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This study is aimed to acquire a better understanding of the seismic behavior of 

reinforced masonry (RM) structures at a system level, and to develop frame models for 

simulating the nonlinear flexural and shear behaviors of these wall systems. To capture the 



xxxiv 

 

nonlinear, in-plane, cyclic behavior of flexure-dominated RM walls, a rational modeling 

method along with suitable material models, using a fiber-section beam-column element 

idealization is presented. The modeling method accounts for the buckling and low-cycle 

fatigue of vertical reinforcing bars as well as plastic strain localization, which may develop 

in RM walls under severe seismic actions. The model has been validated by experimental 

data on fully grouted planar walls and T-walls. In addition, a rational and simple method 

to construct lateral force-vs.-lateral displacement backbone curves is also presented. The 

proposed method produces backbone curves that show a good agreement with experimental 

data from the quasi-static, cyclic, loading tests of walls with rectangular and T sections. 

There had been a lack of experimental data showing the ultimate displacement 

capacity of shear-dominated RM wall systems. To fill this data gap, a shake-table test 

program was carried out to investigate the displacement capacity of shear-dominated RM 

wall systems, and the influence of wall flanges and planar walls perpendicular to the 

direction of shaking (out-of-plane walls) on the seismic performance of a wall system. Two 

full-scale, single-story, fully grouted, RM wall specimens were tested to the verge of 

collapse. Each specimen had two T-walls as the seismic force resisting elements and a stiff 

roof diaphragm. The second specimen had six additional planar walls perpendicular to the 

direction of shaking. The two specimens reached maximum roof drift ratios of 17% and 

13%, respectively, without collapsing. The high displacement capacities can be largely 

attributed to the presence of wall flanges and, for the second specimen, also the out-of-

plane walls, which provided an alternative load path to carry the gravity load when the 

webs of the T-walls had been severely damaged.  

A computationally efficient beam-column model is proposed to simulate the 
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nonlinear flexural and shear behaviors of reinforced masonry shear walls for time-history 

analysis. A three-field mixed formulation based on the Hu-Washizu variational principle 

is adopted. This mixed element is free of shear locking, and allows a wall to be modeled 

with one element. To capture the nonlinear behavior of a reinforced masonry wall, the axial 

and flexural responses are evaluated at each integration point along the element with a 

fiber-section model, while the shear response in each loading direction is represented by a 

macro material model. The model accounts for the influence of the axial load, wall aspect 

ratio, and the flange on the shear response of a wall. To consider axial-flexure-shear 

interaction, the shear model accounts for the axial stress resultant from the fiber-section 

model, and the compressive strength of masonry in the fiber-section model decreases when 

severe shear damage developed. The model has been calibrated and validated with 

extensive test data. It has been demonstrated that the model is able to reproduce the 

experimental results from quasi-static cyclic loading tests of single walls as well as shake-

table tests of wall systems with good accuracy. 
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CHAPTER 1 INTRODUCTION 

1.1. Background 

Masonry structures are widely used in north America and other countries of the 

world due to its beneficial features, such as cost-effectiveness, durability, and fire 

resistance. Traditional plain masonry structures with concrete or clay masonry units can 

develop brittle failures during an earthquake event, and therefore are not allowed to be used 

in high seismic areas, such as California. In North America, reinforced masonry (RM) is 

typically constructed of hollow concrete masonry units (CMU) with horizontal and vertical 

steel bars placed inside the units. The units may be fully or partially grouted. RM shear 

walls are the main seismic force resisting elements in RM structures. They can develop 

flexural and shear deformation mechanisms. These shear walls can have different cross-

sectional shapes, such as rectangular sections, T-sections, L-sections, etc. In an RM 

structure, walls are normally oriented in two orthogonal directions to resist the seismic 

forces in the respective directions. 

Modern RM structures may have all or part of the interior cells filled with grout. 

RM walls with all the interior cells filled with grout are referred as fully grouted. In many 

parts of the United States, it is more common to only place grout in cells containing vertical 

or horizontal reinforcing bars. This type of RM walls is called partially grouted.  

Past experimental studies (Shing et al., 1991) show that the ultimate lateral strength 

and strength deterioration of an RM shear wall can be governed by flexure, diagonal shear, 

and/or shear sliding, depending on its shear-span ratio, the applied axial load, and the 

reinforcement contents. Slender walls with high shear-span ratios tend to develop flexure-
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dominated failure, whereas walls with low shear-span ratios and insufficient amount of 

shear reinforcement are most likely to exhibit shear-dominated behavior, or shear slding.  

A flexure-dominated mechanism may include flexural cracking, the yielding, 

buckling, and fracture of the vertical reinforcement, masonry crushing at wall toes, and the 

failure of lap splices if any. Figures 1-1 and 1-2 show a flexure-dominated cantilever wall 

tested by Sherman (2011), together with its in-plane lateral force-vs.-displacement 

hysteresis curves. As shown, in the crushed toe regions, the exposed extreme vertical 

reinforcing bars were vulnerable to buckling due to severe spalling of the surrounding 

masonry. After a buckled bar has been subjected to a few cycles of straightening and 

bending as the wall has been pushed back and forth with cyclic load reversals, bar fracture 

may soon follow. This will lead to severe strength degradation in the wall. As can be seen 

from the hysteresis curves in Figure 1-2, walls dominated by flexure can exhibit a relatively 

ductile behavior. In general, a wall with a higher axial compressive load and/or a higher 

amount of vertical reinforcement will have less ductile flexural behavior. In reinforced 

concrete (RC) walls, it has been a common practice to have confined boundary elements 

to prevent the walls from severe toe crushing. However, because of the spatial constraints 

of masonry units for steel confinement, boundary elements are rarely used in RM walls. In 

recent years, experimental studies have been carried out to examine the effectiveness of 

different boundary element options in improving the displacement capacity of flexure-

dominated RM walls (Cyrier, 2012; Shedid and El-Dakhakhni, 2013; Banting and El-

Dakhakhni, 2012, 2014).  
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 (a) overall damage on the wall (b) crushing and bar buckling 

               at the toe 

Figure 1-1. Damage in a flexure-dominated wall (WSU-W-1A tested by Sherman, 2011) 

 

 

Figure 1-2.  In-plane lateral load-vs.-displacement curves for a flexure-dominated wall 

(WSU-W-1A tested by Sherman, 2011). 

 

The behavior of walls dominated by diagonal shear cracks is often very brittle, as 

shown by the lateral load-vs.-displacement hysteresis curves in Figure 1-3 for a wall tested 

by Ahmadi (2012). The failure of a shear-dominated wall is normally preceded by the 

development of diagonal shear cracks, which at the beginning may be restrained from 

opening by the horizontal shear reinforcement. However, once the diagonal shear capacity 

has been reached, diagonal cracks will open, and the lateral resistance of the wall may drop 
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rapidly. This may be accompanied by the tensile fracture or anchorage failure of the 

horizontal shear reinforcement. Limited ductility can be developed by a planar shear-

dominated wall if sufficient horizontal reinforcement is present. The vertical reinforcement 

may contribute to the shear resistance through the dowel action. However, this contribution 

is normally small as compared to that provided by the horizontal reinforcement. The shear 

strength of a wall depends on the wall aspect ratio, the strength of the masonry, the quantity 

of the shear reinforcement, and the applied axial compressive load. A portion of the shear 

resistance of a wall can be provided by the masonry in the compression toe of the wall. 

Because of this, diagonal shear failure may occur in some walls after the flexural strength 

of a wall has been reached and the masonry in the compressed toe has been crushed.  

  
                 (a) Failure mode                       (b) lateral load-vs.-drift ratio hysteresis curves 

 

Figure 1-3.  A shear-dominated RM wall (UT-PBS-02 tested by Ahmadi, 2012) 

 

RM walls with a low aspect ratio and low axial compressive load are likely to 

develop shear sliding failure along the base of a wall or in a bed joint a few courses away 

from the base. The sliding shear resistance of a wall depends on the surface roughness, the 

clamping force developed by the vertical reinforcement crossing the shear plane, the 

applied axial compressive load, and, to a lesser extent, the dowel action of the vertical 
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reinforcement. Walls dominated by shear sliding can exhibit a gradual degradation of the 

lateral load resistance, as shown in Figure 1-4. Shear sliding can exacerbate masonry 

crushing in the vicinity of the sliding plane, activating the dowel action of the vertical bars, 

which may cause damage to the surrounding masonry and lead to the shear fracture of the 

vertical bars at the shear plane. Significant base sliding may also induce severe damage to 

the other structural and non-structural components, such as the walls perpendicular to the 

direction of sliding, and may jeopardize the stability of the gravity frame that is present in 

the structure. Shear-sliding failure can be prevented by intentionally roughening the surface 

between an RM shear wall and the top surface of the footings. 

 
                 (a) Failure mode                     (b) In-plane lateral load-vs.-displacement curves 

 

Figure 1-4.  An RM wall dominated by shear sliding (UT-PBS-05 tested by 

Ahmadi, 2012). 

 

TMS 402/602, Building Code Requirements for Masonry Structures and 

Specifications for Masonry Structures (TMS, 2016), are the main standards for RM 

construction in the United States. According to TMS 402, RM shear walls are categorized 

into ordinary, intermediate, and special walls based on the reinforcement details and 

reinforcement amount. Special RM shear walls are allowed to be used in high seismic areas, 
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corresponding to the Seismic Design Category (SDC) D, E, and F defined in ASCE 7 

(ASCE, 2017).  

For special RM shear walls, the value of the seismic force modification factor (R) 

is taken as 5 to ensure that the building has a low probability of collapse in the Maximum 

Considered Earthquake (MCE). This value of the R factor is based on the notion that the 

walls can develop the necessary flexural ductility to sustain a certain amount of story drifts 

without collapsing when subjected to severe seismic forces. In spite of the reinforcement 

and shear capacity design requirements in TMS 402/602 (TMS, 2016) for special RM walls, 

such wall systems could still be susceptible to shear-dominated behavior when there are 

wall components with a low shear–span ratio. This could be the case for perforated wall 

systems or when unintended coupling forces exerted by horizontal diaphragms 

significantly reduce the shear–span ratio of the walls. For example, the two-story RM 

structure tested by Stavridis et al. (2012) was designed as a cantilever wall system. 

However, due to the strong coupling forces exerted by the stiff horizontal diaphragms, RM 

shear walls in the test structure eventually developed diagonal shear failure, as shown in 

Figure 1-5. 

In spite of the more brittle behavior of shear-dominated RM shear walls observed 

in the past cyclic loading tests, wall systems with such wall components sustained severe 

earthquake without collapse in some shake-table tests as well as past earthquake events. 

The high displacement capacity can be attributed to the existence of wall flanges and out-

of-plane walls, which can carry the gravity load when the in-plane wall has been severely 

damaged. However, there had been no experimental data on the maximum displacement 

capacity of a shear-dominated RM wall system. 
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(a) Shear failure of reinforced masonry walls 

 
(b) Base shear-vs.-1st story drift responses of the test structure 

 

Figure 1-5.  A three-story building tested on a shake table (Stavridis et al., 2016). 

 

The ability to model the aforementioned behaviors of a masonry wall system is of 

critical importance for performance-based seismic design and assessment. The numerical 

models developed in the past can be classified into two types: detailed finite element 

models and simplified models. In the detailed finite-element models, plane-stress elements 

or shell elements with a smeared-crack constitutive law and cohesive crack interface 

elements were used to simulate the cracking and crushing behavior of masonry; and beam 

or truss elements were used to model the behavior of reinforcing bars (Stavridis and Shing, 
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2010; Koutras and Shing, 2020, 2021). While the detailed finite element models are most 

general and accurate for capturing the different failure mechanisms that can be exhibited 

by a wall, they are computationally demanding, and therefore, are not suitable for use in 

engineering practice or computationally intensive procedures, such as the FEMA P695 

procedure (FEMA, 2009), which requires incremental dynamic analysis to evaluate 

collapse probability of building archetypes. For these situations, computationally efficient 

models have to be used. 

As one of the simplified modeling approaches, beam-column models provide a 

computationally efficient way to model RM structures. Traditional displacement-based and 

force-based beam-column elements with distributed plasticity have been adopted to model 

the flexural behavior of RM walls. With these elements, the inelastic behaviors of masonry 

and vertical reinforcement are represented in a fiber-section idealization. For this 

distributed plasticity approach, the sensitivity of numerical results to the element size has 

been an issue due to the localization of plastic strain in one element (for displacement-

based elements) or one integration point (for force-based elements). Thus, the selection of 

the number of elements or number of integration points is of critical importance to have 

accurate and objective results. Beam-column elements with concentrated plasticity provide 

an alternative to distributed plasticity elements. They are computationally more efficient 

but require careful calibration to capture the plastic behavior of the structural components 

with zero-length hinges (Paulay and Priestley 1992; Priestley et al. 2007; Shedid and El-

Dakhakhni 2014; Ezzeldin et al. 2018). 

While the ability of these beam-column models to capture the nonlinear flexural 

behavior of RM and RC structural members has been well demonstrated, their extension 



9 

 

to simulate the shear behavior of a wall has faced many challenges. This is because the 

shear behavior of an RM or RC wall is associated with diagonal tensile cracking, which 

cannot be accurately represented by a constitutive law defined at the section level of a 

beam-column element. A number of beam-column models have been proposed with limited 

success to capture the shear behavior of RM and RC elements (D’Ambrisi and Filippou, 1999; 

Pentrageli et al, 1999; Martinelli,2008; Ceresa et al, 2009; Saritas and Filippou, 2009, 2013; Peruch 

et al, 2019). Hence, there is a significant need to develop a beam-column model that can 

capture both nonlinear shear and flexural behaviors of RM shear walls. 

In engineering practice, ASCE 41 (ASCE, 2017), Seismic Evaluation and Retrofit 

of Existing Buildings, provides the lateral force-vs.-lateral displacement backbone curves 

for the nonlinear static and dynamic analyses of structural components and systems, 

including RM shear walls. However, the backbone curves adopted by ASCE 41 (ASCE, 

2017) for RM shear walls are based on limited experimental data and have not been 

extensively verified with data that are currently available. Moreover, the proposed 

backbone curves do not distinguish fully grouted walls from partially grouted walls, or 

flanged wall sections from rectangular wall sections. Most importantly, these backbone 

curves tend to significantly under-estimate the displacement capacity of RM walls (NIST, 

2017). Hence, these backbone curves need to be updated to realistically represent wall 

behaviors observed in experimental studies. 

1.2 Research Objectives and Scope 

The research presented in this dissertation consists of two parts. The first part was 

funded by NIST under the project ATC-114. This project was aimed to address the need to 

establish consistent modeling parameters and assumptions for nonlinear dynamic analysis 
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of common types of structural systems used in buildings. As a part of the project, this study 

was focused on the nonlinear analysis of RM shear walls. A force-based, fiber-section, 

beam-column element with predefined plastic hinge length was proposed to model the 

behavior of flexure-dominated RM shear walls. To capture the local failure mechanism in 

a flexure-dominated wall, a phenomenological material law was proposed to model the 

yielding, buckling, and low-cycle fatigue of the reinforcing bars. The proposed model has 

been calibrated and validated with extensive experimental data on fully grouted walls with 

rectangular and T-sections. Furthermore, a method has been proposed to determine force-

vs.-displacement backbone curves for RM walls to replace the current backbone curves 

used in ASCE 41.  

The second part of the dissertation was funded by the National Science Foundation 

(NSF). The main aim of this research was to investigate the displacement capacity of shear-

dominated RM wall systems up to the point of collapse and to develop reliable and 

computationally efficient analytical models to simulate the nonlinear response of these 

systems. In this study, two one-story RM wall systems were tested to the verge of collapse 

on the outdoor shake table at the Natural Hazards Engineering Research Infrastructure 

(NHERI) site at the University of California San Diego. Each specimen had two T-walls 

as the main seismic force resisting elements. The second specimen had six additional out-

of-plane walls. To investigate the influence of the out-of-plane walls, the T-walls in the 

two specimens had the same design and carried the same gravity load. The test program, 

results, and findings will be presented in this dissertation.  

A beam-column model has been developed to model the nonlinear flexural and 

shear behaviors of RM shear walls. The proposed beam-column element is based on a 
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three-field mixed formulation based on Hu-Washizu variational principle. The axial-

flexural behavior is modeled in a distributed plasticity manner with a fiber section model. 

For shear response, a macro phenomenological model has been proposed, which considers 

the influence of the axial load on the shear capacity and the contribution of the wall flanges. 

The model also considers the interaction between the axial-flexural and shear behaviors. 

The mixed beam-column element and the proposed shear model have been implemented 

in the open-source software platform, OpenSEES (McKenna et al. 2000). The model has 

been calibrated and validated with extensive test data, including the aforementioned shake-

table tests. The mixed element formulation, details of the shear model, and the results of 

the validation analyses are presented in this dissertation. 

1.3 Outline of Dissertation 

Chapter 2 provides a literature review of the past experimental and numerical 

studies on RM shear walls and wall systems. Quasi-static cyclic tests and shake-table tests 

performed in the past on both flexure- and shear-dominated RM shear walls are briefly 

summarized. It also summarized detailed finite element models and simplified models 

developed in the past to model the flexure- and shear-dominated behaviors of RM shear 

walls.  

Chapter 3 presents a force-based, fiber-section, beam-column model proposed to 

model the flexure-dominated RM shear walls. To capture the local failure mechanism in a 

flexure-dominated wall, a phenomenological material law proposed to model the yielding, 

buckling, and low-cycle fatigue of the reinforcing bars is presented. The proposed model 

has been calibrated and validated with extensive quasi-static cyclic loading test data on 

both planar and flanged walls. 
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Chapter 4 presents a method to construct force-vs.-displacement backbone curves 

of flexure-dominated RM shear walls. The method relies on the moment-curvature relation 

of a wall section, which can be generated with the constitutive laws presented in Chapter 

3. The idealization schemes used to construct the backbone curves for walls with 

rectangular section and flanged section are discussed. The applicability of the proposed 

method on partially grouted RM walls is also discussed. Furthermore, an empirical 

backbone curve is presented for shear-dominated RM shear walls. 

Chapter 5 presents the full-scale shake-table test program to investigate the collapse 

resistance of two shear-dominated RM shear wall systems. The design of the test structures, 

test setup, loading protocol, instrumentation schemes, and test observations are presented. 

The maximum lateral resistance reached by the two test structures are compared to the 

shear strengths given by the formula in TMS 402/602. Furthermore, the factors  

contributing to the high displacement capacities of the two test structures are discussed.  

Chapter 6 presents the beam-column model proposed to model the nonlinear shear 

and flexural behaviors of RM walls. The beam-column model is based on a three-field 

(force, strain, and displacement) mixed beam formulation proposed by Taylor et al. (2003). 

The finite element approximation to the force and strain fields are discussed. The axial-

flexural behavior of an RM shear wall is modeled as distributed plasticity with a fiber-

section model. The macro model proposed to model the shear behavior is presented. It 

considers the resistance of the wall web(s), and, for a flanged wall, the flexural strength 

provided by the wall flange(s) to the shear resistance. The calibration and validation of the 

beam-column model with experimental data is also discussed.  
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Chapter 7 presents the conclusions of the study, and the needs and 

recommendations for future research. 

Parts of Chapters 3 and 4 are a reprint of the material presented in a manuscript 

titled “Practical Nonlinear Analysis Methods for Flexure-Dominated Reinforced Masonry 

Shear Walls”, which has been submitted to ASCE Journal of Structural Engineering (under 

review). The authors of the manuscript are: the author of the dissertation and P. Benson 

Shing. The author of the dissertation is the primary author of the manuscript, and the main 

contributor of the work presented in the manuscript. 

Part of Chapter 5 is a reprint of the material presented in a paper titled “Evaluation 

of Collapse Resistance of Reinforced Masonry Wall Systems by Shake-Table Tests”, 

which was published in the journal of Earthquake Engineering and Structural Dynamics 

in 2020. The authors of the research paper are: the author of the dissertation, Andreas A. 

Koutras, and P. Benson Shing. The author of the dissertation is the primary author of the 

paper, and the main contributor of the work presented in the paper. 

Part of Chapter 6 is a reprint of the material currently being prepared for submission 

for publication, Cheng, J. and Shing P. B. under the title “A Beam-Column Model for 

Nonlinear Flexural and Shear Behavior of Reinforced Masonry Walls”. The author of the 

dissertation is the primary author and the main contributor of the work presented in the 

paper.  
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CHAPTER 2 LITERATURE REVIEW 

2.1. Introduction 

To investigate the factors influencing the strength and displacement capacity of RM 

shear walls, a number of quasi-static and shake-table tests were carried out on flexure- and 

shear-dominated walls and wall systems in the past decades. Nevertheless, the ultimate 

displacement capacity of RM wall systems has not been thoroughly investigated because 

most of the tests were stopped way before the collapse point. The test data on the collapse 

or near-collapse performance of masonry wall structures are very limited. 

Based on the test data from the experimental studies, analytical models have been 

developed for nonlinear flexural and shear behaviors of RM shear walls. The models can 

be categorized into two types: detailed finite element models and simplified models. A 

detailed model utilizes continuum element and interface element to model the opening of 

cracks on masonry, and truss or beam element to model the nonlinear behavior of 

reinforcing bars embedded in masonry. In spite of the accuracy, the detailed finite models 

are computationally expensive. As one type of the simplified models, beam-column models 

provide a computationally efficient alternative to the sophisticated finite element models 

when a large number of analyses is required. 

This chapter presents a summary of the past experimental studies on seismic 

behavior of RM shear walls, as well as the detailed finite element models and the simplified 

models (with a focus on beam-column models) developed for RM shear walls. 
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2.2. Experimental Investigations on RM Shear Walls 

2.2.1. Single Wall Segments 

Shing et al. (1991) performed quasi-static tests on 24 fully grouted, planar, 

cantilever RM shear walls. This study examined the influence of the axial load, amount of 

horizontal and vertical reinforcement, and loading history on the strength, failure 

mechanism, and ductility of RM shear walls. As shown in Figure 2-1, for each specimen, 

a constant axial load was first exerted by the loading beam through the two vertical 

actuators. A sequence of lateral displacement cycles with increasing amplitudes were 

applied at the top of the wall by the horizontal actuator. Of the 24 test specimens, seven 

specimens exhibited a flexure-dominated failure mode; twelve specimens exhibited 

diagonal shear failure, and the rest of the specimens had a combined flexural-shear failure 

mode. The results of the tests showed that the maximum lateral resistance of the flexure-

dominated specimens increased with the increase of axial compressive load. However, the 

flexural ductility was reduced with the increase of axial compressive load. For shear-

dominated wall specimens, the study showed that the lateral shear strength of a wall panel 

increased with the increase of axial compressive load due to the increase of aggregate 

interlock force along the diagonal cracks and the friction at the toes. Moreover, for a shear-

dominated wall panel, the lateral strength and post-cracked ductility were significantly 

improved with an increase of the amount of horizontal and vertical reinforcement.   
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Figure 2-1.  Test setup of Shing et al. (1989) 

 

He and Priestley (1992) tested nine full-scale, fully grouted cantilever RM walls 

with T-sections. The test program consisted of two phases. In the first phase, quasi-static 

cyclic tests were performed on four T-walls to investigate the influence of the mount of the 

vertical reinforcement, flange width, and the confinement in the mortar bed at the toes of 

wall web on the strength and ductility of flanged RM walls. In the second phase, to simulate 

the behavior of RM shear walls in a real earthquake event, five wall specimens were tested 

on a shake-table. All of the nine wall specimens exhibited flexure-dominated behavior. The 

flanged RM walls had unsymmetric behaviors in the two loading directions parallel to the 

wall webs. Severe toe crushing and buckling of vertical reinforcing bars were observed in 

the webs, while the wall flanges had relatively minor damage near the base. As shown in 

Figure 2-2, the maximum lateral resistance of a T-wall was much higher and the post-peak 

ductility was lower in the loading direction in which the flange was in tension, compared 

to the behavior when the flange was in compression.  
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(a) Cracks developed on the wall before 

failure 

(b) Lateral force-vs.-drift ratio hysteresis 

curves 

Figure 2-2.  Wall UCSD-F1 tested by He and Priestley (1992) 

 

Tomaževicˇ et al. (1996) tested 32 half-scale, cantilever RM shear walls subjected 

to two different axial stress levels (1MPa and 2MPa). For each axial stress level, the wall 

specimens were subjected to different types of displacement histories, including monotonic, 

cyclic, and simulated earthquake response, as shown in Figure 2-3. Moreover, each 

sequence of displacement history was applied in two levels of velocities, respectively, to 

compare the wall behaviors subjected to static and dynamic loads. The test results showed 

that the walls subjected to dynamic loads exhibited higher lateral resistance than those 

subjected to static loads. However, regardless of load type, the post-peak ductility was 

more or less the same. Comparing to the walls subjected to cyclic loads, those specimens 

subjected to monotonic loads exhibited higher lateral resistance and ductility, which could 

be attributed to the fact that they were subjected to less in-cycle damage.  
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Figure 2-3.  Four different types of input displacement histories adopted in the tests 

performed by Tomaževicˇ et al. (1996) 

 

Ibrahim and Suter (1999) conducted quasi-static cyclic tests on five fully grouted 

RM cantilever walls with three height-to-length aspect ratios (0.467, 0.636, and 1.0) and 

two levels of axial compressive stress (100 psi and 250 psi). Although all the five wall 

specimens were designed to develop diagonal shear failure, the failure mode for one 

specimen was dominated by flexure. According to the test observations, with the increase 

of height-to-length aspect ratio, the shear strength decreased while the displacement 

ductility increased. The rest of test observations were in general consistent with those 

presented by Shing et al. (1991).  

Eikanas (2003) examined the influence of wall aspect ratios and amount of vertical 

reinforcement on flexure-dominated RM shear walls by performing quasi-static, cyclic 

tests on seven fully grouted cantilever walls. These wall specimens had four different 
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height-to-length aspect ratios (0.72, 0.93, 1.5, and 2.1) and two vertical reinforcement 

ratios (0.26% and 0.52%). All the seven walls were subjected the same axial compressive 

stress (27 psi). The test results indicated that the walls with high height-to-length aspect 

ratios tended to exhibit more ductile behavior. Furthermore, comparing to the walls with 

low aspect ratios, those slender walls also had a shorter plastic hinge length. For the 

influence of the amount of flexural reinforcement, the conclusions were in general 

consistent with those reported by Shing et al. (1991).   

Voon and Ingham (2006) performed quasi-static cyclic tests on ten single-story RM 

cantilever walls. All of the ten walls were designed to develop diagonal shear failure modes. 

These wall specimens had aspect three different height-to-length aspect ratios (0.6, 1.0, 

and 2.0) and three different levels of axial stress (zero, 0.25MPa, and 0.5MPa). The 

horizontal reinforcement ratios ranged from 0.01% to 0.14%. Eight out of the ten wall 

specimens were fully grouted, whereas the rest two walls were partially grouted. During 

the tests, most of the walls developed shear-dominated behavior as expected. However, 

one of the wall specimens exhibited severe sliding at the base. The test results indicated 

that the masonry shear strength decreased inversely with the height-to-length aspect ratio, 

which was consistent with the test observations by Ibrahim and Suter (1999). Additionally, 

the test results also demonstrated that, comparing to fully grouted RM walls, partial 

grouting significantly reduced the shear strength of the planar walls. The rest of the test 

observation were generally consistent with previous experimental studies (Shing et al., 

1991, Ibrahim and Suter, 1999). 

To evaluate the possibility to reach higher level of flexural ductility of RM walls, 

Shedid et al. (2008) tested six full-scale, fully grouted, RM shear walls to failure under 
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quasi-static cyclic loading. The test specimens consisted of three ordinary walls, two 

intermediate walls, and one special wall designed according to the provisions in TMS 402. 

The three ordinary walls had the same reinforcement details, but were subjected to three 

different levels of axial load (0, 0.75 MPa, and 1.50 MPa). The two intermediate walls 

were subjected to zero axial, and had the same amount of vertical and horizontal 

reinforcement. However, the arrangements of reinforcement were different: one wall had 

vertical #5 bars spaced at 8 inches, while the other one had #9 bars spaced at 16 inches. All 

the six walls exhibited ductile flexure-dominated behavior, with little strength degradation 

at drift ratios up to 2%, as shown in Figure 2-4. Furthermore, the wall responses showed 

that displacement ductility was highly dependent on the amount of vertical reinforcement, 

but was much less influenced by the axial load. 

 

       (a) Localized flexural failure              (b) Force-vs.-displacement hysteresis curves 

Figure 2-4.  Response of a full-scale special RM shear wall tested by Shedid et al. (2008) 

 

As part of a research project sponsored by National Institute for Standards and 

Technology (NIST) aimed to develop a displacement-based design procedure for masonry 

shear walls, quasi-static cyclic tests were performed on a number of wall segments with 

different design parameters and loading conditions. A total of 43 fully grouted RM wall 
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segments, which were classified to four groups, were tested at University of Texas at 

Austin and Washington State University (Ahmadi, 2012; Kapoi, 2012; Sherman, 2011; 

Cyrier, 2012).  

The first group of wall specimens tested by Ahmadi and Sherman consisted of 16 

flexure-dominated cantilever walls detailed as special and intermediate walls according to 

the design provision in TMS 402. The specimens had five height-to-depth aspect ratios 

(0.78, 1.0, 2.0, 3.0, and 4.5), six levels of axial compressive load ratios (0, 0.05, 0.0625, 

0.10, 0.125, and 0.15). Furthermore, two pairs of wall specimens in this group were tested 

to compare the behaviors of RM walls with and without vertical reinforcing bars lap spliced 

near the base. The results showed that walls with vertical reinforcing bars lap spliced near 

the base exhibited more rapid strength degradation after toe crushing, due to the failure of 

lap splice.  

The second group of wall specimens consisted of seven cantilever walls with 

confined boundary elements, which were tested by Cyrier to develop effective confining 

boundary elements in RM walls. Figure 2-5 shows the details of the two different types of 

boundary elements used by Cyrier, which were designed according to the requirements of 

ACI 318. Apart from the ordinary boundary element shown in Figure 2-5(a), the boundary 

element with a return shown in Figure 2-5(b) can also be used as the junction between two 

RM walls. The test results indicated that the boundary elements of this type can improve 

the displacement ductility of an RM shear wall significantly. 
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(a) a regular boundary element                          (b) a boundary element with return 

Figure 2-5.  Reinforced concrete boundary elements used by Cyrier (2012) 

 

The third group consisted of 14 cantilever walls, where were tested by Ahmadi and 

Kapoi to investigate performance of RM wall with a wide range of reinforcement ratios, 

which might slightly violate the requirement of TMS 402. The influence of distribution of 

vertical reinforcement was also examined by testing two walls with jamb reinforcement 

(concentrated vertical reinforcement at each end of walls), as shown in Figure 2-6. The test 

results showed that the walls with jamb reinforcement had very similar behaviors as those 

with uniformly distributed vertical reinforcement. For the influence of axial load and 

reinforcement amount, the test observations on flexural-dominated RM shear walls were 

generally consistent with the previous studies (Shing et al. 1991).  

 

(a) Uniformly distributed reinforcement 

 

(b) Jamb reinforcement 

Figure 2-6.  Sections of RM walls with different arrangement of flexural reinforcement 

tested by Kapoi (2012) 
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For the fourth group, Ahmadi tested six RM shear walls with the same geometry 

and fixed-fixed end constraint conditions. Figure 2-7 shows the control system used to 

ensure the fixed-fixed end constrain conditions. As shown, the lateral load and restraining 

bending moment at the top of the specimen were applied by the horizontal actuator through 

an L-shaped loading beam. The rotation and vertical displacement of the loading beam 

were restrained by the out-of-plane bracing system, which consisted of three steel tubes 

with swivels at each end. Although all of the six wall specimens were designed to be 

dominated by diagonal shear cracks, only two wall specimens developed diagonal shear 

failure as expected. The rest four specimens developed shear-sliding failure. This could be 

attributed to two factors. One is the low axial compressive load, which reduces the friction 

along the wall base and concrete footing. The other is the amount of vertical reinforcement, 

which was not sufficient to resist sliding failure through dowel actions. 

 
(a) Elevation view 

 
(b) Plan view 

Figure 2-7.  Control system for the fixed-fixed RM walls tested by Ahmadi (2012) 
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Banting and El-Dakhakhni (2012, 2014) performed cyclic quasi-static tests on nine 

half-scaled, fully grouted RM walls with confined boundary elements to develop a 

confinement scheme for the boundary elements. Figure 2-8 shows the confinement details 

a boundary element and the hysteresis curves of one of the specimens. The test results 

showed that the confined boundary elements were able to delay the toe crushing as well as 

buckling of flexural reinforcing bars. Hence, flexure-dominated RM shear walls could 

benefit significantly by providing lateral confinement in critical regions.  

   
(a) Elevation view (b) Details of the confined 

boundary element 

(c) Force-vs.-displacement 

hysteresis curves 

Figure 2-8.  A wall specimen with confined boundary elements tested by 

Banting and El-Dakhakhni (2012) 

 

Mojiri et al. (2014) performed shake-table tests on six 1/3-scale, fully grouted, 

lightly reinforced, flexure-dominated RM walls. The configurations of the test specimens 

were based on two one- and two-story prototype buildings. Each wall specimens were 

subjected to a ground motion recorded from 1989 Loma Prieta earthquake, which were 

scaled to four intensity levels.  

Siyam et al. (2015) performed quasi-static cyclic tests on six 1/3-scale, fully 

grouted RM walls to investigate the influence of wall flanges and the slab-coupling effect. 

Among the six wall specimens, there were one flanged wall and two slab-coupled wall 
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systems, as shown in Figure 2-9. The six walls were designed as special RM shear walls 

based on TMS 402/602. All the wall components in the six specimens exhibited flexure-

dominated behavior. However, comparing to the planar wall specimens, the flanged wall 

and the slab-coupled walls had significantly higher displacement capacity. 

 

(a) A flanged wall specimen       (b) A slab-coupled wall specimen 

Figure 2-9.  Wall specimens tested by Siyam et al. (2015) 

 

2.2.2. Reinforced Masonry Wall Systems 

Merryman et al (1990) tested two full-scale, fully grouted, flexure-dominated, two-

story coupled RM wall systems. The two specimens, Specimens 2a and 2b, were designed 

to represent a coupled shear wall system in a two-story prototype building, as shown in 

Figure 2-10. The two specimens had the same geometry and reinforcement details, but 

different roof systems. Specimen 2a had a cast-in-place reinforced concrete slabs, while 

Specimen 2b had precast prestressed planks with a concrete topping. Both specimens were 

tested under quasi-static, cyclic lateral loads applied at the second floor and roof levels. In 

addition, Specimen 2a was subjected to a constant vertical load, which represented the 
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tributary gravity load transferred from the slab in the prototype structure. Comparing to the 

flexural strength calculated based on cantilever walls, the two specimens developed 

significantly higher maximum lateral strength due to the coupling effect of the horizontal 

diaphragms. 

 

(a). elevation view of the prototype structure 

  

(b) block layout and reinforcement details of the two test wall specimens 

Figure 2-10.  Two-story slab-coupled wall specimens tested by Merryman et al. (1990) 

 

Seible et al (1994) tested a flexure-dominated five-story RM building with the 

pseudo-dynamic test method. The five-story structure was subjected to a total of 75 

separate tests, including generated sequential displacement tests, quasi-static inverse 

triangular load tests, and shakedown tests. The tests were stopped when the building had 

reached a maximum roof drift ratio of 1%, with the seismic resisting shear walls developed 

flexure-dominated behavior exhibiting little load degradation.   



27 

 

Tomaževič and Weiss (1994) tested two 1:5-scale, three-story building models on 

a shake table. The two models had the same configuration based on a prototype building 

representing three- to four-story residential buildings in central Europe. As shown in Figure 

2-11, for each specimen, additional concrete mass blocks were fixed onto the roof to satisfy 

the dynamic similitude with the prototype structure. One of the test structures had plain 

masonry, and the other had wire reinforcement placed along the vertical edges of each wall, 

as well as the wire stirrups distributed horizontally. While the plain masonry structure 

collapsed at a first-story drift ratio of 2.5%, the RM structure was able to reach a first-story 

drift of nearly 4% without collapse.  

Lourenço et al (2013) tested two 1:2-scale concrete masonry building models on a 

shake table. The first model was unreinforced, and the second one had truss-type steel 

reinforcement distributed vertically and horizontally in each wall. Both structures had two 

stories and were subjected to bidirectional base excitation. In the tests, the unreinforced 

model collapsed when reaching a maximum inter-story drift ratio of 2.5% at the second 

story. However, the model with truss-type reinforcement reached a maximum inter-story 

drift of 0.34% at the first story without collapse when the intensity of the base excitation 

was 60% stronger than that of the last excitation applied to the unreinforced model.  
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Figure 2-11.  Test setup and specimen configuration of the wall systems tested by 

Tomaževič and Weiss (1994) 

Heerema et al (2015) and Ashour et al (2016) performed quasi-static tests on two 

1:3 scaled, two-story, asymmetric RM wall systems. These two wall systems had the same 

wall layouts but different diaphragm designs. As shown in Figure 2-12, the structure tested 

by Heerema et al. was detailed with hinge line in the diaphragm slabs to prevent the flexural 

coupling effect induced by the slabs, whereas the structure tested by Ashour et al. had 

stiffer slabs without the hinge lines. The system with the more flexible diaphragms reached 

a roof drift ratio of 2.5% with 38% loss in the lateral resistance. The system with the 

stronger diaphragms showed 50% higher peak lateral resistance but more brittle behavior 

with 72% strength degradation at a roof drift ratio of 2.5%. By comparing the behaviors of 

these two wall systems with those of the wall components tested by Siyam et al. (2015), 

Ashour et al. concluded that the difference between system-level and component level 

behavior can be attributed to two factors: slab flexural coupling and slab-induced twist, 

and the flexural coupling effect of the slabs had more significant impact on lateral 

resistance and stiffness deterioration of the RM shear walls. 
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(a) Configuration of the walls in the first story           (b) Hinge lines in the diaphragms 

Figure 2-12.  RM structure tested by Heerema et al. (2015) 

 

Mavros et al (2016) conducted shake-table tests on a full-scale, fully grouted, two-

story, RM shear wall structured designed by a displacement-based method. As shown in 

Figure 2-13, the test structure had two T-wall and a rectangular wall as the main seismic 

resisting elements. Meanwhile, there were four out-of-plane walls oriented perpendicular 

to the shaking direction. The structure was subjected to a sequence of scaled ground motion 

records from the El-Centro earthquake, and exhibited a shear-dominated failure mode. The 

structure exhibited 20% degradation of lateral strength at a maximum first-story drift ratio 

of 2%.  

 

                                  (a) Test setup                      (b) Hysteresis curves of the test structure 

Figure 2-13.  Two-story RM wall structure tested by Mavros et al. (2016) 
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Stavridis et al (2016) performed shake-table tests on a full-scale, fully grouted, 

three-story, RM shear wall structure. The test structure consisted of two T-walls and a 

planar wall as the main seismic resisting system. In addition, there were six out-of-plane 

walls oriented perpendicular to the loading direction. The seismic resisting wall elements 

were designed as flexure-dominated cantilever walls. However, the wall components 

eventually developed diagonal shear failure. This was attributed to the coupling forces 

exerted by the strong horizontal diaphragms, which effectively reduced the shear-span 

ratios. The three-story structure had a 27% strength degradation at a maximum first-story 

drift of 1.6%.  

The displacement capacity observed in the shake-table tests (Mavros et al., 2015; 

Stavridis et al. 2016) is significantly higher than that of the previously referenced shear-

dominated planar wall segments (Voon and Ingham, 2006; Shing et al., 1991; Ahmadi, 

2012), which exhibited severe load degradations at drift ratios not exceeding 1%. The more 

ductile behavior observed in the wall systems in these shake-table tests could be attributed 

to the presence of wall flanges as well as displacement histories.  

Koutras and Shing (2020) investigated the behavior of a single-story partially 

grouted RM structure that was designed for a low-to-moderate seismic zone based on TMS 

402/602. The tests were conducted in two phases. In the first phase, the structure exhibited 

significant base sliding under the MCE-level motion. In the second phase, RC stoppers 

were installed to prevent the structure from developing further base sliding, and the 

structure developed a shear-dominated failure mode, as shown in Figure 2-14. At the end 

of the tests, the structure lost 85% of its lateral strength at a drift ratio of 2.2%. Collapse 
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was averted only because the walls perpendicular to the direction of shaking were able to 

carry the weight of the roof after the walls parallel to motion had been severely damaged.  

 

Figure 2-14.  Failure of the partially grouted structure tested by Koutras and Shing (2020) 

 

 

2.3. Analytical Models of RM Shear Walls 

2.3.1. Detailed Finite Element Model 

Lotfi and Shing (1992) presented a smeared crack finite element formulation to 

represent the nonlinear behavior of RM shear walls. A J2 plasticity model was adopted for 

uncracked masonry and a nonlinear orthotropic model was adopted for cracked masonry. 

For reinforcing steel, an elastic-plastic model with strain hardening was adopted. By 

assuming that steel and masonry have compatibility in deformation, the steel reinforcement 

can be modeled as discrete bars or a smeared overlay on masonry. This model was 

examined by the diagonal compression tests on RM wall panels conducted by Hegemier et 

al. (1978) and the cantilever RM shear walls tested by Shing et al. (1991). While the 

flexural response of an RM shear wall could be well captured by this model, the smeared 

crack approach was not able to well represent the diagonal shear behavior due to the 
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assumed continuous displacement field. In spite of the simplicity, the assumption was 

unrealistic in representing the opening of diagonal cracks. 

Mavros (2015) used a combination of smeared crack and discrete crack models to 

capture different failure modes of RM shear walls. A modeling scheme proposed by 

Stavridis and Shing (2010) for masonry infilled RC frames was adopted. As shown in 

Figure 2-15, smeared-crack plane-stress elements and cohesive crack interface elements 

were adopted for the infill masonry. Additionally, truss elements were used to model the 

vertical and horizontal reinforcing bars. The modeling scheme was validated with the 

quasi-static tests on the wall segments by Ahmadi (2012) and the shake-table tests on the 

two-story RM structure by Mavros et al. (2015). 

Koutras (2019) presents an improved finite element modeling scheme, which is 

applicable to both fully grouted and partially grouted RM shear wall structures. As shown 

in Figure 2-16(a), for grouted reinforced masonry, a smeared-crack shell element and 

cohesive crack interface element were adopted. The smeared crack shell element consists 

of three layers, representing the grout filled into the hollow cells of the CMU blocks. For 

reinforcing steel, beam elements were adopted with a constitutive law to represent yielding, 

buckling, and fracture of reinforcing bars. The model also considers the bond-slip between 

the grout and steel bars as well as the dowel action of steel bars. For ungrouted masonry, a 

hollow layer was used between two masonry layers in the smeared crack shell element, as 

shown in Figure 2-16(b). Furthermore, an element removal scheme was proposed to model 

spalling of masonry due to the crack opening and crushing. The model was calibrated and 

validated by extensive test data on wall segments and RM wall systems (Shing et al., 1991; 

Ahmadi, 2012; Mavros, 2015; Koutras, 2019).  
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Figure 2-15.  Finite element discretization of RC/RM members (Starvridis 

and Shing, 2010) 

 

(a) discretization for grouted reinforced masonry 

 

(b) discretization for ungrouted masonry 

Figure 2-16.  A detailed finite element modeling approach proposed by Koutras (2019) 
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2.3.2. Beam-Column Model 

Spacone et al. (1996) presents a fiber beam-column element with distributed 

plasticity to perform static and dynamic analysis for RC frames. This model can be adopted 

to simulate the flexural behavior of RM walls. The element formulation is flexibility-based 

and the equilibrium between bending moment and shear is strictly satisfied along the 

element. With the assumption that plane sections remain plane, the nonlinear moment-

curvature relation is modeled by a fiber section model, in which nonlinear uniaxial material 

models for concrete and vertical reinforcing steel are adopted, as shown in Figure 2-17. 

With this assumption, the effects of shear and bond-slip are neglected.  

 

Figure 2-17. A force-based beam-column model with fiber sections 

(Spacone et al., 1996) 

 

Petrangeli et al. (1999) proposed a fiber-section, beam-column element, which can 

be adopted for shear-dominated RC and RM members. The element formulation is 

flexibility-based with the consideration of shear deformation, in which the equilibrium 

between shear and moment is assumed to be satisfied. The shear mechanism is modeled in 

each concrete fiber at the cross sections with a 2-dimensional micro-plane model. The 
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deformation compatibility of concrete/masonry and vertical and horizontal reinforcement 

in the micro-plane model is assumed to be satisfied. The vertical strain and the shear strain 

were given by the element formulation, whereas the transverse strain is obtained by 

satisfying the equilibrium between concrete/masonry and horizontal steel bars. This 

element can be computationally demanding because it requires iteration in element level 

as well as in the micro-plane model in each fiber of the cross sections. In a companion 

study (Petrangeli, 1999), the beam-column model was verified by the data of the cyclic 

tests on a shear critical RC pier.   

D’Ambrisi and Filippou (1999) proposed a frame element to model shear-

dominated RC members, which consisted of an elastic sub-element, a spread plastic sub-

element, an interface bond-slip sub-element, and a shear spring sub-element, as shown in 

Figure 2-18. A phenomenological hysteretic law was adopted in the shear sub-element to 

represent the shear sliding in the critical area as well as shear distortion of the entire 

member, in which the influence of axial load on the opening and closing of shear cracks 

was considered. The element was validated by the quasi-static cyclic test data on shear 

critical RC structural members, such as beam, column, and bridge pier. In spite of the 

simplicity, the strain compatibility is not enforced in this model. Moreover, these sub-

elements are uncoupled, and the moment-shear interaction cannot be modeled 

appropriately.  

Martinelli (2008) proposed a beam-column model by adopting an enhanced 

displacement-based Timoshenko beam-column element and a 2D truss model as 

constitutive law of reinforced concrete. The truss model consists of two diagonal concrete 

elements in tension and compression respectively, and one horizontal element representing 
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shear reinforcement. Cyclic loading test data from an RC beam and a short bridge pier, 

both had mixed flexure-shear behavior, have been used to validate the model. In spite of 

the good agreement between the test data and analysis, the ability of the model to capture 

the post-peak behaviors of the two specimens has not been demonstrated because the 

specimens did not show significant strength degradation. 

 
 

(a) Sub-elements in the model 
(b) A phenomenological hysteretic law for 

shear behavior 

Figure 2-18.  A frame model proposed by D’Ambrisi and Filippou (1999) 

 

Ceresa et al. (2009) presented a displacement-based beam-column element 

enriched with a bubble term to overcome the shear locking issue. A bi-axial constitutive 

law was developed for axial-flexure-shear interaction based on the modified compression 

field theory (MCFT). The model has been validated with cyclic loading test data from a 

shear-dominated planar RC wall. However, the ability of the model to capture the post-

peak strength degradation has not been demonstrated as the wall did not exhibit strength 

degradation.  

Saritas and Filippou (2009, 2013) proposed a mixed beam-column element, which 

can be used to model cyclic behavior of RM or RC walls. A mixed beam formulation 
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proposed by Taylor et al. (2003), which is based on a three-field (displacement, strain, and 

stress) Hu-Washizu variational principle, was adopted in this study. This element is free of 

shear locking, and allows a wall to be modeled with a very coarse mesh. The nonlinear 

flexural and shear behavior of a shear wall was modeled by a fiber section model in a 

distributed plasticity manner. For each fiber, a three-dimensional plastic damage concrete 

material model was adopted. The model has been validated with extensive test data, 

including three flexure-dominated RC planar walls and two shear-dominated RC columns.  

Similar to the beam-column model proposed by Pentrageli (1999), this model is 

computationally expensive because iteration is required in both element and material levels.  

Ezzeldin et al. (2016) evaluated 20 archetypes of RM shear walls with boundary 

elements with two-dimensional frame models. To model the flexural behavior of the 

selected walls, two displacement-based elements with fiber sections are used. An additional 

nonlinear zero-length element was connected to the beam-column model in series to 

account for strain penetration at the support.  

Ezzeldin et al. (2018) presents a concentrated plasticity beam-column model to 

represent the nonlinear behavior of flexure-dominated RM shear walls. As shown in Figure 

2-19, this model consists of an elastic beam-column element connected in series of a zero-

length rotational spring. A phenomenological moment-curvature hysteretic relation was 

proposed and adopted in the rotational spring. Different modeling parameters were 

calibrated for the walls with confined boundary elements, the flanged walls, and the slab-

coupled wall systems, respectively. The proposed model has been validated with extensive 

test data on RM shear walls and wall systems with different configurations (Ashour et al. 

2016, Ezzeldin et al. 2017).  
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(a) Modeling scheme of a two-story RM wall (b) A phenomenological moment-

curvature relation for shear 

Figure 2-19.  A concentrated plasticity beam-column model proposed by 

Ezzeldin et al. (2018) 

 

Peruch et al. (2019) used a force-based Timoshenko beam element to model RM 

shear walls. In this model, the axial-flexural behavior was modeled with a fiber-section 

approach, and a phenomenological nonlinear shear law was proposed for shear response. 

This model was validated with the test data of six shear-dominated planar RM walls tested 

by Shing et al. (1991), with the maximum drift ratio less than 2%.  
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2.3.3. Other Simplified Models 

Orakcal and Wallace (2006) proposed a macroscopic model for nonlinear flexural 

and shear behaviors of RC and RM walls. Figure 2-20 shows the idealization of a wall with 

the proposed Multiple-Vertical-Line-Element-Model (MVLEM). As shown, the macro-

element consists of two rigid beams connected with multiple vertical line elements and a 

horizontal spring placed at the center of the element. Uniaxial nonlinear material properties 

of vertical reinforcement and concrete/masonry are assigned to the vertical line elements 

for axial-flexural behavior, whereas the horizontal spring is used to simulate shear response 

of a wall. An RC or RM structural wall can be modeled as a stack of the MVLEM elements 

in series. The model has been calibrated and validated with the two slender flexure-

dominated RM walls tested by Thomsen and Wallace (1995). In spite of the good 

agreement between test data and analytical results, the model is not intended to capture 

diagonal shear failure and axial-flexural-shear interaction. 

 

           (a) MVLEM macro-element                  (b) Model idealization of a slender RC wall 

Figure 2-20.  Idealization of an RC wall with Multiple-Vertical-Line-Element-Model 

(Orakcal and Wallace, 2006) 
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To improve the MVLEM model (Orakcal and Wallace, 2006), Kolozvari et al. 

(2015) proposed an SFI-MVLEM model with the consideration of axial-flexural-shear 

interaction. As shown in Figure 2-21, for each vertical line element in this model, a two-

dimensional fixed-strut-angle RC panel model is adopted. The RC panel model accounts 

for the coupling of axial and shear responses, and also allows coupling of flexural and shear 

responses at the element level. In a companion study (Kolozvari et al., 2014), the SFI-

MVLEM model was calibrated and validated with the test data one five moderately 

reinforced slender concrete walls. The results indicated that the proposed model was able 

to capture the flexural-shear interaction in the five selected RC walls. However, the 

strength degradation of the five walls was not well represented due to the inability of the 

model in capturing the various failure mechanisms, such as buckling of reinforcing bars 

and sliding near the wall base. 

 

Figure 2-21.  RC panel element and SFI-MVLEM element (Kolovzari et al., 2015) 

Another simplified modeling approach for RC and RM walls is beam-truss models. 

Lu and Panagiotou (2014) presented a three-dimensional beam-truss model to capture 

nonlinear flexural and shear behaviors of nonplanar RC walls. As shown in Figure 2-22, 

nonlinear Euler-Bernoulli fiber-section beam elements are used to represent reinforcement 

and concrete in vertical direction, whereas nonlinear truss elements are used to represent 
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the horizontal reinforcement and the concrete in horizontal and diagonal directions. The 

model has been validated with the test data on three RC walls with T-shape, C-shape, and 

I-shape sections, respectively. 

 

(a) An RC wall panel (b) Nonlinear beam elements in 

vertical direction 

 

(c) Nonlinear truss elements in 

horizontal direction 

(d) Nonlinear truss elements in 

diagonal direction 

Figure 2-22.  A beam-truss model for RC shear walls (Lu and Panagiotou, 2014) 
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CHAPTER 3 A BEAM-COLUMN MODEL FOR FLEXURE-

DOMINATED REINFORCED MASONRY SHEAR WALLS  

This chapter presents a beam-column model to represent nonlinear seismic 

behavior of flexure-dominated RM shear walls. The work presented in this chapter is built 

upon the efforts in the ATC-114 project (NIST, 2017). A rational modeling approach using 

a force-based, fiber-section, beam-column element with predefined plastic-hinge lengths 

is proposed along with material models that can capture local failure mechanisms of 

flexure-dominated RM walls. The model accounts for the buckling and low-cycle fatigue 

of vertical reinforcing bars as well as plastic strain localization. The proposed model has 

been calibrated and validated with experimental data on walls with rectangular and T-

sections.  

3.1. Modeling Approach 

3.1.1. Beam-Column Model 

A simple approach to model the nonlinear behavior of a flexure-dominated RM 

wall is by means of a beam-column element. However, to capture the post-peak load 

degradation of a wall in an accurate manner, it is important that the model appropriately 

accounts for the crushing and spalling behavior of masonry, and the buckling and low-

cycle fatigue of the reinforcing bars after the adjacent masonry has spalled off. For this 

purpose, a nonlinear modeling method using a force-based beam-column element and 

appropriately calibrated nonlinear material models, all available in the software platform 

OpenSEES (McKenna et al. 2000), is presented here. The beam-column element has a pre-

defined plastic-hinge zone at each end (Scott and Fenves, 2006). In the plastic-hinge zone, 

a fiber section is used to simulate the nonlinear axial and flexural behaviors of a wall 
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section. Each fiber is assigned a uniaxial material law to describe the nonlinear behavior 

of masonry or flexural reinforcement. The material laws are so calibrated that they can 

account for the spalling of masonry after crushing, and the subsequent buckling and 

fracture of the reinforcing bars, with the latter caused by low-cycle fatigue. The material 

models are phenomenological rather than physics based. However, this approach affords 

computational efficiency without ignoring the essential failure mechanisms that govern the 

post-peak behavior of a flexure-dominated wall. Details of these material models will be 

discussed in the following sections. 

In this modeling approach, one needs to assume an effective plastic-hinge length 

(𝐿𝑝) for the wall, which is represented by the predefined plastic-hinge zone of the beam-

column element, to capture the localization of plastic deformation. In theory, 𝐿𝑝 should be 

a function of the wall dimensions as well as the loading condition, and it should provide an 

accurate description of the post-peak behavior of the wall when appropriate material 

models are used, with the assumption that the plastic deformation within this zone is 

uniform. Hence, the use of this beam-column model will ensure the objectivity of 

numerical results regardless of the element size, as long as the predefined plastic-hinge 

zone accurately reflects the effective plastic-hinge length of the wall. Several formulas 

have been proposed to estimate 𝐿𝑝 for an RM wall, e.g., Priestley et al. (2007).  Here, 𝐿𝑝 

is assumed to be 20% of the effective height of the wall (heff), which has been shown to 

provide good numerical results with beam-column models for walls of different height-to-

length ratios (NIST, 2010). The effective height is defined as the distance between the end 

of the wall where plastic deformation is considered and the point of zero moment (or the 

point of inflection). Figure 3-1 shows an example of the beam-column model for a 
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cantilever wall. In this model, the shear deformation of the wall is modeled with a linear 

elastic spring, as shown in Figure 3-1(b). However, the stiffness of this spring should 

account for the effect of wall cracking as will be discussed later. 

  

(a) (b) 

Figure 3-1.  (a) Cantilever reinforced masonry wall; (b) Beam-column model with a shear 

spring 

 

3.1.2. Material Model for Masonry 

Figure 3-2 shows the uniaxial stress-strain law selected for masonry, which is based 

on the concrete model proposed by Kent and Park (1990). The tensile strength of masonry 

is assumed to be zero. The peak compressive strength, 𝑓𝑚
,

, is to be determined from 

masonry prism tests, and the compressive strain (𝜀𝑝) at which the peak stress is reached is 

taken as 0.003. The post-peak residual strength is assumed to be 20% of the peak strength. 

The post-peak compressive behavior of the model is controlled by the strain parameter 𝜀𝑟, 

which is the strain at which the residual strength is first reached, and it is selected to be 

0.006. The proposed compressive stress-strain relation is based on masonry prism test data 

(e.g., Atkinson and Kingsley, 1985) and additional calibration with cyclic quasi-static wall 

test data (Ahmadi 2012; Sherman 2011; Kapoi 2012; Shing et al. 1991; Shedid et al. 2008) 
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using beam-column elements with the effective plastic-hinge length assumed to be 0.2heff . 

The residual compressive strength is assumed to remain constant as strain increases to 

ensure the robustness of the numerical solution. 

 

Figure 3-2.   Normalized stress-strain relation for masonry 

 

3.1.3. Material Model for Vertical Reinforcing Steel 

Under severe seismic loading, the vertical reinforcing bars in a wall may undergo 

yielding, buckling, and fracture caused by low-cycle fatigue. Figure 3-3(a) shows the 

material model proposed for vertical reinforcing steel. It is a phenomenological material 

law developed to represent the aforementioned behaviors in an approximate manner.  

Bar buckling is represented by a sudden drop of the compressive stress in the stress-

strain law when the compressive strain reaches a critical value 𝜀𝑏. The value of 𝜀𝑏 is taken 

to be -0.0053, which is the strain at which the compressive strength of masonry drops to 

40% of the peak stress, as shown in Figure 3-2, with the assumption that the strain in the 

bar is the same as that in the adjacent masonry. The strain 𝜀𝑏 is considered as the level at 

which severe masonry crushing and spalling occur. After buckling, the compressive stress 

in the bar drops linearly to 10% of the yield strength 𝑓𝑦. The value of 𝜀10, at which the 



46 

 

residual compressive strength is first reached, is taken to be -0.01 to represent a rapid 

strength drop due to buckling, but not too sudden a drop which could cause numerical 

problems.  

Under a monotonically increasing load, the peak tensile strength of steel is assumed 

to be 1.5 times the yield strength, which is typical for steel bars with a nominal yield 

strength of 414 MPa (Grade 60 steel in US standard). The strain at which tensile fracture 

occurs depends on the loading history. When a wall is subjected to severe cyclic loading, 

toe crushing and the spalling of masonry will occur, and the exposed vertical bars may 

undergo repeated buckling and straightening, which will induce low-cyclic fatigue. As a 

result, compared to reinforcing bars subjected to monotonic loading, fracture will occur in 

a cyclically loaded bar at a lower strain level. Hence, two types of loading histories are 

considered in modeling the tensile behavior of a bar, and one has to determine the loading 

history a priori. One is monotonically increasing tensile loading. For this case, it is 

assumed that the peak tensile strength is reached at a strain (𝜀𝑝𝑠) equal to 0.10, which is 

typically observed in uniaxial tension tests. After this, it is assumed that bar fracture 

initiates and the tensile stress drops linearly as the strain increases. The strain (𝜀0) at which 

the tensile stress reaches zero is assumed to be 0.15, which is on the lower end to account 

for the fact that the actual plastic strain of a bar in the effective plastic-hinge zone may not 

be uniform. The other case is cyclic loading, for which it is assumed that the peak tensile 

stress is reached at a reduced value of 𝜀𝑝𝑠, between 0.03 and 0.072, to account for the low-

cycle fatigue. The strain (𝜀0) at which the tensile stress reaches zero is so determined that 

the stress drops at the same rate as in the monotonic loading case. For simplicity, the model 

does not consider the number or amplitude of the strain cycles. However, it accounts for 
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the fact that bars in a wall with a higher amount of vertical reinforcement or a higher axial 

compressive load are expected to have a lower fracture strain as masonry spalling tends to 

occur earlier. To model this, the relation shown in Figure 3-3(b) is used to determine the 

value of 𝜀𝑝𝑠. In this relation, 𝜀𝑝𝑠 is a function of the sum of the vertical reinforcement index 

(𝛼) and axial load ratio (𝛽), which are defined as follows. 

'

y

v

m

f

f
 =      (3-1) 

'

m n

P

f A
 =                 (3-2) 

in which 𝜌𝑣 is the ratio of the vertical steel area to the net cross-sectional area, 𝐴𝑛,  of the 

wall, and P is the axial compressive force.  

The aforementioned parameters for the steel model were calibrated indirectly with 

cyclic quasi-static wall test data (Ahmadi 2012; Sherman 2011; Kapoi 2012; Shing et al. 

1991; Shedid et al. 2008) using the beam-column element model considered here with the 

effective plastic-hinge length assumed to be 0.2heff. However, data from monotonic loading 

wall tests are not available. It should be mentioned that a model calibrated this way may 

over-estimate the cyclic strength degradation of a wall subjected to earthquake loading 

because the cyclic loading history applied in a quasi-static test was often far more severe 

than what would be expected in an earthquake. 

The material models for masonry and steel presented here can also be adopted for 

other types of beam-column elements. However, when the plastic-hinge length assumed in 

the model differs from 20% of the effective wall height, the post-peak slopes of the material 
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models need to be changed to ensure the objectivity of the numerical results under strain 

localization (Bazant and Oh,1983). For beam-column elements, methods to determine the 

post-peak slopes can be found in Coleman and Spacone (2001) and NIST (2010). 

 
(a) Normalized stress-strain relation for steel accounting 

for bar buckling and fracture; 

 
(b) Tensile strain at bar fracture as a function of steel and axial 

compressive load ratios for cyclic analysis 

Figure 3-3. A steel model proposed for vertical reinforcing bars 

 

3.1.4. Consideration of shear deformation 

In this model, the shear deformation of a flexure-dominated wall is accounted for 

by introducing a linear elastic shear spring connected in series with the lateral degree of 

freedom at one end of the beam-column element, as shown in Figure 3-1(b). However, 

flexural and shear cracks may develop before the peak resistance of a wall has been reached, 

which can lead to a significant reduction of the shear stiffness. Test data of Shing et al. 
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(1989) have shown that the average shear stiffness of a reinforced masonry cantilever wall 

was around 50% of the theoretical elastic shear stiffness when the applied lateral force 

reached 50% of the shear capacity, and could be as low as 20% of the theoretical value 

when major shear cracks developed. Based on this observation, it is suggested that the 

stiffness (𝑘𝑣) of the shear spring be 35% of the theoretical value as given in Eq. 3-3. 

 
0.35 v m

v

A G
k

h
=      (3-3) 

in which 𝐴𝑣  is the effective shear area of the wall section, 𝐺𝑚  is the shear modulus of 

masonry, and ℎ is the height of the wall. For a flanged wall, 𝐴𝑣 can be taken as the cross-

sectional area of the web. 

3.2. Validation of the Proposed Model 

Experimental data on flexure-dominated RM walls with both rectangular and T-

sections have been selected to calibrate and validate the proposed frame model. Table 3-1 

shows the dimensions, reinforcement amount, axial load, and material properties of 21 

cantilever wall specimens with rectangular sections that have been selected (Ahmadi 2012; 

Sherman 2011; Kapoi 2012, Shing et al. 1990; Shedid et al. 2008). Eleven of these walls 

had the vertical reinforcement lap-spliced at the base. These specimens had aspect ratios 

(height-to-length ratio) ranging from 0.78 to 4.5, and the vertical reinforcement ratio 

ranging from 0.16% to 1.31%. The axial compressive load ratio, which is defined in Eq. 3-

2, ranges from 0.0 to 0.125. Among these selected specimens, the experimental responses 

of the walls tested by Ahmadi (2012), Sherman (2011), and Kapoi (2012) were used to 

calibrate and validate the model parameters, whereas the responses of walls tested by Shing 

et al. (1990) and Shedid et al. (2008) were only used to verify the calibration. In addition, 
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three cantilever T-walls tested by He and Priestley (1992) are considered. The dimensions 

and material properties for these three flanged walls are shown in Tables 3-2 and 3-3. 

Figure 3-4 shows the cross-sections of the three specimens. These walls had the vertical 

reinforcing bars uniformly distributed in the flange and web. Wall UCSD-F1 and UCSD-

F2 had the same dimensions and axial load ratio, but the amount of the vertical 

reinforcement of Wall UCSD-F2 is the half of that of Wall UCSD-F1. Wall UCSD-F3 had 

a very wide flange, with the ratio of the flange width to the web length equal to 1.38. For 

the flanged walls, the vertical reinforcement index (𝛼), the axial compressive load ratio (𝛽), 

and the ratio of the total reinforcing bars in wall web to that in wall flange (𝜂) are shown 

in Table 3. The values of 𝛼 and 𝛽 are based on the total net sectional area (An) of the web 

and the flange. This is for the sake of simplicity, and the values are used to determine the 

tensile strain at peak stress (𝜀𝑝𝑠) for the vertical reinforcement. Hence, the beneficial 

influence of the flange in delaying the buckling and low-cycle fatigue of the bars is ignored. 

The software platform OpenSEES (Mazzoni et al. 2005; McKenna et al. 2000) is 

used to perform cyclic analyses on the selected wall specimens using the beam-column 

element (Beam-with-Hinge element) discussed in Section 3.1. Each wall is represented by 

one beam-column element with a pre-defined plastic hinge length to capture the plastic 

deformation at the wall base and a zero-length linear elastic shear spring element connected 

in series. For the cantilever walls, the effective wall height is identical to the actual wall 

height. Thus, the pre-defined plastic hinge length is set to 20% of the wall height. Masonry 

is modeled by the Kent-Park model (Concrete01 in OpenSEES), whereas the vertical 

reinforcement is modeled by the Hysteretic model in OpenSEES (McKenna et al. 2000). 

The calibration of the backbone curves for these models is discussed in the Section 3.1.  
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For the hysteretic behavior of the vertical reinforcing bars, the pinching and in-cycle 

damage parameters in the Hysteretic model are calibrated with the wall test data. The 

values of these parameters are shown in Table 3-4. The material strengths shown in Tables 

3-1 to 3-3 are used. 
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Table 3-1.  Selected cantilever wall specimens with rectangular sections 

Specimen 
Height 

(m) 

Length 

(m) 

Thickness 

(m) 

Axial 

load 

Ratio (𝜷) 

𝒇𝒚 

(MPa) 

𝒇𝒎
′  

(MPa) 

𝝆𝒗𝒇𝒚

/𝒇𝒎
′  

(𝜶) 

UT-PBS-031 2.438 2.438 0.194 0 423 30.7 0.046 

UT-PBS-041 2.438 2.438 0.194 0 423 30.7 0.022 

WSU-W-1A 2.032 1.016 0.194 0.0625 451 19.1 0.170 

WSU-W-1B1 2.032 1.016 0.194 0.0625 456 21.0 0.170 

WSU-W-2A 2.032 1.016 0.194 0.125 450 19.1 0.079 

WSU-W-2B1 2.032 1.016 0.194 0.125 450 21.0 0.079 

WSU-W-041 1.829 1.829 0.194 0.0625 450 21.0 0.071 

WSU-W-051 1.422 1.829 0.194 0 450 21.0 0.071 

WSU-W-061 1.422 1.829 0.194 0.0625 450 21.0 0.071 

WSU-W-07 

(C1)1 

2.032 1.016 0.194 
0 

450 
20.9 0.071 

WSU-W-08 

(C2)1 

2.032 1.016 0.194 
0.0625 455 20.9 0.072 

UT-W-131 3.658 1.219 0.194 0.0281 421 30.7 0.099 

UT-W-171 3.658 0.813 0.194 0.0297 421 29.0 0.105 

CU-Boulder-1 1.829 1.829 0.143 0.0833 441 20.1 0.101 

CU-Boulder-2 1.829 1.829 0.143 0.0833 441 20.1 0.101 

CU-Boulder-10 1.829 1.829 0.143 0.0394 441 22.3 0.096 

CU-Boulder-12 1.829 1.829 0.143 0.0394 441 22.3 0.096 

CU-Boulder-15 1.829 1.829 0.143 0.0347 448 23.0 0.122 

McMaster-1 3.658 1.829 0.191 0 502 17.0 0.071 

McMaster-2 3.658 1.829 0.191 0 502 17.0 0.191 

McMaster-3 3.658 1.829 0.191 0 502 17.0 0.179 

1 vertical reinforcing bars lap spliced at the base 
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Table 3-2.  Dimensions and material properties of the selected cantilever T-wall 

specimens 

Specimen 
Height 

(m) 

Web 

Length 

(m) 

Flange 

Length 

(m) 

Thickness 

(in) 

𝒇𝒚 

(MPa) 

𝒇𝒎
′  

(MPa) 

UCSD-F1 3.658 1.168 2.642 0.143 491 19.9 

UCSD-F2 3.658 1.168 2.642 0.143 523 19.9 

UCSD-F3 3.658 1.168 5.080 0.143 523 15.9 

 

Table 3-3.  Dimensionless parameters of the selected cantilever T-wall specimens 

Specimen 

Axial 

Compression 

Ratio (𝜷) 

𝝆𝒗𝒇𝒚/𝒇𝒎
′  

(𝜶) 

𝑨𝒔,𝒇/𝑨𝒔,𝒘 

(𝜼) 

UCSD-F1 0.0347 0.168 1.5 

UCSD-F2 0.0347 0.081 1.5 

UCSD-F3 0.0435 0.102 3.0 

 

Table 3-4. Calibrated hysteretic model parameters for the reinforcing steel (parameters 

are explained in OpenSEES) 

Hysteretic 

Parameter 
Value Notes 

PinchX 1.0 Pinching factor 1 

PinchY 1.0 Pinching factor 2 

 𝜉 0.0 Reduction factor to unloading stiffness 

Dmg1 0.0 Ductility-proportional in-cycle damage factor 

Dmg2 0.02 Energy-proportional in-cycle damage factor 
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(a) UCSD-F1 (b) UCSD-F2 

 

 

(c) UCSD-F3 

 

Figure 3-4.  Cross-sections of T-wall specimens 

 

3.2.1. Rectangular-Sectioned Walls 

The lateral load-vs.-lateral displacement hysteresis curves from the cyclic analyses 

the 21 selected planar walls in Table 3-1 are shown in Appendix I, together with the 

experimental results. Figure 3-5 shows the results of the selected six walls. As shown, the 

beam-column models can capture the peak strength, strength degradation, and hysteretic 

behavior of the wall specimens well, with the numerical results slightly under-estimating 

the peak strengths and over-estimating the strength degradation for most of the cases.  

Some important observations are highlighted here. The results for walls UT-PBS-

03 and UT-PBS-04 are shown in Figures 3-5(a) and 3-5(b). Both walls had an aspect ratio 
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of one and were not subjected to any axial load. Wall UT-PBS-03 had #4 vertical bars 

spaced at 20.3cm (8 in.) on center, whereas UT-PBS-04 had #4 bars spaced at 40.6cm (16 

in.) on center. Because of the lower amount of vertical reinforcement, UT-PBS-04 

exhibited a more ductile behavior in that its peak resistance was reached at a drift ratio of 

1.75%, whereas the peak load for UT-PBS-03 was reached at about 0.80%. Nevertheless, 

UT-PBS-04 exhibited a more rapid strength drop after passing its peak strength. This is 

attributed to the fact that UT-PBS-04 had a smaller number of vertical bars with a wider 

bar spacing. As a result, the loss of the vertical bars due to fracture at the extreme ends in 

that wall had a more significant consequence than that in UT-PBS-03. As shown in Figures 

3-5(a) and 3-5(b), this phenomenon is well captured by the beam-column model.  

Figures 3-5(c) and 3-5(d) show the results for two slender walls (WSU-W-07 and 

WSU-W-08), which had an aspect ratio of two. They had the same amount of vertical 

reinforcement, but one of them had no axial load. With the axial compressive load, Wall 

WSU-W-08 developed a higher maximum lateral resistance than Wall WSU-W-07. 

Although the effect of axial load on lateral resistance is well captured by the model, the 

analyses under-estimate the maximum lateral resistance for both walls. This can be 

attributed to the fact that the models show bar fracture, whereas the tests did not have bar 

fracture. Nevertheless, necking was observed in one of the extreme vertical bars in wall 

WSU-W-08 during the test.  
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(a) UT-PBS-03 (b) UT-PBS-04 

  

(c) WSU-W-07(C1) (d) WSU-W-08(C2) 

  

(e) UT-W-13 (f) UT-W-17 

Figure 3-5. Comparison of numerical results with experimental data for planar RM walls 
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Figure 3-5(e) and 3-5(f) show the results for two very slender walls (UT-W-13 and 

UT-W-17), which had aspect ratios of 3 and 4.5, respectively. Both walls had an axial 

compressive load ratio of 5% and 𝜌𝑣 = 0.72%. While the load-displacement hysteresis 

curves for wall UT-W-17 are well captured, the analysis significantly under-estimates the 

strength degradation shown by UT-W-13. The severe strength degradation exhibited by 

that wall specimen is believed to be caused by the failure of the lap splices in the vertical 

reinforcement, which is not modeled in the analysis. The failure of the lap splices was 

caused by severe masonry spalling at the crushed toes.  

3.2.1.1. Influence of Lap-Splice at Wall Base 

Two pairs of wall specimens, WSU-W-1A/1B and WSU-W-2A/2B, were tested by 

Sherman (2011) to compare the behaviors of flexure-dominated walls that had vertical 

reinforcement with and without lap splices at the base. Each pair had identical designs and 

axial loads, except that one wall had lap splices at the base, while the other did not. The 

lengths of the lap splices complied with TMS 402/602 (TMS, 2016). The test results are 

compared in Figure 3-6. The numerical results obtained with the beam-column element 

models are also shown in the figure. Since the model does not account for the presence or 

absence of lap splices, only one analysis has been conducted for each pair. The test results 

show that the walls with lap splices had more rapid post-peak strength degradation and 

more pinched hysteresis curves than those without. The models better capture the behavior 

of the walls with lap splices. This is attributed to the fact that the database used to calibrate 

the hysteretic model for steel is slightly biased towards walls with lap splices.  It is evident 

that the post-peak load degradation and pinching of the hysteresis loops are heavily 

influenced by the steel mode. 
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(a) WSU-W-1A/1B (b) WSU-W-2A/2B 

Figure 3-6. Comparison of numerical results with experimental data for two pairs of walls 

with and without lap splices 

 

3.2.1.2. Monotonically Increasing versus Cyclic Loading 

As discussed previously, the material law for the steel reinforcement distinguishes 

the behavior of a bar under monotonically increasing loading from that under fully reversed 

cyclic loading. Under fully reversed cyclic loading, the model accounts for low-cycle 

fatigue. Here, the beam-column element model with the proposed steel material law is used 

to examine the behaviors of walls subjected to monotonic and cyclic loading histories. For 

these analyses, the respective tensile stress-strain curves corresponding to the two loading 

histories, as shown in Figure 3-3, are used for the vertical reinforcing steel. As shown in 

Figure 3-7, walls with three different values of (𝛼 + 𝛽) , where 𝛼  and 𝛽  are the 

reinforcement index and axial load ratio, respectively, as defined in Eqs. 3-1 and 3-2, are 

considered. The numerical results show that the behavior of walls that have a lower amount 

of vertical steel and a lower axial compressive load ratio is more sensitive to the loading 

history, being significantly more ductile under monotonically increasing loads than under 
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cyclic loads. This can be attributed to the fact that the behavior of these walls is 

significantly influenced by that of the steel reinforcement, whereas the behavior of walls 

having a higher axial load and reinforcement ratio is dominated by the crushing of masonry. 

However, experimental data from monotonic loading tests are not available to confirm this 

observation. 

  

(a) 𝛼 + 𝛽 = 0.022 (b) 𝛼 + 𝛽 = 0.071 

 

(c) 𝛼 + 𝛽 = 0.135 

Figure 3-7.  Comparison of wall behaviors under monotonic and cyclic loads using beam-

column models 
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3.2.2. T-Sectioned Walls 

In Figure 3-8, the lateral load-vs.-drift ratio hysteresis curves obtained from the 

tests of the three T-walls by He and Priestley (1992) are compared to the numerical results. 

As expected for T-walls, both the experimental and numerical results show that the lateral 

resistance of the walls is weaker when loaded in the direction in which the flange is in 

compression than when the flange is in tension. The results also show that the post-peak 

load degradation is more rapid when the flange is in tension because of the crushing of the 

web toes. The dimensions and axial load ratios of UCSD-F1 and UCSD-F2 are identical, 

but the amount of flexural reinforcement in UCSD-F2 is half of that of UCSD-F1, as shown 

in Tables 3-2 and 3-3. However, in contrary to the expectation, UCSD-F2 exhibited a more 

rapid load degradation than UCSD-F1 when the flange was in tension in the tests. The 

numerical results show the opposite, which is consistent with the expectation. No 

explanation was provided in the original research report on the unexpected test results, but 

a picture of UCSD-F2 does show that it had more severe masonry spalling in the web than 

UCSD-F1.  The amount of vertical reinforcement in the flange of UCSD-F3 is a little lower 

than that of UCSD-F1, but the former was subjected to a higher axial compressive load. 

The test results show that UCSD-F3 was a little stronger and more brittle than UCSD-F1 

when the flange was in tension in both cases. However, the numerical results show that 

UCSD-F3 is a little weaker and much more brittle than UCSD-F1. This can be attributed 

to an over-estimation of the low-cycle fatigue phenomenon of the reinforcing bars in the 

model. For all three specimens, the models show a more rapid load degradation than the 

tests for the loading direction in which the flange is in compression. This can be attributed 

to the fracture of the web vertical reinforcement in the models, which was not observed in 
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the tests. Other than the above discrepancies, the beam-column models are able to capture 

the behaviors of the T-walls well. 

  

(a) UCSD-F1 (b) UCSD-F2 

 

(c) UCSD-F3 

Figure 3-8.  Comparison of numerical results with experimental data for three T-walls 

 

Chapter 3, in part, is a reprint of the material in a manuscript titled “Practical 

Nonlinear Analysis Methods for Flexure-Dominated Reinforced Masonry Shear Walls” 

that has been submitted to ASCE Journal of Structural Engineering in 2021 (under review). 

The authors of the manuscript are: the author of the dissertation and P. Benson Shing. The 

author of the dissertation is the primary author and the main contributor of the work 

presented in the manuscript. 
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CHAPTER 4 PROPOSED BACKBONE FORCE-VS.-

DISPLACEMENT CURVES FOR REINFORCED MASONRY 

SHEAR WALLS 

 

In this chapter, a method has been proposed to construct the lateral force-vs.-lateral 

displacement backbone curves for flexure-dominated RM walls in a simple and rational 

way. The proposed mothed is based on the moment-curvature relation of an RM wall 

section, which is generated with the fiber-section approach and the constitutive relations 

for masonry and steel presented in Chapter 3. It is applicable to walls with rectangular and 

flanged sections. While the method has been validated with experimental data from fully 

grouted walls, its possible application to partially grouted walls is suggested. Furthermore, 

based on experimental data, an empirical backbone curve has been proposed for fully 

grouted, shear-dominated, planar walls. Compared to the current recommendations in 

ASCE 41 (2017), the proposed backbone curves show significantly better agreement with 

past experimental data. 

4.1. Flexure-dominated walls 

As demonstrated in Chapter 3, the beam-column element and material laws 

presented in Section 3.1 are able to capture the lateral load capacities as well as the lateral 

load-vs.-displacement hysteretic relations for flexure-dominated walls with good accuracy. 

This chapter discusses how the material laws can be used to construct nonlinear lateral 

load-vs.-displacement backbone curves that can be adopted in ASCE 41 (2017) as 

specifications for the nonlinear analysis of flexure-dominated RM walls and for 

establishing improved acceptance criteria. Backbone curves based on current ASCE 41 
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(2017) specifications way under-estimate the displacement capacity of RM walls, as 

discussed in NIST (2017). The method proposed here for constructing the backbone curves 

is based on flexural theory and non-dimensional analysis, and is therefore, more general 

and rational than what is being used in ASCE 41 (2017). 

The general lateral load-vs.-displacement backbone curve proposed here is shown 

in Figure 4-1. It represents the envelope of the load-displacement hysteresis curves for 

walls subjected to gradually increasing quasi-static displacement cycles, capturing the first-

cycle response at each displacement amplitude. As shown in Figure 4-1, the backbone 

curve is defined in terms of five parameters: the effective initial stiffness (𝑘), the expected 

maximum lateral load resistance (𝑄𝑚𝑎𝑥 ), the lateral displacement (∆𝑚 ) at which the 

maximum resistance develops, the displacement (∆75) at which the post-peak resistance 

drops to 75% of 𝑄𝑚𝑎𝑥, and the capping displacement (∆𝑐), after which the lateral resistance 

of the wall can be ignored. The capping displacement is taken as the point at which the 

resistance drops to 50% of 𝑄𝑚𝑎𝑥. The values of 𝑄𝑚𝑎𝑥, ∆𝑚, ∆75, and ∆𝑐 can be computed 

with moment-curvature analysis and the assumed plastic-hinge length (𝐿𝑝), as discussed in 

the following two sections using fully grouted cantilever walls with rectangular and T 

sections as examples. However, the methodology can be applied to walls with any 

boundary conditions resulting in a plastic hinge at one or both ends. 

Figure 4-2 shows a moment-curvature curve obtained in an analysis using a fiber-

section model with a monotonically increasing moment. The masonry and steel fibers 

assume the uniaxial material laws presented in Section 3.1. The values of 𝑀𝑚𝑎𝑥, 𝜙𝑚, 𝜙75, 

and 𝜙𝑐  obtained can be used to determine the values of 𝑄𝑚𝑎𝑥 , ∆𝑚 , ∆75 , and ∆𝑐 , as 

explained in the following section. The monotonic moment-curvature relation ignores the 
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influence of in-cycle damage, which is controlled by the parameters Dmg1 and Dmg2 in 

the steel material law, whose values are shown in Table 3-3. However, the influence of the 

in-cycle damage is not significant and can therefore be ignored. In spite of this, the steel 

model that considers low-cycle fatigue due to cyclic loading is used. Hence, the resulting 

curve does represent the cyclic load effect. Since the material models are calibrated with 

quasi-static wall test results, the moment-curvature curve so obtained will provide a 

conservative backbone curve for assessing the performance under earthquake loading, 

which often induces less number of large displacement cycles. 

 

Figure 4-1.  Backbone force-vs.-displacement curve for flexure-dominated RM walls. 

 

Since only the values of 𝑀𝑚𝑎𝑥, 𝜙𝑚, 𝜙75, and 𝜙𝑐 are of interest for the purpose of 

constructing the backbone curve, their non-dimensionalized values have been calculated 

and tabulated for walls with different axial compressive loads and reinforcement contents. 

This will be presented later in the following sections. With these tables, moment-curvature 

analysis need not be performed. 
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Figure 4-2.  Moment-curvature relation for an RM wall section 

 

4.1.1. Cantilever Walls with Rectangular Sections 

Because of the abundance of experimental data, cantilever RM walls with 

rectangular sections are considered here. Similar to the specifications in ASCE 41 (2017), 

the effective initial stiffness (k) of an RM wall under in-plane loading, as shown in the 

backbone curve in Figure 4-1, is to be computed with elastic theory. Here, the reduction of 

the flexural and shear stiffnesses of a wall due to cracking is taken into account. The 

reduction factors proposed here are based on experimental data from Shing et al. (1991), 

Sherman (2011), and Ahmadi (2012). For a cantilever wall, the effective initial stiffness is 

calculated with the following equation. 

            
3

1

+
3 ( ) ( )f m v m v

k
h h

E I G A 

=

       (4-1) 

in which ℎ is the wall height, 𝐴𝑣 is the effective shear area of the wall section, I is the 

moment of inertia of an uncracked section, and 𝐸𝑚 and 𝐺𝑚 are the modulus of elasticity 

and shear modulus of masonry, respectively. The values of 𝐸𝑚 and 𝐺𝑚  can be calculated 

with the formulas specified in TMS 402 (2016) for the given compressive strength of 
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masonry. For a rectangular section, 𝐴𝑣 is 5/6 of the net cross-sectional area of the wall. The 

flexural stiffness reduction factor (𝜁𝑓 ) is suggested to be 0.15 and the shear stiffness 

reduction factor (𝜁𝑣) is recommended to be 0.35. It should be noted that the value of 𝜁𝑓 

recommended here is significantly smaller than what is suggested in ASCE 41. However, 

since it is based on experimental observations, it also accounts for the plastic strain 

penetration effect. 

With the values of 𝑀𝑚𝑎𝑥, 𝜙𝑚, 𝜙75, and 𝜙𝑐 given by the moment-curvature relation, 

as shown in Figure 4-2 the values of the remaining critical parameters, 𝑄𝑚𝑎𝑥, ∆𝑚, ∆75, and 

∆𝑐 , for the backbone curve shown in Figure 4-1 can be calculated as follows. For a 

cantilever wall, the lateral resistance (𝑄𝑚𝑎𝑥) is equal to 
𝑀𝑚𝑎𝑥

ℎ
. With the assumption that the 

plastic flexural deformation of a wall is uniformly distributed in the effect plastic-hinge 

length, 𝐿𝑝, the lateral displacements of a wall at different stages of strength degradation 

can be calculated with the following equations.  

                              /75/ / 75/ / 75/m c fm f fc vm v vc =  + 
       (4-2) 
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in which 𝑀𝑚𝑎𝑥/75/𝑐 represents the peak moment, and moments at 75% and 50% of the 

peak, respectively, and 𝑄𝑚𝑎𝑥/75/𝑐 denotes the corresponding lateral resistances of the wall. 
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The corresponding lateral displacements (∆𝑚/75/𝑐 ) consist of a flexural component, 

Δ𝑓𝑚, Δ𝑓75, or Δ𝑓𝑐, and a shear component, Δ𝑣𝑚, Δ𝑣75, or Δ𝑣𝑐. Here, 𝜁𝑓 is suggested to be 

0.15, the same as that for the initial effective stiffness, and the reduction factor 𝜁𝑣0 for the 

shear stiffness is suggested to be 0.20 to account for the condition that extensive shear 

cracks may have developed when the peak lateral resistance is reached. The value of 𝐿𝑝 is 

20% of the wall height, the same as that for the beam-column element model considered 

in Section 3.1. 

Furthermore, the capping lateral displacement (∆𝑐) calculated with Eqs. (4-2) to (4-

4) should not exceed 4% of the wall height, which is the maximum observed in the 

experimental studies used for the validation of this method (Shing et al. 1991; Shedid et al. 

2008; Sherman, 2011; Ahmadi, 2012; Kapoi, 2012).  

4.1.1.1. Non-Dimensionalized Moment-Curvature Relation 

To simplify the determination of the critical parameters in the moment-curve 

relation required to construct a load-displacement backbone curve, these parameters are 

non-dimensionalized so that their values can be expressed as functions of a set of non-

dimensionalized variables. Consider a fully grouted symmetric rectangular wall section, as 

shown in Figure 4-3(a). It is assumed that the flexural reinforcement has a uniform spacing 

and is distributed over a distance of 𝑙𝑒 = 𝑎𝑙𝑤, where 𝑙𝑤 is the length of the wall section 

and 𝑙𝑒 is the center-to-center distance between the two extreme bars. For the simplicity of 

mathematical expressions, the reinforcement is assumed to be continuously distributed, as 

shown in Figure 4-3(b). As a result, the axial strength (𝑃) and the moment resistance (𝑀) 

about the centroidal axis can be expressed as follows. 
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in which 𝑦 is the distance from the centroidal axis, 𝑡 is the wall thickness, 𝜌𝑣 is the vertical 

steel ratio with respect to the net cross-sectional area of the wall (𝐴𝑛 = 𝑡𝑙𝑤), and 𝜎𝑚 and 

𝜎𝑠 are the normal stresses in the masonry and the steel, respectively, which are functions 

of the strain 𝜀 and strain history associated with the axial deformation and curvature at the 

wall section. As shown in Figure 4-3(c), by assuming that the plane section remains plane 

during bending, the strain of each fiber along the section can be expressed as: 
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      (4-7) 

in which 𝑐 is the distance of the neutral axis of bending from the extreme compression fiber 

of the section, and 𝜙 is the wall curvature. 
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(a) 

 

(b) 

 

(c) 

Figure 4-3.  (a) Rectangular RM wall section with uniformly distributed vertical 

reinforcement; (b) Equivalent section with continuously distributed reinforcement; (c) 

Section strain profile 

 

Dividing both sides of Eq. (4-5) by 𝑓𝑚
′ 𝑙𝑤𝑡 and Eq. (4-6) by 𝑓𝑚

′ 𝑙𝑤
2 𝑡, one can obtain 

the following non-dimensionalized equations. 
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in which 𝛼 is the reinforcement index, 𝛽 is the axial compressive load ratio, as defined in 

Eqs. (3-1) and (3-2), respectively, 𝑀′ = 
𝑀

𝑓𝑚
′ 𝑙𝑤

2 𝑡
 , and 𝑦′ = 𝑦/𝑙𝑤. The bending strain 𝜀(𝑦′) is 

proportional to 𝜙𝑙𝑤 and is a linear function of 𝑦′, as shown in Eq. (4-7), and 𝜎𝑚
′  and 𝜎𝑠

′ are 

the stresses in the masonry and vertical steel normalized by the masonry compressive 

strength 𝑓𝑚
′  and steel yield stress 𝑓𝑦, respectively. The stresses are to be calculated with the 

material laws shown in Figures 3-2 and 3-3. The parameter 𝑎 is equal to 𝑙𝑒/𝑙𝑤.  

4.1.1.2. Sensitivity Analysis 

For walls constructed of hollow concrete masonry units, the distance of the wall 

edge to the nearest reinforcing bar is typically 102 mm (4 in.). Hence, the value of 𝑎 =

𝑙𝑒/𝑙𝑤 depends on the wall length 𝑙𝑤. Furthermore, the adequacy of the assumption that the 

reinforcement is continuously distributed may depend on the actual bar spacing or more 

precisely the 𝑙𝑏/𝑙𝑒  ratio, in which 𝑙𝑏  is the center-to-center spacing of the bars. To 

determine if the influence of 𝑎 = 𝑙𝑒/𝑙𝑤 and 𝑙𝑏/𝑙𝑒 could be ignored so that the number of 

independent variables can be minimized, a sensitive study has been performed. In this study, 

the moment-curvature relations are calculated with a fiber-section model in OpenSEES 

(McKenna et al. 2000) using the material laws presented in Section 3.1. The sensitivity of 

the moment-curvature relations to the value of a is shown in Figure 4-4, which considers 

the values of a between 0.80 and 0.97, corresponding to 𝑙𝑤 ranging from 1.0 m (40 in.) to 

6.1 m (240 in.).  The results show that the influence of 𝑎 is not significant for this wide 

range of wall lengths. However, the influence is a little more noticeable when the axial load 

is zero. 
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The sensitivity of the results to the values of 𝑙𝑏/𝑙𝑒 is shown in Figure 4-5. A wide 

range of 𝑙𝑏/𝑙𝑒 values is considered.  The results indicate that the influence is very small 

except when the axial load is zero and 𝑙𝑏/𝑙𝑒 is equal to 0.5, which represents a very large 

bar spacing for a 1.83 m (72 in.) long wall (which corresponds to a = 0.89). Furthermore, 

based on these results, one can also expect that the non-dimensionalized moment-curvature 

relation presented here is also applicable to walls with non-uniform steel distribution. 

4.1.1.3. Non-Dimensionalized Moment-Curvature Parameters 

Based on the above results, one can conclude that the variables a and 𝑙𝑏/𝑙𝑒 need 

not be considered for the non-dimensionalized moment-curvature relations. As a result, 𝛼 

and 𝛽 are the only independent variables that need to be considered. The values of the 

critical non-dimensionalized parameters 
2/ ( )max max m wM M f l t = , 𝜙𝑚𝑙𝑤 , 𝜙75𝑙𝑤 , and 𝜙𝑐𝑙𝑤 

have been calculated for different values of 𝛼  and 𝛽  using the fiber section model in 

OpenSEES (McKenna et al. 2000). The results with the value of 𝛼 ranging from 0.001 to 

0.20 and the value of 𝛽  ranging from zero to 0.25 are shown in Table 4-1. For the 

calculations, the wall length 𝑙𝑤 considered is 1.83 m (72 in.), with 𝑎 = 0.89 and 𝑙𝑏/𝑙𝑒 = 

0.25. The wall thickness 𝑡 is taken to be 0.194 m (7.625 in.). 
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(a) 𝛽 = 0 (b) 𝛽 = 0.05 

Figure 4-4.  Influence of 𝑎 = 𝑙𝑒/𝑙𝑤 for walls with 𝛼 = 0.05 and 𝑙𝑏/𝑙𝑒 = 0.25 

  

(a) 𝛽 = 0 (b) 𝛽 = 0.05 

Figure 4-5.  Influence of bar spacing for walls with 𝛼 = 0.05 and 𝑙𝑒/𝑙𝑤 = 0.89 
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Table 4-1.  Nondimensionalized moment-curvature values for fully grouted rectangular 

wall sections with uniform steel 

Reinforcement 

Ratio  

𝜶 = 

(𝒇𝒚/𝒇𝒎
′ )𝝆𝒚 

Axial 

Compression 

Ratio  

𝜷 = 

𝑷/(𝒇𝒎
′ /𝑨𝒏) 

𝝓𝒎𝒍𝒘 𝝓𝟕𝟓𝒍𝒘 𝝓𝒄𝒍𝒘 
max

M  

0.001 

0 0.0768 0.0992 0.1196 0.0006 

0.05 0.0495 Very Large Very Large 0.02411 

0.10 0.0221 0.0535 Very Large 0.0449 

0.15 0.0152 0.0293 0.0443 0.063 

0.20 0.0115 0.0204 0.0251 0.0783 

0.25 0.0092 0.0157 0.0179 0.0909 

0.005 

0 0.0776 0.0998 0.1204 0.003 

0.05 0.0497 0.2226 Very Large 0.0261 

0.10 0.0224 0.0521 Very Large 0.0466 

0.15 0.0152 0.0292 0.0439 0.0644 

0.20 0.0114 0.0204 0.0252 0.0796 

0.25 0.0092 0.0157 0.018 0.092 

0.01 

0 0.0782 0.1002 0.1210 0.0060 

0.05 0.0481 0.1290 0.2099 0.0285 

0.10 0.0224 0.0505 0.0785 0.0487 

0.15 0.0151 0.0289 0.0435 0.0662 

0.20 0.0108 0.0203 0.0253 0.0812 

0.25 0.0089 0.0157 0.0181 0.0934 

0.05 
0 0.0681 0.0904 0.1073 0.0285 

0.05 0.0362 0.0631 0.1132 0.0472 
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Table 4-1. Nondimensionalized moment-curvature values for fully grouted rectangular 

wall sections with uniform steel, continued 

Reinforcement 

Ratio  

𝜶 = 

(𝒇𝒚/𝒇𝒎
′ )𝝆𝒚 

Axial 

Compression 

Ratio  

𝜷 = 

𝑷/(𝒇𝒎
′ /𝑨𝒏) 

𝝓𝒎𝒍𝒘 𝝓𝟕𝟓𝒍𝒘 𝝓𝒄𝒍𝒘 
max

M  

0.05 

0.10 0.0201 0.0415 0.0947 0.0653 

0.15 0.0139 0.0271 0.0408 0.0810 

0.20 0.0112 0.0198 0.0258 0.0946 

0.25 0.0093 0.0156 0.0188 0.1053 

0.10 

0 0.0355 0.0540 0.0673 0.0490 

0.05 0.0244 0.0535 0.0849 0.0677 

0.10 0.0171 0.0376 0.0767 0.0833 

0.15 0.0125 0.0260 0.0383 0.0978 

0.20 0.0109 0.0193 0.0262 0.1096 

0.25 0.0092 0.0157 0.0198 0.1191 

0.15 

0 0.0328 0.0567 0.0752 0.0712 

0.05 0.0206 0.0498 0.0841 0.0870 

0.10 0.0151 0.0350 0.0685 0.1012 

0.15 0.0115 0.0248 0.0363 0.1147 

0.20 0.0109 0.019 0.0266 0.1246 

0.25 0.009 0.0158 0.0207 0.1331 

0.20 

0 0.0232 0.0529 0.0763 0.0904 

0.05 0.0179 0.0478 0.0872 0.1042 

0.10 0.0136 0.0324 0.0616 0.1178 

0.15 0.0121 0.0238 0.0350 0.1302 

0.20 0.0103 0.0166 0.0227 0.1386 

0.25 0.0087 0.0159 0.0217 0.1465 
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4.1.1.4. Validation of Proposed Backbone Curve 

The use of the tabulated non-dimensionalized parameters to construct load-

displacement backbone curves has been validated with the wall tests shown in Table 4-1. 

The comparisons of the proposed backbone curves, the current backbone curve in ASCE 

41, and experimental results are shown in Appendix II. Figure 4-6 shows the comparisons 

for three selected walls. The backbone curves show a good match with the first-cycle 

envelopes of the test results. In contrast, the backbone curves based on ASCE 41 show 

overly brittle behavior. Further comparisons can be found in NIST (2017). 

                   

       (a) UT-PBS-03                  (b) WSU-W-06 

 

(c) UT-W-13 

Figure 4-6.  Comparison of backbone curves with test data for rectangular-sectioned 

cantilever walls 
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4.1.2. Cantilever Walls with T-sections 

Comparing to walls with rectangular sections, flanged walls have additional 

variables to consider, such as the presence or absence of a wall flange on each side, the 

length of a flange compared to that of the web, and the distribution of the vertical 

reinforcement between the flange and the web. A general method accounting for these 

additional variables is proposed here for the construction of load-displacement backbone 

curves for flanged walls. The method is illustrated with T-walls but is also applicable to I-

walls, L-walls, or C-walls. If the wall is asymmetric, two backbone curves are required to 

describe the nonlinear behavior, one for each direction. These backbone curves have the 

same general form as that shown in Figure 4-1. 

For a T-wall, one backbone curve is required for each loading direction. The test 

data of He and Priestley (1992) have shown that RM T-walls subjected to cyclic loading 

exhibited symmetric behavior at the beginning before noticeable cracking had occurred. 

However, once cracks developed, stiffness degradation appeared to be more significant in 

the loading direction in which the flange is in compression than when the flange is in 

tension. Based on the test data, it is proposed that the effective initial stiffness (𝑘) of the 

load-displacement backbone curve for a cantilever T-wall be calculated with Eq. (4-1) 

using the following stiffness reduction factors. For the loading direction in which the flange 

is in compression, the flexural stiffness reduction factor (𝜁𝑓) is recommended to be 0.15, 

and the shear stiffness reduction factor (𝜁𝑣) be 0.35, which are the same as those for walls 

with rectangular sections. For the direction in which the flange is in tension, 𝜁𝑓  is 

recommended to be 0.5, and no reduction be applied to the shear stiffness (i.e., 𝜁𝑣 =1.0). 

For calculating the values of Δ𝑚, Δ75, and Δ𝑐 using Eqs. (4-2) to (4-4), the values of 𝜁𝑓 to 
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be used are the same as above, while the value of 𝜁𝑣 is recommended to be 0.20 for both 

loading directions, similar to the case of rectangular-sectioned walls. When the flange is in 

tension, the capping displacement (Δ𝑐) should not exceed 4% of the wall height. When the 

flange is in compression, the aforereferenced test data have shown the wall can be very 

ductile, and the lateral resistance is much lower than that when the flange is in tension. 

Hence, for practical reasons, no limit needs to be assigned to the capping displacement. 

4.1.2.1. Non-Dimensionalized Moment-Curvature Relations  

For a T-section, the derivation of the moment-curvature relations needs to take into 

consideration whether the flange is in tension or compression. If the flange is in 

compression, then one needs to determine if the neutral axis of bending is in the flange or 

in the web.  Hence, to develop simple non-dimensionalized moment-curve relations that 

can be used as analysis aids, the following assumptions are introduced. For the purpose of 

this discussion, consider a T-section with the dimensions and flexural reinforcement areas 

defined in Figure 4-7(a). The width of the flange (𝑙𝑓
′ ) is the effective width determined 

according to TMS 402 (2016). The steel area 𝐴𝑠,𝑓 represents the total area of steel that is 

within the effective flange width, except for the steel that is in the intersection of the flange 

and the web. The latter is considered to be part of the web steel 𝐴𝑠,𝑤. To simplify the 

analysis, the section is replaced by two equivalent rectangular sections that have different 

widths and reinforcement contents, as shown in Figures 4-7(b) and (c). When the flange is 

in tension, the equivalent rectangular section has a width equal to the width of the web (𝑡𝑤), 

because masonry in tension is assumed to have zero strength, and the total flexural 

reinforcement consists of the web steel (𝐴𝑠,𝑤) and the flange steel (𝐴𝑠,𝑓), as shown in Figure 

4-7(b). The web steel is assumed to be uniformly distributed over the length 𝑙𝑒, the center-
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to-center distance between the extreme reinforcing bars, while 𝐴𝑠,𝑓 is concentrated at the 

tension edge of the section. When the flange is in compression, the equivalent rectangular 

section has a width equal to the effective flange width (𝑙𝑓
′ ) in compression, and the 

contribution of the flange steel 𝐴𝑠,𝑓  is neglected, as shown in Figure 4-7(c). The latter 

assumption is based on the fact that the flange steel is normally close to the neutral axis of 

bending when the moment capacity of the wall section is reached. If the axial load is 

applied at the centroid of a T-section, then the moment values calculated with the 

equivalent rectangular sections need correction needs to be corrected, as will be considered 

later. 

For the case when the flange is in tension, the axial load (𝑃) and the bending 

moment (𝑀) about the centroidal axis of the equivalent rectangular section shown in Figure 

4-7(c) can be expressed as: 
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   (4-11) 

in which 𝑦 is the distance from the centroidal axis of the equivalent rectangular section, 

𝜌𝑣,𝑤𝑒𝑏 is the web steel ratio defined as 𝜌𝑣,𝑤𝑒𝑏 =
𝐴𝑠,𝑤

𝑙𝑤𝑡𝑤
, where 𝑙𝑤 is the length of the web, 

𝑎 = 𝑙𝑒/𝑙𝑤, 𝜎𝑚 and 𝜎𝑠 are the stresses in the masonry and the steel. 
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(a) 

 

(b) 

 

(c) 

Figure 4-7.  (a) T- section with uniformly distributed reinforcement; (b) Equivalent 

rectangular section for flange in tension; (c) Equivalent rectangular section for flange in 

compression 

 

Dividing Eqs. (4-10) and (4-11) by 𝑓𝑚
′ 𝑙𝑤𝑡𝑤 and 𝑓𝑚

′ 𝑙𝑤
2 𝑡𝑤, respectively, one has the 

following non-dimensionalized equations. 
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in which 𝜂 =
𝐴𝑠,𝑓

𝐴𝑠,𝑤
 and the non-dimensionalized parameters are defined in the same way as 

in Section 3.1 for a rectangular section. Here, 𝑀′ = 𝑀/(𝑓𝑚
′ 𝑙𝑤

2 𝑡𝑤).The reinforcement index, 

𝛼, is defined in Eq. (3-1) with 𝜌𝑣 equal to , /s web w wA t l  and the axial load ratio, 𝛽, is defined 

in Eq. (3-2) with 𝐴𝑛 equal to w wt l . 

When the flange is in compression, the non-dimensionalized equations derived for 

a rectangular section, as shown in Eqs. (4-8) and (4-9), apply. In this case, the width of the 

section is the effective flange width, 𝑙𝑓
′ , in compression, as shown in Figure 4-7(c), 𝑀′ =

𝑀/(𝑓𝑚
′ 𝑙𝑤

2 𝑙𝑓
′ ), 𝛼 is defined in Eq. (3-1) with 𝜌𝑣 equal to 𝐴𝑠,𝑤𝑒𝑏/𝑙𝑓

′ 𝑙𝑤, and 𝛽 is defined in Eq. 

(3-2) with 𝐴𝑛 equal to 𝑙𝑓
′ 𝑙𝑤. 

The equations developed here apply to I-sections, L-sections, or C-sections. For L- 

and C-sections, the conditions will be the same as those for T-sections. For I-sections, Eqs. 

(4-12) and (4-13) apply regardless of the loading directions. However, the width of the 

equivalent rectangular section for each loading direction will be the effective flange width, 

𝑙𝑓
′ , in compression, 𝛼 is defined in Eq. (3-1) with 𝜌𝑣 equal to 𝐴𝑠,𝑤𝑒𝑏/𝑙𝑓

′ 𝑙𝑤, and 𝛽 is defined 

in Eq. (3-2) with 𝐴𝑛 equal to 𝑙𝑓
′ 𝑙𝑤. The flange steel in compression is ignored. 

4.1.2.2. Non-Dimensionalized Moment-Curvature Parameters 

Using the equivalent rectangular section assumptions as discussed above, the non-

dimensionalized moment and curvature parameters, 𝑀𝑚𝑎𝑥
′ , 𝑙𝑤𝜙𝑚, 𝑙𝑤𝜙75, and 𝑙𝑤𝜙𝑐, for a 



81 

 

fully grouted T-section can be presented as functions of  𝛼, 𝛽  and 𝜂  , where 𝜂 

(which is the ratio of  𝐴𝑠,𝑓 𝑡𝑜 𝐴𝑠,𝑤) is required for the case that the flange is in tension. 

Similar to the case of a rectangular section, the influence of a and 𝑙𝑏/𝑙𝑒 on the moment-

curvature relations can be ignored because the contribution of the web reinforcement to the 

moment capacity of a T-section is either the same or less than that for a rectangular section.  

For the case that the flange is in compression, the non-dimensionalized moment 

and curvature parameters can be obtained from Table 4-1, with 𝑀𝑚𝑎𝑥
′ = 𝑀𝑚𝑎𝑥/(𝑓𝑚

′ 𝑙𝑤
2 𝑙𝑓

′ ), 

the value of 𝛼 calculated from Eq. (3-1) with 𝜌𝑣 equal to 𝐴𝑠,𝑤𝑒𝑏/𝑙𝑓
′ 𝑙𝑤, and the value of 𝛽 

from Eq. (3-2) with 𝐴𝑛 equal to 𝑙𝑓
′ 𝑙𝑤, as explained before. For the case that the flange is in 

tension, the non-dimensionalized parameters are numerically generated using a fiber-

section model of the equivalent rectangular section shown in Figure 4-7(b), for values of 𝜂 

equal to 1, 2, and 3. These 𝜂 values cover a range of possible T-section properties. The 

values of the non-dimensionalized parameters for 𝜂 values between 1 and 2, and 2 and 3, 

can be determined by linear interpretation. Here, 𝑀𝑚𝑎𝑥
′ = 𝑀𝑚𝑎𝑥/(𝑓𝑚

′ 𝑙𝑤
2 𝑡𝑤), the value of 𝛼 

is calculated from Eq. (3-1) with 𝜌𝑣 equal to 𝐴𝑠,𝑤𝑒𝑏/𝑡𝑙𝑤 and the value of 𝛽 from with Eq. 

(3-2) with 𝐴𝑛 equal to 𝑡𝑤𝑙𝑤. The analyses were conducted with a 1.83 m × 0.194 m (72 

in. × 7.625 in.) equivalent rectangular section. The numerical results are presented in Table 

4-2. 

It should be noted that the values of 𝑀𝑚𝑎𝑥
′  presented in the aforementioned tables 

are moment capacities calculated about the centroid of the equivalent rectangular sections 

with the axial load applied at the same location. To calculate the moment capacity of a T-
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section from the tabulated values, one has to apply a correction to account for the fact that 

the axial load is normally assumed to be located at the centroid of a T-section. 

The correct moment capacity 𝑀𝑚𝑎𝑥 for a T-section can be calculated from the non-

dimensionalized value 𝑀𝑚𝑎𝑥
′  with a simple correction as follows.  

                        
2

max m w w maxM f l t M Pe = +    for flange in tension     (4-14) 

                    
2

max m w f maxM f l l M Pe  = −    for flange in compression    (4-15) 

in which the eccentricity (𝑒) is defined in Figure 4-8. According to TMS 402/602 (TMS, 

2016), the effective flange width of a T-section can be different when the flange is in 

compression and tension. For simplicity, the eccentricity is calculated based on a T-section 

with actual flange width (𝑙𝑓), rather than effective flange width (𝑙𝑓
′ ). 

Strictly speaking, the moment in the entire moment-curvature curve has to be 

corrected by the same amount shown in Eqs. (4-14) and (4-15). As a result, the non-

dimensionalized curvature values 𝑙𝑤𝜙75 ,  and 𝑙𝑤𝜙𝑐  from the equivalent rectangular 

sections will not reflect the actual moment degradations they are supposed to be associated 

with. For the case that the flange is in tension, they will under-estimate the corresponding 

curvature values, which will result in more severe load degradation being represented in 

the backbone curve. For the case that the flange is in compression, they will over-estimate 

the curvature values. However, for the latter case, the peak moment is much lower than 

that in the other loading direction, and the post-peak strength degradation is relatively mild. 

For these reasons, no corrections are needed for the corresponding lateral displacements 

calculated from 𝑙𝑤𝜙75, and 𝑙𝑤𝜙𝑐 with Eqs. (4-2) - (4-4). 
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Figure 4-8. Eccentricity of axial force for a T-section represented by an equivalent 

rectangular section 

 

4.1.2.3. Validation of Proposed Backbone Curves 

The three T-walls presented in Table 3-2 and Figure 3-4 are used to validate the 

method proposed here for constructing the lateral load – displacement backbone curves for 

T-walls. Figure 4-9 shows the comparison of the test data with the backbone curves 

constructed by the interpolating the values of the non-dimensionalized parameters 

presented in Table 4-2. As shown, with the correction for axial load eccentricity applied, 

the proposed backbones curves show a good agreement with the first-cycle envelopes of 

the test data. The match is good except for UCSD-F2, which shows that the backbone curve 

is far more ductile than the test results in the positive loading direction. This discrepancy 

is also shown by the cyclic analysis with the beam-column model as shown in Figure 3-

8(b). 
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(a) UCSD-F1        (b) UCSD-F2 

 

(c) UCSD-F3 

Figure 4-9. Comparison of backbone curves with test data for T-walls 
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Table 4-2. Nondimensionalized moment-curvature values for fully grouted rectangular 

wall sections with additional steel at one end as quantified by the value of 𝜼 = 𝑨𝒔,𝒇/𝑨𝒔,𝒘 

Reinforcement 

Ratio  

𝜶 = 

(𝒇𝒚/𝒇𝒎

′
) 𝝆𝒚 

Axial 

Compression 

Ratio  

𝜷 = 

𝑷/(𝒇𝒎

′
/𝑨𝒏) 

𝝓𝒎𝒍𝒘 𝝓𝟕𝟓𝒍𝒘 𝝓𝒄𝒍𝒘 
max

M  

𝜼 = 𝟏. 𝟎 

0.01 

0 0.0781 0.09 0.0996 0.018 

0.05 0.0484 0.0761 0.2445 0.0385 

0.10 0.0207 0.0464 0.103 0.0571 

0.15 0.0137 0.0271 0.0405 0.074 

0.20 0.011 0.0194 0.024 0.0884 

0.25 0.0009 0.0151 0.0175 0.1 

0.05 

0 0.0366 0.0475 0.0567 0.0745 

0.05 0.0214 0.0523 0.079 0.0903 

0.10 0.0143 0.0299 0.0695 0.1051 

0.15 0.0116 0.0208 0.0302 0.1183 

0.20 0.0089 0.0161 0.0208 0.1286 

0.25 0.008 0.0132 0.0159 0.1372 

0.10 

0 0.0182 0.0533 0.088 0.1307 

0.05 0.0142 0.0308 0.1384 0.144 

0.10 0.0114 0.0214 0.0375 0.1553 

0.15 0.0094 0.0169 0.0245 0.1643 

0.20 0.0081 0.0138 0.0185 0.1721 

0.25 0.0072 0.0118 0.0147 0.1762 

0.15 0 0.0127 0.0306 0.1612 0.184 
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Table 4-2. Nondimensionalized moment-curvature values for fully grouted rectangular 

wall sections with additional steel at one end as quantified by the value of 𝜼 = 𝑨𝒔,𝒇/𝑨𝒔,𝒘, 

continued 

Reinforcement 

Ratio  

𝜶 = 

(𝒇𝒚/𝒇𝒎

′
) 𝝆𝒚 

Axial 

Compression 

Ratio  

𝜷 = 

𝑷/(𝒇𝒎

′
/𝑨𝒏) 

𝝓𝒎𝒍𝒘 𝝓𝟕𝟓𝒍𝒘 𝝓𝒄𝒍𝒘 
max

M  

0.15 

0.05 0.0109 0.0223 0.0441 0.1934 

0.10 0.0089 0.0178 0.0281 0.2014 

0.15 0.0083 0.0145 0.0209 0.2083 

0.20 0.0078 0.0124 0.0167 0.2112 

0.25 0.0065 0.0109 0.0139 0.2137 

0.20 

0 0.0114 0.0237 0.058 0.2288 

0.05 0.0009 0.02 0.0339 0.2365 

0.10 0.0085 0.0169 0.0247 0.2426 

0.15 0.0076 0.0142 0.0198 0.2452 

0.20 0.0068 0.0116 0.0157 0.2469 

0.25 0.0064 0.0102 0.0134 0.2475 

𝜼 = 𝟐. 𝟎 

0.01 

0 0.0806 0.0896 0.0985 0.03 

0.05 0.0407 0.0636 0.0765 0.0478 

0.10 0.0196 0.0423 0.0907 0.0654 

0.15 0.0138 0.0256 0.0373 0.0816 

0.20 0.0103 0.0185 0.0229 0.0953 

0.25 0.0084 0.0146 0.0169 0.1064 

0.05 

0 0.0212 0.058 0.0757 0.1152 

0.05 0.0148 0.0409 0.1657 0.1291 

0.10 0.0115 0.0217 0.0368 0.1418 
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Table 4-2. Nondimensionalized moment-curvature values for fully grouted rectangular 

wall sections with additional steel at one end as quantified by the value of 𝜼 = 𝑨𝒔,𝒇/𝑨𝒔,𝒘, 

continued 

Reinforcement 

Ratio  

𝜶 = 

(𝒇𝒚/𝒇𝒎

′
) 𝝆𝒚 

Axial 

Compression 

Ratio  

𝜷 = 

𝑷/(𝒇𝒎

′
/𝑨𝒏) 

𝝓𝒎𝒍𝒘 𝝓𝟕𝟓𝒍𝒘 𝝓𝒄𝒍𝒘 
max

M  

0.05 

0.15 0.0091 0.01657 0.0232 0.1519 

0.20 0.0078 0.0135 0.0172 0.1602 

0.25 0.007 0.0114 0.0137 0.1655 

0.10 

0 0.0115 0.0242 0.0851 0.2006 

0.05 0.0095 0.0183 0.0314 0.2092 

0.10 0.0081 0.0147 0.0218 0.2168 

0.15 0.0073 0.0123 0.0169 0.2208 

0.20 0.0064 0.0107 0.0137 0.2237 

0.25 0.0066 0.0094 0.0116 0.2227 

0.15 

0 0.0084 0.0163 0.0279 0.2754 

0.05 0.0077 0.0135 0.0209 0.2783 

0.10 0.0065 0.0117 0.0169 0.2806 

0.15 0.0065 0.0103 0.014 0.2805 

0.20 0.0065 0.0094 0.0122 0.2688 

0.25 0.0063 0.0089 0.0112 0.2546 

0.20 

0 0.007 0.013 0.0207 0.3348 

0.05 0.0065 0.0113 0.0173 0.3353 

0.10 0.0067 0.0102 0.0148 0.3265 

0.15 0.0064 0.0097 0.0134 0.3111 

0.20 0.0061 0.0092 0.0122 0.2958 

0.25 0.0061 0.0088 0.0113 0.2806 
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Table 4-2. Nondimensionalized moment-curvature values for fully grouted rectangular 

wall sections with additional steel at one end as quantified by the value of 𝜼 = 𝑨𝒔,𝒇/𝑨𝒔,𝒘, 

continued 

Reinforcement 

Ratio  

𝜶 = 

(𝒇𝒚/𝒇𝒎

′
) 𝝆𝒚 

Axial 

Compression 

Ratio  

𝜷 = 

𝑷/(𝒇𝒎

′
/𝑨𝒏) 

𝝓𝒎𝒍𝒘 𝝓𝟕𝟓𝒍𝒘 𝝓𝒄𝒍𝒘 
max

M  

𝜼 = 𝟑. 𝟎 

0.01 

0 0.0755 0.0854 0.095 0.041 

0.05 0.0369 0.0539 0.0632 0.0567 

0.10 0.0185 0.0385 0.0889 0.0734 

0.15 0.013 0.024 0.0344 0.0891 

0.20 0.0102 0.0176 0.0219 0.1022 

0.25 0.0084 0.0141 0.0163 0.1127 

0.05 

0 0.0162 0.0352 Very Large 0.1528 

0.05 0.0111 0.0228 0.0491 0.1651 

0.10 0.009 0.0172 0.0258 0.175 

0.15 0.008 0.0139 0.0187 0.1832 

0.20 0.0073 0.0116 0.0146 0.1883 

0.25 0.0061 0.0101 0.0121 0.1918 

0.10 

0 0.0085 0.0157 0.0278 0.2608 

0.05 0.0074 0.013 0.02 0.265 

0.10 0.0063 0.0111 0.0158 0.2678 

0.15 0.0066 0.0098 0.013 0.2669 

0.20 0.0067 0.0091 0.0115 0.2531 

0.25 0.0061 0.0086 0.0105 0.2394 

0.15 
0 0.0065 0.0109 0.0174 0.3464 

0.05 0.0068 0.1 0.0149 0.3335 
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Table 4-2. Nondimensionalized moment-curvature values for fully grouted rectangular 

wall sections with additional steel at one end as quantified by the value of 𝜼 = 𝑨𝒔,𝒇/𝑨𝒔,𝒘, 

continued 

Reinforcement 

Ratio  

𝜶 = 

(𝒇𝒚/𝒇𝒎

′
) 𝝆𝒚 

Axial 

Compression 

Ratio  

𝜷 = 

𝑷/(𝒇𝒎

′
/𝑨𝒏) 

𝝓𝒎𝒍𝒘 𝝓𝟕𝟓𝒍𝒘 𝝓𝒄𝒍𝒘 
max

M  

0.15 

0.10 0.0064 0.0096 0.01344 0.3179 

0.15 0.0062 0.0091 0.0123 0.3021 

0.20 0.0061 0.0087 0.0113 0.2864 

0.25 0.0059 0.0083 0.0104 0.2707 

0.20 

0 0.0065 0.01 0.0161 0.3794 

0.05 0.0063 0.0096 0.0146 0.3627 

0.10 0.006 0.0092 0.0134 0.3463 

0.15 0.0058 0.0089 0.0122 0.3298 

0.20 0.0057 0.0085 0.0113 0.3134 

0.25 0.0055 0.0081 0.0106 0.2971 
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4.1.3. Partially Grouted Walls 

While the general modeling method proposed here based on a fiber-section 

idealization is applicable to partially grouted walls, the non-dimensionalized moment and 

curvature parameters presented here are calculated and validated for fully grouted walls. 

Experimental data on flexure-dominated partially grouted walls are scarce. Most of the 

partially grouted walls tested were shear-dominated or had behavior resembling an infilled 

frame with weak infill walls. In the absence of data, one may use the non-dimensionalized 

moment and curvature parameters presented in the Tables 4-1 and 4-2 with the net wall 

cross-sectional area replaced by the gross cross-sectional area (including the wall cavity) 

and the masonry compressive strength based on the average over the gross cross-sectional 

area.  

The validity of the aforementioned approach has been evaluated with the partially 

grouted rectangular wall section shown in Figure 4-10. As shown, the wall section has a 

length of 1.829 m (72 in). It has a vertical reinforcing bar in each of the two grouted cells, 

and the rest of cells are ungrouted. This section is representative of an ordinary partially 

grouted wall designed according to TMS 402 (TMS, 2016).  Each reinforcing bar has a 

cross-sectional area of 129 mm2 (#4 steel bar). A fiber-section model has been developed 

for this section, using the uniaxial material laws for masonry and steel presented in Section 

3.1. The compressive strengths for the grouted and ungrouted masonry are based on the 

prism tests performed by Koutras (2019). The compressive strength for grouted masonry 

is 17.9 MPa (2.6 ksi), whereas that for ungrouted masonry is 6.8 MPa (1.0 ksi) based on 

the gross section. The yielding strength of the reinforcing steel is taken as 483 MPa (70.0 

ksi). To determine the tensile strain at peak stress (𝜀𝑝𝑠) for the moment-curvature analysis 



91 

 

as well as for determining the values of the non-dimensionalized moment and curvature 

values from Table 4-1, the vertical reinforcement index (𝛼) and axial load ratio (𝛽) are 

calculated with Eqs. (3-1) and (3-2). These two indices are based on the masonry 

compressive strength (𝑓𝑚
′ ) of 9.2 MPa (1.3 ksi), which is the average compressive strength 

based on the entire gross section of the wall. 

Figure 4-10(b) shows the comparison of the moment-curvature curve with the 

critical moment and curvature values from the table for different values of the axial load 

ratio (𝛽). As shown, for 𝛽 equal to 0 and 0.05 (lower axial load), the values from the table 

tend to overestimate the ductility of the wall section. This is because the values in the table 

are generated with a section that has the vertical bars uniformly distributed over the section, 

while the vertical bars are actually concentrated at the wall ends. The failure of one bar in 

this section results in a significant drop of moment resistance, which is not accurately 

represented by a uniform steel distribution. For 𝛽 equal to 0.10 and higher, the moment-

curvature analyses stop before severe load degradation occurred, indicating the wall section 

is not able to carry the applied axial load due to extensive crushing of masonry. For these 

cases, the non-dimensionalized relation tends to underestimate the moment capacity and 

ductility of the wall section. This can be attributed to the use of the average compressive 

strength of masonry for the two grouted cells when calculating the moment values from 

the non-dimensionalized values. Hence, this approach is conservative when the axial load 

ratio (𝛽) is greater than 0.10 and may over-estimate the ductility when 𝛽 is less than 0.05. 

Even though the latter situation is more common for existing masonry structures, which 

are mostly low-rise, the method is acceptable considering that the post-peak curvature 
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range before complete crushing occurs, as shown in the figure, is short compared to the 

pre-peak range. 

 

 

(a) (b) 

Figure 4-10.  (a) Partially grouted RM wall section; (b) Comparison of the moment-

curvature curves with moment and curvature values calculated with the non-

dimensionalized values from Table 4-1 
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4.2. Shear-Dominated Walls 

For a fully grouted shear-dominated RM shear wall, the strength and ductility are 

influenced by the aspect ratio of the wall, the amount of vertical and horizontal 

reinforcement, and the axial compressive load. The influence of the vertical reinforcement 

on the shear strength and ductility is through the dowel action. In the absence of a simple 

rational model to account for all of these, an empirical backbone curve is proposed based 

on the test data of Shing et al. (1991), Voon and Ingham (2006), and Ahmadi (2012). 

4.2.1. Proposed Empirical Backbone curve 

Figure 4-11 shows the proposed lateral load-vs.-lateral drift ratio curve for fully 

grouted shear-dominated walls with rectangular section. For a cantilever wall, the effective 

initial stiffness (𝑘) can be calculated with Eq. (4-1). For a wall with fixed-fixed end 

conditions, the flexure stiffness term in the equation should be modified accordingly. The 

peak shear strength (𝑄𝑚𝑎𝑥) of a wall can be calculated with the shear strength formula 

given in TMS 402/602 (2016), considering the contribution of the masonry (𝑉𝑛𝑚) and the 

contribution of the horizontal reinforcement (𝑉𝑛𝑠). The residual strength (𝑄𝑟) is assumed to 

be equal to 𝑉𝑛𝑠. The drift ratio at the peak strength and the drift ratio at which the residual 

strength develops are taken as 0.5% and 1.0%, respectively. The maximum allowable drift 

ratio is taken as 2.0%, which is the same as that specified in ASCE 41 (2017).  

Studies by Minaie et al. (2010) and Bolhassani (2015) show that partially grouted 

shear-dominated RM walls have lower strength and displacement capacity than fully 

grouted shear-dominated walls. Hence, for partially grouted walls, it is recommended that 

the backbone curve shown in Figure 4-11 be modified as follows. The peak strength (𝑄𝑚𝑎𝑥) 
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and residual strength (𝑄𝑟) should be reduced by a factor of 0.75 as suggested in TMS 

402/602 (2016). The drift ratio at the peak strength should be reduced from 0.5% to 0.2%, 

and that corresponding to the residual strength be reduced from 1% to 0.4%. The maximum 

allowable drift is to be capped at 0.8% rather than 2%. 

 

Figure 4-11.  Backbone lateral load – lateral drift ratio curve for fully grouted shear-

dominated reinforced masonry walls 

 

4.2.2. Comparison with Experimental Data 

Table 4-3 shows the dimensions, material strength, axial load ratios and 

reinforcement details of the 17 fully grouted, shear-dominated RM walls selected to 

evaluate the proposed backbone curve (Shing et al., 1991; Voon and Ingham, 2006; 

Ahmadi, 2012). These planar wall specimens had axial load ratios ranging from 0 to 0.109, 

and shear reinforcement ratios ranging from 0.025% to 0.33%. These walls also have 

different geometry and boundary conditions: 15 out of the 17 walls are cantilever walls 

with the length-to-height aspect ratios ranging from 0.5 to 1.67; the rest two specimens, 

tested by Ahmadi (2012) had fixed-fixed boundary conditions, with their depth-to-height 

ratios equal to one. 
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The comparison of the proposed backbone curve with the test data of these wall 

specimens are shown in Appendix III. Figure 4-12 shows the comparison for two selected 

walls, UT-PBS-01 and UT-PBS-02. The backbone curves match the test data well, while 

the backbone curves recommended in ASCE 41 (2017) show overly brittle behaviors.  

 

Table 4-3. Properties of the selected shear-dominated RM wall specimens 

Wall ID 
Height 

(m) 

Length 

(m) 

Width 

(m) 

Axial 

load 

(kN) 

Shear

-span 

ratio 

Horiz. 

Reinf.* 

f’m 

(MPa) 

fyh
**

 

(MPa) 

Auck-02 1.80 1.80 0.140 0 1 #2@160cm 17.6 324.7 

Auck-04 1.80 1.80 0.140 0 1 #3@79cm 17.0 319.9 

Auck-07 1.80 1.80 0.140 126 1 #2@41cm 18.8 324.7 

Auck-08 1.80 1.80 0.140 63.0 1 #2@41cm 18.8 324.7 

Auck-09 3.60 1.80 0.140 63.0 2 #2@41cm 24.3 324.7 

Auck-10 1.80 3.00 0.140 105 0.6 #2@41cm 24.3 324.7 

CU-3 1.83 1.83 0.143 487 1 #3@41cm 20.4 393.0 

CU-4 1.83 1.83 0.143 0 1 #3@41cm 18.2 393.0 

CU-5 1.83 1.83 0.143 0.038 1 #3@41cm 18.2 393.0 

CU-7 1.83 1.83 0.143 180 1 #3@41cm 22.4 393.0 

CU-9 1.83 1.83 0.143 180 1 #3@41cm 22.4 393.0 

CU-11 1.83 1.83 0.143 487 1 #4@41cm 22.3 461.9 

CU-13 1.83 1.83 0.143 487 1 #4@41cm 23.0 461.9 

CU-14 1.83 1.83 0.143 487 1 #3@41cm 23.0 393.0 

CU-16 1.83 1.83 0.143 487 1 #4@41cm 17.1 461.9 

UT-PBS-

01 
1.83 1.83 0.194 61.1 0.5 #4@20cm 21.5 430.2 

UT-PBS-

02 
1.83 1.83 0.194 458 0.5 #4@41cm 21.5 430.2 

*  #2, #3, and #4 bars have nominal diameters of 6mm, 10mm, and 13mm, respectively.  
**

 fyh represents the yielding strength of horizontal bars.  
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(a) Wall UT-PBS-01 

 

(b) Wall UT-PBS-02 

Figure 4-12.  Comparison of proposed backbone curves with experimental data and the 

backbone curves recommended in ASCE 41 for fully grouted shear-dominated walls 

 

Chapter 4, in part, is a reprint of the material in a manuscript titled “Practical 

Nonlinear Analysis Methods for Flexure-Dominated Reinforced Masonry Shear Walls” 

that has been submitted to ASCE Journal of Structural Engineering in 2021 (under review). 

The authors of the manuscript are: the author of the dissertation and P. Benson Shing. The 

author of the dissertation is the primary author and the main contributor of the work 

presented in the manuscript. 
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CHAPTER 5 SHAKE-TABLE TESTS ON COLLAPSE RESISTANCE 

OF SHEAR-DOMINATED REINFORCED MASONRY SHEAR 

WALL SYSTEMS 

 

This chapter presents a study to investigate the displacement capacity of shear-

dominated fully grouted RM wall systems and the influence of wall flanges and planar 

walls perpendicular to the direction of the seismic force on the seismic performance of a 

wall system. Two full-scale, single-story, RM wall systems were tested on a shake table to 

the verge of collapse. The tests were carried out with unidirectional base excitation. The 

design of the two structures, the testing procedure, and the major results and findings from 

the shake-table tests will be presented. The influence of wall flanges and walls 

perpendicular to the direction of shaking has been analyzed and quantitively assessed. The 

responses of the test structures have been compared to a force-vs.-drift ratio backbone 

curve developed from previous quasi-static test data on shear-dominated planar wall 

segments. The results have been further used to assess the accuracy of the shear strength 

formula in TMS 402/602 (2016).  

5.1. Design of Test Structures 

Figure 5-1 shows the plan layouts of the two RM shear wall systems designed and 

tested under unidirectional motions on the outdoor shake table in the NHERI (Natural 

Hazards Engineering Research Infrastructure) facility at the University of California San 

Diego. Each specimen had two T-walls as the main seismic force resisting system. 

Specimen 2 had six additional rectangular walls with their planes oriented perpendicular 

to the direction of the shake-table motion. They are referred to as the out-of-plane walls in 
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this paper. One of the objectives of the tests was to investigate the influence of the out-of-

plane walls on the seismic resistance of a wall system. To this end, the T-walls in the two 

specimens had the same design and carried the same gravity load, and the two specimens 

had the same effective seismic weight. 

 
(a) Specimen 1 

 
(b) Specimen 2 

Figure 5-1.  Plan views of footing and wall layout (in meters) 

 

Figures 5-2 and 5-3 shows the reinforcement details for the two specimens. The 

reinforcing bars in the walls had a nominal yield strength of 414 MPa (Grade 60 in ASTM 

Standard24). Each T-wall had six No. 4 (13 mm) vertical bars spaced at 20 cm (8 in) on 

center in the web, and three No. 4 (13 mm) vertical bars spaced at 41 cm (16 in) in the 

flange. The horizontal bars in the web and the flange were No. 3’s (10 mm) spaced at 41 

cm (16 in) on center. In Specimen 2, each of the out-of-plane walls had No. 4 (13 mm) bars 
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for the vertical reinforcement, and No. 3 (10 mm) bars for the horizontal reinforcement, 

both spaced at 41 cm (16 in) on center. The reinforcement complied with the prescriptive 

requirements of TMS 402/602 for walls designed for high seismic areas, but the spacing of 

the reinforcing bars in the flanges of the T-walls slightly violated the maximum spacing 

requirement (which is no greater than one-third of the wall length). The vertical 

reinforcement ran continuously from the walls into the footings, and each bar ended with 

a 90-degree standard hook in the footing conforming to the ACI 318-14 specification25 for 

the development of reinforcement in tension. The surface of the concrete footing 

underneath each wall was intentionally roughened to increase the frictional resistance. 

As shown in Figure 5-2, the roof slab of Specimen 1 consisted of 25-cm-thick (10-

in) precast prestressed hollow-core planks with a 13-cm-thick (5-inch) cast-in-place 

concrete topping. Two reinforced concrete slabs, each with dimensions of 3.0  × 3.0 

 ×  0.36 m (10 ft × 10 ft × 14 in), were secured on top of the roof slab to achieve the target 

roof mass. For Specimen 2, the roof slab consisted of 20-cm-thick (8-in) hollow-core 

planks with a 7.6-cm (3-in) concrete topping, as shown in Figure 5-3. It had four additional 

concrete slabs, each with dimensions of 5.0  × 3.0  ×  0.25 m (16.5 ft × 10 ft × 10 in), as 

added mass. The resulting roof weights of Specimens 1 and 2, including the added concrete 

slabs, were 245 kN (55.1 kips) and 601 kN (135 kips), respectively. The roof weights of 

the two specimens were so determined that the T-walls in the two specimens carried the 

same gravity load. Since the roof slabs were very stiff, the tributary roof load, 𝑃, on each 

wall was assumed to be proportional to the axial stiffness of the wall. The axial compressive 

load ratio, 𝑃/𝑓𝑚
, 𝐴𝑔, for each T-wall was 0.016, where 𝐴𝑔 is the cross-sectional area of the 

wall. The compressive strength of masonry, 𝑓𝑚
,
, was specified to be 17 MPa (2.5 ksi). 
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Including the weight of the masonry walls from the mid-height to the top, Specimen 1 had 

an actual seismic weight of 268 kN (60 kips), while Specimen 2 had 661 kN (149 kips). To 

have the same effective seismic weight as Specimen 2, the input ground motions for 

Specimen 1 were scaled in time and amplitude to meet the dynamic similitude requirement.  

The flexural, diagonal shear, and sliding shear strengths of the T-walls were 

calculated based on the recommendations and formulas in TMS 402/602 to ensure that the 

walls would develop diagonal shear-dominated behavior. The flexural strength was 

calculated using an axial force-moment interaction diagram. It was assumed that the T-

walls had a fixed-fixed end condition due to the high stiffness of the roof diaphragms. The 

calculated flexural, diagonal shear, and sliding shear strengths were 355 kN (80 kips), 326 

kN (73 kips), and 397 kN (89 kips), respectively, based on the masonry compressive 

strength of 17 MPa (2.5 ksi), and the expected yield strength of 469 MPa (68 ksi) for the 

reinforcing bars. A detailed finite element model (Koutras, 2019) was used to conduct pre-

test analysis to determine the ground motion intensity scaling in the shake-table tests as 

discussed in a following section. 
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(a) South elevation view 

 

(b) West elevation view 

Figure 5-2.  Reinforcement details of Specimen 1 (in meters unless indicated) 
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(a) South elevation view 

 

(b) West elevation view 

Figure 5-3.  Reinforcement details of Specimen 2(in meters unless indicated) 
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5.2. Material Properties 

For both specimens, compression tests were performed on 203×102×102-mm 

(8×4×4-in.) grout prisms, 406×203×203-mm (16×8×8-in.) grouted CMU prisms and 

152×305-mm (6×12-in.) concrete cylinders. For Specimen 2, compression tests were also 

performed on 102 ×203-mm (4×8-in.) grout cylinders and 51 ×102-mm (2×4-in.) mortar 

cylinders. The compression tests were conducted on the 28th day after the samples were 

prepared, and some samples were also tested several days after the first ground motion test 

was performed. The average compressive strengths of the masonry and concrete samples 

are shown in Table 5-1. Tension tests were conducted on reinforcing bar samples. The 

average tensile properties are presented in Table 5-2. 
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Table 5-1.  Compressive Strengths of Masonry and Concrete Samples 

Specimen Type of Samples 
Age 

(days) 

Number 

of 

Samples 

Compressive 

Strength  

Average 
COV 

MPa ksi 

1 

406×203×203-mm grouted 

CMU prisms 

28 2 18 2.7 0.06 

68b 6 20 2.9 0.13 

203×102×102-mm grout 

prisms 

28 2 27 3.9 0.01 

68b 3 32 4.7 0.02 

152×305-mm footing concrete 

cylinders 
28 3 36 5.2 0.03 

152×305-mm roof concrete 

cylinders 
28 3 35 5.0 0.02 

2 

406×203×203-mm grouted 

CMU prisms 
28 7 27 3.9 0.07 

203×102×102-mm grout 

prisms 

28 3 36 5.2 0.07 

70c 5 45 6.5 0.23 

102×203-mm grout cylinders 
28 3 33 4.8 0.04 

70c 3 37 5.3 0.02 

51×102-mm mortar cylindersa 28 12 30 4.4 0.12 

152×305-mm footing concrete 

cylinders 
28 3 36 5.3 0.03 

152×305-mm roof concrete 

cylinders 
28 3 43 6.3 0.03 

a Three batches with four samples in each batch 
b Six days after the first ground motion test on Specimen 1 
c Eight days after the first ground motion test on Specimen 2 
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Table 5-2.  Average Tensile Properties of Reinforcing Bars 

Bar 

Size 

Number 

of 

Samples 

Yield Stress 
Tensile 

Strength 
𝝐𝒚

a 𝝐𝒔𝒉
b 𝝐𝒔𝒖

c 

MPa ksi MPa ksi 
mm/mm 

(in./in.) 

mm/mm 

(in./in.) 

mm/mm 

(in./in.) 

Specimen 1 

No.3 3 521 75.6 729 105.8 0.00474 - 0.107 

No.4 3 462 67.0 671 97.3 0.00342 0.0106 0.116 

Specimen 2 

No.3 3 523 75.9 730 105.9 0.00495 - 0.107 

No.4 3 461 66.9 671 97.3 0.00339 0.0107 0.117 

a Yield strain 
b Strain at initiation of strain hardening 
c Strain at peak stress 

 

 

5.3. Instrumentation 

Each specimen had a number of sensors installed to measure the response of the 

structure during the tests. Specimen 1 had 76 strain gauges, 24 accelerometers, and 56 

displacement transducers. Specimen 2 had 136 strain gauges, 40 accelerometers, and 69 

displacement transducers. Figures 5-4 and 5-5 shows the locations of the accelerometers 

and displacement transducers installed on the two specimens. Some locations had a set of 

three accelerometers to measure the acceleration in east-west, north-south and vertical 

directions, respectively. For Specimen 1, a set of three accelerometers were located at each 

corner of the roof slab. Eight sets of accelerometers were installed along the roof perimeter 

of Specimen 2. To record the table acceleration during the tests, 4 sets of accelerometers 

were installed on the top surfaces of the concrete footings of the T-walls in both specimens.  
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For both specimens, there were 7 string potentiometers installed on the north face 

of the web of each T-wall to measure the wall deformation. As shown in Figures 5-4(a) 

and 5-5(a), on the east and west sides of a T-wall, a string potentiometer was installed to 

measure the vertical displacement of the roof slab. For Specimen 2, one string 

potentiometer was installed along the center line of each out-of-plane wall to measure the 

vertical roof displacement, as shown in Figures 5-5(b), (c) and (d). The horizontal 

displacement of the roof relative to the table (the story drift) was measured by string 

potentiometers mounted along the east edge of the roof with the ends of the strings attached 

to a stiff reference frame, which was fixed on the table. As shown in Figures 5-4(b) and 5-

5(d), Specimen 1 had two string potentiometers to measure the relative roof displacement, 

and Specimen 2 had three. The multiple string potentiometers were to check if there was 

horizontal rotation of the roof. Figures 5-4(a) and 5-5(a) also showed that 14 linear 

potentiometers were installed on the east and west sides of each T-wall to measure the 

flexural deformation (7 potentiometers on each side). The remaining linear potentiometers 

were used to measure the uplift and sliding of the base of each T-wall relative to the footing, 

the sliding between the top of each wall and the roof slab, and the sliding between the web 

and the flange if any.  

For Specimen 2, sensors were installed to check if the concrete blocks secured on 

the roof slab slid during the tests. They included an accelerometer (along the shaking 

direction) attached to the west vertical surface of each block and linear potentiometers 

installed to measure the relative sliding between the roof top and the lower concrete block, 

and between two stacked blocks. 
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Strain gauges were installed on the vertical bars near the top and bottom of each 

wall to measure the flexural strains. Additional gauges were installed on vertical and 

horizontal bars in the webs of the T-walls along diagonal lines to measure strains induced 

by diagonal crack opening. The locations of the strain gauges will be shown later in Figures 

5-16 and 17 together with the detected yielding. 

 

 

(a) North view 

 

(b) East view 

 

Figure 5-4.  Instrumentation plans for Specimen 1 
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(a) North view North view of two T-walls 

 

 

(b) West view of two central out-of-plane walls 

 

 

(c) West view      (d) East view 

 

 

Figure 5-5.  Instrumentation plans for Specimen 2 
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5.4. Test Setup and Loading Protocol 

Figure 5-6 shows the two specimens with their footings secured on the shake table 

with post-tensioned rods. The table motion was in the east-west direction. For each 

specimen, four concrete pedestals, with two on each of the north and south sides, were used 

as a catch system to prevent the free fall of the roof slab onto the table in case the walls 

lost their vertical load carrying capacity. Four steel cables were used to tie the roof slab to 

the table platen with a slack to avoid uncontrolled drift of the roof. Specimen 1 was tested 

in two phases. In the first phase, the structure was subjected to a sequence of earthquake 

motions until it reached a roof drift ratio of 2.53% with a significant strength degradation 

at the end. In the second phase, the damaged structure was subjected to a quasi-static lateral 

load with the test setup shown in Figure 5-7. Two cables were used to pull the roof slab by 

moving the table away from a stiff steel reaction tower, to which the other ends of the 

cables were attached. During the quasi-static test, the lateral load was monitored with two 

load cells. The horizontal roof displacement was increased until the lateral resistance of the 

tested structure dropped close to zero. Specimen 2 was tested with a sequence of ground 

motions until the structure was on the verge of collapse. 
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(a) Specimen 1 

 
(b) Specimen 2 

Figure 5-6.  Shake-table test setups 

 

 
Figure 5-7.  Pull test setup for Specimen 1 
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Two ground motion records from the 1994 Northridge Earthquake were selected 

for the shake-table tests: a far-field record from the Mulholland station (abbreviated as 

MUL below) and a near-fault record from the Rinaldi station (abbreviated as RIN below). 

Table 5-3 shows the sequences of input ground motions applied to the two specimens. After 

each earthquake motion, the specimen was subjected to white-noise excitation to identify 

any change in its natural period. The white noise had a root-mean-square amplitude of 

0.03g and a duration of 3 minutes. The fundamental periods of both specimens before and 

after each motion are shown in Table 5-3. For Specimen 1, only the Mulholland record was 

used, with the acceleration scaled to 45%, 90%, 120%, and 133% of that of the original 

record in seven runs. For Specimen 2, the Mulholland record was used in the first six runs, 

with the acceleration scaled to 45%, 90%, 120%, 133%, and 160% of that of the original 

record. For the last run, the Rinaldi record was used with an intensity scaling of 130%. The 

Rinaldi record was selected for the last run because the fundamental period of the structure 

showed a significant elongation (to 0.328 s) after the sixth run, and the acceleration 

response spectrum of the record has a more or less uniform amplitude in the period range 

of 0.3 to 0.7 s, as shown in Figure 5-8(a). Moreover, as shown in Figure 5-8(c), the long-

duration pulse in the acceleration time history of the Rinaldi record would induce a large 

displacement demand.  
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Table 5-3.  Test Sequences for Specimens 1 and 2 

Specimen 1 Specimen 2 

Test 

ID 

Input 

Motion 

Period After Test 

(sec) 

Test ID Input 

Motion 

Period After 

Test (sec) 

Initial N/A 0.072 Initial N/A 0.090 

1 MUL-45% 0.072 1 MUL-45% 0.090 

2 MUL-45% 0.074 2 MUL-90% 0.097 

3 MUL-90% 0.090 3 MUL-120% 0.121 

4 MUL-90% 0.095 4 MUL-90% 0.123 

5 MUL-90% 0.107 5 MUL-133% 0.164 

6 MUL-120% 0.166 6 MUL-160% 0.328 

7 MUL-133% 0.751 7 RIN-130%* - 

8 Static Pull* -    

* No white-noise test was performed because of the damage state of the specimens. 

 

Since Specimens 1 and 2 had different roof weights, as mentioned before, 

additional scaling was applied to the time and amplitude of the earthquake records used for 

Specimen 1 to attain the dynamic similitude between the two specimens. The ground 

acceleration was scaled up by a factor of 𝑆𝑎 = 2.4 (seismic weight of Specimen 2 / seismic 

weight of Specimen 1), and the time was compressed by a factor of √1 𝑆𝑎⁄ = 0.65, with 

the assumption that both structures had the same lateral stiffness and strength as would be 

the case in design practice. The value of 𝑆𝑎  was calculated with the seismic weights 

estimated prior to the construction of the specimens and it was 2.7% lower than the value 

calculated with the actual weights. Figure 5-8(b) shows the table acceleration histories for 

the 90%-level Mulholland records obtained from two tests performed on Specimens 1 and 

2, respectively. 
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(a) Acceleration spectra of MUL-133% and RIN-

130% from the tests of Specimen 2 

 

 

(b) Acceleration histories for MUL-90% from the tests of Specimens 1 and 2 

 

(c) Acceleration history for RIN-130% from the test of Specimen 2 

Figure 5-8.  Table motions recorded in shake-table tests 
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Table 5-4.  Summary of Test Specimen Behaviors 

Failure 

Mode 

Maximum Lateral 

Resistance Max. 

Roof 

Drift 

(%) 

Occurrence 

of  

Collapse 

Strength Degradation 

at Different Roof Drift 

Levels (%) 

Test 

Value 

Vmax 

(kN) 

Code 

Formula 

Vn (kN) a 

Vmax/Vn 
2% 

Drift 

5% 

Drift 

10% 

Drift 

Specimen 1 

Shear 689 685 1.00 16.7 No 18.3 43.5 72.3 

Specimen 2 

Shear 925 783 1.18 13.4 No 19.4 45.9 78.4 

a The shear strength formulation in TMS 402/602 (TMS 2016). 
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Table 5-5.  Peak Values of Structural Responses for Select Ground Motions 

Test 

ID 

Input 

Motion 

Peak Roof 

Displacement 

(cm) 

Peak Roof 

Drift1 (%) 

Peak Base 

Shear (kN) 

Peak Base 

Sliding at 

Wall-1 

(mm) 

Peak Base 

Sliding at 

Wall-2 

(mm) 

Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. Pos. Neg. 

Specimen 1 

5 
MUL-

90% 
0.56 0.49 0.23 0.20 469 472 

0.1

7 
0.24 

0.4

8 
0.45 

6 
MUL-

120% 
1.01 1.14 0.42 0.47 598 561 

0.3

7 
0.50 

1.0

0 
1.01 

7 
MUL-

133% 
5.05 6.15 2.07 2.52 619 690 

0.5

6 
1.19 

1.7

0 
2.78 

8 
Static 

Pull2 
40.7 - 16.7 - 394 - - - - - 

Specimen 2 

2 
MUL-

90% 
0.19 0.16 0.08 0.06 414 432 

0.1

4 
0.04 

0.1

1 
0.04 

3 
MUL-

120% 
0.29 0.35 0.12 0.14 521 598 

0.3

4 
0.25 

0.3

5 
0.21 

5 
MUL-

133% 
0.41 0.61 0.17 0.25 618 722 

0.6

8 
0.70 

0.7

6 
0.59 

6 
MUL-

160% 
1.18 2.20 0.48 0.90 777 925 

2.2

1 
3.00 

2.6

3 
2.58 

7 
RIN-

130% 
32.7 22.1 13.4 9.07 902 428 

3.7

7 
4.98 

2.4

2 
8.10 

1 Roof drift ratios are calculated based on a wall height of 2.44 m. 
2 Test 8 was a quasi-static test in which all displacement transducers measuring base sliding 

were removed. 
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5.5.1. Specimen 1 

Tests up to MUL-90% 

Two low-intensity and three mid-intensity tests were conducted on Specimen 1 by 

scaling the Mulholland record to 45% and 90%, respectively. The two low-intensity 

motions and the first mid-intensity motion were to check the instrumentation. No visible 

cracks were observed on the walls during the two 45%-level motions. As shown in Table 

5-3, the fundamental period of the intact specimen (0.072 s) hardly changed after these 

shakings. After the first shaking with the 90% level motion, the fundamental period of the 

specimen increased by 0.018 second, indicating that some damage had occurred during the 

test. After three shakings with the 90%-level motions, it was observed that a few hairline 

flexural cracks initiated in the webs near the bottom of the two walls. The fundamental 

period measured from the white-noise tests increased to 0.107 s.  

 

Test with MUL-120% 

During the test with the 120%-level Mulholland motion, hairline cracks occurring 

in the last few tests opened and extended. Meanwhile, more flexural cracks initiated and 

propagated in the webs and flanges near the bottom of both walls, as shown in Figure 5-9. 

The fundamental period of the specimen increased from 0.107 to 0.166 s, which was largely 

attributed to the development of flexural cracks and the yielding of the vertical 

reinforcement near the wall base. As shown in Figure 5-10, during this motion, the 

maximum resistance developed by the structure reached 598 kN (134 kips) at a roof drift 

ratio of 0.35%. The maximum roof drift ratio reached in this test was 0.47%. 
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(a) South view 

 

 
(b) North view 

 

Figure 5-9.  Crack patterns on Specimens 1 after MUL-120% 
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   (a) Responses from the ground motion tests 

 

 

                  (b) Results from the quasi-static and last ground motion tests 

 

Figure 5-10.  Base shear-vs.-roof drift ratio curves for Specimen 1 
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Test with MUL-133% 

The last dynamic test on Specimen 1 was conducted with a 133%-level Mulholland 

motion. In this test, the walls developed severe shear cracks. The specimen exhibited 

significant lateral drifts as the period of the structure elongated into the range in which the 

acceleration spectrum of the record peaked. The damage shifted the fundamental period of 

the structure from 0.166 to 0.751 s, as shown in Table 5-3, with the peak spectral 

acceleration of the ground motion occurring at 0.35 s after the similitude scaling. Figure 5-

11 shows the severe diagonal shear cracks and the masonry spalling and crushing that 

developed in the webs of the T-walls. However, none of the diagonal cracks propagated 

into the flanges. As shown in Figure 5-11, Wall-2 (East T-Wall) also showed base crushing 

and subsequent buckling of the extreme vertical bar in the web near the wall base. The base 

shear-vs.-roof drift hysteresis curves for the structure (Figure 5-10) shows that the peak 

strength of 690 kN (155 kips) was reached at a roof drift ratio of about 1% in the negative 

(west) direction. A maximum roof drift ratio of 2.53% was reached in the west direction. 

At this drift level, the lateral resistance of the tested structure dropped to 340 kN (76.3 

kips), which was about 50% of the peak strength. 

 

Quasi-static pull test 

After MUL-133%, to examine the maximum roof drift ratio that could be sustained 

by the structure before collapse, a quasi-static test was conducted by pulling the roof with 

steel cables. The quasi-static test was done instead of a dynamic test because of safety 

reasons. During the quasi-static test, the diagonal cracks in each wall continued to extend 

and open as the horizontal roof displacement increased. Severe crushing and spalling of 
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the masonry were observed. As shown in Figure 5-10(b), the lateral resistance of the wall 

system dropped to 44 kN (9.9 kips), which is 6% of the peak strength, when a roof drift 

ratio of 16.7% (42.4-cm roof horizontal displacement) was reached. Horizontal cracks were 

observed in the wall flanges, and a few diagonal cracks in the webs had extended into the 

flanges. As shown in Figure 5-12, at the roof drift ratio level of 16.7%, collapse was averted 

because the flanges were still able to carry the weight of the roof slab when the masonry in 

the wall webs had been severely crushed.  
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(a) South view of Wall-1 

 
(b) North view of Wall-2 

Figure 5-11.  Damage in Specimen 1 after MUL-133% 

 

 

 
Figure 5-12.  Damage in Specimen 1 after the quasi-static pull test 
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5.5.2. Specimen 2 

Tests up to MUL-133% 

Specimen 2 was subjected to a similar sequence of ground motions as Specimen 1, 

which were 45%, 90%, 120% and 133%-level Mulholland motions, as shown in Table 5-

3. An additional MUL-90% motion (test No. 4) was applied after the MUL-120% motion 

to check the instrumentation after the replacement of two faulty accelerometers. While 

flexural and shear cracks developed in Specimen 1 after the 120% and 133%-level 

Mulholland motions, there were no visible cracks observed in Specimen 2 after the MUL-

133%. The fundamental period of Specimen 2 increased slightly from 0.090 to 0.097 s after 

the first MUL-90%.  

Figure 5-13(a) shows the base shear-vs.-roof drift ratio curves for the 120% and 

133%-level Mulholland motions applied to Specimen 2. During the test with MUL-120%, 

the specimen reached a maximum base shear of 598 kN (135 kips) at a drift ratio of 0.14%. 

The fundamental period increased to 0.121 s after this motion and remained unchanged 

after the following MUL-90%. Figure 5-13 also shows that the specimen developed 

nonlinearity during MUL-133%. The peak drift ratio reached in the test was 0.25%, while 

the maximum base shear developed was 726 kN (163 kips). The period of the specimen 

increased to 0.164 s, indicating some damage. 
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       (a) Mulholland motions 

 

 
                      (b) Last two motions 

 

Figure 5-13.  Base shear-vs.-roof drift ratio curves for Specimen 2 

 

Test with MUL-160% 

During MUL-160%, the period of the specimen elongated from 0.164 to 0.328 s. A 

maximum drift ratio of 0.90% was reached. As shown in Figures 11(a) and (b), the base 

shear capacity of 925 kN (208kips) was reached at a roof drift ratio of 0.60% in the negative 

(west) direction. During the test, load degradation was relatively mild, about 22% with 

respect to the peak. Figure 5-14 shows the crack pattern obtained after MUL-160%. 
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Flexural and diagonal shear cracks occurred in the webs of the T-walls. As shown in Figure 

5-14(a), in the web of Wall-1, a major diagonal crack extended from the top right corner 

to the wall flange above the fourth course of masonry units from the base, and then 

propagated as a horizontal crack in the flange. On the same wall, a crack developed along 

the flange-web interface, propagating from the end of the major diagonal crack down to 

the wall base. In Wall-2, major diagonal cracks extended into the toe of the web at one end 

and to the flange at an approximately 60-degree angle with respect to the horizontal at the 

other, propagating vertically up along the web-flange interface. Similar to Wall-1, one 

diagonal crack extended into the wall flange and formed a horizontal crack on the flange. 

Furthermore, several flexural cracks initiated and propagated in the lower part of the wall 

webs. Toe crushing occurred in the web of Wall-2. As shown in Figures 5-14(c) and (d), 

horizontal cracks developed at the top of the out-of-plane walls right below the lintel. For 

the two middle out-of-plane walls (Walls 4 and 7 as identified in Figure 5-1), no visible 

cracks were observed.  
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(a) South view of two T-walls 

 

 
(b) North view of two T-walls 

 

 
(c) West view of T-wall flange and out-of-plane walls 

 

 
(d) East view of T-wall flange and out-of-plane walls 

 

Figure 5-14.  Crack patterns on Specimens 2 after MUL-160% 
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Test with RIN-130% 

During RIN-130%, the T-walls developed severe damage. A maximum drift ratio 

of 13.4% was reached, but the structure did not collapse. The base shear-vs.-roof drift ratio 

curves in Figure 5-13(b) show that the maximum base shear reached 902 kN (203 kips) at 

a drift ratio of 1.39% in the positive (east) direction. The specimen developed a residual 

strength of 185 kN (41.6 kips), which was about 20% of the peak strength (208 kips) 

reached during MUL-160%. Figure 5-15 shows the damage of the specimen after the test. 

The diagonal cracks developed during MUL-160% extended further and were 

accompanied by the opening of new diagonal cracks in the webs of the T-walls. As in the 

quasi-static test of Specimen 1, severe masonry crushing occurred in the wall webs. The 

webs and flanges of the T-walls were practically separated. The failure of the 90-degree 

hooks connecting the flanges and webs was observed, along with the fracture of the 

horizontal bars crossing the flange-web interfaces. The flanges of the T-walls exhibited 

severe out-of-plane bending at the elevation of the horizontal cracks that developed in 

motion MUL-160%. Figure 5-15(e) shows that masonry spalling occurred on the east face 

of Specimen 2. Moreover, cracks radiated from the corners between the lintels and the out-

of-plane rectangular walls, as shown in Figures 5-15(b) and (f). However, the roof slab 

remained practically intact during the test. 
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(a) South view of Specimen 2 

 

 
                              (b) West view of Specimen 2                    (c) South view of Wall-1 

 

   

(d) South view of 

Wall-2 

(e) Damage in the flange 

of Wall-2 

(f) Cracks developed near the roof 

and the lintels 

Figure 5-15.  Damage in Specimen 2 after RIN-130% 
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5.6. Analysis of Test Results 

5.6.1. Yielding and Fracture of Reinforcing Bars  

Figures 5-16 and 5-17 show the sequence of yielding in the reinforcing bars in 

Specimens 1 and 2, respectively. Yielding in the reinforcing bars was determined by 

comparing the average yield strain obtained in the material sample tests and the strains 

recorded by the strain gauges attached to the bars. 

 

 

(a) Webs of T-walls 

 

(b) Flange of Wall-1 (c) Flange of Wall-2 

Figure 5-16.  Yielding of reinforcing bars in Specimen 1  

 

The first yielding in Specimen 1 occurred during the first MUL-90% (test No. 3) 

motion. The vertical bars at the two extreme sides of the two T-walls yielded in tension 

near the wall base, as shown in Figure 5-16. After three shakings with MUL-90%, three 

(out of six) vertical bars in the flanges had yielded at the first masonry course from the 

base. Moreover, both walls had one vertical bar in the flange yielded at the second course 

from the base. No yielding was detected in the vertical bars in the webs during the last two 
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MUL-90% tests. After the test with motion MUL-120%, most of the vertical bars in the 

flanges of both walls (5 out of 6) had yielded at the second course from the base. During 

the test with MUL-133%, most of the vertical and horizontal bars in the webs yielded at 

the locations where the major diagonal cracks developed. Yielding also occurred at the top 

of the extreme vertical bar near the free edge of each T-wall web. While there was no 

yielding detected near the top of the flange of Wall-1, two vertical bars in the flange of 

Wall-2 yielded near the top. 

In Specimen 2, the vertical bar yielded in tension at the toe of the web of Wall-1 

during test No.2 (with MUL-90% motion), as shown in Figure 5-17(a). In addition, the 

extreme vertical bar in the web of Wall-2 yielded in the region embedded in the concrete 

footing, indicating strain penetration. During MUL-133%, a vertical bar in the flange of 

Wall-2 yielded near the base. Yielding of the bars during these motions indicates that the 

walls were subjected to significant flexural deformation before the peak capacity was 

reached. During MUL-160%, with the initiation of diagonal cracks in the webs of the two 

T-walls, yielding occurred in the vertical and horizontal bars at locations intersected by 

diagonal shear cracks. Meanwhile, a few vertical bars in the wall flanges and the out-of-

plane walls yielded. During the last test with RIN-130%, more bars in the webs of the T-

walls yielded due to the opening of major diagonal cracks. After this test, most of the 

vertical bars at the top and bottom of each out-of-plane wall and T-wall flanges had yielded, 

showing that the walls were subjected to double-curvature bending.  
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(a) Webs of T-walls 

 

(b) Flange of Wall-1 and two west 

out-of-plane walls 

  

(c) Two middle out-of-plane walls 
(d) Flange of Wall-2 and two east 

out-of-plane walls 

Figure 5-17.  Yielding of reinforcing bars in Specimen 2 

 

The reinforcing bars in the two specimens had similar yielding sequences. Yielding 

first occurred in some of the vertical bars near the base of the two T-walls due to the flexural 

deformation. After the diagonal shear cracks opened, most of the horizontal and vertical 

bars in the webs of the T-walls yielded at the locations where the diagonal cracks passed. 

For Specimen 1, the opening of the diagonal shear cracks in the wall webs was 

accompanied by the yielding of the vertical bars near the top of the flange of Wall-2. For 
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Specimen 2, yielding was detected in most of the vertical bars near the top and bottom of 

the T-wall flanges and the out-of-plane walls during the last ground motion test.  

Figure 5-18 shows the locations where bar fracture occurred during the tests. In 

Specimen 1, fracture occurred in two horizontal bars at the locations of major diagonal 

crack opening during the quasi-static test. In Specimen 2, all the horizontal bars (except 

the two top bars) in the webs of the T-walls fractured at the locations along the major shear 

cracks. It can also be observed that two of the horizontal bars in Wall-1 of Specimen 2 

fractured at the location of the flange-web interface due to the opening of the vertical crack 

at that location during MUL-160%. Moreover, the vertical bar in Wall-2 fractured near the 

toe. Specimen 2 had significantly more fractured bars than Specimen 1 probably because 

the diagonal cracks in Specimen 1 were more closely spaced, while in Specimen 2 the 

diagonal cracks were more localized inducing larger tensile strains in the horizontal bars. 

Furthermore, it is likely that the quasi-static pull test conducted on Specimen 1 allowed 

more time for the reinforcing bars to slip, which reduced the tensile strains in the bars, 

when compared to a dynamic test.  
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(a) Specimen 1 after the quasi-static pull test 

 

 

(b) Specimen 2 after Rin-130% 

 

Figure 5-18.  Fracture of reinforcing bars 

 

5.6.2. Deformation Mechanism 

Figure 5-19 shows the time histories of the drift ratios of the T-walls in the two 

specimens due to flexural deformation, shear deformation and wall sliding, respectively, 

for select tests in which these walls had noticeable flexural and shear cracks. The 

displacement due to flexural deformation is calculated from the curvature measured by the 

vertical displacement transducers mounted along the two sides of each wall. The sliding 

displacement is the sum of the sliding measured at the top and the base of the wall by the 

linear potentiometers. The shear deformation is calculated by subtracting the sliding and 
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the flexural deformation from the total roof displacement. The calculated shear 

deformation has been checked with the data acquired by the diagonal string potentiometers. 

The two sets of values show good consistency. Such data was not collected in the quasi-

static test of Specimen 1 because the displacement transducers had been removed. The 

results for Specimen 2 under RIN-130% are not shown because some of the displacement 

transducers got damaged during that motion.  

For Specimen 1, as shown in Figure 5-19(a), the displacement component due to 

flexure was significantly greater than the shear and sliding components during MUL-120. 

This is consistent with the flexural cracks observed and the absence of major diagonal 

cracks during that test, as shown in Figure 5-9. However, as shown in Figure 5-19(b), 

during MUL-133%, the shear deformation constituted a significant portion of the total roof 

drift, especially after the peak roof drift had been reached, due to the opening of diagonal 

shear cracks. For Specimen 2, during MUL-160%, the flexural components of the two T-

walls accounted for 46.9% and 63.6% of the total peak roof drift, respectively, as shown in 

Figure 5-19(c). This indicates that the opening of the diagonal shear cracks was a bit 

delayed in Specimen 2 as compared to Specimen 1.  
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(a) Specimen 1 during MUL-120% 

 

  

(b) Specimen 1 during MUL-133% 

 

  

(c) Specimen 2 during MUL-160% 

 

Figure 5-19.  Drift time histories of the T-walls due to flexure, shear, and sliding 

 

 

 

 

 

 



135 

 

5.6.3. Lateral Strengths 

The shear strength formula of TMS 402/602 (2016) is used to calculate the lateral 

resistance of the two specimens. In this calculation, the shear-span ratio (Mu/(Vudv)) of the 

T-walls is taken to be 0.86 with the assumption that the walls had no rotations at the top 

because of the stiff roof diaphragms. Figure 5-20 shows that the flexural curvatures 

measured by the linear potentiometers at the top and the bottom of the T-walls in Specimen 

1 varied in opposite directions, indicating that the walls were deformed in double curvature. 

However, the curvatures measured at the top of the walls were a lot smaller than those at 

the bottom, implying that the rigid roof diaphragm assumption was not entirely correct. 

The above observation has no significant consequence here since the shear-span ratio 

assumed is already close to the upper limit of 1.0 specified in TMS 402/602 (2016). 

Furthermore, the axial load on each T-wall is assumed to be from the gravity load only, 

with the axial force introduced by the horizontal load ignored. This is a good assumption 

because the increase of the axial force in one wall due to the coupling effect of the roof 

diagonal is offset by a decrease in the other wall. The lateral resistance of Specimen 2 is 

assumed to be provided by the two T-walls only, and the flexural resistance of the six out-

of-plane walls is ignored. The latter is relatively small. The masonry compressive strength 

and the yield strength of the horizontal reinforcing bars used in the calculations are based 

on the average values obtained from the masonry prism tests and the tensile tests of the 

bars, which are shown in Tables 5-1 and 5-2. For Specimen 1, the calculated shear strength 

is 685 kN (154 kips), which is almost identical to the peak strength of 689 kN (155 kips) 

reached in the test, as shown in Figure 5-10. For Specimen 2, the calculated strength is 783 
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kN (176 kips), which is 142 kN (32 kips) lower than the peak strength reached during 

MUL-160%, as shown in Figure 5-13.  

 

(a) West T-wall 

 

(b) East T-wall 

 

Figure 5-20.  Time histories of the measured curvature near the top and bottom of two 

T-walls of Specimen 1 during test MUL-120% 

 

The higher lateral strength of Specimen 2, compared to Specimen 1, can be 

attributed to the flexural resistance and the axial restraint introduced by the six out-of-plane 

walls, as discussed in Mavros et al (2015). As the T-walls developed flexural deformation, 

they rocked on the footings because of the penetration of the tensile strains in the vertical 

bars into the region embedded in the footings. The rocking motion of the walls would push 

up the roof diaphragm, which was, however, restrained from moving up by the out-of-plane 

walls. Hence, the T-walls experienced increased axial compression when they rocked due 
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to the restraint of the out-of-plane walls. Figure 5-21 shows the plots of the strains in the 

center vertical reinforcing bars near the top of the out-of-plane walls against the roof drift 

during MUL-160%. It can be seen that the bars developed tension when the structure 

displaced in either direction. This is consistent with the flexure as well as the rocking 

restraint of the out-of-plane walls.  

 
   (a) Wall-5                         (b) Wall-6 

 

 
(c) Wall-7 

 

Figure 5-21.  Strains in the center vertical reinforcing bars near the top of the 

out-of-plane walls of Specimen 2 during MUL-160% 

 

 

To assess the likelihood of each phenomenon, the following analyses have been 

conducted considering two scenarios. The results are shown in Table 5-6. In the first 

scenario, the shear resistance of the T-walls and the flexural resistance of the out-of-plane 
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walls are calculated with the gravity load only, with the roof weight distributed among the 

walls in proportion to their axial stiffness. The flexural resistance of the out-of-plane walls 

is calculated with a fixed-fixed end condition. The total lateral resistance is the sum of the 

shear resistance of the T-walls and the flexural resistance of the six out-of-plane walls. In 

the second scenario, the rocking of the T-walls is considered and the lateral resistance is 

assumed to be contributed by the shear strength of the T-walls only. In that case, the total 

axial compression exerted on the T-walls is calculated as the sum of the tensile forces 

developed by the vertical bars in the out-of-plane walls and the tributary gravity load. The 

tensile forces developed in the vertical bars that had not yielded during MUL-160% are 

calculated with the strains measured in the vertical bars near the top of each out-of-plane 

wall at the peak base shear. For those bars that had yielded, the average yield strength 

shown in Table 5-2 is used because the maximum tensile strains developed in those bars 

did not exceed the strain-hardening point. The flexural resistance of the out-of-plane walls 

is ignored based on the consideration that the flexural strength would diminish to zero as 

significant axial tension was developed in a wall. As shown in Table 5-6, the second 

scenario provides a significantly better match of the maximum lateral resistance developed 

in the test with a difference of only 0.3%. Hence, the higher lateral resistance of Specimen 

2 is most likely due to the axial restraint of the out-of-plane walls, which is consistent to 

the observation of Mavros et al (2016). 
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Table 5-6.  Calculated Lateral Resistance of Specimen 2 

Wall Type 

Axial Load Distribution 1 

Wall Axial Loada 

 [kN (kips)] 

Flexural Strength 

[kN (kips)] 

Shear Strength 

[kN (kips)] 

Each T-wall 126 (28.3) 431 (96.9) 393 (88.3) 

Each Out-of-

plane Wall 
58 (13.0) 18 (4.0) 0 

Base Shear 

Capacity 

[kN (kips)] 

893 (200.8) 

Wall Type 

Axial Load Distribution 2 

Wall Axial Loadb 

[kN (kips)] 

Flexural Strength 

[kN (kips)] 

Shear Strength 

[kN (kips)] 

Each T-wall 409 (91.9) 599 (134.7) 464 (104.3) 

Each Out-of-

plane Wall 
0 0 0 

Base Shear 

Capacity 

[kN (kips)] 

928 (208.6) 

a Tributary roof weight proportional to the wall axial stiffness 

b Half of the bar forces in the six out-of-plane walls plus half of the roof weight  

 

 

5.6.4. Displacement Capacity 

Figure 5-22 shows the damage states of the T-walls in the two specimens when the 

roof drift level reached 2%, 5%, and 10%, respectively. The respective strength 

degradations at these drift levels can be observed from the normalized base shear-vs.-roof 

drift ratio curves in Figure 5-23. At the drift level of 2%, the strength degradation was 

about 25% for both specimens, and diagonal shear cracks were visible in the webs, but they 
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were not significantly opened. Specimen 2 had more severe shear cracks, one of which 

propagated as a horizontal flexural crack into the flange of one T-wall. At the drift level of 

5%, the strength degradation was about 50% for both specimens, and the webs of the T-

walls had significant opening of the diagonal shear cracks. The webs of the T-walls in 

Specimen 1 exhibited severe masonry spalling, and some shear cracks propagated into the 

flanges. At 10% drift, the strength degradation was about 75% for both specimens, and the 

webs of the T-walls in both specimens had severe masonry crushing. Specimens 1 and 2 

reached maximum roof drift ratios of 16.7% and 13.4%, respectively, without collapsing. 

At the end of the tests, the webs of the T-walls in both specimens had lost significant 

portions of the masonry due to crushing, and the roof weight was carried by the wall flanges, 

and, for the case of Specimen 2, also by the out-of-plane walls. For Specimen 1, at the roof 

drift level of 16.7%, the minimum lateral resistance required to resist the P-Δ effect of the 

roof weight is calculated to be 41 kN (9.2 kips). This resistance could be provided by the 

flexural strength of the wall flanges alone, which is estimated to be 44 kN (10 kips). For 

Specimen 2, at the roof drift level of 13.4%, the minimum lateral resistance required to 

resist the P-Δ effect is calculated to be 81 kN (18 kips), while the maximum resistance that 

could be provided by the flexural strengths of the flanges of the T-walls and the out-of-

plane walls is calculated to be 152 kN (34 kips). At this damage state, the T-walls would 

not rock and the flexural strength of the out-of-plane walls could develop. 

The tests have shown that RM wall systems with failure dominated by diagonal 

shear could develop significant lateral displacements without collapsing. The drift ratios 

attained and the ductility exhibited by the two specimens far exceed those observed from 

quasi-static tests conducted on shear-dominated planar wall segments (e.g., the tests of 
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Voon and Ingham, 2006; Shing et al., 1991; Ahmadi, 2012). Figure 5-13 compares the base 

shear-vs.-story drift ratio backbone curve developed by Cheng and Shing (2018) based on 

data from quasi-static wall tests to the hysteresis curves obtained from the shake-table tests. 

The difference in the displacement capacities is significant. The higher displacement 

capacity and more gentle load degradation exhibited by the shake-table test specimens can 

be attributed to several factors. One is the loading protocol. In typical quasi-static tests, 

wall specimens were normally subjected to a large number of displacement cycles with 

small to large amplitudes, which would introduce a more severe load degradation than what 

would have been experienced in an earthquake. The second is the presence of wall flanges 

and/or out-of-plane walls, which would carry the vertical load after the webs were severely 

damaged, in the shake-table test specimens, while there would be no alternative load paths 

for wall segments that had no flanges. However, it should be pointed out that the shake-

table tests reported here had only unidirectional motion. In an earthquake, a building is 

subjected to excitation in multiple directions. In that case, walls oriented in different 

directions could suffer significant damage, and the displacement capacity of the structure 

will depend on the degree of damage in these walls as well as the presence or absence of 

gravity columns that can carry the gravity load after the vertical load carrying capacity of 

the walls has been depleted. Buildings with higher gravity loads could also be more 

vulnerable to collapse because of the more significant P-Δ effect. A recent numerical study 

using refined finite element models (Koutras, 2019) has shown that one- to four-story RM 

archetype buildings with shear-dominated wall behavior and steel gravity frames can 

develop story drift ratios exceeding 10% without collapsing when subjected to bidirectional 

horizontal ground motions. 
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(a) Spec. 1 at 2% Drift (Positive) (d) Spec. 2 at 2% Drift (Positive) 

  

(b) Spec. 1 at 5% Drift (Positive) (e) Spec. 2 at 5% Drift (Positive) 

  

(c) Spec. 1 at 10% Drift (Positive) (f) Spec. 2 at 10% Drift (Negative) 

 

Figure 5-22.  North views of the damage in the T-walls at different roof drift levels 
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Figure 5-23.  Normalized base shear-vs.-roof drift ratio curves for the test specimens 

 

Chapter 5, in part, is a reprint of the material in a research paper titled “Evaluation 

of Collapse Resistance of Reinforced Masonry Wall Systems by Shake-Table Tests” that 

appears in the journal of Earthquake Engineering and Structural Dynamics in 2020. The 

authors of the research paper are: the author of the dissertation, Andreas A. Koutras, and 

P. Benson Shing. The author of the dissertation is the primary author and the main 

contributor of the work presented in the paper. 
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CHAPTER 6 A GENERALIZED FRAME ELEMENT FOR 

FLEXURE- AND SHEAR-DOMINATED REINFORCED MASONRY 

SHEAR WALLS 

 

This chapter presents a three-dimensional beam-column model for simulating the 

nonlinear flexural and shear behaviors of RM walls. The proposed model is based on a 

three-field (force, strain, and displacement) mixed beam-column element formulation 

proposed by Taylor et al. (2003). This element formulation is free of shear locking, and 

allows a shear wall to be modeled with only one element, which improves computational 

efficiency. In the element, the nonlinear axial and flexural behaviors of an RM wall are 

modeled with distributed plasticity using a fiber-section approach. The shear deformation 

is assumed to be uniform along the element. A macro model is proposed to represent the 

nonlinear shear behavior of the wall in each loading direction. The interaction between the 

axial, flexural, and shear behaviors is also considered in the constitutive laws. The model 

is able to account for the influence of a wall flange on the shear response of the wall.  The 

beam-column model has been calibrated and validated with the data of the past quasi-static 

tests and shake-table tests.  
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6.1. Element Formulation 

6.1.1. Mixed Beam-Column Element with Shear Deformation 

The mixed beam-column element proposed by Taylor et al. (2003) is selected to 

model the flexural as well as shear behavior of RM shear walls. This element adopts a 

three-field (displacement, strain, and force) mixed formulation based on the Hu-Washizu 

variational principle. It weakly enforces the equilibrium between the nodal and the internal 

forces at beam sections, the strain-displacement compatibility, and the material constitutive 

relations. This element formulation is free of shear locking, and allows an RM shear wall 

to be modeled with only one element, which significantly improves computational 

efficiency compared to displacement-based elements. The nodal displacements and 

rotations of a three-dimensional element in the local coordinate system with and without 

the rigid-body modes are shown in Figure 6-1. With the rigid-body modes excluded, the 

variational form of the mixed formulation including shear deformation can be expressed as 

follows. 

 

Figure 6-1.  A three-dimensional frame element in local coordinate system 
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in which, L is the length of the element, as shown in Figure 6-1(b); 𝜺 is the strain vector 

defined as:  

 y z xy xz      =    

in which , , , , ,  and y z xy xz      are the axial strain, curvatures about the local y and z 

axes, torsional strain, and shear strains in the x-y and x-z planes, respectively;

ˆ ˆˆ ˆ ˆ, , , , ,x y z x yu u u   and ˆ
z  are the displacements and rotations in the respective 

directions; , , , , ,y z yN T M M V and zV  are the axial force, torque, moments about the y and 

z axes, and shear forces in the y and z directions satisfying equilibrium; and 
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, , , , ,y z yN T M M V and zV  are the axial force, torque, moments and shear forces given by 

constitutive relations . 

 

With the assumption that no external loads are applied between the nodes, bc is 

defined as the work done by the nodal forces: 

T

bc = u F  

in which u is the nodal displacement vector: 

0 1 2 1 2 0
ˆ ˆ ˆ ˆ ˆˆ

T

x z z y y xu      =
 

u  

in which 0 1 2 1 2
ˆ ˆ ˆ ˆˆ , , , ,x z z y zu     , and 0

ˆ
x are the nodal axial displacement, rotations about the z 

and y axes, and torsional rotation, without the rigid-body modes; F is the vector of the 

corresponding applied nodal forces. 

 

After applying integration by parts to the terms containing derivatives in Eq. (6-1) 

and the equilibrium conditions of a beam that has only nodal forces, Eq. (6-1) can be 

expressed as: 
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  (6-2) 

in which 0 0 1 2 1
ˆ ˆ ˆ ˆ ˆ, , , , ,y y zN T M M M and 2

ˆ
zM  are the nodal axial force, torque, and moments 

about the y and z local coordinate axes. 
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6.1.2. Finite Element Approximation 

It can be noted from Eq. (6-2) that to derive the stiffness matrix of the beam element, 

the strain and force fields have to be expressed in terms of the respective values at nodal 

or integration points using interpolation functions. The interpolation functions selected are 

shown in Figure 6-2. The equilibrium between the internal and nodal forces results in the 

following expressions for the force fields. 

0

1 2

1 2

1 2

1 2

0
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y y y

z z z

z z
y

y y

z

N N

x x
M M M
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x x
M M M
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M M
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L
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V

L

T T

=

= − +

= − +

−
=

−
=

=

             

(6-3) 
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Figure 6-2.  Finite element approximation in the mixed beam-column element 

 

As shown in Figure 6-2, the curvatures ( y and z ), axial strain ( ) and torsional 

strain ( ) are approximated by discontinuous functions, as proposed by Taylor et al. (2003). 

The strain values are evaluated at each integration point along the element. One needs to 

select a sufficient number of integration points to capture the deformation of an RM wall 

accurately. The discontinuous strain functions result in a sparse stiffness matrix, which 

improves the computational efficiency. However, the shear strains are assumed to be 

constant for an RM wall. This is a reasonable assumption as the shear deformation of an 

RM wall is more or less uniform over the entire wall panel. By introducing the 

aforementioned approximate strain fields in Eq. (6-2), the integrals can be replaced by 

summations. Furthermore, after introducing the expressions in Eq. (6-3) for the force fields, 

Eq. (6-2) can be written as:  
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(6-

4) 

in which sn denotes the number of integration points along the element; lx and lW denote 

the coordinate and weight of the lth integration point; and , , ,l l yl zl    are the axial strain, 

torsional strain, and curvatures at the lth integration point. Since the shear strains along the 

element are assumed to be constant ( 0y and 0z ), the weights associated with the shear 

strains are taken as 0W L= . 

 

6.1.3 Matrix Form 

To solve a nonlinear beam problem, Eq. (6-4) can be expressed in an incremental 

form as follows.  

         







        
       

 =       
              

0 0

0

0

 

 

T

u

σ

T e

ε

u H u R

H Q R

Q K R

   (6-5) 
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in which  
T

u σ εR R R is the residual error vector; u  and  are the incremental nodal 

displacement vector and incremental nodal force vector in the local element coordinate 

system without rigid-body modes, with  

0 1 2 1 2 0
ˆ ˆ ˆ ˆ ˆ ˆ[ ]z z y yN M M M M T= T

 

and  is the strain vector which consists of the axial strain, curvatures, and torsional strain 

at the integration points as well as two shear strain terms: 

1 1 1 1 0 0[ ...  ]
s s sz y ns zn yn n y z         = T  

 is a 6 × 6 diagonal matrix defined as: 

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

 
 

−
 
 

=  
− 

 
 
 

H  

Q is a 6 × (4 2)sn + matrix: 

 = 1 l ns shearQ Q ... Q ... Q Q  

in which 

0

1 0 0 0 0 0

0 (1 / ) 0 0 1/ 0

0 / 0 0 1/ 0
,

0 0 (1 / ) 0 0 1/

0 0 / 0 0 1/

0 0 0 1 0 0

l

l

l

l

l

x L L

x L L
W W

x L L

x L L

−   
   

− − −
   
   −

= =   
− − −   

   −
   

−   

l shear
Q Q  

e
K is a sparse matrix defined as: 
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in which e

iiK is the sectional axial and flexural stiffness matrix at integration point i and is 

defined as:   
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and 
,shear yK and

,shear zK are the two shear stiffness terms defined as: 

,

0

y

shear y

xy

dV
K

d
=   and  

,

0

z
shear z

xz

dV
K

d
=  

The residual vector uR is the difference between the applied nodal forces (F) and 

element nodal forces: 

- T

uR = F H σ
 

The term σR  represents the error in the strain-displacement compatibility 

condition: 

σR = Hu - Qε  

The term R represents the difference between the internal forces satisfying 

equilibrium with the nodal forces and the internal forces given by constitutive relations: 

T

 = −R Q    
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in which  is the interal force vector given by constitutive laws: 

1 1 1 1 1 1 1 1 0 0s s s s s s s s

T

z y n n n zn n yn n n y zW N W M W M WT W N W M W M W T W V W V =    

 

 

 

6.1.4. Solution Strategy 

To implement the mixed beam formulation into a displacement-driven finite 

element code, the force and strain terms in Eq. (6-5) need to be condensed out. For this 

purpose, a solution strategy with condensation proposed in Taylor et al. (2003) will be 

presented below.  

The incremental strain vector Δ𝜺 in Eq. (6-5) can be expressed as: 

      
1( ) ( )e T− = −  K R Q     (6-6) 

By substituting Eq. (6-6) to Eq. (6-5), the strain-related terms in Eq. (6-5) can be 

eliminated, and the incremental form of the element formulation can be expressed as: 

                
T



       
=        −       

0

 

u

e

Ru uH

RH K
                         (6-7) 

in which 

1( )e T−=e
K Q K Q        (6-8) 

       1( )−= −  

e
R R Q K R      (6-9) 

The incremental force vector Δ𝝈 in Eq. (6-7) can be expressed as: 
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1( ) ( )−= −  e

K H u R                   (6-10) 

With Eq. (6-10), the stress-related terms in Eq. (6-7) can be eliminated, and the 

incremental form of the element formulation can be expressed as: 

     =a aK u R                (6-11) 

in which 
aK  is the condensed element stiffness matrix in the local coordinate system 

without rigid body mode, which is defined as: 

                 
1( )T −= e

aK H K H        (6-12) 

  is a condensed residual vector defined as: 

    1( )T −= +

e

a uR H K R R              (6-13) 

It should be noted that the condensed element residual vector,  
aR , will be equal to 

zero if and only if the three residual vectors in Eq. (6-5) (𝑹𝒖, 𝑹𝝈 and 𝑹𝝐) are all equal to 

zero. In the implementation of the mixed formulation, the residual vectors 𝑹𝝈 and 𝑹𝝐 are 

checked in the element level, and the condensed element residual vector, �̃�𝒂, is checked in 

the structure level. The implementation of the mixed element formulation is summarized 

below.  
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Element State Determination 

1. Calculate the incremental displacement vector Δ𝒖 = 𝒖 − 𝒖𝒐𝒍𝒅 , in which 𝒖  is the 

nodal displacement vector at the current step, and 𝒖𝒐𝒍𝒅 is the nodal displacement vector 

from the last converged step. 

2. Initialize the element force vector (𝝈) and strain vector (𝜺). 

𝝈 = 𝝈𝒐𝒍𝒅 

𝜺 = 𝜺𝒐𝒍𝒅 

in which 𝝈𝒐𝒍𝒅  and 𝜺𝒐𝒍𝒅  are the element force vector and strain vector from the last 

converged step. 

3. Calculate the incremental force vector, Δ𝝈 with Δ𝒖 by Eq. (6-10), and update the 

force vector 𝝈 = 𝝈 + Δ𝝈. 

4. Calculate the incremental strain vector, Δ𝜺 with Δ𝝈 by Eq. (6-16), and update the 

strain vector 𝜺 = 𝜺 + Δ𝜺. 

5. Determine the stiffness matrix 
e

K and the interal force vector   with constitutive 

laws: 

 a. Loop over the integration points to determine the sectional states. 

 b. Determinate the state of the two shear models. 

6. Calculate the residual vectors u σ
R ,R , and ε

R with updated , , u ,and . 

7. Calculate the condensed stiffness matrix
aK with Eqs. (6-8) and (6-12). 

8. Calculate the condensed residual vector
aR with Eqs. (6-9) and (6-13). 

9. Check the element convergence with the following two conditions: 

                     
4 610 10and 

− − 
ε

R R  

If the element has not converged, go back to step 3. Otherwise, return the condensed 

element stiffness matrix (
aK ) and output the force vector ( ). 
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6.1.5. Geometric Nonlinearity 

The element formulation and its incremental form are derived in the element local 

coordinate system without rigid-body modes. To introduce rigid-body modes, the nonlinear 

transformation scheme proposed by Sousa (2000) is applied. It accounts the geometric 

nonlinearity (i.e. P-Δ effect). 

 

6.2. Model Idealization 

This section presents the idealization scheme used to evaluate the element internal 

forces given by constitutive relations ( , , , , ,y z yN T M M V and zV ). As shown in Figures 6-

3 and 6-4, the axial and flexural responses at each integration point are evaluated with a 

fiber section model, in which uniaxial material laws are used to represent the nonlinear 

behaviors of masonry and vertical reinforcing steel.  

With the assumption that the in-plane shear strain is uniform over a wall panel, as 

discussed in the previous section, the shear response of a wall is represented by a macro 

material model. Figure 6-3 shows the shear model for a wall with a rectangular cross-

section. For the in-plane shear response, the shear force-vs.-shear strain relation 

( vs.y xyV − − ) is represented by a nonlinear curve that accounts for the behavior governed 

by diagonal shear cracking. For the out-of-plane direction, the shear response is assumed 

to be linearly elastic considering that the capacity of the wall in this direction is most likely 

dominated by flexure. Figure 6-4 shows the shear model for a flanged wall, which has two 

connected wall panels perpendicular to one another. It is assumed that the in-plane shear 

response of each panel is independent of that of the other. The response of each panel is 
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represented by a nonlinear shear force-vs.-shear strain relation, which accounts for the 

influence of the wall flange, as will be discussed in the next section. For flanged walls with 

two or more panels resisting shear in each direction, such as those with C-shaped or I-

shaped sections, one shear force-vs.-shear strain relation is assigned to each panel. 

As it will be described in detail in the next two sections, the interaction of the axial, 

flexural, and shear responses is considered through the constitutive relations. To account 

for the influence of the axial and flexural responses on the shear capacity of an RM wall, 

the shear resistance is assumed to be a function of the axial stress resultants ( wP and fP ) 

from the fiber section model, as shown in Figures 6-3 and 6-4. Furthermore, the 

compressive strength of masonry in the fiber model is reduced as the maximum shear strain 

attained increases, accounting for the spalling and crushing of masonry that could occur 

along diagonal shear cracks. 

The torsional response of the element is assumed to be linearly elastic. 
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Figure 6-3.  Model idealization for a planar RM wall 

 

Figure 6-4.  Model idealization for a flanged wall 
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6.3. Constitutive Relation for Shear Behavior 

This section presents the constitutive model proposed to represent the shear 

behavior of an RM shear wall. The model is applicable to planar or flanged walls with 

different configurations (such as L-shaped, T-shaped, I-shaped, or C-shaped). For flanged 

walls, the wall panel(s) parallel to the lateral load direction considered is referred to as the 

web, while the panel(s) in the orthogonal direction is referred to as the flange, as shown in 

Figure 6-5. In the model, the shear resistance is considered to be provided by the in-plane 

action of the web(s), as well as the out-of-plane bending of the flange(s) once the shear 

deformation of the wall exceeds the point at which the peak shear strength is reached and 

the wall web starts to develop severe damage. 

 

 

Figure 6-5.  Definition of web and flange components for different types of wall section 

 

6.3.1. Monotonic Shear Force-vs.-Shear Strain Envelope  

Figure 6-6 shows the shear force-vs.-shear strain envelope of the proposed shear 

model, which represents the nonlinear shear response of an RM wall subjected to a 

monotonically increasing lateral load. As shown, the envelope is defined by three critical 

points, corresponding to the shear stress at the initiation of major diagonal cracks ( crV ), 
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the peak shear strength ( pV ), and the attainment of the residual strength ( resV ), 

respectively.  

 
Figure 6-6.  Envelope stress-vs-strain curve of the proposed shear model 

 

The initial stiffness ( 1k ) of the envelope curve is taken as 0.40 w mA G , where wA

is the net area of the web and mG is the shear modulus of masonry. The reduction factor 

of 0.40 is applied to account for fine cracks that may develop before the initiation of major 

diagonal shear cracks. Major diagonal cracks initiate at crV , which is assumed to be 00.70V , 

where 0V  is the peak shear strength of the web panel under zero axial load calculated 

according to the strength design provision in TMS 402/602 (2016), including shear 

resistance provided by the shear reinforcement. In reality, the value of crV  depends on the 

level of the axial load. However, for the range of the axial force that could occur in a typical 

masonry wall, the exact value of crV does not have a major influence on the overall shear 

response of a wall. Furthermore, igoring the influence of the axial load makes the numerical 

computation more stable and robust.  When the wall is subjected to high tension induced 

by lateral seismic forces, its behavior will be governed by flexure and/or sliding, rather 
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than diagonal shear. The peak shear strength ( pV ) is calculated according to TMS 402/602 

(2016), considering only the wall web and the influence of the axial load applied to the 

web, with the following equation. 

     0 0max 0.25 ,0.9p wV V P V= +      (6-14) 

in which wP  is the axial load in the web calculated from the fiber section, with the positive 

sign representing compression. The lower-bound value of 00.9V  is to account for the fact 

that pV  cannot be lower than crV .  

The second slope of the envelope curve in Figure 6-6 is specified as:  

        
0

2
0.25%

cr

cr

V V
k



−
=

−
        (6-15) 

in which cr  is the strain at which major diagonal cracks initiate. Hence, when wP  is zero, 

0pV V=   and p  is 0.25%. Because of the scarcity of test data on shear-dominated RM 

walls subjected to monotonically increasing loads, this stiffness is calibrated with quasi-

static cyclic test data.(Shing et al., 1991; Voon and Ingham, 2006; Ahmadi, 2012) Since 

2k  is assumed to be a constant, the value of p  changes with the axial load. This is 

consistent with the experimental observation of Voon and Ingham (2006).  

After reaching the peak shear strength, the resistance is assumed to decrease 

linearly to a residual shear strength,  resV , as shown in Figure 6-6. The shear strain at which 

𝑉𝑟𝑒𝑠 is reached ( res ) is taken as ( 0.1p + ), which is based on the responses of two RM 

T-wall systems tested to the verge of collapse, as presented in Chapter 5. Most of the tests 
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in the literature did not reach such a large displacement level. The post-peak shear strength 

consists of the strength provided by the wall web ( wV ) and, for flanged walls, flexural 

strength provided by the flange(s) (
fV ), as shown in Figure 6-6. The calculation of these 

two terms will be discussed in the following two sub-sections.  

6.3.1.1. Degradation of web shear strength 

The rate of the degradation of the shear strength of the web due to the opening of 

diagonal cracks as well as masonry crushing and the fracture of the shear reinforcement 

depends on a number of factors. Test observations of Voon and Ingham (2006) have shown 

that for wall panels with the length-to-height ratio (L/H) less than or equal to 1, a higher 

axial compressive load will lead to more severe toe crushing and masonry spalling, and 

consequently more rapid degradation of the shear resistance. However, wall panels with a 

high length-to-height ratio (squat walls) are less prone to toe crushing. For these walls, a 

higher axial compressive load can lead to less rapid degradation of shear resistance because 

the increased friction resistance as well as the diagonal strut action. Based on these 

observations, the post-peak shear resistance provided by the wall web ( wV ) is given by the 

following equation. 

      ( , , ) ( , , ) ( )w w w p p

L L
V V

H H
      =      (6-16) 

in which w  is the axial load ratio for the web, i.e., w w wP A = , and is a strength 

reduction factor considering the influence of the axial load ratio and aspect ratio (L/H) of 

the wall: 
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where 
res is the residual value of  given by the following equation: 
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−  

  = +
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      (6-18) 

The parameters C0, C1, and C2 in the above equation are 0.2, 10 and -120, 

respectively, which have been determined with wall test data. Figure 6-7(a) shows the 

variation of the value of  with respect to the shear strain  . Figure 6-7(b) shows how the 

value of the residual reduction factor res  varies with w and L/H. As shown, when the 

wall is in tension except for w close to zero, the value of res  is equal to 0.2, regardless 

of the value of L/H. The value of res  can increase or decrease with the increase of the 

axial compressive load, depending on the aspect ratio of the wall. For walls with L/H less 

than 2, the value of res  decreases with the axial compressive load, because these walls 

are vulnerable to toe crushing. For walls with L/H higher than 2, the value of res  increases 

with the increase of the compressive load, because axial compression can enhance shear 

resistance in these walls. For L/H equal to 2, res is always 0.2. 
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(a) (b) 

Figure 6-7.  (a) Relation between web damage factor and post-peak shear strain; (b) 

relation between residual web damage factor and web axial load ratio for web 

components with different depth-to-height ratios 

 

6.3.1.2. Resistance of wall flange 

For a flanged wall, the flange(s) can develop out-of-plane bending and thus flexural 

resistance ( fV ) after severe damage has occurred in the web. As shown in Figure 6-6, it is 

assumed that the flexural resistance of the flange(s) will develop only when the shear strain 

has passed the point of the peak shear strength ( pV ), and will increase linearly with the 

increase of the shear strain till reaching the full moment capacity when the shear strain 

reaches res . The contribution of the wall flange to the residual shear strength, ( )f resV  , 

can be calculated as follows. 

     ( )
f

f res

eff

M
V

H
 =       (6-19) 

in which Heff is the effective height of the wall, which is equal to the actual wall height for 

a cantilever wall, and is half of the wall height for a wall fixed from rotation at the top and 

the bottom; and Mf is the moment capacity of the flange section.  
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The value of Mf can be calculated with the equivalent stress block approach 

according to the recommendations in TMS 402 (2016). As shown in Figure 6-8, the 

equilibrium of the axial force and moment for the flange section can be expressed as: 

    ( )0.8f m f y sfP f bl f A = −      (6-20) 

    ( )0.8
2

f

f m f

t b
M f bl

−
=       (6-21) 

in which Pf is the axial force in the flange from the fiber-section model; tf and lf are the 

thickness and width of the flange, respectively; Asf is the total area of all the vertical 

reinforcing bars in the flange and fy is the yield strength of the bars; mf   is the compressive 

strength of masonry; b is the depth of the compressive stress block; and  is the shear 

strength reduction factor defined in Eqs. (6-17) and (6-18) to account for the reduction of 

the moment capacity of the flange due to diagonal shear cracks induced in the flange by 

lateral loading parallel to the flange. 

  

(a) cross section of a flange (b) sectional equilibrium 

Figure 6-8.  Axial force and moment equilibrium of a wall flange 

 

6.3.2. Hysteretic Law 

To model the shear response of RM walls subjected to cyclic load reversals, a 
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hysteretic law has been proposed with the envelope curve presented in the previous section 

as the baseline envelope. This law accounts for additional strength degradation induced by 

cyclic loading as well as the degradation of the stiffness during unloading and reloading. 

There are four main features in the hysteretic law: the pinching of the hysteresis loops, the 

degradation of the shear force-vs.-shear strength envelope due to damage caused by cyclic 

loading (in-cycle damage), the degradation of the unloading stiffness due to shear crack 

opening and closing, and the degradation of the reloading stiffness due to in-cycle damage, 

as described below. 

6.3.2.1. Cyclic Unloading and Reloading 

The hysteretic response of a shear-dominated RM wall often exhibits a pinching 

behavior. A tri-linear unloading-reloading law used in the Hysteretic Material Law in 

OpenSEES (McKenna et al. 2000) is adopted to represent the pinching behavior. Figure 6-

9 shows an unloading-reloading curve for shear deformation towards the positive direction 

(path A-B-C-D). Once unloading starts (A in the figure), the shear force drops linearly to 

zero with the unloading stiffness unk −
(path A-B). The value of 

unk − is equal to the initial 

stiffness ( 1k ) of the envelope curve if max cr −  , in which max −
is the maximum shear 

strain attained in the negative loading direction. If max cr −  , unk −
has a reduced value 

given by the following equation to account for the stiffness degradation caused by the 

opening and closing of diagonal shear cracks.  

 
1 min ,1.0

| |

cr
un

max

k k







−

−

  
 =  
   

 (6-22) 

in which   is a parameter governing the severity of stiffness degradation. 
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Reloading follows path B-C-D, as shown in Figure 6-9, which is a bilinear line that 

crosses the envelope curve at a point (point D) with the shear strain equal to the larger of 

cr  and max +
, where max +

is the maximum shear strain attained in the positive loading 

direction in the previous loading cycle. As shown in the figure, the coordinates of the 

intermediate point (C) are determined with two parameters, pinchX and pinchY, whose 

values are between 0 and 1 and to be selected by user.  

An unloading-reloading curve towards the negative direction can be constructed in 

a similar way. 

 
Figure 6-9.  An unloading-reloading path constructed with the basic pinching model 

 

6.3.2.2. Modeling of In-Cycle Damage 

To account for the influence of in-cycle damage, two degradation modes as 

suggested by Ibarra et al (2005) are considered: degradation of the shear strength and the 

degradation of the reloading stiffness, as shown in Figure 6-10. As will be discussed below, 

the degradation laws proposed here are based on hysteretic energy dissipation. 
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(a) Envelope stress 

 
(b) Reloading stiffness 

Figure 6-10.  Deterioration models due to in-cycle damage 

 

Shear Strength Degradation 

The degradation of the shear strength due to in-cycle damage is controlled by a 

damage index ( 0D ) defined in the following equation. It is assumed that degradation will 

occur once the absolute maximum shear strain attained exceeds cr .  

 0

| |
1 2 if

 

0                                                   if 

max cr D
max cr

cr A

max cr

E
dmg dmg

ED

 
 



 

−
 +  

= 
 

 (6-23) 

in which max is the absolute maximum shear strain reached in either loading direction in 
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the analysis; dmg1 and dmg2 are damage parameters, whose values are to be determined 

by user, ED is the energy dissipated by the hysteretic model in all the previous cycles after 

max  exceeds cr , and 𝐸𝐴 is a normalization constant given by: 

 ( )0 00.7 1.7 0.25%A cr crE V V =  +  −  (6-24) 

As shown in Figure 6-10(a), the peak shear strength ( pV ) and residual shear 

strength ( resV ) are reduced by the factor ( 01 D− ), and the shear strain at which the residual 

strength is first reach ( res ), is reduced from ( )0.1p + as shown in Figure 6-7(a) to 

( )00.1 1 3p dmg D + −   , in which dmg3 is a damage parameter. 

 

Reloading stiffness degradation 

As shown in Figure 6-10(b), the degradation of the reloading stiffness is controlled 

by shifting point D, located at max +
 on the envelope curve to point D , located at 

( )max + + , where   is proportional to the energy dissipated in the previous cycle ( 1iE − ) 

as given in Eq. 6-25. 

 14 cr idmg E  − =    (6-25) 

in which dmg4 is a damage parameter. Point C is shifted accordingly to C , as shown in 

the figure. 
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6.3.3. Update of Envelope with Axial Force 

When the mixed beam-column element is used to model a shear wall in a wall 

system subjected to lateral seismic forces, its axial force may vary due to the overturning 

moment induced on the wall system. To accurately account for the influence of the axial 

force on the shear resistance, the shear force-vs.-shear strain envelope curve is 

continuously updated based on the axial forces Pw and Pf calculated at the fiber section 

near the end where the flexural demand is most severe. 

The envelope is updated in each incremental step of the analysis. The peak shear 

resistance Vp, the strain at the peak shear resistance
p , and the residual web strength 

reduction factor 
res are updated with the value of Pw calculated in the current step. For a 

flanged wall, the moment capacity of the flange(s), Mf, is updated with the value of Pf. 

However, once the maximum shear strain ( max ) developed in the element in the last 

converged step exceeds the value of 
p , the values of pV  and p  will be fixed, but the 

value of res will be continuously updated with Pw until max exceeds res and remain 

constant afterwards. The value of the moment capacity of the flange(s), Mf, is continuously 

updated with the axial force Pf. This update strategy is adopted not to jeopardize the 

robustness of the numerical solution, and considers the fact that the axial force from the 

overturning moment cannot increase once the peak shear strength.  

The update algorithm of the shear model is summarized on the next page. 
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Shear Model State Determination 

1. If 𝑉𝑝 and 𝛾𝑝 have not been fixed, update 𝑉𝑝 and 𝛾𝑝 with axial stress resultant of the 

web 𝑃𝑤 [Eq. (6-14)]. 

2. If 𝑉𝑤(𝛾𝑟𝑒𝑠) has not been fixed, calculate 𝛼𝑟𝑒𝑠 and 𝑉𝑤(𝛾𝑟𝑒𝑠) with 𝑃𝑤 [Eqs. (6-17) and 

(6-18)].  

3. Calculate 𝑉𝑓(𝛾𝑟𝑒𝑠) with axial stress resultant of the flange 𝑃𝑓 [Eqs. (6-19) to (6-21)]. 

4. Update the envelope curve with the values determined in steps 1-3. 

5. If 𝛾𝑚𝑎𝑥 > 𝛾𝑐𝑟 or 𝛾𝑚𝑖𝑛 < −𝛾𝑐𝑟, update the envelope with the accumulated in-cycle 

damage [Eqs. (6-23) and (6-24)]. 

6. If current shear strain 𝛾 > 𝛾𝑚𝑎𝑥: 

        a. Update 𝛾𝑚𝑎𝑥; 

        b. If 𝛾 > 𝛾𝑝, fix the values of 𝑉𝑝 and 𝛾𝑝; 

        c. If 𝛾 > 𝛾𝑟𝑒𝑠, fix the value of 𝑉𝑤(𝛾𝑟𝑒𝑠); 

        d. Return the stress (�̅�) and tangent stiffness (
𝜕�̅�

𝜕𝛾
) on the positive envelope at 𝛾. 

7. If 𝛾 < 𝛾𝑚𝑖𝑛: 

a. Update 𝛾𝑚𝑖𝑛; 

b. If 𝛾 < −𝛾𝑝, fix the values of 𝑉𝑝 and 𝛾𝑝;     

c. If 𝛾 < −𝛾𝑟𝑒𝑠, fix the value of 𝑉𝑤(𝛾𝑟𝑒𝑠); 

d. Return the stress (�̅�) and tangent stiffness (
𝜕�̅�

𝜕𝛾
) on the negative envelope at 𝛾. 

8. If 𝛾𝑚𝑖𝑛 ≤ 𝛾 ≤ 𝛾𝑚𝑎𝑥: 

a. If 𝛾 > 𝛾𝑝 or 𝛾 < −𝛾𝑝, fix the values of 𝑉𝑝 and 𝛾𝑝;   

b. If 𝛾 > 𝛾𝑟𝑒𝑠 or 𝛾 < −𝛾𝑟𝑒𝑠, fix the value of 𝑉𝑤(𝛾𝑟𝑒𝑠); 

c. If the loading direction has reversed, start the construction of unloading-

reloading path: 

             i.   Update the energy dissipated in the last cycle (𝐸𝑖−1) and total energy 

dissipated (𝐸𝐷). 

             ii.  If 𝛾𝑚𝑎𝑥 > 𝛾𝑐𝑟 or 𝛾𝑚𝑖𝑛 < −𝛾𝑐𝑟, update the damage factor 𝐷0 [Eqs. (6-23) 

and (6-24)]. 

             iii. Shift the 𝛾𝑚𝑎𝑥 or 𝛾𝑚𝑖𝑛 with 𝐸𝑖−1, depending on loading direction [Eq. (6-

25)].  

             iv. Calculate the unloading stiffness 𝑘𝑢𝑛  with Eq. (6-22) and construct the 

unloading path.  

             v.  Construct the reloading path with pinching law. 

      d. Calculate the stress (�̅�) and tangent stiffness (
𝜕�̅�

𝜕𝛾
) on the unloading-reloading 

path at 𝛾. 
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6.4. Constitutive Relations for Fiber Section 

This section presents the constitutive laws adopted for masonry and vertical 

reinforcing steel in the fiber section model. For masonry, the uniaxial stress-strain law 

proposed for concrete by Kent and Park (1971) is adopted. As shown in Figure 6-11(a), it 

is assumed that tensile strength of masonry is zero. The peak compressive strength, 
mf  , is 

assumed to be reached at the compressive strain of 0.003. After the peak strength has been 

reached, the compressive stress drops linearly until it reaches 0.2 mf   at a compressive 

strain of 0.006 to model crushing. Afterwards, a residual strength of 0.2 mf   is maintained. 

For a shear-dominated RM wall, severe spalling and crushing of masonry along 

diagonal cracks can result in the degradation of the flexural and axial compressive load 

carrying capacities. To model this phenomenon, the compressive strength of the masonry 

fibers within the web area is reduced with the increase of max . As shown in Figure 6-

11(a), mf   is reduced by the   factor defined in Eq. (6-17) when max p  . 

A bilinear elastic-plastic uniaxial law with kinematic strain hardening is adopted to 

model the vertical reinforcing bars in an RM wall section. As shown in Figure 6-11(b), the 

strain hardening ratio is assumed to be 0.1. This simple model does not account for the 

buckling and fracture of vertical bars that can be observed in walls suffering severe flexural 

damage. However, it provides a more stable condition for the numerical solution and is 

adequate for walls with the post-peak behavior dominated by shear. To model the behavior 

of walls predominately controlled by flexure, a steel model that can phenomenologically 

account for the buckling and fracture of vertical bars should be adopted.  
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(a) Masonry (b) Vertical reinforcing steel 

Figure 6-11.  Uniaxial material constitutive laws used in fiber section model 

 

6.5. Model Calibration and Validation 

The mixed formulation, along with the proposed constitutive models, have been 

implemented into an open-source software platform, OpenSEES (McKenna et al. 2000). A 

number of experimental data have been selected to calibrate the parameters of the shear 

model, including the quasi-static cyclic tests on shear-dominated planar walls (Shing et al., 

1990; Shing et al., 1989; Voon and Ingham, 2006; Ahmadi, 2012), the shake-table tests on 

a two-story RM structure by Mavros et al. (2016), and the shake-table tests on two one-

story RM wall systems presented in Chapter 5. The parameters calibrated based on these 

test data are shown in Table 6-1. However, there is no test data available on RM structures 

subjected to bi-directional loads.  

The numerical results obtained with the calibrated model are compared to the 

experimental results in the following sections. The compressive strength of masonry and 

the yield strength of the steel are based on the values reported in the experimental studies.  

In the analyses, the Gauss-Radau quadrature with five integration points is used for the 
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beam element. 

 

Table 6-1. Calibrated model parameters 

Type of 

Parameter 
Parameter Value Note 

Envelope 

C0 0.2 
Parameter controlling web residual shear 

strength 

C2 10.0 
Parameter controlling web residual shear 

strength 

C3 -120.0 
Parameter controlling web residual shear 

strength 

Hysteretic 

pinchX 0.70 Pinching factor in hysteresis model 

pinchY 0.30 Pinching factor in hysteresis model 

𝜂 0.60 
Parameter controlling unloading stiffness 

degradation 

dmg1 0.0015 In-cycle damage factor 

dmg2 0.0050 In-cycle damage factor 

dmg3 0.2 In-cycle damage factor 

dmg4 1.5 In-cycle damage factor 
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6.5.1. Wall Segments Tested by Shing et al. 

 

The proposed beam-column model was calibrated and validated with the test data 

of 17 shear-dominated RM wall specimens (Shing et al.,1991; Voon and Ingham, 2006; 

Ahmadi, 2012).  The dimensions, reinforcement details, and axial load ratios of the selected 

wall specimens have been shown in Table 4-3.  

Static cyclic analyses were performed with the models built for the selected wall 

specimens, with each wall modeled by one proposed mixed beam-column element. The 

comparisons of the results of static analysis with the proposed mixed element with the test 

data are shown in Appendix IV. Figures 6-12 show the comparisons of the three of the 

selected wall specimens: CU-3, CU-5, and CU-16. These cantilever planar walls had the 

same geometry. Walls CU-3 and CU-5 had the same reinforcement arrangement but were 

subjected to different levels of axial load. Walls CU-3 and CU-16 had the same amount of 

axial compressive load, but the latter specimen had higher amount of horizontal 

reinforcement. The results of analysis show good match with the test data. For all three 

cases, the responses of the models are dominated by shear. The lower shear strengths given 

by the models indicate that the shear strength formula in TMS 402/602 (2016) is 

conservative for these walls. 
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(a) CU-3 (b) CU-5 

 

(c) CU-16 

Figure 6-12.  Comparison of numerical results with experimental data on 

shear-dominated walls 

 

 

6.5.2. A Two-Story Structure Tested by Mavros et al. 

The ability of the model to capture the dynamic response of an RM wall system 

under earthquake loading is evaluated with the two-story wall system tested by Mavros et 

al. (2016) with uni-directional earthquake motions on a shake table. Figure 6-13 shows the 

elevation view and plan view of the structure. In each story, the structure had two T-walls 

(Wall-1 and Wall-3) and one planar wall (Wall-2) that resisted the lateral seismic forces. 

In additional, there were four planar RM walls oriented perpendicular to the direction of 

shaking at the two ends of the structure. These four walls are referred to as out-of-plane 
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walls. The dimensions and reinforcement details of the walls are shown in Tables 6-2 and 

6-3. The average material strengths obtained from sample tests are:
mf   = 15.6 MPa and

yf  

= 448 MPa.  

A frame model has been developed for the two-story RM structure, as shown in 

Figure 6-14. All the elements in the model are located in a plane as the structure was 

subjected to uni-directional motions. In the first story, the two flanged walls (Wall-1 and 

Wall-3) at the two ends and the planar wall (Wall-2) are modeled with the mixed element. 

For each of the RM shear walls, the mixed beam-column element is located at the centroid 

of its section. The effective height (Heff) is taken as half of the wall height due to the high 

bending stiffness of the horizontal diaphragm. Each of the four out-of-plane walls is 

modeled with five displacement-based beam-column elements of equal lengths. Fiber 

sections are used to compute the flexural resistance developed in the out-of-plane walls. 

Similar to the in-plane walls, masonry in the fiber section is modeled with the Kent-Park 

model (Concrete01 in OpenSEES), whereas the vertical reinforcement is modeled by a 

bilinear law with strain hardening (Steel01 in OpenSEES). As most of the inelastic 

deformation of the walls was localized in the first story, all the RM walls in the second 

story are modeled with elastic beam-column elements. The horizontal diaphragms and the 

RM panel zones connecting the wall segments are modeled with stiff elastic beam-column 

elements. The mass at roof and the 1st floor (including the masonry above and beneath the 

openings) was uniformly distributed at the nodes along the diaphragm elements. For each 

masonry wall component, half of the wall mass is lumped at each end. 

In the test, the two-story RM structure was subjected to 9 El-Centro ground motion 

records obtained from the 1979 Imperial Valley Earthquake scaled to different intensities 
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until severe shear failure occurred. As the structure had little damage developed during the 

first six ground motions with its fundamental period increased from 0.077 to 0.084 sec, 

only the last three table motions are applied to the frame model, which are the El-Centro 

records scaled to 108%, 145% and 160% intensity levels. The motions were recorded table 

motions and are applied in sequence with quiet times inserted between records for the 

structure to rest before the next motion starts. 

  

(a) Elevation view of interior walls (b) Plan view 

Figure 6-13.  Numbering of Walls in the two-story RM structure tested by 

Mavros et al. 

 

 

Table 6-2. Dimensions of walls in the two-story RM structure tested by Mavros et al. 

Wall ID 
Height 

(m) 

Length of web  

(m) 

Length of flange 

(m) 

Width 

(m) 

Wall-1 2.03 0.81 0.61 0.194 

Wall-3 1.22 0.81 0.61 0.194 

 
Height 

(m) 

Length 

(m) 

Width 

(m) 

Wall-2 1.22 1.02 0.194 

Out-of-plane 

Wall 
2.44 1.42  0.194 
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Table 6-3. Reinforcement details of the two-story RM structure tested by Mavros et al.* 

Wall ID 
Horiz. reinf. in 

web  

Vert. reinf. in 

web  

Horiz. reinf. in 

flange  

Vert. reinf. in 

flange  

Wall-1 #4@41cm #4@41cm #4@20cm #4@20cm 

Wall-3 #4@41cm #4@41cm #4@20cm #4@20cm 

 Horiz. reinf.  Vert. reinf.  

Wall-2 #4@41cm #4@41cm 

Out-of-

plane Wall 
#4@41cm #4@61cm 

*#4 reinforcing bars have nominal diameter of 13 mm.  
 

 

 
Figure 6-14.  Frame model of the two-story RM structure tested by Mavros et al. 

 

 

Rayleigh damping with a damping ratio of 0.5% for the 1st and 2nd modes is used. 

The stiffness proportional part of the damping matrix is based on the initial stiffness of the 

model calculated at zero displacement. As shown in Figure 6-15, the results of the analysis 

show a good agreement with the test results. However, comparing to the test, the model 

has a higher initial stiffness. The discrepancy is partly due to the omission of the first six 

lower-intensity motions, which induced slight damage to the structure. 
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(a) El Centro 108% 

  

(b) El Centro 145% 

  

(c) El Centro 160% 

Figure 6-15.  Comparison numerical results with experimental data on the two-story 

RM structure tested by Mavros et al. 
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6.5.3. Two One-Story Structures Tested by the author 

The two one-story RM structures presented in Chapter 5 have been selected to 

examine the ability of the model to simulate the response of a wall system up to the point 

of near collapse. The naming of the wall components of the two wall systems (Specimen 1 

and Specimen 2) shown in Figure 5-1 has been adopted in this chapter. The dimensions 

and reinforcement details of these two structures are summarized in Tables 6-4 and 6-5.  

 

Table 6-4. Dimensions of walls in the one-story RM structures presented in Chapter 5 

Wall ID 
Height 

(m) 

Length of web 

(m) 

Length of flange  

(m) 

Width 

(m) 

Specimen 1 

Wall-1 2.44 1.22 1.02 0.194 

Wall-2 2.44 1.22 1.02 0.194 

Specimen 2 

Wall-1 2.44 1.22 1.02 0.194 

Wall-2 2.44 1.22 1.02 0.194 

 
Height 

(m) 

Length 

(m) 

Width 

(m) 

Out-of-plane 

Wall 
2.44 1.02 0.194 

 

 

Table 6-5. Reinforcement details of the one-story RM structures presented in Chapter 5* 

Wall ID 
Horiz. reinf. in 

web  

Vert. reinf. in 

web  

Horiz. reinf. in 

flange  

Vert. reinf. in 

flange  

Specimen 1 

Wall-1 #3@41cm #4@20cm #3@41cm #4@41cm 

Wall-2 #3@41cm #4@20cm #3@41cm #4@41cm 

Specimen 2 

Wall-1 #4@41cm #4@41cm #3@41cm #4@41cm 

Wall-2 #3@41cm #4@20cm #3@41cm #4@41cm 

 Horiz. reinf. Vert. reinf. 

Out-of-

plane Wall 
#3@41cm #4@41cm` 

* #3 and #4 reinforcing bars have nominal diameters of 10mm and 13mm, respectively.  
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Frame models have been developed for the two one-story RM wall systems, with 

all the elements located in a plane. They are similar to the model discussed in the previous 

section. As shown in Figure 6-16, the mixed element is used to model the T-walls. For each 

T-wall, the mixed element is located at the centroid of the T-section. The effective height 

(Heff) is taken as half of the wall height due to the high stiffness of the roof systems. For 

Specimen 2, the six out-of-plane walls are modeled with displacement-based beam-column 

elements with fiber sections. Each out-of-plane wall is modeled with five elements of the 

same length. The roof slabs in the two structures are modeled as stiff beam-column 

elements. For each specimen, the roof mass is distributed uniformly at the nodes along the 

roof. The mass of each RM wall (T-walls and out-of-plane walls) is lumped at the two ends 

of the wall.  

 
(a) Specimen 1 

 
(b) Specimen 2 

Figure 6-16. Frame models of the two one-story RM structures tested by the author 
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Time-history analysis was performed with the frame model of Specimen 1 using 

the table motions from the test, and it was followed by a static analysis pushing the roof to 

reach a drift ratio to 17%. The frame model of Specimen 2 was subjected to the same 

sequence of table motions recorded in the test. For both models, Rayleigh damping was 

used with the damping ratio equal to 0.4% for the 1st and 2nd modes, with the stiffness 

proportional part based on the initial stiffness. Figure 6-17 compares the numerical results 

for Specimen 1 with the experimental results from the last earthquake ground motion run 

and the quasi-static test. Figure 6-18 shows the comparison of the numerical and 

experimental results for Specimen 2 obtained with the last two motions (MUL-160% and 

RIN-130%). While the numerical results show good agreements with test data, the model 

for Specimen 2 significantly underestimates the residual drift ratio attained at the end of 

the test (RIN-130%). Capturing the residual drift is always difficult even with a refined 

nonlinear finite element model (Koutras and Shing, 2021). 
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(a) Roof drift ratio time-history in MUL-133% 

 

(b) Base shear-vs.-roof drift ratio response in MUL-133% and static pulling test 

 

Figure 6-17.  Comparison between numerical results and experimental data on Specimen 

1 tested by the author. 
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(a) Roof drift ratio time-history 

in MUL-160% 

(b) Base shear-vs.-roof drift ratio 

response in MUL-160%; 

  

(c) Roof drift ratio time-history 

in RIN-130% 

(d) Base shear-vs.-roof drift ratio 

response in RIN-130% 

Figure 6-18.  Comparison of numerical results with experimental data on Specimen 2 

tested by the author 

 

Chapter 6, in part, is a reprint of the material currently being prepared for 

submission for publication, Cheng, J. and Shing P. B. under the title “A Beam-Column 

Model for Nonlinear Flexural and Shear Behavior of Reinforced Masonry Walls”. The 

author of the dissertation is the primary author and the main contributor of the work 

presented in the paper.  
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CHAPTER 7 SUMMARY AND CONCLUSIONS 

This dissertation presents a study aimed to acquire a better understanding of the 

nonlinear behavior of reinforced masonry RM shear wall systems under seismic loading, 

and to develop computationally efficient models to evaluate the seismic performance of 

these systems. In this study, beam-column element models have been developed to capture 

the nonlinear flexural and shear behaviors of RM shear walls, and large-scale shake-table 

tests were conducted to evaluate the strengths and displacement capacities of shear-

dominated RM wall systems up to the verge of collapse. 

7.1. Summary, Main Observations and Conclusions 

7.1.1. Modeling of Flexure-Dominated Walls 

Experimental data from wall tests have shown that the post-peak in-plane lateral 

load-vs.-displacement relation of a flexure-dominated RM wall is governed by a number 

of mechanisms, including the crushing of masonry at wall toes, the buckling of the vertical 

reinforcing bars, and the fracture of these bars due to low-cycle fatigue. To capture this 

relation accurately, a modeling approach that accounts for all these mechanisms has been 

presented in Chapter 3. In particular, a phenomenological material law has been proposed 

to model the buckling and fracture of reinforcing bars in a simple and efficient manner. 

The Kent-Park concrete model has been calibrated to model the behavior of masonry. The 

material models are calibrated with the assumption that the effective plastic-hinge length, 

in which plastic deformation is assumed to be uniformly distributed, is equal to 20% of the 

effective wall height. The modeling approach has been implemented in a force-based 

beam-column element with predefined plastic-hinge lengths and has been validated by data 

from cyclic, quasi-static, wall tests. 
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7.1.2. Force-vs.-Displacement Backbone Curves for RM Shear Walls 

In Chapter 4, a general methodology has been presented for determining the lateral 

load-vs.-displacement backbone curves for flexure-dominated RM walls using the 

proposed material models. To allow the determination of these curves in a simple and 

efficient manner, values of non-dimensionalized critical moment and curvature parameters 

for different axial load and reinforcement conditions have been calculated and presented 

in tables, which can be used as analysis aids. The proposed method results in backbone 

curves that are far more accurate than those determined with current recommendations in 

ASCE 41 (ASCE, 2017). Even though the method has been derived and validated for fully 

grouted walls of rectangular and T sections, it can be applied to flanged walls in general as 

explained in Chapter 4. The use of these non-dimensionalized parameters for partially 

grouted walls needs validation with experimental data on flexure-dominated partially 

grouted walls, which are not currently available. 

For shear-dominated RM walls, an empirical backbone curve has been proposed. 

The proposed backbone curve shows good agreement with test data of fully grouted, planar 

wall segments, whereas the curve constructed based on the current recommendations in 

ASCE 41(2017) shows overly brittle behavior.  

7.1.3. Shake-Table Tests on RM Wall Systems 

A study to investigate the collapse resistance of shear-dominated, fully grouted, 

RM wall systems designed for high seismic areas has been presented in Chapter 5. Two 

single-story specimens (Specimens 1 and 2), each having two RM T-walls as the seismic 

load resisting system, were tested on a shake table. Specimen 2 had six additional planar 



189 

 

walls (out-of-plane walls) perpendicular to the direction of shaking.  Specimen 1 was first 

tested with a sequence of earthquake ground motions, and was finally subjected to quasi-

static loading to the verge of collapse. The T-walls exhibited flexural behavior with the 

yielding of the vertical reinforcement during lower-level earthquake motions, but had 

failures eventually dominated by diagonal shear cracks. The maximum roof drift reached 

2.52% in the ground motion tests. The maximum lateral resistance developed by the wall 

system is close to the sum of the shear strengths calculated for individual T-walls with the 

formula in TMS 402/602 (2016) based on the assumption that the axial force in each wall 

is due to the gravity load only. In the quasi-static test, the roof diaphragm was pulled to a 

maximum drift of 16.7%, at which the lateral resistance of the wall system dropped to 6% 

of the peak strength; but the structure did not collapse. 

Specimen 2 was tested with a sequence of earthquake ground motions up to the 

verge of collapse. Compared to Specimen 1, Specimen 2 had a higher lateral resistance and 

had first cracks observed at a higher intensity ground motion. Specimen 2 also exhibited a 

much lower drift ratio at comparable ground motion levels. The specimen survived the last 

motion without collapse. The maximum roof drift reached 13.4%, at which the residual 

strength dropped to 20% of the peak strength. When the shear strength of the two T-walls 

is calculated with the TMS 402/602 (2016) formula with the consideration of the axial 

compression exerted by the out-of-plane walls, which restrained the rocking of the T-walls, 

the calculated value matches the maximum lateral resistance measured in the test well.  

The two test specimens exhibited significantly higher displacement capacities than 

shear-dominated planar wall segments tested in previous studies under quasi-static cyclic 

loads. This could be partly attributed to a smaller number of large-amplitude displacement 
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cycles experienced by the two specimens compared to those tested under quasi-static loads. 

However, the higher displacement capacities can be largely attributed to the presence of 

wall flanges and, for the case of Specimen 2, the out-of-plane walls, which provided an 

alternative load path to carry the gravity load when the webs of the T-walls had been 

severely damaged. 

Reinforced masonry buildings often have flanged walls and walls in different 

directions, and may also have gravity frames, which can provide an alternative load path 

to carry the gravity load as well as additional axial compression on the in-plane walls when 

the latter rock. These systems can sustain significant lateral displacements before the P-Δ 

effect of the gravity load would induce collapse. In general, the displacement capacity of a 

building system depends on a number of factors, including the wall configuration, wall 

failure mechanism, presence or absence of gravity frames, the P-Δ effect of the gravity 

load, and the severity of wall damage induced in each direction by bidirectional earthquake 

ground motions. These all need to be taken into consideration to assess the collapse 

vulnerability of a building. 

7.1.4. Beam-Column Element for Modeling Flexural and Shear Behaviors of RM 

Walls 

A beam-column element for modeling the nonlinear flexural and shear behaviors 

of RM shear walls has been presented in Chapter 6. The model is based on a three-field 

(force, strain, and displacement) mixed formulation, which is free of shear locking and 

allows an RM wall to be modeled with one element. A fiber-section model is used to 

simulate the axial and flexural behaviors, while a macro phenomenological model has been 

proposed to represent the shear behavior of a wall.  The axial-flexural-shear interaction is 



191 

 

considered through the constitutive models. The shear model has a stress-vs.-strain 

envelope updated with the axial stress resultant from the fiber-section model, and the 

compressive strength of the masonry fibers in the fiber-section model is reduced with the 

development of shear damage.  

The model has been calibrated and validated with experimental data from shear-

dominated planar wall specimens and the two wall systems tested on a shake-table tests. 

The numerical and experimental results have shown good agreement. However, the ability 

of the proposed model in capturing the behavior of RM wall systems subjected to bi-

directional horizontal loading has not been examined due to the lack of experimental data. 

7.2. Recommendations for Future Research 

The extension of the method presented in Chapter 4 for determining the force-vs.-

displacement backbone curves for flexure-dominated fully grouted RM walls to partially 

grouted walls has not been thoroughly validated. This is because of the lack of experimental 

data. Most of the partially grouted RM walls that were tested exhibited shear- or shear-

sliding-dominated behaviors. More experimental data on the flexure-dominated, partially 

grouted RM shear walls are needed. 

In spite of the good agreement with test data, the empirical backbone curve for 

shear-dominated RM walls presented in Chapter 4 is only applicable to planar walls. A 

more rational methodology to construct the backbone curves for shear-dominated walls 

with different configurations is needed. 

For the mixed beam-column element presented In Chapter 6, the nonlinear shear 

response is modeled by a phenomenological model. In spite of the good agreement of the 
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numerical results with the test data, the model does not explicitly consider the physics of 

the shear-dominated failure mechanisms, such as the opening and closing of the diagonal 

cracks, the compression strut mechanism, and the yielding and fracture of the horizontal 

reinforcement. A more physics-based shear model is desirable. Furthermore, the modeling 

of the flexural behavior in the element needs to be improved to account for the rebar 

buckling and fracture, as described in Chapter 3. This will entail the improvement of the 

numerical solution scheme to handle the added load degradation mechanisms. 

Furthermore, the beam-column model presented in Chapter 6 is only calibrated with 

the test data of RM shear walls subjected to in-plane cyclic loads and uni-directional 

ground motions. The ability of the model in representing the behaviors of RM shear walls 

and shear wall systems subjected to multi-directional ground motions has not been verified 

by experimental data. More experimental data are needed on the behavior of RM walls and 

wall systems with multi-directional earthquake loads. 
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APPENDIX I COMPARISON OF NUMERICAL RESULTS WITH 

TEST DATA FOR FLEXURE-DOMINATED PLANAR WALLS 
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APPENDIX II COMPARISON OF BACKBONE CURVES WITH 

TEST DATA FOR FLEXURE-DOMINATED RECTANGULAR-

SECTIONED CANTILEVER WALLS 
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APPENDIX III COMPARISON OF BACKBONE CURVES WITH 

TEST DATA FOR FLEXURE-DOMINATED RECTANGULAR-

SECTIONED CANTILEVER WALLS 
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APPENDIX IV COMPARISON OF NUMERICAL RESULTS WITH 

TEST DATA FOR SHEAR-DOMINATED PLANAR WALLS 
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