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A LIEB-ROBINSON BOUND FOR QUANTUM SPIN CHAINS WITH

STRONG ON-SITE IMPURITIES

MARTIN GEBERT, ALVIN MOON AND BRUNO NACHTERGAELE

Abstract. We consider a quantum spin chain with nearest neighbor interactions
and sparsely distributed on-site impurities. We prove commutator bounds for its
Heisenberg dynamics which incorporate the coupling strengths of the impurities. The
impurities are assumed to satisfy a minimum spacing, and each impurity has a non-
degenerate spectrum. Our results are proven in a broadly applicable setting, both
in finite volume and in thermodynamic limit. We apply our results to improve Lieb-
Robinson bounds for the Heisenberg spin chain with a random, sparse transverse field
drawn from a heavy-tailed distribution.

1. Introduction

Since the first demonstration of a finite group velocity for quantum spin systems in
[LR72], Lieb-Robinson bounds have played an important role in proving fundamental
results in condensed matter theory and quantum information theory [BHV06, NOS06,
BnHVC09]. The question of whether they can be improved in systems with distin-
guishing features, such as disorder [BEO09, BO07, HSS12, GL16, EKS18], anomalous
transport [DLLY14] or assumed rate of decay of interaction [TGS+19, EMNY20, WH20],
has received considerable attention in recent years. There is also interest in compar-
ing observed velocities in experiments with the estimates one can prove [The14]. An
overview of proofs and applications of Lieb-Robinson bounds can be found in Section 3
of [NSY19].

In this paper we focus on spin chains. Propagation estimates of Lieb-Robinson type
for classes of Hamiltonians are typically given in terms of a measure of the strength of
the interactions, usually by using a norm. One naturally obtains such estimates that
do not depend on the presence and magnitude of terms in the Hamiltonian supported
on single sites since, by themselves, such terms do not generate propagation through
the system. Here, we consider quantum spin chains with nearest neighbor interactions
for which we are given such a propagation estimate that does not depend on single-site
terms. We show that under certain conditions, taking into account single-site terms
can lead to a sharper estimate. This improvement is manifested by a reduction of the
pre-factor (amplitude of the propagation), and not in the Lieb-Robinson velocity. More
specifically, we can exploit large on-site terms (such a magnetic fields) supported on
a subset of sites for which we assume a minimum spacing between sites and a non-
degeneracy condition on the eigenvalues of these single-site terms. As a consequence of
our main result, Theorem 3.1, we show that with our set-up, for time t and observables
A and B, there exists a constant C(A,B, t) such that

∥[A(t), B]∥ ≤
(
C(A,B, t)

λ

)N

(1.1)
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where N is the number of impurities which are well-separated from and between the
supports of A and B, and λ > 0 is the minimum impurity strength. The precise
statement is found in Corollary 3.2. The quantity C(A,B, t) can be determined explicitly
and is independent of the system size and, hence, the estimate in (1.1) also holds in the
thermodynamic limit (see Section 4.4). Our result is non-trivial and gives a better
bound for large λ than the standard Lieb-Robinson bound, which is independent of λ
(see, e.g., [NSY19]). Our method does not allow us to derive an effect of the impurities
on the Lieb-Robinson velocity itself. We note, however, that an improved standard
Lieb-Robinson bound, a smaller velocity or faster spatial decay, would automatically
propagate through our bound and similarly improve it while preserving the factor λ−N .

In Section 4.5, we apply Theorem 3.1 to the Heisenberg model in the case when a
sparse transverse field is coupled to the nearest neighbor interaction with i.i.d. couplings
drawn from a heavy-tailed distribution. We show that with high probability, ∥[A(t), B]∥
is much smaller than one would expect from the standard estimates, c.f. the commutator
bound from Theorem 2.1.

2. Preliminaries and Notation

We consider the 1D lattice Z and associate a copy of CD, D ≥ 2, to each lattice
site. We equip Z with the natural distance d(x, y) = |x − y| and define d(X,Y ) =
infx∈X,y∈Y |x − y| and d(x, Y ) = d({x} , Y ) for x ∈ Z and X,Y ⊂ Z. For any finite
X ⊂ Z, we define

AX =
⨂
x∈X

MD(C) (2.1)

where MD(C) is the set of D×D matrices. When X ⊂ Y and |Y | <∞, we identify AX

as a subalgebra of AY by the map A ↦→ A ⊗ 1Y \X , where 1Y \X is the unit of AY \X .
The algebra of local observables, the local algebra for short, is given by

Aloc =
⋃
X⊂Z
|X|<∞

AX ,
(2.2)

and we will refer to the operator norm completion ofAloc, denoted byA as the quasi-local
algebra.

A mapping η : {X ⊂ Z : |X| <∞} → A is an interaction if η(X) = η(X)∗ ∈ AX for
all X. η is a nearest neighbor interaction when η(X) ̸= 0 only if X = {x, x+ 1} for some
x ∈ Z. For a nearest neighbor interaction η we use the notation ηx,x+1 = η({x, x+ 1})
and ∥η∥ = supx∈Z ∥ηx,x+1∥.

Let Φ : {X ⊂ Z : |X| <∞} → A be a nearest neighbor interaction with ∥Φ∥ < ∞.
For L ∈ N we define

HL(Φ) ≡ HL =

L−1∑
x=−L

Φx,x+1. (2.3)

We are interested in on-site perturbations of the Hamiltonian HL, which we will refer
to as impurities. To define these let ∅ ≠ F ⊂ Z and define the minimal spacing of F as

σF = min {|x− y| : x, y ∈ F , x ̸= y} . (2.4)
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Later on, we have to assume σF is sufficiently large. Now for each x ∈ F , let Vx = V ∗
x ∈

A{x} be an operator of the form

Vx =

D∑
j=1

γ
(x)
j P

(x)
j (2.5)

where P
(x)
j are the eigenprojectors of Vx, and assume the eigenvalues γ

(x)
j are distinct

at each site, i.e. for all x ∈ F , γ
(x)
i ̸= γ

(x)
j for all i ̸= j. We now consider perturbations

of the original Hamiltonian HL of the following form:

HL(λ⃗) = HL +
∑

x∈F∩[−L,L]

λxVx, (2.6)

where λx ∈ R \ {0} for all x ∈ F and λ⃗ =
(
λx

)
x∈F∩[−L,L]

is the vector consisting of the

coupling constants. We use the short-hand notation for the perturbation

VL(λ⃗) =
∑

x∈F∩[−L,L]

λxVx. (2.7)

For L ∈ N, denote AL = A[−L,L]. We are interested in the Heisenberg evolution of an
observable A ∈ AL, which for a Hamiltonian H = H∗ ∈ AL is defined by

τHt (A) = eitHAe−itH , (2.8)

where t ∈ R. Lastly, we fix some notation we frequently use in the following. For
X ⊂ [−L,L], we define an enlarged version of X by X(n) = {x ∈ [−L,L] : d(x,X) ≤ n}.
For an observable A ∈ AL we denote by SA the support of A, which we take to be the
minimal length interval [x, y] such that A ∈ A[x,y].

Since Φ is a nearest neighbor interaction, the dynamics generated by Φ satisfy a Lieb-
Robinson bound. We parametrize the bound by a parameter µ > 0 which is the rate of
spatial decay, and the strength ∥Φ∥ of the nearest neighbor interaction. The relevant
statement of this commutator bound, Theorem 2.1 below, is implied by Corollary 2.2 of
[NRSS09].

Theorem 2.1. Suppose Φ is a nearest neighbor interaction with ∥Φ∥ < ∞. For all
µ > 0, there exist C0, v > 0 depending on µ and ∥Φ∥ such that for any operator of the
form

ΨL =
L∑

x=−L

Ψx, Ψx ∈ A{x}, (2.9)

if A,B ∈ AL, then for all t ∈ R:

∥[τHL(Φ)+ΨL
t (A), B]∥ ≤ C0∥A∥∥B∥(ev|t| − 1)e−µd(SA,SB). (2.10)

We note that since our definition of support uses a single interval, the bound in (2.10)
does not depend on the support sizes of A and B.

Assuming C0 ≥ 1 will simplify the form of the constants in Theorem 3.1 without loss
of generality. And the proof of Corollary 2.2 in [NRSS09] shows that the constants C0

and v in Theorem 2.1 can be taken as

C0 =
10cµ
Kµ

and v = 8eµKµ∥Φ∥ (2.11)
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where

cµ =
∑
x∈Z

e−µx 1

(1 + |x|)2
and Kµ = sup

x,y∈Z

∑
z∈Z

e−µ(|x−z|+|y−z|−|x−y|)(1 + |x− y|)2

(1 + |x− z|)2(1 + |z − y|)2
. (2.12)

Assumption 2.2. In the following, we will always assume Φ is a nearest neighbor
interaction with ∥Φ∥ <∞. For any µ > 0, we will take C0 ≥ 1 and v > 0 as defined in
(2.11).

3. Main results

The main result of this work is the following theorem.

Theorem 3.1. For any µ > 0, if σF > max {1/µ, 2}, then there exists a constant C > 0
such that for all L ∈ N and A,B ∈ AL with maxSA + 3 < minSB − 3,

∥[τHL(λ⃗)
t (A), B]∥ ≤ CN∏

x∈Z |λx|Γx
∥A∥∥B∥GN (t)FN

(
d(SA, SB)

)
(3.1)

for all t ∈ R and λ⃗ =
(
λx

)
x∈Z , where N = |Z| for Z = [maxSA + 3,minSB − 3] ∩ F ,

Γx = min
i ̸=j

|γ(x)i − γ
(x)
j | (3.2)

and

GN (t) = v|t|(1 + v|t|)N−1ev|t| FN (d) = (µd)Ne−µd. (3.3)

The constant C can be taken as

C =
444C2

0e
5µ

µ(1− e−µ)
∥Φ∥

(
D

2

)2

(3.4)

We prove Theorem 3.1 by modifying the estimate in (2.10) by an inductive argument.
In principle, we could assume that, under the assumptions of Theorem 2.1, (2.10) holds

for a monotone rapidly decreasing function f instead of e−µd, e.g. f(d) = e−µd log(d) as
in [WH20], and derive a similar result without significant changes to the proof.

The velocity term of a Lieb-Robinson bound generally diverges with the strength
of the interaction, so it is significant that large on-site terms can lead to a stronger
estimate in (2.10). However, our result does not show that a sparse field decreases the
Lieb-Robinson velocity. This is because our method introduces a prefactor polynomial
in t and the d to the commutator bound which, for large times, diverges with the number
of field sites. Proposition 4.5 shows that in the case N = 1, we can choose F1 to have a
marginally better dependence on d(SA, SB). We leave open the question of whether the

bound in (3.1) would hold if GN (t) = ev|t| and FN (d) = e−µd.

Corollary 3.2, below, follows immediately from Theorem 3.1 and makes the statement
in (1.1) precise. Let Tx : A → A denote the translation operator which maps A{0} to
A{x}.

Corollary 3.2. Let µ > 0, σF > max {1/µ, 2}. Suppose Vx = Tx(V0) and λx = λ
for all x ∈ F . Then for all A,B ∈ AL with maxSA + 3 < minSB − 3 and Z =
[maxSA + 3,minSB − 3] ∩ F , we obtain

∥[τHL(λ⃗)
t (A), B]∥ ≤

(
K
µd(SA, SB)(1 + v|t|)

λ

)N

∥A∥∥B∥ ev|t| e−µd(SA,SB). (3.5)
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where we have set N = |Z|. The constant K > 0 depends on µ,D,Φ and Vx.

4. Proofs

When the context is unambiguous, we omit the L dependence from the notation, since
all estimates will be independent of L, and write HL = H.

4.1. Auxiliary results. For x ∈ F ∩ [−L+ 2, L− 2] we define

Ĥx =
x−2∑
y=−L

Φy,y+1 +
D∑
j=1

P
(x)
j (Φx−1,x +Φx,x+1)P

(x)
j +

L−1∑
y=x+1

Φy,y+1 (4.1)

and set for λ⃗ =
(
λx

)
x∈Z

Ĥx(λ⃗) = Ĥx + V (λ⃗). (4.2)

We will use the short-hand notations

V x(λ⃗) =
∑
y ̸=x

λyVy, τt = τ
H(λ⃗)
t , and τ̂xt = τ

Ĥx(λ⃗)
t . (4.3)

Lemma 4.1. Let A,B ∈ AL and x ∈ F∩[−L+2, L−2] such that maxSA < x < minSB.
Then

[τ̂xt (A), B] = 0. (4.4)

Proof. From the definition of Ĥx it follows that Vx commutes with Ĥx and with Vy as
well when y ̸= x. And so, since maxSA < x

τ̂xt (A) = τ
Ĥx+V x(λ⃗)
t τλxVx

t (A) = τ
Ĥx+V x(λ⃗)
t (A). (4.5)

We write Ĥx = Ĥℓ
x + Ĥr

x with Ĥℓ
x supported on [−L, x], and Ĥr

x supported on [x, L]:

Ĥℓ
x =

x−2∑
y=−L

Φy,y+1 +
D∑
j=1

P
(x)
j Φx−1,xP

(x)
j

Ĥr
x =

D∑
j=1

P
(x)
j Φx,x+1P

(x)
j +

L−1∑
y=x+1

Φy,y+1

. (4.6)

Let j ∈ {1, ..., D}. By assumption, P
(x)
j = |ψ(x)

j ⟩⟨ψ(x)
j | where ψ

(x)
j ∈ CD is a unit

norm eigenvector to the simple eigenvalue γ
(x)
j of Vx. Expanding Φx−1,x into a sum of

elementary tensors Φx−1,x =
∑

k Φ
(k)
x−1 ⊗ Φ

(k)
x , Φ

(k)
x−1 ∈ A{x−1} and Φ

(k)
x ∈ A{x}, shows

that

P
(x)
j Φx−1,xP

(x)
j =

∑
k

Φ
(k)
x−1 ⊗ ⟨ψ(x)

j ,Φ(k)
x ψ

(x)
j ⟩P (x)

j

=

(∑
k

⟨ψ(x)
j ,Φ(k)

x ψ
(x)
j ⟩Φ(k)

x−1

)
⊗ P

(x)
j .

(4.7)

Similarly, there exists Φ̃x+1 ∈ A{x+1} such that P
(x)
j Φx,x+1P

(x)
j = P

(x)
j ⊗ Φ̃x+1, which

proves that [P
(x)
j Φx−1,xP

(x)
j , P

(x)
j Φx,x+1P

(x)
j ] = 0 and in turn [Ĥℓ

x, Ĥ
r
x] = 0. Hence[

Ĥℓ
x +

∑
y<x

λyVy, Ĥ
r
x +

∑
y>x

λyVy

]
= 0 (4.8)
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and since maxSA < x,

τ̂xt (A) = τ
Ĥℓ

x+
∑

y<x λyVy

t (A) ∈ A[−L,x]. (4.9)

As x < minSB, this implies [τ̂xt (A), B] = 0. □

Proposition 4.2. Let A,B ∈ AL, and suppose x ∈ F ∩ [−L + 2, L − 2] such that
maxSA + 1 < x < minSB. Then for all t ∈ R

∥[τt(A), B]∥ ≤ 1

|λx|Γx

∑
j,k∈{1,...,D}

j ̸=k

(
∥f jkx (0, t)∥+

∫ |t|

0
ds ∥ d

ds
f jkx (s, t)∥

)
(4.10)

where we have set for s ∈ R

f jkx (s, t) = [[τ Ĥx+V x(λ⃗)
s (R

(x)
jk ), τ̂xs τt−s(A)], B]

R
(x)
jk = P

(x)
j (Φx−1,x +Φx,x+1)P

(x)
k

. (4.11)

Proof. Without loss of generality, we assume t > 0. Lemma 4.1 implies that [τ̂xt (A), B] =
0. Hence Duhamel’s formula gives

[τt(A), B] = [τt(A), B]− [τ̂xt (A), B]

= i

∫ t

0
ds [τ̂xs ([H(λ⃗)− Ĥx(λ⃗), τt−s(A)]), B]. (4.12)

We write
H(λ⃗)− Ĥx(λ⃗) =

∑
j,k∈{1,...,D}:

j ̸=k

R
(x)
jk (4.13)

with R
(x)
jk = P

(x)
j (Φx−1,x + Φx,x+1)P

(x)
k for j, k ∈ {1, ..., D}, j ̸= k. Since [Ĥx +

V x(λ⃗), Vx] = 0, we obtain for s ∈ R

τ̂xs (R
(x)
jk ) = τ Ĥx+V x(λ⃗)

s τλxVx
s (R

(x)
jk ) =

∑
j,k∈{1,...,D}

j ̸=k

eisλx(γ
(x)
j −γ

(x)
k )τ Ĥx+V x(λ⃗)

s (R
(x)
jk ). (4.14)

This implies∫ t

0
ds [τ̂xs ([H(λ⃗)− Ĥx(λ⃗), τt−s(A)]), B] =

∫ t

0
ds [[τ̂xs (H(λ⃗)− Ĥx(λ⃗)), τ̂

x
s τt−s(A)]), B]

=
∑

j,k∈{1,...,D}
j ̸=k

∫ t

0
ds eisλx(γ

(x)
j −γ

(x)
k )f jkx (s, t)

(4.15)

where we have set f jkx (s, t) = [[τ
Ĥx+V x(λ⃗)
s (R

(x)
jk ), τ̂xs τt−s(A)], B]. For j, k ∈ {1, ..., D} with

j ̸= k integration by parts yields∫ t

0
ds eisλx(γ

(x)
j −γ

(x)
k )f jkx (s, t)


≤ 1

|λx|
1

|γ(x)j − γ
(x)
k |

(
∥f jkx (t, t)∥+ ∥f jkx (0, t)∥+

∫ t

0
ds ∥ d

ds
f jkx (s, t)∥

)
. (4.16)

Next we show f jkx (t, t) = 0. Since Vx commutes with Ĥx + V x(λ⃗), we can rewrite

∥f jkx (t, t)∥ =
[[τ Ĥx+V x(λ⃗)

t (R
(x)
jk ), τ̂xt (A)], B]

 =
[τ̂xt ([τλxVx

−t (R
(x)
jk ), A]

)
, B]

. (4.17)
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Now τλxVx
−t (R

(x)
jk ) = eitλx(γ

(x)
k −γ

(x)
j )R

(x)
jk , and so[τ̂xt ([τλxVx

−t (R
(x)
jk ), A]

)
, B]

 =
[τ̂xt ([R(x)

jk , A]
)
, B]

 = 0 (4.18)

where the last equality follows from the assumption that SA ∩ [x− 1, x+ 1] = ∅. □

We will need the explicit form of the derivative d
dsf

jk
x (s, t) in the proof of Theorem 3.1.

Lemma 4.3. Let A,B ∈ AL, σF ≥ 2 and x ∈ F ∩ [−L + 2, L − 2]. Then for all
j, k ∈ {1, ..., D} with j ̸= k and s, t ∈ R,

d

ds
f jkx (s, t) = i

[[
τ Ĥx+V x(λ⃗)
s ([Ĥx, R

(x)
jk ]), τ̂xs τt−s(A)

]
, B

]
− i

∑
l,r∈{1,...,D}

l ̸=r

[[
τ Ĥx+V x(λ⃗)
s (R

(x)
jk ), [τ̂xs (R

(x)
lr ), τ̂xs τt−s(A)]

]
, B

]
. (4.19)

Proof. We recall that f jkx (s, t) = [[τ
Ĥx+V x(λ⃗)
s (R

(x)
jk ), τ̂xs τt−s(A)], B]. First, we compute

d

ds
τ Ĥx+V x(λ⃗)
s (R

(x)
jk ) = i

[
Ĥx + V x(λ⃗), τ

Ĥx+V x(λ⃗)
s (R

(x)
jk )

]
= iτ Ĥx+V x(λ⃗)

s

(
[Ĥx, R

(x)
jk ]

) (4.20)

where the last equality in (4.20) follows from [V x(λ⃗), R
(x)
jk ] = 0 since d(x,F \ {x}) ≥ 2

and the support satisfies S
R

(x)
jk

⊂ [x − 1, x + 1]. Secondly, recalling the definition of τ ,

τ̂x in (4.3) and (4.13), we obtain

d

ds
τ̂xs τt−s(A) = −i τ̂xs

(
[H(λ⃗)− Ĥx(λ⃗), τt−s(A)]

)
= −i

∑
l,r∈{1,...,D}

l ̸=r

[τ̂xs (R
(x)
lr ), τ̂xs τt−s(A)]. (4.21)

Then the lemma follows from (4.20) and (4.21) and the product rule applied to the

derivative of the s-dependent part of f jkx (s, t). □

4.2. Case of a single impurity. In the following, we prove Theorem 3.1 in the case
when there is only one impurity in between the supports of A and B. To do so, we need
to estimate the terms on the right hand side of (4.10).

Lemma 4.4. Let A,B ∈ AL and suppose σF ≥ 2. Let x ∈ F such that maxSA + 3 <
x < minSB − 3. Then for all j, k ∈ {1, ..., D} with j ̸= k and s, t ∈ R

∥ d
ds
f jkx (s, t)∥ ≤ Cµ

(
D

2

)
∥A∥∥B∥∥Φ∥µd(x− 3, SB)ve

v|t|e−µd(SA,SB) (4.22)

Cµ = 218
C2
0e

5µ

µ(1− e−µ)
. (4.23)

Proof. As before, assume ∥A∥ = ∥B∥ = 1 and t > 0. We use the expression for
the derivative obtained in Lemma 4.3. We consider the norm of the first term in the
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latter and further rewrite this term. The definitions of R
(x)
jk and Ĥx imply R

(x)
jk =

e−is(γ
(x)
j −γ

(x)
k )τλxVx

s (R
(x)
jk ) and [Ĥx, Vx] = 0. Therefore,

[Ĥx, R
(x)
jk ] = e−is(γ

(x)
j −γ

(x)
k )τλxVx

s ([Ĥx, R
(x)
jk ]) (4.24)

from which we can rewrite, using [Ĥx + V x(λ⃗), Vx] = 0,

∥[[τ Ĥx+V x(λ⃗)
s ([Ĥx, R

(x)
jk ]), τ̂xs τt−s(A)], B]∥ =

[[[Ĥx, R
(x)
jk ], τt−s(A)

]
, τ̂x−s(B)

]. (4.25)

The assumption maxSA +3 < x implies maxSA < minS
[Ĥx,R

(x)
jk ]

− 1 < maxS
[Ĥx,R

(x)
jk ]

<

minSB, and so we are in position to apply Corollary 5.3 with W = [Ĥ, R
(x)
jk ]. This

implies

(4.25) ≤ C ′∥[Ĥx, R
(x)
jk ]∥ev|t|d(x− 3, SB)e

−µd(SA,SB). (4.26)

where C ′ = 72C2
0

e6µ

1−e−µ is chosen as in Corollary 5.3 since diamSW = 4 in this case,

and since |t − s| + |s| = t for 0 < s < t . Moreover ∥[Ĥx, R
(x)
jk ]∥ ≤ 6∥Φ∥2 since

∥R(x)
jk ∥ ≤ 2∥Φ∥. Taking this together with (4.25) and (4.26), and using from (2.11) and

(2.12) that v = 8eµKµ∥Φ∥ and Kµ ≥ 1, we obtain

∥[[τ Ĥx+V x(λ⃗)
s ([Ĥ, R

(x)
jk ]), τ̂xs τt−s(A)], B]∥ ≤ 6C ′∥Φ∥2evtd(x− 3, SB)e

−µd(SA,SB)

≤ 72C2
0

e5µ

µ(1− e−µ)
∥Φ∥(8eµKµ∥Φ∥)evtµd(x− 3, SB)e

−µd(SA,SB)

= 72C2
0

e5µ

µ(1− e−µ)
∥Φ∥vevtµd(x− 3, SB)e

−µd(SA,SB).

(4.27)

For the norm of the second term in (4.19), we first fix the indices l ̸= r of the term R
(x)
lr .

We use τλxVx
s (R

(x)
jk ) = eisλx(γ

(x)
j −γ

(x)
k )R

(x)
jk to rewrite

∥[[τ Ĥx+V x(λ⃗)
s (R

(x)
jk ), [τ̂xs (R

(x)
lr ), τ̂xs τt−s(A)]], B]∥ =

[[R(x)
jk , [R

(x)
lr , τt−s(A)]

]
, τ̂x−s(B)

].
(4.28)

Next we apply Jacobi’s identity for commutators,

[[X,Y ], Z] = −[[Y,Z], X]− [[Z,X], Y ], X, Y, Z ∈ AL, (4.29)

and obtain[[R(x)
jk , [R

(x)
lr , τt−s(A)]

]
, τ̂x−s(B)

]
≤2∥R(x)

jk ∥
[[R(x)

lr , τt−s(A)], τ̂
x
−s(B)

]+ 2
[R(x)

jk , τ̂
x
−s(B)]

[R(x)
lr , τt−s(A)]

. (4.30)

For the first norm in the above we use again Corollary 5.3 with W = R
(x)
lr to estimate

2∥R(x)
jk ∥

[[R(x)
lr , τt−s(A)], τ̂

x
−s(B)

] ≤ 8C ′∥Φ∥2evtd(x− 2, SB)e
−µd(SA,SB) (4.31)

≤ 72C2
0

e5µ

µ(1− e−µ)
∥Φ∥vevtµd(x− 2, SB)e

−µd(SA,SB).

(4.32)

We note that we used (2.11) and (2.12) as we did in the inequalities in (4.27) to obtain
the last inequality in (4.31). For the second term on the r.h.s of (4.30) we use the a
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priori Lieb-Robinson from Theorem 2.1 with χ = Φ, ΨL = V x(λ⃗) and µ > 0 chosen as
before. This results in the bound

2
[R(x)

jk , τ̂
x
−s(B)]

[R(x)
lr , τt−s(A)]

 ≤ 8C2
0e

3µ∥Φ∥2evte−µd(SA,SB) (4.33)

≤ C2
0e

2µ

µ
∥Φ∥vevtµd(x− 2, SB)e

−µd(SA,SB) (4.34)

Taking together the computations in (4.28) – (4.34), we obtain for all l ̸= r,

∥[[τ Ĥx+V x(λ⃗)
s (R

(x)
jk ), [τ̂xs (R

(x)
lr ), τ̂xs τt−s(A)]], B]∥

≤ 73C2
0e

5µ

µ(1− e−µ)
∥Φ∥vevtµd(x− 2, SB)e

−µd(SA,SB). (4.35)

Summing over l ̸= r and using (4.27) in (4.19), we obtain

∥ d
ds
f jkx (s, t)∥ ≤ 218C2

0e
5µ

µ(1− e−µ)

(
D

2

)
∥Φ∥vevtµd(x− 3, SB)e

−µd(SA,SB). (4.36)

independently of s, j, k and λx.

□

Proposition 4.5. Let A,B ∈ AL and σF ≥ 2. Suppose x ∈ F and maxSA + 3 < x <
minSB − 3. Then, for all t ∈ R,

∥[τH(λ⃗)
t (A), B]∥ ≤ C

|λx|Γx
∥A∥∥B∥G1(t)µmin {d(x− 3, SB), d(x+ 3, SA)} e−µd(SA,SB)

(4.37)

where C =
444C2

0e
5µ

µ(1−e−µ)
∥Φ∥

(
D
2

)2
and G1(t) = v|t|ev|t|.

Proof. Since ∥[τH(λ⃗)
t (A), B]∥ = ∥[τH(λ⃗)

−t (B), A]∥, the roles of A and B in the proof are
symmetric and we may assume min {d(x+ 3, SA), d(x− 3, SB)} = d(x−3, SB). Suppose
∥A∥ = ∥B∥ = 1. Jacobi’s identity (4.29) implies

∥f jkx (0, t)∥ ≤ 2∥R(x)
jk ∥∥[τt(A), B]∥ ≤ 4∥Φ∥C0∥A∥∥B∥(ev|t| − 1)e−µd(SA,SB) (4.38)

where we used Theorem 2.1 and ∥R(x)
jk ∥ ≤ 2∥Φ∥ in the last inequality. Applying (4.38)

and Lemma 4.4 to the right-hand side of the inequality (4.10) yields

∥[τH(λ⃗)
t (A), B]∥ ≤

2
(
D
2

)
|λx|Γx

(
4∥Φ∥C0(e

v|t| − 1)e−µd(SA,SB)

+ Cµ

(
D

2

)
∥Φ∥v|t|ev|t|µd(x− 3, SB)e

−µd(SA,SB)

)
≤ 444C2

0e
5µ

µ(1− e−µ)
∥Φ∥

(
D

2

)2

v|t|ev|t|µd(x− 3, SB)e
−µd(SA,SB)

(4.39)

which is the bound in (4.37). □

4.3. Multiple impurities. We recall the following real-valued functions from (3.3):

Fn(d) = (µd)ne−µd, Gn(t) = v|t|(1 + v|t|)n−1ev|t|. (4.40)

It is easy to see that Fn is decreasing on [n/µ,∞) and that Gn ≤ Gn+1 on [0,∞).
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Proof of Theorem 3.1. Let σF ≥ min {2, 1/µ} and Z = {x1, . . . , xN} ⊂ F , ordered
according to x1 < · · · < xN . We prove by induction on n ∈ {1, . . . , N} the statement:

For all A,B ∈ AL with maxSA + 3 < x1 < xn < minSB − 3, and for all
times t ∈ R

∥[τt(A), B]∥ ≤ Cn∏n
j=1 |λxj |Γxj

∥A∥∥B∥Gn(|t|)Fn(d(SA, SB)) (4.41)

with Fn, Gn defined above in (4.40).

Then Theorem 3.1 is proven as the case when n = N . For n = 1, (4.41) follows directly
from Proposition 4.5.

Now suppose that (4.41) is correct for n−1 < N and all D,E ∈ AL with maxSD+3 <
x1 and xn−1 < minSE−3, and for all times t ∈ R. LetA,B inAL such that maxSA+3 <
x1 and xn < minSB − 3. Without loss of generality, we assume ∥A∥ = ∥B∥ = 1 and
t > 0. We apply Proposition 4.2 in the case when x = xn to get

∥[τt(A), B]∥ ≤ 1

|λxn |Γxn

∑
j,k∈{1,...,D}

j ̸=k

(
∥f jkxn

(0, t)∥+
∫ t

0
ds ∥ d

ds
f jkxn

(s, t)∥
)
. (4.42)

As in bound (4.38) in the proof of Proposition 4.5, we estimate

∥f jkxn
(0, t)∥ ≤ 2∥R(x)

jk ∥∥[τt(A), B]∥

≤ 4∥Φ∥
µ

Cn−1∏n−1
j=1 |λxj |Γxj

Gn−1(t)Fn(d(SA, SB)) (4.43)

where the last inequality follows from the induction hypothesis and ∥R(x)
jk ∥ ≤ 2∥Φ∥. We

proceed as in inequalities (4.25), (4.30) in the proof of Lemma 4.4 to bound

∥ d
ds
f jkxn

(s, t)∥ ≤ ∥[[[Ĥxn , R
(xn)
jk ], τt−s(A)], τ̂

xn
−s(B)]∥

+ 2
∑
l ̸=r

∥R(xn)
jk ∥∥[[R(xn)

lr , τt−s(A)], τ̂
xn
−s(B)]∥

+ 2
∑
l ̸=r

∥[R(xn)
jk , τ̂xn

−s(B)]∥∥[R(xn)
lr , τt−s(A)]∥. (4.44)

Next we estimate the three terms on the right hand side of the above inequality individ-

ually. First we deal with ∥[[[Ĥxn , R
(xn)
jk ], τt−s(A)], τ̂

xn
−s(B)]∥. We set W = [Ĥxn , R

(xn)
jk ].

Since σF ≥ 1/µ, maxSA+3 < x−1 and SW ⊂ [xn−2, xn+2], we obtain minSW −1 >
maxSA + (n − 1)/µ. And Fn−1 restricted to [(n − 1)/µ,∞) is a monotone decreas-
ing function. So we apply Lemma 5.2 to W using k = max {3, (n− 1)/µ}, g = Gn−1,
f = Fn−1 and the commutator bound in (4.41) as the assumed commutator bound in
(5.4) to get

∥[[W, τt−s(A)], τ̂
xn
−s(B)]∥ ≤

(
24C0

eµ

1− e−µ

)
C∗∥W∥Gn−1(t)e

v|s|hµ(SA, SW , SB) (4.45)

where hµ is defined as in (5.7) and C∗ = Cn−1∏n−1
j=1 |λxj |Γxj

. Furthermore, with these choices

and the facts that µd(SA, SW ) ≥ 1 and d(SA, SW )+diam(SW )+d(SW , SB) = d(SA, SB),

hµ
(
SA, SW , SB

)
≤ 3e5µ

µ
(µd(SA, SB))

ne−µd(SA,SB) =
3e5µ

µ
Fn(d(SA, SB)). (4.46)
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And so, using the fact that ∥[Ĥxn , R
(xn)
jk ]∥ ≤ 6∥Φ∥2, we insert this in (4.45) to yield

∥[[[Ĥxn , R
(xn)
jk ], τt−s(A)], τ̂

xn
−s(B)]∥

≤ 432C0
e6µ

µ(1− e−µ)

Cn−1∏n−1
j=1 |λxj |Γxj

∥Φ∥2Gn−1(t− s)ev|s|Fn(d(SA, SB))
(4.47)

independently of j, k ∈ {1, .., D} with j ̸= k.

Secondly, we bound ∥[[R(xn)
lr , τt−s(A)], τ̂

xn
−s(B)]∥ . Choosing W = R

(xn)
lr and recalling

S
R

(xn)
lr

= [xn − 1, xn + 1] and ∥R(xn)
lr ∥ ≤ 2∥Φ∥, we obtain along the very same lines as

above

∥[[R(xn)
lr , τt−s(A)], τ̂

xn
−s(B)]∥

≤ 144C0
e6µ

µ(1− e−µ)

Cn−1∏n−1
j=1 |λxj |Γxj

∥Φ∥Gn−1(t− s)ev|s|Fn(d(SA, SB)) (4.48)

independently of j, k, l, r ∈ {1, .., D}.

Thirdly, we estimate ∥[R(xn)
jk , τ̂xn

−s(B)]∥∥[R(xn)
lr , τt−s(A)]∥. To do so, we use SR(xn)

jk

, S
R

(xn)
lr

=

[xn−1, xn+1], ∥R(xn)
lr ∥, ∥R(xn)

jk ∥ ≤ 2∥Φ∥ and apply the induction hypothesis to ∥[R(xn)
lr , τt−s(A)]∥

and Theorem 2.1 to ∥[R(xn)
jk , τ̂xn

−s(B)]∥. This results in

∥[R(xn)
jk , τ̂xn

−s(B)]∥∥[R(xn)
lr , τt−s(A)]∥

≤ 4∥Φ∥2C0
Cn−1∏n−1

j=1 |λxj |Γxj

Gn−1(t− s)Fn−1(d(SA, xn)− 1))(ev|s| − 1)e−µd(xn+1,SB)

≤ 4∥Φ∥2C0
e2µ

µ

Cn−1∏n−1
j=1 |λxj |Γxj

Gn−1(t− s)ev|s|Fn(d(SA, SB)) (4.49)

independently of j, k, l, r ∈ {1, ..., D}.

Inserting the bounds (4.47), (4.48) and (4.49) into (4.44), yields

∥ d
ds
f jkxn

(s, t)∥ ≤ 218C0e
5µ

µ(1− e−µ)

(
D

2

)
∥Φ∥ Cn−1∏n−1

j=1 |λxj |Γxj

Fn(d(SA, SB))vGn−1(t− s)ev|s|.

(4.50)

where we have used the fact that v = 8eµKµ∥Φ∥. Further plugging this and (4.43) in
(4.42), we end up with

∥[τt(A), B]∥ ≤ 444C0e
5µ

µ(1− e−µ)
∥Φ∥ Cn−1∏n

j=1 |λxj |Γxj

(
D

2

)2

Fn(d(SA, SB))

×
(
Gn−1(t) + v

∫ t

0
dsGn−1(t− s)ev|s|.

)
(4.51)

Using the definition of Gn−1(t) and 0 ≤ t− s ≤ t, we see

Gn−1(t) + v

∫ t

0
ds Gn−1(t− s)evs ≤ vtevt

n−1∑
j=0

(
n− 1

j

)
(vt)j = Gn(t). (4.52)

Inserting this in (4.51) proves (4.41). Finally, the statement (4.41) with n = N gives
Theorem 3.1. □
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4.4. Thermodynamic limit. We observe that the constants which have appeared so
far do not depend on L. This implies that the statements in Proposition 4.5 and Theorem

3.1 hold with τHL(λ⃗) replaced with the thermodynamic limit τ : R → Aut(A) defined
by pointwise limit

τt(A) = lim
L→∞

τ
HL(λ⃗)
t (A). (4.53)

4.5. Disordered spin chain. We now apply our results to a specific example to show
that in 1D, the presence of a sparse disordered field can imply that for fixed t, with
high probability, the Lieb-Robinson bound from Theorem 2.1 is not sharp. Let µ > 0
be fixed, and take F = σZ, where σ = ⌈max {1/µ, 2}⌉. Consider the Heisenberg spin
S = 1/2 chain with sparse transverse field and open boundary conditions on [−L,L] for
L ∈ N

HL(λ⃗) = −J
L−1∑
n=−L

3∑
j=1

σjnσ
j
n+1 +

∑
x∈F∩[−L,L]

λxσ
3
x (4.54)

where σj , j = 1, ..., 3 are the standard Pauli matrices and J > 0. Let µ > 0 be fixed.
Then Theorem 2.1 gives constants C0 and v such that

∥[τHL(Φ)+ΨL
t (A), B]∥ ≤ C0∥A∥∥B∥ev|t|e−µd(SA,SB) (4.55)

for all A,B ∈ AL and times t ∈ R.

We want to improve this bound by making the couplings λx randomly chosen from
a heavy-tailed distribution. At each x, let λx ∈ [1,∞) be drawn from the long-range
distribution given by the density ma(r) =

a
r1+a , r ∈ [1,∞) for some 0 < a < 1/2. Since

F is countably infinite and uniformly spaced, we can prove in this situation the following
large deviation bound: For any b ∈ (a, 1) and ε > 0, there exists L0 ∈ N and c > 0 such
that for all L ≥ L0

P
(
| {x ∈ F ∩ [−L− 3, L+ 3] : λx ≥ ε(2L+ 1)} | ≥ (2L+ 1)1−b

)
≥ 1− e−cε−a(2L+1)1−a

,

(4.56)
see e.g. [Hoe63]. Equation (4.56) does not depend on the precise form of the density
ma but only on its tail.

Suppose A ∈ A{−L}, B ∈ A{L}. Setting ε = C(1+ v|t|)(2L+1), Theorem 3.1 implies
the following bound.

Proposition 4.6. Let HL(λ⃗) be the Heisenberg spin chain with random transverse field
defined in (4.54). Then, for all A ∈ A{−L}, B ∈ A{L},

∥[τHL(λ⃗)
t (A), B]∥ ≤ ∥A∥∥B∥ev|t|e−2µLe−(2L+1)1−b ln(2L+1) (4.57)

with probability 1− e−cε−a(2L+1)1−a
as derived in (4.56).

When L is sufficiently large so that exp(−(2L+1)1−b ln(2L+1)) < C0, the commutator
bound in (4.57) is strictly sharper than the bound from Theorem 2.1.
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5. Appendix: Double commutator bound

In this appendix we prove the double commutator bound which we use in the proof of
Theorem 3.1. Our proof is a straightforward argument which we include for complete-
ness. Let Φ1 and Φ2 denote two interactions such that Φi(X) ̸= 0 only for X ⊂ Z with
diam(X) = max{|x− y| : x, y ∈ X} ≤ 1 and

∥Φi∥ = sup
x

∥Φi({x, x+ 1})∥ <∞ (5.1)

for i = 1, 2. We assume that ∥Φ1∥ = ∥Φ2∥ = ∥Φ∥, and we note that Φ1 and Φ2 are

nearest neighbor interactions where arbitrary large on-site terms are added. Let τ
(1)
t

and τ
(2)
t be the Heisenberg dynamics on [−L,L] generated by Φ1 and Φ2, respectively.

Let ρx : A{x} → C denote the normalized trace ρx(A) =
1
D tr(A), and for any finite

subset Z, let idZ denote the identity map on AZ . Then for any finite set X ⊂ [−L,L]
we define EX = idX ⊗

⨂
y∈[−L,L]\X ρy, which has the following approximation property.

Lemma 5.1. [BHV06, NSW12, Cor. 3.1] Suppose A ∈ AL, and suppose there exist
X ⊂ [−L,L] and ε > 0 such that for all B ∈ A[−L,L]\X ,

∥[A,B]∥ ≤ ε∥A∥∥B∥. (5.2)

Then ∥(id[−L,L] − EX)(A)∥ ≤ ε∥A∥.

Lastly, we denote

Er = E[−L,r). (5.3)

for any r ∈ (−L,L].

Lemma 5.2. Let A,B ∈ AL such that maxSA < minSB. Suppose there exists k ≥ 0
such that for all T ∈ AL with minST > maxSA + k,

∥[τ (1)t (A), T ]∥ ≤ C∗∥A∥∥T∥g(t)f(d(SA, ST )) (5.4)

for some constant C∗ > 0 and g, f real-valued functions, where f is monotone decreasing.
Then, for all W ∈ AL such that

maxSA + k < minSW − 1 ≤ maxSW < minSB (5.5)

we have

∥[[W, τ (1)t (A)], τ (2)s (B)]∥ ≤
(
24C0

eµ

1− e−µ

)
C∗∥A∥∥B∥∥W∥g(t)ev|s|hµ(SA, SW , SB)

(5.6)

where

hµ(SA, SW , SB) = f(d(SA, SB)) + f(d(SA, SW )− 1)e−µd(SW ,SB)

+

DW∑
m=1

f(d(SA, SW ) +m− 2)e−µ(DW−m)
(5.7)

and DW = d(SW , SB) + diamSW + 1.

Proof. Denote id = id[−L,L]. Without loss of generality, we suppose ∥A∥ = ∥B∥ = 1 and
we denote b = minSB. For any X ⊂ [−L,L] and P,R ∈ AX we obtain EX(PQR) =
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PEX(Q)R for Q ∈ AL. Since by assumption W ∈ ran(Eb), we use the latter with

X = [−L, b), Q = τ
(1)
t (A) and P,R to be 1 and W alternatingly to get

Eb([W, τ
(1)
t (A)]) = [W,Eb(τ

(1)
t (A))]. (5.8)

Hence

∥[(id− Eb)([W, τ
(1)
t (A)]), τ (2)s (B)]∥ = ∥[[W, (id− Eb)(τ

(1)
t (A))], τ (2)s (B)]∥

≤ 4∥W∥∥(id− Eb)(τ
(1)
t (A))∥.

(5.9)

Next we bound ∥[Eb([W, τ
(1)
t (A)]), τ

(2)
s (B)]∥. We set w = minSW − 1 and note

[W, τ
(1)
t (A)] = [W, (id− Ew)(τ

(1)
t (A))] (5.10)

which implies

∥[Eb([W, τ
(1)
t (A)]), τ (2)s (B)]∥ = ∥[Eb([W, (id− Ew)(τ

(1)
t (A))]), τ (2)s (B)]∥

= ∥[[W,Eb(id− Ew)(τ
(1)
t (A))], τ (2)s (B)]∥. (5.11)

Using Jacobi’s identity (4.29) we obtain

∥[[W,Eb(id− Ew)(τ
(1)
t (A))], τ (2)s (B)]∥ ≤ ∥[Eb(id− Ew)(τ

(1)
t (A)), [τ (2)s (B),W ]]∥

+ ∥[W, [Eb(id− Ew)(τ
(1)
t (A)), τ (2)s (B)]]∥.

(5.12)

We first treat the term T = ∥[W, [Eb(id− Ew)(τ
(1)
t (A)), τ

(2)
s (B)]]∥. By setting X =

{x : d(x, SB) ≤ n} in Lemma 5.1, we decompose τ
(2)
s (B) =

∑∞
n=1B(s, n) such that each

B(s, n) ∈ ASB(n) and

∥B(s, n)∥ ≤ (2C0e
µ)ev|s|e−µn. (5.13)

Substituting this into T , yields

T ≤ 2∥W∥
DW∑
m=1

∑
n≥DW−m

∥[∆m(τ
(1)
t (A)), B(s, n)]∥ (5.14)

where DW = d(SW , SB) + diamSW + 1 and

∆m(τ
(1)
t (A)) =

(
Ew+m − Ew+m−1

)
(τ

(1)
t (A)). (5.15)

Hence (5.9), (5.11), (5.12) and (5.14) give

∥[[W, τ (1)t (A)], τ (2)s (B)]∥ ≤ 4∥W∥∥(id− Eb)(τ
(1)
t (A))∥

+ 2∥Eb(id− Ew)(τ
(1)
t (A))∥∥[τ (2)s (B),W ]∥

+ 2∥W∥
DW∑
m=1

∑
n≥DW−m

∥[∆m(τ
(1)
t (A)), B(s, n)]∥. (5.16)

Now assumption (5.4) with Lemma 5.1 implies

4∥W∥∥(id− Eb)(τ
(1)
t (A))∥+ 2∥Eb(id− Ew)(τ

(1)
t (A))∥∥[τ (2)s (B),W ]∥

≤8C0C∗∥W∥g(t)ev|s|
(
f(d(SA, SB)) + f(d(SA, SW )− 1)e−µd(SW ,SB)

)
(5.17)
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as well as

2∥W∥
DW∑
m=1

∑
n≥DW−m

∥[∆m(τ
(1)
t (A)), B(s, n)]∥

≤
(
16C0e

µ

1− e−µ

)
C∗g(t)e

v|s|∥W∥
DW∑
m=1

f(d(SA, SW ) +m− 2)e−µ(DW−m). (5.18)

Plugging (5.17) and (5.18) into (5.16), the assertion follows. □

Corollary 5.3. Let A,W,B ∈ AL such that

maxSA < minSW − 1 ≤ maxSW < minSB. (5.19)

Then for all s, t ∈ R

∥[[W, τ (1)t (A)], τ (2)s (B)]∥ ≤

(
72C2

0

eµ(diamSW+2)

1− e−µ

)
∥A∥∥B∥∥W∥ev(|t|+|s|)d(minSW − 1, SB)e

−µd(SA,SB).

(5.20)

Proof. This follows as a special case of Lemma 5.2 using the commutator bound from
Theorem 2.1 and k = 0. In this case,

hµ(SA, SW , SB) = e−µd(SA,SB) + e−µ(d(SA,SW )+d(SW ,SB)−1) +

DW∑
m=1

e−µ(d(SA,SB)−1)

≤ 3d(minSW − 1, SB)e
µ(diamSW+1)e−µd(SA,SB)

(5.21)

where we recall DW = d(minSW − 1, SB). □
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