
UC San Diego
UC San Diego Previously Published Works

Title
Wastewater sequencing uncovers early, cryptic SARS-CoV-2 variant transmission

Permalink
https://escholarship.org/uc/item/8bb609cg

Authors
Karthikeyan, Smruthi
Levy, Joshua I
De Hoff, Peter
et al.

Publication Date
2021

DOI
10.1101/2021.12.21.21268143

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bb609cg
https://escholarship.org/uc/item/8bb609cg#author
https://escholarship.org
http://www.cdlib.org/


 

 1

Wastewater sequencing uncovers early, cryptic SARS-CoV-2 variant transmission  1 

 2 
 3 

Smruthi Karthikeyan1,#, Joshua I Levy2,#, Peter De Hoff3, Greg Humphrey1, Amanda 4 

Birmingham4, Kristen Jepsen5, Sawyer Farmer1, Helena M. Tubb1, Tommy Valles1, Caitlin E 5 

Tribelhorn1, Rebecca Tsai1, Stefan Aigner3, Shashank Sathe3, Niema Moshiri6, Benjamin 6 

Henson5, Abbas Hakim3, Nathan A Baer3, Tom Barber3, Pedro Belda-Ferre3, Marisol Chacón3, 7 

Willi Cheung3, Evelyn S Cresini3, Emily R Eisner,3 Alma L Lastrella3, Elijah S Lawrence3, 8 

Clarisse A Marotz3, Toan T Ngo3, Tyler Ostrander3, Ashley Plascencia3, Rodolfo A Salido3, 9 

Phoebe Seaver3, Elizabeth W Smoot3, Daniel McDonald1, Robert M Neuhard7, Angela L 10 

Scioscia8,9, Alysson M. Satterlund10, Elizabeth H Simmons11 , Christine M Aceves2, Catelyn 11 

Anderson2, Karthik Gangavarapu2, Emory Hufbauer2, Ezra Kurzban2, Justin Lee2, Nathaniel L 12 

Matteson2, Edyth Parker2, Sarah A Perkins2, Karthik S Ramesh2, Refugio Robles-Sikisaka2, 13 

Madison A Schwab2, Emily Spencer2, Shirlee Wohl2, Laura Nicholson2, Ian H Mchardy2, David 14 

P Dimmock13, Charlotte A Hobbs13, Omid Bakhtar14, Aaron Harding14, Art Mendoza14, 15 

Alexandre Bolze15, David Becker15, Elizabeth T Cirulli15, Magnus Isaksson15, Kelly M Schiabor 16 

Barrett15, Nicole L Washington15, John D Malone16, Ashleigh Murphy Schafer16, Nikos 17 

Gurfield16, Sarah Stous16, Rebecca Fielding-Miller17,18, Richard Garfein17, Tommi Gaines17, 18 

Cheryl Anderson17, Natasha K Martin18 , Robert Schooley18 , Brett Austin16, Stephen F 19 

Kingsmore13 , William Lee16, Seema Shah16, Eric McDonald16, Mark Zeller2 , Kathleen M 20 

Fisch4, Louise Laurent3,9,19, Gene W Yeo3,19,20, Kristian G Andersen2,*, Rob Knight1,6,21,* 21 

  22 
#equal contribution 23 

*Senior author 24 

 25 
1 Department of Pediatrics, University of California San Diego, La Jolla, CA, USA 26 
2 Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 27 

USA 28 
3 Expedited COVID Identification Environment (EXCITE) Laboratory, Department of Pediatrics, 29 

University of California San Diego, La Jolla, CA, USA 30 
4 Center for Computational Biology and Bioinformatics, University of California San Diego, La 31 

Jolla, CA, USA 32 
5 Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA 33 
6 Department of Computer Science and Engineering, University of California San Diego, La 34 

Jolla, CA, USA 35 
7 Operational Strategic Initiatives, University of California San Diego, La Jolla, CA, USA 36 
8 Student Health and Well-Being, University of California San Diego, La Jolla, CA, USA 37 
9 Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California 38 

San Diego, La Jolla, CA, USA 39 
10 Student Affairs, University of California San Diego, La Jolla, CA, USA 40 
11 Academic Affairs, University of California San Diego, La Jolla, CA, USA 41 
12 Scripps Health, San Diego, La Jolla, CA, USA 42 
13 Rady Children's Institute for Genomic Medicine, San Diego, CA, USA 43 
14 Sharp Healthcare, San Diego, CA, USA 44 
15 Helix, San Mateo, CA, USA 45 
16 County of San Diego Health and Human Services Agency, San Diego, CA, USA 46 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.21.21268143doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2021.12.21.21268143
http://creativecommons.org/licenses/by-nd/4.0/


 

 2

17 Herbert Wertheim School of Public Health and Human Longevity Science, University of 47 

California San Diego, La Jolla, CA 48 
18 Division of Infectious Disease and Global Public Health, University of California San Diego, 49 

La Jolla, CA, USA 50 
19 Sanford Consortium of Regenerative Medicine, University of California San Diego, La Jolla, 51 

CA 52 
20 Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, 53 

CA 54 
21 Department of Bioengineering, University of California San Diego, La Jolla, CA, USA 55 

 56 

Address correspondence to: 57 

 58 

Rob Knight 59 

Department of Pediatrics 60 

University of California San Diego 61 

9500 Gilman Drive, MC 0763 62 

La Jolla, CA 92093, USA 63 

robknight@ucsd.edu 64 

+1 858-246-1184 65 

 66 

 67 

Summary 68 

  69 

As SARS-CoV-2 becomes an endemic pathogen, detecting emerging variants early is critical for 70 

public health interventions. Inferring lineage prevalence by clinical testing is infeasible at scale, 71 

especially in areas with limited resources, participation, or testing/sequencing capacity, which 72 

can also introduce biases. SARS-CoV-2 RNA concentration in wastewater successfully tracks 73 

regional infection dynamics and provides less biased abundance estimates than clinical testing. 74 

Tracking virus genomic sequences in wastewater would improve community prevalence 75 

estimates and detect emerging variants. However, two factors limit wastewater-based genomic 76 

surveillance: low-quality sequence data and inability to estimate relative lineage abundance in 77 

mixed samples. Here, we resolve these critical issues to perform a high-resolution, 295-day 78 

wastewater and clinical sequencing effort, in the controlled environment of a large university 79 

campus and the broader context of the surrounding county. We develop and deploy improved 80 

virus concentration protocols and deconvolution software that fully resolve multiple virus strains 81 

from wastewater. We detect emerging variants of concern up to 14 days earlier in wastewater 82 

samples, and identify multiple instances of virus spread not captured by clinical genomic 83 

surveillance. Our study provides a scalable solution for wastewater genomic surveillance that 84 

allows early detection of SARS-CoV-2 variants and identification of cryptic transmission.  85 

 86 

Introduction 87 

 88 

As SARS-CoV-2 transitions to endemicity, it continues to evolve, producing diverse new 89 

lineages1. Emerging variants of concern (VOCs) and variants of interest (VOIs) demonstrate 90 

increased transmissibility, disease severity, and/or immune escape2. Timely and accurate 91 

quantification of local prevalence of SARS-CoV-2 variants is thus essential for effective public 92 
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health measures. However, existing strategies for variant detection based on virus genome 93 

sequencing of biospecimens obtained from clinical testing (“clinical genomic surveillance”) are 94 

expensive, inefficient, and have sampling bias because of systemic healthcare disparities, 95 

particularly in poor and underserved communities3,4.  96 

 97 

In contrast, PCR-based wastewater surveillance of SARS-CoV-2 RNA is not subject to clinical 98 

testing biases and can track temporal changes in overall SARS-CoV-2 prevalence in a region 5–7, 99 

but cannot identify epidemiological transmission links or monitor lineages in the population. 100 

Virus genome sequencing from wastewater (“wastewater genomic surveillance”) has the 101 

potential to cost-effectively capture community virus spread8,9, acting as a surrogate to elucidate 102 

lineage geospatial distributions and track emerging SARS-CoV-2 variants (including new 103 

variants for which targeted assays do not yet exist), and provide genome sequence data needed 104 

for transmission network analysis and interpretation10. 105 

 106 

However, wastewater genomic surveillance is technically challenging9. Low viral loads, heavily 107 

fragmented RNA, and PCR inhibitors in complex environmental samples lead to poor 108 

sequencing coverage/quality11. Additionally, tools for SARS-CoV-2 lineage classification, such 109 

as pangolin12 and UShER13, were designed for clinical samples containing a single dominant 110 

variant, and cannot estimate relative abundances of multiple SARS-CoV-2 lineages in samples 111 

with virus mixtures such as wastewater.  112 

  113 

Here, we report a high-resolution approach to study community virus transmission using 114 

wastewater genomic surveillance, leveraging several technical advances in wastewater virus 115 

concentration and nucleic acid sequencing, and a computational tool for resolving multiple 116 

SARS-CoV-2 lineages in short-read sequence data from a mixed sample (lineage deconvolution). 117 

Because places of communal living, such as university campuses, are considered key sites for 118 

virus spread and represent well-controlled and relatively isolated environments, they are ideal for 119 

comparing the relative utility of clinical and wastewater genomic surveillance14. Accordingly, we 120 

conducted a high-resolution, longitudinal wastewater genomic surveillance effort at the 121 

University of California San Diego (UCSD) campus, in parallel with clinical genomic 122 

surveillance from nasal swabs in the local community, from November 2020 to September 2021: 123 

ten months that effectively capture the surges in the region caused by the three main VOCs, 124 

Epsilon, Alpha and Delta1. 125 

 126 

Our wastewater genomic surveillance approach identified VOCs up to 2 weeks prior to detection 127 

through clinical genomic surveillance, even though a large proportion of clinical SARS-CoV-2 128 

samples are sequenced in San Diego relative to other cities in the United States. In addition to 129 

providing a detailed history of community virus spread, wastewater genomic surveillance also 130 

identified multiple instances of cryptic community transmission not observed through clinical 131 

genomic surveillance. Matching wastewater and clinical genome sequences provided 132 

epidemiological information identifying specific transmission events. Our results demonstrate 133 

the viability of wastewater genomic surveillance at scale, enabling early detection and tracking 134 

of virus lineages and guiding clinical genomic surveillance efforts.  135 

 136 

Results 137 

 138 
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To directly compare wastewater genomic surveillance to clinical surveillance, we conducted a 139 

large-scale SARS-CoV-2 genome sequencing study from wastewater samples collected daily 140 

from 131 wastewater samplers covering 360 campus buildings, in many cases reaching single 141 

building-level resolution. To identify epidemiological transmission links and monitor lineages in 142 

the population, we sequenced all SARS-CoV-2 positive clinical and wastewater samples from 143 

campus using a miniaturized tiled-amplicon sequencing approach. During this period of this 144 

study, we collected and analyzed 21,383 wastewater samples: 19,944 wastewater samples from 145 

the UCSD campus, and, for comparison, 1,439 wastewater samples from the greater San Diego 146 

area, including the Point Loma wastewater treatment plant (the primary wastewater treatment 147 

plant for the county with a catchment size of 2.3 million people) and 17 public schools spanning 148 

four San Diego school districts15. We compared sequencing of 600 campus wastewater samples 149 

to 759 genomes obtained from campus clinical swabs (46.2% of all positive tests on campus), all 150 

processed by the CALM and EXCITE CLIA labs at UCSD. In addition, we compared 31,149 151 

genomes obtained from clinical genomic surveillance of the greater San Diego community to 152 

sequencing of 801 wastewater samples collected from San Diego county during the same period.  153 

 154 

 155 

High-resolution spatial sampling reveals micro-scale community spread 156 

 157 

We implemented a GIS (geographic information system)-enabled building-level wastewater 158 

surveillance system to cover 360 buildings on the UCSD campus (Figure 1A). During the period 159 

of daily wastewater sampling, approximately 10,000 students lived on campus and 25,000 160 

individuals were on campus on a daily basis. We found that wastewater test positivity correlated 161 

strongly with clinical test positivity at the same site (Figure 1B), showing that wastewater 162 

effectively captures the community infection dynamics based on total viral load. This is also 163 

consistent with our past studies that showed SARS-CoV-2 RNA can be detected ~85% of the 164 

time downstream from buildings containing individuals known to be infected8. 165 

 166 

Unlike qPCR-based mutant surveillance, genomic surveillance using full-length virus genomes 167 

can detect which strains of SARS-CoV-2 are circulating in the population, and can identify 168 

potential transmission links between infected individuals16,17. To test the utility of wastewater 169 

genomic surveillance for studying virus spread in the community, we obtained near complete 170 

virus genomes for wastewater samples with cycle threshold (Ct) values as high as 38 (median 171 

genome coverage: 96.49% [75.67% - 100.00%], Extended Data Figure 1). However, using two 172 

common metrics of virus diversity, Shannon entropy (a measure of the uncertainty associated 173 

with randomly sampling an allele) and richness (the number of single nucleotide variant, or 174 

SNV, sites)18, we found that SARS-CoV-2 genetic diversity is significantly greater in wastewater 175 

samples than clinical samples (Figure 1C, Mann-Whitney U test, p<0.001 for each). This 176 

suggests that multiple virus lineages, likely shed from different infected individuals, are often 177 

present in wastewater samples.  178 
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 179 
Figure 1: Campus sampling locations and SARS-CoV-2 testing statistics. A. Geospatial 180 

distribution of the 131 actively deployed wastewater autosamplers and the corresponding 360 181 

university buildings on the campus sewer network. Building-specific data have been de-182 

identified in accordance with university reporting policies. B. Campus wastewater and diagnostic 183 

testing statistics over the 295 day sampling period (WW = wastewater, positivity is the fraction 184 

of WW samplers with a positive qPCR signal). C.Virus diversity in wastewater and clinical 185 

samples: Boxplots of Shannon entropy (top) and richness (bottom) for each sample type. 186 

 187 

Sample deconvolution robustly recovers the abundance of SARS-CoV-2 lineages in mixed 188 

samples 189 

 190 
Wastewater systems aggregate stool, urine, and other biological waste products carrying viruses 191 

from multiple infected individuals in the community in a single location, allowing for sampling 192 

of virus mixtures that are representative of local lineage prevalence. However, existing methods 193 

for determining virus lineage from sequencing are intended for non-mixed clinical samples and 194 

can only be used to identify a single (dominant) lineage per sample. 195 

 196 

To fully capture the virus diversity in community biospecimens, we developed Freyja, a tool to 197 

estimate the relative abundance of virus lineages in a mixed sample. Freyja uses a “barcode” 198 

library of lineage-defining mutations to represent each SARS-CoV-2 lineage in the global 199 

phylogeny19(Figure 2A). To encode each sample, Freyja stores the SNV frequencies (proportion 200 

of reads at a site that contain the SNV) for each of the lineage-defining mutations (Figure 2B, 201 

top). Since SNV frequencies at positions with greater sequencing depth more accurately estimate 202 

the true mutation frequency, Freyja recovers relative lineage abundance by solving a depth-203 

weighted least absolute deviation regression problem, a mixed sample analog of minimizing the 204 

edit distance between sequences and a reference (Figure 2B, bottom). To ensure results are 205 

meaningful, Freyja constrains the solution space such that each lineage abundance value is non-206 

negative, and overall lineage abundance sums to one. 207 

 208 

To validate Freyja, we sequenced “spike-in” synthetic mixtures from five key SARS-CoV-2 209 

lineages (Lineage A, Beta, Delta, Epsilon, and Gamma) at proportions ranging from 5% to 100% 210 

in each sample, with between 1 and 5 different lineages per mixture (Figure 2C, and see Table 211 

1). We found that Freyja robustly recovered the expected lineage abundances for all mixtures, 212 

even for lineages at 5% abundance (Figure 2D, and see Extended Data Figure 2 for lineage 213 

specific predictions).To further validate Freyja, we used wastewater samples from the UCSD 214 
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isolation dorms as well as Point Loma wastewater treatment plant, collection sites likely to 215 

contain mixed-lineage samples, to compare Freyja-detected lineages with qPCR testing for 8 216 

mutations associated with different variants of concern (N501Y, DelHV69/70, DelY144, K417N, 217 

K417T, E484Q, P681R and L452R, Figure 2E). We found that Freyja consistently identified the 218 

same lineages as qPCR testing, but, as expected, also identified additional lineages with SNVs 219 

not included in our qPCR panel that were known to be circulating in San Diego at the time of 220 

collection. Combined, these results show that Freyja robustly estimates viral lineage abundance 221 

from samples containing a mixture of lineages, including synthetic virus mixtures and field 222 

wastewater collections.   223 

 224 

 225 
 226 

Figure 2: Sample deconvolution robustly recovers relative virus abundance. A. Subset of 227 

lineage defining mutation “barcode” matrix. Each row represents one lineage (out of >1000 228 

lineages included in the UShER global phylogenetic tree), and individual nucleotide mutations 229 

are represented as columns.  B. Single nucleotide variant frequencies obtained from iVar used for 230 

recovering relative abundance of each lineage. C. Schematic of the spike-in validation 231 

experiment. D. Depth-weighted de-mixing estimates of the virus abundance versus 232 

expected/known abundance. Details on lineage specific predictions are provided in 233 

Supplemental Figure 2. E. Comparison of wastewater sample deconvolution with VOC qPCR 234 

panel, with lookup table (bottom) showing amino acid mutations corresponding to each variant.  235 

 236 

Detection of early and cryptic community transmission in wastewater 237 

  238 
SARS-CoV-2 RNA concentrations in wastewater have been shown to be an early indicator of 239 

rising COVID-19 community incidence8,20 (and see Extended Data Figure 3A), but whether 240 
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wastewater can be used to detect emerging variants, including VOCs and VOIs, prior to their 241 

observation in clinical surveillance is unknown. To test if wastewater can enable early detection 242 

of emerging lineages, we applied Freyja to our wastewater sequencing data and compared the 243 

collection date of VOC positive samples from wastewater with the collection dates of samples 244 

from clinical genomic surveillance (Figure 3A). With only 2.6% as many sequenced wastewater 245 

samples as sequenced clinical samples, we detected the Alpha and Delta VOC lineages in 246 

wastewater genomic surveillance up to 14 days prior to their first detection in genomic clinical 247 

surveillance (Epsilon was circulating at the start of wastewater collection, and thus could not be 248 

detected early). Since emerging VOC lineages may evade immune responses or lessen the 249 

effectiveness of public health interventions16, this early detection provides additional time to 250 

make necessary adjustments to existing countermeasures.     251 

 252 

To test if wastewater genomic surveillance can identify changes in the abundance of circulating 253 

lineages, we compared VOC detection rates in clinical and wastewater sequencing over time. We 254 

found that both wastewater and clinical genomic surveillance tracked changes in lineage 255 

abundance, but increases in lineage detection frequency were generally observed first in 256 

wastewater surveillance. For example, for the Epsilon variant, which was first detected in San 257 

Diego in September of 2020, we observed increases in detection frequency in wastewater 258 

approximately 5 days prior to the corresponding increase in clinical genomic surveillance data 259 

(Figure 3A, see Methods). To study the effectiveness of wastewater genomic surveillance at a 260 

smaller community scale, we restricted our analysis to samples from the UCSD campus. We 261 

found that wastewater genomic surveillance consistently identified the three major VOCs 262 

(Epsilon, Alpha, and Delta) throughout their period of occurrence, despite detection gaps of one 263 

month or longer in clinical surveillance that included regular asymptomatic testing (Figure 3B). 264 

From mid-December to late-March, the Alpha variant was detected more than once per week on 265 

average in wastewater but was not detected by clinical surveillance. Similarly, wastewater 266 

surveillance detected continued Delta transmission from mid-April to mid-June, but no cases 267 

were identified by clinical surveillance.  268 
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 269 
 270 

Figure 3: Freyja recovers early and cryptic transmission of SARS-CoV-2 variants of 271 

concern A. Timeline and normalized epidemiological curves for VOC detection in both 272 

wastewater and clinical sequences from San Diego County for the 3 major VOCs in circulation 273 

during the sampling period. Both Alpha and Delta are detected first in wastewater before clinical 274 

samples. Markers for clinical detections correspond to the ceiling of the detection count divided 275 

by 30, while wastewater markers correspond to a single detection. B. Timeline and 276 

epidemiological curves for VOC detection in the campus samples. Markers correspond to a 277 

single detection event for both clinical and wastewater surveillance. All wastewater detections 278 

correspond to an estimated VOC prevalence of at least 10%.  279 

 280 

To study the effectiveness of wastewater surveillance in detecting and tracking other emerging 281 

variants, we aggregated all wastewater sequencing data to estimate the temporal profile of 282 

community lineage prevalence. We found that estimates of lineage abundance using wastewater 283 

enable early identification of other VOCs/VOIs, even for lineages that are rarely observed in 284 
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clinical surveillance (Figure 4). For example, we detected the Mu (B.1.621) variant via 285 

wastewater genomic surveillance on July 27th, nearly four weeks prior to its first detection 286 

through clinical genomic surveillance on campus, on August 23rd (Figure 4A,C). However, 287 

despite persistent Mu detection in campus wastewater throughout July and early August, we did 288 

not detect the Mu variant in clinical or wastewater genomic surveillance on campus in 289 

September, suggesting that local community transmission did not continue. In more recent data, 290 

we identified the Omicron variant (B.1.1.529 and descendants) at an abundance of near 1% on 291 

November 27th, more than 1 week prior to the first clinical detection in San Diego on December 292 

8th (Extended Data Table 2). To confirm these findings, we applied our VOC qPCR panel to 293 

the same samples and consistently detected two mutations associated with the Omicron variant 294 

(DelHV69/70 and N501Y) in samples detected after November 27th, while neither was detected 295 

in samples from earlier in November.  296 

 297 

To test if Freyja continues to provide representative estimates of lineage prevalence for mixtures 298 

containing closely related lineages, we analyzed the rise of the Delta variant (B.1.617.2) and its 299 

sublineages (AY.*) in San Diego, from June-September 2021 (Extended Data Figure 3B,C). At 300 

both the UCSD campus and the Point Loma wastewater treatment plant, we identified the rapid 301 

emergence of B.1.617.2 and its sublineages (AY.*), along with low but persistent levels of the 302 

P.1 (Gamma) variant. The relative abundances of each of the variants were within 2-fold of 303 

prevalence estimates observed in clinical nasal swab data, suggesting that Freyja effectively 304 

identifies prevalence even for closely related lineages, both at the university and county-scale.  305 

 306 
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307 

Figure 4: Deconvolution recovers a fine-grained estimate of virus population dynamics. A. 308 

Prevalence of SARS-CoV-2 variants in UCSD clinical surveillance, and B. Variant prevalence in 309 

all clinical samples collected in San Diego County. C,D. Variant prevalence in wastewater at 310 

UCSD as well as the greater San Diego County (includes wastewater samples collected from 311 

Point Loma wastewater treatment plant as well as public schools in the San Diego districts). 312 

Further analysis of Point Loma wastewater samples is shown in Extended Data Figure 3. All 313 

curves show rolling average, window ±10 days. “Other” contains all lineages not designated as 314 

VOCs. Bottom panels show number of sequenced samples per day.  315 

 316 

Wastewater identifies both known and unknown history of campus infections 317 

 318 

Phylogenetic analysis of virus genomes can be used to identify fine-scale spatial and temporal 319 

transmission networks, but it is unknown if wastewater can be used to further refine possible 320 

sites of transmission, elucidate transmission networks (“who-infected-whom”), or identify 321 

specific infected individuals17. To investigate the scale, structure, and timing of SARS-CoV-2 322 

spread on campus, we reconstructed a maximum likelihood phylogenetic tree for each of the 323 

major VOCs using all high-quality genomes (see Methods for details) obtained from the UCSD 324 

0

 

 in 
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campus, as well as reference sequences for each lineage obtained elsewhere in the United States 325 

(Figure 5A-C). In each tree, we identified many independent introductions, some of which led to 326 

extended transmission on campus. The resulting virus diversity among the VOCs present on 327 

campus enables ruling out of most transmission links and suggests campus virus spread consisted 328 

of many separate, small outbreaks. 329 

 330 

To analyze the spatial structure of virus spread, we identified collection sites for wastewater 331 

sequences connected to transmission chains on campus, with building-specific resolution 332 

(Figure 5 A-C, building specific transmission data available upon request). We observed 333 

multiple small, linked outbreaks clustered in nearby buildings. Campus isolation protocol 334 

required students in congregate living to relocate to an isolation dorm and linkages in the 335 

isolation dorm wastewater samples reflected this co-location. We also found multiple instances 336 

of successive exactly matching sequences from wastewater collected from a single building, 337 

suggesting continued viral shedding from the same infected individuals, possibly due to extended 338 

shedding in stool21,22. 339 

 340 

To study the temporal delay between clinical and wastewater lineage detection, we compared 341 

collection times of sequences from campus wastewater that match sequences from campus 342 

clinical surveillance (including non-VOC lineages). We found 20 exact sequence matches and 343 

103 near-matches (SNP distance of 3 or less) but did not observe any overall bias towards earlier 344 

or later detection in wastewater (Figure 5D), suggesting that on average, wastewater and clinical 345 

genomic surveillance identify a similar timing of individual detection events. However, in cases 346 

of delayed or missed detection by clinical surveillance, detections occur first in wastewater, 347 

further suggesting that wastewater genomic surveillance can reveal the presence of specific 348 

genome sequences prior to clinical surveillance.  349 

 350 

 351 
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 352 
Figure 5: Wastewater identifies clinically known and unknown virus transmission. A-C. 353 

Maximum likelihood phylogenetic trees for each of the dominant variants of concern using high 354 

quality samples obtained at UCSD, as well as a representative set of sequences from the entire 355 

United States. Wastewater sequences from the same sampler that differ by 1 or fewer SNPs are 356 

denoted with a red asterisk. Location information is provided for select outbreaks. D. Pairwise 357 

comparison of collection date for matching and near-matching wastewater and nasal swab 358 

samples obtained at UCSD. Positive values indicate earlier collection in nasal swabs, and 359 

negative values indicate earlier detection in wastewater.  360 
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 361 

Discussion 362 

 363 

We show that improved virus concentration from wastewater, coupled with a method for 364 

resolving multiple lineages from mixed samples, captures community virus lineage prevalence 365 

and enables early detection of emerging variants, often before observation in clinical 366 

surveillance. By sequencing both clinical and wastewater samples from the UCSD campus, we 367 

detect VOCs persistently in wastewater even when their appearance in clinical samples is 368 

intermittent. However, we also found occasions when rarer lineages, like B.1.1.318, were 369 

detected in clinical samples but not in wastewater. This is not unexpected on campus since many 370 

students living off-campus did not contribute to campus wastewater but were still clinically 371 

tested as part of testing mandates and policies. In the larger San Diego community context, this 372 

suggests that we may not be able to identify lineages circulating at low prevalence using a single 373 

wastewater collection site. In addition, we note that clinical sequences identified from the 374 

community may not be observable in the contributing catchment, as precise geolocation of all 375 

clinical samples was not possible. On the other hand, we also observed rare lineages in 376 

wastewater not seen in clinical samples from campus or the community. Since campus testing 377 

mandates are unable to capture all cases (e.g. fully vaccinated individuals were not required to 378 

test and not all community samples were sequenced), rare lineages can be missed. 379 

 380 

The considerable benefits of wastewater surveillance may stem from biases in clinical testing, 381 

including population testing availability and compliance, university quarantine policies, and 382 

asymptomatic transmission, which may distort estimates of virus lineage prevalence from 383 

clinical samples. Wastewater offers less biased and more consistent viral lineage prevalence 384 

estimates, especially in areas with limited access and/or higher testing hesitancy rates. Since it 385 

requires considerably fewer samples, it is also more cost-effective than clinical testing, and could 386 

serve as a long-term passive surveillance tool. This is particularly important for developing 387 

public health interventions in low-resource and underserved communities, where widespread 388 

clinical genomic surveillance for SARS-CoV-2 remains limited. 389 

 390 

Wastewater is an information-dense resource for estimating the prevalence of specific viral 391 

lineages, providing a community wide-snapshot not only of overall infection dynamics but of the 392 

rise and fall of specific VOCs. Our method, Freyja, deconvolutes these information-rich mixtures 393 

of virus lineages. For a large catchment area, such as San Diego’s Point Loma wastewater 394 

treatment plant, which covers over 2 million residents, even limited sampling may accurately 395 

estimate lineage prevalence in the population and provide an early warning indicator of the rise 396 

of new VOCs. In addition, wastewater genomic surveillance with building-level resolution 397 

provides a detailed description of the structure and dynamics of community virus transmission, 398 

and can be used to better direct public health interventions. 399 

 400 

As SARS-CoV-2 continues to evolve, the risk of new VOCs remains high and there is a growing 401 

need to identify these viruses ahead of their proliferation in the community. Accordingly, 402 

development of technologies that are cost-effective, reduce biases, and provide leading rather 403 

than trailing indicators of infection are essential to removing “blind spots” in our understanding 404 

of local virus dynamics. Although technical issues have made wastewater sequencing difficult to 405 

perform at scale, our key advances in virus concentration and sample deconvolution provide 406 
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evidence that this approach is now viable. Continued improvements to sequencing turnaround 407 

speeds, lineage barcoding, and haplotype recovery from mixed samples will further accelerate 408 

efforts to achieve earlier identification of emerging variants and improve the precision and 409 

effectiveness of interventions.   410 

 411 

Methods 412 

 413 

Wastewater sampling 414 
  415 

High-resolution spatial sampling at the campus level 416 

131 wastewater autosamplers collecting 24h time-weighted composites were deployed across 417 

manholes or sewer cleanouts of 360 campus buildings. GIS (geographic information systems) 418 

informed analyses as well as agent-based network modeling of SARS-CoV-2 transmission on the 419 

UCSD campus enabled identification of most optimal locations for wastewater sampling. During 420 

the pilot phase (November 23-Dec 29th 2020), 68 samplers were prioritized to cover 239 421 

residential buildings identified as the highest risk areas for large outbreaks on campus as a part of 422 

an observational study of wastewater monitoring in high-density buildings 23. This was based on 423 

preliminary dynamic modeling which showed the largest potential outbreaks to occur within the 424 

largest residential buildings 8. In addition to the observational study of wastewater monitoring in 425 

these high-density buildings, a cluster randomized study was also performed concurrently. This 426 

included a randomized modified version of a stepped wedge crossover design, in which there 427 

was random assignment of manholes for wastewater sampling. Clusters of manholes associated 428 

with residential buildings were randomized to receive wastewater monitors at one of two-time 429 

steps to evaluate the impact of wastewater monitoring on outbreak size in the associated 430 

buildings. During the same time period, all students in these residences were mandated to 431 

undergo weekly diagnostic testing which was used to validate the utility of building-level 432 

wastewater monitoring. Furthermore, on-campus residences were initially focused due to the 433 

relatively static nature of the population which enabled a more robust cross-validation of the 434 

sensitivity and efficacy of the wastewater surveillance. The coverage of wastewater surveillance 435 

was then increased to cover the rest of the campus buildings (including non-residential buildings 436 

on campus) from January 2021. Four of the deployed wastewater samplers covered the 437 

designated isolation and quarantine buildings on campus. 438 

Wastewater composites were collected from the 131 samplers every day for the on-campus 439 

residence buildings and Monday through Friday for the nonresidential campus buildings. 19,944 440 

wastewater samples were collected and analyzed for the presence of SARS-CoV-2 RNA via RT-441 

qPCR between November 23rd 2020 and September 20th 2021. During this time, 9700 students 442 

lived in campus residences and 25,000 worked on campus on a daily basis. Between October 443 

2020 to January 1st 2021, all on-campus residents were mandated to test on a bi-weekly basis 444 

and on a weekly basis from January 2nd 2021 (start of the Winter term). However, fully 445 

vaccinated individuals were not mandated to test on a regular basis. Automated, localized 446 

wastewater-triggered notifications were sent to the residents/employees of buildings associated 447 

with a positive wastewater signal which further led to a surge in testing uptake rates by 2 to 40-448 

fold in the associated buildings.  449 

  450 

Wastewater sampling at the county level 451 
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24h flow-weighted composites were collected thrice a week from the main pump station for the 452 

Point Loma wastewater treatment plant, the primary treatment plant serving the greater San 453 

Diego county with a catchment size of approximately 2.3 million. 96 wastewater samples were 454 

collected between February 24th 2021 to October 20th 2021.  455 

 456 

Wastewater sample processing and viral genome sequencing 457 

 458 

Sample processing 459 

SARS-CoV-2 RNA was concentrated from 10ml of raw sewage and processed as described 460 

elsewhere6. In brief, the viral RNA was concentrated using an automated affinity capture 461 

magnetic hydrogel particle (Ceres Nanosciences Inc., USA) based concentration method after 462 

which the nucleic acid was extracted and sample eluted in 50uL of elution buffer. The extracted 463 

RNA was then screened for SARS-CoV-2 RNA via RT-qPCR for 3 gene targets (N1, N2 and E-464 

gene). PMMoV (pepper mild mottle virus) was also screened to adjust for changes in load. To 465 

cross-validate the ability of the deconvolution tool in reliably resolving mixtures of strains in 466 

wastewater, the wastewater samples from the county as well as the ones from the isolation dorms 467 

on campus (where multiple infected individuals were isolating) were also run through a PCR 468 

panel targeting 8 mutations associated with the strains designated as VOCs. The mutations 469 

screened for in wastewater using RT-qPCR included N501Y, DelHV69/70, DelY144, K417N, 470 

K417T, E484Q, P681R and L452R (Promega Corp. Cat# CS3174B02).  471 

 472 

Miniaturized wastewater SARS-CoV-2 amplicon sequencing  473 

The Swift Normalase® Amplicon Panels (SNAP) kit (PN: SN-5X296 (core) COVG1V2-96 474 

(amplicon primers), Integrated DNA Technologies, Coralville, IA) was used on RNA from 475 

wastewater samples that were positive for SARS-CoV-2 RNA to prepare the multiplex NGS 476 

amplicon libraries and indexed using the SN91384 series of dual indexing oligos, yielding up to 477 

1536 index pairs per pool. A miniaturized version of the protocol was used with the following 478 

modifications: the Superscript IV VILO (Thermo Fisher, Carlsbad, CA) cDNA synthesis 479 

reaction was scaled down to ~1/12 the normal reaction volume with 0.333uL of enzyme mix and 480 

1.333uL of RNA being used. The multiplex amplicon amplification and Ampure XP bead 481 

purification steps were scaled down ~1/6 the normal reaction volume. The Index adapter PCR 482 

reaction and Ampure XP bead purification steps were scaled down to ~2/13 the normal reaction 483 

volume.  The final library resuspension volume was 29uL. 1uL of each library was pooled for an 484 

initial shallow NGS run on a MiSeq (Illumina, San Diego, CA) using a Nano flow cell.  This 485 

equal volume pool was used to estimate the differential volumes required for similar read depths 486 

across samples using a NovaSeq SP or S4 flow cell (Illumina, San Diego, CA). Between 5uL and 487 

0.2uL of library material, depending on the data provided from the MiSeq Nano run, was 488 

pipetted into a single pool for the NovaSeq run. Transfer volumes were capped at 5uL to reduce 489 

pipetting time and because these types of “high volume” samples typically contained a higher 490 

proportion of likely adapter dimers that inhibit flow cell performance for all samples. A 491 

Dragonfly Discovery (SPT Labtech, UK) was used to dispense reaction master mixes or water 492 

depending on the step.  A BlueWasher (BlueCatBio, MA) was used for high throughput 493 

centrifugal 384-well plate washing during the AmpureXP bead reaction cleanup steps. An IKA 494 

MS3 Control linear plate mixer (IKA Works Inc, Wilmington, NC) set to 2600 RPM for 5’ was 495 

used to resuspend the AmpureXP beads during the rehydration steps. A Mosquito Genomics HV 496 

16 channel robotic liquid handler (SPT Labtech, UK) was used to dispense the RNA, the reaction 497 
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master mixes, and prepare the equal volume pools for the initial MiSeq Nano (Illumina, San 498 

Diego, CA) balancing runs.  A Mosquito X1 single channel “hit picker” robotic liquid handler 499 

(SPT Labtech, UK) was used for the final library balancing for the NovaSeq (Illumina, San 500 

Diego, CA) NGS lanes. 501 

 502 

Sequencing data were analyzed using the C-VIEW (COVID-19 VIral Epidemiology Workflow) 503 

platform for initial QC and SARS-CoV-2 lineage assignment and phylogenetics. In brief, 504 

sequencing reads are aligned with minimap224, and primer sequences trimming and quality 505 

filtering is applied using the iVar trim method18. Sequencing depth and single nucleotide variant 506 

(SNV) calls are obtained using samtools mpileup25 and the iVar variants method18.  507 

 508 

Virus diversity 509 

 510 

As reported previously18, virus SNVs were used to characterize the populations derived from 511 

wastewater and clinical samples. Richness was defined as the total number of SNV sites, and 512 

mean Shannon entropy was defined as 513 

 514 

 515 

 516 

Wastewater sample deconvolution 517 

 518 

To infer relative abundance within a wastewater sample, we use a “barcode” matrix containing 519 

the lineage defining mutations for each known virus lineage, 520 

 521 

 522 

 523 

where  denotes the i-th lineage, at mutation j. Lineage defining mutations are obtained from 524 

the UShER global phylogenetic tree using the matUtils package13.  Similarly, we let  and  525 

encode the frequency of each mutation and the corresponding sequencing depth (using the log-526 

transform  to adjust for large differences in depth across amplicons) , 527 

 528 

  529 

 530 

We can then write this as a constrained (weighted) least absolute deviations problem 531 

  532 

which yields the “demixing” vector  that specifies the relative abundances of 533 

each of the known haplotypes. Analysis was only performed on samples with greater than 70% 534 

coverage, with the exception of March samples from UCSD for which all samples with greater 535 

6
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than 50% coverage were used. Constrained minimization is performed in Python using the cvxpy 536 

convex optimization package26,27.  Mapping of lineages to variant WHO lineages (VOCs, VUMs, 537 

etc.) is performed using curated lineage data from outbreak.info1. 538 

 539 

Spike-in mixture experiment 540 

 541 

RNA was isolated from supernatants of a mammalian cell culture infected with one of five 542 

strains of SARS-CoV-2. (A, B.1.1.7, B.1.351, P.1, or B.1.617.2). 543 

  544 

RNA concentration standardization 545 

Virus concentration was quantified by the UCSD EXCITE COVID testing laboratory using the 546 

Thermo COVID-19 Test kit (PN:A47814, Thermo Scientific Corporation, Carlsbad, CA).  The 547 

median Cq values (N-gene, Orf1ab, & S-gene (where applicable)) was calculated and used to 548 

determine how much the RNA needed to be diluted with water to reach a Cq value of 23.  A post 549 

dilution RT-qPCR reaction was performed and used to calculate the final dilution of the more 550 

concentrated samples to the new target value of Cq 23.296.  The number of freeze thaw cycles 551 

between RNA samples was kept the same.  552 

  553 

Virus Mixing 554 

RNA standardized in the prior section was used to make a volumetric mixing array (final volume 555 

10uL) using a Mosquito X1 HV robotic liquid handler (SPT Labtech, UK).  Pairwise mixes of 556 

5:95, 10:90, 20:80, 60:40, and 50:50 were made for each virus strain and in both directions.  557 

Equal mixes (20%) for each of the five test strains were made.  25% mixes and 33% mixes were 558 

made for a subset of possible combinations and controls of 100:0 were prepared.  See Table 1 for 559 

complete array. 560 

 561 

Estimation of delay in detection frequency 562 

 563 
Estimation of the lag time between epidemiological curves for wastewater and clinical 564 

surveillance of the Epsilon variant in San Diego was performed by identifying the shift with 565 

maximal cross-correlation. All time points leading up to the time of initial peak in detection 566 

frequency were included for both wastewater and clinical data.  567 

 568 

Phylogenetic analyses 569 

 570 

Reconstruction of maximum likelihood trees was performed on all SARS-CoV-2 VOC genomes 571 

with 10x genome coverage >95% and quality score >20 obtained from UCSD campus sampling, 572 

using IQtree28. This analysis included 150 (112 clinical, 38 wastewater) Epsilon, 49 (37 clinical, 573 

12 wastewater) Alpha, and 160 (136 clinical, 24 wastewater) Delta lineage genomes from 574 

UCSD, in addition to 60 Epsilon, 20 Alpha, and 39 Delta randomly selected genomes from 575 

elsewhere in the United States. We also masked known homoplasic sites prior to tree 576 

reconstruction29. Analysis of temporal comparison was performed on 608 samples (443 clinical, 577 

165 wastewater, all lineages were included) with 10x genome coverage >95% and quality score 578 

>20 from UCSD. Sample collection SNP distances were calculated without considering 579 

ambiguous bases and gaps.  580 

 581 
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Code availability 582 

 583 
Freyja is hosted publicly on github (https://github.com/andersen-lab/Freyja) and is available 584 

under a BSD-2-Clause License. Freyja is accessible as a package via bioconda  585 

(https://bioconda.github.io/recipes/freyja/README.html) in container form via dockerhub 586 

(https://hub.docker.com/r/andersenlabapps/freyja). COVID-19 VIral Epidemiology Workflow 587 

(C-VIEW) is  available at https://github.com/ucsd-ccbb/C-VIEW as an open-source, end-to-end 588 

workflow for viral epidemiology focused on SARS-CoV-2 lineage assignment and 589 

phylogenetics. 590 

 591 

Data Availability 592 

 593 

Consensus sequences from clinical and wastewater surveillance are all available on GISAID. 594 

Spike-in sequencing data is available via google cloud 595 

(https://console.cloud.google.com/storage/browser/search-reference_data). 596 
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Extended Data: 
 
Extended Data Table 1: Platemap of spike-in mixtures used for method validation 
 

 
1 2 3 4 5 6 

A 5% Delta: 95% A 10% Delta: 90% A 20% Delta: 80% A 40% Delta: 60% A 50% Delta: 50% A 100% A 

B 5% Delta: 95% Beta 10% Delta: 90% Beta 20% Delta: 80% Beta 40% Delta: 60% Beta 50% Delta: 50% Beta 100% Delta 

C 5% Delta: 95% Gamma 10% Delta: 90% Gamma 20% Delta: 80% Gamma 40% Delta: 60% Gamma 50% Delta: 50% Gamma 100% Beta 

D 5% Delta: 95% Alpha 10% Delta: 90% Alpha 20% Delta: 80% Alpha 40% Delta: 60% Alpha 50% Delta: 50% Alpha 100% Gamma 

E 5% Beta: 95% A 10% Beta: 90% A 20% Beta: 80% A 40% Beta: 60% A 50% Beta: 50% A 100% Alpha 

F 5% Beta: 95% Delta 10% Beta: 90% Delta 20% Beta: 80% Delta 40% Beta: 60% Delta 50% Beta: 50% Delta 

20% A: 20% Delta: 20% 

Beta: 20% Gamma: 20% 

Alpha 

G 5% Beta: 95% Gamma 10% Beta: 90% Gamma 20% Beta: 80% Gamma 40% Beta: 60% Gamma 50% Beta: 50% Gamma 

25% Delta: 25% Beta 

: 25% Gamma: 25% 

Alpha 

H 5% Beta: 95% Alpha 10% Beta: 90% Alpha 20% Beta: 80% Alpha 40% Beta: 60% Alpha 50% Beta: 50% Alpha 
25% Delta: 25% Beta: 

25% Gamma: 25% A 

I 5% Gamma: 95% A 10% Gamma: 90% A 20% Gamma: 80% A 40% Gamma: 60% A 50% Gamma: 50% A 
25% Delta: 25% Beta: 

25% A: 25% Alpha 

J 5% Gamma: 95% Delta 10% Gamma: 90% Delta 20% Gamma: 80% Delta 40% Gamma: 60% Delta 50% Gamma: 50% Delta 
25% Delta: 25% A: 25% 

Gamma: 25% Alpha 

K 5% Gamma: 95% Beta 10% Gamma: 90% Beta 20% Gamma: 80% Beta 40% Gamma: 60% Beta 50% Gamma: 50% Beta 
25% A: 25% Beta: 25% 

Gamma: 25% Alpha 

L 5% Gamma: 95% Alpha 10% Gamma: 90% Alpha 20% Gamma: 80% Alpha 40% Gamma: 60% Alpha 50% Gamma: 50% Alpha 
33% Delta: 33% Beta: 

33% Gamma 

M 5% Alpha: 95% A 10% Alpha: 90% A 20% Alpha: 80% A 40% Alpha: 60% A 50% Alpha: 50% A 
33% Delta: 33% Beta: 

33% Alpha 

N 5% Alpha: 95% Delta 10% Alpha: 90% Delta 20% Alpha: 80% Delta 40% Alpha: 60% Delta 50% Alpha: 50% Delta 
33% Delta: 33% Alpha: 

33% Gamma 

O 5% Alpha: 95% Beta 10% Alpha: 90% Beta 20% Alpha: 80% Beta 40% Alpha: 60% Beta 50% Alpha: 50% Beta 
33% Alpha: 33% Beta: 

33% Gamma 

P 5% Alpha: 95% Gamma 10% Alpha: 90% Gamma 20% Alpha: 80% Gamma 40% Alpha: 60% Gamma 50% Alpha: 50% Gamma Neg 
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Extended Data Table 2: Omicron surveillance at Point Loma Wastewater Treatment Plant 
 

Collection Date 
Estimated Omicron 

Abundance 

qPCR Detection 

DelHV69/70 N501Y P681R 

11/8/21 NS     x 

11/13/21 NS     x 

11/14/21 NS     x 

11/16/21 NS     x 

11/20/21 NS     x 

11/21/21 0     x 

11/27/21 0.6% x x x 

11/28/21 0 (Low Coverage) x x x 

12/1/21 0.8% x x x 

 
  

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 27, 2021. ; https://doi.org/10.1101/2021.12.21.21268143doi: medRxiv preprint 

https://doi.org/10.1101/2021.12.21.21268143
http://creativecommons.org/licenses/by-nd/4.0/


 

 25

 

 
Extended Data Figure 1: Relationship between genome coverage and cycle threshold. 10X 
genome coverage remains high, even for Ct values of nearly 38. Points indicate median value in 
each bin, while error bars indicate the median absolute deviation.   
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Extended Data Figure 2: Lineage-specific prediction of variant abundance in spike-in 
validation samples. A. Schematic of “spike-in” sample design. B-F. Lineage specific prediction. 
Proportions of each lineage in the sample are shown as a pie chart marker (Grey = Lineage A, 
Orange = Alpha, Pink = Beta, Turquoise = Delta, and Purple = Gamma) with error bars 
indicating the standard deviation from the mean, across four replicates.   
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Extended Data Figure 3: The rise of the Delta variant during Summer 2021. A. Mean 
SARS-CoV-2 viral gene copies/L of raw sewage (blue) collected from the Point Loma 
Wastewater Treatment Plant and caseload (gray) reported by the county during the same period. 
SARS-CoV-2 concentrations were normalized by PMMoV (pepper mild mottle virus) 
concentration to adjust for load changes. B. Lineage distribution in UCSD campus wastewater. 
C. Monthly lineage averages for wastewater collected at Point Loma Wastewater Treatment 
Plant during the Delta surge (N= 5, 20, 25, 7) 
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