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Abstract

It has been known for over a century that the basic organization of the retina
is conserved across vertebrates. It has been equally clear that retinal cells
can be classified into numerous types, but only recently have methods been
devised to explore this diversity in unbiased, scalable, and comprehensive
ways. Advances in high-throughput single-cell RNA sequencing (scRNA-
seq) have played a pivotal role in this effort. In this article, we outline the ex-
perimental and computational components of scRNA-seq and review studies
that have used them to generate retinal atlases of cell types in several ver-
tebrate species. These atlases have enabled studies of retinal development,
responses of retinal cells to injury, expression patterns of genes implicated
in retinal disease, and the evolution of cell types. Recently, the inquiry has
expanded to include the entire eye and visual centers in the brain. These
studies have enhanced our understanding of retinal function and dysfunction
and provided tools and insights for exploring neural diversity throughout the
brain.
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INTRODUCTION

Classification and characterization of neural cell types are crucial for understanding the structure,
development, function, and dysfunction of neural circuits. Neurons have long been categorized
into discrete groups (classes and types, as defined below) based on shared morphological, connec-
tional, functional, andmolecular properties, but efforts at categorization have been labor intensive,
incomplete, and often biased. It has also been unclear whether classifications based on different
criteria agree with each other.Over the past decade, however, the introduction of high-throughput
methods for profiling morphology, physiology, and gene expression has raised the enticing possi-
bility of generating a comprehensive and unified taxonomy of neural cell types (Yuste et al. 2020).
Among these, we focus on methods for sequencing the transcriptome of thousands of individ-
ual single cells or nuclei in a single assay. These methods have been particularly useful, as they
offer the highest throughput at the lowest cost, provide an arguably more quantitative and unbi-
ased framework than other methods, and enable genetic access to specific cell types. Furthermore,
computational approaches drawn from statistics andmachine learning can be applied to large-scale
data sets generated by single-cell (sc-) and single-nucleus (sn-) RNA sequencing (RNA-seq) to de-
fine neuronal types and their interrelationships; identify cell type–specific markers; and compare
tissue regions, developmental stages, and species.

The retina was the first tissue to which high-throughput scRNA-seq was applied (Macosko
et al. 2015). Ensuing efforts over the past five years have generated a cell atlas of cell types for
the mouse retina and shown striking correspondence between cell types defined molecularly and
types defined by structural and functional criteria that are arguably of greater interest to most
neurobiologists. These studies have served as a foundation for analyzing the development of the
mouse retina and its responses to injury; for generating retinal cell atlases from other species,
including humans; for assessing genetic underpinnings of blinding diseases; and for extending
the analysis to other parts of the visual system both within the eye and deeper in the brain
(Figure 1a,b). Our purposes in this review are to summarize these studies and to provide the
experimental and computational background needed to appreciate them.

THE VERTEBRATE RETINA

The fundamental structure of the retina is remarkably conserved among vertebrates (Baden et al.
2020). Cells of six classes are arranged in three cellular layers, called nuclear layers (Figure 1c).
The outer layer [the outer nuclear layer (ONL)] contains rod and cone photoreceptors (PRs),
which sense light. The middle layer [the inner nuclear layer (INL)] contains three classes of
interneurons—horizontal cells (HCs), bipolar cells (BCs), and amacrine cells (ACs)—as well as
the major retinal glial class, Müller glia (MG). The inner layer (the ganglion cell layer) contains
retinal ganglion cells (RGCs), some ACs, and in some species additional glia—astrocytes and/or
oligodendrocytes. The six conserved classes (PRs, HCs, BCs, ACs, RGCs, and MG) all arise from
a single set of retinal progenitors, whereas other glial types (astrocytes, oligodendrocytes, and
microglia) migrate into the retina from extraocular sites of origin (Cepko 2014).

The three nuclear layers are separated from each other by synaptic (plexiform) layers. PRs,
HCs, and BCs form synapses in the outer plexiform layer (OPL), which separates the ONL from
the INL. The interneurons process the information that they receive from PRs and deliver it
to RGCs in the inner plexiform layer (IPL), within which BCs, ACs, and RGCs form synapses.
Axons of RGCs then send visual information to the rest of the brain through the optic nerve
(Figure 1a–c).

The cardinal principle of retinal function is that whereas PRs are light detectors (albeit very so-
phisticated ones), RGCs are feature detectors that are selectively responsive to specific patterned
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stimuli such as oriented objects, movement in particular directions, or color contrasts (Masland
2012). This transformation of raw visual input into processed features results from information
processing in the INL and selective connectivity between interneurons and RGCs. Specificity
arises from the fact that there are many interneuronal types, each of which performs distinct
computations and delivers its signals to distinct subsets of RGC types via synapses in the IPL.
The specificity of these connections, along with some intrinsic differences among RGCs, results
in each type responding preferentially to small subsets of visual features. Thus, the optic nerve
actually carries a set of parallel representations of the visual field to the rest of the brain for fur-
ther processing (Gollisch & Meister 2010, Sanes & Masland 2015). Although it has been known
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Figure 1 (Figure appears on preceding page)

The vertebrate visual system. (a) The components of the visual system. Visual information from the eye is conveyed via the optic nerve
to two primary relay regions located in the thalamus, the dorsal lateral geniculate nucleus and the superior colliculus. Dorsal lateral
geniculate nucleus neurons project axons to layer 4 of the primary visual cortex. (b) The anatomy of the eye, with major tissues
highlighted. Light enters via the cornea, the transparent front part of the eye, and is focused by the lens onto the retina, the light-
sensitive neural tissue that lines the back of the eye. A central retinal region, the fovea, subserves most high-acuity vision; among
mammals, it is present only in primates. The iris controls the amount of light entering the eye, while the ciliary body controls the shape
of the lens. Output axons from the retina convey visual information to the rest of the brain via the optic nerve. The aqueous humor is a
transparent gelatinous fluid that fills the anterior and posterior chambers of the eye surrounding the lens. The vitreous humor fills the
space between the lens and the retina. The ciliary body controls the production of both the aqueous and vitreous humors. (c) Cross-
section of the vertebrate retina showing its major cell classes: photoreceptors (i.e., rods and cones), horizontal cells, bipolar cells,
amacrine cells, retinal ganglion cells, and Müller glia. The outer segments of the photoreceptors are embedded in retinal pigment
epithelium cells that provide a variety of support functions. Photoreceptors, bipolar cells, and horizontal cells form synapses in the
OPL, while bipolar cells, amacrine cells, and retinal ganglion cells form synapses in the IPL. The processes of each bipolar cell,
amacrine cell, or retinal ganglion cell are confined to one or a few among five sublaminae within the IPL (S1–S5). Axons of retinal
ganglion cells extend through the optic nerve to the midbrain. (d) Diverse morphologies of retinal neuronal types drawn by Santiago
Ramón y Cajal (1892). Abbreviations: dLGN, dorsal lateral geniculate nucleus; GCL, ganglion cell layer; INL, inner nuclear layer; IPL,
inner plexiform layer; ONL, outer nuclear layer; OPL, outer plexiform layer.

since the pioneering studies of Ramón y Cajal (1892) that retinal cell classes are divided into mul-
tiple, discrete types (Figure 1d), systematic inventories of these types have only recently been
assembled—thanks in large part to the advent of scRNA-seq.

Before proceeding, we note the distinctions among cell classes, subclasses, and types (Zeng &
Sanes 2017) that we use throughout. Groups of cells that broadly share functional, structural, and
molecular properties are called classes. As noted above, for the retina, the classes are PRs, HCs,
BCs, ACs, RGCs, and MG.No one could mistake one class for another. At the other extreme, the
smallest discrete groups that can be clearly distinguished from each other within a class are called
types. The concept of types is not inconsistent with the fact that no two neurons are completely
identical; division of cells into types necessarily ignores continuous variation, for example, in size
or position, and emphasizes discontinuities that enable qualitative distinctions. Between types and
classes are subclasses, which are useful in grouping types into families with shared features (see,
for example, Figure 2f ).

SINGLE-CELL AND SINGLE-NUCLEUS RNA SEQUENCING:
EXPERIMENTAL METHODS

History

The transcriptome of a cell, defined as the complete set of messenger RNA (mRNA) species and
their individual quantities, encodes major swaths of the cell’s molecular identity. Single-cell tran-
scriptomic analysis is therefore a powerful approach to link phenotypes to genotypes and to com-
pare phenotypes and genotypes across regions, developmental stages, or physiological conditions.
Strategies for single-cell transcriptomic profiling were pioneered by two groups in the early 1990s
who converted mRNA in individual cells to a complementary DNA (cDNA) library, amplified the
resulting libraries, and used them to measure expression levels of candidate genes via probe-based
hybridization (Brady et al. 1990, Eberwine et al. 1992). More comprehensive analysis of single-
cell libraries became possible once high-density cDNA microarrays were available (Tietjen et al.
2003). In parallel, methods were developed for RNA-seq, which relies on the direct sequencing
of cDNA fragments followed by bioinformatic alignment and quantification (Wang et al. 2009).
RNA-seq, which exploited methodological advances and cost reductions enabled by the Human
Genome Project, was quickly adopted to produce high-quality genome-scale transcription maps
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from populations of cells from many tissues. These two streams converged when RNA-seq ad-
vanced to single-cell resolution (Tang et al. 2009).

scRNA-seq was initially applied to groups of up to a few hundred cells. These methods were,
and continue to be, valuable for detailed characterization of neural cells. They are, however, woe-
fully inadequate for classifying cells in the nervous system, where it seemed likely a priori (and has
now been demonstrated) that most regions contain 100 or more cell types. Starting in 2014, how-
ever, methods were devised that have made it possible to perform scRNA-seq at high throughput
(Mereu et al. 2020). These strategies include robotic fluid handling ( Jaitin et al. 2014); droplet-
based microfluidics (Klein et al. 2015, Macosko et al. 2015, Zheng et al. 2017); dispersing cells to
individual nanoliter-sized microwells (Gierahn et al. 2017); and split-pool methods in which cells
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Figure 2 (Figure appears on preceding page)

Overview of high-throughput scRNA-seq. (a) Key steps in scRNA-seq and snRNA-seq profiling. The dissected retinal tissue is
dissociated to yield a suspension of single cells or nuclei that can be enriched for specific subpopulations using FACS. The resulting
suspension is then flowed through a microfluidic device where individual cells or nuclei are isolated and lysed in nanoliter-sized
aqueous droplets, and their mRNA is captured on barcoded oligonucleotides. Reverse transcription and amplification steps result in
generation of a cDNA library that is sequenced. The resulting data sets are analyzed using statistical and machine learning techniques
to gain insight into cell type heterogeneity at the transcriptomic level. (b–h) Methods for visualizing scRNA-seq and snRNA-seq results.
(b) Two-dimensional visualization of the molecular diversity of cells using tSNE (van der Maaten & Hinton 2008). Each dot
corresponds to a cell, with transcriptionally similar cells being assigned proximal coordinates. Cells are colored based on their
transcriptomically defined cluster identity. (c) The same as panel b but with cells colored by their expression level of a single DE gene
selectively expressed by some cell types. This representation is known as a feature plot. (d) A dot plot showing expression patterns of
genes across a set of transcriptomically defined cell clusters. The size of each dot represents the percentage of cells in the cluster
expressing the gene, and the color saturation represents the normalized expression strength. (e) A violin plot showing expression levels
(y axis) of a single gene across clusters (x axis). Each violin is a representation of the probability distribution of the expression levels
within each cluster. Box and whisker plots within each violin show the median value (black horizontal line), interquartile range (bars),
range (vertical lines), and outliers (dots). ( f ) A dendrogram calculated using hierarchical clustering shows transcriptional
interrelationships between mouse retinal bipolar clusters (Shekhar et al. 2016). Major cell subclasses, corresponding to rod BCs, OFF
cone BCs, and ON cone BCs, separate into clades (colors). (g) Heat map showing expression patterns of specific marker genes in single
cells grouped by their cell clusters. (h) Confusion matrix showing transcriptional correspondence between two groups of cell types.
Circles and colors indicate the proportion of cells of a given row cluster assigned to a corresponding column cluster by a classification
algorithm trained on column clusters. Abbreviations: BC, bipolar cell; cDNA, complementary DNA; DE, differential expression;
FACS, fluorescence-activated cell sorting; GFP, green fluorescent protein; mRNA, messenger RNA; scRNA-seq, single-cell RNA
sequencing; snRNA-seq, single-nucleus RNA sequencing; tSNE, t-distributed stochastic neighbor embedding.

are iteratively combined, split, and recombined through multiple rounds of successive barcoding
(Cao et al. 2017, Rosenberg et al. 2018).

Droplet-Based Single-Cell RNA Sequencing

Three droplet-based methods were developed nearly simultaneously: Drop-seq (Macosko et al.
2015), InDrop (Klein et al. 2015), and 10X/GemCode (Zheng et al. 2017). Thanks to their high
throughput, low cost, and ease of implementation, they have become the method of choice for
the majority of studies, including nearly all of the ones that we discuss in this review. Of these,
the 10X platform was commercialized earliest and has been by far the most widely used (https://
www.10xgenomics.com).

In droplet-based methods, cells are dissociated from tissues or cultures; in some cases, subsets
of interest are labeled by transgenic or immunochemical methods and enriched by fluorescence-
activated cell sorting (FACS) (Figure 2a). The cells are then passed through a microfluidic device
that generates an emulsion of nanoliter-sized aqueous droplets suspended in oil. In the droplets,
single cells are paired with single microbeads (Macosko et al. 2015) or hydrogels (Klein et al. 2015,
Zheng et al. 2017). The beads and hydrogels bear hundreds of thousands of oligonucleotides (oli-
gos), each containing a poly-T sequence complementary to the poly-A that terminates most eu-
karyotic mRNAs.The cell is lysed within the droplet, releasing its mRNA,which hybridizes to the
capture oligos; following this, themRNA is reverse transcribed into cDNA.The product is a single
pooled library that is then amplified and sequenced. Thus, low- and high-throughput scRNA-seq
methods are similar in principle; the transformative advance in the latter is that thousands of tran-
scriptomes are captured in a single pooled reaction, compared to hundreds of individual reactions
being captured in the former. This critical difference led to a huge reduction in cost and an expo-
nential scaling of cellular throughput in just a few years (Svensson et al. 2018).

The obvious problem that high-throughput methods needed to solve was assigning sequence
reads, derived from transcripts, to their cells of origin. The key was to incorporate molecular bar-
coding. mRNA-capturing oligos in the microbeads or hydrogels generally contain sequences that
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enable the mRNA molecules to be indelibly marked following capture and reverse transcription.
One set of nucleotides, called a cell barcode, is unique to a microbead or hydrogel but common
to all oligos attached to it. The cell barcode allows sequencing reads to be grouped by their cell of
origin. The oligos often also contain a second sequence, known as a unique molecular identifier
(UMI). The UMI is a random sequence unique to each oligo. Its purpose is to correct for biases
that can arise when minuscule amounts of cDNA are amplified by polymerase chain reaction
(PCR); each UMI is counted only once when transcripts are quantified. Further molecular
barcoding strategies have more recently been used to multiplex samples and measure additional
readouts (e.g., surface protein expression or spatial location) (Rodriques et al. 2019; Stoeckius
et al. 2017, 2018).

Beyond Single-Cell RNA Sequencing

Despite its numerous strengths, scRNA-seq cannot be applied to some samples, for example, tis-
sues that are difficult to dissociate (e.g., heavily myelinated adult brain) or that could not be pro-
cessed within a few hours of death. In response to these limitations, methods were developed to
isolate nuclei from frozen tissue and sequence intranuclear RNA (Habib et al. 2016, Lake et al.
2016). This variant, called snRNA-seq, has been increasingly used, particularly for postmortem
human samples that could be frozen quickly for processing later (Slyper et al. 2020). Nuclei con-
tain less mRNA than cytoplasm but enough to enable robust transcriptomic analysis. Although
snRNA-seq is biased toward recently transcribed genes and unspliced transcripts, studies have
demonstrated strong correlation between the data obtained from scRNA-seq and snRNA-seq
performed on equivalent samples (Lake et al. 2017).

The innovations that underlie high-throughput transcriptomic profiling have now been
adapted to assess other aspects of cellular phenotype, including chromatin accessibility (Lareau
et al. 2021), chromatin conformation (Ramani et al. 2017), and axonal projection (Kebschull
et al. 2016). Further progress has enabled multimodal measurements, wherein transcriptomes
are measured simultaneously with surface protein expression (Stoeckius et al. 2017), lineage (Raj
et al. 2018), neuronal activity (Fuzik et al. 2016), spatial location (Eng et al. 2019,Moffitt et al. 2018,
Rodriques et al. 2019, Vickovic et al. 2019, Wang et al. 2018), interregional connectivity (Huang
et al. 2020), or effects of genetic or pharmacological perturbations (Dixit et al. 2016, Jaitin et al.
2016, Srivatsan et al. 2020). Thus, the transcriptomic approaches to the retina that we review are
poised to advance to a multi-omics level.

SINGLE-CELL AND SINGLE-NUCLEUS RNA SEQUENCING:
COMPUTATIONAL METHODS

Analyzing Single-Cell and Single-Nucleus RNA Sequencing Data

scRNA-seq and snRNA-seq measurements generate extraordinarily large data sets that re-
quire several processing and analysis steps before they are useful to neurobiologists. The
initial set of sequencing reads requires preprocessing, with the aim of extracting a gene ex-
pression matrix (GEM). The rows and columns of the GEM are genes and individual cells,
respectively, with entries corresponding to gene abundance per cell. Preprocessing steps vary
depending on the library preparation protocol, but a typical sequence is as follows: First, raw
read data are processed to filter out low-quality reads and trim adapter sequences, barcodes,
and poly-A stretches. Second, the trimmed reads are aligned to the genome in a manner that
accounts for splicing (Baruzzo et al. 2017). Freely available alignment software such as FastQC
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) andRNA-SeQC (DeLuca et al.
2012) provide pre- and postalignment quality control metrics, such as base quality statistics,
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uniquely mapped reads, fraction of reads mapping to annotated exons, introns and intergenic re-
gions, 3′ bias, and sense versus antisense reads. These measures generate metrics of library quality
that are useful in assessing how results should be—or if they should be—analyzed further. Third,
the reads are grouped by their cell of origin using cell barcodes, and PCR biases are removed
using UMIs, resulting in a filtered GEM for the data set. Several software packages are available
to perform these analyses, such as Cellranger (https://support.10xgenomics.com/single-cell-
gene-expression/software/pipelines/latest/what-is-cell-ranger); Drop-seq tools (https://
github.com/broadinstitute/Drop-seq/releases); bustools (https://bustools.github.io/about);
Alevin (https://salmon.readthedocs.io/en/latest/alevin.html); and more recently, a cloud-
based platform named Cumulus (https://cumulus.readthedocs.io/en/stable/).

Once preprocessing is complete, the GEMs are further analyzed through a series of steps
to characterize transcriptomic variation across cells. Of the multiple software packages that en-
able such analyses, the most widely used include Seurat (Satija et al. 2015) and SCANPY (Wolf
et al. 2018), in the programming languages R and Python, respectively. Because noise arising from
experimental and biological sources can mask biological variations of interest (Hie et al. 2020,
Luecken & Theis 2019, Stegle et al. 2015), the GEMs are usually subjected to an initial round
of filtering to remove low-quality cells and genes, cell doublets, and signals arising from ambient
RNA, as well as imputing missing expression values in the GEM, data normalization and scal-
ing, and the identification of highly variable genes for further analysis. An additional challenge at
this early stage is to combine scRNA-seq data collected across multiple experiments, sequencing
platforms, and physiological conditions, a process known as integration (Lopez et al. 2018, Stuart
et al. 2019, Welch et al. 2019). Approaches for data integration have been reviewed by Stuart &
Satija (2019).

Next, preprocessed and integratedGEMs are subjected to two additional procedures to identify
molecularly distinct cell types in the data—dimensionality reduction and clustering.Dimensional-
ity reduction aims to learn a compact set of composite features from the data, each of which pools
information from multiple genes in the GEM that exhibit correlated expression. These meth-
ods, including principal component analysis (PCA) and non-negative matrix factorization, create
a new representation of the data set in which the number of independent features describing each
cell reduces from thousands of genes to <100 gene modules (Stein-O’Brien et al. 2019). This re-
duced representation can be used to quantify similarity among cells, which in turn allows grouping
(clustering) of transcriptomically similar cells (Kiselev et al. 2019).

Once clusters have been defined, they can be compared in multiple ways. The most common
is to identify genes that exhibit robust differences between two or more clusters of interest, a task
known as differential expression (DE) analysis. DE analysis in scRNA-seq presents unique statis-
tical challenges compared to similar analysis for bulk RNA-seq data, necessitating the use of novel
methods (Finak et al. 2015, Soneson and Robinson 2018). The development of new methodolo-
gies for scRNA-seq analysis continues to be an active area of research (Hie et al. 2020, Lähnemann
et al. 2020, Luecken & Theis 2019).

Visualization of Single-Cell and Single-Nucleus RNA Sequencing Data

To be useful, scRNA-seq and snRNA-seq data must be presented in ways that make the results
and conclusions intuitively obvious. This requires reducing dimensionality while preserving key
features of the complexity of the data. Several approaches have been developed for this purpose.

Visualizing transcriptomically related cells.Methods like PCA or non-negative matrix fac-
torization reduce the dimensionality of the data from thousands to tens of features but are
intractable to visualize in toto. Three nonlinear visualization algorithms provide an intuitively
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comprehensible view of transcriptomic relationships of cells in which reduced data are projected
into a scatter plot wherein each point corresponds to a cell, and the distances between cells re-
flects transcriptional dissimilarity (Figure 2b). These methods—t-distributed stochastic neighbor
embedding (tSNE) (van der Maaten &Hinton 2008), uniform manifold approximation (McInnes
et al. 2018), and force-directed layouts (Fruchterman & Reingold 1991)—are highly effective
and frequently used. The nonlinear nature of approaches such as tSNE, however, can introduce
distortions that must be controlled through appropriate choice of parameters (Kobak & Berens
2019,Wattenberg et al. 2016).

Visualizing gene expression.Once cells have been grouped into clusters (putative cell types),
it is common to assess the expression of genes of interest—either those nominated a priori or
those that exhibit DE among clusters. Expression patterns of single or small numbers of genes
can be displayed by overlaying them on clusters (Figure 2c) or as violin plots (Figure 2e), while
patterns of multiple genes are more often visualized using expression dot plots (Figure 2d) or heat
maps (Figure 2g). Dot plots and heat maps are also used to visualize gene expression differences
between data sets (e.g., healthy versus injured).

Mapping relationships among cell types.Cellular heterogeneity in the nervous system is often
hierarchical in nature. For example, retinal cells can be divided into glia and neurons; neurons
into PR, HC, BC, AC, and RGC classes; BCs into ON versus OFF subclasses; and (in the mouse)
ON BCs into five types. Hierarchical clustering performed on the average transcriptomic profiles
of clusters is an effective approach to visualize transcriptomic interrelationships at different levels
of resolution all at once. The output of hierarchical clustering is a dendrogram (Figure 2f ), a
branching structure, whose terminal leaves represent cell types that are hierarchically merged
into clades based on their transcriptomic similarity. The dendrogram also simplifies the task of
determining whether relationships defined molecularly correspond to those that had been derived
from morphological or physiological measurements.

Comparing data sets. As increasing numbers of scRNA-seq and snRNA-seq studies are con-
ducted that span multiple tissue regions, species, technologies, and physiological conditions, it is
becoming possible to assess conservation of results across data sets. This comparison is frequently
performed using multiclass supervised classification approaches such as Random Forest and
XGBoost (Breiman 2001, Chen & Guestrin 2016). The results of these comparisons are typi-
cally visualized using a type of dot plot with the ironic name confusion matrix, which illustrates
the extent of transcriptomic correspondence between two sets of clusters (Figure 2h).

MOUSE RETINAL CELL ATLAS

Initial attempts to classify retinal cells were purely morphological (Polyak 1957, Ramón y Cajal
1892). Around the middle of the twentieth century, they were augmented by physiological stud-
ies using species favorable for recording—e.g., frogs, rabbits, and cats (e.g., Barlow & Hill 1963,
Granit 1952, Kuffler 1953, Lettvin et al. 1959)—and later by immunohistochemical studies. Over
the past 30 years, given its advantages of molecular knowledge and genetic accessibility, emphasis
has shifted to the mouse, enabling the use of transgenic animals to label specific retinal types with
green fluorescent protein (GFP) or other reporters. The labeled cells could then be subjected to
detailed morphological study; targeted for electrophysiological recording (e.g., Huberman et al.
2008, Kim et al. 2008,Wässle et al. 2009); and isolated for gene expression profiling, initially with
microarrays (Kay et al. 2011, 2012). In parallel, the increasing sensitivity of these methods allowed
profiling of some single retinal cells (Cherry et al. 2009, Roesch et al. 2008, Trimarchi et al. 2007),
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although the high cost and low throughput limited the use of these methods for purposes of cell
type classification.

Over the past few years, the situation has changed dramatically with the introduction of higher-
throughput methods: serial section electron microscopy (Bae et al. 2018, Greene et al. 2016,
Helmstaedter et al. 2013, Marc et al. 2013); optical imaging of neural activity and transmitter
release (Baden et al. 2016, Franke et al. 2017); and scRNA-seq, our focus in this review. The com-
bination of these methods is now providing satisfying classification and characterization of cell
types in the mouse retina.

When Macosko et al. (2015) devised Drop-seq, they applied it first to the retina because the
strong foundation of prior knowledge (ground truth) provided a means of optimizing and validat-
ing the method. They used unsupervised methods to group approximately 44,000 single cells into
39 clusters. They were able to assign each cluster to a known cell type or groups of related types,
including 33 spanning the five canonical neuronal classes plus MG and five other non-neuronal
types.

Although these results were gratifying, they were clearly insufficient in that the number of au-
thentic retinal cell types had already been estimated to exceed 60, and all RGCs clustered together
even though at least a dozen types had already been described (Masland 2012, Sanes & Masland
2015). The reason for this lack of resolution was that approximately 80% of retinal cells are rod
PRs ( Jeon et al. 1998), leaving too few of the less abundant but more diverse neuronal classes
(BCs, ACs, and RGCs) to recover rare types or distinguish similar types from each other. Our
group therefore set out to enrich BCs, RGCs, and ACs so that we could profile them in sufficient
numbers.

We began with BCs because we expected them to be the simplest of the heterogeneous classes
and therefore the most suitable for testing alternative strategies for clustering and validation.We
enriched BCs using a transgenic line in which GFP was expressed under control of regulatory
elements from the Vsx2 (Chx10) gene, which is expressed in BCs and MG in the adult mouse
retina (Shekhar et al. 2016). From >27,000 single-cell transcriptomes, of which >23,000 could
be identified as BCs, we identified 15 BC types (Figure 3a). We combined lentivirus-mediated
sparse labeling with immunohistochemistry and fluorescence in situ hybridization for genes selec-
tively associated with specific clusters to match molecular identity to morphology for all 15 types
(Figure 3b–d). The correspondence was excellent, revealing that the 15 types included all 13 types
that had been identified by morphological and physiological analyses (Euler et al. 2014, Franke
et al. 2017, Greene et al. 2016, Helmstaedter et al. 2013, Wässle et al. 2009) and two new types.

One novel type, called BC1B, was particularly noteworthy in that it was monopolar and
therefore would likely have been classified as an AC rather than a BC by conventional criteria
(Figure 3c). Molecular profiling showed that BC1B expressed no canonical AC markers but all
canonical BC markers and was transcriptomically related to the conventional BC1A type. Della
Santina et al. (2016) identified this type independently in a transgenic line and showed that it also
shares ultrastructural and physiological properties with other BCs. In fact, using markers identi-
fied through scRNA-seq, we showed that BC1B is initially conventionally bipolar, then retracts
its dendrites during early postnatal life.

Our group then adapted this pipeline to classify RGCs (Tran et al. 2019; Figure 3e–h) and ACs
(Yan et al. 2020a). RGCs were enriched either by using a line in which yellow fluorescent protein
was expressed under control of regulatory elements from the Slc17a6 (which encodes the gluta-
mate transporter VGlut2) gene or by labeling themwith antibodies toThy1 (also known asCD90);
both VGlut2 and Thy1 are broadly expressed in the brain but selectively expressed by RGCs in the
retina.From approximately 35,000 single-cell transcriptomes,Tran et al. (2019) identified 46RGC
types. Lacking a suitable class-specific marker for ACs, Yan et al. adopted a strategy of selective
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Figure 3

Classification of mouse BCs and RGCs. (a) Visualization of scRNA-seq data from mouse BC types and Müller glia using tSNE, as in
Figure 2b. (b) Genes selectively expressed by individual mouse BC types, shown in a dot plot as in Figure 2d. (c) Morphologies of 15
mouse BC types. (d) Sparse labeling of a mouse BC (using lentivirus) combined with in situ hybridization for the type-specific marker
Cpne9 identifies this as BC9. The drawing on the left is from an electron microscopic reconstruction of a BC9 cell (Helmstaedter et al.
2013). Panels a–d adapted with permission from Shekhar et al. (2016). (e) Visualization of scRNA-seq data from mouse RGC clusters
using tSNE. ( f ) Genes or gene pairs selectively expressed by individual mouse RGC types, shown in a dot plot. (g) Morphologies of
several RGC types. (h) Sparse labeling of a mouse RGC (using a transgenic line) combined with in situ hybridization for Gpr88
identifies this as RGC type C10. Dotted lines indicate the position of CALB2 staining, used to mark sublaminae in the IPL. Panels e–h
adapted with permission from Tran et al. (2019). Abbreviations: BC, bipolar cell; GFP, green fluorescent protein; IPL, inner plexiform
layer; RGC, retinal ganglion cell; scRNA-seq, single-cell RNA sequencing; tSNE, t-distributed stochastic neighbor embedding.

depletion, labeling BCs and MG (vsx2-GFP), and PRs (fluorophore-conjugated antibodies to
CD73 and CD133), then collecting GFP/CD73/CD133 triple negative cells using FACS. From
approximately 55,000 single cell transcriptomes, of which approximately 32,000 could be iden-
tified as ACs, they identified 63 AC types (Yan et al. 2020a). In nearly every case, it was possible
to uniquely identify each type by selective expression of one gene or a combination of two genes
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Table 1 Number of cell types in vertebrate retinas

Cell class Mouse
Macaque
(fovea)

Macaque
(periphery)

Human
(fovea)

Human
(periphery)

Marmoset
(fovea)

Marmoset
(periphery) Chick Ferret Zebrafish

Photoreceptors 3 4 4 4 4 3 3 8 3 5

Horizontal cells 1 2 2 2 2 2 2 4 2 ND

Bipolar cells 15 12 11 12 12 14 14 22 12 20

Amacrine cells 63 27 34 24 27 25 27 59 23 ND

Retinal ganglion cells 46 16 18 12 14 15 17 41 12 32

Müller glia 1 1 1 1 1 1 1 1 1 ND

Oligodendrocytes 0 0 0 0 0 0 0 1 ND ND

Astrocytes 1 1 1 1 1 1 1 0 1 ND

Total 130 63 71 56 61 61 65 136 54 ND

Numbers were identified by scRNA-seq or snRNA-seq. For all species other than mice, numbers are likely to be underestimates owing to insufficient
numbers of cells profiled. Data for the mouse taken from Macosko et al. (2015), Shekhar et al. (2016), Tran et al. (2019), and Yan et al. (2020a). Data for the
macaque taken from Peng et al. (2019). Data for the human taken from Yan et al. (2020b). Data for zebrafish retinal ganglion cells taken from Kölsch et al.
(2021). Data for zebrafish bipolar cells taken from Y. Kölsch, J. Hahn, K. Shekhar, J.R. Sanes and H. Baier (unpublished manuscript). Data for the chick
taken from Yamagata et al. (2021). Data for the marmoset and ferret taken from Y. Peng,W. Yan and J.R. Sanes (unpublished manuscript). Abbreviations:
ND, not determined; scRNA-seq, single-cell RNA sequencing; snRNA-seq, single-nucleus RNA sequencing.

and use these genes to elucidate the morphology of the type in question by combining in situ
hybridization or immunohistochemistry with sparse labeling. Most recently, we have used similar
methods to isolate and profile immune cells, including resident microglia (I. Benhar, J. Ding, K.
Shekhar, A. Regev and J.R. Sanes, unpublished manuscript). Together, these efforts identified a
total of 130 neuronal retinal types (Table 1) along with approximately 10 non-neuronal types, for
a total of approximately 140.

As noted above, dendrograms can be used to display transcriptomic relationships of types
within a class. In many cases, clades within these dendrograms show a gratifying correspondence
to subclasses that had been proposed based on other criteria. For example, ON and OFF BC
subclasses that respond to increases and decreases in light intensity, respectively, occupy separate
clades (Shekhar et al. 2016) (Figure 2f ). Likewise, AC types that use GABA or glycine as the pri-
mary neurotransmitter and have largely distinct morphologies (wide-field arbors for GABAergic
and narrow-field arbors for glycinergic) occupy separate clades. One can then seek transcription
factors that correlate with, and might underlie, these distinctions. For example,Meis2 is expressed
at higher levels by most GABAergic AC types than by any glycinergic type, and Tcf4 is expressed
at higher levels by all glycinergic types than by any GABAergic type (Yan et al. 2020a). For RGCs,
there is no obvious morphological or physiological signature of closely related types, but profiling
identified transcriptionally proximate subclasses that share expression of transcription factors such
as Tbr1, Tbr2/Eomes,Neurod2, and Satb2 (Tran et al. 2019), some of which are known to affect the
development of the RGC types that express them (Liu et al. 2018, Lyu & Mu 2021, Mao et al.
2014, Peng et al. 2017).

PRIMATE RETINAL CELL ATLAS

Although the mouse retina is an excellent system for studying the development, structure, and
function of neural circuits, it has serious shortcomings as a model for human vision. This is be-
cause the retinas of primates, including humans, differ in important ways from those of rodents.
Perhaps the most important is that primates, alone among mammals, have a small, specialized
central retinal region called the fovea (Figure 1b) that mediates most high-acuity as well as a
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Figure 4

Cell types of the macaque fovea and peripheral retina. (a) Correspondence between BC types in the foveal and peripheral retina of the
crab-eating macaque, shown as a confusion matrix, as in Figure 2h. Bars on the top and right mark ON BC and OFF BC subclasses.
The extent of 1:1 correspondence is quantified by the ARI (top), whose values range from 0 (random correspondence) to 1 (perfect
match). (b) Comparison of relative proportions of matched BC types between the fovea and the periphery (mean ± standard deviation
computed across biological replicates). (c) Box and whisker plots show that genes encoding subunits of receptors involved in GABAergic
neurotransmission are expressed at higher levels in peripheral than in foveal RGCs. The black horizontal line represents the median;
bars represent the interquartile range; vertical lines represent the minimum and maximum. Stars indicate >twofold change based on
means. Figure adapted with permission from Peng et al. (2019). Abbreviations: ARI, adjusted Rand index; BC, bipolar cell; MGC,
midget retinal ganglion cell; PGC, parasol retinal ganglion cell; RGC, retinal ganglion cell.

great deal of chromatic vision (Bringmann et al. 2018). The fovea occupies only approximately
1% of the retinal surface but provides approximately 50% of the input to the primary visual cor-
tex.Moreover, diseases that selectively affect the fovea and the somewhat larger macula in which it
is embedded are leading causes of irreversible vision loss—most notably age-related macular de-
generation (AMD) and diabetic macular edema. Thus, crucial aspects of human retinal function
and dysfunction cannot be satisfactorily studied in mice.

Peng et al. (2019) used the mouse atlas described above as a foundation to generate a retinal
atlas from the macaque monkey, profiling the fovea and peripheral retina separately. Because the
peripheral primate retina, like the mouse retina, is rod dominated, they enriched RGCs (using
anti-Thy1) for some peripheral samples and depleted rods (using anti-CD73) from others to
ensure detection of rare types. From approximately 170,000 single-cell transcriptomes, Peng
et al. (2019) identified a total of 62 foveal and 70 peripheral cell types.They then asked the extent to
which differences stem from cell types unique to one region, from altered proportions of the same
set of types, or from region-specific molecular programs within shared types. They found that all
three factors are involved but to different degrees.Most cell types exhibited a 1:1 correspondence
between regions, but they identified a few region-specific cell types, including a novel foveal BC
type that was named OFFx (Figure 4a). Likewise, the proportions of cell types show regional
variations, including some that had been documented previously, such as the higher fraction of
cones and cone midget BCs and a lower fraction of rods and rod BCs in the fovea compared to the
periphery (Figure 4b). Shared types exhibited a median of 17 differentially expressed genes be-
tween the regions (with a range of 10–150) at log-fold change >2 (e.g., Figure 4c). These
differences presumably underlie many structural and functional differences between the two
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regions and, as discussed below, may help explain why some retinal diseases preferentially target
the macula.

Over the past two years, many groups have extended this analysis to the adult human retina, in
many cases using the macaque atlas as a guide in assigning identities to clusters (Cherry et al. 2020,
Cowan et al. 2020,Hamashima et al. 2020, Liang et al. 2019, Lukowski et al. 2019, Lyu et al. 2019,
Menon et al. 2019, Orozco et al. 2020, Peng et al. 2019, Voigt et al. 2019b, Yan et al. 2020b, Yi
et al. 2020).Unsurprisingly, and consistent withmorphological and physiological studies, cell types
in the macaque and human retina are very similar, as are their expression profiles. The number
of types is slightly smaller in even the most complete human atlas (Yan et al. 2020b) compared to
the macaque atlas (55 versus 60 in the fovea and 60 versus 70 in the peripheral retina), but this is
more likely due to the lower number of cells profiled than to an authentic difference.

RETINAL DISEASE

Most irreversible vision loss results from retinal disease. There are several hundred retinal dis-
eases. The three most prevalent, and the leading causes of irreversible vision loss worldwide, are
AMD, diabetic retinopathy, and glaucoma.Monogenic causes account for an insignificant fraction
of these, almost certainly <1%, and genome-wide association studies (GWASs) have identified
over a hundred genes that affect susceptibility (e.g., Craig et al. 2020, Fritsche et al. 2016, Pollack
et al. 2019). In contrast, monogenic causes have been identified for over 200 diseases that lead to
dysfunction or loss of PRs, each of which is rare but which are substantial in aggregate; they have
been classified into overlapping groups such as retinitis pigmentosa, cone–rod dystrophy, Leber
congenital amaurosis, macular dystrophy, optic atrophy, macular telangiectasia, and inherited vit-
reoretinopathy (https://sph.uth.edu/retnet/home.htm).

Several groups have now used scRNA-seq and snRNA-seq data to inventory the macaque and
human retinal cell types that express genes implicated in these diseases (Cowan et al. 2020, Lyu
et al. 2019, Orozco et al. 2020, Peng et al. 2019, Yan et al. 2020b, Yi et al. 2020) (Figure 5a). Un-
surprisingly, many findings confirm previous conclusions based on clinical features and immuno-
histochemical results. For example, most genes that are mutated in retinitis pigmentosa, which
initially affects rods, are selectively expressed by rods or by retinal pigment epithelial cells, which
are required for rod viability.Likewise,most genesmutated in Leber hereditary optic neuropathies
and autosomal dominant optic atrophies, which result in RGC death, are selectively expressed in
RGCs; many susceptibility genes implicated in diabetic retinopathy, a predominantly microvas-
cular complication of diabetes mellitus, are expressed in vascular endothelial cells (Figure 5b).

However,many of the findings are new. Some genes mutated in retinitis pigmentosa or diabetic
retinopathy are also expressed at high levels in RGCs or MG, perhaps accounting for otherwise
perplexing clinical findings. HTRA1, a major susceptibility gene for macular degeneration, is ex-
pressed not only in pigment epithelium but also in horizontal cells and MG in both macaques and
humans, suggesting potential additional sites of action (Figure 5c). Complement pathway genes,
also strongly implicated in macular degeneration, are expressed in a variety of cell types and classes
in primates, as well as in mice (Pauly et al. 2019). Perhaps most enticing, several genes implicated
in macular dystrophies,macular degeneration, and diabetic macular edema are expressed at higher
levels by foveal than by peripheral cohorts of specific cell types, including PRs and vascular en-
dothelium, providing starting points to investigate the increased susceptibility of the macula in
these diseases.

Another way in which single-cell profiling can assist in understanding the pathogenesis of oc-
ular disease is by allowing exploration of changes in cell types and gene expression patterns that
correlate with disease. Few results of this type have been reported to date, but Voigt et al. (2020a)
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Retinal disease. (a) Heat map showing average expression strengths of well-known ocular disease susceptibility genes by cell classes in
human retina single-nucleus RNA sequencing data. Panel adapted from Orozco et al. (2020) (CC BY 4.0). (b) Heat map showing
relative expression of several genes implicated in diabetic retinopathy and macular edema by cell class. Panel adapted from Yan et al.
(2020b) (CC BY 4.0). (c) Heat map showing relative expression of susceptibility genes for age-related macular degeneration in foveal
and peripheral cohorts of human retinal cell classes. Panel adapted from Yi et al. (2020) (CC BY 4.0).

profiled retinal cells from four controls with little or no visual impairment and a single individual
with autoimmune retinopathy, documenting alterations characteristic of gliosis in MG and astro-
cytes of the individual with retinopathy. Studies of mouse models of diabetic retinopathy (Van
Hove et al. 2020) and inflammation (Bell et al. 2020) have also reported intriguing results.

INJURY

Following crush injury to the optic nerve [optic nerve crush (ONC)] in rodents, approximately
80% of RGCs die within two weeks, and only a few of the survivors extend new axons. Because the
injury can be precisely controlled, can be applied to all RGCs simultaneously, and affects axons
of all and only RGCs, ONC has become a much-used model to study mechanisms underlying
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Figure 6

Resilience of mouse retinal ganglion cell types to injury (optic nerve crush) calculated as the frequency of each type 14 days after optic
nerve crush (at which point approximately 80% of retinal ganglion cells have died) relative to their frequencies in uninjured retina.
Retinal ganglion cell types exhibit a wide spectrum of survival at 14dpc, ranging from 1% to 98%. Figure adapted with permission from
Tran et al. (2019).

injury and test interventions that could enhance survival or promote regeneration (Bray et al.
2019, Williams et al. 2020). ONC is also a valuable albeit severely limited model for studying
mechanisms underlying glaucoma, in which RGCs die.

Two critical questions are (a) which RGCs live or die and (b) how surviving RGCs alter their
gene expression profiles in response to injury. Initial studies using transgenic and immunohisto-
chemical markers showed that survival is not stochastic, but rather differs among RGC types (de
SevillaMüller et al. 2014,Duan et al. 2015). Building on this result,Tran et al. (2019) used scRNA-
seq to assess the vulnerability of all 46 RGC types. They profiled RGCs at multiple intervals fol-
lowing ONC and compared the frequency distribution of types in controls and following ONC.

A major challenge encountered in this study was that injury-related gene expression changes
obscured the transcriptomic patterns on which cell-type identification was based.Tran et al. (2019)
developed a computational approach, which they termed iGraphBoost, that leveraged the RGC
profiles collected at intermediate time points to continually refine the transcriptional signatures
that define each type.This allowed them to deconvolve gene signatures corresponding to cell type
from injury-related alterations in cell state.

iGraphBoost analysis suggested that vulnerability varied dramatically among types, with sur-
vival ranging from 1% to 98% (Figure 6). This result raised the possibility that genes selectively
expressed by or upregulated in resilient RGC types might be able to confer resilience on vul-
nerable types. Indeed, this turned out to be the case: Although no genes cleanly distinguished
vulnerable from resilient types, many genes were selectively expressed in some but not all resilient
or vulnerable types. In a few cases, Tran et al. (2019) were able to show that forced expression of
resilience genes or inactivation of vulnerability genes in vulnerable types enhanced their survival.
Moreover, in some of these cases, the intervention also enhanced the ability of surviving types to
regenerate axons.

DEVELOPMENT

The vertebrate retina has been used in numerous studies of how diverse neural fates are acquired
during early development (see, e.g., Bassett &Wallace 2012). All retinal cell classes can arise from
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a single retinal progenitor cell (RPC) in sequential but overlapping birth windows (Cepko 2014,
Young 1985). The currently leading model to explain these findings is one in which RPCs proceed
through a series of competence states, in each of which they choose probabilistically from a set of
possible fates, with the probability of each fate changing systematically as development proceeds.
Thus, neuronal lineages in the vertebrate retina appear to be influenced by both deterministic and
stochastic mechanisms, likely involving both cell-autonomous and extrinsic determinants (Cepko
2014, He et al. 2012).

Several transcriptomic studies have profiled the developing retina, beginning with bulk RNA
measurements (Blackshaw et al. 2004,Hoshino et al. 2017,Mellough et al. 2019, Sajgo et al. 2017)
or small numbers of single cells (Laboissonniere et al. 2017, Trimarchi et al. 2008) and moving
to scRNA-seq in the mouse (Buenaventura et al. 2019, Clark et al. 2019, Giudice et al. 2019,
Rheaume et al. 2018, Wu et al. 2021) and human retina (Hu et al. 2019, Lu et al. 2020, Sridhar
et al. 2020). These studies have provided insights into key developmental regulators but suffer
from an intrinsic limitation: Because RNA-seq is a destructive assay, the measurements represent
a snapshot. Furthermore, retinal development is asynchronous (exhibiting, for example, a central-
to-peripheral gradient), and cells from a single sample can span different stages of maturation.
This pattern has led to the notion of pseudotime, which represents an unobserved dimension that
measures a cell’s progress along its fate (Trapnell et al. 2014). Algorithms have been developed
for pseudotemporal ordering of single-cell transcriptomes, based on the reasonable assumption
that transcriptomic similarity implies developmental proximity (Saelens et al. 2019). These meth-
ods can be used to construct developmental trajectories from longitudinal scRNA-seq snapshots,
visualize developmental branchpoints, and pinpoint key genes that serve as fate determinants.

Clark et al. (2019) recently used this approach to analyze how cell classes arise in the mouse
retina. They documented a progression beginning from primary RPCs (expressing Pax6 and
Ccnd1) that give rise to proliferating neurogenic cells (expressing the bHLH genes Neurog2 and
Olig2), which, in turn, give rise to branches corresponding to most of the major retinal neuronal
classes (Figure 7a). From this analysis, they were able to extract differentially expressed genes,
including a set of three members of the NFI family of transcription factors (Nfia,Nfib, and Nfix),
which they demonstrated, using in vivo experiments, are required for generation of late-born reti-
nal cells.More recently, the same group reported parallel studies on human fetal retina and retinal
organoids, pinpointing key differences between peripheral and macular development, as well as
between mice and humans (Lu et al. 2020).

In contrast to our growing understanding of how retinal cell classes are generated, we know
very little about how classes diversify into types. Indeed, the extent of type heterogeneity within
classes was not fully appreciated when models of class lineage were formulated. As a first step in
addressing this issue, our group enriched and profiled RGCs at multiple times, from when they
first become postmitotic through adulthood (K. Shekhar, I.E. Whitney, S. Butrus and J.R. Sanes,
unpublished manuscript). We find no evidence that 46 types of specified progenitors give rise to
46 RGC types. Instead,RGC type identity is acquired gradually,with progressive but incompletely
deterministic restriction of fate (Figure 7c). Diversification is not impacted by visual experience
and largely independent of synaptic input, suggesting primary roles for cell-intrinsic factors and
nonsynaptic cell–cell interactions.

ORGANOIDS

Organoids are complex cellular assemblies derived from embryonic or induced pluripotent
stem cells (iPSCs) cultured by protocols that encourage self-organization into complex three-
dimensional structures with multiple cell types; organoids differ fundamentally from the simpler
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Figure 7

Retinal development. (a) Three-dimensional visualization of developing mouse retinal cells using uniform manifold approximation.
Each transcriptomically defined cluster (color) has been assigned to a committed or immature retinal cell class based on its gene
signatures. (b) Developmental relationships among clusters visualized as a tree using pseudotime analysis. (c) Temporal associations
among immature retinal ganglion cell clusters (y axis) between consecutive ages (x axis) illustrated as a Sankey diagram. Nodes
(rectangles) at each age correspond to transcriptionally defined clusters at each age (K. Shekhar, I.E. Whitney, S. Butrus and J.R. Sanes,
unpublished manuscript). Edges depict transcriptional correspondences between clusters, with the color and thickness indicating the
proportion of mappings that a late cluster (right) receives from an early cluster (left). Edge weights are normalized such that incoming
edges add to 100%. Panels a and b adapted with permission from Clark et al. (2019).

and more homogeneous cultures that typically form when cells are cultured on conventional flat
substrates. Among the first neural organoids to be generated were ones that recapitulated optic
cup formation and included a multilayered retinal component (Eiraku et al. 2011). Since then, at-
tention has been largely focused on improvingmethods to generate cerebral organoids (Del Dosso
et al. 2020), but several groups have also reported protocols for generating retinal organoids, gen-
erally from iPSCs. In several cases, these organoids have been characterized by scRNA-seq (Collin
et al. 2019, Cowan et al. 2020, Kim et al. 2019, Lu et al. 2020, Mao et al. 2019, O’Hara-Wright &
Gonzalez-Cordero 2020, Sridhar et al. 2020).
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Transcriptomic analysis confirms that all retinal cell classes are represented in these organoids.
In general, they form in the same order as they do in vivo: RGCs form first, and PRs form later. As
PRs form, RGCs in the interior die, likely because they are hypoxic and lack central targets. Thus,
complete retinal circuits do not form in these structures, and in most cases, cells are so immature
that it is unfeasible to ask whether diversification into types occurs. Recently, however, Cowan
et al. (2020) devised improved protocols to generate organoids that do generate types within
classes. Moreover, they used scRNA-seq to show that many types generated in organoids cor-
respond to those observed in vivo. These results will enable generation of organoids from patient
tissue, which can then be used to elucidate disease mechanisms and test interventions.

EVOLUTION

Many parts of the central nervous system, such as the cortex, differ in fundamental ways among
vertebrates. In contrast, the basic plan of the retina—its three cellular layers, two synaptic layers,
five neuronal classes, and MG—is conserved among all jawed vertebrates (Dowling 2012, Lamb
et al. 2007) and even shares many design principles with the retina ofDrosophila (Sanes & Zipursky
2010). Nonetheless, there are numerous species-specific variations on this common theme, possi-
bly reflecting the needs of each species and the statistical properties of visual input in its ecological
niche (Baden et al. 2020, Ocko et al. 2018). This combination of constancy and variability makes
the retina ideal for evolutionary analysis of cell types. Just as genome sequencing enabled sys-
tematic identification of gene orthologies, assembling retinal atlases for different species can help
build an evolutionary history of cell types (Marioni & Arendt 2017).

Until this year (2020), scRNA-seq and snRNA-seq studies of retina focused onmice,macaques,
and humans.Recently, however,we and others have begun to assemble atlases of other mammalian
species (themarmoset, ferret, pig, and deermouse; K.Shekhar,W.Yan, J.Hahn,A.Monavarfeshani
and J.R. Sanes, unpublished manuscript), as well as two nonmammalian vertebrates, the zebrafish
and chick (Hoang et al. 2020, Kölsch et al. 2021, Yamagata et al. 2021). In both the chick and fish,
CRISPR-Cas9-based approaches were used to label cell types based on their selective expression
of specific genes identified via transcriptomic analysis to match molecularly defined types to mor-
phology. Consistent with classical histological studies, retinas in both species appear to be at least
as heterogeneous as those of mammals. For example, we identified 8 PRs, 4 HCs, and 22 BC types
in the chick compared to 4, 2, and 12 in primates (Table 1).

These data sets can be used for evolutionary comparisons.One example is shown in Figure 8a.
In this case, all cells from the mouse, human,macaque, and chick atlases were combined and rean-
alyzed. Notably, transcriptomic similarity was greater among cells of a class than among cells of a
species.Moreover, the dendrogram shows a hierarchy that fits with prior knowledge.The highest-
level split is between MG and neurons; the second-highest separates photoreceptors from other
neurons; the third-highest separates HCs from other interneurons and RGCs; and the lowest sep-
arates GABAergic from glycinergic ACs. With these results as a foundation, one can ask which
gene expression programs are conserved among species and which vary.

A second example is shown in Figure 8b,c, which displays relationships between mouse and
macaque BCs and RGCs. While the correspondence is excellent for BCs, it is poor for RGCs.
Also noteworthy is that the number of distinct RGC types in macaques is much lower than in mice
(18 versus 46), with two types, the ON and OFF midget RGCs, accounting for nearly 85–90% of
macaque RGCs. Disappointingly, the analysis failed to identify any convincing mouse orthologs
of primate midget RGCs.

Based on these results, it is tempting to speculate that the outer retina may be composed of a
conserved set of processers,with evolution acting primarily on inner retinal neuronal classes—ACs
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Retinal evolution. (a) Dendrogram illustrating the transcriptional relationships among retinal cell classes across four species—mouse,
chick, human, and macaque. Photoreceptors have been subdivided into rods and cones; amacrine cells have been subdivided into
GABAergic, glycinergic, and starburst subclasses. Panel adapted from Yamagata et al. (2021) (CC BY 4.0). (b) Confusion matrix showing
transcriptomic correspondence between macaque and mouse BC types, with bars on the top and right marking OFF and ON BC
subclasses, respectively. (c) Confusion matrix showing transcriptomic correspondence between macaque and mouse retinal ganglion cell
clusters. Panels b and c adapted with permission from Peng et al. (2019).

and RGCs. A possible teleological explanation for this, based on comparing primates with mice,
chicks, and fish, is that species with rudimentary cortices depend heavily on retinal computations,
while primates rely more heavily on cortical processing.

THE REST OF THE EYE

Light enters the retina through the transparent cornea and lens, which focus the light and cast an
inverted image on the retina (Figure 1b). Also in the front of the eye are the iris, which controls
the amount of light that enters, and an elaborate apparatus, including the ciliary body and trabec-
ular meshwork, that controls intraocular pressure by regulating the production and drainage of
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aqueous humor. Behind the retina, a layer of retinal pigment epithelial cells lies above the PRs,
providing them with nutrient support, recycling visual pigment, and phagocytosing shed portions
of outer segments. All of these tissues are of great clinical significance: For example, opacification
of the lens results in cataracts, high intraocular pressure is the major modifiable risk factor for
glaucoma, and dysfunction of the retinal pigment epithelium is the major contributor to AMD.

Over the past year, scRNA-seq methods have been applied to nonretinal ocular structures in-
cluding the trabecular meshwork, lens, iris, cornea, choriocapillaris, and retinal pigment epithe-
lium in mice (Bhat et al. 2019, Kaplan et al. 2019, Lehmann et al. 2020, van Zyl et al. 2020, Yu
and Saban 2019) and humans (Hamashima et al. 2020; Patel et al. 2020; van Zyl et al. 2020; Voigt
et al. 2019a, 2020b; T. van Zyl and J.R. Sanes, unpublished manuscript). One study compared
human aqueous humor outflow pathways with those of four species commonly used to assess out-
flow mechanisms and test intraocular pressure modifying therapies—mice, two macaque species
(Macaca fascicularis andMacaca mulatta), and pigs (van Zyl et al. 2020).Many cell types and marker
genes were conserved among species, but others were not, suggesting the need for caution in ex-
trapolating from model species to humans. These data sets have also been used to map expression
of genes implicated in diseases such as glaucoma. Interestingly, several genes implicated in glau-
coma accompanied by high intraocular pressure are expressed at higher levels in the trabecular
meshwork than in RGCs, whereas the opposite is true for several genes implicated in normal
tension glaucoma (Orozco et al. 2020, van Zyl et al. 2020). These results suggest a role for RGC-
intrinsic variations in susceptibility to glaucoma.

BEHIND THE EYE

Axons of RGCs project to numerous retinorecipient areas in the brain—more than 40 in mice
(Martersteck et al. 2017), many of which have been associated with distinct functions (Dhande
et al. 2015).The twomajor retinorecipient areas are the optic tectum (called the superior colliculus
in mammals) and the dorsal lateral geniculate nucleus (dLGN) in higher mammals (Figure 1a).
The optic tectum is the major area in lower mammals such as rodents and nonmammalian orders,
whereas the dLGN is the major area in higher mammals such as primates. The dLGN provides
the major visual input to the primary visual cortex, which then interconnects with numerous other
visual cortical areas; an increasing proportion of RGC axons projecting to the dLGN rather than
the superior colliculus correlates with the increasing size of the cortex. Researchers are beginning
to use scRNA-seq and snRNA-seq to construct cell atlases of these regions of the visual system.

Subcortical Areas

A recent study reported transcriptomic classification of cell types in the mouse, macaque, and
human dLGN (Bakken et al. 2020). Neurons separated cleanly into excitatory principal neurons
and inhibitory interneurons in all three species. Excitatory neurons could be divided into multiple
types in primates, with suggestive hints of heterogeneity in mice. These results are consistent with
those of Kalish et al. (2018), who profiled the young postnatal mouse dLGN.To date, scRNA-seq
or snRNA-seq studies of other retinorecipient areas have not been reported.

The Visual Cortex

Many studies have now used scRNA-seq or snRNA-seq to classify and characterize cell types in
several mammalian species. Coverage of this growing area is beyond the scope of this review, but
we note four landmark studies that provide insights into cell types of the visual cortex. One study
compared the primary visual cortex with a motor cortical area (Tasic et al. 2018). It reported
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a total of 111 neuronal types in visual cortex, 79 of which were shared with the motor cortex.
Interestingly, conservation was greater among inhibitory interneurons than excitatory projection
neurons, consistent with developmental evidence that projection neurons arise locally, whereas
interneurons migrate from a single subcortical site. This paper also supports the contention
that the retina is about as complex as other brain areas, at least as assessed by this criterion.
Two subsequent studies from the same group showed strong correspondence between these
transcriptomically defined types and those defined by morphological (intracellular filling) and
electrophysiological (patch-clamping) criteria (Gouwens et al. 2019, 2020). Finally, Krienen et al.
(2020) compared humans, macaques, marmosets, ferrets, and mice, providing initial insights into
cell types unique to (or heavily enriched in) primates compared to other mammals.

CONCLUSIONS

The retina has been studied for two reasons that extend beyond its unquestionable beauty. First, as
an unusually accessible part of the brain (Dowling 2012), it has served as a model to develop meth-
ods and elucidate mechanisms that can later be applied to less accessible regions. Second, since
diseases of the retina and the eye that contains it underlie the vast majority of irreversible vision
loss worldwide, developing an understanding of the cells at risk is of immense clinical significance.

Over the past five years, scRNA-seq and snRNA-seq have contributed to both aims.The strong
foundation of prior knowledge about the mouse retina, as well as the availability of molecular and
genetic tools, suited it for the development of a pipeline that could then be applied to other species,
development, and disease. Success in molecular classification of retinal cell types has also been
influential in addressing three questions relevant to neural classification more generally (Yuste
et al. 2020).

First, can cells be divided into discrete types? This question has been debated for several rea-
sons, including the difficulty of distinguishing between the type and state of a particular cell, which
might be due to variations in activity, hormonal influence, circadian rhythm, and so on (Zeng &
Sanes 2017). Indeed, in the forebrain, these and other factors may blur the distinction between
type and state (Cembrowski & Spruston 2019, Kim et al. 2020, Stanley et al. 2020). Nonethe-
less, at least in the retina, types appear to be discrete, and the success of retinal classification has
encouraged similar efforts in other regions of the mammalian brain (Yuste et al. 2020).

Second, do types defined molecularly correspond to types defined by the structural and func-
tional criteria that guide most neurobiological thinking? For BCs, as noted above, there is a 1:1
correspondence between types identified from scRNA-seq-based atlases and types identified by
high-throughput electron microscopic and electrophysiological methods. Characterization is less
complete for ACs and RGCs, but to the extent that data are available, the correspondence is excel-
lent (Baden et al. 2016,Bae et al. 2018,Franke et al. 2017,Greene et al. 2016; http://rgctypes.org).
Thus, at least for the retina, there is little reason to doubt that transcriptome-based classification
adequately captures classical distinctions among types.

Third, what is the best basis for neural classification? In the first days of high-throughput tran-
scriptomics, there was fear that molecular distinctions would correspond poorly to morphological
and physiological ones. Although, as we now know, correspondence is good, it is not perfect. Yet
from an operational point of view, it is necessary to base categories on a single criterion. Although
some dissenting opinions have been voiced (Vlasits et al. 2019), there is growing consensus that
molecular criteria are to be favored: They have the highest throughput, are the easiest to quantify,
can be studied in isolated cells, and lead directly to identification of genes that can be used to
assess other features (Yuste et al. 2020). Molecules also provide perhaps the best starting point for
investigating development, evolution, and disease. In contrast, functional measurements are less
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objective and more context dependent, and high-throughput morphology is too labor intensive
for general use.

Finally, with respect to disease and dysfunction, some initial steps have already been reported:
The primate retinal and ocular atlases have already been used to assess expression of genes impli-
cated in many visual disorders, comparing primate and mouse atlases has provided guidance on
the extent to which the mouse eye can be used to model human disease, and the mouse atlas has
served as a starting point to assess mechanisms of vulnerability to injury.

In conclusion, in just five years, high-throughput scRNA-seq and snRNA-seq have generated
important resources and become broadly disseminated tools for studying the nervous system gen-
erally and the eye in particular. Over the next several years, we expect that these methods will
increase in power and become increasingly useful for enhancing our knowledge of the structure,
development, evolution, function, and dysfunction of the visual system.
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