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Background and Purpose——Physiological effects of stroke are best assessed over entire 

brain networks rather than just focally at the site of structural damage. Resting-state functional 

magnetic resonance imaging can map functional-anatomic networks by analyzing spontaneously 

correlated low-frequency activity fluctuations across the brain, but its potential usefulness in 

predicting functional outcome after acute stroke remains unknown. We assessed the ability of 

resting-state functional magnetic resonance imaging to predict functional outcome after acute 

stroke.

Methods——We scanned 37 consecutive reperfused stroke patients (age, 69±14 years; 14 

females; 3-day National Institutes of Health Stroke Scale score, 6±5) on day 3 after symptom 

onset. After imaging preprocessing, we used a whole-brain mask to calculate the correlation 

coefficient matrices for every paired region using the Harvard-Oxford probabilistic atlas. To 

evaluate functional outcome, we applied the modified Rankin Scale at 90 days. We used region of 

interest analyses to explore the functional connectivity between regions and graph-computation 

analysis to detect differences in functional connectivity between patients with good functional 

outcome (modified Rankin Scale score ≤2) and those with poor outcome (modified Rankin Scale 

score >2).

Results——Patients with good outcome had greater functional connectivity than patients with 

poor outcome. Although 3-day National Institutes of Health Stroke Scale score was the most 

accurate independent predictor of 90-day modified Rankin Scale (84.2%), adding functional 

connectivity increased accuracy to 94.7%. Preserved bilateral interhemispheric connectivity 

between the anterior inferior temporal gyrus and superior frontal gyrus and decreased connectivity 

between the caudate and anterior inferior temporal gyrus in the left hemisphere had the greatest 

impact in favoring good prognosis.

Conclusions——These data suggest that information about functional connectivity from 

resting-state functional magnetic resonance imaging may help predict 90-day stroke outcome.

Keywords

brain; magnetic resonance imaging; patients; reperfusion; stroke

Stroke is a leading cause of disability and dependency in adults. In 2010, there were about 

11.6 million incident ischemic stroke events in the United States.1 By 2030, an additional 

3.4 million adults will have had strokes.2 Being able to predict outcome could help patients 

and caregivers to plan for the future and physicians and policymakers to develop effective 

rehabilitation plans. Although baseline measures of stroke severity represent the best 

pretreatment predictors of outcome, other markers of stroke severity, such as change in 

National Institutes of Health Stroke Scale (NIHSS), infarct volume, 24-hour NIHSS, or 2-

day NIHSS trajectory, are the strongest posttreatment predictors of 90-day outcome.3–5 

However, patients’ neurological impairment sometimes exceeds what would be expected 

from stroke magnitude. Stroke lesions not only result in focal, location-dependent 

neurological symptoms but can also induce widespread effects in remote regions in the 

affected and unaffected hemispheres connected through functional networks.6 Although 

growing evidence emphasizes the role of distributed neural networks in the control of 
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behavior,7 Little is known about what patterns of interaction within a functional network are 

most closely associated with stroke outcome.

Resting-state functional magnetic resonance imaging (rs-fMRI) measures the temporal 

correlation of variations in blood oxygenation level-dependent signal across brain regions in 

the absence of imposed tasks, providing a measure of temporal coherence between regions.8 

Recent evidence indicates that functional networks identified by rs-fMRI strongly overlap 

with networks activated by task performance9 and that spontaneous activity correlates with 

trial-to-trial fluctuations in task-evoked responses10 and behavior.11 The loss of coherence in 

spontaneous blood oxygenation level-dependent fluctuations at rest between regions that 

belong to a functional network, and presumably between different related functional 

networks, seems to predict behavioral deficits. Some observations point to the importance of 

interhemispheric connections. For instance, inhibitory influences from the undamaged 

hemisphere onto the damaged hemisphere decrease during motor recovery,12 and 

rebalancing this imbalance is 1 way of improving a patient’s outcome.13 Moreover, after 

damage to right-hemisphere-dominant neural systems that result in spatial neglect, activation 

of left and right parietal regions is unbalanced, and interhemispheric functional connectivity 

in the parietal cortex decreases.14,15 Furthermore, disruption of functional connectivity 

between structurally normal left and right posterior parietal regions correlates with the 

degree of spatial neglect after stroke.15 However, to date, studies in stroke patients have 

mainly focused on motor recovery and cognitive outcomes,1222 and there is little evidence 

about the impact of functional connectivity on functional outcome after acute stroke.23 We 

aimed to investigate the prognostic utility of rs-fMRI by itself and in combination with other 

predictors at day 3 after stroke symptom onset in predicting 90-day functional outcome and 

to determine whether a model incorporating information about functional connectivity from 

rs-fMRI and early markers of stroke severity could predict functional outcome better than 

clinical scores alone.

Material and Methods0

The data that support the findings of this study are available from the corresponding author 

on reasonable request.

Patients

This prospective, longitudinal study included consecutive patients aged >18 years admitted 

to our stroke unit with first-ever supratentorial arterial ischemic stroke between September 

2015 and May 2017. All patients modified Rankin Scale (mRS) score before admission was 

zero, and all underwent clinical follow-up at 90 days. All patients received intravenous r-tPA 

(recombinant tissue-type plasminogen activator). We excluded patients whose symptoms 

completely resolved within 72 hours after onset, and those with concomitant neurological 

disorders, contraindications to MRI (pacemaker, metallic foreign bodies, or severe 

claustrophobia), or parenchymal hematoma type 2 after fibrinolysis (defined as a space-

occupying hematoma filling >30% of the infarct zone with a substantial mass effect), which 

portends poor prognosis.24 Middle cerebral artery was monitored during r-tPA perfusion. 

Stroke severity was defined by the 3-day NIHSS score.25 Functional outcome at day 90 was 
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assessed using the mRS; patients with mRS ≤2 were considered functionally independent.26 

All patients were managed according to recent guidelines.27 Standard rehabilitation 

programs were initiated once patients were clinically stable. The study was approved by the 

institutional ethics committee and was conducted in accordance with the Helsinki 

Declaration. Participants or their relatives provided written informed consent before 

participating in the study.

Image Acquisition

All scans were acquired on day 3 after symptom onset on a 1.5-T MRI system (Gyroscan 

Intera; Philips Medical Systems, Best, the Netherlands) with a 16-channel phased-array head 

coil with foam padding and headphones to restrict head motion and suppress scanner noise. 

The rs-fMRI was performed by using a gradient echo-planar imaging sequence (repetition 

time, 2500 ms; echo time, 50 ms; flip angle, 90; voxel size, 2.5×2.5×4 mm without gap and 

field of view, 24×24 cm), and 240 continuous functional volumes were acquired axially for 

10 minutes. Subjects were instructed to relax, keep their eyes closed, stay awake, remain 

still, and clear their heads of all thoughts. The scan protocol included axial T1-weighted 

images (repetition time, 8.4 ms; echo time, 4.1 ms; flip angle, 8°; field of view, 230 mm; and 

voxel size, l×l×l mm) and diffusion tensor imaging. Axial diffusion tensor imaging were 

acquired in 16 noncollinear diffusion directions, with b-values of 1000 s/mm2 and 0 s/mm2, 

with the following echo-planar acquisition protocol: repetition time, 3148 mm; echo time, 86 

ms; flip angle, 90°; field of view, 230 mm; no gap; and voxel size, 2×2×2.5 mm. Fluid-

attenuated inversion recovery images (repetition time, 6000 ms; echo time, 140 ms; 

inversion time, 2200 ms; and voxel size, 0.7×0.7×5 mm) were analyzed by a 

neuroradiologist with 15 years’ experience.

Lesion Analysis

Infarct localization, laterality, and vascular territory involved were determined by MRI on 

day 3 after symptom onset (Figure 1). Lesion volume was determined by a semi-automated 

segmentation algorithm applied to axial diffusion-weighted imaging.28

Image Preprocessing

The preprocessing pipeline is illustrated in Figure 2; rs-fMRI images were initially 

processed using SPM8 (Wellcome Trust Center for Neuroimaging, University College 

London, London, United Kingdom) and the resting-state FC MRI Data Analysis Toolkit.29 

The first steps involved correcting for slice acquisition timing and bulkhead motion. Motion 

parameters were computed by estimating translation and angular rotation in the x, y, and z 
axes. The datasets were excluded if motion was >2 mm (maximum displacement) in x, y, or 

z or if angular rotation was >2° within the 4-dimensional volume. New motion variables 

were generated to be included as covariates in the statistical analysis. To remove the effects 

of the nuisance covariates, we used linear regression of the global mean signal, white matter 

signal, and cerebrospinal fluid signal. Spatial normalization was performed using a standard 

echo-planar imaging template from the Montreal Neurological Institute with a voxel size of 

2×2×2 mm3.30 Specifically, functional images were coregistered to their corresponding T1-

weighted anatomic images using mutual information as an objective function. The anatomic 

images were then normalized to SPM’s Montreal Neurological Institute 2-mm T1 template 
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by a 12-parameter affine transformation, followed by a nonlinear registration using a mean 

squared difference matching function. The transformation matrix was applied to normalize 

all images to the template space. The normalized functional images were then spatially 

smoothed with a gaussian kernel (full width at half maximum, 8 mm). The temporal signals 

in the 4-dimensional volume were linearly detrended and band-pass filtered (0.01–0.08 Hz) 

to remove undesired components. The Harvard-Oxford probabilistic atlas was used to 

identify the regions of interest (ROI) in the study.31

ROI-Based Analyses and Graph-Computation Analysis

For every pairwise region identified with the Harvard-Oxford probabilistic atlas, the 

correlation coefficients were calculated after removing the nonneural blood oxygenation 

level-dependent fluctuations. To calculate the ROI-to-ROI correlations, we used automatic 

low-frequency fluctuation methods,32 which yielded correlation matrices to show the 

correlation values as colors and corresponding graphs to enable the matrices to be visualized 

(CONN V.17, Functional Connectivity SPM toolbox; McGovern Institute of Brain Research, 

Massachusetts Institute of Technology) to detect differences between patients with good 

functional versus poor functional outcome. Heatmaps were used to determine the absolute 

correlation between brain regions. Stronger functional connections were plotted in warmer 

colors.

Data Analysis

We compared demographic, clinical, and imaging data between patients with good versus 

poor functional outcome at 90 days. Descriptive statistics are expressed as means (SD) for 

continuous variables and as frequencies (percentages) for categorical variables. After 

checking for normality of distributions, the significant ROI-to-ROI relationships were 

introduced in a discriminant function analysis to uncover the best combination of input 

variables to differentiate patients’ functional outcome (SPSS version 23; IBM).33 

Standardized canonical discriminant function coefficients were used to enable the variables 

to be measured on the same scale and then the weights were compared to determine the 

relative importance of each variable. The discriminating variables were also expressed in 

standard (Z) scores, and these standardized coefficients were used to predict functional 

outcome at 90 days.

Results

Demographic and Clinical Data

Of 65 consecutive patients, 28 were excluded for absence of symptoms by day 3 (n=9), 

parenchymal hematoma 2 after fibrinolysis (n=3), excessive motion during fMRI (n=7), 

pacemakers (n=2), or absence of clinical follow-up at 90 days (n=7). Table 1 describes the 

demographic and clinical characteristics of the 37 patients (age, 68±13.2 years; 17 females; 

NIHSS, 6.8±5.6; 100% right-handed) included in the analysis. Figure 2 shows patients’ 

infarcts on axial diffusion weighted imaging. Patients with poor functional outcome had 

higher 3 day-NIHSS. Age, sex, vascular risk factors, and time to intravenous fibrinolysis 

were similar between patients with good functional outcome and those with poor outcome.
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Functional Connectivity and Functional Outcome

Figure 1 shows the correlation coefficient weighted matrices for every pairwise region in 

each patient. Patients with good functional outcome had greater functional connectivity than 

those with poor outcome (Figure 3), including greater interhemispheric connectivity 

between the right temporal lobe and left frontal lobe, between the left temporal lobe and 

right frontal lobe and between the right temporal and parietal lobes (Table 2). In addition, 

patients with good outcome had decreased interhemispheric functional connectivity between 

the cerebellum and different cerebral nodes, such as the anterior inferior temporal gyrus 

(alTG), insular cortex, and intracalcarine cortex. Decreased functional connectivity between 

the alTG and caudate was associated with good outcome (Figure 3). Non-middle cerebral 

artery distribution strokes did not result in significant differences in the functional 

connectivity and outcome than the middle cerebral artery territory strokes.

Discriminant Function Analysis

The standardized canonical discriminant function coefficients for age, 3-day NIHSS score, 

infarct volume, and infarct territory were 0.179, 1.129, −0.318, and −0.064, respectively. 

Therefore, 3-day NIHSS score had the best discriminating power to predict patients’ 90-day 

stroke outcome. The model, including these 4 variables, predicted functional outcome with 

84.2% accuracy. Adding information about functional connectivity from fMRI increased the 

accuracy to 94.7%. Functional connectivity between the right alTG and left superior frontal 

gyrus (SFG), left alTG and right SFG, and left alTG and left caudate yielded the highest 

standardized canonical discriminant function coefficients (ie, had the greatest weight in 

predicting functional outcome; Table 3).

Discussion

To our knowledge, this is the first study to evaluate the usefulness of functional connectivity 

measured by rs-fMRI on day 3 after stroke onset in predicting patients’ 90-day mRS. 

Growing evidence supports the conclusion that interhemispheric connectivity affects stroke 

outcome.6 Disrupted interhemispheric communication is a central feature of stroke.12–15 We 

found that patients with good functional outcome had greater functional connectivity than 

patients with poor outcome. Preserved connectivity between the alTG and SFG across 

hemispheres and decreased connectivity between the caudate and alTG in the left 

hemisphere had the greatest impact on outcome. These results might reflect the structural 

neuroadaptations taking place in the most severely injured brains. In these brains, 

interhemispheric connectivity is particularly decreased, which may result in compensatory 

increases of same-side connectivities, involving cortico-subcortical connections (ie, left 

caudate with left alTG) and typical crossed connections between the right cerebellum and 

the left cerebellar hemisphere. In patients with good outcome, such same-side connectivity 

increases would not be as necessary, and, therefore, decreased functional connectivities 

between these specific pairs of regions would be observed in comparison to poor outcome 

patients. Animal studies have revealed profuse intrahemispheric and interhemispheric 

frontotemporal connections34,35 and humans have similar strong connections between 

frontal and temporal lobes (eg, arcuate fasciculus, uncinate fasciculus, extreme capsule fiber 

tract, and frontal aslant tract). Many projections from the frontal cortex cross the corpus 
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callosum to connect with heterotopic contralateral areas, as well as with their homotopic 

counterparts.36 Preserved interhemispheric functional connectivity, particularly between 

frontal and temporal regions, might be important in maintaining the brain’s ability to 

recover, as well as possible. However, functional connectivity may decrease as a means of 

isolating damaged areas rather than because of damage from stroke.17 However, the 

physiology underlying reduced interhemispheric functional connectivity after a stroke 

remains unclear. Structural connections or mechanisms that mediate the transfer of signals 

between the hemispheres might be damaged or functioning abnormally. Reduced 

interhemispheric functional connectivity is accompanied by decreases in manganese transfer 

from the contralesional to the ipsilesional hemisphere,37 consistent with a reduction in 

callosal fibers which was shown using decreased fractional anisotropy of the corpus 

callosum as a surrogate marker in chronic stroke patients.38 Electroencephalography signals 

(power, coherence) are abnormal both within and across hemispheres and correlate with 

behavioral impairment after stroke.39 Recently, Siegel et al7 found that lesion load partly 

predicted the global average reduction in interhemispheric functional connectivity (r=0.46), 

but adding information about lesion location did not improve predictions. They 

demonstrated that strokes disrupt interhemispheric functional connectivity regardless of 

whether they damage specific structures, such as the corpus callosum or thalamus.

Our results are in line with those reported by Dacosta-Aguayo et al,17 who found bilateral 

interhemispheric integrity between the ITG and SFG and between the 2 ITGs in stroke 

patients and controls. They also found that, compared with controls, patients had decreased 

functional connectivity between the left SFG and posterior cingulate cortex, between the left 

parahippocampal gyrus and right SFG, between the left parahippocampal gyrus and left 

SFG, and between the right parietal cortex and left SFG. Other authors have related reduced 

functional connectivity between the right middle temporal cortex and right SFG and between 

the left middle temporal cortex and right SFG to memory dysfunction after stroke.21 Carter 

et al16 found that loss of interhemispheric functional connectivity between homologous 

regions of the dorsal attention network correlated with deficits in patients’ ability to detect 

targets in the visual field contralateral to the lesion. This result generalized to the motor 

system, where loss of interhemispheric connectivity in an arm-defined somatomotor network 

correlated with measures of upperlimb function. He et al15 reported a breakdown of 

interhemispheric functional connectivity within the attention network in patients with 

neglect symptoms after stroke; more severe symptoms correlated with decreased functional 

connectivity, and recovery from symptoms correlated with the recovery of normal 

connectivity patterns. The integrity of various motor and nonmotor networks (eg, executive 

control, sensorimotor, visuospatial, and language networks) is associated with stroke 

outcome,6,23,40−42 and decreased interhemispheric functional connectivity correlates with 

increased intrahemispheric functional connectivity between the default mode network and 

attention network.7

We found that 3-day NIHSS score predicted outcome better than other markers of stroke 

severity, corroborating previous studies’ findings that early markers of stroke severity can 

accurately predict patient outcomes.3−5 Recently, Sajobi et al3 found that the trajectory of 

neurological improvement defined by 2-day longitudinal NIHSS data yielded the most 

accurate prediction of 90-day mRS (84.5%). Another study concluded that the binary 
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outcome of NIHSS 0 to 2 at 24 hours was the most powerful predictor of the effect of 

intravenous thrombolysis.4 However, variability between individuals makes accurate 

prognosis for individual patients difficult. Imaging methods have found that the corticospinal 

tract-lesion load (determined after 24 hours after a stroke) predicts motor outcome, 

particularly for those patients that are most severely affected.22 Growing evidence supports 

that in stroke patients with mild-to-moderate deficits, the degree of initial impairment 

predicts outcome at 3 months.43,44 However, in patients with moderate-to-severe acute 

deficits, high-interindividual variability in recovery makes predicting outcomes much more 

difficult.45 In this respect, adding the brain functional connectivity in patients with 

moderate-to-severe deficits can eventually be used to individually set therapeutic goals and 

strategies and to select patients for trials.

Several limitations of our study deserve comment. Our small sample limits the 

generalizability of our results; new and larger samples are necessary to confirm our results. 

The accuracy and reproducibility of brain network models depend on the regions used. In 

functional connectivity analysis, which structures are included and how those structures are 

parcellated are important; the cortical parcellation we chose optimally separates functional 

connectivity data.30 Using 3T or 7T system would improve analyses of functional networks. 

Several experiments at high-magnetic fields have revealed the potential to benefit in terms of 

sensitivity, specificity, and higher spatial resolution for functional mapping of brain 

organization from large cortical networks, small nuclei, and even to cellular layer structures.
46,47 We did not analyze possible group differences in vascular risk factors (eg, diabetes 

mellitus, hypertension, dyslipidemia) that are more frequent in stroke patients and can 

confound rs-fMRI measurements of fluctuations in functional connectivity either by 

interfering with the blood oxygenation level-dependent signal or by causing small vessel 

stroke in periventricular and subcortical white matter locations; for example, patients with 

diabetes mellitus reportedly have decreased functional connectivity.42 A recent study found 

that functional connectivity was better than lesion location at predicting behavioral deficits 

involving associative functions (eg, memory), but location was better at predicting motor and 

visual deficits; both approaches predicted language deficits well predicted, and there was a 

trend for functional connectivity to predict attention deficits better than lesion location.7 

Therefore, functional associations probably depend at least partly on structural connectivity; 

further work is needed to better elucidate whether combining information about structural 

and functional connectivity can increase accuracy in predicting stroke outcome. To reduce 

the patient selection bias, we performed the imaging protocol at day 3 because clinical 

improvement after reperfusion as well as the residual level of impairment after an acute 

intervention are robust predictors of outcome, irrespective of initial clinical severity before 

any reperfusion therapy is initiated.48

In conclusion, these results suggest that rs-fMRI information about functional connectivity 

can complement early markers of stroke severity in predicting patients’ 90-day stroke 

outcome and help stratify patients according to their chance of recovery. Understanding the 

network changes caused by stroke might enable rehabilitation interventions to be tailored to 

improve recovery.
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Figure 1. 
Infarct lesions and region of interest (ROI)-based analysis for all patients included in the 

study according to the functional outcome at 90 d. The right displays the correlation 

coefficient weighted matrices for every pairwise region. DWI indicates diffusion weighted 

imaging; and mRS, modified Rankin Scale.
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Figure 2. 
Preprocessing flowchart. GRE-3D indicates gradient-recalled echo tridimensional; MNI, 

Montreal Neurological Institute; and rs-fMRI, resting-state functional magnetic resonance 

imaging.
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Figure 3. 
Regions of interest (ROI)-based analysis for patients with good (modified Rankin Scale 

[mRS] ≤2) and poor (mRS >2) functional outcome. Left display the correlation coefficients 

matrices for every pairwise region. Red areas indicate stronger functional connections 

between regions, whereas blue areas indicate a low correlation between regions. Patients 

with good outcome there are mainly yellow to red areas, whereas in patients with poor 

outcome these are not so intense and have lower values of connectivity. The right display 

the graph visualization of the mean correlation coefficient weighted matrices for the group 

of patients with good outcome at 90 d, thresholded at P<0.05.
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Table 2.

Significant Functional Connectivity ROI-to-ROI Relationships

Regions T Statistic P Value-Uncorrected False-Discovery Rate (P-FDR)

Right lateral parietal; right anterior temporal fusiform cortex 4.69 0.0001 0.011

Left supracalcarine cortex; left cerebellum 9 4.35 0.0002 0.027

Right anterior inferior temporal gyrus; left frontal superior gyrus 4.00 0.0004 0.033

Left anterior inferior temporal gyrus; right supplementary motor 
cortex 3.88 0.0006 0.041

Right anterior inferior temporal gyrus; salience network 
rostrolateral prefrontal cortex 3.84 0.0006 0.033

Right anterior temporal fusiform cortex; left inferior frontal gyrus, 
pars opercularis 3.83 0.0007 0.049

Right anterior inferior temporal gyrus; right lateral parietal 3.75 0.0008 0.033

Right anterior temporal fusiform cortex; right middle temporal 
gyrus, posterior division 3.71 0.0009 0.049

Left anterior inferior temporal gyrus; right middle temporal gyrus, 
posterior division 3.69 0.0010 0.041

Left anterior inferior temporal gyrus; right frontal superior gyrus 3.67 0.0010 0.041

Left anterior inferior temporal gyrus; vermis 6 −3.59 0.0013 0.041

Left anterior inferior temporal gyrus; left caudate −3.85 0.0006 0.041

Right cerebellum crus 1; left insular cortex −3.95 0.0005 0.039

Left insular cortex; right anterior inferior temporal gyrus −4.14 0.0003 0.040

Right cerebellum 7b; left intracalcarine cortex −4.48 0.0001 0.019

P-FDR indicates P value-false discovery rate; and ROI, region of interest.
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Table 3.

Results of Canonical Discriminant Analysis: Loadings of Correlation Matrix Between Predictor Variables 

(Standardized Canonical Coefficients) and Discriminant Function

Predictor Variables
Standardized Canonical Discriminant 

Function Coefficients

Age 0.386

3 d-NIHSS 0.849

Infarct volume −0.362

Right anterior inferior temporal gyrus and left superior frontal medial cortex 1.682

Left anterior inferior temporal gyrus and right superior frontal gyrus −1.325

Left anterior inferior temporal gyrus and left caudate −1.300

Right anterior temporal fusiform cortex and left inferior frontal gyrus, pars opercularis 0.381

Right anterior temporal fusiform cortex and right middle temporal gyrus, posterior division 0.478

Left insular cortex and right cerebellum crus 1 0.479

Left insular cortex and right anterior inferior temporal gyrus −0.353

Right cerebellum 7b and left intracalcarine cortex −0.310

Left supracalcarine cortex and left cerebellum 9 0.373

NIHSS indicates National Institutes of Health Stroe Scale.
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