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ABSTRACT

Sonie clunentary facts about holomorphic line bundles are discussed
along with some applications to string theory.
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1 INTRODUCTION

The current interest in string theory has forced many of us to learn new subjects in
mathematics. This Is not an easy task. The intuition used in physics and in math-
ematics is quite different. Things which are obvious Lo us are completely obscure
to mathematicians and vice versa. Often one can relate the abstract mathematical
theorems Lo more familiar constructs. In this talk I wish to show how a theorem
about line bundles is closely related to material in the physicist’s repertoire. This
theorem plays an important role in the algebraic geometry approach to string the-
ory. Many of the ideas in algebraic geometry are just souped up complex analysis.

The current era of the applications of complex analysis to string theory begins
with the work of Polyakov!l. Many groupa®l have subsequently developed the subject
in many directions. This is not an exhaustive list. A good introduction to the
mathematics may be found in the book by Chern3l.

Complex analysis enters into string theory because of several elementary facts.
We are interested in studying orientable closed strings. If r Is the time evolution
parameter and o Is the position along the string then the string satisfies the wave
equation

3,-X*=0, (1)

where & refer to the variables r o and X* is the position of the string in spacetime.
The general solution to the wave equations is a linear superposition of left and right
moving waves. A right moving solution ¢g may be characterized by .

ég =¢R(r—a) =}a+¢g =0. (2)
Likewise, a left moving solution is characterized by

¢r=¢p(r+0)=+0-¢p=0. (3)

If one analytically continues to Euclidean time then the wave equation becomes

the Laplace equation and the variables r + o become
t+o0 = E=r1—1io, {4)
1T-0 = g=71+140, (s)

The statement that one has a right mover becomes the statement that one has ¢z
only depends on z, i.c., 3,9z = 0. One is thus brought to the theory of analytic

functions.



Froin a more geometrical point of view one has that as a string evolves in time
it sweeps out a surface. In fack, it sweeps out a cylinder. The interactions of two
strings is geometrically very simple. The two strings fuse at a point and turn into
a single string. In the evolution picture one has that the two legs of & pair of pants
join to forin the waist. Therefore, multiple interactions build up complicated two
dimensional surfaces. A classic theorem states that any oriented two dimensional
manifold is a Riemann surface. We are again brought back to the theory of analytic

functions.

In the nincteenth century, Weirstrass tried to classily analytic functions by their
zeroes and poles. This lead to the detailed study of meromorphic functions. We
will see how the study of such objects plays an important role in string theory.
The equations of motion for some string theories wind up being questions about
analyticity. For example, the equation of motion for a Weyl fermion is a statement
of analyticity. The conservation equation for the energy momentum tensor in a
conformally invariant theory is also a statement of analyticity. Pedagogy demands
that we begin our study with a discussion of the fundamental theorem of aigebra.

2 THE FUNDAMENTAL THEOREM OF ALGEBRA

Gauss gave several distinct proofs of the fundamental theorem of ajgebra. One of
the proofs emphasized the interplay between topology-and complex analysis. it may
have been the first introduction of the topological concept of the winding number.
It also used the notion of an snvariance. If one alters the lower order terms of ihe
polynomial then the zeroes migrate but the total number of zeroes remaina constant.
One should keep in mind that Gauss did not publish all his results. He was reluciant
to publish his discoveries in non-euclidean geometry. He aiso discovered many of
the propertics of analytic functions and did not publish them.

Consider a polynomial of degree n > 0. P may be viewed as a map P: C - C.
Consider a circle Sg centered at the origin and of radius R > 1. If s = Rexp(if)
then a standard estimate shows that

P(z) = R"exp(ind) (i +0 (%)) . . (8)

Since P(z) is well defined on C it follows that an the very large circle Sg, P(z)

winds around n limes as z winds once around Sg. Gauss observed that

1P
"= 2“3,. r(z) e ()

If P has no zeroes then P'(z)/P(z) is an entire function and by Cauchy's theorem
the above initegral would vanish. This contradiction requires that P must have at

least one root. One can straightforwardly show that P must have n-zeroes.

The fundamental theorem of algebra has a generalization to meromorphic func-
tions. If f{z) is a meromorphic function and if v is a simply closed positively
oriented curve which does not pass through any of the zeroes or poles of f then
the number of seroes inside the curve minus the number of poles inside the curve

is given by . o
z
— == d

# zeroes — # poles = P / 7(2) z.

(8)

1t is easy Lo see why the theorem is true. If 2, is 2 zero or pole then near z, the
function may be written as

l(‘)=("li)nxlbo"'bl(‘—'o)"'bl(z-'o)""-'- ' {9)

where n is the order of the tero or pole and by # 0. Consequently one has

[ _
(3) =z-=

The integral over the contour 4y may be deformed into integrais over small contours

+ analytic near z, . (10)

around each of the gzeroes and poles.

3 LINE BUNDLES

Whenever one has a field in a quantum field theory onc asks “What is it?". Usually,
the first question concerns the spin of the field. In a siring theory one can ask a
more refined question, “the field is a section of which line bundle?” In this section

we address the nature of a line bundle.

. We will begin our study by considering the motion of a particle in three dimen-
sional apace R? in quantum mechanics. We will see that a line bundle is the space
where the Schrédinger wavefunction resides. Given a point x in R one gives a com-

plex number ¥(x). In the Cartesian product R® x C, the Schrédinger wavefunction
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may be represcnted by' its graph. The line bundle is R? x C, R? is called the base,
C is called the fiber aud ¢ is called a section of the bundle.

‘The pioblen beconies mathematically more intecesting if one restricts the mo-
tion of the parsticle to a sphere $3. Assume that the particle is electrically charged
and that theie is a magnetic inonopole at the center of the sphere. Dirac showed
many years ago that a globally defined wavefunclion was iml;ouible. The wave-
function had tu have a singularity somewhere.

We will now construct the space where the wavefunction resides. This space
will locally louk like the Cartesian product S? x C but it has a non-trivial global
structure. Over the northern hemisphere one can choose a non-singular wavefunc-
tion y,. Over the southern hemisphere one can choose a non-singular wavefunction
¥_. If these two wavelunctions are to define the same physics then there must be a
gauge transformations exp(sA) near the equator which relates them:

Ve = explid) ¥ . (1)

There is a constraint on the function A. If the wavelunction is going to be single
valued then as one goes around the equator the change in A must be such that
AX = 2xn. Notice that the gauge transformation cannot be globally defined!

Gauge invariance requires that the vector potential in the upper and lower hemi-
spheres to be related by .
A, - A. =d). (12)

There is a councction between the gauge transformation and the total magnetic
flux through the sphere. If N and S respectlively denote the northern and southern

[.F

hemispheres then

/Nr +/sr, (13)
/NAA, +/sdA-, (14)

= /m 4 /;s 4-, (43)
[ 4 - 4. (16)

- /m‘u' ()

= Ax, (18)

= 2an. (19)
4

There are several remarks that one can make. The topology of the sphere im-
poses some constraints. The gauge transformations has to satisly some restrictions
and this imposes a restriction on the flux.

The generalization of these ideas is the theory of complex line bundles. Consider
a compact manifold X with an open cover (U,}. Locally the line bundle is given by
U,xC. Thelocal Cartesian products are put together by giving a ¢ransition function
(gauge transformation) g, on each non-empty overlap U, N U,. The transition
function is a complex valued non-vanishing function on the overlap. One does not
care aboul its behavior outside of the overlap. On a non-empty triple overlap
U, nU, N U, they must salisly the consistency condition g.;gs.9.« = 1. The object
that one constructs by putting together this collection of Cartesian products is
called a complez line bundle. The manifold X is called the base. A section of the
line bundle is given by a collection {¢,} of locally defined complex valued functions
such that on the overlaps they are related by the appropriate transition function:

Ve = gath . (20)

If one defines a covariant derivative on the line bundle L by D = d + A, then
the curvature (field strength) is F = dA. The consistency condition on the triple
overlaps forces an analogue of the flux quantization condition. The quantity ¢,{L)
defined by .

eaft) = [ F (21)
must be an integer. ¢,(L) ia called the first Chern class of the line bundle L.

It is easy to verify that the set of all line bundles over X forms an abelian group.
U L and L' are line bundles with transition functions {g.,} and {g!,} vespectively
then the product bundle LL' is defined to be the line bundle with transition func-
sions (gas - gi,}- One can show that ¢,(LL') = ¢y(L) + ¢,(L'). The identity element
of this group I is the line buadle with 1 for its transition functions. This bundie is

just the complex valued functions over X.

The inverse bundle L-? is just the bundle with the reciprocal transition func-

tions.

4 HOLOMORPHIC LINE BUNDLES

A holomorphic line bundle is a line bundle where the transition functions are re-
quired to be analytic. Such a strong constraint leads to some very powerful and

5



useful thcorcins. We discuss one of these theorems in this section. The terms an-
alytic and holomorphic will be used inteschangeably. The gauge transformation is
given by ¢'(z, 2) = g(z)¥(z, 2). Since the transition function is independent of 2,
it is clear that one can define covariant derivatives which do not involve a gauge
potential A,:

V.¢
Ve

il

W+ AW, (22)
3. (23)

Notice that the last line is covarlant with respect to holomorphic gauge iransfor-
mations. The field strength F is given by

Fg, = O,A. - B,A. = a.A, . (2‘)

This is gauge invariant with respect to holomorphic gauge transformations. Nos-
mally one thinks that F and polynomials in F are the only gauge invasiant quanti-
ties available. This is not true in the case of & line bundle. One can define a gauge
invariant one-form almost everywhere. This one-form has components given by:

V.¥

B, = v =d,logy + A, , (25)
B, =% =d,logy . - (26)

It is easy to verify that the above is ‘gauge invariant with respect to holemorphic
transition functions. It is a well defined quantity where ¢ is non-vanishing. Note
that the cur) of B is given by 3,B, - 8,B, = F;,.

We would like Lo now restrict ourselves to meromorphic sections, 3,4 = 0. For
such a section By = 0. Let us study the behavior of a section near & point 2, where
one has a ‘zero’ of order n,. If n, > 0 then one has & legitimatie zero of order
fe. I n, < O then one has a pole of order |n,|. Consider a gauge transformation
¥'(2) = g(2)¥(z) near z,. Since g(z,) is non-vanishing one must have

v(z) = (z-2)™ la: tal(z—-z)+al(z-z) + ] , (27)
¥(z) = (z2—z)™ [m'g +al(z-2)+al(z-2)+ i . {(28)

where a2 # 0 and a'? # 0. Note that under the gauge transformation there are only

two invariants: z, and n,. A gauge {ransformation cannol change the location of

=]

the zevo or pole, nor can it change its order. This introduces one to the notion of a

divisor. The divisor associated with the section ¢ is defined to be the formal sum
(¥) =) naza. (29)
[ ]

This is just & formal object that keeps track of the zeroes and poles. The order
of the divisor is simply 3 n,. Note that in Section 2 we computed Lhe ‘order’
of @ meromorphic function in a simply connected dommain. We now turn to the
computation of the order of a meromorphic section. This will be given by integral
formulas defined over the whole Riemann aurface X.

Theorem & If L ss o holomorphic line bundle then the number of zeroes minus the
number of poles of a meromorphic section ie given by the first Chern class ¢y(L) of

the line bdundle: .
i
afF
X

Near each 2, consider a small open set R, containing z,. In the domain X - UR,,
the section ¢ is everywhere non-vanishing. Consider the following integral

F = - B, (30)
X-URy gdi[.,
-y [ Bta, (31)

® aR,
-z (%—"’ +A.) ds . (32)
® 5Ra
Let us now ask about what happens to the above as one shrinks the size of the

R,. Notice that the left hand side approaches

/r = (~2ni)es(L) . (33)
X

Since the vector potentials are smooth on each R, it follows that as we shrink the
R., the right hand side approaches —2xin, on each open set. This follows [rom our
discussion of the fundamental theorem of algebra. In conclusion we have

C|(L) = {;/F= zna . (34)
X @

7
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Note that since cach n, is gauge invariant it does not matter which gauge we choose

on each R, to do the calculation.

This theorcm has several important consequences. The firat Chern class ¢, (L)
depends on the line bundle and not on the section chosen. It is a topological
invariant of a line bundle. Thus one learns that all meromorphic sections of a line
bundle have the same order. The ‘magnelic lux’ through the surface determines

the ‘net number® of zerves and poles of a section.

Therc is an mmnediate corollary of this theorem. If a line bundle L has o negative
Chern class then jt has no holomorphic sections. In other words, any meromorphic

seclion must have at lcast one pole.

The most ilportant line bundle on a Riemann surface X is the canonscal bundle
K. ‘This is just the holomorphic line bundle whose sections are forms of type (1,0).
A form is >aid to be of type (p,g) if when writlen in a local complex coordinate
system it is of degree p in dz and of degree ¢ in di. For example, the curvature is
of type (1,1). The fisst Chern class ¢;(K) is essentially the genus of the surface;

a(K)=2(g-1). ' (3s)

A compact two dimensional manifold without boundary is topologically equivalent
to a sphere with g handles. Note that on a sphere (g = 0), there are no holomorphic
forms of type (1,0).

Consider the bundle K=, These are just the vector fields which in a local
complex coordinate system can be written as V* 8/3z. Since ¢y (K™') = —¢y(K) It
follows that if g > 1 then there are no holomorphic vector fields on surfaces with

genus greater that one.

On a spherc one has that ¢, (K ~!) = 2 therefore a holomorphic vector field must
have two zurocs. M one stereographically projects the sphere onto the plane then
the vector lickd V* = a + fiz + 42! is globally analylic. Remember that the point
at inﬁnity is a point on the sphere. The coordinates which relate the neighborhood
of a point at infinity to a neighborhood of the origin is 2 = 1/w where w are the
local coordinatcs for a neighborhood of infinity. Under such a change of coordinates
one has V* = —w?V*. One thus has that V is analylic everywhere. The a term
corresponds 10 a double zero at infinity, the 8 term to a simple zero at the origin and
a siinple zero at infinity, and the 4 term to a double zero at the origin. Note that
there are no other possibilities for holomorphic vector fields. For example V* = 2?

has a simple pole at infinity. Yet it does define a meromorphic section with a triple

zero at the origin and a simple pole at infinity. Notice that the order of such a
section is two as required by the theorem.

The theorem becomes more powerful if one combines it with the following:

Theorem 3 (Rlemann-Roch) If y(L) denotes the number of lincarly independent
holomorphic sections of a line bundle L then

ALY = AL K) = (1 - g) + (L) .

The Riemann-Roch theorem has a multitude of applications. It is most powerful
when one has a bundle such that one of the two terms on the left hand side of the
above vanishes. In such a situation one can count the number of holomorphic
sections of the other bundle.

The theorem can be used to prove that there exist line bundles with holomerphic
sections. We prove this theorem in the case g > 1. Firstly, notice that if L is
any bundle such that ¢;(L) > O then there exists a positive integer r such that
¢3(L’) > ¢;(K) > 0. Consequently, one has that L™"K has no holomorphic sections
since its Chern class is negative. Inserting this into the Riemann-Roch theorem
shows that 4(L’) > g — 1. L" has at least g — 1 holomorphic sections.

Consider the bundle K2 for g > 0. This bundle has positive Chern class and
the remarks of the previous paragraph apply. Inserting into Riemann-Roch yields
that K2 has exactly 3(g— 1) linearly independent holomorphic sections. The square
of the canonical bundle is called the bundle of quadratic differentials. The numbes
of holomorphic quadratic differentials counts the number of independent complex
structures on a Riemann surface.

If one applies Riemann-Roch to the canonical bundle of an arbitrary Riemann
surface one has
AK)-l)=9-1. (36)
The global analytic functions on a Riemann surface are the constants therefore
(1) = 1. We conclude that the number of holomorphic differentials is g, the genus
of the surface. This is the analytic way of defining the genus of a Riemann surface.
Applying Riemann-Roch to K for a sphere one learns that there are exactly
three holomorphic vector fields. Verifying our explicit calculation.
The Riemann-Roch theorem is least powerful when one applies it to spin bundles.

A spin bundle o is a square root of the canonical bundle, s = K. On a Riemann

9



surface of genus g there 47 inequivalent spin bundles. Note that 07 K = {0) Ko =

0. The left hand side of the Riemann-Roch theorem is identically zero and one

cannot extract any information.
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