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ABSTRACT 

Sonic dcmentilfY facts ilbout holomorphic line bundlea are discuaaed 

along Wilh some applicationa to atrinl theory. 
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1 INTRODUCTION 

• ..... 

The current interut in atrina theory haa forced many of ua to learn new liubjecu in 

mathematiea. Thil Ie not an easy taak. The intuition uaed In physiea and in math­

emallea Ie quite different. Thinaa which are obvioul to us are completely obscure 

to mathemallciana and llice "ena. Often one can relate the abatract mathematical 

theorema to more familiar condructa. In this talk I wish to show how a theorem 

about line bundlu Ie closely related to material In the physlciat's repertoire. This 

theorem piaYI an Important role In the alaebralc aeometry approach to string the­

ory. Many of the Ideas in alaebralc aeometry are just souped up complex analysis. 

The current era of the appliutions of complex analyais to atrina theory begina 

with the work of Polyakovll. Many aroupall have aubsequenUy developed the aubject 

In many directiona. This la not an exhauative list. A aood Introduction to the 

mathematlca may be found In the book by Cherna!. 

Complex analyaia entera Into drina theory because of several elementary facta. 

We are Intereated In atudylna orientable closed Itrlnaa. If r Is the time evolution 

parameter and 0 Ie lhe position alona the Itrlna then the strlna satisfies the wave 

equation 

(1) 

where ± refer to the variablea r ± 0 and X'" Ie the posilion of the atrlnaln spacetime. 

The ,eneral solullon to the wave equaLlonl Ie a linear luperposltion of lert and right 

movln, wavea. A riaht movina aolution fa may be characterized by 

(2) 

Likewile, a left movln, solution Is characterized by 

(3) 

If one analytically continues to Euclidean time then the wave equation becomes 

the Laplace equation and the variables r ± 0 become 

1+0 

1-0 

j = r - io, 

II = r + io. 

(4) 

(5) 

The atatement lhat one has a right mover becomes the atatement that olle haa ;B 
only depends on z, i.e .• iI,fR = O. One is thus brought to the theory of analytic 

functions. 



From a more geomehical point of view one has that as a atring evolves in Lime 

it sweeps out a Burrace. In fad, i~ Iweeps out a cylinder. The InLeractions of two 

strings is ~e()llIehically very simple. The two shings ruse at a point and turn into 

a single string. In the evolution picture one has thaL the lwo legs or a pair of pants 

join to rorm the waist. Therefore, multiple interactions build up complicated two 

dimensional surraces. A classic theorem stales that any oriented two dimensional 

manifold is a Riemann surface. We are again brought back to the theory of analytic 

(unctions. 

In the nineteenth century, Weirstrass tried to classify analytic functions by their 

zeroes alul I'olp.s. This lead to the detailed study of meromorphic (unelions. We 

will see how the studt of such objects plays an important role In strin,_ theory. 

The equations of motion (or some Itrlnl theories wind up beinl questionl about 

analyticity. for example, the equallon of motion for a Weyl fermion la a Itatement 

of analyticity. The conservation equation for the energy momentum tenaor In a 

conformally invariant theory Is also a Itatement of analyticity. PedaloKY demandl 

thaL we begin our Itudy with a discuulon of the fundamental theorem of allebra. 

2 THE FUNDAMENTAL THEOREM OF ALGEBRA 

Gauss gave several distinct proofs of the fundamental theorem of algebra. One of 

the proofs emphasized the Interplay between topology-and complex anaiYIII. it may 

have been the lirsi InLrodudion of the lopololical concept of the windin" nurn6er. 

It also used the notion or an inllorionec. If one alters the lower order terma of the 

polynomial then the zeroes migrate but the tolal number of zeroes remains constant. 

One should keep in mind that Gauss did not publish all his results. He was reludant 

to publish his discoveries in non-euclidean geometry. lie also discovered many of 

the properties of analytic functions and did not publish them. 

Consider a polynomial of delree n > o. P may be viewed as a mmp I' : C -t C. 

Consider a circle SR centered at the origin and of radius R :> I. If. = Rexp(i') 

then a standard estimate shows thal 

P(z) = R"exp(in') (i + 0 (i)) (6) 

Since P(z) is well defined onC it follows that an the very large circle SR. P(.) 

winds around n Urnes as z winds once around SR. Gauss observed that 

I / PI(z) 
n = 2lri P(z) dz. 

s" 
(7) 

U I' has no zeroes then P'(z)/P(z) is an entire function and by Cauchy's theorem 

the above intelrai would vanish. This contradiction ~equires that I' mllst have at 

least one rool. One can straightforwardly show that P must have n-zeroes. 

The rundamentaltheorem of algebra has a leneralizalion to meromorphic func­

tions. If I(z) ia a meromorphic function and If '1 is a simply ciosp.tI pO!litively 

oriented curve which does not pasa throulh any of the zeroes or poles of I then 

the number of seroes Inside the curve mlnua the number of poles inside the curve 

II liven by 
I / /,(z) *- zeroes - '# poles = 2lfi ,(%) dz. , (8) 

It I. easy to see why the theorem is true. If z. is a zero or pole then lIear z. the 

function may be wriUen as 

(9) 

where n is the order of the &ero or pole and 60 i: o. Consequently one has 

I'(z) n 

I( ) 
= -- + analytic near If •• 

• • - Ifo 
(10) 

The integrai over the contour", may be deformed Into integrals over Bmi\1I wntours 

around each of the Jeroes and poles. 

3 LINE BUNDLES 

Whenever one has a field In a quantum field theory one asks ·What is it?". Usually, 

the first question concernl the apin of lhe field. In a string theory one can ask a 

more refined queaUon, -the field is a section of which line bundle?" In this section 

we address the nature or a line bundle. 

We will begin our study by considering the motion of a particle in threc dimen­

sional apace a' in quantum mechanics. We will see that a line bundle ;s the space 

where the Schrc3dinger wavefllllr:tioll resitles. Given a point x in a one Iti\"cs a com­

plex number \b(x). In the Cartesian protluct a')( C, the Schrodinger wi\\"('funclinn 



• .... ~.-

may Le r&!'lIl:~"nll:d Ly ill IrApla. The line bundle II R' x C. R' II called the bue. 

C ili called llic tiLer alld .p i. called a iection 01 the bundle. 

Tlae ph.I ... ·11I Lcc01ll1!Ii madlemAtiCillly mure interutinl if one reatrlcta the mer 

tioll of tlal' ,,,ulicle to il liphere Sa. Alliume dId the particle is electrically char,ed 

and lliat lilcle ili a IIIdgnetic monopole at the center of the sphere. Dirac showed 

many year" agu lliat d ,lobAlly defined wavefuncUon wu ImpOlliible. The wave­

funclion had lu have a .inlularit)' lomewhere. 

We will IIOW construct the 'pACe where the wavefunctlon raida. Thla Ipace 

will locall) louk like the Carluian product Sa x C but It hu anon-tdvlailiobal 

Itruclure. O\'cr the northern hemisphere one can chOOIe a non-Ilnlular wavefunc­

tion I/J •• Ovcr the liouthern henailphere one can choose a non-linlular wavefundion 

.p_. If thelie lwu wavefunctions a,o! to define tlae ume ph)'lica then there must be a 

lauGe trailliforlllations exp(iA) near the equator which relata them: 

.p .. = exp(iA) .p_ . (11) 

Thue is a colI~lraint on the fUllction A. If the wavefundion II loinl to be lin,le 

valued thclI ali one loes around the equator the chanle in .1 must be auch that 

aA = 2.n. I\olice thal the ,aule tranaformalion cannot be Iloball), definedl 

Gauge i""ariance requirea that the vector potenU~1 in the upper and lower hemi­

Ipheres to he related by 

A .. - A- = dA. (12) 

There b a collllt:ction between the ,aule tranaformalion and the total malnelic 

flux lhrougla llae sphere. U N iind S reapectively denole the northern and louthern 

hemispheres llwlI 

IF=/,F+1F. s. N S (13) 

/N dA .. + !sdA_, (14) 

1 A .. l A_, 'N /JS 

(15) 

1 (At - A_). 
'N 

(16) 

= 1 dA. (17) 
'N 

toA, (18) 

2lJn. (19) 

4 

r 

There are levenl remarks thal one can make. The topololY of the sphere im­

pOlea lome constrainta. The laule transformatlona haa to .. tlary 80me restrictions 

and thll impOlea a restriction on the Oux. 

The lenerallntion of these ideaa II the theory of complex line bundles. Consider 

a compact manifold X with an open cover (U.). Locally the line bundle is given by 

U. x C. The local Cartesian products are put tOlether by Ilvlna a Irlm.ilion Junction 

(I au Ie tnnarormaUon) ,., on each non-empty overlap U. n U,. The transition 

function II a complex valued non-vanlshinl function on the overlap. One does not 

care about Ita behavior outside of the overlap. On a non-empty triple overlap 

U. n u, n U. they must .. uary the consistency condition ,." •• , •• ;;; 1. The object 

that one constructa by puttinl tOlether thll collection of Cartesian products Is 

called a eomplu lin. bundl •. The manifold X Is called the bait. A Itction of the 

line bundle Is liven by a collection (.p.) of locally defined complex valued functions 

luch that on the overiapi the)' are related b)' the appropriate transition function: 

(20) 

If one deOna a covariant derivative on the line bundle L by D ;;; d + A. then 

the ,urualur, (field atrenlth) is F ;;; dA. The conllstenc), condition on the triple 

overlaps foreea an analolue of the Oux quantization condition. The quantity c:.(L) 
defined by 

c:a(L) ;;; .i. I F (21) 
bJx 

mud be an lnteler. ,,(L) Is called the first Chern clus of the line bundle L. 

It Is euy to verify that the let of all line bundles over X fonns an abelian group. 

If Land L' are line bundles with transition functions (, •• ) and {,~.} respectively 

then the produd bundle LL' is defined &0 be the line bundle with transition func­

tions (, ••. ,~.). One can show that ,.(LL') = calL) + c.(L'). The Identity element 

of this Iroup lis the line bundle with 1 for Its transition functions. This bundle is 

just the complex valued functions over X. 

The inverse bundle L -I is just the bundle with the reciprocal transition func­

Uons. 

4 HOLOMORPHIC LINE BUNDLES 

A holomorphic: line bundle is a line bundle where the transition functions are re­

quired to be analytic. Such a strong constraint leads to some very powerful and 



useful thcorcllls. We discuss one of these theorems in this section. The lerms an­

alytic and holomorphic will be used Interchangeably. The gauge lransrormalion is 

given by ""(z, i) = g(z)y,(z, J). Since the transition fundion II independent of I, 

it is clear that one can define covariant derivalives which do not Involve a gauge 

potential A.: 

v.'" a.~ + A."', 
v,'" = a,,,,. 

(22) 

(23) 

Nolice that the last line il covariant with resped to holomorphlc ,auge hansfor­

maliona. The field atrength F II ,Iven by 

F,. = a,A, - a,A, = a,A •. (24) 

This il gauge Invariant wilh respect &0 holomorphlc gau,e trandormatlonl. Nor­

mally one thinks that F and polynomials in F are the only ,au,e Invarlan& quantl­

lies available. Thll is not true In the cue of a line bundle. One can define. ,aule 

Invariant one-form almoat everywhere. Thl. one-form hu components liven by: 

B. V.", = a.log '" + A. , (25) =--
~ 

B, V,,,, = a,loa y, . (26) =T 
It is easy to verify that the above Is gauge Invariant with resped to holomorphlc 

transition functions. It is a well defined quantity where ",II non-vanishlna_ Note 

that the curl of B is given by a,B, - a.B. = F ••. 
We would like to now restrld ourselvu to meromorphlc sectlonl, a~~ = O. For 

auch a section B. = O. Let us study the behavior of a section near II point Be where 

one has a 'zero' of order n... If n. > 0 then one hu a leaitlmate lero of order 

n ... If no < 0 then one has a pole of order In .. l. Consider a gauge transformation 

y,'(z) = g(z)~)(z) near z ... Since ,(z .. ) II non-vanishlna one must have 

(z - got- (0: + o!(z - I .. ) + a!(z - z .. )' + ... J ' 

",'( z) (I - , 0 )"- [e': + a'!(1 - z.) + a'!(. - z .. )' + ... ) • 

(27) 

(28) 

where a~ f. 0 and a'~ f. O. Note that under the gauge transrormation there are only 

two invariants: Za and no. A gauge 'ranI/ormation canno' change 'he 6ocalion 0/ 

6 
./ , . 

'he zero or pole, nor can il change ill order. This introduces one to the 1I0tion of a 

dilliao,. The divisor L'Isociated with the aection y, is defined to be the formal sum 

("') = En .. , •. (29) 
• 

Thil il just a formal objed that keeps track of the zeroes and poles. The order 

of the divisor il simply En... Note that In Section 2 we computed the 'order' 

of a metomorphlc fundion In a limply connected domain. We now turn to the 

computation or the order of a meromorphic lection. Thil will be given by integral 

formulas defined over the whole Riemann aurface X. 

Theorem 1 1/ L i. II holomorphlc line 6undle 'hen 'he Rum6er 0/ urou minus the 

num6er 01 polu 0/ II meromorphic "clion i. gillcn 611 'he /ir.' Chern doss cl(L) 0/ 
'he line 6undle: 

Near each z .. conlider a Imall open set R .. containlna I ... In the domain X - uRal 
the lection ." Is everywhere non-vanlahlna. Consider the followlna integral 

/ F = 
X-ull_ 

-E/ B, 
.. 'Re 

(30) 

(31 ) 

(32) 

Ld UI now uk about what happens to the above as one sbrinks the si71! of the 

R",. Notice that the left hand aide approaches 

/ F = (-2.i)ca(L)_ 
JC 

(33) 

Since the vector potentials are amooth on each R .. It rollowl that as we shrink the 

Roo. the ~ilh& hand aide approaches -2.in .. on each open set. This follows hom our 

discussion of the rundamental theorem of algebra. in conclusion we ha\'c 

c.(t.) = i. / F = EnG!' 
2. JC co 

(34) 

-( 



.-

Nole lhat ~ill(e each n .. il aaule invariant it docli nol maller which ,au,e we choose 

on each Il .. to do the calculation. 

Thia theol<:1II hdS .. everal important eonlequelleea. The firlt Chern dua calL) 

depend. all la.e line l.undle and not on the I«lion ehoaen. It ia a Lopolo,ieai 

invarianl o( a lille bundle. Thus one learnl thAl all mcromorphie leeliona of" line 

bUlldle han, lhe ~,unc order. The 'maanelic flux' throuah lhe ludaee delerminea 

lhe 'nel nUllIl.<:r' o( "croei anJ polu of a liection. 

There i~ all 1I11111ediate corollary of thia tlll,orem. 1/ A Ijnc hndle L laas A nella,jllc 

Chern da .. ,I.ell it has no holuIlIorphic ,,"ions. In other word., any meromorphic 

aection mu.t 11.,ve ilt least one pole. 

The mO~1 illll'ortalitiine bllndle on a Riemannllurface X Ia the Nnonical bundle 

K. Thia iii jU~1 the holomorphie line bundle whose .ection. are forma of type (1,0). 
A (orlll i~ ~ .. id lo be of type (p,4/) if when wriuen in a local complex coordinate 

aystem it i~ o( degree p in d, and of dearee 4/ in d •. For example, the curvature Ia 

of type (1,1). The fir:;t Chern dillS cl(K) ia essentially theaenul of the .udace: 

cl(K) = 2(, - 1) . (35) 

A compaci Iwo dimeniional manifold without boundary Ia topoloaically equivalent 

to a liphere wilh (J bandies. Nole that on a .phere (II = 0), there are no holomorphic 

forllls of Iype (l,~)-

Consider tlte bundle K-a. Thue are julil the vector field. which in a local 

complex coordinate liyitem can be written as V' %z. Since ca(K-I) = -cl(K) it 
follows thai i( II > 1 then there are no holomorphie vedor field. on Iurfaces with 

,enu~ grcaler lhat one. 

On a spiaere one has tbal c:.(K-I) = 2 therefore a holomorphie vector field must 

have two l"roes. Hone stereographieally projects the sphere onto the plane then 

the vector lield V' = Q + {J, 1- 1,1 is alolially analytic. Remember that the point 

at infinity is a point on the sphere. The coordinates which relate the neiahborhood 

of a point al ililinity to a neighborhood of the origin is z = I/w where ware the 

local coordillalcs (or a neighl.orhood of infinity. Under liueh a change of eoordinales 

one has V'" ~ --w'V·. One thull has that V is analytic everywhere. The Q term 

corresponds 10 a double zero at infinity, the {J term to a simple zero at the origin and 

a liimple zero ill infinity, and the, term lo a double zero at the oriain. Note tbat 

there are /10 ollter possibilities (or holomorphic vector fields. For example V' = " 

has a simple Jl"le at infinity. Yet it does define a meromorphic section with a triple 

8 

lero at the oriain and a limpJe pole at infinity, Notice that the order of such a 

lection ia two as required by the theorem. 

The theorem becomea more powerful j( one combines It with the following: 

Theorem ~ (Rlemann-Rocb) I/,(L) dcno'" 'Ac num6c, o/IinN,I" independent 

Aolomo,pAic "dions 0/ A line 6undlc L 'laen 

,(L) - ,(L -I K) = (I - ,) + cl(L) , 

The Riemann-Roch theorem has " multitude of applicatlonl. It is mOlitllowerful 

when one hu a bundle .uch thAl one of the two Lerma on the len hand side of lhe 

above Yanlahea. In .uch a .ituatlon one can count the number of holomorphic 

.«t1ona of the other bundle. 

The theorem can be uaed to prove tha& there exlat line bundles with holomorphic 

.«tlonl. We prove thla theorem in the cue, > 1. Flrltly, notice that if L il 

any bundle .uch that cl(L) > 0 then there exllta a positive inteaer r such that 

cl(L') > cl(K) > O. Consequently, one hu thal L-r K haa no holomorphic sections 

Iinee Ita Chern class I. neaative. InserUna thla into the Riemann-Roeh theorem 

.howl that ,(L') > , - 1. L' has at least, - 1 holomorphic sedions. 

Con.ider the bundle K' for , > O. Thl. bundle haa positive Chern class and 

the remarh of the previoue paraaraph apply. Insertlna Into Rlemann-Roeh yields 

that K' hu exactly 3(, -1) linearly independent holomorphic sedions. The square 

of the canonical bundle is called tbe bundle of quadratic dilferentials. The number 

of bolomorphic quadratic dilferentials counta the number of independent complex 

.tructures on • Riemann lurfaee. 

If one applies Riemann-Roeh to the canonical bundle of an arbitrary Riemann 

lurface one haa 

l(K) - ,(1) = , - 1 . (36) 

The alobal analytic functions on a Riemann lurface are the conatanls lherefore 

,(/) ;:; I. We conclude that the number of bolomorphic dilferentials is 9. the genus 

of the surface. This is the analytic way of definina the genus of a R:emann surface. 

Applyina Riemann-Roch to K-I for a sphere one learns that there arc exactly 

three holomorphic vedor fields. Verify ina our explicit calculation. 

The Riemann-Rocb theorem is least powerful when one applies it to spin bundles. 

A spin bundle 0 is a liquare root of tbe canonical bundle, oJ = K. On a Riemann 

9 



lIurface of genlls 9 there 4' inequivalent spin bundles. Note that a- s K = (a)-Z K a = 

a. The leU hand side of ahe !tiemann-Roch theorem is identically zero and one 

cannot extract any information. 
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