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INTRODUCTION
Alternative splicing is a fundamental process that generates 

functional diversity in the transcriptome (1, 2). Advancement 
of RNA sequencing (RNA-seq) technology and computa-
tional algorithms for quantitative splicing analysis coupled 
with clinical sample annotations has not only identified 
RNA splicing dysregulation as a hallmark of cancer but also 
revealed that it underlies transformation, disease progres-
sion, and resistance to therapy (3–10). Understanding the 
molecular mechanisms of splicing dysregulation is key to dis-
secting the origins and progression of cancer and designing 
better therapeutic approaches.

Chronic lymphocytic leukemia (CLL), the most common 
form of adult mature B-cell leukemia in North America, 

displays transcriptome-wide RNA splicing defects (11, 12). 
Large-scale cancer genome sequencing has identified recur-
rent mutations of spliceosomal components (e.g. SF3B1) in 
CLL (13–16). These mutations alter splicing specificity and 
activate pathways that are essential for disease onset and 
progression (10, 16, 17). As exemplified in murine models, 
coexpression of Sf3b1 mutations with Atm deletion in murine 
B cells triggers the onset of CLL (8, 10), highlighting splic-
ing dysregulation as a central underlying pathway in CLL. 
However, mutations of splicing factors are present in only 
about 20% of CLL samples and cannot fully explain the gen-
eral splicing defects observed in this disease (18). This led us 
to hypothesize that transcriptional and posttranscriptional 
regulation of RNA splicing contributes to leukemogenesis.

N6-methyladenosine (m6A) is the most abundant and con-
served internal modification of mRNA and regulates many 
aspects of RNA metabolism, including RNA splicing (19–24). As 
a key player in transcriptional and posttranscriptional control 
of gene expression, m6A modification is dynamically regulated 
by writers (METTL3/METTL14/WTAP, METTL16), eras-
ers (ALKBH5, FTO), and readers (YTHDF1/2/3, YTHDC1/2, 
IGFBP1/2/3, HNRNPC, HNRNPG; refs. 22, 25–29). Emerg-
ing evidence reveals m6A modification is required for normal 
hematopoiesis, and alteration of m6A-modified transcripts leads 
to hematologic malignancies (30–32). However, the exact roles 
of m6A modification and its critical regulators in RNA splicing 
dysregulation in CLL are largely unknown. In the current study, 
we set out to examine the nongenetic regulation of RNA splic-
ing dysregulation in CLL by METTL3 and m6A modification.

RESULTS
Posttranscriptional Upregulation of RNA Splicing 
Pathway in CLL

To study the spliceosome mutation-independent splicing 
defects in CLL, we analyzed RNA-seq data of B cells derived 
from 6 healthy donors and 36 CLL patients (13 with and 23 
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without SF3B1 mutations; Supplementary Table  S1) using 
a bioinformatic pipeline that integrates transcript isoform 
quantification algorithms StringTie (33), LeafCutter (34), 
and rMATs (35) to maximally improve the power of detection 
of alternative splicing events, including de novo junctions. 
When comparing CLL with normal B cells, we identified 
that 5,545 and 4,017 alternative splicing events were associ-
ated with or without SF3B1 mutations, respectively, with 
2,553 splicing events shared (CLL-associated events; Fig. 1A 
and B). When comparing CLL cells with or without SF3B1 
mutations, 3,197 splicing events were differentially spliced, 
with 136 of these among the CLL-associated events (Fig. 1B). 

The proportion of shared splice variants between normal 
and CLL with or without SF3B1 mutations (Fig.  1B, blue 
and green) is greater than that of SF3B1 mutation-specific 
events shared with either group (Fig.1B, red, proportion test, 
P < 0.0001). Of note, splice variants associated with CLL had 
pervasive changes in intron retention (Fig. 1C), irrespective of 
SF3B1 mutations. As previously reported (17), SF3B1-mutant 
samples had cryptic 3′  splicing site selection through aber-
rant branch point usage (Supplementary Fig. S1A and S1B). 
Taken together, our results suggest that, alongside spliceoso-
mal mutations, other shared regulators impact the alterna-
tive RNA splicing in CLL.

Figure 1.  Integrated transcriptomic and proteomic analysis identifies posttranscriptional upregulation of splicing factors in CLL. A, Left: schema of 
five alternative RNA splicing categories. Right: the proportion of five alternative splicing categories within the significant alternative splicing events in 
each comparison among normal B-cell samples (normal, n = 6) as well as CLL samples either with [Mutant (MT), n = 13] or without [Wild-type (WT), n = 23]. 
B, Overlapping of significant alternative splicing events among three comparisons. Proportion test: (blue, green) vs. (red, blue), P < 0.0001; (blue, green) vs. 
(red, green), P < 0.0001. C, Q-Q plots of observed P values against the expected P values under uniform distribution of five alternative splicing catego-
ries. Red lines indicate the least-squares linear fit to the lower 95th percentile of points with slope λ. Gray-shaded areas represent 95% confidence 
intervals for the expected distribution. D, Correlative scatter plot of gene and protein expression changes between 22 SF3B1 wild-type CLL and 10 normal 
B cell samples based on the transcriptomic and proteomic data. Color-coded dots indicate genes with significant changes in CLL samples at both RNA and 
protein levels (RNA level: Log2 fold change (FC) >1, false discovery rate (FDR) <0.05; protein level: FC >1.5, FDR <0.05). E, Gene set enrichment analysis of 
differentially expressed genes and proteins between CLL and normal B cells in RNA metabolism-related pathways. Normalized enrichment score (NES) 
is color coded. Red dashed line as a cutoff for significance, FDR <0.1, permutation test. F, Median gene and protein expression changes related to RNA 
metabolism pathways between CLL and normal B cells samples.
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To discover regulators for RNA splicing, we performed 
transcriptomic and quantitative tandem mass tag (TMT) 
proteomic analyses using B cells derived from healthy donors 
(n  =  10) and untreated CLL patients (n  =  22; Fig.  1D; Sup-
plementary Fig.  S2A–S2C). 3,230 proteins were consistently 
detected across all samples. 2,912 genes and 328 proteins 
were differentially expressed between normal and CLL B cells 
based on RNA-seq and proteomics data, respectively (Sup-
plementary Table S2). There is a general correlation between 
mRNA and protein expression, and as expected, CLL tumor-
specific genes CD5 and ZAP70 were upregulated at both 
the RNA and protein levels (Fig. 1D). Interestingly, gene set 
enrichment analysis (GSEA) revealed that the RNA splicing 
process was highly upregulated at the protein level but not at 

the RNA level (Fig. 1E and F). This observation was further 
validated in two independent proteomic, as well as transcrip-
tomic, data sets (refs. 17, 36–38; Supplementary Fig. S2D and 
S2E), highlighting that the RNA splicing pathway is likely 
upregulated posttranscriptionally in CLL.

Splicing Factor Upregulation Results in Splicing 
Dysregulation and Is an Independent Risk Factor 
in CLL

To determine whether the abundance of splicing factors 
impacts RNA splicing, we designed a dosage-dependent splic-
ing (DDS) score system to assess protein dosage-dependent 
RNA splicing using matched proteomic and RNA-seq data 
derived from 19 CLL samples (Fig. 2A). Specifically, for each 
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protein, we first identified two subsets of CLL samples, high 
(top 5 samples) and low (bottom 5 samples), based on its 
protein expression. Then, we systematically quantified alter-
native splicing events associated with the protein expression 
using matched RNA-seq data (Fig.  2A). Last, we assigned to 
each protein a DDS score, which is the number of splicing 
events the protein affected normalized to the protein-level 
difference between the high and low groups, and ranked all 
proteins by DDS score (Fig. 2B). A high DDS score indicates 
more splicing events corresponding to protein-level change. 
Proteins within the upper quartile of the DDS score were 
significantly enriched in the spliceosome complex, especially 
U2-type and tri-snRNP spliceosome (Fig. 2C). Upon overlap-
ping DDS events derived from the top 10 splicing factors 
with 2,417 CLL-associated and SF3B1 mutation-independent 
splicing events (Fig. 1B; Supplementary Fig. S2F), we observed 
more than 35% overlap (Fig 2D, permutation test, P = 0.0087), 
with overlapped events significantly enriched for CLL-related 
pathways (Fig. 2E). These results suggest that upregulation of 
splicing factors indeed contributes to RNA splicing dysregula-
tion in CLL by mechanisms yet to be elucidated.

To explore the impacts of splicing factor abundance on 
CLL pathogenesis, we examined the associations of spli-
ceosome complexes and RNA-binding proteins [serine and 
arginine-rich (SR) and heterogeneous nuclear ribonucleo-
protein (hnRNP) proteins] with clinical outcomes through 
a combined proteomic data set, which includes 123 samples 
(10 normal B cell and 113 CLL samples, 2,703 proteins) with 
91 samples from a public data set (36). Because splicing factor 
abundance is highly correlated, we utilized “eigengenes” (39) 
to summarize the expression dynamics within spliceosome 
complexes (Fig. 2F). Eigengene is defined as the first principal 
component of the expression matrix, maximally allowing 
the diversity among different splicing factors and making 
it possible to calculate the associations with other features. 
The abundance of overall spliceosome complex was predic-
tive of a shorter time to first treatment (TTFT) and retained 
significance when IGHV mutation status and 17p deletion 
were added (Fig.  2G and H). In particular, the abundance 
of spliceosome complexes A, B, Bact, C, P, as well as hnRNP 
proteins was all significantly associated with TTFT (Supple-
mentary Fig. S3A). Moreover, a higher abundance of hnRNP 
proteins and SR proteins was also associated with inferior 
overall survival (OS; Supplementary Fig. S3B). Similar results 
were observed when only considering SF3B1 wild-type (WT) 
CLL samples (Supplementary Fig. S3C and S3D). These sig-
nificant associations highlight that the abundance of splicing 
factors affects the progression of CLL.

METTL3 Potentially Regulates Splicing 
Factors in CLL

To decipher the mechanism underlying the widespread 
upregulation of splicing factors, we performed a correlational 
analysis between splicing factors and nonsplicing factors 
based on protein expression. As for each nonsplicing factor, 
we calculated the Pearson correlation coefficient for every 
detected splicing factor and then ranked these nonsplic-
ing factors according to the number of correlation edges. 
METTL3, as one of the proteins with the most correlated 
edges with the detected splicing factors (111/143), had a 

77.6% significant positive correlation (Fig. 3A). Importantly, 
these splicing factors were involved in splicing complexes 
with clinical associations (Fig.  3B). The other known RNA 
methyltransferase, METTL16, also showed a 58.7% positive 
correlation with splicing factors. These results imply that 
m6A writer proteins may serve as the posttranscriptional 
regulators for splicing factor abundance in CLL.

To explore the role of METTL3 and METTL16 in the regu-
lation of splicing factor abundance, we first validated our 
proteomics results as well as computational analysis by quan-
tifying protein expression of METTL3 and METTL16 as well 
as splicing factors (SF3B1, SF3A1, SF3A2, and SF3A3) using 
independent cohorts of samples with immunoblot (Fig.  3C; 
Supplementary Fig. S4A). Indeed, CLL cells exhibited upregu-
lation of METTL3 and METTL16, which were positively cor-
related with spliceosome component expression. METTL3 and 
METTL16 appear to be regulated transcriptionally as they were 
consistently upregulated at both RNA and protein levels in CLL 
(Supplementary Fig. S4B). However, we observed no apparent 
RNA expression changes of splicing factors (SF3A1, SF3A2, and 
SF3B1), corroborated with results from RNA-seq analysis.

To assess the impacts of METTL3 and METTL16 on RNA 
splicing dysregulation in CLL, we identified 2,010 and 1,927 
METTL3- and METTL16-associated DDS events using 
matched CLL RNA-seq and proteomics data. It appears that these 
DDS events are enriched for different cellular processes (Sup-
plementary Fig. S4C). Consistent with this, only 56 events were 
shared, suggesting that METTL3 and METTL16 affect RNA splic-
ing on different substrates (Supplementary Fig. S4D). Through 
the integration of CLL proteomic data with clinical annota-
tion, we found that higher METTL3 but not METTL16 protein 
expression was associated with a shorter time to first therapy (log-
rank test, P = 0.04; Fig. 3D; Supplementary Fig. S4E), suggesting 
METTL3 plays a role in driving aggressive CLL.

CLL Cells Exhibit Increased m6A Enriched for 
Transcripts Associated with mRNA Processing

Increased protein abundance of METTL3 in CLL moti-
vated us to examine global m6A levels in these cells. Using 
liquid chromatography mass spectrometry (LC-MS) and 
m6A dot-blot assays, we detected an increase of m6A level 
(1.5–2-fold) in the mRNA derived from CLL cells compared 
with that of normal B cells (Fig.  3E and F; Supplementary 
Fig. S4F). There is no difference of m6A when analyzing total 
cellular RNA, confirming that increased m6A modification is 
specific to mRNA. Leveraging an individual-nucleotide-reso-
lution m6A modification sequencing technology (MAZTER-
seq; refs. 40, 41), we next mapped m6A sites on mRNA derived 
from normal (n  =  5) and CLL (n  =  9) B cells (Fig.  3G). The 
m6A writer complex preferentially deposits m6A on the con-
sensus sequence, DRA*CH (D = G/A/U, R = G/A, A* = m6A, 
H  =  U/A/C) (25), and the m6A modification is enriched 
around the stop codon. As MAZTER-seq is biased toward 
ACA sites, we detected GGACA as the most enriched motif 
within DRACA, accounting for 50% of all the identified 
m6A sites (Supplementary Fig. S4G). Interestingly, transcripts 
related to RNA metabolism, mRNA processing, and RNA 
splicing appear to have a higher m6A density in the B-cell 
context (Fig.  3H; Supplementary Table  S3), suggesting that 
these pathways are subjected to m6A-dependent modulation. 
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Figure 3.  Upregulation of splicing factors is associated with elevated METTL3 expression. A, Ranking of nonsplicing factors based on the number of 
significantly correlated edges (Pearson correlation, FDR <0.05) with splicing factors according to CLL proteomic data. m6A-related proteins are black-
coded with representative genes labeled. B, Protein coexpression network between METTL3 and significantly correlated splicing factors, FDR <0.05. 
SF3A/3B complex, SR, hnRNP, and other spliceosomal proteins are color coded. The square legend represents the node size which is Pearson correlation 
coefficiency. The size of METTL3 represents 1. C, Validation of proteomic data using an independent cohort of normal and CLL B cells by immunoblotting. 
D, Kaplan–Meier plot of TTFT with METTL3 protein expression. Groups are divided based on the median expression. P = 0.04, log-rank test. E, m6A level 
on total RNA and mRNA measured by m6A dot-blot assay. **, P = 0.0074, one-tailed Student t test. F, m6A/A ratio on total RNA and mRNA measured by 
LC-MS. *, P = 0.028, one-tailed. Student t test. (continued on next page)
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Although CLL and normal B cells shared a similar m6A dis-
tribution, we observed an increased m6A level (hyper-m6A) in 
the 3′UTR regions of CLL cells, concomitant with a decreased 
m6A level (hypo-m6A) in coding sequence (CDS) regions 
(Fig. 3I, Binominal test, CDS: P = 0.0017; 3′UTR: P = 0.016). 
These location-dependent m6A changes might be caused 
by the upregulation of both m6A writer and eraser proteins 
in CLL cells (Supplementary Fig.  S4A). 680 sites with dif-
ferential m6A modification were identified between normal 
and CLL B cells with dysregulated transcripts enriched in 
RNA metabolism-related pathways, including RNA splicing 
(Fig. 3J; Supplementary Fig. S4H). These results support that 
m6A modification preferentially regulates splicing-related 
transcripts in CLL in a location-dependent manner.

METTL3 Is Essential for Cell Proliferation in 
CLL Cells

METTL3 has been functionally demonstrated to promote or 
suppress tumor growth in different cancer types (32, 42). To 
fully understand the function of METTL3 in CLL, we exam-
ined its impact on cell growth using cell lines and primary B 
cells both in vitro and in vivo. Knockout (KO) of METTL3 with 
CRISPR/Cas9 technology resulted in substantial inhibition of 
cell growth in all the mature B cell lines we tested, with Mino 
and HG3 cells most sensitive to METTL3 depletion (Fig.  4A; 
Supplementary Fig.  S5A). We depleted METTL3 by shRNAs 
in primary normal and CLL B cells and then cocultured 
them with CD40L-overexpressing stromal cells. Depletion of 
METTL3 led to a greater growth disadvantage in CLL cells than 

in normal B cells (Fig. 4B; Supplementary Fig. S5B, P = 0.007). 
Our in vivo mouse xenograft of HG3 cells demonstrated a 
similar trend, with KO of METTL3 inhibiting disease progres-
sion and prolonging survival (Fig.  4C, P  =  0.0064). Treat-
ment with the METTL3 inhibitor STM2457 also resulted 
in growth defects in HG3 cells at a level similar to that of 
MOLM13 cells (Fig.  4D; Supplementary Fig.  S5C and S5D), 
an STM2457-sensitive acute myeloid leukemia (AML) cell line 
(43). To determine whether METTL3 is a potential therapeutic 
target for CLL, we established xenograft mice using HG3 cells 
with doxycycline-inducible METTL3 KO and stable luciferase 
expression. Doxycycline diet led to a significant delay in tumor 
growth measured by bioluminescence imaging (Supplemen-
tary Fig.  S5E). Taken together, the evidence supports that 
METTL3 is essential to cell growth in mature B-cell leukemia 
and lymphoma and is a potential therapeutic target for CLL 
treatment. To expand our understanding of the requirement 
of m6A and RNA–methylation complexes for cell growth in 
hematologic malignancies, we utilized DepMap data (https://
depmap.org/portal/; ref.  44) to analyze the dependency of 
genes related to m6A modification in cell lines derived from 
different hematologic malignancies including AML, acute lym-
phocytic leukemia, CLL, diffuse large B-cell lymphoma, and 
multiple myeloma. It appeared that all these cell lines had 
higher dependency on m6A writers (Supplementary Fig. S5F) 
than erasers or readers for cell proliferation, highlighting the 
essentiality of m6A writers across hematologic malignancies.

To determine which domain of METTL3 is required for 
cell growth, we ectopically expressed full-length WT, or 
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methyltransferase domain catalytic mutant (MUT), or N- 
terminal domain (NTD, aa1-200)-deleted METTL3 with or 
without catalytic domain mutation (WT ∆NTD, MUT ∆NTD) 
in Mino and HG3 cells with KO of METTL3 (Fig. 4E). sgRNAs 
and METTL3 expression constructs were tagged with mCherry 
and GFP, respectively. Using growth competition assay to 
track the ratio of double-positive cells over time, we observed 
that WT METTL3 completely rescued the growth defect in 
METTL3 KO cells. However, METTL3 MUT, WT ∆NTD, or 
MUT ∆NTD all lacked the potential to rescue the phenotype. 
Although METTL3 has been reported as an oncogene to pro-
mote the initiation and development of a variety of cancers 
(32, 42, 45), we failed to detect significantly enhanced cell pro-
liferation upon overexpression of WT METTL3 in both Mino 
and HG3 cells (Supplementary Fig. S5G and S5H). Of note, 
overexpression of either catalytic mutant METTL3 (METTL3 

MT) or WT ∆NTD METTL3 led to more drastic growth dis-
advantage in HG3 cells (Supplementary Fig.  S5G) possibly 
due to competitively binding with another m6A writer protein 
METTL14, which interfered with its functions. These results 
highlight that both the catalytic domain and NTD of METTL3 
play indispensable roles in cell growth.

Loss of METTL3 Affects the Translation of 
Splicing Factors

To dissect the underlying molecular mechanism by which 
METTL3 affects cell growth, we examined if KO of METTL3 
affects B-cell receptor signaling, cell cycle, and apoptosis. Loss 
of METTL3 subtly increased early apoptosis (Supplementary 
Fig. S6A). Upon anti-IgM stimulation in JeKo-1 cells, AKT path-
way activation was slightly reduced in STM2457-treated cells 
but ERK activation had no change (Supplementary Fig.  S6B). 
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Figure 4.  KO or pharmacologic inhibition of METTL3 affects cell proliferation and cell cycle. A, Proliferation of Mino and HG3 cells upon METTL3 KO in 
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Moreover, we observed a small but significant reduction of 
5-ethynyl-2′-deoxyuridine (EdU) incorporation during the S 
phase and higher overall DNA content, suggesting compromised 
DNA synthesis and mitotic stress (Fig. 4F). Likewise, treatment 
with STM2457 also led to consistently reduced incorporation 
of EdU with subtle impact on the cell cycle (Supplementary 
Fig. S6C and S6D). Taken together, these changes suggest that 
other mechanisms beyond BCR signaling, cell cycle, or apoptosis 
may contribute to growth defects observed in METTL3 KO cells.

To define whether METTL3 KO affects translation, we exam-
ined O-propargyl-puromycin (OPP) incorporation into newly 
synthesized proteins in cells with or without METTL3 and 
found loss of METTL3 resulted in a decrease in OPP incorpora-
tion (Fig. 5A; Supplementary Fig. S6E). We further performed 
an integrated ribosome profiling (Ribo-seq) and RNA-seq 
analysis on HG3 cells with or without METTL3 KO to deter-
mine the transcripts for which METTL3 preferentially affects 
translation. Consistent with the OPP assay, loss of METTL3 
decreased overall translation efficiency (TE; Fig. 5B), defined 
as the number of ribosome-protected fragments (RPF) divided 
by the mRNA expression. Analysis of the top 1,000 transcripts 
with decreased TE revealed that METTL3 KO preferentially 
affected the transcripts involved in the metabolism of RNA, 
cell-cycle, RNA splicing, and mRNA processing (Fig.  5B), in 
which splicing factors (SF3B1, SF3A1, SF3A2, and SF3A3) 
were confirmed by immunoblot (Fig. 5C). METTL14 expres-
sion was also decreased upon KO of METTL3. In contrast, we 
detected no gene-expression changes at the RNA level, high-
lighting the importance of posttranscriptional regulation of 
splicing factors by METTL3 in mature B cells (Fig. 5D).

We next determined whether the overexpression of METTL3 
can rescue splicing factor expression. In response to overexpres-
sion of WT, but not catalytic mutant METTL3, splicing factor 
expression and METTL14 abundance were restored in METTL3 
KO cells (Fig. 5E), indicating that protein expression of splicing 
factors is methyltransferase-dependent. Consistent with this 
observation, treatment with STM2457 also decreased the abun-
dance of splicing factors (Fig.  5F; Supplementary Fig.  S6F), 
suggesting that the NTD is functionally dependent on the cata-
lytic domain of METTL3 in CLL. Furthermore, we found over-
expression of SF3B1 in METTL3 KO cells partially rescued the 
growth defect in HG3 cells, highlighting splicing factors as the 
targets for METTL3 in CLL (Supplementary Fig.  S6G). Apart 
from METTL3, YTHDF paralogs are reported as m6A reader 
proteins enhancing the translation of m6A installed transcripts 
(26, 46). Although KO of YTHDF2 led to growth defects, none 
of YTHDF paralogs affected splicing factor expression (Supple-
mentary Fig. S6H–S6J). Taken together, our results suggest that 
METTL3 likely influences the translation of splicing factors by 
using both catalytic domain and NTD.

To determine the relationship between METTL3-regulated 
splicing factor expression and RNA splicing dysregulation in 
CLL, we measured the direct impact of splicing factor protein 
expression change on RNA splicing. We chose the splicing fac-
tor SF3B1 to examine this relationship as it is one of the most 
consistently upregulated splicing factors in CLL. Splice vari-
ants associated with the depletion of either SF3B1 or METTL3 
displayed similar splicing pattern change, with intron reten-
tion as the most affected splicing type (Fig.  5G; Supplemen-
tary Fig.  S6K), suggesting SF3B1 protein change is involved 
in the RNA splicing dysregulation in CLL. To further examine 
the contribution of SF3B1 and METTL3 protein expression 
to RNA splicing changes observed in CLL, we first identified 
“HG3-associated aberrant splicing events” (similar to CLL-
associated events) by comparing RNA-seq data derived from 
HG3 cells and normal B cells. We then determined whether 
SF3B1 KO or METTL3 KO could rescue HG3-associated aber-
rant splicing events. 66.9% and 65.2% of HG3-associated aber-
rant splicing events showed |∆PSI| more than 0.1 upon SF3B1 
KO or METTL3 KO, respectively (Supplementary Fig. S6L). In 
contrast, only 12.1% and 11.2% of events that are not HG3-
associated aberrant splicing events had such changes (Supple-
mentary Fig. S6L). Moreover, 85% of SF3B1 KO- and METTL3 
KO-rescued events were overlapped (Supplementary Fig. S6M). 
These results indicated that METTL3-regulated splicing factor 
expression strongly influences RNA splicing in CLL.

KO of METTL3 Regulates Abundance of Splicing 
Factors via Modulating m6A at Stop Codons and 
CDS Regions

To dissect the mechanism by which METTL3 influences 
the abundance of splicing factors via m6A modification, we 
performed an integrative methylated RNA immunoprecipita-
tion sequencing (MeRIP-seq), which identifies transcriptome-
wide m6A sites, Ribo-seq, and RNA-seq analysis in cells with 
and without METTL3 KO. We first mapped out METTL3-
responding m6A sites upon METTL3 KO. 5,875 hypomethyl-
ated and 1,409 hypermethylated sites were detected, with 
GGACU as the most enriched motif (Fig. 6A; Supplementary 
Fig.  S7A), validating the role of METTL3 as an RNA meth-
yltransferase. Differential m6A sites were primarily found 
in both exons and 3′UTRs, with the highest enrichment of 
m6A residues located near the stop codon (Supplementary 
Fig. S7A). Gene-expression changes negatively correlated with 
that of the m6A level, with upregulated genes enriched in 
inflammatory response and TNFα  signaling pathways (Sup-
plementary Fig. S7B). We further integrated MeRIP-seq and 
Ribo-seq data to determine the proteins specifically affected 
by METTL3-associated m6A changes. Interestingly, our results 
revealed that genes with reduced TE displayed not only 

Figure 5.  KO or pharmacologic inhibition of METTL3 affects protein expression of splicing factors. A, OPP Run-On assay on Mino and HG3 cells either 
with or without METTL3. OPP incorporation was assessed at 5, 30, and 60 minutes after OPP exposure by flow cytometry. Cycloheximide (CHX) treated 
cells as positive control. B, Left: violin plot of TE in control and METTL3 KO HG3 cells. P < 0.0001, Wilcoxon signed-rank test. Right: metascape analysis 
of the top 1,000 transcripts with downregulated TE; red dashed line: significance cutoff, FDR <0.05, hypergeometric test. C, Immunoblot of splicing fac-
tors expression in control and METTL3 KO Mino and HG3 cells. D, qPCR results of SF3B1, SF3A1, and SF3A2 expression in control and METTL3 KO Mino 
and HG3 cells. Two-tailed Student t test. E, Splicing factors expression in control and METTL3 KO HG3 cells that overexpressed with different METTL3 
variants detected by immunoblotting. F, Splicing factors expression in Mino and HG3 cells treated with different dosage of STM2457 for 7 days detected 
by immunoblotting. G, Major changed alternative splicing type corresponds to either METTL3 or SF3B1 KO in HG3 cells. Q-Q plots of observed P values 
against the expected P values under the uniform distribution of five alternative splicing categories. Red lines indicate the least-squares linear fit to the 
lower 95th percentile of points with slope λ. Gray-shaded areas represent 95% confidence intervals for the expected distribution.
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Figure 6.  METTL3 regulates splicing factor abundance through m6A-mediated translational control. A, Volcano plot of differential m6A modification 
sites upon METTL3 KO in HG3 cells. B, Scatter plot of splicing factors between m6A changes and TE changes in HG3 cells with and without METTL3. 
C, Left: correlation scatter plot of changes between TE and ribosome recycling rate upon KO of METTL3, P < 0.0001, r = 0.15, Pearson correlation. 
Color-coded dots indicate transcripts with significant changes in ribosome recycling rate. |Log2 odds ratio| >1, FDR <0.05, Fisher exact test. Gray line: 
linear regression. Right: metascape analysis of transcripts with a significant decrease of ribosome recycling rate. Red dashed line: significance cutoff, 
FDR <0.05, hypergeometric test. D, Left: immunoblot of SF3B1 in dCasRx-METTL3 HG3 cells transduced with correspond sgRNA. Quantification results 
are from three biological replicates. Data are mean ± SD. **, P < 0.01; ***, P < 0.001, two-tailed Student t test. Right: correlation scatter plot of m6A level 
fold change in technical triplicates as mean ± SD, and average fold change of SF3B1 protein expression. Gray line: linear regression. E, Relative ribosome 
pausing in CDS regions upon METTL3 KO. The colored points indicate METTL3-dependent pausing sites (Log2 odds ratio >1, FDR <0.05), with all other 
translatome positions in gray, Fisher exact test. Metascape analysis of transcripts with significantly increased ribosome pausing upon METTL3 KO. Red 
dashed line: significance cutoff, FDR <0.05, hypergeometric test. F, A site codon associated with METTL3-dependent vs. other pausing sites (32,473 vs. 
1,763,686 sites), two-sided Fisher exact tests. G, Aggregation plots of the mean ribosome densities (at ribosomal A sites) along mRNA aligned to the 
m6A sites. Blue and pink denote HG3 cells with or without METTL3, respectively. H, Left: immunoblot of SF3A3 in dCasRx-METTL3 HG3 cells transduced 
with correspond sgRNA. Quantification results are from three biological replicates. Data are mean ± SD. *, P < 0.05; **, P < 0.01, two-tailed Student t test. 
Right: correlation scatter plot of m6A level fold change in technical triplicates as mean ± SD, and average fold change of SF3A3 protein expression. Gray 
line: linear regression. I, Working model of METTL3-mediated m6A modification controls splicing factor abundance to impact the progression of CLL.
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hypomethylated but also hypermethylated sites (Supplemen-
tary Fig. S7C), possibly as direct or indirect targets of METTL3. 
We then explicitly examined m6A status on the mRNA of splic-
ing factors (n = 189). 104 sites in 67 splicing factors out of 122 
splicing factors with detectable m6A sites were found with 
dysregulated m6A status (Fig. 6B). Transcripts with hypometh-
ylated sites were enriched at stop codon regions for most splic-
ing factors, including SF3A2, SRSF1, SRSF5, SRSF6, SF3A3, and 
SF3B1, indicating these sites as direct target sites of METTL3 
(Fig.  6B; Supplementary Fig.  S7D). We further verified that 
METTL3 KO-induced methylation reduction in these splic-
ing factors is not due to decreased RNA expression level as 
detected by MeRIP-PCR and qPCR (Supplementary Fig. S7E).

KO of METTL3 Influences Ribosome Recycling to 
Regulate Protein Translation

Although METTL3 has been reported to promote protein 
synthesis by binding eIF3h and forming an mRNA loop via m6A 
modification at stop codon regions (47, 48), the mechanism 
by which METTL3 KO influences translation via m6A modifi-
cation is not completely elucidated. It is known that mRNA 
looping can facilitate faster ribosome recycling (49), which in 
turn could promote translation. The time of the ribosome at 
the stop codon regions reflects the ribosome recycling ratio. To 
determine whether METTL3 KO reduces translation by delaying 
ribosome recycling via downregulation of m6A methylation at 
the stop codon region, we analyzed the ribosome recycling rate 
by assessing the ribosomal coverage of P (peptidyl)-sites at CDS 
regions relative to that of stop codon regions. The change of 
TE was significantly correlated with that of ribosome recycling 
rate upon METTL3 KO (Fig. 6C, r = 0.15), and transcripts with 
decreased ribosome recycling rate were enriched for the RNA 
splicing pathway (Fig.  6C), suggesting that METTL3 regulates 
the splicing factor expression via ribosome recycling through 
m6A modification at or near the stop codon region.

To validate the functional association between m6A modifi-
cation and splicing factor abundance, we used an m6A editing 
platform CRISPR-dCas13Rx-METTL3 to install m6A in a site-
specific manner. Specifically, we fused dCasRx with the methyl-
transferase domain of METTL3 along with nuclear localization 
signal (NLS), and established stable HG3 cells with overexpres-
sion of CRISPR-dCas13Rx-METTL3 (Supplementary Fig. S8A 
and S8B). m6A at the hypomethylated site (m6A_3972) of SF3B1 
was selected for validation as SF3B1 is one of the most consist-
ently upregulated proteins in CLL (Supplementary Table  S4, 
q  =  0.0033). Upon introduction of m6A at the 3972 site, we 
observed a 1.4-fold increase of SF3B1 protein in HG3 cells, with 
its RNA level unchanged (Fig.  6D; Supplementary Fig.  S8C), 
confirming METTL3 directly regulates SF3B1 expression via 
m6A. Collectively, these results suggest that METTL3 controls 
splicing factor translation via slowing ribosome recycling at 
stop codon regions in an m6A-dependent manner.

KO of METTL3 Affects Ribosome Pausing to 
Regulate Protein Translation

In addition to direct targets (Fig.  6B, hypomethylated 
transcripts), we also found hypermethylated transcripts asso-
ciated with METTL3 KO, which may be indirect targets of 
METTL3. These sites were more localized at CDS and 5′ UTR 
region of mRNA (Supplementary Fig. S7A). m6A at the CDS 

region has been reported to impact the kinetics of tRNA 
entering into the ribosomal aminoacyl (A) sites and leading 
to ribosome pausing, which in turn affects ribosome elon-
gation and reduces translational output (29, 50). We there-
fore sought to determine whether METTL3 KO-associated 
hypermethylated m6A sites at CDS regions can reduce TE via 
increased ribosomal pausing. We devised a ribosome pausing 
score (51) for each codon site in the CDS regions to assess 
the impact of m6A on translation elongation. Pause scores at 
each codon position in a transcript were calculated by divid-
ing the number of ribosome-protected reads at that position 
by the average number of reads of that transcript. Within 
1,798,661 ribosome-covered sites from our data, 34,975 sites 
(1.94%) displayed significantly increased ribosome pausing 
upon METTL3 KO compared with control cells, which is 
substantially higher than 6,788 sites with decreased paus-
ing (Fig.  6E). Increased pausing sites were highly enriched 
in genes involved in RNA splicing (Fig.  6E). Of note, the 
sequence specificity of pausing sites was mostly enriched for 
GAN in the ribosomal A sites and well matched with the m6A 
motif (Fig. 6F; Supplementary Fig. S8D), strongly implicating 
ribosome pausing is tightly linked with m6A modification.

To determine whether m6A modification in these transcripts 
results in ribosome pausing, we performed an integrative MeRIP-
seq and Ribo-seq analysis and found an elevated ribosome den-
sity on hypermethylated adenosines at the ribosomal A sites 
(Fig.  6G), corroborating that hypermethylation influences the 
decoding process. In supporting this observation, we further 
experimentally validated that increased m6A modification at the 
endogenous CDS region of SF3A3 decreased its protein expres-
sion with no impact on the overall mRNA abundance using 
dCasRx-METTL3 (Fig. 6H; Supplementary Fig. S8E). This result 
led us to consider the possible underlying mechanisms that 
account for m6A methylation upon METTL3 KO. Systematic 
examination of m6A writers and erasers revealed that METTL3 
KO resulted in an increase in METTL16 and a decrease in 
ALKBH5 protein expression (Supplementary Fig. S8F), indicat-
ing that a complex m6A circuitry precisely controls the RNA splic-
ing network by controlling splicing factor protein expression.

DISCUSSION
The discovery of recurrent somatic mutations in the core spli-

ceosomal components and their significant associations with 
clinical outcomes emphasized the importance of genome-wide 
RNA splicing dysregulation and oncogenesis (13–15, 52–54). 
Hence, understanding the underlying mechanism of RNA splic-
ing dysregulation, especially in cancer types without genetic 
lesions in spliceosomal components, becomes a high prior-
ity in cancer biology. Here, we report that RNA spliceosome 
abundance is an independent risk factor for poor prognosis in 
CLL, which contributes to splicing dysregualation and disease 
progression. Moreover, we discover that METTL3 regulates RNA 
splicing dysregulation through m6A-mediated translational 
control of splicing factors (Fig.  6I). Our results have implica-
tions in cancer biology, disease progression, and treatment.

Our studies highlight that the novel regulatory axis between 
METTL3 and splicing factors is likely to be a shared mechanism 
in cancer. Disruption of the regulatory axis led to cell growth 
defects in vitro and affected leukemia progression in vivo in 
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CLL. Moreover, inhibition of METTL3 with STM2457 in mul-
tiple cancer types all resulted in cell death along with reduced 
expression of splicing factors, highly suggestive of a common 
regulatory axis controlling cancer cell growth. Given METTL3 
is significantly upregulated in CLL and has been reported 
to act as an oncogene in multiple cancer types (23, 42, 55), 
we speculate that METTL3 may contribute to the onset and 
progression of CLL via regulating splicing networks. Previous 
studies in AML have indicated that MYC is one of the METTL3 
target genes contributing to oncogenesis (23); however, our 
results showed that no change of MYC was detected upon 
inhibition or KO of METTL3 in B-cell contexts, suggesting 
cellular context and differentiation stage are another layer of 
regulation of m6A-dependent mechanisms. With oral METTL3 
inhibitors entering clinical trials, we observed the therapeutic 
effects of METTL3 silencing in CLL xenograft mice, providing 
a proof-of-concept for targeting METTL3 in aggressive CLL. 
Future experiments with CLL murine models are expected to 
comprehensively elucidate the role of METTL3 in a B-cell con-
text as well as the therapeutic effect of STM2457 in vivo.

Our results also uncover novel mechanisms that METTL3 
utilizes to control the translation of splicing factors in a site-
dependent fashion, which includes promoting fast ribosome 
recycling via m6A at stop codon regions to enhance translation 
and increasing ribosome pausing via m6A at CDS regions to 
perturb ribosomal elongation along transcripts and slow mRNA 
translation. This is different from previous studies, which 
reported that METTL3 enhances translation either by forming 
mRNA looping through binding with eIF3 or by inducing m6A 
on a subset of transcripts associated with chromatin and reliev-
ing ribosome stalling (32, 47). All these observations support that 
METTL3 uses multiple mechanisms to ensure proper protein 
regulation, implicating a critical role of METTL3 in cancer biol-
ogy. This led us to propose a working model for METTL3 in the 
pathogenesis of CLL. Transcriptional upregulation of METTL3 
in CLL causes an elevated protein expression of METTL3, which 
promotes m6A at stop codon regions to enhance translation of 
splicing factors whereas it also modulates m6A at CDS regions to 
remove translational machinery roadblocks to ensure upregula-
tion of splicing factors. The increased abundance of splicing 
complex in turn generates aberrant RNA splicing and contrib-
utes to disease onset and progression (Fig. 6I).

Altogether, our study highlights the critical role of RNA 
splicing dysregulation in CLL that can be induced by a 
splicing factor mutation or an aberrant expression of an 
upstream regulator like m6A writer METTL3, which regulates 
the translation of splicing factor-encoding mRNAs via m6A 
methylation-induced ribosome pausing and recycling, lead-
ing to splicing dysregulation and progression of the disease.

METHODS
Human Samples

Heparinized blood samples were obtained from healthy donors 
and patients enrolled on clinical protocols with informed consent, 
approved by the Human Subjects Protection Committee of City of 
Hope (IRB#18067 and IRB#06229) or Dana-Farber Cancer Institute. 
All studies were performed following written informed consent from 
patients and in accordance with the Declaration of Helsinki. Periph-
eral blood mononuclear cells were isolated by density gradient cen-
trifugation using Ficoll-Paque Medium (GE Healthcare). Normal B 

cells were isolated by immuno-magnetic negative selection with Pan 
B-cell isolation kit (MiltenyBiotec). All samples were cryopreserved 
with fetal bovine serum (FBS) 10% DMSO and stored in vapor-phase 
liquid nitrogen until the time of analysis. In total, 40 CLL samples 
were used from MAZTER-seq, TMT proteomics, and RNA-seq. The 
samples were selected based on SF3B1 mutation status and cytoge-
netic abnormalities to represent the spectrum of CLL.

Cell Lines and Reagents
Leukemia cell lines NALM6 (CRL-3273, ATCC), Mino (CRL-3000, 

ATCC), JeKo-1 (CRL-3006, ATCC), HG3 (provided by Dr. Richard 
Rosenquist, Uppsala University), MEC1 (ACC497, DSMZ), and 
MOLM13 (provided by Dr. Jianjun Chen, City of Hope) were cultured 
in RPMI-1640 (Invitrogen) supplemented with 10% FBS and 1% 
penicillin/streptomycin. Lenti-X 293T cells (TaKaRa) and LL8 cells 
with CD40 ligand overexpression (provided by Dr. John Chan, City 
of Hope) were cultured in DMEM with 10% FBS and 1% penicillin/
streptomycin. When cocultured with primary B cells, LL8 cells were 
pretreated with 5 μg/mL Mitomycin C (Millipore Sigma) for 3 hours 
followed by medium change. We received these cell lines in 2018, and 
our recent STR profiling was conducted in 2022. All the cell lines were 
used within 25 passages. All cell lines tested negative for Mycoplasma.

Antibodies used in this study include anti-METTL3 (#A301-
568A, Bethyl Laboratories; #ab195352, Abcam), anti-METTL14 
(#HPA038002, Millipore Sigma), anti-METTL16 (#HPA020352, 
Millipore Sigma), anti-FTO (#ab126605, Abcam), anti-ALKBH5 
(#ab195377, Abcam), anti-SF3B1 (#14434S, Cell Signaling Technol-
ogy, #PA5-19679, Invitrogen), anti-SF3A1 from Reed Laboratory, 
anti-SF3A2 (#sc-390444, Santa Cruz Biotechnology), anti-SF3A3 (#sc-
393673, Santa Cruz Biotechnology), anti-MYC (#D84C12, Cell Sig- 
naling Technology), anti-YTHDF1 (#57539S, Cell Signaling Technol-
ogy), anti-YTHDF2 (#ab220163, Abcam), anti-YTHDF3 (#24206S, Cell 
Signaling Technology), anti-Annexin V (#640906, BioLegend), anti-
GAPDH (#sc-365062, Santa Cruz Biotechnology), and goat F(ab’)2 
anti-human IgM-UNLB (#2022-01, SouthernBiotech). Secondary 
antibody: Goat anti-Rabbit IgG secondary antibody, HRP (#65-6120, 
Invitrogen), and goat anti-mouse IgG secondary antibody, HRP (#65-
6520, Invitrogen). Horseradish peroxidase activity was revealed using 
Clarity or Clarity Max ECL Western Blotting Substrates (#1705061  
or #1705062, Bio-Rad). STM2457 (#HY-134836) was purchased from  
MedChemExpress.

Plasmid Constructions
Catalytic wild-type and mutant METTL3 sequence was amplified 

from pCSC-METTL3 (WT/MUT)-IRES-GFP plasmids (provided by 
Dr. Yanhong Shi, City of Hope; ref. 45) using the following primers: 
forward 5′-CTAGACTAGTCCACCATGTCGGACACGTGGAGCTCT 
ATC-3′  and reverse 5′ATAAGAATGCGGCCGCCTATAAATTCTTA 
GGTTTAGAGATGATACCATCTGGG-3′, and then cloned into pCRII- 
Blunt-TOPO plasmid (Kit #450245, Thermo Fisher Scientific).

METTL3 sgRNA1 and sgRNA2 targeted sequences were silently 
mutated into 5′-AAGCGACCTCGCACTCACGT-3′ and 5′-GAACTAATC 
GAAGTTAAAAG-3′  by using Q5 Site-Directed Mutagenesis Kit (Kit 
#E0554S, New England Biolabs). This kit was also used to generate 
NTD- (aa1–187) deleted METTL3. Full-length and NTD-deleted cata-
lytic WT and mutant METTL3 were amplified by PCR and cloned into 
pLVX-EF1α-IRES-zsGreen1 plasmid (TaKaRa). Nontargeting shRNA 
and shRNAs targeting METTL3 were amplified from pHIV7-mhC/
shMETTL3-GFP plasmids (provided by Dr. Yanhong Shi, City of 
Hope), and further cloned into pMAX-GFP plasmid (Lonza). Cas9-
sgRNA targeting to METTL3, YTHDF1, YTHDF2, YTHDF3, and SF3B1 
were subcloned into either pLKO.5-mCherry or tet-pLKOsgRNA-puro 
plasmid (#104321, addgene). All shRNA and sgRNA sequences were 
shown in Supplementary Table S5. SF3B1 with N-terminal 3 × Flag tag 
was cloned into pLVXEF1α-IRES-zsGreen1 plasmid (TaKaRa) between 
SpeI and BglII. dCasRx, deactivated RfxCas13d, along with the 5′NLS 
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was amplified from the pXR002 plasmid (#109050, addgene) using 
Q5  polymerase (# M0494S, New England Biolabs) and cloned into 
pLVX-EF1α-IRES-zsGreen1 plasmid (TaKaRa) between SpeI and NotI. A 
FragmentGene (GeneWiz) containing a 3′NLSXTEN-METTL3 (aa273– 
580)-HA sequence served as a template for amplifying and joining the 
METTL3 methyltransferase domain to dCasRx via NotI and BamHI, 
generating pLVX-dCasRx-NLS-METTL3IRES-ZsGreen1. dCasRx-
METTL3 was generated by cloning an HA epitope tag (Y-P-Y-D-V-P-
D-Y-A) along with methyltransferase domain of METTL3 onto the C 
terminus of dCasRx epitranscriptomic editors.

Lentivirus Production and Transduction
For lentivirus production, Lenti-X 293T cells were plated on 6-well 

plates at 3  × 105 per well in complete DMEM with 10% serum and 
allowed to adhere for 16 hours. Transfections were performed fol-
lowing the manufacturer’s instruction with 3 μg of pLKO.5-sgRNA, 
0.4 μg pMD2.G, 1.5 μg pSPAX2, with PEI-MAX 40K (Polyscience). 
The lentivirus particles were collected at 48 and 96 hours after trans-
fection and filtered through a 0.45-μm Nalgene syringe filter SFCA 
(Whatman), concentrated with ultracentrifuge at 4°C, 10,000  ×  g 
for 2 hours, and resuspended in 300 μL medium. Spin infection was 
used in all our leukemia and lymphoma cell lines with lentivirus. 
Specifically, 0.5 million cells were plated in 1 mL of complete media 
supplemented with 8 μg/mL polybrene and concentrated virus, and 
then the plate was spun at 37°C for 1.5 hours at 950 × g. The medium 
was changed 8 hours after the spin transduction.

Xenograft Mice Models
For control and METTL3 KO HG3 xenograft mice, we first trans-

duced nontarget control or METTL3 sgRNA into HG3 cells with 
Cas9 expression. Then, 6- to 8-week-old NSG mice were injected with 
3 × 105 HG3 cells by intravenous injection. For doxycycline-inducible 
control and METTL3 KO HG3 cells xenograft mice, we generated 
doxycycline-inducible nontarget control or METTL3 KO cells and 
then overexpress luciferase. Then, we engrafted 6- to 8-week-old NSG 
mice by subcutaneous injection of 4.5  ×  105 cells. Doxycycline diet 
was given 1 week after the engraftment. Whole-body biolumines-
cence imaging was performed with Lago X (Spectral Instruments 
Imaging) at 10 minutes after D-luciferin (Goldbio) intraperitoneal 
cavity injection. All the protocols were approved by the Institutional 
Animal Care and Use Committee (IACUC) of City of Hope.

Cell Proliferation Assay
To study the effects of METTL3 on cell proliferation, cells were 

seeded in a 24-well plate at a concentration of 20,000 to 40,000 cells 
per well in triplicate, and cell proliferation was assessed by abso-
lute quantification by coupling flow cytometry and cell counting 
with hemocytometer. Briefly, at each time point, 150 μL cells were 
collected and mixed with 50 μL of precounted CFP-positive cells 
(5  ×  105/mL). Cell proliferation was assessed by the following two 
steps: Calculate the ratio of mCherry+ cells (for KO cells with sgRNAs) 
or mCherry+GFP+ cells (for METTL3 reconstituted cells) as well as 
the ratio of CFP+ cells in the mixed cells. Quantify the cell density 
based on the counting of CFP+ cells using hemocytometer.

Cell-Cycle and OPP Run-On Assays
For the cell-cycle assay, cells were starved for 24 hours in a medium 

without FBS. The next day, the cells were replenished with a medium 
containing 10% FBS and cultured for 1 hour. EdU (Invitrogen) was then 
added into the medium at a concentration of 10 μmol/L for 1 hour 
before being collected for staining. For the OPP Run-On assay, cells were 
pretreated with cycloheximide (Thermo Fisher Scientific) at a concentra-
tion of 50 μg/mL for 12 hours as a positive control. OPP (Click Chemistry 
Tools) was added to the medium at a concentration of 20 μmol/L for 
0.5 and 1 hour and then collected for staining. After either EdU or OPP 

treatment, the Click-&-Go Plus 488 Imaging Kit (#1314, Click Chemistry 
Tools) was used to assess the dye incorporation efficiency based on the 
manufacturer’s recommended procedures. Then, the cells were stained 
with DAPI. All the samples were analyzed on an LSRFortessa cell analyzer. 
Data were analyzed with FlowJo software (Tree Star).

Electroporation of Plasmids into Normal and CLL B Cells
1 × 106 cells were collected and washed with PBS before electropo-

ration. Cell pellet was resuspended in 20 μL electroporation buffer 
(Celetrix) with 4 μL (10 μg) pMAX-shRNA plasmid. The cells were 
then electroporated (Celetrix electroporator LE+) with the condition 
of 870 V, 20 ms, and 1 pulse. The electroporated cells were cocultured 
with LL8 cells in RPMI-1640 medium supplemented with 20% FBS, 
antibiotics, and 2 ng/mL recombinant human IL4 cytokines (R&D 
Systems) for monitoring cell survival.

Drug and Proliferation Assays
All suspension cells were plated in 96-well plates in triplicate at 

5,000 to 10,000 cells/well in 200 μL medium and treated for 72 hours 
either with 0.5% dimethyl sulfoxide (DMSO) or different concentra-
tions of STM2457 (0.04–40 μmol/L). After 72 hours, 100 μL aliquots 
of cells were collected for the day 3 survival assay. The remaining 
cells were continuously cultured using a fresh medium with the addi-
tion of STM2457. The ATPase-based CellTiter-Glo 2.0 Cell Viability 
Assay (#G9242, Promega) was used to measure cell survival on cells 
collected on days 3 and 7. Relative cell survival was calculated by nor-
malizing ATP amount in the STM2457- versus DMSO-treated cells.

Immunofluorescence Staining
HEK293T expressing dCasRx-METTL3 were seeded at 5  ×  105/mL 

and cultured on coverslips (#CLS1760-015, Chemglass) in 24-well plates. 
After 48 hours, the culture medium was discarded, and the coverslips 
were washed once with PBS gently. Cells were fixed with 4% paraform-
aldehyde for 15 minutes at room temperature, washed three times with 
PBS, and then permeabilized with PBS containing 0.2% Triton-X100 
(PBST) for 15 minutes at room temperature. Cells were blocked in 
blocking buffer (10% BSA in PBST) for 30 minutes and stained with anti-
HA antibody (Antibody #2367, Cell Signaling Technology) in blocking 
buffer overnight at 4°C. Cells were then washed three times with PBST 
and stained with anti-mouse secondary antibodies conjugated with 
Alexa Fluor 647 (Antibody #A10037, Thermo Fisher Scientific) in block-
ing buffer for 1 hour at RT. Coverslips were then washed three times in 
PBST and mounted on mounting media (F6057-20ML, Sigma-Aldrich).

Images were acquired using a confocal laser scanning microscope 
(FV3000-IX83, Olympus).

m6A LC-MS, Dot Blot, and SELECT Assays
Total RNA was extracted using TRIzol, and polyA RNA was 

further enriched with PolyATract mRNA isolation System IV (Kit 
#Z5310, Promega) in accordance with the manufacturer’s instruc-
tions. For LC-MS, polyA RNA was digested by nuclease P1 (N8630, 
Sigma-Aldrich) for 1 hour at 42°C. Subsequently, 1 Unit alkaline 
phosphatase (P5931, Sigma-Aldrich) and NH4HCO3 (100 mmol/L) 
were added and incubated for another 1 hour at 37°C. Enzymes 
were removed by Ultrafiltration. Samples were loaded onto the C18 
column and eluted by gradient methanol. The Ultimate 3000 system 
coupled with a TSQ Quantiva mass spectrometer (Thermo Fisher 
Scientific) was applied to quantify the levels of Adenosine and m6A. 
For the m6A dot blot, total RNA and polyA RNA were diluted in 
RNA-binding buffer and denatured at 65°C for 5 minutes. Then, one 
volume of 20× SSC buffer was added into the RNA samples before 
dotted onto Amersham Hybond-N+  membrane (#45-000-850, GE 
Healthcare) with Bio-Dot Apparatus (Bio-Rad).

The RNA samples were cross-linked onto the membrane via UV 
irradiation with the UV crosslinker (Thermo Fisher Scientific). The 
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membrane was stained with 0.02% methylene blue (MB) as a loading 
control. After UV cross-linking and MB staining, the membrane was 
washed with PBST, blocked with 5% nonfat dry milk for 1 hour at 
room temperature, and incubated with the anti-m6A antibody at 4°C 
overnight. The membrane was then incubated with secondary HRP-
conjugated goat anti-rabbit IgG antibody and developed with Clarity 
Max ECL Western Blotting Substrates. For the single-base elongation- 
and ligation-based PCR amplification method (SELECT) to determine 
the m6A level, the protocol was followed as previously published (56).

TMT Proteomics Sample Preparation, LC-MS, 
and Data Analysis

CLL and normal B cells were lysed with TEAB buffer supplemented 
with protease inhibitor and PMSF. Lysates (300 μg) were precipitated 
and digested to obtain peptides. TMT 10-plex labeling was performed 
according to the manual from Thermo Fisher Scientific, and peptides 
were fractionated via BPRP HPLC. An 1100 pump (Agilent) equipped 
with a degasser, and a photodiode array (PDA) detector (Thermo 
Fisher Scientific) was used. Peptides were subjected to a linear gradient 
from 3% to 25% acetonitrile in 0.125% formic acid using an Agilent 300 
Extend-C18 column (Agilent) and were fractionated into a total of 96 
fractions. Mass spectrometry was performed using an Orbitrap Fusion 
mass spectrometer (Thermo Fisher Scientific) coupled to a Proxeon 
EASY-nLC 1000 liquid chromatography (LC) pump (Thermo Fisher 
Scientific). Peptides were detected (MS1) and quantified (MS3) in the 
Orbitrap. MS2 spectra were searched using the SEQUEST algorithm 
against a Uniprot composite database derived from the mouse pro-
teome containing its reversed complement and known contaminants. 
Peptide spectral matches were filtered to a 1% false discovery rate 
(FDR) using the target–decoy strategy combined with linear discri-
minant analysis. The detected proteins were filtered to a = 200 and an 
isolation specificity of 0.5. Statistical analysis of the proteome was per-
formed based on the normalized intensities of the TMT-reporter ions.

The peptide and protein abundance from TMT proteomics data 
was log2-transformed. Samples with Gaussian distribution of log2-
transformed protein abundance were proceeded (Supplementary 
Fig. S2A). Additionally, bimodality coefficiency and Hartigan’s dip test 
were used to test the bimodal and significant skew (tailing) distribution 
(Supplementary Fig. S2B and S2C). Outlier samples were measured by 
pair-wise Pearson correlation between samples. “Noisy” proteins were 
removed if they were detected on less than 3 technical replicates. Mean 
protein intensity was calculated among technical replicates. Proteins 
detected in all samples were retained for downstream analysis.

For differential protein expression analysis between CLL and nor-
mal B cells, we used a previously established method with minor 
modification (57). Size factor according to total loading for each 
sample first was calculated to normalize the total amount of detected 
peptides. An internal control sample was introduced to all three 
batches to normalize the batch effect. At last, log2-transformed 
protein intensities were normalized by quantile normalization for 
all samples. Differentially expressed proteins were identified using 
LIMMA linear model methodology (58). Proteins with more than 1.5-
fold change and FDR less than 0.05 were used as significance cutoff. 
Differential protein expression between CLL and normal B cells was 
shown in Supplementary Table S2.

To summarize the protein expression of splicing factors, we first 
grouped splicing factors according to the HUGO group 1518 (59). 
In addition, we also included hnRNP and SR proteins from the 
Spliceosome database (60). In total, this list contains 189 proteins. 
Eigengenes were calculated for each group of proteins using R pack-
age WGCNA (39). 153 out of 189 splicing factors were detected in our 
proteomics cohort, whereas 143 of them were consistently detected in 
the combined cohort. Correlation was calculated by using the Pear-
son correlation method and P values for multiple comparisons were 
adjusted using the Benjamini–Hochberg correction. A correlation edge 
with FDR less than 0.05 was defined as a significant correlation edge. 

Positive correlation edge file and node information file were uploaded 
to the network visualization software Cytoscape for further visualiza-
tion (61). Proteins involved in hnRNPs, SR proteins, SF3A/3B complex, 
and belonging to major spliceosome complex are color coded.

RNA-seq Sample Preparation and Data Analysis
Libraries for RNA-seq were constructed using the Stranded Total 

RNA Prep with Ribo-Zero Plus Kit (Illumina) and sequenced on 
the NovaSeq S4 platform using a paired-end 150-bp mode. Reads 
were aligned to the human reference genome (GRCh38/hg38) using 
STAR with default parameters (62). Differential expression of mRNA 
analysis was performed using the DESeq2 R package (63). Genes 
with more than 2-fold change and FDR less than 0.05 were used as 
significance cutoff.

For RNA splicing analysis, we established a pipeline that inte-
grates StringTie (33), LeafCutter (34), and rMATs (35) to maximally 
improve the power of detection of alternative splicing events. In 
brief, de novo transcripts were assembled using StringTie with default 
parameters. LeafCutter was used to detect novel exon boundaries. 
With the isoform annotation file downloaded from GENCODE 
(release 26), all isoform information was merged to generate a 
comprehensive isoform annotation file using custom R script as a 
reference file for rMATs. Percent spliced-in (PSI) value was calculated 
using rMATs for each splicing event. For differential splicing analysis 
of cell lines, we adopted the differential splicing analysis statistical 
model from rMATs and used absolute delta PSI more than 0.1 and 
FDR less than 0.05 as the significance cutoff. For differential splicing 
analysis in the patient cohort, we logistically transformed PSI values 
followed by a Student t test to obtain the significance. The signifi-
cantly dysregulated splicing events were identified as absolute delta 
PSI more than 0.1 and P value less than 0.05 as significance cutoff. 
The significantly changed splicing type was identified by using a Q-Q 
plot. Expected P values were calculated by using a uniform distribu-
tion. The least-square linear fit to the lower 95th percentile of points 
with slope λ was calculated. Higher λ represents more dysregulation 
in the specific splicing type.

For splicing factor dosage-dependent alternative splicing (DDS) 
analysis, we utilized 19 samples with matched RNA-seq and proteom-
ics data from our cohort. As for each protein, we performed RNA 
splicing analysis between five CLL samples with highest abundance 
(high group) and five with lowest abundance (low group). DDS 
score was calculated as the number of significant alternative splicing 
events normalized to the protein abundance difference between these 
two groups of samples. To calculate the P value of overlap between 
dosage-dependent alternative splicing events with CLL-related splic-
ing events, we randomly selected 10 proteins 10,000 times. P value 
was defined as the probability of higher or the same overlap.

m6A-Sensitive RNase Sequencing Sample Preparation and 
Data Analysis

Libraries were constructed according to the published protocol 
(40, 41) and sequenced on HiSeq 2500 platform using a paired-end 
100-bp mode. Reads were aligned to the human reference genome 
(GRCh38/hg38) using STAR with default parameters (62). The cut 
efficiency matrix was calculated using mazter_mine with minor 
modification (40). Only ACA sites in line with m6A motif DRACH 
were included for differential m6A analysis. Delta cut efficiency was 
calculated as the median cut efficiency of CLL samples subtracting 
with that of normal B cell samples. To reduce noise, only ACA sites 
detected in at least 8 samples were included. The statistical signifi-
cance was calculated using the Wilcoxon rank sum test. Candidate 
m6A sites were defined as median cut efficiency less than or equal to 
0.9 for CLL patients or normal B cells. m6A density was calculated 
using candidate m6A sites number divided by transcript length 
(Fig. 3H). m6A sites with absolute delta cut efficiency greater than 0.1 
and P value less than 0.05 were used as significance cutoff.
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MeRIP Sequencing Sample Preparation and Data Analysis
Methylated RNA immunoprecipitation was processed by using 

the EpiMark N6-Methyladenosine Enrichment Kit (#E1610S, NEB). 
Purified RNA fragments were used for library construction using 
Stranded Total RNA Prep with Ribo-Zero Plus Kit (#20040529, 
Illumina) and sequenced with Illumina HiSeq 2500 platform using a 
paired-end 100-bp mode. Reads were aligned to the human reference 
genome (GRCh38/hg38) using STAR with default parameters (62). 
m6A peak calling, quantification, annotation, and differential m6A 
site analyses were performed using the R package exomePeak (64). De 
novo sequence motif discovery from m6A peaks was performed using 
HOMER with the command line “findMotifsGenome.pl diff_peak.
sort.bed hg38 motif -rna -size 200 -len 5,6,7 -noknown -p 16 -cache 
6000” (65). Visualization files were generated using igvtools with 
parameters “-z 5 -w 10 -e 0.” Integrative Genomics Viewer (IGV) was 
used to visualize the distributions of the m6A peaks.

For m6A site prediction, m6A sites were first narrowed down by 
a sliding window of 30 nucleotides in each m6A peak region. m6A 
enrichment fold change and P values relative to RNA-seq reads were 
calculated using the statistical model from exomePeak (64). Peak-over-
median score (POM) was calculated for each nucleotide in the highest 
enrichment sliding window. The nucleotide with the highest POM was 
defined as “peak summit.” All sequences following the DRACH motif 
inside each m6A peak region were marked. Sites in line with the DRACH 
motif and closest to the peak summit were defined as the m6A sites.

Ribosome Profiling Sample Preparation and Data Analysis
Ribosome profiling was carried out following protocol from the Illu-

mina TruSeq Ribo Profiler (Mammalian) kit (Illumina). The library was 
sequenced with the Illumina HiSeq 2500 platform using a single-end 
50-bp mode. Reference sequences of rRNAs were downloaded from 
Ensembl (version 95; ref.  66). Reads aligned to rRNA sequences were 
removed from further analysis using the alignment tool Bowtie (67). 
Remaining reads were aligned to the human reference genome (GRCh38/
hg38) using HISAT2 with default parameters (68). Multiple alignment 
reads were filtered out for downstream analysis. Quality control includ-
ing reads length distribution, reading frames quantification, and 3 nucle-
otide periodicity were analyzed using the R package riboWaltz (69).

For the calculation of TE, the RPFs were counted in CDS regions 
with read length between 28 and 34 nt and not aligned to the first 15 
and last 5 codons (70, 71). RPFs and RNA-seq reads for each transcript 
were normalized by the trimmed mean of M values (TMM) from edgeR 
(72, 73). TE was calculated as a ratio between normalized RPFs and 
normalized RNA-seq reads. The Fisher exact test was used to test the 
significance of the independent distribution of RPFs relative to RNA-
seq reads. P values for multiple comparisons were adjusted using the 
Benjamini–Hochberg correction. Genes with more than 2-fold change 
and FDR less than 0.05 were used as significance cutoff.

For the ribosome recycling analysis, the exact P (peptidyl)-site of 
each RPFs reads was corrected by using R package riboWaltz accord-
ing to the offset distance. Ribosome recycling rate was defined as 
Psite coverage of CDS regions (300-nt-long region upstream of stop 
codon region) divided to stop codon regions (45 nt upstream and 15 
nt downstream of stop codons). Reads coverage was normalized to 
Reads Per Kilobase of transcript, per million mapped reads (RPKM). 
Differential ribosome recycling at stop codon regions was examined 
using the Fisher exact test to check if the RPF changes at stop codon 
regions are independent of those at upstream CDS regions. The odds 
ratio was calculated according to the recycling rate in METTL3 KO 
cells compared with that in control cells. Genes with |Log2 odds 
ratio| ≥0.5 and P value less than 0.05 were used as significance cutoff.

For the ribosome pausing analysis, the pause score at each codon 
position was calculated based on a previous study (51). Ribosome A 
(aminoacyl) site information was extracted from riboWaltz output. 
To identify METTL3-dependent pausing sites, for each position of the 

transcript, 2  ×  2 contingency tables were created to perform a two-
trailed Fisher exact test to compare the ratio of RPFs in the WT and KO 
fractions at a given position to the ratio at all other positions in that 
transcript (that is, the summed reads in each fraction for the entire 
transcript minus the position of interest), Benjamini–Hochberg cor-
rection for multiple hypothesis testing was used. METTL3-dependent 
pause sites were defined as Log2 odds ratio higher than 1 and FDR less 
than 0.05. To examine the codon enrichment of METTL3-dependent 
pause sites to other sites, METTL3-dependent pause sites with pause 
score  >10 in METTL3 KO cells and at least 5 RPFs were used. The 
odds ratio was calculated based on the codon frequency of METTL3-
dependent pause sites to other sites. Two-trailed Fisher exact test fol-
lowed by Benjamini–Hochberg correction to stratify the significance.

For the analysis of m6A-related ribosome pausing, the A-site cover-
age  ±  60 nt around the m6A sites (described above) was calculated, 
and the regions with less than 20 reads coverage were excluded. The 
A-site coverage in each transcript at this range was normalized to 
mean A-site coverage of this region. The mean of normalized A-site 
coverage at each nucleotide was calculated and plotted out.

Pathway Enrichment Analysis
Enrichment pathways were identified using two methods: 

GSEA based on databases from the Molecular Signature Database 
(MSigDB) including KEGG pathway, HALLMARK, and Reactome 
database. Gene sets with FDR  <0.1 were considered significantly 
enriched pathways (74–76). A web-based pathway enrichment tool 
Metascape (77). Gene sets with FDR  <0.05 were considered signifi-
cantly enriched pathways. The pathway enrichment table related to 
each figure was shown in Supplementary Table S5.

Statistical Methods
Survival curves were estimated using the Kaplan–Meier method, 

and the log-rank test was used to assess statistical significance for 
TTFT and OS by combining our cohort (n  =  22) with the publicly 
available cohort (n = 91). Univariate Cox regression analysis was used 
to assess the prognostic impact of spliceosome complexes. Multivari-
ate Cox regression analysis was used to assess the independent prog-
nostic impact from 17p deletion status, IGHV mutational status, and 
eigengene of spliceosome complex for outcomes in the CLL cohort. 
Other statistical analyses were performed using one/two-tailed Stu-
dent t test, two-way ANOVA, Kolmogorov–Smirnov test, Fisher exact 
test, and Mann–Whitney U test, all included in the figure legends.

Data Availability
RNA-seq, MeRIP-seq, MAZTER-seq, and ribosome profiling raw and 

processed data have been deposited in the Gene-Expression Omnibus 
(GSE223731) and dbGAP (phs003191).
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