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Awake ripples enhance emotional memory
encoding in the human brain

Haoxin Zhang 1,2,12 , Ivan Skelin3,4,12, Shiting Ma1, Michelle Paff5,
Lilit Mnatsakanyan1, Michael A. Yassa1,6,7, Robert T. Knight8,9 & Jack J. Lin 10,11

Enhanced memory for emotional experiences is hypothesized to depend on
amygdala-hippocampal interactions during memory consolidation. Here we
show using intracranial recordings from the human amygdala and the hippo-
campus during an emotional memory encoding and discrimination task
increased awake ripples after encoding of emotional, compared to neutrally-
valenced stimuli. Further, post-encoding ripple-locked stimulus similarity is
predictive of later memory discrimination. Ripple-locked stimulus similarity
appears earlier in the amygdala than in hippocampus and mutual information
analysis confirms amygdala influence on hippocampal activity. Finally, the
joint ripple-locked stimulus similarity in the amygdala and hippocampus is
predictive of correct memory discrimination. These findings provide electro-
physiological evidence that post-encoding ripples enhance memory for emo-
tional events.

Multiple mechanisms have been proposed to explain the prioritized
encoding of emotional experiences1–3, including the neuromodulatory
effects on plasticity and the interplay between the amygdala and the
hippocampus1,4–6. Several studies have found memory reinstatement
during the immediate post-encoding period to be predictive of later
memory performance7,8. Ripples are transient hippocampal oscilla-
tions (80–150Hz), associated with synchronous neural activation in
the hippocampus and the amygdala9,10, and are implicated in the
binding of anatomically distributed memory traces11. Behaviorally
relevant reactivation of emotional memory occurs during ripples12,
and disruption of post-experience ripples interferes with memory
utilization13. Based on these findings, we hypothesized that ripples
occurring immediately after stimulus encoding (post-encoding) facil-
itate emotional memory discrimination through coordinated
hippocampal-amygdala memory reinstatement or by facilitating the
retention of stimulus in working memory. Furthermore, we

hypothesize that either of these processes would result in increased
stimulus similarity during post-encoding ripples. Using intracranial
electroencephalographic (iEEG) recordings in epilepsy patients during
theperformanceof an emotional encoding anddiscrimination task,we
first confirm behavioral reports of better discrimination memory for
arousing stimuli3. Next, we demonstrate that the number of ripple
events immediately after encoding is associated with both stimulus-
induced arousal and the accuracy of later discrimination. Finally, the
coordinated post-encoding stimulus similarity across the amygdala
and the hippocampus during post-encoding ripples is predictive of
latermemorydiscrimination performance,with the amygdala stimulus
similarity showing a directional influence on the stimulus similarity in
hippocampus. Together, these findings provide evidence that ripples-
mediated dynamics in the amygdala and hippocampus provide a
mechanism accounting for better remembering of emotional
experiences.
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Results
Memory discrimination is enhanced for emotional stimuli
Weperformed simultaneous iEEG recordings from the amygdala and
the hippocampus in 7 human participants, while performing an
emotional memory encoding and discrimination task14,15 (Methods,
Fig. 1a). During the encoding stage, participants were presentedwith
a stimulus (image; stimulus encoding) and asked to rate the stimulus
valence as negative, neutral, or positive (post-encoding/response).
During the retrieval stage, participants were presented with one of
the 3 types of stimuli - Repeats (identical), Lure (slightly different) or
Novel (stimuli not seen during encoding) - and classified each sti-
mulus as New or Old.

Memory discrimination is defined as the correct classification of:
(1) Repeat stimuli as Old, (2) Novel stimuli as New, or (3) Lure stimuli as
New. Participants classified Repeat stimuli and Novel stimuli with high
accuracy (Repeat: 89.4 ± 2.4%, Novel: 93.9 ± 1.4%; Fig. 1b). Memory dis-
crimination accuracy was lower for Lure stimuli, relative to both Repeat
or Novel stimuli (Lure: 61.5 ± 3.7%; t(6) = 8.36, pNovelvsLure = 0.0002;
t(6) = 6.13, pRepeat vsLure =0.0009, two-sided paired t-test), reflecting
image similarity induced memory interference. There was a strong
negative association between participants’ stimulus discrimination
ability and lure image pair similarity rating (t(452) = −2.06, p=0.039, see
Methods, Fig. 1c, d). Stimulus-induced arousal (irrespective of valence)
was associated with correct Lure discrimination, confirming previous
reports1–3 (t(452) = 1.98, p=0.047, Fig. 1c, d, Supplementary Fig. 1). Nei-
ther the stimulus arousal (t(452) =−0.27, p=0.785, beta = −0.024) nor
valence (t(452) = 1.54, p=0.126, beta =0.216) were significantly

associated with correct Repeat discrimination, supporting the selective
effect of arousal on correct Lure discrimination. This could be due to the
lower difficulty of Repeat trials, as the correct Repeat discrimination
performance was already very high (Fig. 1b), limiting the discrimination-
enhancing effect of high stimulus arousal. Response times were not
significantly associated with the stimulus emotional valence
(F(2,18) =0.290, p=0.749, one-way ANOVA). The Lure discrimination
index (LDI, see Methods) is a procedure used to correct for the general
tendency of classifying the stimuli as New14. There was no significant
effect of valence on LDI (F(2, 18) =0.980, p=0.396, one-way ANOVA).
The effect of valence on LDI shows a considerable inter-participant
variability (Supplementary Fig. 2a), both in the terms of absolute values,
as well as the distribution across the valences. The reported relations
between the valence and LDI are mixed, including both the higher and
lower LDI for emotional stimuli3,14,15. LDI was significantly higher for high-
arousal stimuli (t(6) =−2.058, p=0.043, one-tailed paired t-test),
reflecting the tendency for classifying the high-arousal stimuli as New.

Correct Lure discrimination was significantly associated with
stimulus arousal (t(448) = 15.782, p = 6.15*10−45) and similarity
(t(448) = 50.562, p = 2.99*10−187), while there was no significant
association with valence (t(448) = 1.020, p = 0.308). In addition,
there was a significant interaction between the arousal and similar-
ity, (t(448) = 10.327, p = 1.44*10−22), reflecting the highest correct
Lure discrimination for the high-arousal stimuli of low similarity.
There was no other significant interaction between the experimental
variables (arousal x valence, similarity x valence, arousal x similarity
x valence; Supplementary Table 2).

Fig. 1 | Memory discrimination is more accurate for emotional stimuli. a Task
structure: participants are presented with an image (Stimulus encoding). Following
presentation, they rate the valence of the image as negative, neutral, or positive
(Post-Encoding/Response). Once all images are presented and rated, participants
are presented with 3 types of stimuli - Repeat (identical), Lure (slightly different) or
Novel (stimuli not seenduring encoding) - and classify each stimulus asOldor New.
b Correct discrimination is highest for Novel stimuli (93.9 ± 1.4%; median ± SEM),
followed by Repeats (89.4 ± 2.4%) and Lures (61.5 ± 3.7%). Two-sided paired t-test:
Novel vs. Repeat, *t(6) = 3.33, p =0.016; Novel vs. Lure, ***t(6) = 8.36, p =0.0002;
Repeat vs. Lure, *** t(6) = 6.13,p =0.0009. cCorrect discriminationof Lure stimuli is
positively associated with encoded stimulus-induced arousal (*t(452) = 1.98,

p =0.047, β =0.3 ± 0.12, two-sided logistic linear mixed-effect model) and valence
(t(452) = 1.48, p =0.137, β =0.15 ± 0.09, nparticipants = 7, two-sided logistic linear
mixed-effect model), while negatively associated with lure pair similarity
(*t(452) = −2.06, p =0.039, β = −0.24 ± 0.00, nparticipants = 7, two-sided logistic linear
mixed-effect model). The beta sign and magnitude indicate effect direction and
strength, respectively. Dots correspond to individual participants. Box and bar
indicatemean and 95%CI.d Probability of correct Lure discrimination as a function
of lure pair similarity and stimulus-induced arousal. The solid line shows the actual
proportion of New responses (y-axis) as a function of Lure stimulus SI (x-axis) for
low arousal (blue) or high arousal stimuli (red). The low/high arousal groups were
created using the median split. Source data are provided as a Source Data file.
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Post-encoding ripples are associated with enhanced
discrimination of emotional stimuli
We defined the post-encoding period as the interval between stimulus
offset and participants’ stimulus valence rating response (Fig. 1a). We
tested the association of post-encoding ripple rate (the number of
ripple events/second) with the stimulus emotional content (stimulus-
induced arousal and valence) and correct Lure discrimination during
retrieval. While the behavioral analysis was performed on 7 partici-
pants, one participant was excluded from the ripple-based analysis,
due to the low number of recorded ripples. The ripple-based analysis
was performed on 14 hippocampus and 20 amygdala electrodes, in 6
participants. The locations of electrodes used in the analysis are shown
in Fig. 2a and the average ripple waveform is shown in Fig. 2b.

Higher post-encoding ripple rate was associated with stimulus-
induced arousal (z(5) = −1.99, p =0.046, Wilcoxon signed-rank test,
Fig. 2c) and also predicted correct Lure discrimination during retrieval
(z(5) = −2.20,p = 0.028,Wilcoxon signed-rank test, Fig. 2c), butwas not
associated with stimulus valence (F (2, 15) = 1.88, p = 0.187, one-way
ANOVA; Supplementary Fig. 3). As the stimulus arousal and correct
Lure discrimination are correlated (Fig. 1c), while both being asso-
ciated with post-encoding ripple rate (Fig. 2c), we tested if the asso-
ciation between the ripple rate and correct Lure discrimination is
modulated by the stimulus arousal level. This analysis revealed the
main effects of stimulus-induced arousal (F(1,20) = 4.93,p =0.038) and
later correct Lure discrimination (F(1,20) = 8.32, p =0.009), with no
significant interaction (F(1,20) = 0.26, p =0.619, two-way ANOVA;
Supplementary Fig. 4). This result suggests that stimulus-induced
arousal and later correct Lure discrimination have an independent
association with post-encoding ripples. In addition, we tested if the
post-encoding ripple association with stimulus arousal/correct Lure
discrimination is limited to specific periods during post-encoding
epoch by performing the conditional comparisons of time-resolved

ripple rates (number of ripples/sec). Post-encoding ripple rates were
significantly higher for correctly discriminated, relative to incorrectly
discriminated Lure stimuli (Supplementary Fig. 5; p =0.005, −400 to
−50msec relative to response time), and for high-arousal, relative to
low-arousal Lure stimuli (Supplementary Fig. 5; p =0.035, −780 to
−600msec; non-parametric cluster-based permutation test). To sum-
marize, the post-encoding ripple associations with stimulus arousal/
correct Lure discrimination were present during distinct, non-
overlapping time windows, suggesting the distinct temporal relation
between these variables and post-encoding ripples.

Taken together, these results suggest post-encoding ripples as a
potential electrophysiological mechanism for enhanced memory dis-
crimination of arousing stimuli, previously characterized at behavioral
level2,3,16. Furthermore, the positive associations between ripples
and stimulus-induced arousal/later Lure discrimination were present
in all individual participants (Fig. 2c). The post-encoding response time
(RT) did not differ based on stimulus-induced arousal (z(5) = 0.7,
p =0.2, RThigh-arousal = 0.8 ± 0.1 sec; RTlow-arousal = 0.6 ± 0.2 sec) or later
Lure discrimination (z(5) = 0.6, p =0.25, RTcorrect = 0.7 ± 0.2 sec,
RTincorrect = 0.7 ± 0.3, Wilcoxon signed-rank test). Therefore, the asso-
ciations between stimulus-induced arousal or correct Lure dis-
crimination and post-encoding ripple rates were unrelated to post-
encoding duration.

Associations between ripple rate and stimulus-induced arousal/
later correct Lure discrimination accuracy were selective for the post-
encoding time window. These relationships were absent for the sti-
mulus encoding or the retrieval task stage (p >0.05, Wilcoxon signed-
rank test; Fig. 2c, Supplementary Fig. 6). Two-way ANOVA was used to
test if the association between the ripple rate and correct Lure dis-
crimination is task epoch-dependent. The analysis shows significant
main effects of task epoch (F (2, 30) = 103.91, p < 0.001) and correct
Lure discrimination (F(1, 30) = 9.67, p = 0.004). In addition, we

Fig. 2 | The post-encoding ripple rate predicts the stimulus-induced arousal
and memory discrimination. a Reconstructed locations of hippocampal (blue)
and amygdala electrodes (red). b The ripple grand average waveform (n = 4689
ripples in 6 hippocampal channels, 6 participants). Line and shaded areas represent
the mean ± SEM. c The ripple rate (events/sec) is significantly higher following
encoding of arousing (top right; *z(5) = −2.0, p =0.046, Two-sided Wilcoxon

signed-rank test) and later correctly discriminated stimuli (bottom right,
*z(5) = −2.2, p =0.028, Two-sided Wilcoxon signed-rank test). The ripple rate was
showing no conditional differences during stimulus encoding (left column, n.s. as
non-significant, p’s > 0.05, Benjamini-Hochberg correction for multiple
comparisons48). Box and bar indicate mean ± SEM. Source data are provided as a
Source Data file.
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observed significant epoch x discrimination interaction (Supplemen-
tary Fig. 7; F(2, 30) = 10.97, p = 0.0003, two-way ANOVA). Post-hoc
comparisons revealed the significantly higher ripple rates during post-
encoding epoch for the correctly discriminated Lure stimuli (post-
encoding: M(6) = −1.70, p <0.001, 95% CI = [−1.08, −0.47]), with no
significant conditional differences during the encoding or retrieval
epochs (p’s > 0.05; multcompare.m function in Matlab). To summar-
ize, the analysis shows that the correct Lure discrimination is selec-
tively associated with the ripple rate during post-encoding, but not
during encoding or retrieval epochs.

There was no significant association between the post-encoding
theta power and later correct Lure discrimination (t(261) = 0.187,
p =0.851, beta = 0.008, logistic regression). Overall, 30.8 ± 7.4%
(mean± SEM) of Lure trials contained one or more ripples during the
post-encoding period. Ripple probability was significantly higher
during low theta power periods (Supplementary Fig. 8), consistent
with observations of ripple suppression during periods of pronounced
theta oscillations11,13. In addition, ripples did not overlapwith increased
broadband gamma power, suggesting that ripples are distinct from
non-specific broadband power fluctuations17 (Supplementary Fig. 8).

Stimulus similarity is increased during post-encoding ripples
Recent studies suggest that post-encoding memory reinstatement
supports successful subsequent memory retrieval7,8 and ripples are
associatedwith reactivation of pre-established neuronal patterns18. We
hypothesized that stimulus similarity during the post-encoding ripple
windows could enhance later memory discrimination. Distinct neural
populations have been proposed to represent individual stimuli,
resulting in stimulus-specific high-frequency activity (HFA)
patterns19,20. We quantified stimulus similarity as the Spearman corre-
lation between HFA power spectral vectors (PSVs), for each combina-
tion of the encoding-response time bins from the same trial (see
Representational Similarity Analysis in Methods). Next, we computed
the average stimulus similarity during ±250 msec around post-
encoding ripple peaks. The similarity significance was determined
relative to a null distribution, obtained by circular jittering of ripple
timestamps. The post-encoding ripple-locked stimulus similarity was
stronger for arousing and correctly discriminated stimuli (Supple-
mentary Fig. 10). To assess specific contributions of the amygdala and
the hippocampus to this phenomenon, we calculated post-encoding
stimulus similarity for each region, relative to ripple peak (Fig. 3a). The
significant stimulus similarity period in the amygdala consisted of two
intervals, the first starting slightly earlier and overlapping with the
stimulus similarity in hippocampus (−105 to−50msec relative to ripple
peak), and a second period following the stimulus similarity in hip-
pocampus (40 to 200msec relative to ripple peak). The significant
similarity period in the hippocampus lasted from −100 to 50msec
(Fig. 3b). These results demonstrated region-specific timing of the
post-encoding ripple-locked stimulus similarity in the amygdala and
the hippocampus. We then analyzed the association of the post-
encoding stimulus similarity with the stimulus-induced arousal and
later Lure discrimination. The amygdala, but not the hippocampus,
showed a positive association between ripple-locked stimulus simi-
larity and the stimulus-induced arousal (AMY: −80 to −10msec,
p =0.035; HPC: p >0.05, see Methods; Fig. 3c). In contrast, the hip-
pocampus, but not the amygdala, revealed a positive association
between ripple-locked stimulus similarity and later correct Lure dis-
crimination (AMY: p > 0.05; HPC: −15 to 90msec, p = 0.008, see
Methods; Fig. 3c). In addition, the post-encoding ripple-locked simi-
larity in the amygdala was more strongly associated with stimulus
arousal than the ripple-locked similarity in the hippocampus (−70 to
20msec relative to ripple peak, p <0.001, non-parametric cluster-
based permutation test, Fig. 3d). In contrast, the ripple-locked simi-
larity in hippocampus was more strongly associated with later correct
Lure discrimination than the amygdala ripple-locked similarity (−60 to

10msec relative to ripple peak, p =0.046, non-parametric cluster-
based permutation test, Fig. 3d). In addition, the regional double-
dissociation of stimulus-induced arousal and later correct Lure dis-
criminationwas testedby comparing the lowvs. high stimulus-induced
arousal trials and correct vs. incorrect Lure discrimination trials,
separately for amygdala and hippocampus. This analysis shows that
the association between the stimulus-induced arousal and ripple-
locked similarity is significantly stronger than the association between
the later correct Lure discrimination and ripple-locked similarity in the
amygdala (−42msec to 0msec relative to ripple peak, p =0.034). The
opposite pattern was present in the hippocampus, where the asso-
ciation between the later correct Lure discrimination and post-
encoding ripple-locked stimulus similarity was significantly stronger
(−83msec to 10msec relative to ripple peak,p =0.047, non-parametric
cluster-based permutation test; Supplementary Fig. 9). To summarize,
post-encoding ripple-locked stimulus similarity in the amygdala and
the hippocampus were associated with reactivation of distinct aspects
of encoded stimuli (i.e., the amygdala for stimulus-induced arousal and
the hippocampus for later Lure discrimination accuracy).

The stimulus similarity on the trials not containing post-encoding
ripples was not significantly different based on the stimulus arousal
level or later correct Lure discrimination (non-parametric cluster-
based permutation test, p’s > 0.05; Supplementary Fig. 11). This result
further highlights the role of post-encoding ripples/ripple-locked
similarity in consolidation of emotional memories.

The post-encoding ripple-locked neural activity in the hippo-
campus (−190 to 20msec, relative to ripple peak) shows the significant
stimulus-specific similarity with the activity during stimulus encoding
(~500–750msec following the onset of encoding epoch; non-
parametric cluster-based permutation test; n = 1000 permutations,
p <0.05; Supplementary Fig. 12).The size/timing of significant stimulus
similarity during encoding is consistent with previous reports21,22, but
might also be driven by the factors specific to present study, such as
the comparison between the encoding and post-encoding ripple
activity. The peak ripple-locked stimulus similarity occurred sig-
nificantly earlier in the amygdala, than in the hippocampus (difference:
−18 ± 11msec, mean± SEM; t(5) = −3.89, p = 0.006, one-tail paired t-
test), with the timing difference being consistent across the partici-
pants (Supplementary Fig. 13).

Joint ripple-locked stimulus similarity increase in hippocampus
and amygdala
In rodents, the coordinated memory reactivation in the amygdala and
hippocampus during sleep ripples is proposed to bind neuronal
ensembles encoding emotional and spatial information, respectively20.
We reasoned that a similar interaction between the amygdala and the
hippocampal exists in which cross-regional post-encoding ripple-
locked stimulus similarity facilitates later discrimination. We hypo-
thesized that the periods of stimulus similarity in both structures co-
occur during the same ripple event and follow a consistent temporal
dynamic. To test this, we separately computed ripple-locked joint sti-
mulus similarity for the correctly and incorrectly discriminated stimuli
(Methods). A significant joint ripple-locked stimulus similarity in the
amygdala and hippocampus was present during the post-encoding
period only for correctly discriminated stimuli (Fig. 4a) and was max-
imal around ripple peaks (Supplementary Fig. 14). Specifically, the
amygdala stimulus similarity preceded the hippocampal stimulus
similarity by ~100msec. Further,mutual information analysis showed a
significant unidirectional influence from the amygdala to the hippo-
campus before ripple peak (−70 to −30msec, p =0.038; see Methods;
Fig. 4b). Ripple-like events were also detected in the amygdala, similar
to recent reports23. However, only 5.89 ± 1.82% (mean± SEM) of hip-
pocampal ripples were accompanied by ripple-like events in the
amygdala within the ± 50msec window. Thus, the joint increases in
post-encoding stimulus similarity during hippocampal ripples (Fig. 4)
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Fig. 3 | Post-encoding stimulus similarity in the hippocampus and amygdala
around ripple. a Ripple-locked similarity in the amygdala (top) and hippocampus
(bottom) during the post-encoding period (line and shaded areas represent the
mean ± SEM). b Post-encoding stimulus similarity is greatest around the time of
ripples as shown by comparison with the null-distribution (within ± 250msec).
Shaded areas denote the null-distribution 95% confidence interval. Similarity in the
hippocampus overlaps with ripple peak (orange), while similarity in the amygdala
peaks prior to and after the ripples (magenta). c Ripple-locked post-encoding sti-
mulus similarity in the amygdala is significantly higher for arousing stimuli (top left,
p =0.035, see Methods; two-sided non-parametric cluster-based permutation test)
but is not associated with subsequent discrimination (bottom left, n.s. as non-
significant, p =0.066). Ripple-locked post-encoding stimulus similarity in the hip-
pocampus is significantly higher for correctly discriminated Lure stimuli (bottom

right, p =0.008, see Methods; two-sided non-parametric cluster-based permuta-
tion test) but does not depend on stimulus-induced arousal (top right, n.s. as non-
significant, p >0.1). Line and shaded areas represent the mean ± SEM. d Double-
dissociation between the post-encoding ripple-locked stimulus representation in
hippocampus and amygdala. Left: The association between the stimulus arousal
and post-encoding ripple-locked stimulus similarity was stronger in the amygdala
(−70 to 20msec relative to ripple peak, p <0.001, one-sided non-parametric
cluster-based permutation test). Right: The association between the later correct
Lure discrimination and post-encoding ripple-locked stimulus similarity was
stronger in the hippocampus (−60 to 10msec relative to ripple peak, p =0.046,
one-sided non-parametric cluster-based permutation test). The line and shaded
areas represent the mean± SEM of the individual participant t-values. Source data
are provided as a Source Data file.
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were not dependent on coincident presence of ripple-like activity in
the amygdala. To conclude, ripple-mediated coordination of post-
encoding stimulus representation in the amygdala and the hippo-
campus promotes later successful discrimination.

Discussion
Rodent studies have implicated ripples in the retrieval and con-
solidation of emotional memory. However, it is unclear whether rip-
ples support the memory benefits of emotional experience24. Our
study reveals an association of higher ripple rate with stimulus-
induced arousal and subsequent correct stimulus discrimination,
providing direct evidence for ripple-mediated strengthening of emo-
tionalmemory. Interestingly, the increase in ripples has been shown in
rodents after exposure to a novel or reward-associated context25.
Together, this suggests that ripples may play a general role in the
selective enhancement of salient experiences26. Notably, such asso-
ciation is specific to the post-encoding period that starts immediately

after memory encoding, whenmemory retrieval is essential to rate the
emotional content of the stimuli. A recent study reported that ripple
levels during memory encoding or in a brief post-encoding period
(~400ms) were not predictive of subsequent memory for the pre-
sented stimulus27. While this corresponds with the lack of significant
association between the encoding ripples and correct Lure dis-
crimination in thepresent study (Fig. 2c), our results differwith respect
to the role of post-encoding ripples in subsequent memory (Fig. 2c).
This discrepancy could be due to presence of emotional stimuli in the
present study, whichwere associatedwith higher post-encoding ripple
activity (Fig. 2c, Supplementary Figs. 4, 5), or with the requirement for
stimulus valence rating in the present study, which might have trig-
gered ripple emergence and indirectly facilitated consolidation. This
finding supports theoretical assumptions that ripplesmediateboth the
retrieval of stored representation utilized in decision-making, and the
strengthening of the same representation, contributing to memory
consolidation25.

Fig. 4 | Synchronously increased ripple-locked post-encoding stimulus simi-
larity in the hippocampus and amygdala predicts the correct Lure dis-
crimination. a The ripple-locked joint stimulus similarity in the hippocampus and
amygdala for the correct (left) and incorrect (right) discrimination trials. Significant
similarity in the amygdala starts 100msec prior to the ripple peak, followed by the
hippocampus (−50 to 200msec). There is no significant joint stimulus similarity
during incorrect Lurediscrimination trials, suggesting that the cross-structure joint
stimulus similarity may be required for correct Lure discrimination. b Mutual
information (abbreviated as MI) difference for the amygdala (abbreviated as AMY)
and hippocampal (abbreviated asHPC) stimulus similarity time-courses, during the
post-encoding ripple windows (correct Lure discrimination - top, incorrect Lure

discrimination - bottom). Positive values denote stronger amygdala to hippo-
campus (AMY→HPC) directionality. A temporal cluster of significant MI difference
(AMY→HPC) is present before ripple peak time (−70 to −30msec) after encoding
of correctly discriminated Lure stimuli (top; p =0.038, see Methods), indicating
that hippocampal stimulus similarity is better predictable by amygdala stimulus
similarity than vice versa. This effect is present only during the post-encoding
period for correctly discriminated Lure stimuli (left), but not for the incorrectly
discriminated Lure stimuli (right, n.s. as non-significant). The line and shaded areas
represent the mean ± SEM of the individual participant MI difference. Source data
are provided as a Source Data file.
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Post-encoding stimulus similarity (or reinstatement) is implicated
in memory consolidation7,8,28,29 and peaks during ripples (Fig. 3). Thus,
beside the general role of ripples in memory consolidation, these
results also imply ripples as a potential mechanism mediating the
effects of arousal on memory consolidation. It should be noted that a
subset of trials contained no ripples during the post-encoding period.
During these trials ripple amplitudes might have been below our
detection threshold. In addition, the ripples might have occurred in
the different parts of the hippocampus or in the contralateral hemi-
sphere. The frequency overlap between the broadband gamma
(30–300Hz) and ripples (80–150Hz) could theoretically result in a
circularly inflated stimulus similarity during post-encoding ripples.
However, this scenario would not explain the stimulus-specificity of
ripple-locked activity (Supplementary Fig. 12), nor the significant
association between the post-encoding ripples and stimulus arousal/
later correct Lure discrimination (Fig. 3). Therefore, the ripple-locked
stimulus similarity during post-encoding epoch is likely functionally
relevant for emotional memory consolidation, rather than an epiphe-
nomenon of broadband gamma/ripple frequency overlap.

Next, we aimed to discern the link between the ripple-associated
interaction between the amygdala and hippocampus during post-
encoding and subsequent memory effect. We found the ripples were
accompanied by increased stimulus similarity during the post-
encoding period. Specifically, the post-encoding stimulus similarity
in the amygdala appears shortly before the ripple peak and shows
association with arousing stimuli, while the post-encoding stimulus
similarity in the hippocampus appears around the ripple peak and
shows associations with correct subsequent memory discrimination.
Moreover, the co-occurrence of the post-encoding stimulus similarity
in the amygdala and hippocampus during the same ripple events - with
the amygdala leading hippocampus by ~100msec - is predictive of
subsequent correct memory discrimination. Similarly, the directional
influence from amygdala to hippocampus during encoding was pre-
dictive of subsequent memory effect in human participants perform-
ing emotional memory task30. This finding suggests that the
coordinated increase in post-encoding stimulus similarity across the
amygdala and hippocampus during ripples is responsible for com-
bining emotional and contextual aspects of the memory24,31.

Post-encoding ripples, as defined in the study, occur immediately
following the stimulus encoding and might represent the initial stage
of stimulus memory consolidation. This stage could be particularly
relevant in the present task setting, since the stimulus consolidation
might be interfered by the presentation of consecutive stimuli. Tran-
sient peaks of post-encoding stimulus similarity during ripples (Fig. 3)
might strengthen the connectivity between the neurons participating
in stimulus representation, both within the hippocampus and in the
hippocampus/amygdala circuitry (Fig. 4). In addition, the better dis-
criminability of high arousal Lure stimuli with low within Lure pair
similarity (Supplementary Table 2) might reflect the higher encoding
fidelity and/or more efficient consolidation of arousing stimuli, as
suggested by the higher ripple-locked post-encoding stimulus simi-
larity for arousing stimuli (Figs. 3 and 4). These mechanisms might
result in a higherfidelity stimulus representationat retrieval, allowing a
more reliable discrimination from the corresponding Lure stimulus.

Ripples are associated with synchronous activation of neuronal
ensembles in the hippocampus and connected structures31–33. The
onset of ripple-locked similarity in the amygdala prior to ripple peak
(Fig. 3c) suggests a sequential process whereby amygdala activation
triggers the hippocampal ripple, followed by the cascade of ripple-
associated plasticity34,35, resulting in higher probability of later correct
Lure discrimination. Similarly, electrical stimulation of the amygdala
could potentially induce the hippocampal recruitment equivalent to
endogenous ripples and facilitate the consolidation of recently enco-
ded content, as demonstrated by Inman et al.36. On the other hand,
high frequency electrical stimulation of the hippocampus during

encoding impairs emotional memory consolidation37, suggesting the
disruption of consolidation-related hippocampal dynamics.

The presence of ripple-like activity, coincident with hippocampal
ripples, was recently reported in the human amygdala23 and cortical
areas38–40. While the presence of ripples in the extrahippocampal struc-
tures, especially in the epileptic brain, is still a subject of debate41, it is
possible that the post-encoding stimulus similarity in the amygdala is
driven by ripple-like activity. This would be consistent with the co-
occurrence of hippocampal ripples and ripple-like activity in temporal
cortex during memory retrieval40. However, only ~5% of hippocampal
ripples were accompanied by ripple-like activity in the amygdala.
Regardless of the nature of ripple-like activity in the amygdala, the
relatively low coincidence with hippocampal ripples suggests the suffi-
ciency of hippocampal ripples alone for coordinating the joint stimulus
representation across the structures (Fig. 4a, Supplementary Fig. 14).

The post-encoding stimulus similarity occurs during the stimulus
valence rating, immediately following the stimulus encoding (Fig. 1a).
Therefore, the higher post-encoding similarity might be driven by
either the retention of stimulus representation in working memory or
by memory reinstatement. The interpretation that the post-encoding
stimulus representation reflectsworkingmemorycontent is consistent
with the proposed role of hippocampal ripples in working
memory13,42,43. While working memory is traditionally conceptualized
as persistence of stimulus-specific activity44, the post-encoding simi-
larity in the present study is concentrated around ripple peaks (Fig. 3).
Therefore, to the extent that post-encoding similarity is driven by
working memory, it is consistent with the intermittent representation
of workingmemory content45. On the other hand, the stimulus valence
rating during post-encoding epoch could also rely on memory retrie-
val, which was associated with ripple emergence46. Regardless of the
underlying mechanisms, the post-encoding ripple-locked stimulus
similarity is associated with later correct Lure discrimination. This
could be due to the contribution of post-encoding ripples to memory
consolidation, resulting in a higher fidelity of encoded representation
and higher probability of later correct Lure discrimination.

Lure stimulus discrimination is arguably amore difficult cognitive
task, relative to recognition of Novel or Repeat stimuli, as reflected by
the performance difference between these trial categories (Fig. 1b).
While it is possible thatpost-encoding ripples also support these forms
of recognition, it could be obscured by the ceiling effect, as the per-
formance on Novel or Repeat trials might be high regardless of the
ripple presence. In addition, a small number of incorrect discrimina-
tion Novel or Repeat stimuli would not provide enough statistical
power to answer this question in the current setting.

The number of participants in the present study is relatively low,
due to paucity of participants with simultaneous amygdala and hip-
pocampus recordings outside of seizure onset zone. However, the
effects are consistent across the individual participants (Figs. 1c, 2c and
Supplementary Figs. 2a, b, 3, 6, 8b, 9, 14), mitigating the possibility of
outliers affecting the study conclusions.

To summarize, both the joint post-encoding similarity andmutual
information analyses confirm the predictive validity of directional
influence from the amygdala to the hippocampus before ripples on
correct Lure discrimination, establishing a link between the amygdala
post-encoding stimulus similarity and memory discrimination as a
physiological mechanism of emotional memory enhancement. Toge-
ther, our data support a model wherein the post-encoding stimulus
similarity in the amygdala, triggered by emotional stimuli, elicits hip-
pocampal ripple-associated stimulus similarity, which facilitates sub-
sequent memory performance.

Methods
Participants
Intracranial electroencephalography (iEEG) recordings were obtained
from 7 participants (3 females; mean age ± SD = 33 ± 16), undergoing
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presurgical monitoring of epileptic foci at the University of California
Irvine Medical Center (UCIMC) Epilepsy Monitoring Unit. The indivi-
dual participant demographic information is shown in Supplementary
Table 1. Only the participants with the correct discrimination rate of
Novel trials > = 85% (see Emotional memory encoding and dis-
crimination task) were included in the analysis. The behavioral
inclusion threshold (> 85% performance on Novel trials) was used as a
sensitive indicator of participants attention level. Correct perfor-
mance onNovel trials required classifying the stimuli encountered for
the first time and with no similarity to previously encountered stimuli
as New. One participant was excluded from the behavioral analysis
due to low performance on Novel trials (60.5%, z = −2.34), while the
rest of the participants performed at much higher level (93.3 ± 1.6%,
mean ± SEM). In addition, this participant performed close to the
chance level (50%) across all the trial types combined (51.7%,
z = −2.43). Electrode placements were determined entirely based on
clinical considerations. All the research procedures were approved by
the UCI Institutional Review Board and data was collected following
informed consent.

Statistics
All the statistical tests were performed with the individual participant
as the unit of analysis. Unless stated otherwise, all the statistical tests
(e.g., Wilcoxon signed-rank test, t-test) were two-tailed. The effects of
valence, stimulus-induced arousal and similarity on stimulus dis-
crimination (Fig. 1c) were assessed using the logistic linear mixed-
effect model (for details, see Behavioral Analysis). The association
between post-encoding ripples and stimulus arousal/correct Lure
discrimination was tested using ripple rates (number of ripples/sec,
Fig. 2; Supplementary Figs. 4–7). Except for the Wilcoxon signed-rank
test analysis shown inFig. 2c, ripple rateswerenormalized at individual
participant level using z-score. Conditional comparisons of ripple rates
(correct/incorrect Lure discrimination or high/low arousal; Fig. 2c)
were done using theWilcoxon signed rank test (p < 0.05). Associations
between the stimulus-induced arousal/later correct Lure discrimina-
tion and ripple rate were analyzed using two-way ANOVA (anovan.m
function in Matlab, p < 0.05; Supplementary Figs. 4 and 6). The epoch-
dependence of ripple associationwith correct Lure discrimination was
tested using the two-way ANOVA (p < 0.05; Supplementary Fig. 7).
Post-hoc testsweredoneusing themultcompare.m function inMatlab.
The non-parametric statistical test was used due to non-normal dis-
tribution of ripple numbers across the participants. The association
between the post-encoding theta power on ripple channels and later
correct Lure discrimination was tested using the logistic regres-
sion (p < 0.05).

Statistical significance of ripple-locked post-encoding stimulus
similarity (Fig. 3b) was assessed by comparing the real test statistics
with empirical null distribution, obtained using Monte Carlo method
(for details, see Representational Similarity Analysis).We implemented
the non-parametric cluster-based permutation test47 to assess the
conditional differences (correct/incorrect Lure discrimination or high/
low arousal) of post-encoding stimulus similarity (Fig. 3c) and mutual
information (Fig. 4b), by randomly shuffling the conditional trial labels
1000 times (for details, see Representational Similarity Analysis).
Similarly, the significant temporal windows for the cross structure
ripple-locked joint post-encoding stimulus similarity (Fig. 4a) were
assessed by comparing to empirical null distribution (for details, see
Joint post-encoding stimulus similarity analysis). The correction for
multiple comparisons was performed using the Benjamini-Hochberg
procedure48. To compare the timing of ripple-locked stimulus simi-
larity between the hippocampus and amygdala, the peak similarity
timings were computed during post-encoding ripple windows, fol-
lowing the encoding of later correctly discriminated stimuli. Next, the
peak similarity timings were compared between the regions using the
one-tail paired t-test (p < 0.05; Supplementary Fig. 13).

Emotional memory encoding and discrimination task
The emotional memory encoding and discrimination (EMOP) task
consists of encoding and discrimination blocks. During the encoding
block (148 trials), each trial consists of a cross fixation (1000msec),
followed by stimulus encoding (2000msec) and self-paced post-
encoding response period (up to 2000msec). During the post-
encoding response period, participants are asked to classify the sti-
mulus emotional valence as either negative, neutral or positive, using
the corresponding laptop key. During the retrieval block (290 trials),
trial time structure is identical to encoding phase. Following the cross
fixation (1000msec), the participants are presented for 2000msec
with a stimulus identical (Repeat, 54 trials), slightly different (Lure, 97
trials) or unrelated (Novel, 139 trials) to previously encoded stimuli.
Next, during the self-paced memory discrimination epoch (up to
2000msec), participants are asked to discriminate if the presented
stimulus was seen during encoding (Old) or not (New). Correct dis-
crimination is defined as classifying the Repeat stimuli as Old and Lure
orNovel stimuli asNew.The stimuli were selected from the continuous
distributions across the valence and stimulus-induced arousal axes
(Supplementary Fig. 1). The same set of stimuli was used across par-
ticipants. In addition, the valence, arousal and lure pair similarity of
each stimulus were rated by separate cohorts of healthy participants
(also used in Leal et al.14). Specifically, a first cohort (N = 50, 32 females;
age mean± SD= 22 ± 5) rated the stimulus emotional valence on a
continuous scale (range 1–9, with 1 denoting the most negative, 9 the
most positive, and 5 neutral valence). Stimuli were assigned in
Negative (valence < = 3.5), Neutral (3.5 > valence < 6) or Positive
(valence > = 6) groups. Another cohort of healthy participants (N = 16,
4 females; age mean ± SD = 23 ± 5) rated the stimulus-induced emo-
tional arousal on a scale 1–9 (1 being the least and 9 being the most
arousing). Finally, a third cohort (N = 17, 11 females; age mean± SD =
20 ± 1) examined relative lure pair similarity between the pair of lure
images presented during encoding and retrieval stage on the scale
1–814. The rationale for obtaining the categorical ratings from study
participants was the need of using the sliding scale for obtaining the
continuous ratings, which would introduce systematic difference in
response times, depending on the scale distance. The continuous
ratings from healthy participants were used for behavioral/neuro-
physiological correlation based on the: a) better feasibility of con-
tinuous behavioral variables for correlation with neural signals and b)
high correspondence between the continuous (healthy participants)
and categorical (study participants) ratings (~85%; Supplementary
Fig. 1b). The high correspondence of stimulus valence ratings obtained
from study participants and healthy population suggests the intact
emotional processing in study participants (Supplementary Fig. 1).

Behavioral analyses
To assess the effects of valence, stimulus-induced arousal and simi-
larity on Lure stimulus discrimination, we implemented the logistic
linear mixed-effect model.

y=βX + uZ + ε ð1Þ

In this model, y indicates the responses across the individual Lure
discrimination trials (0-Old; 1-New), X = x1, x2, x3

� �T denotes three
fixed effect regressors (encoded stimulus valence and arousal as well
as similarity between the encoded and Lure stimulus), Z = z1

� �T
denotes random effect regressor (participant identity), β and u denote
the fixed and random-effect regression coefficients, and ε denotes the
error term. The model includes random intercept to incorporate
individual participant differences. We normalized the valence,
stimulus-induced arousal and similarity values relative to the scale of 0
to 1. The statistics reported in Fig. 1c corresponds to the fixed-effect
coefficients β. Lure discrimination index (LDI) is defined as the differ-
ence in the probability of Lure and Repeat stimuli being classified as
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New (p(New|Lure) – p(New|Repeat)). This procedure corrects for the
general tendency of classifying the stimuli as New14. The effect of
valence on LDI was tested using one-way ANOVA (p <0.05). The LDI
comparison between the low- and high-arousal stimuli was performed
using the one-tailed paired t-test (p <0.05). The association between
the valence and response times was tested using one-way ANOVA
(p < 0.05). The effects of stimulus arousal and valence on the correct
discrimination were tested using the linear mixed-effects model
(LME; p <0.05).

Data collection
The behavioral experiment was administered using the
PsychoPy2 software49 (Version 1.82.01). The laptop was placed at a
comfortable distance in front of the participant. The iEEG signal was
recorded using a Nihon Kohen system (256 channel amplifier, model
JE120A) andNeuraLynxATLAS acquisition system,with an analog high-
passfilter (0.01 Hz cutoff frequency) and sampling frequency 5000Hz.

Data analysis
The following softwares and packages were used: MATLAB (Version
9.7); Fieldtrip Toolbox; Advanced Normalization Tools(ANTs); Freely
Moving Animal Toolbox(FMA); Wavelet Toolbox; Signal Processing
Toolbox; Statistics and Machine Learning Toolbox; EEMD package
(https://github.com/leeneil/eemd-matlab.git).

Electrode localization
We localized each electrode using pre-implantation structural T1-
weighted MRI scans (pre-MRI) and post-implantationMRI scans (post-
MRI) or CT scans (post-CT). Specifically, we co-registered pre-MRI and
post-MRI (or post-CT) scans by means of a rigid body transformation
parametrized with three translation in x,y,z directions as well as three
rotations using Advanced Normalization Tools (ANTs https://stnava.
github.io/ANTs/). We implemented a high-resolution anatomical tem-
plate with the label of medial temporal lobe subfields14 to guide the
localization for individual electrodes. We resampled the template with
1mm isotropic, and aligned it to pre-MRI by ANTs Symmetric
Normalization50 to produce a participant-specific template. The elec-
trode localization was identified by comparing the participant-specific
template subfield area with electrode artifacts (Fig. 2a). The localiza-
tion results were further reviewed by the neurologist (J.J.L.).

Preprocessing
The signal preprocessing was done using the custom-written MATLAB
code (Version 9.7) and Fieldtrip Toolbox51. The 60Hz line noise and its
harmonics were removed using a finite impulse response (FIR) notch
filter (ft_preprocessing.m function in FieldTrip). The EEG signal was
down-sampled to 2000Hz, demeaned and high-passed filtered (cutoff
frequency 0.3Hz). The power spectrum density (PSD) was computed
using the multitaper method with the Hanning window (ft_freqanaly-
sis.m function in FieldTrip). All the channels were re-referenced to the
nearest whitematter channel from the samedepth electrode, based on
the electrode localization results. The interictal epilectic discharges
were manually marked by an epileptologist (J.J.L.), using the ft_datab-
rowser.m function in FieldTrip. The channels with severe contamina-
tion and trials containing epileptiform discharges were excluded from
further analyses.

Ripple detection
Following the removal of channels with excessive epileptic activity and
individual trials containing visually identified interictal epilectic dis-
charges, ripples were detected on the remaining hippocampal chan-
nels, using the Freely Moving Animal Toolbox (FMA; http://
fmatoolbox.sourceforge.net/). Only the hippocampal channels were
used in ripple detection for ripple-based analysis. First, the iEEG traces
from the trials used in the analysis were concatenated. Next,

concatenated traces were bandpass-filtered (80–150Hz, Chebyshev
4th order filter, function filtfilt.m in Matlab). The analytical amplitude
was obtained by computing the absolute value of Hilbert-transformed
filtered trace (function hilbert.m in Matlab). The analytical amplitude
values during periods ± 75msec around the trial onsets/offsets were
set to zero, to avoid the edge effects resulting from concatenating
discontinuous traces. Finally, the envelope was z-scored and
threshold-based ripple detection was performed on z-scored trace
(Supplementary Fig. 15a). Detected events were considered ripples if
the z-scored analytical amplitude remained above the lower threshold
(z = 2) for 20–100msec and if the peak value during this period
exceeded higher threshold (z = 5). The prominence of the sharp-wave
component in the ripple waveform depends on the optimal electrode
position in the hippocampal layers52. As the electrode position in
human participants can’t be optimized post-surgically, this likely
accounts for the absence of prominent sharp-wave component in the
ripple waveform in this study, similar to other published examples of
human ripples25,27,38,53. As an additional control analysis, we compared
the ripple detection from the hippocampal iEEG signal with the event
detection from the synthetic signal of the same spectral character-
istics, using the identical detection procedure (see Ripple detection).
Only the channels with z-scored number of detected ripples > −2 and
number of detected events higher than in the synthetic signal (see
Ripple detection from synthetic signal) were used in the analysis. The
participant 1 was excluded from the analysis based on the low number
of detected putative ripple events (z-score < −2, relative to distribution
of detected ripple numbers across the participants,which is not higher
than chance level (Supplementary Fig. 16). If the multiple channels
froma singleparticipant passed this criteria, a channelwith the highest
number of detected ripples was selected for further ripple-related
analysis. Ripple-locked windows for both the hippocampal and
amygdala activity were performed relative to ripple timestamps from
the hippocampal channel with the highest number of detected ripples
within a given participant. Ripple-like activity in the amygdala was
detected using the same algorithm. Coincidence between the hippo-
campal ripples and ripple-like activity in the amygdala was calculated
as the percentage of hippocampal ripples accompanied by amygdala
ripple-like activity within the ± 50msec. Only the Lure trials were used
in ripple-based analysis.

Time-resolved ripple rates
The time-resolved ripple rates (Supplementary Fig. 5) were calculated
for individual epochs (encoding, post-encoding) and conditions (low
and high stimulus-induced arousal, correct and incorrect Lure dis-
crimination), using the msec bin size andmsec step size. The resulting
time-resolved ripple rate was smoothed with a Gaussian kernel
(σ = 150msec) and averaged across the trials. The time-resolved ripple
rate was compared based on the low vs. high stimulus-induced arousal
and later correct vs. incorrect Lure discrimination contrasts, using
non-parametric cluster-based permutation test (p <0.05).

Ripple detection from synthetic signal
The power spectral density (PSD)was calculated for eachhippocampal
channel used in ripple detection. Next, the channel-specific filter was
applied on a random signal with Gaussian distribution, resulting in a
synthetic signal with identical spectral slope as the hippocampal sig-
nal. Specifically, the synthetic signalwasfirst transformed to frequency
domain by N-point Fourier transform (N denoting the number of
datapoints in the signal), followed by multiplication of resulting
spectrum by the PSD coefficients and application of inverse Fourier
transform, to convert the signal back to time domain. The resulting
synthetic signal mimicked the hippocampal channel-specific spectral
characteristics. Next, the ripple detection procedure (see Ripple
detection) was applied on the synthetic signal. Finally, as an additional
control, the numbers of detected events were compared between the
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hippocampal iEEG signal and channel-specific synthetic signal. In all
the 6 participants used in the ripple-based analysis (participants 2–7),
the numbers of detected ripples were higher than the numbers
obtained from the participant-specific synthetic signals (Supplemen-
tary Fig. 16). Participant 1 was excluded from the analysis based on
the two criteria: a) low number of detected putative ripple events
(z-score < −2, relative to distribution across the participants) andb) the
number of detected events lower than chance level, defined as the
number of detected events in synthetic signal (Supplementary Fig. 16).

Unsupervised decomposition of iEEG signal
To assess the post-encoding stimulus similarity, high-frequency
activity (HFA; 30–280Hz) was used as an indirect measure of local
population activity19,20,54. This frequency range is relatively broad and
the simple bandpass-filtering might cause a disproportionate con-
tribution of lower frequencies within the bandpass range to the overall
HFA estimate, due to the 1/f nature of EEG power spectra. To avoid this
confound, we applied the Ensemble Empirical Mode
Decomposition20,55 (EEMD; https://github.com/leeneil/eemd-matlab.
git), to identify the individual characteristic signal modes within the
frequency range of interest. Time series representing each individual
mode were normalized across time, resulting in a more balanced
sampling across the broadband gamma range. Briefly, the EEMD
decomposes a non-stationary signal into its elementary components,
referred to as intrinsicmode functions55 (IMFs; Supplementary Fig. 17).
The procedure iteratively applies an empirical mode decomposition
algorithm, while adding white noise to prevent the mode mixing55,56.
Using this approach, decomposition output entirely depends on the
signal’s intrinsic properties, avoiding prior assumptions20,55,56. The
resulting IMFs captured several canonical spectral features con-
sistently across participants and anatomical structures (Supplemen-
tary Table 3). Finally, the HFA time-series on individual channels were
reconstructed by summing the channel-specific IMFs with center fre-
quencies > 30 Hz20.

Time-frequency representation of the HFA
The instantaneous spectral power at each time-frequency bin was
derived from the reconstructed HFA time series (x), using a wavelet
transform57,58. This approach consists of convolving the time series x
with a set of Morlet wavelets, parametrized by a range of cycle num-
bers (n = 2, 3, …, 10) at a given frequency f,

Pf ,n tð Þ= ψf ,n * x tð Þ
��� ���,n= 2,3, . . . ,10 ð2Þ

with ψf ,n defined as

ψf ,n =
1

Bn

ffiffiffiffiffiffi
2π

p e
� t2

2B2n e j2πf t ,where Bn =
n
5f

ð3Þ

and computing the geometric average ðP̂ðf , tÞÞ of resulting spectral
power at each time- frequency bin:

P̂ f , tð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY10

n= 2
Pf ,n tð Þ9

r
ð4Þ

This approach results in a high temporal and frequency resolu-
tion, facilitating the detection of narrow-band, transient oscillatory
events57,58. The wavelet center frequencies were within 30–280Hz
range, with 1Hz increments. The wavelet cycle number range (2–10) is
commonly used59. To avoid the edge effects, this procedure was
applied on the entire individual recording sessions, and the resulting
time-frequency response matrices were segmented into trial epochs
(starting −1000msec prior to stimulus onset and ending 1000msec
after the response time). The power within each trial epoch was then
normalized by z-transforming each frequency bin and subtracting the

average pre-trial baseline (−1000 to 0msec, relative to stimulus
onset59).

Representational Similarity Analysis (RSA)
The representational similarity was quantified as the Spearman cor-
relation between the HFA power spectral vectors (PSVs), for each
combination of the encoding-response time bins from the same
trial21,46,60,61 (Supplementary Fig. 17). Specifically, the instantaneous
spectral power at each frequency was estimated for 100msec time
bins (10msec step size, 90%overlap), producing the timebin - specific
power spectrum vectors (PSV), spanning the encoding (2 sec time
window after stimulus onset) and post-encoding response (time
window after stimulus offset and before button press) periods:

~PSVencoding t1
� �

= z1 t1
� �

, . . . ,znf
t1
� �h i

encoding
ð5Þ

PSVresponse t2
� �

= z1 t2
� �

, . . . ,znf
t2
� �h i

response
ð6Þ

Similar to previous studies21,22,46,60–62, we computed Spearman’s
correlation as ameasure of PSV similarity between the encoding time t1
and response time t2 for each encoded stimulus,

r t1, t2
� �

=
Cov rgPSVencoding t1ð Þ, rgPSVresponse t2ð Þ

� 	
σrg

PSVencoding t1ð Þ
σrg

PSVresponse t2ð Þ
, t1 2 0, 2½ �, t2 2 0,RT½ � sec ,

ð7Þ

with rg representing the ranking operator on the vector PSV , and σ the
variance of the vector. This produced a trial-specific two-dimensional
similarity matrices, containing all the combinations of encoding (t1)
and response (t2) time bins (Supplementary Fig. 15c). The correlation
coefficients r were then Fisher transformed, with the resulting
coefficients following Gaussian distribution. The region-specific
(amygdala andhippocampus) similaritymatriceswere averaged across
trials within individual participants (producing the participant/region-
specific similarity maps) and used for group-level statistical analysis.
The association strength between the post-encoding ripple-locked
stimulus similarity and a) stimulus arousal or b) later correct Lure
discrimination was compared between the amygdala and hippocam-
pus. First, the regional t-values were computed, based on within-
participant comparison between the post-encoding ripple-locked
stimulus similarity for low- and high-arousal Lure stimuli or for the
correctly or incorrectlydiscriminated Lure stimuli. The regional t-value
time courses were then compared using the non-parametric cluster-
based permutation test (1000 permutations, p <0.05).

Ripple-locked stimulus similarity
Stimulus similarity during individual post-encoding time bins was
computed by averaging the bin-specific similarity with the encoding
period (200 timebins over 2 sec), resulting in a stimulus similarity time
series. To obtain the ripple-locked stimulus similarity, we averaged the
stimulus similarity within ± 250msec around the individual ripple peak
times, separately for amygdala and hippocampus (Fig. 3a). To avoid
the leakage of encoding epoch activity, only the part of the ripple-
lockedwindows non-overlappingwith the encoding epochwas used in
the ripple-locked analysis. We next tested whether the post-encoding
stimulus similarity is locked to ripples (Fig. 3b), by comparing the
grand-average ripple-locked stimulus similarity tracewith an empirical
null distribution obtained from Monte Carlo simulation. Specifically,
we circularly randomly jittered the ripple peak times within
± 500msec window for 1000 times, obtaining an empirical null dis-
tribution of stimulus similarity. Circular jittering denotes the method
of event time shuffling within a limited time window. In the context of
the present study, the time window is defined by the onset of post-
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encoding epoch and the offset of subsequent cross-fixation (Fig. 1a).
For example, if the ripple occurred 200msec after the post-encoding
onset and the randomly generated shuffled distance is −500msec, the
assigned shuffled ripple timestampwould be −300msecprior to offset
of the cross-fixation epoch. Next, the stimulus similarity trace around
jittered timestamps was averaged within participants and the grand
average was calculated across participants. The procedure was repe-
ated for 1000 times, resulting in an empirical null-distribution of sti-
mulus similarity. Regional similarity trace windows exceeding 95th
percentile of null-distributionwere consideredwindows of statistically
significant ripple-locked stimulus similarity.

To test whether the ripple-locked stimulus similarity is asso-
ciated with stimulus-induced arousal and later discrimination
(Fig. 3c), we first derived the ripple-triggered stimulus similarity, a
metric taking the time-locked specificity relative to ripple peak time
into account. For every stimulus similarity trace around ripple peak
time, we circularly jittered the time as the procedure described
above. This results in an empirical null distribution of stimulus
similarity (i.e., correlation coefficient) for every time point around
ripple. We normalized the real stimulus similarity by z-scoring with
mean and standard deviation of the null distribution. We referred to
the resulting z-value as ripple-triggered stimulus similarity and it
follows Gaussian distribution. We quantified the ripple-locked sti-
mulus similarity difference between the high/low arousal and
between correct/incorrect Lure discrimination at every time point
by t-test, and corrected for the multiple comparisons using non-
parametric cluster-based permutation test. Specifically, we per-
formed the group-level comparisons using paired t-test and identi-
fied contiguous time bins with the p < 0.05, defined as clusters. The
t-values within each cluster were summed as the cluster statistics.
We created an empirical null distribution by shuffling the condi-
tional trial labels 1000 times where the maximum cluster statistics
was identified for each permutation. It was considered as statistically
significant if the real t-sum cluster statistics exceeded the 95% per-
centile of the null distribution. In addition, regional double-
dissociation was tested by computing the region-specific (amyg-
dala and hippocampus) t-value time series, obtained by comparing
the low vs. high stimulus-induced arousal trials and correct vs.
incorrect Lure discrimination trials within-participant. Next the
condition-specific t-values were compared separately for each
region, between the stimulus-induced arousal and later correct Lure
discrimination, using the non-parametric cluster-based permutation
(p < 0.05; Supplementary Fig. 9). As an additional control analysis,
we averaged the post-encoding ripple times at participant level,
using response times as reference points. The average post-
encoding ripple times were used to compare the event-locked sti-
mulus similarity on the trials not containing post-encoding ripples
(non-parametric cluster-based permutation test, p’s > 0.05; Supple-
mentary Fig. 11).

Stimulus-specific representational similarity
The stimulus-specificity of ripple-locked activity in the hippo-
campus was determined by first computing the similarity between
the activity during encoding epoch on i-th trial (Enci) and post-
encoding ripple window (Ripple) on the same trial (Ssame = r(Enci,
Ripplei)). Next, we computed the similarity between other stimuli
encoding epochs and (Enc1, 2, …n) and post-encoding ripple window
on the i-th trial (Sdiff = r(Enc1, 2,…n, Ripplei), n denoting the number of
different stimuli in the experiment). As the Ssame might be inflated
due to temporal proximity between the Enci and Ripplei

63,64, we
accounted for the difference in average post-encoding epoch simi-
larity (Savg) between the same and different trials. Specifically, Savg
was defined as the difference in similarity between the encoding
epoch and the entire post-encoding window on the same trial
(Ssame_avg) or different trials (Sdiff_avg). For each individual stimulus,

the stimulus-specific similarity (Sspec) was defined as following:

Sspec = ðSsame� Sdiff Þ � ðSsame avg � Sdiff avgÞ ð8Þ

Next, the Sspec was averaged at participant level and the t-statistics
was obtained by comparing the participant-averaged Sspec with zero.
The similarity null-distribution (Sshuff) was created by shuffling the
stimulus identity (same vs. different) 1000 times and obtaining the
t-statistics as described above. Finally, the cluster statistics was per-
formed by comparing the t-values obtained from Sspec with the dis-
tribution of t-values obtained from Sshuff (non-parametric cluster-
based permutation test; n = 1000 permutations, p < 0.05; Supple-
mentary Fig. 12).

Cross-structure joint ripple-locked stimulus similarity
The cross-structure joint ripple-locked stimulus similarity was
obtained by calculating the outer product between the structure-
specific stimulus similarity traces (hippocampus and amygdala) during
post-encoding ripple windows. The resulting joint stimulus similarity
matrices were averaged across the individual ripples for each partici-
pant, separately for later correctly or incorrectly discriminated trials.
To assess the statistical significance of joint cross-structure stimulus
similarity, we performed a Monte Carlo simulation to generate an
empirical null distribution by circularly jittering the ripple peak times.
The stimulus similarity significance was defined as exceeding the 95%
percentile of null distribution (Fig. 4a).

Dual states analyses
Recorded periods were divided into low- and high-theta (3–10Hz) or
gamma (30–250Hz) periods, based on the participant-specific power
median split, resulting in an equal amount of time assigned to each
state. The ripple proportion is defined as the proportion of the total
number of ripples occurring during an individual state. The ripple
proportion comparisons between the low- and high-theta or gamma
periods were performed using one-tailed Wilcoxon signed-rank test
(p < 0.05; Supplementary Fig. 8b).

Mutual information
Mutual information (MI)59,65 is a method for quantifying the amount of
information shared between the variables of interest. In electro-
physiology, MI is applied to test for the presence and directionality of
information flow between the multiple time-series. We applied MI to
assess the directional influence between the stimulus similarity in
amygdala and hippocampus during the post-encoding ripple windows
(Fig. 4b). First, the structure-specific stimulus similarity traces from the
amygdala and hippocampus were obtained around each ripple event
(±250msec; see ripple-locked stimulus similarity). Next, we calculated
the MI between the amygdala and hippocampal memory stimulus
similarity traces, using the 200msec bin size (10msec step size),
covering the ±250msec window around ripple peaks. For each time
bin, the stimulus similarity was binned into 10 bins (with uniform bin
count), consistently across the participants and conditions. The MI
between the time series X and Y was defined as

MI X ; Yð Þ=
Xn
i

Xm
j

p xi, yj
� 	

p xi, yj
� 	

�
Xn
i

p xi

� �
p xi

� ��Xm
j

p yj
� 	

p yj
� 	

, ð9Þ

where p xi

� �
and p yj

� 	
represented the marginal probability of signals

X and Y, p xi, yj
� 	

indicated their joint probability, while m and n
represented the numbers of stimulus similarity bins for time series X
and Y59,65. To test the directionality of information flow, we calculated
the time-lagged MI by shifting one time series relative to another
across all the time bin combinations. The MIAMY!HPC and MIHPC!AMY

at individual time bins were defined as the mean of all the subsequent
time-lagged MI bins in the other region59,66. We defined the MI
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directional influence as the significant difference between the
MIAMY!HPC andMIHPC!AMY , assessed using Wilcoxon signed-rank test
for each time bin. Correction formultiple comparisons was performed
using the non-parametric cluster- based permutation test.

Data availability
The data generated in this study have been deposited in the Zenodo
database (https://zenodo.org/records/10082278). Source data are
provided with this paper.

Code availability
The code generated in this study have been deposited in the Zenodo
database (https://zenodo.org/records/10082278).
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