmitted when redistributing primitives using sort-
first than would be needed to transmit pixels when using a sort-

last approach. [Mueller 1995] makes the observation that sort-first
architectures will be most successful when retained-mode
rendering models are used to reduce the amount of traffic. Our use
of a scene graph as the basis for data management and rendering
seeks to maximize use of retained mode structures wherever
possible. An interesting compromise is to leverage the advantages
of both sort-first and sort-last approaches with a hybrid sorting
scheme that uses both image and data partitioning for load
balancing [Garcia and Shen 2002].

More recently, [Samanta et al. 2001] describes a technique that
repartitions models stored in a scene graph across multiple nodes
in a PC cluster. The objective of this approach is to minimize
geometry broadcast during rendering. In their example, a large,
static 3D model is preprocessed to create a hierarchical,
multiresolution model. Portions of the model are replicated across
some, but not all, nodes to reduce potential communication
bottlenecks associated with moving graphics data during
interactive rendering. Like our work described here, the
motivation is to use commodity clusters to render models that are
too large to fit entirely on a single node. The approach described
in [Samanta et al. 2001] is not completely sort-first, for they use a
sort-last image compositing step to combine individual images
into final images that are displayed to the user [Samanta et al.
2000]. The observation with this approach is that intra-frame
communication of geometry data is expensive [Samanta et al.
1999], and can be avoided by pre-caching geometry data through
limited model replication. The cost is model preprocessing and the
partial replication of the model, similar to a sort-first approach for
out-of-core large model rendering [Correa et al. 2002]. Such an
approach works best for static scenes, which are not characteristic
of time-varying scientific datasets. Their results show favorable
speedups when compared to sort-last or sort-first approaches.

Balanced against sort-first’s irregular data traffic patterns and
loads is an inherent flexibility not possible with sort-last
approaches. Sort-last algorithms combine images from separate
renderings into one final image. Image composition requires strict
ordering semantics, which implicitly places upstream restrictions
on data distribution and the type of algorithm that can be used.
Sort-first has no such implicit ordering constraints, and is
therefore more widely applicable to many types of visualization
and rendering algorithms. Our approach is strictly sort-first in
order to realize the benefits of algorithmic flexibility, and is
intended for deployment on PC clusters used to drive high-
resolution, tiled displays [Schikore et al. 2000].

3. Architecture Overview
Our approach is based upon the architecture shown earlier in
Figure 1. The parallel visualization application uses object-order
task decomposition: each PE is responsible for reading,
processing and rendering a subset of the dataset. After loading its
subset of data, each PE generates a graphical representation of its
subset and stores it in the local scene graph. Then, all PEs invoke
the scene graph renderer in parallel. Each individual renderer
performs a traversal of its local scene graph, and generates
OpenGL rendering commands. Chromium intercepts the
commands and routes them to the appropriate rendering server
using a spatial sorting algorithm.

In our approach, graphics data is transmitted from an application
node to a render server only if the graphics data intersects the
viewing frustum managed by the rendering server. Chromium’s
tilesort Stream Processing Unit (SPU) is responsible for

performing these spatial comparisons and routing graphics
commands from the application to the rendering servers. Because
OpenRM Scene Graph [OpenRM 2000; Bethel et al. 2002] makes
extensive use of retained mode objects in OpenGL, graphical data
is typically sent to a rendering server once and displayed by
calling glCallLists(), which is very inexpensive in terms of
network bandwidth. Furthermore, the scene graph tracks the
spatial extents of the graphics data and passes that information to
Chromium. Chromium then uses this information to accelerate the
sorting process.

4. Distributed Memory Parallel Scene Graph
Implementation
One of the key roles of scene graph technology in rendering
applications is graphics data management. There are a number of
possible approaches to extend scene graph algorithms for use in a
distributed memory environment. One approach is to implement
“parallel scene graph objects,” which perform fundamental
parallel operations. Examples include collective operations, such
as scatter-gather amongst multiple PEs, and creation/destruction
of parallel data structures on multiple PEs. There are many other
considerations that are beyond the scope of this paper.

Embarking upon parallelization of any code requires
“commitment” to a particular parallel processing framework and
memory model. A scene graph system that has been modified for
use on parallel machines using one framework is likely
compatible only with applications built using the same
framework. Scene graph systems should place the least possible
number of limitations on applications, including selection of a
parallel processing framework. At a minimum, the scene graph
should be threadsafe to support development on a cluster [Voss et
al. 2002; Reiners et al. 2002]. OpenRM is both threadsafe and
capable of pipelined-parallel rendering within a given instance of
a scene graph, similar to the multi-threaded approach used by
Performer [Rohlf and Helman 1994].

In order to minimize the number of constraints on applications
developers, OpenRM’s “distributed memory” parallel
implementation contains no “parallel scene graph objects.”
Referring back to Figure 1, each application PE reads in a subset
of a large scientific dataset and transforms it into a graphical
representation, with the results being stored in a local scene graph.
Instead of providing explicit “parallel scene graph objects,” the
parallel application must adhere to a few simple guidelines to
ensure consistency in the face of parallelism. The most important
of these guidelines is that all application PEs must create scene
graphs with one scene graph element that contains a
synchronization construct, as will be explained below.

When it is time to render a frame, each application PE invokes the
scene graph’s frame-based renderer in parallel. Each of these
renderers performs a depth-first traversal of its scene graph, and
generates OpenGL graphics commands that are dispatched to
Chromium. Chromium then routes the commands to the
appropriate rendering server, where an image is rendered. During
execution of the graphics commands from parallel streams, certain
operations are subject to ordering requirements. Chromium
provides facilities for synchronizing multiple streams of graphics
commands. These operations consist of semaphores and barriers
[Humphreys et al. 2001; Igehy et al. 1998]. Note that the
Chromium’s barriers and semaphores are implemented in the
rendering servers and do not block PE program execution. Parallel
applications must provide their own execution synchronization.

For example, MPI-based applications can use MPI_Barrier() to
create an execution rendezvous point.

In addition to framebuffer clears, we must also synchronize
execution of the Swapbuffers command. Swapbuffers, like the
framebuffer clear, is an operation that has global impact. Without
Swapbuffers synchronization, one rendering server might execute
a Swapbuffers call before the graphics commands from all
application PEs have been executed. Whereas the framebuffer
clear must be specified by the application through the use of a
scene graph construct, the Swapbuffers call is internal to the scene
graph renderer itself, and requires no explicit application action.

In the sections that follow, we describe the implementation of the
synchronization operations needed to enable parallel rendering
using parallel scene graph operations with Chromium. The
discussion focuses upon the elements of scene graph and
application infrastructure needed to support distributed memory
rendering with Chromium, with the objective being sort-first
parallelism.

4.2 Synchronizing Draw Operations
4.1 Synchronizing Global Operations In addition to Swapbuffers and framebuffer clears, other types of

drawing operations are also subject to ordering constraints in the
sort-first parallel architecture. When rendering transparent objects
with “over” compositing, the primitives must be drawn in back-to-
front order to produce the correct result. Volume rendering is a
good example of an application that requires ordering of many
transparent primitives.

Framebuffer clear operations, which initialize the color and depth
planes of the framebuffer, typically occur prior to any other
rendering. In serial applications, a glClear() command that is
dispatched to OpenGL prior to any other graphics commands will
be executed prior to later commands. Such ordering is not
guaranteed when multiple applications are issuing parallel
graphics streams. OpenRM uses a Chromium barrier to ensure
that the framebuffer clear completes on all render servers before
any render server begins executing draw commands.

OpenRM provides a volume rendering primitive known as an
octmesh, which is a 3D version of a quadmesh. The octmesh is a
procedural primitive that generates geometry in immediate mode,
and uses the 3D texturing capabilities of OpenGL to achieve
hardware accelerated volume rendering. Each octmesh primitive
generates its geometry in the correct back-to-front order, using the
current model and view transformations to determine the
rendering order of its geometry. While correct geometry order is
guaranteed within a single octmesh primitive, there is no such
ordering guarantee amongst multiple octmeshes on a single PE, or
amongst all octmeshes on all PEs. The need for correct
transparency ordering is not specific to OpenRM – it plagues any
scene graph implementation.

OpenRM supports a number of framebuffer clear operations in a
“framebuffer clear” “scene parameter,” which is a scene graph
construct. These operations include: (1) filling the color planes
with a solid color; (2) filling the color planes with an image,
perhaps tiling the image to fill the framebuffer; (3) filling the
depth planes with a single value; and (4) filling the depth planes
with a depth image, perhaps tiling the image to fill the depth
buffer All such framebuffer clear operations are synchronized in
the sort-first parallel implementation using a single Chromium
barrier, which is managed by OpenRM itself from the framebuffer
clear scene parameter. Each application PE must therefore include
such framebuffer clear operations as part of its scene graph so that
all graphics streams are synchronized. The number of participants
in the Chromium barrier is specified to Chromium by the scene
graph itself, and the application must specify the number of
application PEs that will be dispatching graphics commands in
parallel to OpenRM as part of the scene graph initialization
process.

We can solve the first problem – correct render order of all
octmeshes on a single PE – by using an OpenRM callback
function. The render order callback, invoked during the view-
stage traversal during rendering, is used to specify the rendering
order for all first-generation children of a given scene graph node.
When each PE creates its scene graph nodes, it will create one
node per block of data for each rendering pass (as shown in Figure
2.) Inside the render order callback, each PE first computes the
correct depth order of its blocks, then returns a list indicating the
order in which the children should be rendered. The combination
of the render order callback and the correct depth ordering created
by the octmesh primitive results in the proper depth ordering of all
transparent volume rendering primitives within a single
application PE. Because of the block decomposition used to
partition the large data into smaller units, there exist many such
octmeshes on a given PE, and they must be rendered in sorted
order.

While the render order callback solves the ordering problem on a
single PE, the scope of ordering requirements spans the total set of
graphics commands from all application PEs. In the case of
parallel volume rendering, which uses ordered OpenGL blending,
it is possible for the correctly ordered individual streams to be
executed out of order on the rendering servers. Figure 3 shows
what happens when this occurs.

Figure 2. Scene Graph Topology

Figure 2 shows the scene graph topology created by each
application PE. During rendering, the OpenRM renderer performs
a depth first, left-to-right traversal of the scene graph, issuing
graphics commands. OpenRM’s multi-pass rendering traversal
first processes the opaque 3D objects (which appear in the left
part of Figure 2) followed by the transparent 3D objects (which
appear in the right half of Figure 2). Note that the framebuffer
clear appears as the first item processed during the first rendering
pass.

Only when “global” ordering constraints are enforced amongst all
streams will correct rendering occur, as shown in Figure 4. The
scope of inter-PE ordering requires global knowledge of all data
blocks and requires an implementation that synchronizes the
rendering order of all blocks of data on all PEs. In our prototype,

each application PE has information about all grid blocks,
resulting in an N-way replication of block metadata, where N is
the number of application PEs. While each application PE has a
copy of the block decomposition metadata, the underlying data are
not replicated across all nodes. The size of the metadata in our
application is only a few integers per block. The metadata
describe each block’s size and position in space. Referring back to
Figure 2, the scene graph nodes labeled “Block 0,” “Block 1” and
so forth in the transparent 3D subtree will be present on all
application PEs. However, not all such nodes will contain
renderable children. The presence of children under each of the
“Block N” nodes is a function of whether or not an application PE
is responsible for visualization and rendering of that particular
block in the block decomposition.

Our implementation, which uses OpenRM for scene graph
services and Chromium for distributed rendering, is a very
flexible and widely applicable system. OpenRM’s
“parallelization” consists of rendering synchronization using
Chromium barriers. OpenRM does not depend upon features of
any parallel processing environment except for Chromium
barriers for rendering synchronization. Given the absence of any
parallel processing framework dependency, the OpenRM and
Chromium combination may be used by all parallel programs
regardless of the parallel programming environment1.

5. Results
In this section, we present performance profiling of a prototype
sort-first, distributed memory parallel volume rendering
application built using OpenRM and Chromium. We focus on the
data traffic patterns and loads required by the application in
varying configurations of rendering servers and application PEs.
We are interested in showing the impact on data traffic patterns
and loads resulting from a change in the number of application
PEs and/or number of display nodes. We are also interested in
showing the reductions in data traffic resulting from use of scene-
and view-specific information.

The scientific data we used for these tests is the results of a
turbulent flow simulation, and consists of floating point fluid
density values on a 640x256x256 grid. The full grid is
decomposed into 64x64x64 blocks arranged into a 10x4x4 block
grid. Blocks are assigned to each application PE on a round-robin
basis, regardless of the number of application PEs. Round-robin
assignment typically results in a block distribution with little
spatial coherency between blocks on a PE, but also tends to result
in favorable load balancing characteristics. Because there is no
duplication of raw scientific data, and because we are using a
distributed memory parallel implementation, one of the primary
benefits of our approach is the ability to perform renderings of
data that far exceed the RAM size of any single processor. A
typical rendering is shown in Figure 5.

Figure 3. Volume Rendering with no Interprocessor Ordering

Figure 4. Volume Rendering with Interprocessor Ordering

The amount of block metadata, and the number of data blocks, is
entirely problem-specific. The example dataset we used for these
tests consists of a 640x256x256 grid that was decomposed into
10x4x4 sub-blocks. Such a decomposition ratio is not uncommon,
and reflects the desire to achieve good load balancing in parallel
visualization. The sort-first approach benefits from smaller block
sizes in the form of reduced data duplication on each graphics
server, as will be discussed in the next section.

Figure 5. Sort-first parallel volume rendering of Turbulence
Simulation Data using OpenRM Scene Graph and Chromium.
This image was created using six rendering servers and thirty-two
application PEs.

Equipped with a complete set of block metadata, each application
PE determines the correct global order in which all blocks will be
rendered. Synchronization is enforced by Chromium barriers
executed from the application using the OpenRM render-order
callback. OpenRM provides “wrapper functions” that simplify
creation and use of Chromium barriers for just this purpose.

1 Certain combinations present known caveats: our examples use MPI for
the application parallelization, and each PE invokes OpenRM’s
multithreaded renderer. MPI programs can spawn multiple threads, but the
converse is not true.

5.1 Performance Metrics The amount of traffic generated during incremental sends is much
less than the cost of the initial send. In the six-display
configuration for this particular dataset, no additional data transfer
is required after about frame number 15: as we continue to rotate
the model about the Y-axis, there is no additional 3D texture data
traffic. There is some additional traffic required to transmit the
immediate mode geometry and other graphics calls, which total
about 9K per block in this particular example, or a total of about
1.5MB for all blocks. We are treating this additional traffic as a
constant, and are ignoring its effects in this discussion.

The performance numbers we present below show the amount of
3D texture data moving between the application PEs and the
rendering servers. The 3D texture data is used for hardware
accelerated volume rendering. The volumetric model is rotated
360 degrees about the Y-axis over the course of eighteen frames.
We measured the amount of data sent from all application PEs to
the Chromium rendering servers using Chromium’s perf SPU,
which reports the size and number of objects flowing through a
stream per frame.

The sort-first overhead in the first frame is the result of needing to
duplicate 3D texture data that covers more than one tile. In this
case, the source data, which is 160MB in size, produces 250MB
of traffic, representing an efficiency of about 65% in this
particular configuration of parallel rendering servers and data
block decomposition. The level of efficiency is dependent upon
these two factors, which are configuration and dataset dependent.

Our tests are designed such that we report the amount of 3D
texture traffic inbound to each of the parallel rendering servers.
Keep in mind that Chromium’s tilesort SPU, which is effectively
resident on each application PE and receives directives from
OpenRM, is responsible for routing graphics commands from the
application PE to the rendering servers. The amount of 3D texture
data outbound from all application PEs is equivalent to the
amount of 3D texture data inbound to all rendering servers, so we
report only the amount of inbound 3D texture data at each frame. Aggregate 3D Texture Traffic

0
50

100
150
200
250
300
350

1 4 7 10 13 16

Frame Number

M
B

yt
es

4 Displays
6 Displays
9 Displays
16 Displays
20 Displays
24 Displays

5.2 3D Texture Traffic in Sort-First Parallel
Volume Rendering
The first example shows the total amount of 3D texture data
inbound to all rendering servers on each frame. In this example,
there are six rendering servers, but a varying number of
application PEs during each run. Figure 6 shows that the amount
of 3D texture traffic inbound at all parallel servers for a given
dataset is a function of the number of displays, not the number of
application PEs. For the rest of our performance tests, we use the
observation shown by Figure 6 that the total data transmitted for a
given scene does not vary with the number of application nodes,
but varies only with the number of displays.

Figure 7. Per-frame 3D texture data inbound to Chromium
rendering servers during a parallel sort-first volume rendering
transformation sequence.

3D Texture Bandwidth, 6 Displays

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Frame Number

M
B

yt
es

4PEs

8PEs

16PEs

32PEs

64PEs

Figure 7 shows the amount of 3D texture traffic inbound to a
varying number of graphics servers from six application nodes.
Increasing the number of rendering servers increases the amount
of total traffic. Such increases are apparent in all frames
throughout the transformation sequence, not just at the first frame.
The increase reflects the additional overhead incurred by the sort-
first approach. The additional costs that occur with more
rendering servers reflects the fact that a given block covers an
increasing number of tiles, and must therefore be sent to an
increasing number of rendering servers. The exact amount of
overhead increase is dependent upon projected block size and the
number of rendering servers. Smaller block sizes will result in
fewer overlaps, and decreased duplication.

Figure 6. Amount of 3D texture data inbound to all rendering
servers on each frame, varying the number of application PEs.

The first frame is the most expensive because data are being sent
from all application PEs to all rendering servers. The amount of
3D texture data sent from all PEs totals 160MB, but the amount of
3D texture data inbound at all rendering servers totals 250MB.
This overhead represents the fact that some blocks of 3D texture
data are sent to more than one rendering server, since one 3D
volume block may project onto more than one display tile. As the
model rotates and the primitives move from tile to tile, the 3D
texture data must then be sent to a different rendering server.

In Figure 8, we see the amount of 3D texture data inbound to each
of the six parallel rendering servers in a six-display configuration.
The bandwidth requirements in a switched network are effectively
the maximum of each inbound data streams for each of the six
servers. In the first frame, Server-1 consumes the most bandwidth
at about 60MB. Later in the run, Server-1 peaks at 20MB of
bandwidth at about frame number four.

Figure 8. Per-frame 3D texture bandwidth for six parallel
rendering servers.

In contrast to Figure 8, Figure 9 shows the maximum bandwidth
requirement for each of the configurations of parallel rendering
servers we tested in our runs. If the application were to rotate the
model about the Y-axis a second time, there would be very little
additional traffic since the 3D textures needed are already loaded
onto the rendering servers. A different transformation sequence,
such as rotating the model about the X-axis, would generate
additional 3D texture data traffic. Generally speaking, the
bandwidth requirements drop as the number of servers is
increased in a switched network environment, even though the
aggregate amount of data transferred increases. Our 9-display
configuration goes contrary to this observation, but it reflects a
worst-case block-to-renderer mapping for this particular problem.

Figure 9. Per-frame 3D texture bandwidth for several
configurations of parallel rendering servers.

5.3 Performance Gains from Scene-Specific
Knowledge
One of the motivations in our work is to measure the performance
gains realized when using scene-specific knowledge to accelerate
rendering operations in sort-first parallel architectures. The
parallel sort-first volume rendering application used to generate
performance numbers in the previous section was extended to use
distance-based, level-of-detail (LOD) model switching. For
brevity, we refer to such view-dependent model selection simply
as “LOD” in the remainder of this discussion. The basic idea is
that objects that are “far away” from the viewer are rendered
using lower resolution models, and those “close to” the viewer are
rendered using higher resolution models. In contrast to previous
work in the areas of volume visualization using multiresolution

textures [LaMar et al. 1999, Weiler at al. 2000], our emphasis is
upon view-dependent LOD selection in a distributed memory
parallel environment, rather than focusing on optimizing use of
limited texture memory on a single resource, or on methods for
creating optimal LOD textures.

3D Texture Bandwidth - 6 Displays

0

10

20

30

40

50

60

70
1 3 5 7 9 11 13 15 17

Frame Number

M
B

yt
es

Server-0

Server-1

Server-2

Server-3
Server-4

Server-5

In the case of this particular application, a full resolution model is
the 3D texture produced by conversion of the source scientific
data into a block of RGBA voxels. The low resolution model is a
3D texture that is 1/64 the size of the original texture, and is
created by a two-pass bilinear voxel interpolation that reduces the
original texture’s size by a factor of four in each of the three
texture dimensions. The expectation is that use of LOD will
reduce the amount of 3D texture data traffic in the parallel
application. Figures 10 and 11 below show close-up views of
renderings when using full resolution and LOD textures,
respectively. Opacity values in LOD textures are modified to
produce visual consistency, as described in [Laur and Hanrahan
1991].

3D Texture Bandwidth

0
10
20
30
40
50
60
70
80
90

100

1 3 5 7 9 11 13 15 17

Frame Number

M
B

yt
es

4 Displays

6 Displays

9 Displays

16 Displays

20 Displays

24 Displays

Figure 10. Sort-first parallel volume rendering using full-
resolution 3D textures.

Figure 11. Sort-first parallel volume rendering using
LOD to select between full- and reduced-resolution textures.

The 3D texture data traffic profile when using LOD is indeed
different than when using only full resolution textures. Figure 12
shows the total amount of 3D texture traffic on each frame for a
varying number of parallel rendering servers.

Figure 12. Per-frame 3D texture data inbound to
Chromium rendering servers during a parallel sort-first volume
rendering transformation sequence using LOD.

These results show a dramatic reduction in 3D texture traffic in
the first frame, but an increased amount of traffic in later frames.
A direct comparison for a six-display configuration is shown in
Figure 13. With our testing protocol, we see that LOD consumes
less bandwidth for most of the transformation sequence, but in the
end consumes slightly more. During the initial frames of the LOD
transformation sequence, some of the 3D textures are sent using
full resolution, and others are sent using reduced resolution. As
the model rotates over time, the application will have sent all 3D
textures in both full and reduced resolution models. This fact
accounts for the LOD method sending slightly more 3D texture
data over the course of the entire application. In cases where only
a few views are required, LOD approaches result in substantial
gains in terms of 3D texture traffic.

Figure 13. Comparison of amount of 3D texture data
moved when using LOD and full resolution textures.

Peak bandwidth rates when using LOD are shown below in Figure
14. Again, we see a dramatic reduction in bandwidth requirements
in Frame 1 as compared to the full resolution sends. In later
frames, LOD has occasional bandwidth requirements that exceed
those of full resolution sends as duplicated data lands on one or
more parallel rendering servers.

5.4 Discussion
The amount of traffic generated by sort-first architectures is
influenced by many factors. While sort-first is comparatively
immune to sort-last’s sensitivity to final image size, increasing the
number of displays will increase the amount of transmitted data as
objects cover an increasing number of tiles, and must be sent to

multiple rendering servers. When renderable objects are sent to
more than one rendering server, data duplication results. Such
duplication is the overhead inherent in the sort-first approach. The
limit of such duplication in the first rendered frame in our
examples varies from about 1.4 in the four-display case to about
1.8 in the 24-display case, as shown below in Figure 15. The
increased number at nine displays reflects an unfavorable block-
to-tile mapping that happens to occur in that particular
configuration. More tests are needed to examine how this number
grows as more parallel rendering servers are added to the system.

Aggregate 3D Texture Traffic - LOD

0
20
40
60
80

100
120
140
160

1 3 5 7 9 11 13 15 17

Frame Number

M
B

yt
es

4 Displays

6 Displays

9 Displays

16 Displays

20 Displays

24 Displays

3D Texture LOD Bandwidth

0

5

10

15

20

25

30

35

40

45

1 3 5 7 9 11 13 15 17

Frame Number

M
B

yt
es

4 Displays

6 Displays

9 Displays

16 Displays

20 Displays

24 Displays

Figure 14. 3D texture bandwidth when using LOD to
accelerate sort-first parallel volume rendering.

The amount of data duplication is also dependent upon the spatial
partitioning of the original data. For a given set of view and model
transformation parameters, large data blocks will produce greater
duplication than smaller blocks: larger blocks are more likely to
appear on multiple displays than smaller blocks. Similarly, blocks
with a compact shape, such as cubes, are likely to produce less
duplication than narrow, long blocks for the same reason. The
data decomposition strategies that favor reduced duplication may
be in contention with conditions that result in better application
performance: parallel visualization applications may perform
better when executing fewer I/O operations while loading data. A
thorough study that explores this relationship is beyond the scope
of this paper.

3D Texture Traffic : LOD vs. Full Resolution,
Six Rendering Servers

0

100

200

300

400

500

600

700

800

1 3 5 7 9 11 13 15 17

Frame Number

M
B

yt
es Full Resolution

LOD

Sort-First Frame 1 Data Duplication

0

0.5

1

1.5

2

4 6 9 16 24

Number of Displays

D
up

lic
at

io
n

Fa
ct

or

Duplication Factor

Figure 15. The amount of data duplicated in sort-first
increases as the number of rendering servers increases.

6. Future Work
In the work we have described, the parallel application and scene
graph infrastructure contain very little knowledge that they are in
fact running in parallel, or using a distributed memory tiled
display system. The main benefits of such an approach are a high

degree of portability and ease of development. While our parallel
applications were written using the MPI programming model, the
scene graph system is completely independent of MPI or any
other application-level parallel processing framework. The scene
graph system only uses Chromium barriers to enforce
synchronization at key points during the rendering process. As a
result, the OpenRM/Chromium combination can be used in any
parallel application to implement sort-first, distributed memory
parallel rendering.

Were we to take advantage of per-display information, we may be
able to realize improved use of resources. For example, during
geometric transformation, retained mode objects (display lists,
textures) are automatically broadcast by the tilesort SPU to a new
rendering server when needed. Once sent, the retained mode
objects are “immortal” in the sense that they persist until the end
of the application run: they still take up space on the rendering
server, even if not used. Adding the ability to “age” retained mode
objects and to schedule them for removal when no longer needed
would make more efficient use of resources. It is not clear if such
a modification should occur in Chromium, which reflects the
OpenGL API, or in the scene graph system, which manages
display list creation and usage. Placing such functionality into
Chromium represents a departure from the OpenGL specification.
Placing the functionality into the scene graph breaks the metaphor
we have presented: neither the application nor the scene graph
system have any awareness that they are in fact using a tiled
display system built from multiple rendering servers. Ideally, a
least-recently used (LRU) algorithm or a time-critical method [Li
and Shen 2002] would manage the available graphics hardware
resources and maximize their use downstream from the
application code. The present system has no such per-display
knowledge, but the combination of OpenRM and Chromium
provides a number of opportunities for such optimizations.

Our examples show use of LOD methods to switch between
models of varying resolution to improve rendering performance in
a distributed memory parallel context. The performance gain,
while both substantial and measurable, depends on several
problem-specific factors. The concept of reducing graphics load
by model switching is not new [Rohlf and Helman 1994], and
there is opportunity to more fully exploit this notion in future
projects. View and model transformations can be used to reduce
bandwidth into the application by directing data I/O mechanisms
to load reduced resolution models of data for far away objects,
thereby reducing memory and I/O requirements on the application
PEs, as well as to accelerate application execution. Data-specific
knowledge may also be used to reduce texture bandwidth
requirements [Li and Kaufman 2002]. On the rendering side, use
of scene specific knowledge can be used to honor “render
budgets” that are a function of frame rate, bandwidth, or other
factors [Rohlf and Helman 1994; Li and Shen 2002].

Comparing sort-first and sort-last in terms of bandwidth
requirements is difficult. Sort-last bandwidth requirements are a
function of the final image display size, which will be
prohibitively large in high-resolution tiled display environments,
as well as the number of processors participating in the
compositing process. In contrast, sort-first bandwidth
requirements are a function of contents of the scene, the
partitioning of scene data across application processors, and the
number of graphics servers. Sort-first bandwidth requirements are
independent of the final image size. More work is needed to fully
explore the effect on sort-first bandwidth requirements of data and

scene partitioning strategies. One approach to such a study is to
compare the sort-first bandwidth requirements using different data
partitioning strategies.

7. Conclusion
We have presented the results of a project intended to demonstrate
the performance characteristics of a distributed memory parallel
visualization application that uses a sort-first rendering
architecture. The sort-first infrastructure is created through the
combination of the OpenRM Scene Graph, a scene graph API
designed for use by high performance applications, and
Chromium, a stream-oriented framework that implements parallel
and distributed memory OpenGL. Our work describes how the
scene graph, which is used in a distributed memory context, is
augmented to use synchronization operations within Chromium to
enable distributed memory parallel operation. One of our
demonstration applications shows a novel use of the scene graph
infrastructure to implement a distributed memory sorting
algorithm, which is needed to perform correct, view-dependent
parallel rendering in a sort-first architecture. Our application,
which uses round-robin block-to-PE assignment in block-
decomposed parallel visualization, would not have been possible
using a sort-last approach. Our approach shows performance
characteristics that scale well, but which are also susceptible to
jitter resulting from variance in network bandwidth requirements
between the parallel application and the parallel rendering servers.
Performance of our system, as a function of data transmission
requirements, is sublinear with respect to number of parallel
rendering nodes. In high resolution display configurations, our
examples show less bandwidth requirements than needed for sort-
last approaches. The sort-first bandwidth requirements are further
reduced using scene specific knowledge to accelerate rendering.

8. Acknowledgement

This work was supported by the U. S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing
Research under SBIR grant DE-FE03-02ER83443. The authors
wish to thank Randall Frank of the ASCI/VIEWS program at
Lawrence Livermore National Laboratory and the Scientific
Computing and Imaging Institute at the University of Utah for use
of computing facilities during the course of this research. The
Argon shock bubble dataset was provided courtesy of John Bell
and Vince Beckner at the Center for Computational Sciences and
Engineering, Lawrence Berkeley National Laboratory.

References
OPENRM SCENE GRAPH. 2000. http://openrm.sourceforge.net/,
http://www.r3vis.com.
D. BARTZ, D. STANEKER, W. STRASSER, B. CRIPE, T. GASKINS, K.
ORTON, M. CARTER, A. JOHANNSEN, AND J. TROM. 2001. Jupiter: A
Toolkit for Interactive Large Model Visualization. In Proc. IEEE
Symposium on Parallel and Large-Data Visualization and Graphics, pp.
129–134, San Diego, CA.

E. W. BETHEL, R. J. FRANK, AND J. D. BREDERSON. 2002. Combining a
Mulithreaded Scene Graph System with a Tiled Display Environment. In
Proc. SPIE Stereoscopic Displays and Virtual Reality Systems, volume
4660, pp. 430–436, San Jose, CA.

B. CABRAL, N. CAM, AND J. FORAN. 1994. Accelerated Volume
Rendering and Tomographic Reconstruction Using Texture Mapping
Hardware. In Proc. IEEE Symposium on Volume Visualization, pp. 91–98,
Washington, D.C.

W. CORREA, J. T. KLOSOWSKI, AND C. SILVA. 2002. Out-of-Core Sort-
First Parallel Rendering for Cluster-Based Tiled Displays. In Proc.
Eurographics Workshop on Parallel Graphics and Visualization, pp. 89–
96, Blaubeuren, Germany.

J. FOLEY, A. VAN DAM, S. FEINER, AND J. HUGHES. 1990. Computer
Graphics, Principles and Practice (2nd Edition). Addison-Wesley.

A. GARCIA AND H.-W. SHEN. 2002. An Interleaved Parallel Volume
Renderer with PC-clusters. In Proc. Eurographics Workshop on Parallel
Graphics and Visualization, pp. 51–59, Blaubeuren, Germany.

A. HEIRICH AND L. MOLL. 1999. Scalable Distributed Visualization Using
Off-the-Shelf Components. In Proc. IEEE Parallel Visualization and
Graphics Symposium, pp. 55–59, San Francisco, CA.

G. HUMPHREYS, M. ELDRIDGE, I. BUCK, G. STOLL, M. EVERETT, AND P.
HANRAHAN. 2001. WireGL: A Scalable Graphics System for Clusters. In
Proceedings of ACM SIGGRAPH 2001, ACM Press/ACM SIGGRAPH,
New York. E Fiume, Ed., Computer Graphics Proceedings, Annual
Conference Series, ACM, pp. 129-140.

G. HUMPHREYS, M. HOUSTON, R. NG, R. FRANK, S. AHERN, P. D.
KIRCHNER, AND J. T. KLOSOWSKI. 2002. Chromium: A Stream Processing
Framework for Interactive Rendering on Clusters. In Proc. ACM
SIGGRAPH, pp. 693–702, San Antonio, TX.

H. IGEHY, G. STOLL, AND P. HANRAHAN. 1998. The Design of a Parallel
Graphics Interface. In Proc. ACM SIGGRAPH, pp. 141–150, Orlando, FL.

J. M. KNISS, P. MCCORMICK, A. MCPHERSON, J. AHRENS, J. S. PAINTER,
A. KEAHEY, AND C. D. HANSEN. 2001. TRex, Texture-based Volume
Rendering for Extremely Large Datasets. IEEE Computer Graphics and
Applications, 21(4): 52–61.

E. LAMAR, B. HAMANN AND K. JOY. 1999. Multiresoultion Techniques
for Interactive Texture-based Volume Visualization. In Proceedings of
IEEE Visualization 1999, Computer Society Press, pp 355-361.

D. LAUR AND P. HANRAHAN. 1991. Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering. In Proc. ACM SIGGRAPH,
pp. 285–288, Las Vegas, NV.

C. LAW, A. HENDERSON, AND J. AHRENS. 2001. An Application
Architecture for Large Data Visualization: A Case Study. In Proc. IEEE
Symposium on Parallel and Large-Data Visualization and Graphics, pp.
125–128, San Diego, CA.

W. LI AND A. KAUFMAN. 2002. Accelerating Volume Rendering with
Bounded Textures. In Proc. IEEE Volume Visualization and Graphics
Symposium, pp. 115–122, Boston, MA.

X. LI AND H.-W. SHEN. 2002. Time-Critical Multiresolution Volume
Rendering using 3D Texture Hardware. In Proc. IEEE Volume
Visualization and Graphics Symposium, pp. 29–36, Boston, MA.

S. LOMBEYDA, L. MOLL, M. SHAND, D. BREEN, AND A. HEIRICH. 2001.
Scalable Interactive Volume Rendering Using Off-the-Shelf Components.
In Proc. IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, pp. 115–121, San Diego, CA.

K.-L. MA, J. S. PAINTER, C. D. HANSEN, AND M. F. KROGH. 1994.
Parallel Volume Rendering Using Binary-Swap Compositing. IEEE
Computer Graphics and Applications, 14(4):59–68.

S. MOLNAR, M. COX, D. ELLSWORTH, AND H. FUCHS. 1994. A Sorting
Classification of Parallel Rendering. IEEE Computer Graphics and
Applications, (14)4, pp. 23-32.

K. MORELAND, B. WYLIE, AND C. PAVLAKOS. 2001. Sort-Last Parallel
Rendering for Viewing Extremely Large Data Sets on Tile Displays. In
Proc. IEEE Symposium on Parallel and Large-Data Visualization and
Graphics, pp. 85–92, San Diego, CA.

C. MUELLER. 1995. The Sort-First Rendering Architecture for High-
Performance Graphics. In Proc. ACM Symposiumon Interactive 3D
Graphics, pp. 75–83, Monterey, CA.

U. NEUMANN. 1994. Communication Costs for Parallel Volume
Rendering Algorithms. IEEE Computer Graphic sand Applications,
14(4):49–58.

D. REINERS, G. VOSS, AND J. BEHR. 2002. OpenSG: Basic
Concepts.http://www.opensg.org/OpenSGPLUS/symposium/Papers2002/,
http://www.opensg.org/.

J. ROHLF AND J. HELMAN. 1994. IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphics. In Proc. ACM
SIGGRAPH, pp. 381–394.

R. SAMANTA, T. FUNKHOUSER, AND K. LI. 2001. Parallel Rendering with
K-Way Replication. In Proc. IEEE Symposium on Parallel and Large-
Data Visualization and Graphics, pp. 75–84, San Diego, CA.

R. SAMANTA, T. FUNKHOUSER, K. LI, AND J. P. SINGH. 2000. Hybrid
Sort-First and Sort-Last Parallel Rendering with a Cluster of PCs. In Proc.
ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp.
97–108, Interlaken, Switzerland.

R. SAMANTA, J. ZHENG, T. FUNKHOUSER, K. LI, AND J. P. SINGH. 1999.
Load Balancing for Multi-Projector Rendering Systems. In Proc. ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware, pp. 107–
116, Los Angeles, CA.

D. R. SCHIKORE, R. A. FISCHER, R. J. FRANK, R. GAUNT, J. HOBSON,
AND B. WHITLOCK. 2000. High-Resolution Multiprojector Display Walls.
IEEE Computer Graphics and Applications, 14(4): 38–44.

G. VOSS, J. BEHR, D. REINERS, AND M. ROTH. 2002. A Multi-Thread Safe
Foundation for Scene Graphs and its Extension to Clusters. In Proc.
Eurographics Workshop on Parallel Graphics and Visualization, pp. 33–
37, Blaubeuren, Germany.

M. WEILER, R. WESTERMANN, C. HANSEN, K. ZIMMERMAN, T. ERTL.
2000. Level-of-Detail Volume Rendering via 3D Textures. In Proceedings
of 2000 IEEE Symposium on Volume Visualization, Salt Lake City, Utah,
United States, pp 7-13.

	Abstract
	Introduction
	Background and Related Work
	Architecture Overview
	Distributed Memory Parallel Scene Graph Implementation
	Synchronizing Global Operations
	Synchronizing Draw Operations

	Results
	Performance Metrics
	3D Texture Traffic in Sort-First Parallel Volume Rendering
	Performance Gains from Scene-Specific Knowledge
	Discussion

	Future Work
	Conclusion
	Acknowledgement
	References

