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ARTICLE

Partitioning gene-level contributions to
complex-trait heritability by allele frequency
identifies disease-relevant genes

Kathryn S. Burch,1,8,9,* Kangcheng Hou,1,8,9 Yi Ding,1,8 Yifei Wang,2 Steven Gazal,3 Huwenbo Shi,4,5,6

and Bogdan Pasaniuc1,2,7,8,*
Summary
Recent works have shown that SNP heritability—which is dominated by low-effect common variants—may not be the most relevant

quantity for localizing high-effect/critical disease genes. Here, we introduce methods to estimate the proportion of phenotypic variance

explained by a given assignment of SNPs to a single gene (‘‘gene-level heritability’’). We partition gene-level heritability by minor allele

frequency (MAF) to find genes whose gene-level heritability is explained exclusively by ‘‘low-frequency/rare’’ variants (0.5% % MAF <

1%). Applying our method to �16K protein-coding genes and 25 quantitative traits in the UK Biobank (N ¼ 290K ‘‘White British’’), we

find that, on average across traits, �2.5% of nonzero-heritability genes have a rare-variant component and only �0.8% (327 gene-trait

pairs) have heritability exclusively from rare variants. Of these 327 gene-trait pairs, 114 (35%) were not detected by existing gene-level

association testing methods. The additional genes we identify are significantly enriched for known disease genes, and we find several

examples of genes that have been previously implicated in phenotypically relatedMendelian disorders. Notably, the rare-variant compo-

nent of gene-level heritability exhibits trends different from those of common-variant gene-level heritability. For example, while total

gene-level heritability increases with gene length, the rare-variant component is significantly larger among shorter genes; the cumula-

tive distributions of gene-level heritability also vary across traits and reveal differences in the relative contributions of rare/common var-

iants to overall gene-level polygenicity. While nonzero gene-level heritability does not imply causality, if interpreted in the correct

context, gene-level heritability can reveal useful insights into complex-trait genetic architecture.
Introduction

It is well established that complex-trait SNP-heritability is

enriched in regulatory regions.1–3 However, for most com-

plex traits, fundamental characteristics of genetic architec-

ture—for example, the number of variants/genes with

nonzero effects (polygenicity), the number of genes regu-

lated by local versus distal variants, and the relative contri-

butions of rare versus common variants to gene expression

and phenotype—remain actively debated.4–12

Because SNP-heritability is overwhelmingly driven by

common variants of low effect—individual rare variants

with large per-allele effects contribute very little to

population-level phenotypic variance13,14—whether the

largest heritability enrichments localize the most clinically

relevant regions and/or genes for a trait is unclear. For

example, a recent study found that most complex-trait

SNP heritability mediated via the cis-genetic component

of expression is explained by genes that individually

have low cis-heritability of expression.15 Another study

found that extreme complex-trait polygenicity may be

explained in large part by negative/stabilizing selection,
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which by purging high-effect alleles from the population,

‘‘flattens’’ the distribution of SNP heritability across com-

mon variants genome wide.16,17 If the most critical genes

for a trait are not necessarily localized by enrichments of

total heritability,15,16,18,19 genes identified via heritability

enrichments or overlaps between genome-wide associa-

tion studies (GWASs) and expression quantitative trait

loci20,21 become even more challenging to interpret.

Gene-based association tests that aggregate signal from

multiple rare variants—for example, burden tests and

sequence-based association tests (SKATs)—can increase po-

wer under different genetic-architecture scenarios.22–30

However, such methods are generally designed to test for

only rare-variant association or the combined effects of

common and rare variants and thus are not ideal for

parsing the relative contributions of rare/common variants

to the heritability of a single gene.

Here, we define and aim to estimate a quantity we call

‘‘gene-level heritability’’ (h2
gene)—the proportion of pheno-

typic variance explained by the additive effects of a given

set of variants assigned to a gene of interest. The key

challenge in estimating gene-level heritability lies in the
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A B

Figure 1. Overview
(A) Toy example with two variants, one of which is assigned to the gene of interest. The top row depicts three example causal configu-
rations corresponding to three different gene-level heritabilities (0, b2, and b2=4); for simplicity of presentation, we assume the geno-
types are standardized to have variance 1 in the population (material and methods). All three causal configurations yield the same ex-
pected marginal association statistics.
(B) Given marginal association statistics, an estimate of LD, and an assignment of variants to the gene of interest, our method involves
(1) sampling from the posterior of the causal effect sizes (assuming a sparse prior) to capture causal-effect uncertainty and then (2) esti-
mating gene-level heritability for each posterior sample to approximate the posterior distribution of gene-level heritability.
uncertainty about which variants are causal and what

their causal effect sizes are, both of which increase as the

strength of linkage disequilibrium (LD) in the region in-

creases and as GWAS sample size decreases.31 Consider a

toy example in which a variant in the gene of interest is in

perfect LD with a second variant adjacent to the gene and

the observed data are GWAS marginal association statistics

and LD (Figure 1A). Without additional information, it is

impossible to elucidate the underlying causal configuration.

Even if theLD is0.9 insteadof1, if thisGWAShas 90%power

to identify the region, correctly rejecting the null hypothesis

for the non-causal variant would require a sample sizeR 43

that of the original GWAS.31 Because each causal configura-

tion can yield a different gene-level heritability (with or

without minor allele frequency [MAF] partitioning),

randomly selecting one possible configuration (e.g., using

variable selection methods such as the Lasso32) can yield

inaccurate/misleading estimates. Estimators for the SNPher-

itability of a single region would most likely be inflated if

applied as-is to genes because of LD between variants in

the region of interest and the adjacent regions.18,33–35

Methods for partitioning genome-wide SNP heritability are

also ill-suited to our goals, as they make distributional as-

sumptions on the causal effects, which (1) limit power to

detect enrichment in small categories of variants (<1% of
The Ame
the genome) and/or (2) may not apply equally to rare and

common variants.3,36–41

Wepropose an approach to estimating h2
gene that captures

causal-effect uncertainty by sampling from the posterior

distribution of the causal effect sizes within a probabilistic

fine-mapping framework.42 We use the samples from the

posterior of the causal effects to approximate the posterior

distribution of h2
gene (Figure 1B), from which one can

compute various summary statistics of interest. For each

gene, we report the posterior mean, denoted bh2

gene, and a

r-level credible interval, or r-CI, defined as the central inter-

val containing the true gene-level heritability with proba-

bility r (material andmethods). We confirm in simulations

that accounting for uncertainty in the estimated causal ef-

fects significantly reduces the bias of bh2

gene and that bothbh2

gene and r-CIs are robust to causal effect sizes, gene length,

allele frequencies of causal variants, and the strength of

local LD. Under the (potentially strong) assumption that

there is zero covariance between causal effects of different

variants,43–46 total gene-level heritability can be expressed

as h2
gene;t ¼ h2

gene;r þ h2
gene;lf þ h2

gene;c (material andmethods),

where the terms refer to the components ofh2
gene;t explained

by rare (MAF < 1%), low-frequency (1%%MAF< 5%Þ, and
common (MAFR5%) variants, respectively. We apply the

same approach to estimate the posterior distributions of
rican Journal of Human Genetics 109, 692–709, April 7, 2022 693



h2
gene;r, h

2
gene;lf , and h2

gene;c and observe similar trends and

levels of accuracy. (While there are many definitions of

‘‘rare’’ in the literature, we use 0.5%%MAF< 1% in the pre-

sent work because we analyze imputed genotypes.)

Applying our approach to 15,770 protein-coding genes

and 25 quantitative traits in the UK Biobank47 (N ¼ 290K

self-reported ‘‘White British,’’ MAF > 0.5%), we confirm

that h2
gene;t is indeed dominated by h2

gene;c. On average across

traits, amonggeneswithh2
gene;t 90%-CI>0 (‘‘nonzero-herita-

bility genes’’), 92% (SD 1%) have nonzero common-variant

heritability, and 76% (SD 1%) have nonzero heritability

exclusively from common variants (h2
gene;tzh2

gene;c). In

contrast, only 2.5% (SD 0.6%) of nonzero-heritability genes,

averaged across traits, have nonzero rare-variant heritability,

and a mere 0.8% (SD 0.4%) have nonzero heritability exclu-

sively from rare variants (h2
gene;tzh2

gene;r). The 2.5% of genes

with h2
gene;r 90%-CI > 0 is enriched for Mendelian-disorder

genes and genes intolerant to loss of function (probability

of loss-of-function [LoF] intolerance48,49 > 0.9), whereas

the 0.8% of genes with h2
gene;tzh2

gene;r (327 gene-trait pairs

in total) is enriched only for LoF-intolerant genes. However,

in both gene sets—genes with rare-variant heritability and

genes with exclusively rare-variant heritability—the top

genes (rank ordered by bh2

gene;r) contain many examples of

geneswithknownroles inphenotypically similarMendelian

disorders or other congenital growth and developmental

disorders.

We emphasize that gene-level heritability is not an

intrinsic property of a trait or gene but rather, like all ‘‘types’’

of heritability, a function of the environmental variance in

the specific population being studied.50,51 Because allele

frequencies are population specific, and causal alleles and

their effect sizes can also differ across populations (e.g., due

to population-specific environmental exposures),52,53 esti-

mates of total and MAF-partitioned gene-level herita-

bility—like all partitioned heritability estimates—are only

meaningful when considered in the populations in which

they were measured. The real-data results presented here

are therefore specific to a population of ‘‘White British’’

individuals living in the UK. In addition, nonzero-heritabil-

ity genes must not be interpreted as biologically causal

without additional validation, as nonzero heritability indi-

cates association not causality.51 Nevertheless, our results

are consistent with the hypothesis that a sizable amount of

complex-trait variation is driven by dysregulation of genes

that—if completelydisrupted—causephenotypically similar
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monogenic disorders and/or systemic congenital and devel-

opmental disorders.54 Because genes can be disrupted/dysre-

gulated by a combination of common and rare variants,

h2
gene;r should be considered alongside common-variant her-

itability enrichments if one is interested in identifying high-

impact disease genes.Whilewe restrict our analyses to genes

(gene body5 10-kb window), ourmethod can be applied to

any small annotation of interest (e.g., enhancers, a set of

genes involved in a pathway). Similar approaches have also

been applied for analysis of temporal trends in additive ge-

netic variance (e.g., in livestock breeding programs).55,56
Material and Methods

Model and definitions of estimands
Wemodel the phenotype of a given individual by using a standard

linear model, y ¼ xTbþ ε, where xT ¼ ðx1.xMÞT is the vector

of the individual’s genotypes at M variants, assumed to be stan-

dardized in the population such that E½xi� ¼ 0 and var½xi� ¼ 1 for

i ¼ 1;.;M; b is the M31 vector of corresponding standardized

causal effect sizes; and ε � Nð0; s2e Þ is environmental noise.

The individual’s standardized genotype at the i-th variant is

xi ¼ ðgi �2fiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fið1� fiÞ

p
where gi˛f0;1;2g is the number of

copies of the effect allele carried by the individual at the i-th

variant and fi is the allele frequency of the effect allele in the pop-

ulation. Under thismodel, LD between variants i and j is defined as

rijhcov½xi; xj� ¼ E½xixj� and the full LD matrix for all M variants is

Rhcov½xT�. We assume that the phenotype is also standardized

in the population such that E½y� ¼ 0, var½y� ¼ 1.

Let pcausal˛½0;1� such thatM3pcausal is the total number of causal

variants. We assume the causal effect of the i-th variant is distrib-

uted bi � Nð0; h2
G =ðMpcausalÞÞwith probability pcausal or bi ¼ 0 with

probability 1� pcausal, where h2
G, total SNP heritability, is the pro-

portion of phenotypic variance explained by allM variants. Using

the law of total variance,

h2
G h

var½xTb�
var½y�
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�
var

�
xTb

��b��þ varb
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:

Let g index a gene of interest. Given an assignment of mg vari-

ants to gene g, let xT
g be the mg31 vector of genotypes at this set

of variants and let xT
g 0 be the genotypes of the remaining M �mg

variants. We can rewrite the total SNP heritability of the trait in

terms of gene g as
2Cov
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where the fourth line follows from the law of total expectation.

If we additionally assume that cov½bi; bj� ¼ 0 for all is j, then

E½bðgÞb
T
ðg 0 Þ� ¼ cov½bðgÞ;bðg 0 Þ� ¼ 0, which simplifies the above equa-

tion to

h2
G ¼Eb

h
bT
gRgbg

i
þ Eb

h
bT
g 0Rg 0bg 0

i
:

We refer to the first term, the component of heritability attribut-

able to the causal effects in gene g, as ‘‘total gene-level

heritability’’:

h2
gene;t ¼Eb

h
bT
gRgbg

i
:

Using the same assumptions as above, we can partition the vari-

ants in gene g by MAF such that

h2
gene;t ¼h2

gene;r þ h2
gene;lf þ h2

gene;c

where h2
gene;r, h2

gene;lf , and h2
gene;c are the components of h2

gene;t

attributable to the causal effects of rare (MAF < 0.01), low-fre-

quency (0.01 % MAF < 0.05), and common (MAF R 0.05) vari-

ants, respectively. The estimands of interest in this work are the

four terms in h2
gene;t ¼ h2

gene;r þ h2
gene;lf þ h2

gene;c.

Note on the impact of the assumption of zero

covariance between causal effects at different loci
Although it is common for post-GWAS analysis methods to as-

sume that cov½bi; bj� ¼ 0 for all isj to facilitate inference, this

may in fact be a relatively strong assumption on the underlying ge-

netic architecture.43–46 If this assumption is unmet, the equation

for total SNP heritability retains its covariance term, i.e.,

h2
G ¼Eb

h
bT
gRgbg

i
þ Eb

h
bT
g0Rg0bg 0

i
þ 2Eb

h
bgb

T
g 0

i
Ex

h
xg0x

T
g

i
¼ h2

gene þ h2
gene0 þ 2Eb

h
bgb

T
g0

i
Ex

h
xg 0x

T
g

i
:

The interpretation of our definition of gene-level heritability,

h2
gene ¼ Eb½bT

gRgbg �, can then be thought of as the component of

heritability that is ‘‘uniquely assignable’’ to the gene of interest.

See discussion for additional commentary on the impact of

nonzero causal-effect covariance on estimates of gene-level herita-

bility. We also note that alternative assumptions yield different

models for analyses of genomic variance (e.g., models of temporal

trends in additive genetic variance55,56).

Estimating the posterior distribution of gene-level

heritability
Because we have neither the ‘‘true’’ causal effect sizes, b, nor the

population LD, R, we must estimate both from data. We consider

one approximately independent LD block at a time. Given a

GWAS of N individuals, let X ¼ ½xT
1 ;.;xT

N �T be the N3 M matrix

of standardized genotypes measured at M variants, let y ¼
ðy1;.; yNÞT be an N31 vector of phenotypes, and let ε �
MVNð0; s2e INÞ be environmental noise.

It is often the case that individual-level genotype data are inac-

cessible for privacy or logistical reasons. However, GWAS summary

statistics—estimates of the causal effects and their standard er-

rors—are publicly available for thousands of traits. Ordinary

least-squares (OLS) estimates of the causal effects are often pro-

vided, defined as

bbGWAS ¼
1

N
XTy ¼ 1

N
XTðXbþ eÞ ¼ 1

N
XTXbþ 1

N
XTe:
The Ame
It follows that

p
�bbGWAS

��b; bR; s2
e

	 � MVN


bRb;
s2
e

N
bR�

:

In this scenario, the observed data, D, are not the individual-

level genotypes and phenotypes (X; yÞ, but rather D ¼ ðbbGWAS;bRÞ, where bR is an estimate of LD computed from either the ge-

notypes of a set of individuals in the GWAS (‘‘in-sample’’ LD) or

from an external reference panel (e.g., 1000 Genomes57). By

combining the prior on b, pðbjlÞ (l represents the hyperpara-

meters of the prior over b), and the likelihood of the observed

data, pðbbGWAS

��b; bR; s2e Þ, one can compute the posterior distribu-

tion of the causal effects, pðb��bbGWAS; bR; l; s2e Þ. The hyperpara-

meters, l and s2e , can be estimated via empirical Bayes (e.g., as im-

plemented in SuSiE42).

The posterior of b, pðbjDÞ, is, in general, computationally intrac-

table. However, approximate inference, e.g., Markov chain Monte

Carlo (MCMC) or variational inference, can be used to approxi-

mate the posterior as ~pðbjDÞ. In this work, we use SuSiE,42 a varia-

tional inference-based implementation of linear regression that as-

sumes a sparse prior, but in principle, it is straightforward to use

any implementation of linear regression with a sparse prior. We

draw P samples from the posterior of the causal effects, ~b
ð1Þ

;.;

~b
ðPÞ � pðbjDÞ, and use these posterior samples to approximate

the full posterior distribution of h2
gene, i.e., ð~bð1Þ

g Þ
T bRgð~bð1Þ

g Þ; .;

ð~bðPÞ
g Þ

T bRgð~bðPÞ
g Þ. Given the approximate posterior of h2

gene, one

can compute any summary statistic of interest. Here, we report

the estimated posterior mean,

bh2

gene ¼ bEhbT
gRgbg

���Di
¼ 1

P

XP
p¼1

�
~b
ðpÞ
g

�T bRg

�
~b
ðpÞ
g

�
;

and credible intervals, which are one possible metric of uncer-

tainty (described below). The same procedure can be used to

estimate the component of gene-level heritability explained by a

subset of the SNPs assigned to the gene (such as a MAF-based

annotation).

For computational efficiency, we partition the genome into

approximately independent LD blocks58 and approximate the

posterior distribution of b separately for each LD block; the

approximate independence of each LD block from the rest of

the genome implies that the causal effects at SNPs outside of the

LD block of interest are absorbed into the environmental noise

term. Similarly, the hyperparameters ðl;s2e Þ are specific to and esti-

mated independently for each LD block.
Quantifying uncertainty in gene-level heritability

estimates
The posterior samples ~b

ð1Þ
;.; ~b

ðPÞ
provide an approximation to

the full posterior distribution of b, thus capturing uncertainty

in the causal effect sizes arising from two main sources: LD and

finite GWAS sample size (Figure 1). By using the full posterior

of b to approximate the full posterior of h2
gene, we propagate

the uncertainty in the causal effects into our estimate of

h2
gene. (The noise in bR is also an important factor, but for

simplicity, we investigate uncertainty in bh2

gene in simulations

where bR ¼ R.)

We summarize the uncertainty in bh2

gene by computing r-level

credible intervals (r-CIs). For a given r ˛½0;1�, r-CI is defined as
rican Journal of Human Genetics 109, 692–709, April 7, 2022 695



the central interval within which h2
gene lies with probability r. In

other words, the upper and lower bounds of r-CI are set to the

empirical ð1� rÞ=2 and 1� ð1� rÞ=2 quantiles of the posterior

samples ð~bðpÞ
g Þ

T bRgð~bðpÞ
g Þ;p ¼ 1;.;P.

Implementation details
We partition the genome into approximately independent LD

blocks58 and, for each gene of interest, we perform inference on

the LD block containing the gene. For each LD block, we extract

the marginal association statistics and estimate LD for all the

variants in the LD block. We estimate the posterior distribution

of effect sizes by using the function ‘‘susie_suff_stat’’ with default

parameters, as implemented in SuSiE42 v0.8 (web resources).

We use the function ‘‘susie_get_posterior_samples’’ to obtain 500

posterior samples.

Simulation framework
We simulate phenotypes from the real imputed genotypes of

N ¼ 290,273 ‘‘unrelated White British’’ individuals in the UK

Biobank, obtained by extracting individuals with self-reported

British ancestry who are greater than third-degree relatives

(pairs of individuals with kinship coefficient < 1/2(9/2), as

defined in Bycroft et al.47). Filtering on MAF > 0.5% leaves

M ¼ 200,235 variants on chromosome 1 from which to draw

phenotypes.

The genotypes of the above individuals can be encoded as

gni ˛f0;1;2g, the number of copies of the effect allele carried by in-

dividual n at variant i, for all n ¼ 1;.;N and i ¼ 1;.;M. We as-

sume that the population and in-sample allele frequencies are

the same, and we standardize the genotype vector at each variant

to have mean 0 and variance 1 across individuals by computing

xni ¼ ðgni � 2fiÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2fið1� fiÞ

p
. Importantly, this genotype standard-

ization is equivalent to assuming that the variance of the per-allele

causal effect at variant i is proportional to ½fið1� fiÞ��1 — a rela-

tively strong inverse coupling between allele frequency and allelic

effect size.59

Given the standardized genotypes, we simulated phenotypes

under a variety of genetic architectures by varying the number

of causal genes and background polygenicity, pcausal. Total SNP her-

itability on chromosome 1 was fixed to h2
G ¼ 0:05 and cumulative

gene-level heritability was fixed to
P

kh
2
gene;k ¼ 0:03. First, we uni-

formly sample 3%, 8%, or 16% of the 1,083 genes on chromosome

1 (web resources) to be causal (h2
gene;k > 0). Second, for each causal

gene, we draw causal variants uniformly from the set of variants

in the gene body and within 10 kb upstream/downstream of the

gene start/end positions; the causal variants in the window around

the gene are intended to represent regulatory causal variants in

transcription start sites (TSSs). The causal configuration is set to

either (1) five causal variants in the gene body and three causal var-

iants in TSS or (2) ten causal variants in the gene body and six

causal variants in TSS. Third, for each variant not considered in

the previous step (i.e., the variants that are not located within

10 kb upstream/downstream of any gene’s start/end positions),

we draw its causal status as ci � BernoulliðpcausalÞ for pcausal ¼
f0:001;0:01g.
Finally, for the variants with ci ¼ 1, we draw independent stan-

dardized causal effect sizes as bi � Nð0;s2i Þ, assuming covðbi; bjÞ ¼ 0

for all isj. bi is set to 0 if ci ¼ 0. The value of s2i is determined by

whether the causal variant is located in a gene body, in a TSS, or

elsewhere. Let b, t, and q represent the total number of causal
696 The American Journal of Human Genetics 109, 692–709, April 7,
variants in gene bodies, TSSs, and the background, respectively.

We assume that causal variants in gene bodies explain the same

amount of cumulative gene-level heritability; thus, these variants

have s2i ¼ ð1 =bÞPkh
2
gene;k ¼ 0:03=b. Similarly, we assume that

all causal variants in TSSs together have a heritability of 0.01,

which corresponds to s2i ¼ 0:01=t for these variants. The remain-

ing 0.01 heritability is also assumed to be distributed evenly across

the background causal variants, so these variants have s2i ¼
0:01=q. We note that the causal statuses and effect sizes for each

variant are only drawn once; the environmental noise term is

drawn 30 times independently to generate 30 simulation

replicates.

Again, we emphasize that even though the standardized causal

effects in gene bodies are drawn i.i.d. from bi � N
�
0; 0:03b

	
regardless

of allele frequency, the assumption of an inverse relationship be-

tween per-allele causal effects and allele frequency has already

been baked into the simulation framework through the initial ge-

notype standardization.
Evaluating and comparing gene-level heritability

estimates in simulations
Recall that for a given gene g, the causal effect sizes and LD of the

variants assigned to the gene are denoted bg and Rg , and ground-

truth gene-level heritability is defined as h2
gene ¼ Eb½bT

gRgbg �.
The posterior mean estimated for a single simulation replicate

s is denoted bh2

gene;ðsÞ. We estimate the bias of the estimator as

bias
�bh2

gene

�
z 1

30

P
s

�bh2

gene;ðsÞ �h2
gene

�
; the variance of the estimator

as Var
hbh2

gene

i
z 1

30

P
s

�bh2

gene;ðsÞ � h2
gene

�2
; and the mean squared er-

ror as MSE½bh2

gene� ¼ ðbias½bh2

gene�Þ
2

þ Var½bh2

gene�.
For each simulation replicate s, we output r-level credible inter-

vals, defined as

CIðr; sÞ¼

0
B@bh2

gene;1�r

2 ;ðsÞ;
bh2

gene;1�1�r

2 ;ðsÞ

1
CA

where the ð1� rÞ=2 and 1� ð1� rÞ=2 percentiles are estimated

from P ¼ 500 posterior samples; we use r ¼ 0:9 instead of 0.95

to obtain more robust credible intervals from 500 posterior sam-

ples. To assess the accuracy of credible intervals, we calculate

‘‘empirical coverage’’ across simulation replicates, defined as

the proportion of simulation replicates in which the r-level cred-

ible interval covers the ground-truth gene-level heritability:

ð1 =30ÞPsI½bh2

gene;ðsÞ ˛CIðr; sÞ�.
Estimating the number of nonzero-heritability genes
We explore two metrics for quantifying polygenicity at the gene

level that do not use 90%-CIs. First, for the k-th gene, we estimate

the posterior probability that h2
gene;k > 0 from p ¼ 1;.; 500 poste-

rior samples as

p
�
h2
gene;k >0

���D�
z

1

500

X500
p¼1

I

h�
~b
ðpÞ
g;k

�T bRg;k

�
~b
ðpÞ
g;k

�
>0

i

where I is an indicator function that evaluates to 1 if

ð~bðpÞ
g;kÞ

T bRg;kð~bðpÞ
g;kÞ > 0 and to 0 otherwise. The total number of

nonzero-heritability genes is then estimated by summing the

posterior probabilities across genes:
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1

500

X
k

X500
p¼1

I

h�
~b
ðpÞ
g;k

�T bRg;k

�
~b
ðpÞ
g;k

�
>0

i
:

The second quantity we estimate is the number of genes that

explain 50% of the cumulative gene-level heritability. This is

done by rank ordering genes by their estimated posterior means,bh2

gene;k, and summing the posterior means across genes, starting

with the largest estimate, until Rð1 =2ÞPk
bh2

gene;k is reached.

Comparison to ‘‘naı̈ve’’ gene-level heritability estimator
We compare our approach to an alternative ‘‘naı̈ve’’ estimator of

gene-level heritability that does not model LD between the gene

and its adjacent regions and thus ignores causal-effect uncer-

tainty. This estimator is similar to existingmethods that are meant

to be applied to approximately independent LD blocks.34,60 For

each gene, we extract the marginal association statistics, bbg , and

the estimated LD, bRg , for the variants assigned to the gene, and

we compute the alternative estimator as
�
Nbbu

g
bRy

g
bbg � q

�.
ðN�

qÞ, where bRy
g and q are the pseudo-inverse and rank of bRg , respec-

tively.34,60

Assessing robustness to LD panel sample size
To assess the robustness of our approach to the sample size of the

LD panel used to estimate LD, we randomly draw a subset of N ¼
{500, 1,000, 2,500, 5,000} individuals from the full 290,273 indi-

viduals. After extracting variants with MAF > 0.5%, genotypes

are standardized to have mean 0 and variance 1, similar to the

full-sample analysis. Because we are interested in assessing robust-

ness to noisy estimates of LD, all analyses are performed with the

same set of marginal association statistics used in the full-sample

analysis, excluding the variants that were filtered from the LD

panel based on MAF. The LD and marginal association statistics

are fed into the ‘‘h2gene’’ software, similar to the full-sample

analysis.

Analysis of 25 UK Biobank phenotypes
We analyzed 25 quantitative phenotypes in the self-reported

‘‘White British’’ cohort in the UK Biobank (web resources). Pheno-

types and imputed genotypes were filtered according to the same

procedures used in the simulation analyses, leaving N ¼ 290,273

individuals and M ¼ 5,650,812 variants with MAF > 0.5%.

Quantitative phenotypes were quantile-normalized to a Gaussian

distribution with mean 0 and variance 1. We then performed a

GWAS for each trait using the ‘‘–assoc’’ option in PLINK (web re-

sources) with age, sex, and the top ten genetic principal compo-

nents (PCs) included as covariates. The genetic PCs were precom-

puted by the UK Biobank via fastPCA61 applied to genotypes

measured at 147,606 SNPs (MAF > 1%) in 407,599 ‘‘unrelated’’

individuals.47

In-sample LD was computed for each approximately indepen-

dent LD block.58 We downloaded gene names and coordinates

(web resources) and, for each gene, we define the estimand of in-

terest to be a function of the variants in the gene body and those

located within 10 kb upstream/downstream of the gene start/end

positions. Finally, given the in-sample LD and marginal associa-

tion statistics, we infer the posterior distribution of the causal ef-

fect sizes one LD block at a time, and we estimate and partition

gene-level heritability for all genes in each LD block, where we

define the estimand of interest to be a function of the variants

in the gene body and those located within 10 kb upstream/down-

stream of the gene start/end positions.MAGMAv1.09 was used for
The Ame
gene-level association testing with a 10-kb window around each

gene. The same list of genes and the same set of imputed variants

were used for the MAGMA analysis.
Additional quality control to mitigate rare-variant

population stratification
Including the top 10–20 genome-wide PCs as covariates in a

GWAS is a standard approach to controlling for population struc-

ture. However, because the PCs included in the UK Biobank data

release were computed from common SNPs (MAF > 1%), our

GWASs may be susceptible to false positives driven by population

stratification among rare variants, which can exhibit stratification

patterns quite different from those of common variants.62,63 If

there is population structure of recent origin and the confound-

ing environmental effects are smoothly distributed with respect

to ancestry, PCs computed from rare variants may be able to cor-

rect for confounding resulting from this recent structure.64 How-

ever, because the distribution of confounding environmental ef-

fects is unknown a priori, we cannot tell whether a rare-variant

PC correction would be sufficient for this analysis. Ideally, we

would perform PCA on rare variants (MAF < 1%) and include

the top PCs as covariates in the GWASs anyway, but this would

require whole-genome sequencing data from the ‘‘unrelated

White British’’ UK Biobank cohort, which are not readily avail-

able to us at this time.

While single rare-variant association tests are prone to false

positives resulting from uncorrected recent and/or local popula-

tion structure, aggregating evidence from multiple rare variants

can make an association statistic more robust to such structure.

This is because adding more rare variants to a single test statistic

increases the recombination distance between the variants

included in the test. Therefore, to try to reduce potential false

positives from rare-variant stratification in the real-data analyses,

we exclude genes in the bottom 5th percentile in terms of (1)

the number of rare variants in the gene body 5 10 kb, which

in this case corresponds to genes with <4 rare variants

(Figure S19A), or (2) [number of rare variants in the gene

body 5 10 kb] / [gene length], which in this case is <0.00021

(Figure S19B). This reduces the original set of 17,437 protein-cod-

ing genes to 15,770.
Results

Overview of the method

Given an assignment of mg variants to a gene of

interest, total gene-level heritability is defined as

h2
gene;thVar½xT

g bgjb� ¼ Eb½bT
gRgbg�, where bg is the mg31

vector of unknown causal effect sizes and Rg is the

mg3mg LD for SNPs in the gene (material and methods).

Our goal in this work is to estimate a ‘‘distribution’’ over

h2
gene;t that captures uncertainty in the causal effects that

arises from LD and finite GWAS sample size (Figure 1A).

To this end, we adopt a probabilistic fine-mapping

framework35,42 that assumes a sparse prior on the causal

effect sizes in the LD block containing the gene and

infers the posterior distribution of the causal effect sizes,

pðbjbb; bRÞ, where bb is the vector of estimated marginal ef-

fects from GWAS and bR is an estimate of LD. By sampling

from the posterior of b, we generate an approximation to
rican Journal of Human Genetics 109, 692–709, April 7, 2022 697



Figure 2. Impact of causal-effect uncer-
tainty on gene-level heritability estimation
in simulations
Chromosome 1, MAF> 0.5%, pcausal ¼ 0.01,
N ¼ 290K individuals, and 1,038 genes, of
which 16% have nonzero gene-level herita-
bility.
(A) Average posterior mean of h2

gene;t

(51.96 3 SEM) (green) and average ‘‘naı̈ve’’
estimate (blue) for a given gene across 30
simulation replicates. To facilitate visualiza-
tion, only genes with h2 > 10�8 are shown.
(B) SEM of bh2

gene;t (green) and of the naive
estimator (blue) with respect to the underly-
ing value of h2

gene;t.
the posterior of h2
gene;t (Figure 1B, material and methods).

For each gene, we report the estimated posterior mean

(bh2

gene;t) and r-level credible interval (r-CI), defined as

the central interval that contains the true gene-level herita-

bility with probability r. Whereas previous works applied

similar approaches to generate credible sets of causal vari-

ants42 or to estimate regional SNP-heritability of LD

blocks,35 our goal in this work is to estimate the heritability

explained by any arbitrary (not necessarily contiguous) set

of variants much smaller than an LD block.

Using the same approach, we estimate the components

of gene-level heritability attributable to the rare (0:5%%

MAF < 1%), low-frequency (1%% MAF < 5%), and com-

mon (MAFR5%) variants assigned to the gene of interest;

we denote these quantities h2
gene;r, h2

gene;lf , and h2
gene;c,

respectively (material and methods). (We note that, while

there are many definitions of ‘‘rare’’ in the literature, we

threshold at MAF R 0.5% to reduce potential noise from

imputation; see discussion for details.)

Accuracy of gene-level heritability estimates in

simulations

We perform simulations starting from real imputed geno-

types of N¼ 290,273 ‘‘unrelatedWhite British’’ individuals

in the UK Biobank (chromosome 1, MAF > 0:5%, M ¼
200,235 variants, 1,083 genes; material and methods). In

all simulations, the estimand of interest (gene-level herita-

bility, h2
gene;t) is the proportion of phenotypic variance ex-

plained by the variants in the gene body. We note that

our choice of variant assignment is arbitrary; there are

many ways to assign variants to a gene, but our goal in

this section is to provide a proof of concept. In brief, our

simulation framework consists of three steps. First, for a

given total heritability (variance explained by all M vari-

ants) and cumulative gene-level heritability (variance ex-

plained by all genes), we randomly select 3%, 8%, or

16% of the genes to have h2
gene;t > 0. Second, for each

gene with h2
gene;t > 0, we draw causal variants in the gene
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body and within 10 kb upstream/

downstream of the gene start/end posi-

tions; the purpose of the latter is to

create situations where the estimated
effects of variants in the region of interest are inflated in

part because they tag causal variants located adjacent to

the region. Third, we sample noncoding ‘‘background’’

causal variants from the rest of the chromosome with fre-

quency pcausal ¼ f0:001; 0:01g. Under this model, the ma-

jority of simulated gene-level heritabilities are on the order

of 10�6 to 10�3 (Figure S1), similar to what we observe in

real data in subsequent sections (e.g., Figure S20).

For each gene, we compute twometrics of accuracy from

30 simulation replicates: bias½bh2

gene;t� and MSE½bh2

gene;t�
(mean squared error) (material and methods). Overall,

the estimated posterior means (bh2

gene;t) are concordant

with the true values of h2
gene;t (Figure 2, Figure S2). For

example, among just the causal genes (h2
gene;t > 0) in the

‘‘most polygenic’’ simulations (where 16% of genes have

nonzero heritability and per-causal-variant effect sizes are

smallest), the estimator is slightly downward-biased for

values > 10�4 and upward-biased for smaller value, but

generally within the correct order of magnitude (Figure 2).

To illustrate the impact of causal-effect uncertainty on

gene-level heritability estimation, we compare bh2

gene;t to a

naive estimator that ignores LD between the gene and its

adjacent regions, thus ignoring causal-effect uncertainty

(material and methods). As expected, the naive estimator

is significantly more inflated (Figure 2); in particular,

many zero-heritability genes have dramatically upward-

biased estimates (Figure S3) due to LD between variants

in the gene and nearby causal variants. As expected,

MSE½bh2

gene;t� increases with pcausal, the proportion of causal

genes, and gene length (Figures S4–S6); average LD score

and average MAF of variants in the gene have no discern-

ible impact (Figures S5, S7, and S8).

We also benchmark the estimators for h2
gene;c, h

2
gene;lf , and

h2
gene;r. Unlike bh2

gene;t,
bh2

gene;c and
bh2

gene;lf , which display up-

ward bias for values < 10�4, bh2

gene;r is slightly downward-

biased across all values of h2 (Figure 3). As with bh2

gene;t,

MSE½bh2

gene;r� increases with h2
gene;r, pcausal, the proportion

of causal genes, and gene length (Figures S4–S6) and



Figure 3. Estimates of h2 contributions from common, low-frequency, and rare variants in simulations
Simulations were performed on chromosome 1 variants (MAF > 0.5%), with pcausal ¼ 0.01, N ¼ 290K individuals, and 1,083 genes,
of which 16% have nonzero heritability. To facilitate visualization, and because all estimates in real traits were greater than 10�8,
only genes with h2 > 10�8 are shown. Each point is the average posterior mean for one gene across 30 simulation replicates; error
bars mark 5 1.96 x SEM.
does not noticeably vary with respect to average LD score

or average MAF of variants in the gene (Figures S5, S7,

and S8).

Calibration of r-credible intervals (r-CIs)

Recall that r-CI is defined as the central interval containing

the true gene-level heritability with probability r ˛ ½0;1�.
We assessed calibration of r-CIs by using ‘‘empirical

coverage,’’ the proportion of simulation replicates in

which r-CI contains the true gene-level heritability (mate-

rial and methods). Perfect calibration of r-CI would mani-

fest as empirical coverage equal to r for all r ˛½0; 1�. In real-

ity, we observe a downward bias in empirical coverage

across all simulations that increases in magnitude as the

proportion of causal genes increases (i.e., as per-variant

causal effect sizes decrease); for example, at r ¼ 0:9, empir-

ical coverage ranges from approximately 0.75 when 3% of

genes are causal to 0.65 when 16% are causal (Figure S9).

While downward bias in empirical coverage could result

from r-CIs underestimating or overestimating h2
gene;t, we

find that, for true nonzero-heritability genes, the credible

intervals at r ¼ f0:90; 0:95g tend to underestimate h2
gene;t.

For example, at r ¼ 0:95, as polygenicity increases from

3% to 16%, the average (and standard error of the mean

[SEM]) proportion of genes with h2
gene;t > 0 that are under-

estimated increases from approximately 14% (0.7%) to

29% (0.7%) while the average overestimated decreases

from 6% (0.4%) to 3.5% (1.5%), respectively. The r-CIs

for h2
gene;r are more conservative; for the same parameters,

the proportion of h2
gene;r > 0 genes that are underestimated

increases from 38% (1%) to 45% (0.6%) while the propor-

tion overestimated decreases from 1.5% (0.3%) to 0.7%

(0.1%) (Table S2, Figure S10).

We estimate the power of r-CI at r ¼ 0:9 as the proportion

of nonzero-h2 genes correctly identified at the significance

threshold 90%-CI> 0. As expected, power is higher in simu-
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lationswhere theaveragevaluesofh2
gene;t andh

2
gene;r are larger

(i.e., when polygenicity is lower) and is higher overall for

h2
gene;t than for h2

gene;r (Figure 4A). We also assess power

with respect to the underlying value of h2
gene;t or h

2
gene;r, esti-

mated for eachnonzero-h2 gene as the proportion of simula-

tion replicates in which the gene correctly passes the

threshold 90%-CI > 0. In the most polygenic simulations,

power ranges froman average of 56% for genes in the lowest

h2
gene;t quartile (h2

gene;t < 23 10�5) to 94% for the highest

quartile (h2
gene;t > 43 10�4) (Figure S11A). For h2

gene;r, power

is significantly lower, ranging from an average of 10% for

genes with h2
gene;r in the lower 50th percentile (h2

gene;r < 33

10�5) to 72% for genes in the highest quartile (h2
gene;r > 83

10�5) (Figure S11B).

Since we are interested in using 90%-CIs to identify nar-

row sets of high-impact genes, it is also useful to assess the

false positive rate (FPR) and positive predictive value (PPV).

We estimate FPR as the proportion of zero-heritability

genes that incorrectly pass the threshold 90%-CI > 0. For

h2
gene;t, FPR ranges from approximately 19% (SEM 0.2%)

when 3% of genes are causal to 21% (0.2%) when 16% of

genes are causal (Figure S12A). FPR is overall much smaller

for h2
gene;r and decreases as polygenicity increases, ranging

from 0.2% (0.01%) when 16% of genes are causal to

0.5% (0.01%) when 3% of genes are causal (Figure S12B).

Although the FPR for h2
gene;t is relatively high, most genes

passing the 90%-CI > 0 threshold that have bh2

gene;t >

10�4 are true positives (Figure S12C).

WeestimatePPVas theproportionofgeneswith90%-CI>

0 that are, in fact, true positives. Despite its relatively lowpo-

wer, h2
gene;r 90%-CI > 0 has a dramatically higher PPV than

does h2
gene;t 90%-CI> 0 (Figure 4B). PPV increases as polyge-

nicity increases (i.e., as causal effect sizes decrease), reaching

an average of 35% (SEM 0.2%) for h2
gene;t and 88% (0.5%)

for h2
gene;r. That is, in simulations where 16% of genes

are causal, approximately 88% of genes identified at the
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Figure 4. Power and PPV at 90%-CI > 0 in
simulations
(A) Power is estimated per simulation
replicate as the proportion of nonzero-h2

genes correctly identified at h2
gene;t 90%-

CI > 0 (green) or h2
gene;r 90%-CI > 0 -

(purple).
(B) PPV is estimated per simulation repli-
cate as the proportion of genes identified
at 90%-CI > 0 that are, in fact, true posi-
tives. Each boxplot represents 30 simula-
tion replicates; white diamonds mark the
mean.
significance threshold h2
gene;r 90%-CI > 0 have h2

gene;r > 0,

while only 35% of the genes identified at h2
gene;t 90%-CI >

0 have h2
gene;t > 0. Moreover, the genes identified at h2

gene;r

90%-CI > 0 are enriched for genes with R50% of h2
gene;t

attributable to h2
gene;r. In the same simulations, genes with

h2
gene;r=h

2
gene;t > 0:5 comprise 24% of all genes with h2

gene;r >

0 and 14% of all genes with h2
gene;t > 0; PPV for identifying

these genes at 90%-CI > 0 is 39% for h2
gene;r and 4% for

h2
gene;t (Figure S13). In other words, approximately 39% of

geneswithh2
gene;r 90%-CI>0haveR50%ofh2

gene;t explained

by rare causal variants, whereas only 4%of geneswith h2
gene;t

90%-CI > 0 fall in this category. This corresponds to a 1.63

enrichment of genes with h2
gene;r=h

2
gene;t > 0:5 among those

identified at the threshold h2
gene;r 90%-CI> 0 and a depletion

of these genes at h2
gene;t 90%-CI > 0.
Quantification of polygenicity and related quantities in

simulations

We explore different approaches for estimating the total

number of nonzero-h2 genes. First, we estimate the expected

number of nonzero-h2 genes by approximating, for each

gene, the posterior probability that h2
gene;t > 0 and summing

the posterior probabilities across genes (material and

methods). Unsurprisingly, because the method is not cali-

brated to be applied in this way, this approach produces

highly inflated estimates (Figure S14A). Thenumberof genes

with 90%-CI> 0 is also a biased estimator; in lower-polyge-

nicity settings (larger per-gene heritabilities), it overesti-

mates the number of nonzero-h2 genes for both h2
gene;t and

h2
gene;c, and in higher-polygenicity settings (smaller per-

gene heritabilities), it underestimates for h2
gene;lf and h2

gene;r

(Figure S14B). However, across all simulation settings, we

found that we obtain nearly unbiased estimates of the num-

ber of genes explaining 50% of the cumulative gene-level

heritability by (1) rank ordering genes by bh2

gene and (2) sum-

ming bh2

gene across genes, from largest to smallest, until R

0:5
P

k
bh2

genek
is reached (Figure S15). This metric captures

the concentration or dispersion of heritability across

genes—an important aspect of genetic architecture. Note
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that the estimated cumulative gene-level heritability,P
k
bh2

genek
, is a sum across all genes, not just those that pass

90%-CI > 0. That we can accurately estimate the number

of genes explaining R0:5
P

k
bh2

genek
is consistent with the

trends we observe in bias[bh2

gene;t� (Figure 2A), i.e., the slight

downward bias we observe in bh2

gene;t for larger values (e.g.,

h2
gene;tR10�5) and the upward bias we observe for smaller

values (e.g., h2
gene;t < 10�5).
Robustness to noise in estimates of LD

Finally, we assess whether bh2

gene;t is robust to the number

of individuals used to estimate LD, i.e., the sample size

of the ‘‘LD panel’’ (material and methods). Compared to

in-sample LD computed from the full set of individuals

in the GWAS (N ¼ 290,273), using a random subset of

N ¼ {500, 1,000, 2,500, 5,000} individuals from the orig-

inal GWAS does not significantly impact the MSE ofbh2

gene;t or bh2

gene;r (Figure S16). Using 90%-CIs to identify

nonzero-h2 genes, we find that the FPR (the proportion

of zero-heritability genes incorrectly identified at 90%-

CI > 0) is robust with respect to LD panel sample size

for both h2
gene;t and h2

gene;r (Figure S17). Power (the propor-

tion of true nonzero-h2 genes identified at 90%-CI > 0) is

relatively robust to LD panel sample size in the most poly-

genic setting; however, in the least polygenic setting, po-

wer drops more significantly, from �73% at the full sam-

ple size to �47% at N ¼ 500 (Figure S18A). We observe a

similar drop in power for h2
gene;r (Figure S18B). Thus, while

using a smaller sample of individuals from the GWAS

cohort does not significantly increase type I error, we

recommend using the full GWAS cohort to compute in-

sample LD in order to maximize power, especially for

h2
gene;r.

Gene-level heritability estimates for 25 quantitative

traits in the UK Biobank

We estimate, and partition by MAF, the gene-level herita-

bilities of 15,770 protein-coding genes for 25 well-powered

quantitative traits in the UK Biobank (N ¼ 290,273
2022



Table 1. Summary of h2
gene estimates across 25 quantitative traits (N ¼ 290K ‘‘White British,’’ UK Biobank)

Trait
Num. genes w/h2

gene;t

90%-CI > 0

Num. genes that explain

R0:5
P bh2

gene;t h2
gene;t ¼ h2

gene;c h2
gene;t ¼ h2

gene;lf h2
gene;t ¼ h2

gene;r

Alkaline phosphatase 1,542 21 1,142 108 18

Apolipoprotein A-I 1,589 71 1,186 105 11

Basal metabolic rate 1,929 568 1,476 115 10

BMD heel T-score 1,297 251 1,006 76 3

BMI 1,722 677 1,312 98 6

C-reactive protein 1,561 9 1,187 88 6

Corneal hysteresis 1,103 321 833 74 3

Cystatin C 1,738 163 1,328 110 8

Forced vital capacity 1,748 565 1,337 108 5

GGT 1,650 166 1,256 101 12

Hair color 1,201 7 883 77 13

HbA1c 1,676 116 1,240 133 17

HDL 1,602 59 1,194 109 11

Height 2,258 445 1,713 152 27

High light scatter reticulocyte count 1,696 188 1,279 112 23

IGF-1 1,691 270 1,265 116 10

MCH 1,557 109 1,151 122 15

MSCV 1,585 144 1,226 101 8

Monocyte count 1,601 144 1,219 100 9

Mean platelet volume 1,753 57 1,291 127 25

Platelet count 1,748 158 1,351 102 24

Platelet distrib. width 1,598 44 1,219 102 16

RBC count 1,752 310 1,341 122 18

SHBG 1,551 7 1,164 102 17

Urate 1,584 38 1,206 103 12

Column 2: number of genes (out of 15,770) with (1) h2
gene;t 90%-CI> 0 and (2) 90%-CI> 0 for at least one MAF bin (rare, low-frequency, or common). Column 3:

estimated number of genes that explain 50% of cumulative h2
gene;t. Columns 4–6: numbers of 90%-CI > 0 genes with effects exclusively from common, low-fre-

quency, or rare variants. (BMD, bone mineral density; MCH, mean corpuscular hemoglobin; MSCV, mean sphered corpuscular volume; RBC, red blood cell.)
‘‘unrelated White British’’ individuals,47 M ¼ 5,650,812

with MAF > 0.5%, imputed data; material and methods).

These 25 traits are a mix of serum and urine biomarker

traits (many of which have known ‘‘causal’’ genes and

biochemical pathways65–68) and highly polygenic anthro-

pometric traits (Table 1). Because our GWASs may contain

uncorrected fine-scale population structure among rare

variants (discussion), to reduce potential false positives,

we exclude genes in the bottom 5th percentile in terms of

(1) number of rare variants or (2) number of rare variants

divided by gene length (Figure S19, material andmethods).

Unless otherwise stated, the estimands of interest are func-

tions of the variants located in the gene body and the var-

iants located within 10 kb upstream/downstream of the

gene start/end positions. A gene is classified as having

‘‘nonzero heritability’’ if it meets two criteria: (1) h2
gene;t

90%-CI > 0 and (2) 90%-CI > 0 for at least one MAF
The Ame
component (h2
gene;r, h

2
gene;lf , or h

2
gene;c). Using this definition,

the number of nonzero-h2 genes ranges from 1,103 (7%)

for corneal hysteresis to 2,258 (14%) for height (Table 1).

Most of the estimated posterior means for these genes lie

between 10�6 and 10�4 (Figure S20). While the number

of genes passing the 90%-CI > 0 threshold is a biased esti-

mator of polygenicity (Figure S14B), we can relatively reli-

ably estimate the number of genes that explain 50% of the

trait’s cumulative gene-level heritability (Figure S15, mate-

rial and methods). These estimates vary widely across

traits, ranging from seven genes for hair color and sex hor-

mone binding globulin concentration (SHBG) to 677 for

BMI (Table 1).

We confirm that the approximation bh2

gene;tz
bh2

gene;cþbh2

gene;lf þ bh2

gene;r is largely satisfied in real data;

the average Pearson correlation across traits betweenbh2

gene;t and bh2

gene;c þ bh2

gene;lf þ bh2

gene;r is 0.97 (SD 0.05)
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A B Figure 5. Genes of known biological
importance have higher h2 estimates
(A) Distributions of h2 estimates for three
gene sets: Mendelian-disorder genes (n ¼
2,971), LoF-intolerant genes (pLI > 0.9, n
¼ 2,562), and immune-related drug targets
(n ¼ 176). Each point is the median poste-
rior mean across genes for a given trait;
each boxplot represents 25 traits.
(B) Proportion of nonzero-h2 genes identi-
fied at 90%-CI > 0 for h2

gene;t and h2
gene;r

that are putatively LoF intolerant. Each
violin plot is a distribution across 25 traits.
For reference, genes with pLI> 0.9 comprise
16% of all genes in the analysis.
(Figure S21). As expected, bh2

gene;c behaves similarly tobh2

gene;t. The average Pearson R2 of bh2

gene;c and bh2

gene;t across

the 25 traits is 94% (SD 1%) (Figure S22). 92% (SD 1%)

of nonzero-heritability genes have significant common-

variant heritability; 76% (SD 1%) have significant causal

effects exclusively from common variants (Table 1). On

the other hand, bh2

gene;r is significantly less correlated withbh2

gene;t (average Pearson R2 ¼ 30% [SD 21%] across traits)

(Figure S22). Approximately 2.5% (SD 0.6%) of genes

have significant rare-variant heritability (Table S3), and

only 0.8% (SD 0.4%)—327 gene-trait pairs in total—have

significant heritability exclusively from rare variants

(Table 1, Table S4).
LoF-intolerant genes are strongly enriched among

genes with only rare-variant heritability

We estimate, and partition by MAF, the gene-level herita-

bilities of (1) known Mendelian-disorder genes from

OMIM69 (n ¼ 2,971), (2) loss-of-function (LoF)-intolerant

genes (probability of LoF-intolerance [pLI] > 0.9)48 (n ¼
2,562), and (3) a set of FDA-approved drug targets for 30

immune-related traits70 (n ¼ 176) (material and methods).

Compared to a set of ‘‘null’’ genes (sampled from the set

of genes not contained in any of the three gene sets),

all three gene sets have significantly higher median esti-

mates of total and MAF-partitioned gene-level heritability

(Figure 5A).

The Mendelian-disorder gene set comprises 19% of all

genes and is enriched for genes with h2
gene;r 90%-CI >

0 for at least one trait (Fisher’s exact test, OR and 95%-

CI: 1.4 [1.1, 1.7], Table S3) but not for nonzero-h2
gene;t

genes (OR ¼ 1.1 [1.0, 1.2]) or genes with exclusively

rare-variant heritability (OR ¼ 1.1 [0.8, 1.5], Table S4).

In contrast, the LoF-intolerant genes comprise 16% of

all genes and are enriched for nonzero-h2
gene;t genes (OR

and 95%-CI: 1.4 [1.3, 1.5]), nonzero-h2
gene;r genes (OR ¼

1.5 [1.2, 1.8], Table S3), and genes with exclusively rare-

variant heritability (OR ¼ 1.6 [1.2, 2.2], Table S4). On
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average across traits, 26% (SD 1%) of

the genes identified at h2
gene;t 90%-CI

> 0; 33% (SD 8%) of those with

h2
gene;r 90%-CI > 0; and 35% (SD
20%) of those with exclusively rare-variant heritability

are also LoF-intolerant (Figure 5B).

Of the 327 gene-trait pairs with only rare-variant herita-

bility (ranging from three genes for heel T-score and

corneal hysteresis to 27 genes for height [Table 1, Table

S4]), 213 gene-trait pairs are also identified by MAGMA71

(FDR < 0.05, material and methods). We observe a 1.63

enrichment of LoF-intolerant genes among the gene-trait

pairs identified by both methods and a 2.33 enrichment

among the gene-trait pairs identified by only our method,

indicating that the genes identified by only ourmethod are

indeed capturing meaningful signal. The 114 additional

gene-trait pairs found by our method (Table S5) include

six unique genes (seven gene-trait pairs) with estimated

posterior means bh2

gene;r > 10�4. Of these six genes, three

are LoF-intolerant: DYNC1LI2, identified for MSCV

(h2
gene;r 90%-CI ¼ [2e�4, 4e�4], MAGMA Z score ¼ 2.1,

pLI ¼ 1, recently implicated in cystinosis, a lysosomal stor-

age disorder72); ARHGAP25, identified for monocyte count

(h2
gene;r 90%-CI ¼ [9e�5, 3e�4], MAGMA Z score ¼ 2.1,

pLI ¼ 0.95, has known roles in phagocytosis73,74); and

PHC3, identified for basal metabolic rate (h2
gene;r 90%-

CI ¼ [7e�5, 2e�4], MAGMA Z score ¼ 1.9, pLI ¼ 1, impli-

cated in osteosarcoma75,76).

h2
gene;r identifies genes that link complex traits to

phenotypically related monogenic disorders

Among the 1,050 gene-trait pairs identified at h2
gene;r 90%-

CI> 0 (Table S3), 161 have h2
gene;r 90%-CI> 10�4. Several of

these genes with large rare-variant heritability are impli-

cated in Mendelian disorders that are phenotypically

related to the complex trait. For example, the gene with

the largest rare-variant heritability we identify is MPDU1

for SHBG concentration, a liver-secreted glycoprotein77

(h2
gene;r 90%-CI ¼ [0.020, 0.021]); certain mutations in

MPDU1 are known to cause a congenital disorder of glyco-

sylation,78,79 and there is evidence that MPDU1 interacts



with SHBG.80 IL17RA, identified for monocyte count

(h2
gene;r 90%-CI ¼ [0.0040, 0.0048]), is involved in an auto-

somal recessive immunodeficiency disorder.81,82 GFI1B,

identified for mean platelet volume (h2
gene;r 90%-CI ¼

[0.0037, 0.0044]), is involved in platelet-type bleeding

disorder-17, an autosomal dominant disorder character-

ized by increased bleeding due to abnormal platelet

function.83

Although we did not find a statistically significant over-

lap between the Mendelian-disorder gene set and the set of

genes with exclusively rare-variant heritability, the top

genes (rank ordered by bh2

gene;r) among the 114 gene-trait

pairs identified by our method and not by MAGMA

(FDR < 0.05, Table S5) also include examples of genes

that may link complex traits to phenotypically related

monogenic disorders. For example, we identify AKT2 for

serum gamma-glutamyl transferase concentration (GGT)

(90%-CI of h2
gene;r ¼ [3e�5, 1e�4]), which is used to test

for the presence of liver disease; AKT2 is implicated in

monogenic forms of type 2 diabetes84 and hypoinsuline-

mic hypoglycemia with hemihypertrophy.85 The AKT2

annotation used for this analysis contains 24 rare variants,

of which, 1 is identified as causal. For serum apolipopro-

tein A1, we identify VPS13D (h2
gene;r 90%-CI ¼ [4e�5,

2e�4]; annotation contains 119 are rare variants, of which

�2 are identified as causal). Compound heterozygous

mutations in VPS13D are known to cause an autosomal

recessive ataxia characterized in part by abnormal mito-

chondrial morphology, reduced energy generation, and

lipidosis,86,87 and VPS13D was recently shown to have

direct involvement in trafficking fatty acids from lipid

droplets to mitochondria.88

Our results are consistent with the hypothesis that

complex-trait variation may be explained in part by dysre-

gulation of genes that—if completely disrupted—cause

phenotypically similar or related Mendelian disorders.54

We emphasize that, because heritability reflects genetic

and phenotypic variation at the population level, if a com-

mon variant and rare variant explain the same heritability

(i.e., have the same standardized causal effect size), the

allelic effect—the expected change in phenotype per addi-

tional copy of the effect allele—is significantly larger for

the rare variant.

MAF-partitioned gene-level heritability reveals unique

insights into genetic architecture

We investigated whether gene-level heritability estimates

are correlatedwith gene length, average LD score of variants

in the gene (a proxy for the strength of LD in the region),

and average MAF of variants in the gene. bh2

gene;c (and, to a

large extent, bh2

gene;lf ) is distributed very similarly to bh2

gene;t

with respect to these variables (Figure6, Figure S23).Howev-

er, the distribution of bh2

gene;r shows marked differences,

particularly with respect to gene length. Specifically, we

observe a higher average bh2

gene;r among shorter genes even
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though the number of causal variants per gene (across all

allele frequencies) increases with gene length (Figure 6,

Figure S24). The expected per-causal variant effect size per

gene is invariant to gene length for common and low-fre-

quency variants, but for rare variants, the average across

gene-trait pairs is nearly 10�4 in the shortest quintile of

genes versus 10�6 in the longest (Figure 6).

Using the empirical distributions of cumulative h2
gene;t,

h2
gene;c, h

2
gene;lf , and h2

gene;r, we loosely quantify differences

in polygenicity at the level of genes (with the caveat

that, because there is a high degree of gene overlap in

some regions, cumulative h2
gene;t may be more informative

for some traits over others). For example, if cumulative

h2
gene;t is divided equally across all genes, the empirical cu-

mulative distribution function (CDF) for h2
gene;t would be

the line y¼ x, where the x axis is the rank ordering of genes

from highest to lowest bh2

gene;t; two traits with the same

empirical CDF for h2
gene;t can have different empirical

CDFs for each MAF-partitioned component. Once again,

we find that the empirical CDFs of h2
gene;c are extremely

similar to those of h2
gene;t (Figure 7, Figure S25). Although

the curves generally have similar shapes across traits (i.e.,

similar spread of heritability across genes), some traits

have a notable amount of heritability concentrated in

just the top gene, and many of these gene-trait pairs

have been functionally validated in the literature. For

example, for urate, SLC2A9—a known urate trans-

porter89–91—is the single largest contributor to total,

common-, and LF-variant gene-level heritability (bh2

gene;t ¼
0.062, bh2

gene;c ¼ 0.060, bh2

gene;lf ¼ 0.0034, bh2

gene;r ¼ 0), ac-

counting for 32%, 39%, and 12% of the cumulative

heritability for each estimand, respectively (Figure 7).

For alkaline phosphatase, we find that ALPL—which en-

codes the enzyme alkaline phosphatase—is the single

largest contributor to total and LF-variant gene-level heri-

tability (bh2

gene;t ¼ 0.041, bh2

gene;c ¼ 0.018, bh2

gene;lf ¼ 0.021,

bh2

gene;r ¼ 0), explaining 13% and 29% of the respective cu-

mulative heritability estimands (Figure 7).
Discussion

We propose a general approach for estimating the heritabil-

ity explainedbyany setof variantsmuchsmaller thananLD

block and assess its utility in estimating/partitioning gene-

level heritability. In simulations, we confirm that incorpo-

rating uncertainty about which variants are causal and

what their effect sizes are dramatically improves specificity

over naive approaches that ignore uncertainty in the causal

effects. For 25 complex traits and >15K genes, we esti-

mate gene-level heritability—the heritability explained by

variants in the gene body plus a 10-kb window upstream/

downstream of the gene start/end positions—and partition
rican Journal of Human Genetics 109, 692–709, April 7, 2022 703



Figure 6. Inverse relationship between rare-variant h2 estimates and gene length
Estimates of h2 (top), number of causal variants per gene (middle), and expected effect size per causal variant per gene (bottom)
with respect to gene length (x axis) for 25 traits. Each violin plot is the distribution of posterior mean estimates for nonzero-heritability
genes with 90%-CIs> 0 for each h2 quantity. Color gradient indicates the number of estimates in each violin plot (number of gene-trait
pairs).
by allele-frequency class to explore differences in genetic ar-

chitecture across traits. As expected, most gene-level herita-

bility is dominated by common variants, but we identify

several genes per trait with nonzero heritability exclusively

from rare or low-frequency variants. Notably, we find

many genes with only rare-variant heritability that existing

methods are underpowered to detect; these genes include

LoF-intolerant genes andgeneswith known roles inMende-

lian disorders that are phenotypically similar or related to

the complex trait. Our results demonstrate that the rare-

variant contribution to total gene-level heritability is a

useful quantity that can be considered alongside common-

variant heritability enrichments to obtain a more com-

prehensive understanding of genetic architecture.

We conclude by discussing the limitations of our

approach. First, it is critical to remember that gene-level
704 The American Journal of Human Genetics 109, 692–709, April 7,
heritability is not an intrinsic property of a trait or gene.

Like all ‘‘types’’ of heritability, estimates of total and

MAF-partitioned gene-level heritability are only meaning-

ful when considered in the populations in which they were

measured.45,46 Our real-data results are therefore specific

to the population from which the ‘‘White British’’ individ-

uals in the UK Biobank are sampled. In addition, genes

with credible intervals > 0 must not be interpreted as

‘‘causal’’ without additional functional validation, as

nonzero gene-level heritability indicates association—not

causality.51

Second, multiple lines of evidence suggest that rare and

‘‘ultra-rare’’ variants, which are not well tagged by variants

on genotyping arrays, may explain much of the ‘‘missing

heritability’’ not captured by genotyped or imputed vari-

ants.12,63,92 Because imputed genotypes are noisier for rarer
2022
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Figure 7. Gene-level heritability estimates capture differences
in polygenicity across traits
Empirical distributions of cumulative heritability for seven
example traits (clockwise from top left: total, common, rare, and
low-frequency). Each curve can be read as, ‘‘the top X genes,
rank ordered by estimated posterior mean, explain proportion Y
of the cumulative gene-level heritability for a given trait’’
(Figure S25 shows all 25 traits).
variants and variants in lower LD regions, we analyze var-

iants withMAF> 0.5%. Additional work is needed to assess

the error incurred by using genotyped/imputed data in lieu

of whole-genome sequencing (WGS) as well as the signal

that is missed by excluding variants with MAF < 0.5%.

While our estimator can be applied to whole-exome

sequencing (WES) data, LD between coding and noncod-

ing regions would significantly inflate gene-level heritabil-

ity estimates; LD between exonic and intronic variants

could also cloud interpretation, depending on the applica-

tion. With multiple biobanks starting to sequence large

numbers of individuals,93–95 we believe the availability

of large-scale WGS data will gradually become less of an

issue.

We corrected for population structure by using genome-

wide PCs (precomputed and provided by the UK Biobank

in their data release47) as covariates in each GWAS. This

is a standard approach to correcting for population stratifi-

cation, which typically reflects geographic separation, in

estimates of genome-wide SNP-heritability and genome-

wide functional enrichments, both of which are driven

by common SNPs. However, rare variants generally have

more complex spatial distributions and thus exhibit

stratification patterns distinct from those of common

SNPs.62,63 It is unclear whether methods that are effective

for controlling stratification of common SNPs are appli-

cable to rare variants.96 While we did perform additional

quality control to reduce potential false positives due to

uncorrected rare-variant population structure, we leave a

thorough investigation of the impact of recent and/or

fine-scale structure for future work.

Our approach requires OLS association statistics and LD

computed from a subset of individuals in the GWAS.While

estimates of gene-level heritability and the MAF-parti-
The Ame
tioned components are robust to sample sizes as low as

5,000, the individuals used to estimate LDmust be a subset

of the individuals in the GWAS. Although summary associ-

ation statistics are publicly available for hundreds of large-

scale GWASs, most of these studies are meta-analyses and

therefore do not have in-sample LD available. Moreover,

many publicly available summary statistics were computed

from linear mixed models rather than OLS, which is used

throughout our simulations and derivations. Additional

work is needed to extend our approach to allow external

reference panel LD (e.g., 1000 Genomes57) and/or mixed

model association statistics. Biobanks can help to amelio-

rate potential issues stemming from noisy LD by releasing

summary LD information alongside summary association

statistics.97

Finally, gene-level heritabilities of different genes can

have nonzero covariance due to physical overlap between

genes and/or correlated causal effect sizes.98 In this work,

we assume there is zero covariance between causal effects

of different variants in order to facilitate inference. If, in

fact, there is nonzero covariance between causal effects at

different loci, total SNP-heritability would also include a

nonzero covariance between the gene and its comple-

ment43–46 (material and methods). Depending on whether

the covariance is positive or negative, the gene-level herita-

bility estimates from our method can be biased downward

or upward. Thus, the heritability estimates for real traits re-

ported in this work have additional sources of noise/uncer-

tainty which were not directly modeled or accounted for.

Since modeling correlation of causal effect sizes would

make inference considerably more challenging, we leave

this for future work.
Data and code availability

h2gene software and analysis scripts are available at https://

github.com/bogdanlab/h2gene.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2022.02.012.
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LoF-intolerance metrics by gene, https://gnomad.broadinstitute.

org/downloads

MAGMA software, https://ctg.cncr.nl/software/magma
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Sanniti, A., Lledó Lara, A., Kasela, S., De Cesco, S.,Wegner, J.K.,

et al. (2019). A genetics-led approach defines the drug target

landscape of 30 immune-related traits. Nat. Genet. 51,

1082–1091.

71. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D.

(2015). MAGMA: generalized gene-set analysis of GWAS

data. PLoS Comput. Biol. 11, e1004219.

72. Rahman, F., Johnson, J.L., Zhang, J., He, J., Pestonjamasp, K.,

Cherqui, S., and Catz, S.D. (2021). DYNC1LI2 regulates local-

ization of the chaperone-mediated autophagy receptor

LAMP2A and improves cellular homeostasis in cystinosis.

Autophagy. Published online October 13, 2021. https://doi.

org/10.1080/15548627.2021.1971937.

73. Schlam, D., Bagshaw, R.D., Freeman, S.A., Collins, R.F., Paw-

son, T., Fairn, G.D., andGrinstein, S. (2015). Phosphoinositide

3-kinase enables phagocytosis of large particles by terminating

actin assembly through Rac/Cdc42 GTPase-activating pro-

teins. Nat. Commun. 6, 8623.
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dina, O., Allen, H.L., Sanchis-Juan, A., Frontini, M., Thys, C.,

et al. (2020). Whole-genome sequencing of patients with

rare diseases in a national health system. Nature 583, 96–102.

96. Bhatia, G., Gusev, A., Loh, P.-R., Finucane, H., Vilhjálmsson,
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