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Abstract 
Over 2000 years ago, Heraclitus noted, “Everything changes and nothing stands still1.” 

While this truth has long been evident to the wise, we have only recently developed the 

tools necessary to scientifically characterize sweeping patterns of change in large 

dynamical systems.  Despite rapid progress, new methods and data sources are still sorely 

needed to further illuminate the intricate and dynamic nature of reality. In this 

dissertation, we will focus our investigations on understanding patterns of change with 

direct relevance to human health. In the first two chapters, we develop novel 

methodologies that lend insight into the evolutionary history of the human race and the 

genetic basis of human-specific traits and disease. Chapter 1 presents MOSAIC, a new 

python package for improved detection of genetically related genes between species. This 

inference is a foundational step towards understanding the function of proteins and the 

evolutionary pressures they have faced. This tool, along with a combination of other 

methods, facilitates our analysis in Chapter 2. In this section, we use the patterns of 

mutations along the human lineage to discover genes and even specific mutations that 

may play important roles in intelligence, obesity, mental health, as well as a variety of 

basic biological functions. These findings provide insight into the genetic architecture of 

health and disease. At the same time, they leave open questions about how genetic factors 

interact with the broad array of environmental and ecological variables that 

fundamentally shape downstream phenotypes. In Chapter 3, we introduce CauseMap, a 

tool I built to understand causal relationships within complex dynamical systems using 

time series data. It is our hope that this method will help us to interpret human health and 

disease as states of the bodily dynamical system embedded inextricably within an 

evolving social, economic, and environmental network. This perspective, we hope, will 

allow us to understand the characteristics of human health that emerge from an time-

hewn dynamic equilibrium with the world within and around us. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1!As quoted in Plato, Cratylus, 402a 
2!I!do!not!mean!to!imply,!as!many!do,!that!the!Universe!began!at!the!Big!Bang!or!is!limited!in!size!to!the!distance!
we!can!see!out!in!space!(determined!by!the!age!of!the!universe,!its!expansion!rate,!and!the!speed!of!light).!Such!
assertions!are!akin!to!concluding,!in!the!absence!of!data,!that!the!world!ends!at!the!horizon.!We!can!only!draw!
lower!bounds!on!the!extend!of!spacetime.!Further,!we!have!no!idea!what!spacetime(s)!actually!is!(are)!or!how!it!
(they)!came!into!existence.!!This!is!merely!to!point!out!that,!especially!on!the!biggest!questions,!we!should!not!
draw!conclusions!where!we!have!no!data.!
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Chapter 1 Introduction 
!
“Another word for life is change” – Michael Jeffreys 
 
 
Science is revolutionizing the way we think about ourselves, and the world. Torrents of 

new data have illuminated the beautifully intricate, and at times, bafflingly complex 

nature of our universe. Embedded inextricably within this whole is our own complete2 

story—what I call the spacetime history of the human race. I find the staggering 

magnitude of this universal perspective to be inherently satisfying. In the chapters that 

follow, I will make the case that this viewpoint also has the potential to spawn 

breakthroughs in our understanding and treatment of human disease.   

 Physicist Bryan Swimme famously summarized all of history in one line, “You 

take a giant ball of hydrogen and helium gas, you leave it alone, and you end up with 

rosebushes, giraffes, and human beings”.  Our species emerged out of the creative chaos 

of a staggeringly immense dynamical system. In this process, we are both observers and 

participants. We are made from the progression of cause and effect that gave rise to the 

heavier atoms, then to the planets, then to the first cell, and finally, to us. We were born 

from change, and in a real sense, we are change. We are ourselves dynamical systems, 

each with the vanishingly rare potential to understand the nature of our world, and to 

harness that insight for the good of ourselves and others.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2!I!do!not!mean!to!imply,!as!many!do,!that!the!Universe!began!at!the!Big!Bang!or!is!limited!in!size!to!the!distance!
we!can!see!out!in!space!(determined!by!the!age!of!the!universe,!its!expansion!rate,!and!the!speed!of!light).!Such!
assertions!are!akin!to!concluding,!in!the!absence!of!data,!that!the!world!ends!at!the!horizon.!We!can!only!draw!
lower!bounds!on!the!extend!of!spacetime.!Further,!we!have!no!idea!what!spacetime(s)!actually!is!(are)!or!how!it!
(they)!came!into!existence.!!This!is!merely!to!point!out!that,!especially!on!the!biggest!questions,!we!should!not!
draw!conclusions!where!we!have!no!data.!
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 During my time at UCSF, I have endeavored to develop this potential to the best 

of my abilities. The following thesis is a fruit of these efforts. In Chapter 1, I will present 

MOSAIC, a new python package geared towards improving comparative genomic 

inference by producing more complete and higher quality source data for downstream 

evolutionary inference. Specifically, MOSAIC identifies evolutionarily related genes in 

the genomes of distinct species (so-called orthologs). By discovering areas of high 

similarity along diverged sequences that share common function, researchers are able to 

infer the most critical components of a given gene. Rapidly acquired and lineage-specific 

mutations, on the other hand, may provide clues as to the genetic basis of traits unique to 

a given species. 

In Chapter 2, we build on this work to understand the genetic basis of characteristic 

human traits. We utilize the sequences detected by MOSAIC to reconstruct the genetic 

code of each human gene just prior to the divergence from chimp. We then analyze the 

patterns of mutations along the human lineage to discover genes and even specific 

mutations that may play important roles in intelligence, obesity, mental health, as well as 

a variety of basic biological functions. 

Examining the evolutionary origins of human traits provides useful insight into the 

genetic links between our strengths and susceptibilities as a species. However, this 

perspective lacks a dynamic perspective on the interaction of genetic factors with the 

broad array of environmental and ecological variables that fundamentally shape 

downstream phenotypes.  

In Chapter 3, I will introduce CauseMap, a tool I built to understand causal relationships 

within complex dynamical systems using time series data. This perspective, I hope, will 
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allow us to understand the characteristics of human health that emerge from an evolved 

dynamic equilibrium with the world within and around us. This interdependence is 

central to our health and physically permeates who we are. For example, recent work has 

demonstrated the striking importance of the microbiome in protecting against e.g. 

irritable bowel disease (IBD), obesity, diabetes, asthma, anxiety, and depression (Arrieta, 

Stiemsma, Amenyogbe, Brown, & Finlay, 2014; Foster & McVey Neufeld, 2013).  

Our internal ecosystem is not a static entity, however. Rather, it is constantly evolving as 

species wax and wane in response to e.g. mutual competition and an ever-changing 

supply of nutrients (Caporaso et al., 2011; Fisher & Mehta, 2014; Gajer et al., 2012). It is 

likely that important aspects of human health are shaped by the periodic dynamics of 

these changes. Yet, our ability to understand these interwoven ecological relationships 

remains limited by a dearth of appropriate time series methods. 

 It is for this reason that I developed CauseMap. This tool is the first open-source 

implementation of Convergent Cross Mapping (CCM), a next-generation algorithm 

designed to understand causal relationships from ecological time series data. CCM grows 

out of dynamical systems theory, and while still unproven, holds great promise for 

understanding how elements of complex systems function in situ. 

 As a proof-of-concept, I apply CauseMap to understand the predator-prey 

relationship between two species of single celled organisms: Paramecium aurelia and 

Didinium nasutum. We use this well-known system to validate our implementation, and 

to demonstrate the strengths and limitations of CauseMap. We note that, despite its 

requirement for relatively long time series, CauseMap has the enormous advantage of 

requiring observations from only a single source system. In dynamical systems with 
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widely varying or context-specific behavior, this would allow researchers to draw 

conclusions that are tailored to, e.g. a given patient. Rather than acting on population 

averages, biomedical researchers would be free to fully personalize therapy to the unique 

biology and ecology of the patient. 

 We envision many other applications for CauseMap as well. Additional examples 

include understanding patient-to-patient variability in drug response using time series 

metabolomics, and examining the basis of e.g. influenza seasonality using global time 

series. We are in fact in the process of processing data to answer the latter question. 

 Together, Chapters 1-3 expand the methodological arsenal of those interested in 

harnessing change to deepen our understanding of human health and disease. In addition, 

we present several novel findings that themselves lend new insight into the factors that 

shape us as a species. Like the systems that it examines, however, this work is itself a 

dynamic entity. What we present is merely a snapshot of a greater work that we hope will 

continue to evolve, to grow, and eventually, to give back in some small way to the stream 

of scientific advancement from which it emerged. As always, please enjoy, and let us 

know if you notice anything that can be improved! 
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Chapter 2 Rock, Paper, Scissors: Harnessing complementarity 
in ortholog detection methods improves comparative genomic 
inference.  

 

 

Introduction 
!
Orthologs are genes that derive from a common ancestral gene, but which have 

diverged from one another through speciation. This is in contrast to paralogs, which 

arise through gene duplication within a given genome.  It is common in comparative 

genomics and phylogenetics to extract evolutionary information about a particular 

gene from its alignment with orthologous sequences. To enable this analysis, orthologs 

must first be inferred, making ortholog detection (OD) an indispensible first step in a 

variety of phylogenetic inference tasks (Ciccarelli et al., 2006; Yandell & Ence, 2012). 

In general, existing OD methods can be classified as tree-based, graph-based, or a 

hybrid of the two (Altenhoff & Dessimoz, 2012). Tree-based methods may use 

reconciliation techniques between gene and species trees or may rely on the gene tree 

alone.  Graph-based methods can employ a variety of metrics to quantify similarity 

between sequences, including BLAST scores or sequence identity. Information about 

the conserved gene neighborhood may also be included in this context. Techniques 

such as Markov clustering may then be applied to create orthologous groups, or one 

may simply define clusters based on a graph’s existing connections (Kuzniar, van 

Ham, Pongor, & Leunissen, 2008).  

 Unfortunately, the few benchmarking studies that have sampled broadly from this 

methodological diversity have provided equivocal results. Although there are general 

patterns in relative effectiveness between methods, performance is highly context-

dependent and does not always favor more sophisticated approaches (Altenhoff & 

Dessimoz, 2009a; Chen, Mackey, Vermunt, & Roos, 2007; Hulsen, Huynen, de Vlieg, 

& Groenen, 2006). This is discouraging from the point of view of identifying a single 

best OD method, but it also suggests a new and relatively facile avenue for 
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methodological improvement. By harnessing differences between OD methods, a wide 

variety of algorithms may play complementary roles within a cooperative inference 

framework.  

We begin our analysis of orthologs of human genes with a comprehensive 

comparison of four popular and methodologically distinct OD methods:  1.) 

MultiParanoid, a reciprocal-BLAST plus Markov clustering method (Alexeyenko, 

Tamas, Liu, & Sonnhammer, 2006); 2.) TBA, a synteny-based aligner used to produce 

UCSC’s MultiZ alignments (Blanchette et al., 2004); 3.) six-frame translated BLAT, a 

fast, approximately-scored protein query approach that does not rely on predicted 

proteomes (W James Kent, 2002); and 4.) OMA, a well-established tree-based method 

(Altenhoff, Schneider, Gonnet, & Dessimoz, 2011). Applying these methods to OD in 

a range of primates and closely related mammals, we demonstrate that methodological 

performance varies widely by species and appears to depend critically on genome 

quality.   

Next, we characterize the striking performance gains yielded by combining these 

methods. This is demonstrated using sequence identity, phylogenetic tree concordance, 

and hidden markov model-based functional agreement. This improvement in 

alignment quality translates to higher estimated levels of overall conservation, while at 

the same time, detecting up to 180% more positively selected sites. We close by 

highlighting a novel PSS near the active site of TPSAB1, an enzyme linked to asthma 

and irritable bowel disease. 

The implementation of this novel approach for the integration of diverse ortholog 

detection methods is presented as the software tool, MOSAIC, or Multiple 

Orthologous Sequence Analysis and Integration by Cluster optimization. MOSAIC is 

implemented as a well-documented python package that can be installed using 

easy_install bio-mosaic from the command-line. MOSAIC alignments, source code, 

and full documentation are available at http://pythonhosted.org/bio-MOSAIC.  
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Materials and methods 

Retrieval of orthologs 
!
For each human consensus coding sequence (version GRCh37.p9), we sought to 

retrieve orthologs for chimp, gorilla, orangutan, rhesus macaque, marmoset, bushbaby, 

cat, cow, and horse using four methodologically diverse methods: 1) MultiParanoid 

(Alexeyenko et al., 2006); 2.) TBA (Blanchette et al., 2004); 3.) six-frame translated 

BLAT (W James Kent, 2002); and 4.) OMA (Altenhoff et al., 2011). Genomic data 

was retrieved for the following genome builds: 

 
Genome Version Release 
Chimp panTro4 Feb-11 
Gorilla gorGor3.1 May-10 
Orangutan ponAbe2 Jul-11 
Rhesus 
macaque  rheMac3  Oct-10 
Marmoset  calJac3 Mar-09 
Bushbaby   otoGar3 May-11 
Cat  felCat5 Sep-11 
Cow bosTau7 Oct-11 
Horse equCab2 Sep-07 

 

For MultiParanoid (Alexeyenko et al., 2006), an all-versus-all blast search was run 

using the following command structure:  
blastp -db $blastdatabase -query [query file] -out [output file] -evalue .01 -num_threads [number of 

threads] -outfmt 6 -db_soft_mask 21 -word_size 3 -use_sw_tback 

From this output, ortholog predictions were produced using the standard 

MultiParanoid protocol. 

For BLAT (W James Kent, 2002), genomes for each species of interest were 

downloaded from the NCBI Entrez Genome database (McEntyre & Ostell, 2002). 

Queries were conducted using the following command structure: 
blat -q=prot -t=dnax -minIdentity=70 –extendThroughN [genome file] [query file] [output file] 

In the case of MultiZ (Blanchette et al., 2004), CCDS orthologs were downloaded 

directly from the UCSC genome browser (W. J. Kent et al., 2002).  For OMA 

(Altenhoff et al., 2011), ortholog predictions were downloaded from omabrowser.org 
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(December 2012 release). For 

genes with more than one 

CCDS, orthologs were mapped 

to each analyzed transcript. 

Finally, ortholog predictions 

from metaPhOrs (Pryszcz, 

Huerta-Cepas, & Gabaldón, 

2011) were retrieved from 

release v201009 (June 2012). 

To remove possibly spurious 

orthologs, proposals from each 

method were then filtered 

according to a species-specific 

sequence identity cutoff, as 

described below.   

MOSAIC:  OD integration as 
cluster optimization  
!
MOSAIC provides a highly 

flexible, graph-based framework 

for integrating diverse OD 

methods. For a given reference 

sequence, proposal orthologs are conceptualized as nodes in a graph, connected with 

edges weighted according to the pairwise similarity between sequences (Box 1). The 

task of OD integration is then to choose proposal orthologs from each species such 

that a chosen measure of intra-cluster similarity is optimized. 

MOSAIC optimizes (weighted) pairwise similarities 
!
To begin, MOSAIC calculates pairwise similarities between all orthologs from 

different species. Percent identity- and blast-based similarity metrics are provided by 

default, but user-defined similarity metrics are also accepted. These similarity scores 

define edge weights, which are used to construct a graph such as the one presented at 

Box 1. A schematic of the sequence selection 
algorithm.  Steps: 1.) Construct graph. 2.) Choose 
the sequence from a random OD method for each 
species. 3.) Iterate through species. For each 
species, pick the orthologs with highest 
similarity to the current best choices for all other 
species. 4.) Return current best choices if no 
changes are made after iterating through all 
species. 5.) To find global optimum, repeat steps 
1-4 with random sampling paths. 
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the top of Box 1. Once this full graph is constructed, it is highly recommended that it 

be quality filtered using user-specified similarity cutoffs. This step is necessary to 

minimize the effect of gene loss, duplication, etc. Once the graph is cleaned, MOSAIC 

then chooses at most one proposal ortholog from each species so that the overall 

pairwise similarity between accepted sequences is optimized. 

To accommodate user priorities, pairwise similarities can be weighted such that 

sequences from different species contribute unequally to the total similarity score. For 

uniform weights, this is equivalent to maximizing the average pairwise similarity. In 

the case where only similarity to a reference sequence is of interest, this reduces to 

simply accepting the ortholog for each species that is most similar to the reference. 

 

Optimization is carried out using cyclic coordinate descent 
!
For m OD methods and s species, there are up to ms possible integrated alignments. In 

the case analyzed in this paper, m=4 and s=10. This translates to over a million 

possible integrated alignments for each of the ~25,000 reference sequences considered. 

It is clear to see from this example that an exhaustive optimization becomes quickly 

infeasible. Therefore, MOSAIC choses optimal clusters using cyclic coordinate 

descent (CCD), an efficient non-derivative optimization algorithm (Bertsekas, 1999).  

  In Box 1, we illustrate the way CCD functions in the context of MOSAIC. After 

building the full graph that includes all orthologous sequences, random orthologs from 

each species are chosen as the current best. MOSAIC then loops through the species of 

interest in a random order. For each species, MOSAIC choses the sequence that 

optimizes cluster tightness given the current best sequences for all other species. This 

process is repeated until no further improvements can be made to cluster tightness. 

Finally, since CCD is prone to finding local rather than global optima, this entire 

process is repeated multiple times with random starting points and sampling paths. 

Scoring and optimization procedures for this study 
!

For the alignments presented here, we consider a protein set with relatively low 

levels of evolutionary divergence. As described earlier, we chose percent identity as 
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our metric for sequence divergence. Note that several other popular scoring functions 

are implemented in MOSAIC. For more distantly related species, the application of 

scoring matrices (Dayhoff, Schwartz, & Orcutt, 1978; Henikoff, 1992) or Hidden 

Markov Models (Ebersberger, Strauss, & von Haeseler, 2009) may be preferable. To 

reduce computational costs related to pairwise alignment, we considered only 

similarities between orthologs and the human target sequence. The optimization 

procedure was then equivalent to choosing, for each species, the ortholog among all 

methods that is most similar to the human sequence. This approach corresponds to the 

arguments edgefunc='perID', optrule='pairwise' when calling the Mosaic constructor in 

mosaic.py (see: http://pythonhosted.org/bio-MOSAIC/Module.html). 

Example: measuring similarity 

Percent identity was then calculated as the percent of sites in the human sequence 

that were identical in the orthologous sequence. For example, the hypothetical 

sequence below would be scored as 71% identical (5/7), since there are 2 mismatches 

between the seven sites present in the human sequence and the character to which 

those sites are aligned in the chimp sequence (sites where the human sequence has 

been deleted or the outgroup has an insertion are ignored): 

Human   A W V A - T F D 

Chimp   - W V R Y T F D 

Filtering putatively non-orthologous sequences 

All ortholog detection methods produce false positives. For example, this can 

result when a gene deletion on one lineage means that no true ortholog exists in a 

given species. Typically, these issues are dealt with through rigorous filtering of input 

alignments. The intuition is that by applying a stringent sequence similarity filter, we 

can remove the vast majority of evolutionarily unrelated genes. MOSAIC also 

employs this filtering approach prior to integration, guaranteeing that only credibly 

putatively orthologous sequences are included in the analysis. Cutoffs were chosen 

considering the known level of genome-wide divergence between human and the 

species of interest, as well as the overall distributions of percent identity between 

putative orthologs in the two species. These cutoffs were as follows:  chimp: 82%, 
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gorilla: 77%, orangutan: 75%, rhesus macaque: 73%. A cutoff of 70% was employed 

for marmoset, bushbaby, cat, cow, and horse. 

A note on paralogs 
!

For! any! query! protein,! there! is! also! a! risk! that! a! related! gene! in! another!

genome! has! not! maintained! the! same! function! and! so! provides! inapplicable!

evolutionary! information.! This! divergence! in! function! would! be! expected! to!

increase! sequence! divergence,! and! so! in!many! cases! could! also! be! removed! by!

suitably! stringent! sequence! similarity! filters.! Paralogs! inject! additional! bias! if,!

compared!to!the!query!protein,!the!most!functionally!similar!of!the!set!is!not!the!

most!similar!at!the!sequence!level.!While!this! is!possible,! it! is!the!exception!and!

not! the!rule!under!reasonable!models!of!evolution.! Indeed,! this!expectation!has!

been!validated!by!experimental!data!from!several!model!systems!(Mashiyama!et!

al.,!2014;!Zhao!et!al.,!2014).!For!this!reason!MOSAIC!does!not!exclude!putatively!

orthologous!sequences!that!have!paralogs! in!the!source!genomes.!We!will!show!

that! this! decision! allows! us! to! capture! more! putative! orthologs! while!

simultaneously!improving!ortholog!quality!by!all!commonly!used!metrics.!!

In! summary,! MOSAIC! is! adapted! to! producing! MSAs! that! are! functionally!

informative!at!the!siteYlevel.!For!other!applications,!researchers!may!wish!to!infer!

genomic! events! such! a! gene! loss,! duplication,! horizontal! gene! transfer,! and/or!

incomplete!lineage!sorting!(e.g.!Capra!et!al.!2013).!This!involves!jointly!examining!

functionally!diverged!paralogous!groups!alongside!their!corresponding!orthologs.!

This! task! generally! requires! a! combination! of! tools! such! as! MultiParanoid! (to!

infer! paralogs;! Remm! et! al.! 2001),! RaxML! (to! build! gene! and! species! trees;!

Stamatakis!2014),!and!Notung!(reconcile!gene!trees!with!species!trees!and!infer!

evolutionary! events;! Stolzer! et! al.! 2012).! For! applications! such! as! this,!MOSAIC!

alignments! can! still! be! leveraged! to! guarantee! the! presence! of! relevant!

sequences.! Likewise,! reconstructed! evolutionary! histories! can! be! used! to! flag,!

among! tens! of! thousands!of! automatically! generated!MOSAIC! alignments,! those!

exceptional!cases!that!could!benefit!most!from!manual!inspection.!
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Multiple sequence alignment 
!
Retrieved sequences were jointly aligned to query proteins using MSAprobs (Liu, 

Schmidt, & Maskell, 2010), a multithreaded aligner with better performance 

benchmarks than many top aligners, including ClustalW, MAFFT, MUSCLE, 

ProbCons, and Probalign (Liu et al., 2010). Importantly, MSAprobs has the further 

advantage of providing, for each column of an alignment, dependable estimates of the 

confidence of the alignment at the site. 

 

Quality assessment 

 Sequence identity 
!
MOSAIC optimizes pairwise sequence similarity. In this example, sequence identity is 

used as the similarity measure, and pairwise similarities are weighted such that only 

concordance with the human reference sequence is considered. To achieve greater 

separation between metrics used for optimization and assessment, comparisons of 

sequence identity were performed in the context of the full multiple sequence 

alignments (MSAs). We believe this choice is sensible because it is the quality of the 

MSA that is of primary importance to many downstream phylogenetic inference tasks. 

In addition, this approach allows us to indirectly incorporate information about intra-

cluster similarity. As an MSA incorporates increasingly divergent sequences, 

performance relative to pairwise alignments is expected to progressively degrade.  

 Tree concordance 
!
For each MSA, gene trees were built using RAxML (Stamatakis & Alachiotis, 2010). 

An unweighted Robinson-Foulds (RF) distance (Robinson & Foulds, 1981) was then 

calculated between each gene tree and the known species tree using the python module 

dendropy (Sukumaran & Holder, 2010). Briefly, the unweighted RF distance counts 

the number of operations required to transform one tree into the other. This quantity is 

equal to the total number of splits that are present in one tree but not the other.  To 

normalize for variations in tree size, we then divided this distance by the sum of the 

total number of splits in the gene and species trees (Yu, Zavaljevski, Desai, & 
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Reifman, 2011). To summarize the genome-wide distribution of normalized RF 

distances, we took the area under the curve of the cumulative distribution function 

(CDF). This was limited to values less than 0.4, since beyond this value there is little 

difference between the observed curves (see fig. SA-5). This metric is superior to, e.g. 

calculating the proportion of genes below a given threshold because it up-weights 

smaller RF distances as opposed to, in effect, using non-zero uniform weights below 

the cutoff value.  

 Functional concordance 
!
Profile HMMs were downloaded from the PfamA protein families database (Punta et 

al., 2012). Each sequence was then annotated using the top scoring function retrieved 

by querying that sequence against the database of all PfamA protein family HMMs. 

This search was conducted using HMMER3 (Eddy, 2011). Functional concordance 

was then measured as a binary quantity, corresponding to whether or not a putative 

orthologous sequence had the same inferred function as its cognate human sequence. It 

is important to note that not all PfamA HMMs are functionally validated. In cases 

where experimental validation is unavailable, these HMMs provide a family-specific 

scoring function that nevertheless yields information not contained in naïve sequence 

identity measures.   

 

Evolutionary analysis 

 Gene-level conservation 
!
Alignments were analyzed using Phylogenetic Analysis by Maximum Likelihood 

(PAML) (Yang, 2007). For each alignment three models were fit: 1.) a neutral model 

where dN/dS is fixed at one, 2.) a conservation model where dN/dS is less than or 

equal to one, and 3.) a positive selection model where some fraction of the sequence is 

fit under the conservation model, while another dN/dS parameter is estimated freely 

for the remainder of the sequence. Since evolutionary models are not in general nested, 

we performed model selection via the popular Akaike Information Criterion (AIC), a 

method that penalizes a model’s fit by its number of included variables (Akaike, 1973) 
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and is asymptotically equivalent to maximizing the model’s predictive performance on 

unseen data (Stone, 1977).  

 Despite rigorous model selection procedures, in rare cases PAML may estimate 

very high levels of selection over a tiny proportion of a given sequence (even a single 

site), leading to greatly inflated average levels of dN/dS. To reduce the influence of 

outlying estimates of selection, all dN/dS values greater than 3 were excluded for the 

analysis. For all methods, this corresponded to less than .05% of all sequences. 

Site-level positive selection 

The program Sitewise Likelihood Ratio (SLR) (Massingham & Goldman, 2005) was 

used to estimate the number of positively selected sites in each sequence. To eliminate 

false positives due to poorly aligned sites, we filtered out all sites estimated by 

MSAprobs to be aligned to less than 95% confidence. All included positively selected 

sites estimated at 95% confidence or greater by SLR were included in the subsequence 

comparison. 

 Concordance between positively selected sites 
!
To assess agreement in positively selected sites (PSS), we calculated the degree of 

overlap between PSS from all pairs of methods. This was calculated as the size of the 

genome-wide intersection between sites divided by the union of said sites. 

 Mapping positively selected sites onto three-dimensional structures 

We leveraged UniProt mapping files (http://www.uniprot.org/docs/pdbtosp; accessed 

9/30/14) to determine which proteins had a relevant structure in the Protein Data Bank 

(PDB; Berman 2000). We then aligned sequences between PDB structures and 

candidate genes to determine the degree of coverage and to obtain a mapping between 

residues. We found 2003 genes for which there was a structure with greater than 70% 

coverage.  Of these, 787 had results from all five ortholog detection methods. Reasons 

for missing data comprise absence from source data and lack of convergence in the 

PSS calculation. Within this set of 787 genes, 76 proteins had PSS from MOSAIC that 

were not found with any of the component methods. From this point, the example of 

TPSAB1 was quickly identified by manual inspection. We then downloaded PDB 

structure 2ZEC to visualize the location of positively selected sites. To validate 
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sequences used in the analysis, we blasted each ortholog against the human SwissProt 

database. This confirmed that TPSAB1 was the most similar human protein in each 

case. 

   

Results and Discussion 

Ortholog detection methods frequently outperform one another 
!

To motivate OD integration, we will begin with a comprehensive comparison of 

four popular, methodologically diverse OD methods. In figure 2-1, we show the head-

to-head performances of these different methods for a range of primates and closely 

related mammals. Performance is assessed using alignments between all human 

consensus coding sequences (CCDS) (Pruitt et al., 2009) and their corresponding 

orthologs from each method. For each possible ortholog (defined by human target 

sequence and species of origin), we examine whether sequence identity to human is at 

least five percentage points higher for one method versus another. We otherwise 

consider the two methods to be tied. By this metric, one method significantly 

outperforms another 38 to 45% of the time.  Importantly, no method uniformly 

outperforms all others, underlining the complementarity of the chosen algorithms.  
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Figure 2-1. Comparison of sequence identity levels between methods. Heat map of the percent of 
orthologs for which MultiParanoid (MP), OMA (OMA), BLAT (BL) and MultiZ (MZ) outperform one 
another. Performance is based on percent identity of each method’s orthologs to the human sequence. One 
method is considered to outperform another method if it improves percent identity by at least five 
percentage points. Text in diagonal cells shows the number of orthologs identified by each method, colored 
by the percent of orthologs for which a given method outperforms all the others.  

 

Combining multiple sequence alignments with MOSAIC 
!
It is well-known in theory (Wolpert & Macready, 1997) and in practice (van der Laan 

& Gruber, 2010) that the comparative performance of competing statistical inference 

algorithms often varies by context. Rather than search for a single best algorithm, 

researchers have sought to integrate a variety of methods in order to reap the benefits 

of methodological complementarity (Chandrasekaran & Jordan, 2013; Rokach, 2009; 

van der Laan, Polley, & Hubbard, 2007). As might be expected, the gains yielded by 

this approach generally scale with the quality of the individual methods integrated, the 

number of methods included, and, importantly, the diversity of the comprised 

algorithms (Kuncheva & Whitaker, 2003).  

 Having observed the complementarity between OD methods, we sought to 

develop a structure for the automatic integration of methodologically distinct OD 

methods such as those described above. We term this framework MOSAIC, or 
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Multiple Orthologous Sequence Analysis and Integration by Cluster optimization. 

MOSAIC allows for the flexible integration of diverse OD methods through the 

application of standard or user-defined metrics of sequence similarity and ortholog 

cluster quality. Using the specified similarity metrics, clusters of proposed orthologs 

are built. These orthologs are then adopted or rejected in order to optimize cluster 

completeness and quality (e.g., similarity to a reference sequence or average pairwise 

similarity). 

 Having presented a schematic of the algorithm itself in box 1, we provide in 

figure 2-2 a view of example inputs and output MSAs. These are illustrations of real 

alignments for carbonic anhydrase 12 (CA12), an enzyme critical to a number of 

biological functions including the formation of bone, saliva, and gastric acid (Pruitt et 

al., 2014). MSA columns that are aligned to below 95% confidence are displayed in 

red. Orthologs that were not returned for a given species are denoted with a horizontal 

black bar. Those that were filtered using pre-integration sequence identity cutoffs (see 

Materials & Methods) are indicated with grey bars. Note that, just as when employing 

a single ortholog detection method, this filtering step is critical to guaranteeing 

alignment quality.  
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Figure 2-2 Illustration of integration process for carbonic anhydrase 12. MSA columns that are aligned 
to below 95% confidence are displayed in red. Orthologs that were not returned for a given species are 
denoted with a horizontal black bar. Those that were filtered using pre-integration sequence identity cutoffs 
are indicated with grey bars with the global percent identity included. Species name label colors denote the 
species of origin for orthologs in the MOSAIC alignment. 

 

Combining methods increases the number of included sequences 
!
The gains afforded by MOSAIC vary by species and increase with the number of 

methods that are included (fig. 2-3A). When all four component methods are included, 

MOSAIC more than quintuples the number of alignments for which all species are 

present (fig. 2-3B). We observe in fig. 2-3A that the largest improvements are seen for 

gorilla, bushbaby, and cat. Importantly, orthologs for each of these three species are 

rescued by different methods (OMA for gorilla, MultiParanoid for bushbaby, and Blat 

for cat. See fig. SA-3 for further details). In the sections that follow, we will 

demonstrate that MOSAIC captures these additional sequences while simultaneously 

improving functional-, phylogenetic-, and sequence identity-based measures of 

ortholog quality. 
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Figure 2-3 OD power and the effect of pooling methods. A.) The cumulative proportion of human 
transcripts for which an ortholog was detected, stratified by species. Envelopes illustrate results from 
pooling an increasing number of methods. B.) The cumulative number of human transcripts as a function of 
the maximum number of missing species allowed. 

 

MOSAIC improves functional-, phylogenetic-, and sequence identity-based 
measures of ortholog quality 

 MOSAIC improves sequence identity 
!
MOSAIC achieves massive gains in the number of retrieved orthologs while slightly 

improving average levels of sequence identity. Though MOSAIC directly optimizes 

sequence identity, this result is non-circular for two reasons. First, average levels of 

sequence identity could be reduced by preferentially adding sequences from the lower 

end of the sequence identity distribution. This would be consistent with a scenario in 

which most methods correctly inferred that a gene was deleted on a particular lineage. 

Second, MOSAIC optimizes sequence identity measured from pairwise global 

alignments. In the validation phase, we calculated this metric in the context of the full 

MSA. We believe this choice is sensible because it is the quality of the MSA that is of 

primary importance to many downstream phylogenetic inference tasks. In addition, 

this approach allows us to indirectly incorporate information about intra-cluster 
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similarity. As an MSA incorporates increasingly divergent sequences, performance 

relative to pairwise alignments is expected to progressively degrade. 

 MOSAIC improves functional concordance 
!
We employed profile HMMs from the Protein Families Database A (PfamA) (Punta et 

al., 2012) and HMMER3 (Eddy, 2011) to ascertain putative functional concordance 

between proposed orthologs and the human CCDS of interest. PfamA builds HMMs 

via curated alignments of small numbers of representative members from each protein 

family. It is important to note that not all PfamA HMMs are functionally validated. In 

cases where experimental validation is unavailable, these HMMs provide a family-

specific scoring function that yields information not contained in naïve sequence 

identity measures.   

 With HMMER3, we queried protein sequences against all PfamA protein family 

profiles, annotating each protein according to its top protein family hit. This allowed 

for an ascertainment of functional concordance that is more comprehensive than 

relying on gene-by-gene annotation across species, while retaining many of the 

advantages of manual curation where it exists. This assessment reveals that, for the set 

of orthologous sequences proposed by all methods, MOSAIC provides levels of 

functional concordance that are slightly better than the best performing component 

method (fig. 2-4). Gains are particularly large for gorilla, bushbaby, and cat orthologs 

(fig. SA-4). 

 MOSAIC improves phylogenetic concordance 
!
Phylogenetic concordance was ascertained by calculating the normalized, unweighted 

Robinson-Foulds (RF) distance (Robinson & Foulds, 1981) between gene trees and the 

established species tree (Altenhoff & Dessimoz, 2009b). This metric is equal to the 

sum of the number of splits in one tree that are not present in the other, scaled by the 

total number of splits present across the two trees. Accordingly, larger RF distances 

correspond to worse agreement between gene and species trees. On a gene-by-gene 

basis, this metric should be interpreted with caution, since post-speciation admixture 

and incomplete lineage sorting can lead to true discordance between the species tree 
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and the phylogenetic history of a particular gene (Maddison & Knowles, 2006). 

However, at the level of the genome, higher concordance between gene trees and the 

known speciation process strongly suggests a relative improvement in OD.  

Figure 2-4 presents a comparison of genome-wide phylogenetic concordance (see 

Materials & Methods for details on this metric). MultiZ performs the best of any 

individual method, likely due to its utilization of syntenic information. Surprisingly, 

the tree-based OD method, OMA, exhibits the worst performance according to this 

tree-based metric. MOSAIC, on the other hand, provides significant performance gain 

over all component methods, including a 59% increase in phylogenetic concordance 

compared to OMA.  

 

 
Figure 2-4. MOSAIC improves alignment quality. We show the fold improvement of each method over 
the worst performing method in four categories: 1.) sequence identity, 2.) functional concordance, 3.) 
phylogenetic concordance, and 4.) number of orthologs detected. 
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 Increased ortholog quality leads to more conservation and more positively 
selected sites 
Having demonstrated an increase in ortholog quality using tree-, function-, and 

similarity-based measures of quality, we next sought to assess the influence of increased 

alignment quality on estimated levels of selection. To assess gene-level conservation, we 

applied Phylogenetic Analysis by Maximum Likelihood (PAML) (Yang, 2007) with 

automated likelihood-based model selection (see methods below). To ascertain site-level 

positive selection, we employed Sitewise Likelihood Ratio (SLR), a method shown to 

have a higher power and a lower false positive rate than PAML’s popular Bayes 

Empirical Bayes (BEB) method (Massingham & Goldman, 2005). 

 Since varying numbers of sequences can sway evolutionary estimates in 

unpredictable ways due to, e.g. inhomogeneous levels of selection across organisms, we 

assessed the performance of MOSAIC relative to each method by matching the species 

present in each alignment. We refer to this approach as MOSAICmatched. In the case of 

both PAML and SLR, synonymous substitution rates in coding DNA are used as a 

background against which to test for changes in rates of non-synonymous substitution. 

Since the metaPhOrs database provides only protein sequences for its alignments, no 

comparison with this method was possible given the available data. 

 In figure 2-5A, we see that MOSAIC leads to higher gene-level conservation 

(lower dN/dS) compared to every method except Blat, for which the difference was not 

statistically significant. Despite higher levels of conservation, MOSAIC was able to 

detect ~30-180% more positively selected sites than any of its component methods. This 

was not due to an increase in the inferred rate of positive selection. Rather, most of this 

increase in power was due to the fact that more sites were aligned to high confidence and 

therefore included in the analysis. This step of filtering for alignment quality is important 

because site-wise estimates of positive selection are highly sensitive to short poorly 

aligned regions (Jordan & Goldman, 2012). 

To investigate the quality of the positively selected sites detected by MOSAIC, 

we assessed concordance with and between component methods. For a pair of method, 

we measure overlap by dividing the total size of the intersection between positively 

selected sites by the total size of the union. These results are shown in figure 2-5B. We 

observe that the minimum overlap between MOSAIC and a component method 
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(MOSAIC/Blat) is still better than the best overlap between component methods 

(Multiz/OMA). Averaging over comparisons, we find the improvement in concordance 

with versus between component methods is statistically significant beyond computational 

precision (p < 1e-16). 

 

 
Figure 2-5. A comparison of evolutionary estimates. A.) The relative difference of MOSAICmatched versus 
each component method for: 1.) the number of positively selected sites, 2.) the number of confidently 
aligned sites, and for reference, 3.) the average level of conservation across all alignments. B.) The 
agreement between positively selected sites 1.) between MOSAIC and component methods, and 2.) among 
component methods. Fractional overlap values are plotted as Venn diagrams to illustrate the two methods 
being compared. 

!

Better alignments may yield new insights into human evolution   
!
We next sought to examine the biological significance of some of the positively 

selected sites identified uniquely by MOSAIC. This led us to Tryptase Alpha/Beta 1 

(TPSAB1), a tetrameric serine protease that has been implicated in the pathogenesis of 

asthma and other allergic and inflammatory disorders (Pruitt et al., 2014). Shown in 2-

ure 6 is the three-dimensional structure of a TPSAB1 tetramer with inhibitor (white) 

bound (Costanzo et al., 2008). In orange, distal to the active site, is the positively 

selected residue detected by component methods and by MOSAIC. Note that positive 

selection at this location is active only outside of the great apes, with a fixed lysine 

observed in human, chimp, gorilla, and orangutan (fig. SA 9-10).  

 In red, directly within the proteolytic pore, is the site identified by MOSAIC as 

positively selected. This residue is a positively charged arginine in humans. This 

would be expected to modify the electrostatics of ligand binding. In chimp, we instead 

observe a kink-inducing proline. We might anticipate this change to have a large steric 
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effect, possibly allowing the inward-facing unstructured loop to act as a more rigid lid 

closing over top of the substrate, or as a modifier of subunit contacts. Importantly, 

these changes occurred repeatedly in mammals. Proline is observed at this position in 

rhesus macaque and marmoset. Arginine, on the other hand, is present in gorilla and 

horse (fig. SA 9-10). In orangutan, we observe a histidine: another positively charged 

amino acid.  

 Throughout this examination, we must be cognizant that tryptases evolved rapidly 

during primate evolution (Trivedi, Tong, Raman, Bhagwandin, & Caughey, 2007). 

The expansion of this gene family can itself be viewed as an example of positive 

selection. However, the presence of several paralogs creates the risk of inappropriately 

aligning pseudo-orthologous sequences that have evolved to serve divergent functions. 

Given the challenges, this case study provides an excellent opportunity to compare the 

high-throughput performance of MOSAIC to that of manually curated alignments.  

 As a first step, we showed that each proposal ortholog was a blast-based best hit 

to TPSAB1 (Table SA-1). Next, we compared our sequences to those retrieved 

manually by Trivedi et al. in 2007. While we notice a few minor discrepancies 

between the two sets of alignments (see fig. SA-9 vs. SA-11, reproduced from Trivedi 

et al. 2007), these differences do not alter our conclusion of human-relevant positive 

selection at the highlighted site in the proteolytic core of TPSAB1. 
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Figure 2-6. Example: a MOSAIC-specific PSS in Tryptase Alpha/Beta 1. The tetrameric TPSAB1 
structure is shown with positively selected sites highlighted. The site detected by component methods and 
by MOSAIC is colored orange, while the MOSAIC-specific PSS is featured in red. A bound inhibitor 
(white) pinpoints the active site of the enzyme. 

 

Conclusions 
!
In this paper we have introduced a novel algorithm, MOSAIC, which is capable of 

integrating an arbitrary number of methodologically diverse ortholog detection 

methods. We have demonstrated that MOSAIC provides large increases in power 

relative to its component methods, while simultaneously maintaining or improving 

functional-, phylogenetic-, and sequence identity-based measures of ortholog quality. 

Further, given the same number of species, MOSAIC alignments include more 

columns aligned with high confidence. This translates to higher levels of estimated 

conservation, and simultaneously, a greatly increased number of positively selected 

sites detected. Moreover, MOSAIC’s positively selected sites agree better with those 

from component methods than component results do with each other. This suggests 

that not only does MOSAIC detect more positively selected sites—these sites are more 

reproducible and are detected due to an increase in alignment quality. Finally, we 

illustrated the significance of this increase in power by highlighting a positively 

selected site near the active site of the tryptase TPSAB1. Given the role of this enzyme 
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in asthma and other allergic and inflammatory disorders, we feel that this case study is 

worthy of experimental follow-up. 

 In summary, MOSAIC provides the unique flexibility to incorporate any OD 

method that may be available now or in the future. It can therefore capture the entire 

swath of methodological diversity, thereby improving OD performance, and allowing 

researchers to take advantage of methodological gains in a variety of areas of OD 

research. In addition, it provides the flexibility to adapt scoring and optimization 

procedures to the set of species under study. In future work, it will be interesting to 

ascertain how optimal procedures vary between species sets that have differing mean 

levels of divergence and markedly different patterns of evolution. For example, 

mammals and prokaryotes will likely have distinct optimal parameter values within 

MOSAIC. This tool is available a python package that can be installed using 

easy_install bio-mosaic from the command-line. MOSAIC alignments, source code, and 

full documentation are available at http://pythonhosted.org/bio-MOSAIC.  
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Chapter 3 The Yin and Yang of Evolution: Insights into the 
shared genetic basis of human traits and diseases 
!

Introduction 
!
A multitude of cognitive and physiological changes have occurred in the ~5-7 million 

years since humans last shared a common ancestor with chimps (Bradley, 2008; Preuss, 

2011). Cranial volume in humans has nearly quintupled during this time (Babbitt, 

Warner, Fedrigo, Wall, & Wray, 2011). With increased brainpower has come complex 

sociality, rich culture, and a whirlwind of technological advances (Burkart et al., 2014). 

Beyond cognitive changes, chimps and humans have diverged in lifespan, as well as 

susceptibility to cancer and infectious disease (Finch, 2010). In short, there are a large 

number of human-chimp differences that are both biologically interesting and 

biomedically relevant (Varki, 2012). Importantly, evolutionary analysis may provide a 

powerful opportunity to uncover the genetic drivers of these phenotypic changes.  

Human evolution has been studied at time scales ranging from many millions 

(Kosiol et al., 2008) to hundreds of thousands (Bakewell, Shi, & Zhang, 2007; 

Bustamante et al., 2005a), to tens of thousands of years (Nielsen et al. 2009; Akey 2009; 

Haygood et al. 2010). Depending on the source data and the evolutionary tools employed, 

researchers may examine selection within specific loci, or across the entire genome. 

While much important work has been done to assess selection genome-wide, functional 

evolution outside of well-annotated regions remains difficult to understand, though recent 

progress has been made (Hubisz & Pollard, 2014; Torgerson et al., 2009). 
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In this study, we focus specifically on the evolution of human proteins since our 

divergence from chimp. We find this timescale compelling because of the 

aforementioned massive changes in, e.g. intelligence, sociality, life span, and cancer 

susceptibility that occurred during this time.  A handful of studies have looked at human 

coding evolution during this time period. Since we are interested in drivers of phenotypic 

change, we will focus specifically on diversifying or positive selection. Estimates of the 

number of human genes under positive selection have ranged from 1 to 20% (Bakewell et 

al., 2007; Boyko et al., 2008; Bustamante et al., 2005a; Nielsen et al., 2005a; The 

Chimpanzee Sequencing and Analysis Consortium, 2005). Previous studies have shown 

that positive selection was either not significantly correlated with biological function 

after adjusting for multiple comparisons (Bustamante et al., 2005b) or was concentrated 

within classes of genes, such as immunity or olfaction, where high diversity or a 

preponderance of paralogs may confound evolutionary inference (Nielsen et al., 2005b). 

 Since the publication of these studies, we have gained access to increased 

computational power, better sequencing data, and improved statistical models. In this 

paper, we revisit the question of human coding evolution since divergence from chimp. 

By bringing together better data with improved methods, well-validated tuning parameter 

values, and a more precise statistical focus, we are able to uncover a massive signal of 

selection in genes related to intelligence, life span, cancer susceptibility, and basic 

cellular functions such as alternative splicing.  

In the process, we infer the specific amino acid changes that occurred on the 

human lineage since divergence with the human-chimp ancestor. This provides us with a 

well-defined set of mutations in a small subset of the genome that we believe may have 
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helped shape humans as a species. While much experimental follow-up work remains to 

be done, we hope this study will provide a useful resource for understanding how protein-

coding changes have helped define the very essence of what it means to be human. 

Materials and Methods 
!

Statistical(modeling(
!
We calculated selection coefficients for each gene using SnIPRE, a mixed-effects model 

described by (Eilertson, Booth, & Bustamante, 2012). This model was shown to vastly 

increase power relative to the original McDonald-Kreitman (MK) test (McDonald & 

Kreitman, 1991). Due to low numbers of mutations, particularly in polymorphism data, 

the MK test can be highly variable. This variance can be decreased by recognizing that 

selective pressures are correlated across genes within the same genome. By pooling 

information across genes, SnIPRE is able to reduce noise and improve statistical power. 

Input(data(
 

The input data for this model is effectively a two-by-two table of counts for each gene. 

Mutations are classified as either synonymous or non-synonymous, and as being 

polymorphic or divergent. Polymorphic mutations are defined as those that vary between 

human individuals. Divergent mutations, on the other hand, are different between human 

and chimp, but not polymorphic within the human population.  

Human3chimp(divergence(data(
 

We calculated changes between human and chimp using Ancestral Sequence 

Reconstruction (ASR), as implementing in Phylogenetic Analysis by Maximum 
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Likelihood (PAML) (Yang, 2007). For each gene, we fit neutral, conservation, positive 

selection, and human branch-specific positive selection models. The ASR output was 

accepted for the model with the lowest Akaike Information Criterion (AIC) (Akaike, 

1973). This statistic derives from information theory and provides a measure of whether 

model fit has improved after accounting for potential over-fitting from adding additional 

parameters (Stone, 1977).  

These models were applied to multiple sequences alignments (MSAs) of human, 

chimp, orangutan, gorilla, and rhesus macaque. To determine which genes derived from a 

common ancestral gene, we integrated so-called ortholog predictions from MultiParanoid 

(Alexeyenko et al., 2006), Blat (W James Kent, 2002), MultiZ (Blanchette et al., 2004), 

and OMA (Altenhoff et al., 2011). This integration was performed using MOSAIC, a 

software tool developed by our group which can integrate an arbitrary number of 

methodologically diverse ortholog detection methods (Maher & Hernandez, 2013). Once 

orthologs were identified, they were aligned at the amino acid level using MSAprobs (Liu 

et al., 2010). These amino acid alignments were then converted to codon alignments 

using PAL2NAL (Suyama, Torrents, & Bork, 2006). This step was undertaken because 

higher levels of conservation at the protein level allow for higher confidence alignments 

(Jordan & Goldman, 2012).  

Human(polymorphism(data(
 

Phase 3 genotypes were downloaded from the 1000 genomes project ftp site (ftp://ftp-

trace.ncbi.nih.gov/1000genomes/ftp). We then intersected variants with CCDS release 17 

coding sequences (Pruitt et al., 2009) and determined effects on proteins sequences using 
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ANNOVAR (Wang, Li, & Hakonarson, 2010). We next calculated allele frequencies for 

each variant for use in downstream filtering. 

For the MK test, it is therefore necessary to filter out low frequency variants. The 

MK test uses polymorphism data as an estimator of neutral evolution. This assumption of 

neutrality often does not hold for low frequency variants, however. While many low 

frequency variants are uncommon because they have emerged recently, others exist at 

low frequency because they are harmful and selected against evolutionarily.   

To address this issue, we used a sample-wide frequency cutoff of fifteen percent, 

which is value commonly employed for the MK test (Charlesworth & Eyre-Walker, 

2008). We also tested cutoffs of 5, 10, 20, and 25 percent. Using a cutoff of 5% led to 

poor agreement with other cutoff levels, however, pairwise correlations between selection 

estimates for all higher frequency cutoffs were in excess of 0.95 (Figure SB-4). 

Comparison to previous result 

We downloaded raw data from (Bustamante et al., 2005b). These tables were then run 

through SnIPRE to produce equivalently estimated selection values.  

Simulation(study(
 

To test SnIPRE’s performance, we performed forward simulations of selection on coding 

sequences with SFS_CODE (Hernandez, 2008).   For each gene in the human genome, 

we computed the total length of its exons using the CCDS (Pruitt et al., 2009). We then 

performed a single simulation for each gene.  Hence, the distribution of gene lengths in 

our simulations exactly matches the genome-wide distribution in humans.  

 For each simulated gene, we drew a single value of the selection coefficient, 2Ns, 

from a normal distribution with mean 0 and standard deviation 100/6.  In our simulations, 
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all non-synonymous mutations within each gene have the same selection coefficient.  A 

sample command line for these simulations is provided below.   For each simulation, 

after 10,000 generations we sampled 50 diploid individuals from a population of 500 and 

calculated the number of non-synonymous and synonymous substitutions that occurred in 

the previous 5,000 generations. We tallied the number of currently segregating non-

synonymous and synonymous polymorphisms.   

Sample command line:    

sfs_code 1 1 -t 0.001 -r 0.001 -N 500 -n 50 -TE 10 -L 1 <L> -W L 0 1 <gamma> 0 1 -s <random>    

These values were used as input to SnIPRE. Note that we have performed this 

analysis without simulating an out-group, meaning that we assume perfect knowledge of 

the substitutions and have not inferred them from the data.  Thus, our analyses with 

simulated data may contain less noise than real data.  

Briefly, -t sets theta = 4Nu (mutation rate), -r sets rho=4Nr (recombination rate),  

-N the population size, -n the sample size, -TE the length of the simulation in units of 2N 

generations, -L the length of the simulated gene in base pairs, -W the value of the 

selection coefficient (2Ns), and –s is a random seed. 

GO(analysis(
 

We examined enriched Gene Ontology (GO) functions using GOrilla (Eden, Navon, 

Steinfeld, Lipson, & Yakhini, 2009).  We performed a rank-based test for enrichment that 

does not use a cutoff for gamma. Results were robust to this decision, however. Cutoff-

based tests yielded qualitatively similar results that were not sensitive to the minimum 

level of positive selection necessary to consider a gene rapidly evolving. 



! 47!

GWAS(enrichment(
 

We next investigated whether positively selected genes were associated with  diseases 

and phenotypes present in the Genome Wide Associate Study (GWAS) Catalog (Welter 

et al., 2014). Rather than re-implementing the rank-based enrichment test used by 

GOrilla, we defined positively selected genes as those with a gamma greater than 0.05. 

Enrichment was then assessed using a fisher’s exact test. To control the number of 

statistical comparisons, we calculated the minimum category size necessary to detect an 

odds ratio of five, 75% of the time. Only categories with at least this number of genes 

were analyzed. As an exploratory analysis, we then performed the enrichment test on all 

categories.  

Results  
!

In(simulations,(SnIPRE(has(excellent(ability(to(detect(positive(selection(in(humans(
!
Previous studies have suffered from a severe lack of power at the timescale we are 

interested in. Fortunately, some of this data can be reanalyzed with more advanced tools 

such as SnIPRE, a linear-mixed effects model implementation of the McDonald-

Kreitman test. To assess the ability of SnIPRE to detect positive selection at the 

timescales that we are interested in, we simulated evolution on human coding regions 

over 10,000 generations. We then assessed the correlation between true values of gamma, 

the population-scaled selection coefficient, and the gamma estimates from SnIPRE.  

 For positively selected genes, that is, genes with a true gamma values greater than 

0, we observed a pearson correlation between estimated and observed values of 0.8 (see 

Figure 3-1). This result holds for simulations including complex demography and 
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heterogeneous selection within genes (see Figure SB-2). As expected, this correlation 

sharply degrades for conserved genes. This is because conservation tends to remove non-

synonymous mutations, leading to zero counts in the underlying data. This then impedes 

differentiating between varying strengths of conservation.  

 

Figure 3-1. A comparison of simulated selections coefficients versus those inferred by SnIPRE.  

 

Fitting(SnIPRE(on(previous(data(yields(little(signal(of(positive(selection(
!
Despite the power of SnIPRE to detect positive selection, we found that applying this 

model to previously published data yielded only 93 positively selected genes (Figure 3-

2). This is in sharp contrast to the MKPRF model fit in the original study, which inferred 

nearly a third of the genome to be under positive selection (Figure SB-1).  

Updating input data leads to the detection of many more positively selected genes 
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Given the lack of signal under the otherwise extremely powerful SnIPRE model, 

we sought to improve the input data in hopes of uncovering novel evolutionary 

signatures. We did this in three ways. First, we leveraged high-quality multiple sequence 

alignments produced by MOSAIC, a software tool developed by our group. Second, we 

better filtered human polymorphism data based on population genetic theory as well as a 

thorough examination of the data-at-hand. Third, we leveraged ancestral sequence 

reconstruction (ASR) to remove mutations that occurred on the chimp lineage. 

In doing so, we filtered out chimp-lineage mutations from incoming cross-species 

divergence data, and we improved human polymorphism data by removing deleterious 

mutations that would otherwise contribute to an overly conservative null model (see 

materials & methods for a more thorough explanation). We plot the result of these 

changes in Figure 3-2.  For comparison, we also show the gamma values calculated 

similarly from previous published data.  In all, the methodological improves describe 

above lead to an increase from 93 to 1773 genes inferred to be under positive selection. 
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Figure 3-2. A comparison of SnIPRE-inferred selection coefficient distributions. The blue distribution 
are the gamma values inferred using tables published by Bustamante et al. 2005. The green distribution is 
calculated using data generated by the present study. 

 

Incorporation(of(ancestral(sequence(reconstruction(greatly(increases(GO(enrichment(
 

Examining species divergence without ancestral sequence reconstruction (ASR) pools 

both human- and chimp-lineage mutations. Under this approach, we find only GO terms 

related to olfaction (q-value = 7e-5) and gonadal development (q-value = 1.5e-3) to be 

enriched among positively selected genes. It is important to note, however, that olfaction-

related genes are enriched among those that are most conserved on the human lineage (q-

value=3.1e-54). This suggests that previous results of positive selection on olfaction in 

humans (Nielsen et al., 2005b) are in fact driven by adaptation on the chimp rather than 

human lineage. Indeed, this is much more consistent with expectation given the 

comparatively poor sense of smell in humans relative to chimp. 
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Through this analysis, we demonstrate that ASR is useful in eliminating spurious and 

even misleading evolutionary signal. Moreover, it gives us the newfound ability to detect 

enriched positive selection in a variety of pathways related to brain development, 

alternative splicing, tissue organization, fat storage, and locomotion. These are many of 

the pathways where we would expect to find the genetic basis for the phenotypic 

divergence between human and chimp. A larger, representative sampling of the pathways 

with more than two-fold enrichment are shown in Table 1.   

 

 FDR q-value Fold 
Enrichment 

Positive regulation of neuron projection development 1.2E-04 5.4 
Regulation of extent of cell growth 3.6E-04 3.9 

mRNA splicing, via spliceosome 1.4E-07 3.4 
Memory 9.7E-05 3.4 

Regulation of phospholipase activity 5.8E-04 2.9 
Neurotrophin signaling pathway 1.7E-05 2.6 

Cell junction organization 8.5E-05 2.6 
Axon guidance 2.2E-10 2.2 

Regulation of locomotion 2.3E-06 2.1 
 
Table 3-1. GO processes enriched among positively selected genes.  

 

Extending our focus to pathways enriched less that two-fold, we find that a number of 

other processes are also represented, such as transport, behavior, signaling and regulation 

of signaling, and response to stimulation and its regulation. Finally, we found that 

positive selection rises markedly as genes belong to increasingly more enriched 

categories (Figure SB-8). This dose-dependence is consistent with increased diversifying 

pressure as a gene is involved in a larger number of positively selected traits. 
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We(also(find(enrichment(for(association(with(disease(
 

To further examine whether signals of positive selection were associated with known 

biological results, we tested whether positively selected genes were over-represented 

among genes associated by GWAS to particular diseases and traits. Given the small-ish 

number of proteins known to be involved with most traits, tests for enrichment are 

expected to be underpowered to make statements about particular diseases and traits. We 

can, however, easily test whether positively selected genes are, on the whole, more 

associated with diseases and traits than we would expect by chance. 

 In Figure 3-3A, we see the distribution of enrichment p-values for enrichment of 

positive selection for each disease or phenotype. We determined that just above 8% of 

tests were below the nominal significance threshold.  Note that we do not know a priori 

how many tests should exceed this threshold due to the correlation between categories 

induced by overlapping genes.  

We examined this with a permutation test. For each of 1000 replicates, we 

randomly shuffled whether genes where positively selected or not. We then calculated 

enrichment across all disease/phenotype categories and summarized the proportion of 

enrichment p-values that were below the nominal significance threshold of 0.05. For this 

summary statistic, we found that the expected value under the null was 1.6%, more than 

four-fold below the observed value of 8%. Further, Figure 3-3B shows that our observed 

proportion is nearly double the most extreme value observed across 1000 null replicates.  

We can therefore conclude the positively selected genes are highly enriched for 

associations with diseases and traits (p << .001).  
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Figure 3-3. Enrichment of disease-trait associations among positively selected genes. A.) The observed 
distribution for p-values testing whether individual diseases or traits are enriched among positively 
selected genes. The red line shows the nominal significance cutoff of 0.05. The fraction of tests below this 
cutoff is 0.082. B.) To assess the null distribution for fraction of nominally significant tests, we conducted 
1000 permutations. This generated the blue distribution, which has a mean of .016.” For comparison, the 
observed value is plotted in green. 

We next sought to examine enrichment for particular phenotypes. To control our 

number of comparisons, we restricted our analysis to phenotypes with a large enough 

number of genes to provide 75% power at five-fold enrichment. This yielded significant 

associations with IgG glycosylation (FDR q-value=5e-5), multiple sclerosis (FDR q-

value=.041), and cognitive performance (FDR q-value=.041). The relative enrichments 

for these categories were 4.5x, 4x, and 4.7x, respectively.  

As an exploratory analysis, we then widened our test to the entire list of 

phenotypes, adjusting for multiple comparisons accordingly. In doing so, we found 

significant enrichment for association to interstitial lung disease (q-value=.045, 

enrichment=16x) and eating disorders(q-value=.040, enrichment=53x). These results are 

summarized in Table 2. As with the GO analysis, levels of enrichment were also dose-
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dependent for disease/phenotype associations (Figure SB-8). We do not observed this 

trend in permuted data (Figure SB-9). 

 

 

Enrich-
ment 

Q-val 
(all) 

Q-val 
(restricted) Tot. Genes 

IgG glycosylation 4.5 1.38E-03 7.5E-05 131 
Bulimia (purging) 52.5 0.040 N/A 5 

Interstitial lung disease  15.6 0.045 N/A 13 
Multiple sclerosis 4.0 0.33 0.041 59 

Cognitive performance 4.7 0.33 0.041 42 
 
Table 3-2. Diseases or traits for which Individually significant enrichment was discovered. 

 

Discussion 
!

In this study we have provided new insight into the genetic basis of several 

important phenotypic changes that have occurred since the divergence of human and 

chimp. This advance was facilitated by several improvements on previous efforts. First, 

we applied SnIPRE, a recently developed, state-of-the-art statistical model for estimating 

MK statistics (Eilertson et al., 2012). Second, we leverage high-quality multiple sequence 

alignments produced by MOSAIC, a software tool developed by our group which can 

integrate an arbitrary number of methodologically diverse ortholog detection methods 

(Maher & Hernandez, 2013). Third, we better filtered human polymorphism data based 

on population genetic theory as well as a thorough examination of the data-at-hand. The 

effect of this improvement is to remove an overly conservative bias from the estimates of 

rates of neutral evolution. Finally, we leveraged ancestral sequence reconstruction (ASR) 

to whittle down human-chimp divergence data to only those mutations that took place on 

the human lineage. Since almost all of the adaptation in, e.g. cranial volume since 

divergence from chimp is known to have occurred on the human lineage, we would 
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expect this modification to remove the signal-diluting effect of mutations from the chimp 

lineage.  

We find that positive selection has disproportionately affected genes related to 

brain development, alternative splicing, tissue organization, fat storage, and locomotion. 

Compared to previous results, these enriched categories cover a much broader swath of 

the known phenotypic changes since human’s divergence from chimp ~5-7 MYA.  

Furthermore, we uncover a 4.5 fold enrichment for associations to diseases and 

traits represented in the NHGRI GWAS catalog. Top associations are found to immune-

related function (IgG glycosylation), lung performance (interstitial lung disease), caloric 

regulation (bulimia), and brain function (cognitive performance, multiple sclerosis).  

We observe striking concordance between enrichment in biological function and 

enrichment for disease association. In particular, we see signal for categories related to 

brain function, mobility, and diet. Indeed, many of these phenotypic changes could have 

emerged together. For example, man is thought to have utilized newfound intellectual 

resources and more efficient locomotion to undertake daylong persistence hunts of large 

game. Persistence hunters such as the modern-day Kalahari bushmen secured brain-

fueling meat by walking, running, and tracking prey to the point of fatal exhaustion. This 

practice is one of the earliest forms of human hunting. 

Taken together, these results support the hypothesis that some of the genotypic 

changes that had positive effects on human survival may have also left us vulnerable to 

new or different types of disease. In this paper, we identify the genes where this signal of 

adaptation is strongest. Further, we are able to focus on genes related to biological 

processes, human diseases, and well-studied traits. In the process, we are able to identify 
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a set of possibly evolutionarily important genes with known links to phenotypes such as 

intelligence, obesity, and mental illness.  

Conclusions 
!

We have provided here what we believe to be the clearest view yet into the 

important evolutionary changes that have occurred in coding regions since our separation 

from our common ancestor with chimps ~5-7 million years ago.  
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CauseMap: Fast inference of causality from complex time series  

 

Introduction 
!
Establishing health-related causal relationships is a pivotal objective in biomedical 

research. Yet, the interdependent non-linearity of biological systems often impedes a 

thorough understanding of causal dynamics. Existing and forthcoming time series data 

will likely play an important role in taming this complexity. While one-time or repeated 

cross-sectional sampling may average out non-linear patterns by pooling data across 

subjects, long time series from a single source allow us to observe dynamic and context-

specific patterns of change.  

We are just beginning to understand the biomedical relevance of such a dynamical 

systems perspective. Consider for example the human microbiome. Dysbiosis in the gut 

has been implicated in, e.g. irritable bowel disease (IBD), obesity, diabetes, asthma, 

anxiety, and depression (Arrieta et al., 2014; Foster & McVey Neufeld, 2013).  

Meanwhile, recent studies on microbiome dynamics have found that the ecological 

makeup of the human microbiome is dynamic and individual-specific (Caporaso et al., 

2011; Fisher & Mehta, 2014; Gajer et al., 2012). These dynamics may also interact with 

pathogens in interesting and therapeutically important ways. For example, there is 

evidence that ecological time series dynamics within the body may play a role in the 

progression from HIV to AIDS (Vujkovic-Cvijin et al., 2013).  

Complex, dynamically evolving interdependent systems such as the microbiome 

pose a significant challenge to existing time series methods. Several metrics exist for 

detecting static non-linear relationships. These include: spearman correlation (Spearman, 

1904), distance correlation (Székely, Rizzo, & Bakirov, 2007), and mutual information 
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content (Reshef et al., 2011). Causal relationships, on the other hand, can be examined 

using methods such as time-lagged regression (Granger, 1969), instrumental variables 

(Bowden & Turkington, 1990), and dynamical Bayesian networks (Wu, Sinfield, 

Buchanan-Wollaston, & Feng, 2009).  

These causal methods are heavily model-based, however. As a result, they often falter 

when examining arbitrary non-linear or context-dependent relationships. Furthermore, the 

approaches mentioned above cannot adequately handle feedback loops, and they 

frequently generate both false positives and false negatives due to the influence of 

unmeasured confounders (Vanderweele & Arah, 2011). These are significant liabilities, 

particularly in biomedicine, where relationships are often embedded within a broad 

network of only partially observed interactions. 

In this paper, we present the first publicly available, open source implementation of 

convergent cross mapping (CCM), a model-free approach to detecting dependencies and 

inferring causality in complex non-linear systems (even in the presence of feedback loops 

and unmeasured confounding; Sugihara et al., 2012). CCM derives this power from 

explicitly capturing time-dependent dynamics through a technique known as state-space 

reconstruction (SSR). SSR has demonstrated utility for problems as diverse as wildlife 

management (Deyle et al., 2013; Dixon, Milicich, & Sugihara, 1999) and cerebral 

autoregulation (Heskamp et al., 2013). In practice, this analysis typically requires at least 

25 data points, measured with sufficient density to capture system dynamics.  

CCM builds on SSR, leveraging the fact that time series can be viewed as projections 

of higher-dimensional system dynamics (Sugihara et al., 2012). As a result of this 

property, the time series of individual variables must contain information about the full 
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causal system. Causal dynamics (conceptualized as the state space, or manifold) can then 

be reconstructed using individual time series. These reconstructions can be thought of as 

shadows of the true causal system. If the shadows reconstructed from distinct variables 

can be used to predict points from each other’s time series, we can infer that these 

variables provide views of the same causal system and so are causally related. Since these 

relationships are fundamentally asymmetric, this test can also establish the directionality 

of causation. 

Further details on CCM are available in the supplementary material of this paper, as 

well as in that of Sugihara et al. 2012.  Additional explanatory resources can also be 

accessed through the project website (http://cyrusmaher.github.io/CauseMap.jl). 

Implementation 
!
CauseMap implements CCM in Julia, a high-performance programming language 

designed for facile technical computing (Bezanson, Karpinski, Shah, & Edelman, 2012). 

Via intelligent JIT (just in time) compilation, Julia offers much of the speed of low-level, 

low-productivity languages like C, while also providing the ease of use and platform 

independence of much slower high-level languages like Python, R, or Matlab.  

Beyond the speed and comparative simplicity resulting from cutting-edge JIT 

compilation, CauseMap offers a number of conveniences and performance 

enhancements. For CCM, it is particularly important to optimize two tuning parameters: 

E and τp. E is related to the assumed dimensionality of the full causal system. This 

quantity is used to determine the dimensions of the reconstructed manifolds. τp, on the 

other hand, denotes the time delay of the causal effect of interest. By examining the 

optimal values of these two parameters, we may place bounds on the number of variables 
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involved in the full causal system. In addition, we gain insight into the timeframe of 

causal effects.  

CauseMap precomputes all necessary manifolds and pairwise distances using a state-

of-the-art, BLAS-based protocol (for benchmarks, see: 

https://github.com/JuliaStats/Distance.jl).  E and τp are then optimized by multiple 

iterations of cyclic coordinate descent (Bertsekas, 1999). Note that while convergence of 

the cross map signal as a function of the time series length (L) is taken as a practical 

criterion for causality, the dependence of this signal on E and τp is also useful for 

qualitatively estimating the credibility of the observed signal. CauseMap therefore also 

includes a plotting function to visualize the dependence of the predictive skill (ρccm) on L, 

as well as on the joint values of E and τp.  

 

Results and Discussion 
!
To demonstrate CauseMap’s functionality and performance, we examined the predator-

prey relationship between Paramecium aurelia and Didinium nasutum (George Sugihara 

et al., 2012). Observations were collected every 12 hours for 30 days, yielding a total of 

60 data points. Plotted in Figure 4-1 is the CauseMap visualization of the dependence of 

predictive skill (ρccm) on L, E, and τp. In Figure 4-1A, we observe convergence in ρccm 

with respect to L, the number of data points used for prediction of held-out observations. 

This convergence is a practical criterion for causality and the source of the name 

convergent cross mapping.  Figures 4-1B and 1C show the dependence of the max ρccm on 

E (proportional to the assumed dimensionality of the system), and the supposed time lag 

of the causal effect (τp). While the max ρccm is relatively insensitive to the assumed 
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dimensionality, the best-performing τp values correspond to either immediate causal 

effects, or those delayed by five days. Note that τp=5 corresponds to the principal 

frequency of the Paramecium aurelia and Didinium nasutum time series, as determined 

by fourier transform analysis (see supplemental materials for further details). 

 

  
Figure 3-4. An example visualization from CauseMap using abundances of Paramecium aurelia and 
Didinium nasutum (see supplemental materials for more information on this system). A.) For optimal 
parameter values, the convergence of the cross-map correlation with library size. B-C.) The dependence of 
the maximum cross-map correlation on assumed dimensionality (measured by E) and the time lag of the 
causal effect (measured by τp). Note that the second maximum at τp=5 corresponds to the principal 
frequency of the P. aurelia and D. nasutum time series, as determined by fourier transform analysis. 

 

(((Performance(
!
      Approximately 300 CCM evaluations were conducted to produce Figure 4-1. These 

calculations finished in less than 30 seconds on a single 2.6 GHz processor. Each of these 

evaluations involved the prediction of over 60,000 points, compiled across all sliding 

windows of libraries of varying lengths.  At an average of 1.7 microseconds per 

prediction, this is a highly efficient implementation given the computational challenges.  
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Intended(use(and(Benefits(
CauseMap is designed to examine causal relationships in time series with 25 or more 

observations. In order to illustrate the effects of shorter time series, we thinned the 

Paramedium-Didinium data set by one-half and by one-third, yielding series of 30 and 20 

observations, respectively. Figure 4-2 demonstrates the effect of this reduction on the 

convergence of predictive skill (ρccm). We see that the 1/2 thinned data set recapitulates 

the trends observed in the full series, including the relative magnitudes of ρccm between 

the mappings of Didinium to Paramecium and vice versa. The 1/3 thinned sample set, on 

the other hand, no longer demonstrates convergence. In addition, compared to the longer 

sets, it exhibits the opposite trend in relative predictive skill between the two mappings. 

Patterns in max ρccm versus E and τp are approximately conserved, however (fig. SC-1). 

 

Figure 3-5. The effect of time series length on ρccm convergence. Black, blue, and red lines illustrate 
ρccm for the full, 1/2 thinned, and 1/3 thinned datasets, respectively. For a given color, darker lines show 
ρccm for the test of whether Didinium abundance influences Paramecium abundance. Lighter lines examine 
the converse.  
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 This points to the advantage of examining how predictive skill depends on all 

relevant variables, as opposed to L alone. At shorter time series lengths, we are better 

able to qualitatively differentiate weak signal from random noise if we examine L, E, and 

τp together. This may streamline the process of hypothesis generation and validation, 

allowing for a more intelligent allocation of resources for exploring and verifying causal 

relationships.  

  

 Despite its requirement for relatively long time series (>25 observations), 

CauseMap has the advantage of requiring only a single time series for each variable. In 

dynamical systems with widely varying or context-specific behavior, this would allow 

researchers to draw conclusions that are tailored to, e.g. a given patient. Rather than 

acting on population averages, biomedical researchers would be free to fully personalize 

therapy to the unique biology and ecology of the patient. One example of this is in the 

treatment of microbiome dysbiosis. Imbalances in the microbiome have been implicated 

in, e.g. irritable bowel disease (IBD), obesity, diabetes, asthma, anxiety, and depression 

(Arrieta et al., 2014; Foster & McVey Neufeld, 2013).  While fecal transplantation 

therapy is effective in treating specific types of dysbiosis (Khoruts & Weingarden, 2014), 

next generation therapeutics may offer a blend of purified strains, tailored to the gut 

ecology of the patient. We believe CauseMap has the potential to be a valuable tool for 

designing such breakthrough therapies. 

Additional examples include understanding patient-to-patient variability in drug 

response using time series metabolomics, and examining the basis of e.g. influenza 

seasonality using global time series. We expect that such applications will continue to 
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proliferate as the costs of data collection decrease over the coming years. For this reason, 

we believe it is vitally important that the biomedical research community have access to 

an efficient implementation of CCM that is user-friendly and available for immediate 

field testing. 

Planned(future(development(
!
In future versions, we will include S-map calculations to evaluate the non-linearity of the 

causal system (G. Sugihara, 1994).  We will also add a bootstrap-based procedure for 

library selection, as opposed to the current approach using sliding windows. This has 

been shown to reduce the effect of secular trends on the cross map correlation (Hao Ye, 

George Sugihara, personal communication). In addition, we will re-implement the 

plotting functionality in Julia, removing the requirements of Python and matplotlib for 

visualization. Finally, we will design Python and R wrappers for CauseMap functions so 

that our codebase can be easily leveraged from those environments as well. User 

suggestions will also be considered as we decide how best to develop the tool. 

Conclusions 
!
CauseMap provides a fast, user-friendly implementation of CCM, a powerful new 

method for exploring dependencies and even establishing causality in complex, highly 

non-linear datasets with many unobserved variables. We believe that CCM holds a great 

deal of promise for a wide range of applications, including personalized microbiome 

therapy and metabolic dynamics analysis. As novel time series datasets continue to 

emerge, it is our hope that CauseMap will allow researchers to uncover interesting and 

biomedically actionable causal relationships using this next-generation time series 

method.  
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Availability and Requirements 
!
Project name: CauseMap 

Project home page: http://cyrusmaher.github.io/CauseMap.jl/ 

Operating system(s): Platform independent 

Programming language: Julia 

Other requirements: Python and matplotlib (for graphing) 

License: MIT 

Any restrictions to use by non-academics: No 
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Appendix A Supplemental Material to Chapter Two 
!
MOSAIC adds new sequences, maintains or increases average levels of sequence 

identity 

Figure SA-1 demonstrates that, for each species, MOSAIC retrieves a much larger 

number of sequences than any method alone, while maintaining levels of percent 

identity comparable to those of the best performing method. It should be noted here 

that in our current examples, MOSAIC is designed to optimize the metric of sequence 

identity to human. Indeed, for a given putative ortholog, MOSAIC is guaranteed to 

improve or maintain percent identity compared to its constituent methods. Counter-

intuitively, this provides no assurance that MOSAIC will provide gains in average 

levels of percent identity. For example, average levels of percent identity could 

decrease if MOSAIC ensures the inclusion of a greater number of species by pulling in 

poorly scoring sequences that were initially filtered out by the majority of component 

methods. However in Figure SA-1, we see that this is not the case. 

 
Supp. Figure A-1. Distributions of percent identity relative to the highest scoring ortholog, stratified 
by species. This plot demonstrates how each method’s performance compares to the best method. Each 
data point is a putative ortholog from a given species. Distributions are summarized by violinplots with 
boxplots overlaid. 
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We next evaluated percent identity to human for each ortholog proposed by each 

method relative to the highest scoring ortholog from all methods. Figure SA-2 

demonstrates that relative performance is species-specific. In particular, we note that 

the performance disparities across methods are much more pronounced for gorilla, 

bushbaby, and cat, both in terms of the number and quality of obtained orthologs.  

 
Supp. Figure A-2. The effect of method integration on sequence identity. A comparison of the overall 
distributions of percent identity to human for MOSAIC and its component methods. Smoothed distributions 
underlying the boxplots are shaded according to the number of human transcripts for which an ortholog 
was proposed. White denotes 5000 sequences or less. Darker shades signify increasingly larger numbers of 
detected orthologs. 

 

Examining each OD method in detail yields some hypotheses about the origin of 

these differences in performance. Errors in proteome prediction, both in terms of false-

positives and false-negatives, are likely to have large effects on both MultiParanoid 

and OMA. Meanwhile, spurious syntenic information is expected to compromise the 

integrity of ortholog predictions produced by MultiZ. Finally, the lack of an assembled 
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genome for bushbaby may negatively impact the quality of BLAT due to the 

segmentation of exon sets across multiple unordered scaffolds.  

 

 
Supp. Figure A-3. The cumulative proportion of transcripts for which an ortholog is identified. We 
show have all pairs of methods perform in retrieving orthologs for each species. 

 
Supp. Figure A-4. The rate of concordance between functional annotations for proposal orthologs 
and human transcripts.  
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Supp. Figure A-5. The cumulative proportion of human transcripts as a function of the maximum 
allowable Robinson-Foulds distance between the gene tree and the species tree. 

!
Figure SA-5 presents the cumulative proportion of alignments included as a 

function of the maximum allowable RF distance. Multiz is seen to perform the best of 

any individual method, likely due to its utilization of syntenic information. 

Surprisingly, the tree-based OD method, OMA, is seen to be the worst performing 

method according to this tree-based metric. Combining all methods using MOSAIC 

leads to a strong enrichment of highly concordant gene trees, while providing 

performance that is competitive with all component methods at more permissive RF 

distance cutoffs.  

 

Comparison to a related method 

We have shown that MOSAIC provides a large increase in the number of detected 

orthologs relative to its component methods, while simultaneously maintaining or 

improving functional-, phylogenetic-, and sequence identity-based measures of 

ortholog quality. Next, we sought to compare this method of OD integration to the 



! 84!

only alternative of which we are aware: metaPhOrs (Pryszcz et al., 2011). Using an 

approach based on tree overlap, metaPhOrs integrates ortholog predictions using 

phylogenetic trees from seven databases: PhylomeDB, Ensembl, TreeFam, EggNOG, 

OrthoMCL, COG, and Fungal Orthogroups.  

While MOSAIC is able to integrate an arbitrary number of OD methods of any 

time, metaPhOrs can only integrate tree-based methods. Since only pre-computed 

metaPhOrs data is available, we can also only examine the results of integrating the 

seven methods named above. This is then skewed comparison because MOSAIC only 

integrates four methods. Nevertheless, we compared MOSAIC and metaPhOrs based 

on the number of retrieved orthologs, average differences in sequence identity, and 

comparative levels of functional and phylogenetic concordance. We observe that 

MOSAIC provides large increases in the number of retrieved orthologs, while 

providing slight improvements in sequence identity for those cases where proposal 

orthologs are available from both methods (fig. SA-6). For the cases where MOSAIC 

predicted an ortholog but metaPhOrs did not, we examined the level of sequence 

identity in these sequences compared to the species-specific average returned by 

metaPhOrs. We find that these additional sequences display levels of sequence identity 

comparable to those provided by metaPhOrs. Finally, we observe that MOSAIC yields 

a slight increase in functional concordance, as well as a 40% increase in tree 

concordance, measured as the area under the curve below an RF distance of 0.5. A 0.5 

threshold was chosen because there is little differentiation between methods after this 

point. 
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Supp. Figure A-6. A comparison between MOSAIC and metaPhOrs. The relative performance between 
MOSAIC and metaPhOrs according to five metrics: 1.) the number of orthologs detected (purple); 2.) the 
percent identity to human for orthologs present in both (red); 3.) the percent identity to human for 
orthologs unique to MOSAIC compared to metaPhOrs species-specific average (yellow); 4.) rate of 
functional concordance between proposal orthologs and human transcripts (blue); and 5.) concordance 
between gene and species trees, as measured by a normalized, unweighted Robinson-Foulds distance 
(green). A.) The breakdown of relative performance by species. B.) Relative performance averaged across 
species. Scale is matched to panel A. Note that tree concordance is only included in panel B because it is 
calculated based upon full sequence alignments. 

 

 
Supp. Figure A-7. The distribution of gene-level conservation (measured by dN/dS) for each 
component method versus MOSAICmatched. 
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Supp. Figure A-8. A representation of the alignments returned by each method for TPSAB1. 

 
 
 

 
Supp. Figure A-9. The MOSAIC alignment of TPSAB1. The MOSAIC-specific positively selected site is 
illustrated with the red arrow, while the site detected by several methods, including MOSAIC, is indicated 
in gold.  
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>gi|146150402|gb|ABQ02500.1|:1-275 beta 1 tryptase [Gorilla gorilla] 
MLNLLLLALPVLASPAYAAPAPGQALQRAGIVGGQEAPRSKWPWQVSLRVRGQ
YWMHFCGGSLIHPQWVLTAAHCVGPDVKDLAALRVQLREQHLYYQDQLLPVS
RIIVHPQFYTAQIGADIALLELEEPVNVSSHVHTVTLPPASETFPPGMPCWVTGWG
DVDNDERLPPPFPLKQVKVPIMENHICDAKYHLGAYTGDNVRIVRDDMLCAGN
TRRDSCQGDSGGPLVCKVNGTWLQAGVVSWGEGCAQPNRPGIYTRVTYYLDWI
HHYVPKKP 
Supp. Figure A-10. The Gorilla gorilla sequence that is orthologous to TPSAB1. A Gorilla gorilla 
gorilla sequence was not present, presumably due to genome quality issues. For the Gorilla gorilla 
sequence, we highlight the residues of the positively selected sites indicated in Figure SA-9.  

 
 

Query 
species 

Best 
match % ID 

% 
Similarity 

Alignment 
length Mismatches E-value 

Chimp TPSAB1 94 95 262 15 0 
Orangutan TPSAB1 96 97 275 10 0 
Rhesus 
Mac. TPSAB1 92 95 263 21 2.0E-180 
Marmoset TPSAB1 85 90 262 39 3.0E-166 
Bushbaby TPSAB1 84 90 263 41 5.0E-167 
Cow TPSAB1 77 86 262 60 1.0E-148 
Horse TPSAB1 79 87 258 54 2.0E-153 
 
Supp. Table A-1. SwissProt database BLAST results for each of the putative orthologs of TPSAB1. 

 
 

 

  
Supp. Figure A-11. Manually derived alignments of TPSAB1, reproduced from Trivedi et al. 2007. As 
above, The MOSAIC-specific positively selected site is illustrated with the red arrow, while the site 
detected by several methods, including MOSAIC, is indicated in gold. 
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Appendix B Supplemental Material to Chapter Three 
!
SnIPRE)is)robust)to)demography)and)models)of)selection)

To!test!the!robustness!of!SnIPRE!to!demography!and!models!of!selection,!we!used!

SFS_CODE!(Hernandez,!2008)!with!the!command!line!arguments!presented!below.!

These!options!are!further!illustrated!in!Fig.!SBY1.!In!brief,!we!simulated!divergent!

and!polymorphic!mutations!using!6470!genes,!a!20!population!demographic!model,!

and!varying!probabilities!of!selection!ranging!from!0!to!100%!per!site.!PopulationY

scaled!selection!coefficients!for!beneficial!alleles!ranged!from!slightly!above!0!to!

approximately!30.!Deleterious!mutations!were!also!modeled.!SnIPRE!analysis!was!

then!performed!in!the!same!way!described!for!the!real!data.!!

We!show!in!Fig.!SBY2!that!SnIPRE!demonstrates!excellent!rank!correlation!

with!true!selection!coefficients!even!in!the!face!of!demography,!deleterious!

mutation,!and!heterogeneous!selection!across!the!gene.!It!should!be!noted!however!

that!the!scale!of!the!estimated!selection!coefficient!is!not!accurate.!SnIPRE!estimates!

can!then!tell!the!researcher!how!selection!compares!across!genes!and!whether!there!

is!positive!selection!within!a!particular!gene,!but!it!does!not!provide!an!accurate!

estimate!of!the!scale!of!gamma.!

!

)
./sfs_code 20 1 -TS 9.1206 0 1 -TS 9.2411 1 2 -TS 9.3616 2 3 -TS 9.4822 3 4 
-TS 9.219178 1 5 -TS 9.544658 5 10 -TS 9.544658 10 15 -TS 9.5563 5 6 -TS 
9.5679 6 7 -TS 9.5795 7 8 -TS 9.5911 8 9 -TS 9.5563 10 11 -TS 9.5679 11 12 
-TS 9.5795 12 13 -TS 9.5911 13 14 -TS 9.5563 15 16 -TS 9.5679 16 17 -TS 
9.5795 17 18 -TS 9.5911 18 19 -TE 0.60274 -Td 0 P 0 1.68493 -Td 9.219178 P 
5 0.170732 -Td 9.544658 P 5 0.47619 -Tg 9.544658 P 5 58.4 -Tg 9.544658 P 6 
58.4 -Tg 9.544658 P 7 58.4 -Tg 9.544658 P 8 58.4 -Tg 9.544658 P 9 58.4 -Tg 
9.544658 P 10 80.3 -Tg 9.544658 P 11 80.3 -Tg 9.544658 P 12 80.3 -Tg 
9.544658 P 13 80.3 -Tg 9.544658 P 14 80.3 -Tg 9.544658 P 15 80.3 -Tg 
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9.544658 P 16 80.3 -Tg 9.544658 P 17 80.3 -Tg 9.544658 P 18 80.3 -Tg 
9.544658 P 19 80.3 -m L 1 1 1 1 0.738 0.738 0.738 0.738 0.738 0.4674 0.4674 
0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 1 1 1 1 0.738 0.738 
0.738 0.738 0.738 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 
0.4674 0.4674 1 1 1 1 0.738 0.738 0.738 0.738 0.738 0.4674 0.4674 0.4674 
0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 1 1 1 1 0.738 0.738 0.738 
0.738 0.738 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 
0.4674 1 1 1 1 0.738 0.738 0.738 0.738 0.738 0.4674 0.4674 0.4674 0.4674 
0.4674 0.4674 0.4674 0.4674 0.4674 0.4674 0.06 0.06 0.06 0.06 0.06 1 1 1 1 
0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.06 0.06 0.06 
0.06 0.06 1 1 1 1 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 
0.192 0.06 0.06 0.06 0.06 0.06 1 1 1 1 0.192 0.192 0.192 0.192 0.192 0.192 
0.192 0.192 0.192 0.192 0.06 0.06 0.06 0.06 0.06 1 1 1 1 0.192 0.192 0.192 
0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.06 0.06 0.06 0.06 0.06 1 1 1 1 
0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.192 0.01938 0.01938 
0.01938 0.01938 0.01938 0.09792 0.09792 0.09792 0.09792 0.09792 1 1 1 1 
0.192 0.192 0.192 0.192 0.192 0.01938 0.01938 0.01938 0.01938 0.01938 
0.09792 0.09792 0.09792 0.09792 0.09792 1 1 1 1 0.192 0.192 0.192 0.192 
0.192 0.01938 0.01938 0.01938 0.01938 0.01938 0.09792 0.09792 0.09792 
0.09792 0.09792 1 1 1 1 0.192 0.192 0.192 0.192 0.192 0.01938 0.01938 
0.01938 0.01938 0.01938 0.09792 0.09792 0.09792 0.09792 0.09792 1 1 1 1 
0.192 0.192 0.192 0.192 0.192 0.01938 0.01938 0.01938 0.01938 0.01938 
0.09792 0.09792 0.09792 0.09792 0.09792 1 1 1 1 0.192 0.192 0.192 0.192 
0.192 0.01938 0.01938 0.01938 0.01938 0.01938 0.09792 0.09792 0.09792 
0.09792 0.09792 0.192 0.192 0.192 0.192 0.192 1 1 1 1 0.01938 0.01938 
0.01938 0.01938 0.01938 0.09792 0.09792 0.09792 0.09792 0.09792 0.192 0.192 
0.192 0.192 0.192 1 1 1 1 0.01938 0.01938 0.01938 0.01938 0.01938 0.09792 
0.09792 0.09792 0.09792 0.09792 0.192 0.192 0.192 0.192 0.192 1 1 1 1 
0.01938 0.01938 0.01938 0.01938 0.01938 0.09792 0.09792 0.09792 0.09792 
0.09792 0.192 0.192 0.192 0.192 0.192 1 1 1 1 0.01938 0.01938 0.01938 
0.01938 0.01938 0.09792 0.09792 0.09792 0.09792 0.09792 0.192 0.192 0.192 
0.192 0.192 1 1 1 1 --printGen -N 7300 -n 125 
)
!
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!
Supp. Figure B-1. A schematic of the SFS_code simulation scheme. 

AFR EUR SAS EAS
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

-TS 9.219178 1 5 -Td 9.219178 P 5 0.170732

-TE 9.60274

-Td 9 P 0 1.68493

-Td 9.544658 P 5 0.47619 !
-TS 9.544658 5 10 -TS 9.544658 10 15 !
-Tg 9.544658 P 5 58.4 -Tg 9.544658 P 10 80.3 !
-Tg 9.544658 P 15 80.3!

-TS 9.1206 0 1

-TS 9.2411 1 2

-TS 9.3616 2 3

-TS 9.4822 3 4

-TS 9.5563 15 16
-TS 9.5679 16 17
-TS 9.5795 17 18
-TS 9.5911 18 19

}Burn-in 10N generations

}Track human-specific substitutions
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!
Supp. Figure B-2. Correlation between observed and inferred levels of selection for data simulated 
with demography, deleterious mutations, and heterogeneous selection. 

!
!
Comparison to previous results 

In 2005, Bustamante et al. calculated McDonald-Kreitman scores across the human 

genome using the McDonald-Kreitman Poisson Random Field model. This is a highly 

parametric statistical model derived from population genetic approximations 

(Williamson, Fledel-Alon, & Bustamante, 2004). The input data for this model was 

human and chimp exome sequences collected using an exome pulldown and sequencing 
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approach with oligonucleotides designed for the human genome (Bustamante et al., 

2005b). Human polymorphisms were calculated without frequency filtering. This is 

expected to lead to overly conservative estimates of selection due to the inclusion of 

deleterious polymorphism held at low frequency by natural selection. In addition, pulling 

down chimp sequences using human-directed oligonucleotides might be expected to 

introduce a slight bias towards more conserved genes. This is less of a factor due to the 

high levels of sequence identity between human and chimp. 

 On the same data, SnIPRE predicts higher levels of conservation than MKPRF 

As you can see in Figure SB-1, MKPRF predicts nearly a third of the genome to 

be under positive selection, approximately a third to be neutrally evolving, and the 

remaining third to be conserved. Given that the model is bayesian in nature, this likely 

points to an exaggerated influence of a uniform prior on selection class. Calculating 

selection using SnIPRE applied to the same data yield a strikingly different picture 

however. In this case, fewer than .5% of genes in the human genome are estimated to be 

under positive selection. The pearson correlation between the two result sets is 0.54. 
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Supp. Figure B-3. A comparison of selection coefficents calculated using the same data using SnIPRE 
and MKPRF, respectively. Marginal distributions are plotted above and to th right. Neutrality 
(gamma=0) is indicated with a grey line.  

 
Updated input data addresses overly conservative neutrality estimate 

The lack of positive selection seen using previously published data may stem 

mainly from an overly conservative null distribution. A classic test for selection is to 

compare non-synonymous and synonymous mutation rates (dN and dS, respectively). 

The assumption is that mutations that do not affect protein coding sequence will be 

evolutionarily neutral. Positive selection can then be declared is the non-synonymous 

mutation rate significantly outstrips that of synonymous mutations.  

In the case of the McDonald-Kreitman test, the dN/dS ratio in polymorphism data 

is taken as the measure of neutral evolution within a particular gene, and the dN/dS ratio 
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in divergence data is taken as the foreground for statistical comparison. This approach 

has the strength of making no assumptions about the neutrality of synonymous 

mutations—a common assumption that is known to be violated by the presence of 

transcription factor binding sites, RNA secondary structure, etc. This approach makes its 

own assumption however.  

Specifically, it assumes that polymorphic mutations are evolutionary neutral, a 

presumption that falls apart for low frequency variants. The reason for this is two-fold. 

First, low frequency variants tend to be new, so evolution has not had the opportunity to 

purge deleterious variants. Second, older deleterious variants may have been driven to, or 

maintained at low frequency due to evolutionary selection. 

In the data published by Bustamante et al., all observed polymorphisms are 

included, regardless of frequency. We would expect this to inflate the dN/dS ratio in 

polymorphism relative to filtered data. In Figure SB-2 we see that this is indeed the case 

(p=9.3e-3).  In addition to this observation, we also see that there is not a remarkably 

strong rank correlation between dN/dS ratios in the two sets of divergence data. Note that 

for a more equitable comparison, we did not perform ancestral sequence reconstruction in 

this case, but instead directly counted differences between modern-day sequences. 
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Supp. Figure B-4. A comparison of dN/dS values between previously published (green) and newly 
calculated (blue) values. Distributions are separated according to fixed (dark) and polymorphic (light) 
mutations. For each comparison between methods, we show the rank correlation, the relative difference 
between means (RD), and the p-value of this comparison. 

 

Influence of allele frequency cutoff on estimated selection coefficient 

Consistent with theory and previous results (Messer & Petrov, 2013), we have 

shown that an allele frequency cutoff is important for removing excess deleterious, 

predominantly non-synonymous mutations from polymorphism data. We next sought to 

assess the sensitivity of downstream results to choice of cutoff. 

 In Figure SB-3 we show the influence of allele frequency cutoff on the overall 

distribution of gamma values. We see that at a 5% allele frequency, almost no genes are 

found to be positively selected. As this cutoff is raised, the both the mean and the 

variance of the gamma distribution increase. This is because we are removing a 

conservative bias in the null distribution, but we are also filtering out non-deleterious 
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alleles and thus increasing the variability of our estimator. We believe that a cutoff of 

15% strikes a good balance between bias and variance. However, since the genes that are 

considered positively selected are still sensitive to this cutoff, we calculate GO 

enrichment using a cutoff-free rank-based approach. 

 

Supp. Figure B-5. The distribution of SnIPRE-derived selection coefficients as a function of the allele 
frequency cutoff used as a criterion for including polymorphic mutations. 

 

Despite the changes to mean and variance in the distributions in (Figure SB-3), we find 

that, above an allele frequency cutoff of 5%, correlations between estimates range from 

0.92 to 0.99 (Figure SB-4). This further convinces us that our results are unlikely to be 

unduly effected by this choice of cutoffs. A joint distribution plot of one of these pairwise 

comparisons is shown in Figure SB-5. 
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Supp. Figure B-6. A heatmap of rank correlations between selection coefficients calculated using 
varying allele frequency cutoffs. 

 

 
Supp. Figure B-7. A plot of the joint distributions of SnIPRE-inferred gamma values using allele 
frequency cutoffs of 15% and 25%.  
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Additional GO enrichment plots 

Since GO terms are organized in a hierarchical fashion, it is sometimes a challenge to 

understand at a glance how biologically distinct various GO categories may be. To assess 

the diversity of our hits at a glance, we used ReviGO (Supek, Bošnjak, Škunca, & Šmuc, 

2011) to plot enriched GO terms by two axes of semantic similarity. These semantic 

similarity scores were derived using multi-dimensional scaling (MDS), a dimensionality 

reduction method conceptually similar to principal components analysis (PCA) (Figure 

SB-6). For convenience, we also summarized these terms using hierarchical clustering 

(Figure SB-7).  
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Supp. Figure B-8. Enriched GO processes visualized using MDS-derived semantic similarity 
distances. 
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Supp. Figure B-9. Enriched GO categories clustered hierarchically.  

 

Supp. Figure B-10. Distributions of postive selection scores within various groups of genes. A.) 
Positive selection distributions as a function of the number of enriched GO terms associated with each 
gene. B.) Positive selection as a function of the number of enriched disease/trait associations linked to 
particular genes. C.) Pool results pooling the categories from A and B. D.) Distribution of positive 
selection scores within the most enriched GO categories and disease/phenotype groups. 

A! B!

D!C!
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Supp. Figure B-11. For permuted selection scores, the distribution of positive selection scores as a 
function of the number of categories associated with a given gene. 
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Appendix C Supplemental Materials to Chapter Four 
!

Convergent cross mapping algorithm 

Consider time series of hypothetical variables X and Y.  Convergent cross-mapping 

(CCM) employs state space reconstruction (SSR), thereby using time-lagged coordinates 

of each of these variables to produce shadow versions of their respective source 

manifolds. We will refer to these projection manifolds as Mx and My. To test whether X 

causes Y, CCM applies the following logic: Because manifold reconstruction preserves 

the Lyapunov exponents of the original system (Casdagli, Eubank, Farmer, & Gibson, 

1991), if X causes Y, then time points that are close in My should also be close in Mx. 

Since Mx is constructed from lags of the observations of X, the points that are close in Mx 

will also have similar values in the corresponding time series. Therefore, if X causes Y, 

then My can tell us which observations of X should best predict a given point from X. 

Furthermore, predictability should increase with the number of manifold points that are 

considered.  

To test whether X causes Y, My is used to infer the points in X that will best predict a 

given held-out point from X. We measure this performance using predictive skill, 

quantified by ρccm. Intuitively, this procedure works as follows: A point is held out from 

X. We then use My to infer the points in Mx that will be closest to that point of interest. 

Using exponential weights derived from the relative pairwise distances of corresponding 

points in My, we predict the held-out point using other observations from X. Finally, ρccm 

is calculated as the Pearson correlation between observed and predicted points, and so is  

a cross-validated measure. To examine whether the signal converges as expected for a 

causal relationship, these steps are repeated using increasing time series length (L). 
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Paramecium-Didinium system 

Didinium is a free-living unicellular carnivore. Paramecium is its prey. More 

information about this system, as well as interactive graphs of time series and manifold 

constructions, can be found at: 

http://cyrusmaher.github.io/CauseMap.jl/ParaDidiExample.html#paramecium-and-

didinium 

  
Supp. Figure C-1.  The maximal predictive skill as a function of E, tau p, and the number of included 
points. 

 

Fourier transform analysis 

We calculated the characteristic frequencies of the paramecium and didinium time series 

by performing fourier transform analysis using the rfft function in the python module 

scipy. 

 

OneYthird!thinned! OneYhalf!thinned! Full!dataset!
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