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Abstract

Context effects in human spoken language are well-
documented and play a central role in the theory of language
production. However, the role of context in written language
production is far less well understood, even though a con-
siderable proportion of the language produced by many peo-
ple today is written. Here we analyze the factors predictive
of English language typing times in a large, naturalistic cor-
pus from the popular TypeRacer.com website. We find broad
consistency with the major documented effects of linguistic
context on spoken language production, suggesting potential
modality-independence in the cognitive mechanisms underly-
ing language production and/or similar optimization pressures
on the production systems in both modalities.

Keywords: Psycholinguistics; Language production; Typing
speed; Prediction; Context effects; Planning

Introduction

Language production is work: formulating messages, retriev-
ing the corresponding phonological or orthographic forms,
and executing the appropriate motor actions to express them
are effortful, take time, involve delays, and are error-prone
(Levelt, 1993). This difficulty varies in fine-grained tem-
poral scale within an utterance: for example, disfluencies
are more likely early in phrases than later (Boomer, 1965;
Shriberg, 2001). One source of this variability in difficulty
has to do with the unit being produced at any given moment:
words that are high in frequency and phonotactic probability
are produced faster in naming studies (Oldfield & Wingfield,
1965; Balota & Chumbley, 1985; Vitevitch, Armbrüster,
& Chu, 2004); words with high frequency and low aver-
age information content have shorter durations in continu-
ous spoken language (Umeda, 1977; Pluymaekers, Ernestus,
& Baayen, 2005; Seyfarth, 2014). A word’s form similar-
ity to other words in the lexicon also affects its articulation,
though the nature of that relationship remains more contro-
versial (Gahl, Yao, & Johnson, 2012; Scarborough, 2012;
Meinhardt, Baković, & Bergen, 2020).

Figure 1: An in-progress race on TypeRacer.com between 5
“guest” players. Typing time in words per minute and the
position of each player’s car icon are continuously updated
according to the players’ typing speed and relative position in
the race text.

But another key source of variability is the linguistic con-
text in which the unit is produced. In particular, words that are
more predictable in their context are shorter in duration, have
less strongly articulated segments, and are less prone to dis-
fluency (Shriberg & Stolcke, 1996; Aylett & Turk, 2006; Bell,
Brenier, Gregory, Girand, & Jurafsky, 2009; Arnon & Co-
hen Priva, 2013). This relationship between a word’s proba-
bility in context and the details of its form realization suggests
optimization in the mechanisms of human language produc-
tion: the more a word is predictable from, and thus redundant
with, its context, the less time, effort, and detail is necessary
to realize it (Jurafsky, Bell, Gregory, & Raymond, 2001; Levy
& Jaeger, 2007). However, the degree to which this opti-
mization is purely speaker-centric versus listener-oriented re-
mains unresolved (Arnold, 2008; Watson, Arnold, & Tanen-
haus, 2008; Galati & Brennan, 2010; Hall, Hume, Jaeger, &
Wedel, 2018).

Today, over 86% of the world over age 15 is literate (Roser
& Ortiz-Ospina, 2016). Although we are not aware of pub-
lished statistics on the matter, a considerable proportion of
this population may produce written language in quantity
comparable to spoken language. Furthermore, the ability to
produce written language quickly and accurately is of con-
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siderable value in the ability to thrive in modern literate soci-
eties. Since written language production is an important and
highly practiced activity for this population, it might plau-
sibly be under the same optimization pressures as spoken
language production. A clear empirical picture of the rela-
tionship between lexical and contextual features and the pat-
terns of written language production could improve our un-
derstanding of human language production more generally.
Yet our empirical understanding of this relationship is con-
siderably less developed than for spoken language.

Here we attempt to help clarify this empirical picture,
through the study of one mode of written language pro-
duction: typing. Probability effects in typed language are
well-documented at the lexical and sublexical level (Terzuolo
& Viviani, 1980; Gentner, 1982; Gentner, Larochelle, &
Grudin, 1988; Weingarten, Nottbusch, & Will, 2004; Co-
hen Priva, 2010), consistent with the view that word-specific
motor production routines are stored and optimized through
experience. However, little is known about the effects of con-
text beyond the individual word, presumably because study-
ing these effects require larger datasets and more advanced
modeling techniques to effectively estimate word probability
in context and its effect on typing behavior.

Here we address these limitations by taking advantage of a
very large dataset derived from publicly available data on the
TypeRacer.com website, where users compete against each
other to correctly type short website-provided texts as quickly
as possible. Coupled with contemporary models from natu-
ral language processing, this dataset allows us to investigate
a wide range of determinants of typing behavior in light of
contemporary theories of language production. Overall we
find similar general shape of effects of word properties and
context-based predictability on typing time as has been docu-
mented for word duration in spoken language production, but
we also find key differences in the detailed relationships.

TypeRacer
More so than in spoken language production, typing profi-
ciency is a function of speed (among other factors e.g., error
rate). Typists worldwide dedicate significant time to honing
this skill and, in the process, generate massive amounts of
data. These data offer a potential alternative to spoken lan-
guage corpora in shedding light on human language produc-
tion.

TypeRacer is a viral online typing game where players race
against themselves, friends, or strangers in groups of up to 10
to type a short text as quickly as possible (Fig. 1). Typists are
given up to 12 seconds to read the race prompt before the race
starts. Gamification of this sort not only allows TypeRacer to
collect data from thousands of players across the world, re-
sulting in a massive and multilingual dataset, several orders of
magnitude larger than what can be collected in the lab. It also
motivates players to type efficiently, in order to win. As we
will show, a considerable amount of typing time variability in
TypeRacer can be attributed to linguistic factors theoretically

tied to processing effort and unlikely to be confounded with
motivation. This makes the dataset of considerable interest
for studying cognitive and motor constraints in language pro-
duction. TypeRacer has races in 50 languages and includes
diverse text such as song lyrics and code making it a diverse,
openly accessible dataset with data from over N = 100,000
users, across 35,000 distinct texts, and over 7× 107 individ-
ual races.

Dataset
We restrict our analysis to a random subset of the data on
the TypeRacer website consisting of 1000 English-typing 1

TypeRacer users. We call our dataset TypeRacer1000 2. For
each user we acquire typing data from up to 100 randomly
sampled races (without replacement). Only races completed
after June 3, 2017 were considered 3. Data for each race on
TypeRacer consists of the ordered list of keystrokes along
with the time, in milliseconds, of each keystroke (i.e., time
since last keystroke, or start of race for the first keystroke).
We calculate word typing time as the sum of the keystroke
times of all keystrokes of the word. TypeRacer1000 has a
total of 60 thousand races and 3.0 million measures of word
typing times (µ = 49.9 words per race, σ = 20.3).

Predictors
Language Model Surprisal We use autoregressive lan-
guage models (LMs) trained on Wikitext-2 (Merity, Xiong,
Bradbury, & Socher, 2016) to estimate in-context probability
for the words in our dataset (see Dataset Details for train-
ing details). Because the complete text prompt is provided
to users before the race starts, users may plausibly encode
not only the left context of a particular word in the prompt
for use in planning that word’s typing, but also the right con-
text of that particular word. This is an interesting analogue
to the case of naturalistic speech production, where in gen-
eral a speaker may have done some planning and encoding of
a message representation corresponding to the right context
of the word being uttered at any moment (Momma, Slevc, &
Phillips, 2016), and indeed predictability-based speech mod-
ulation effects from right context seem stronger than from left
context (Bell et al., 2009). To investigate the respective roles
of left and right context on typing, we estimate our models
from Wikitext-2 in both the forward direction (i.e., typical au-
toregressive langauge modeling based on Left context) and in
the backward direction (Right context). At both training and
inference time, each model is given full context from the be-
ginning or end of the prompt.

Because we seek to characterize the precise shape and size
of the effect of word predictability on typing time, we draw on
past work that relates predictability and human reading time
(Smith & Levy, 2013; Luke & Christianson, 2016; Wilcox,

1English typers were defined as users with only English typing
data recorded.

2We make our dataset available at https://osf.io/d3z8v/
3Before this date only WPM and average accuracy were avail-

able, not the full typing log.
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Predictor Description
Orthographic Neighbors The number of orthographic neighbors (single letter substitution, deletion, or addition).

Dominance A measure of the degree of control one feels (dominant, controlled).
Semantic Size A measure of magnitude (big, small) expressed in either concrete or abstract terms.
Concreteness A measure of the degree to which something can be experienced by our senses.

Repeats The number of times the word has been repeated in the context.
Familiarity A measure of a word’s subjective experience (familiar, unfamiliar).

Imageability A measure of the degree of effort involved in generating a mental image of something.
Valence A measure of value or worth (positive, negative).
Arousal A measure of internal activation (excitement, calmness).

Gender Association A measure of the degree to which words are considered to be masculine or feminine.
Age of Acquisition A measure of the age at which adults estimate they first learned a word.

Table 1: Descriptions of non-surprisal predictors. We use the number of orthographic neighbors, number of repeats of the
word, and the Glasgow norms, which are determined via human ratings. Arousal, Valence, and Dominance are measured on
9-point scales, while the remaining Glasgow norms are measured on 7-point scales. Descriptions of Glasgow norms are copied
from (Scott et al., 2019).

Gauthier, Hu, Qian, & Levy, 2020; Eisape, Zaslavsky, &
Levy, 2020) and use word surprisal as our dependent mea-
sure. We transform the probability placed on a given word at
position i, i.e., xi, given its preceding context (or subsequent
context in the case of our Right context model) x<i into sur-
prisal by taking the negative log of that probability for each
of our language models:

Si =− log2 Pmodel(xi|x<i) , (1)

Similarly, we compute unigram surprisal by taking the log
transform of word frequency estimates from the wordfreq
Python library (Speer, Chin, Lin, Jewett, & Nathan, 2018) in
the same fashion4.

Language Model Training Surprisal values were esti-
mated with 2-layer long short-term recurrent neural networks
(Hochreiter & Schmidhuber, 1997) with 400 hidden units per
layer and 400 dimensional word embeddings, written in Py-
Torch (Paszke et al., 2019) and trained via stochastic gradient
descent for 40 epochs. Additional hyperparameters: initial
learning rate = 20, batch size = 20, and batch length = 35.

Other Predictors In addition to surprisal estimates, we in-
cluded several factors with attested effects on language pro-
cessing and production in other modalities. For coverage, we
include (log transformed) orthographic neighborhood density
estimates from the CLEARPOND database (Marian, Bar-
tolotti, Chabal, & Shook, 2012), several of the Glasgow
norms (Scott et al., 2019), and the number of preceding rep-
etitions of the word in the prompt (from the left) up to the
point it is encountered (Table 1).

Dataset Details
Preprocessing We use the Moses tokenizer (Koehn et al.,
2007) to split text on TypeRacer into words. We further mod-
ified Moses to combine tokens beginning with an apostrophe

4To avoid word counts of 0, which would yield infinite surprisal,
we pad out-of-vocabulary items in this model with a value of 10−8

followed by one or more characters with the previous token.
Because our word tokenization differs slightly from Wiki-
Text, some words in our dataset consist of multiple WikiText
tokens. In these cases, we compute the surprisal as the sum
of the surprisals of the tokens that make up the word.

Demographics Of our 1000-user sample, 50 do not report
location, 432 are in the United States, followed by 73 in
Canada, 54 in India, 51 in the United Kingdom, and 340 from
other countries. 946 do not report age; the ages of the remain-
ing range from 13 to 46 (µ = 23.1,σ = 6.79), with one outlier
(120). 783 do not list their keyboard layout, 203 use Qw-
erty, and 14 list other keyboard layouts. More demographic
information can be found at https://osf.io/r8z9j/.

Results
For the results presented here we include only typists who
typed at least 95 distinct texts, resulting in 462 distinct users
and N = 2.3 million overall (word, context) pairs.

The Effect of Surprisal on Typing Time is Linear
We use generalized additive models (GAMs; Wood (2006))
to determine the functional form of major word predictors
available for all words in our dataset — surprisal based on
Left context, Right, and raw frequency (unigram surprisal).
Because effects of these factors vary between participants
(and between words) it is essential to account for these dif-
ferences with by-participant and by-word offsets in our mod-
els (i.e., the “maximal” random effects structure; Barr, Levy,
Scheepers, and Tily (2013)). However, the “maximal” ran-
dom effects structure can be computationally challenging to
use in the context of GAM fits for situations where the ran-
dom effects are crossed. As a surrogate, we follow Smith
and Levy (2013) in using a hierarchical bootstrap—first re-
sampling from individual clusters (users or word types) and
then by individual observations within each cluster B = 500
times. We then use the mean and [0.025,0.975] quantiles of
the bootstrap-replicate estimates as the effect estimate and
95% confidence interval (Fig. 2). This does not give us a sin-
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Figure 2: Relationship between various estimates of contextual probability on typing speed slowdown. The top row shows the
recovered effect shape of log transformed predictors (surprisal values) using a GAM with by-User hierarchical bootstrapping,
the bottom row shows the model estimated with by-word bootstrapping. Regression lines from GAM models fitted via hier-
archical bootstrap are shown as solid lines 95% confidence intervals are shown as dashed lines. The marginal density of each
predictor is shown at the top of each plot.

gle analysis that takes into account the full crossed repeated-
measures structure of our dataset, but consistency in the re-
sults from both by-users and by-words hierarchical bootstrap-
ping would provide evidence as to the likely underlying the
functional form (shape) of these predictor–typing time rela-
tionships (Fig. 2). Because our GAMs do not make a linear-
ity assumption, if the recovered effect shape is well approxi-
mated as linear (as is the case in e.g., reading times (Smith &
Levy, 2013)), it would license treating them as such in a sin-
gle mixed regression model that fully accounts for the crossed
repeated-measures structure of our data.

Indeed, in the predictor ranges where most of the data lie,
typing times are roughly linear in word length (not shown),
unigram surprisal, forward surprisal, and backward surprisal
(Fig. 2). We therefore treat these relationships as linear in the
analyses we report in subsequent sections.

Prediction vs. Planning in Typing

Work in spoken language production has found that speaker
planning, as quantified with word likelihood conditioned on
right context, had a larger effect on word duration than left

context predictability (Bell et al., 2009). We use two different
types of mixed modeling approach and show quantitatively
similar results. In both approaches, we use the surprisal, fre-
quency, and word length predictors from the previous anal-
ysis as well as the full range of predictors we include from
CLEARPOND and the Glasgow norms. The first approach is
a single-stage mixed linear model with the maximal random
effects structure, estimated on a random subset of 100 typists
(out of the 462 in the larger dataset, subsampling for model
fitting speed). The second is a “two-stage” (Gelman, 2005)
linear mixed effects model: in stage one, we fit a separate
model for each participant, using by-word random effects; in
stage 2, we examine the distribution of the recovered model
parameters for each of the 462 typists in our dataset, estimat-
ing their effect size with the distribution mean and assessing
significance via t tests (Table 2).

The estimated effects sizes for in-context surprisal predic-
tors are shown in the top portion of Table 2. We show that
both surprisal effects are significant for our two-stage model
(for our single stage model, only Left context is significant),
Left context effects are manifestly larger than Right context
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1-stage 2-stage Predictor
Predictor Estimate Std. Error p Estimate Std. Error p units

Right context Surprisal 0.61 0.76 0.2 0.69 0.27 0.010 bits
Left context Surprisal 2.09 0.59 < 0.001 2.03 0.25 < 0.001 bits

Unigram Surprisal 25.16 3.28 < 0.001 19.24 0.81 < 0.001 bits
Orthographic Neighbors −44.47 3.72 < 0.001 −36.07 1.31 < 0.001 log(neighbors)

Dominance −7.04 5.09 0.9 −7.22 1.30 < 0.001 9-pt Likert scale
Semantic size −1.25 4.43 0.3 −6.69 1.05 < 0.001 7-pt Likert scale
Concreteness −7.29 5.97 0.8 −3.42 1.57 0.030 7-pt Likert scale

Repeats −0.70 2.92 0.5 −2.55 1.66 0.125 repeats
Familiarity 8.71 8.57 0.1 3.01 2.23 0.178 7-pt Likert scale

Imageability 7.05 6.20 0.1 4.57 1.65 0.005 7-pt Likert scale
Valence 5.59 3.44 0.05 3.60 0.95 0.001 9-pt Likert scale
Arousal 6.59 4.37 0.06 8.89 1.17 < 0.001 9-pt Likert scale

Gender Association 14.90 4.95 0.001 10.99 1.36 < 0.001 7-pt Likert scale
Age of Aquisition 18.88 7.79 0.007 20.04 1.77 < 0.001 7-pt Likert scale

Length 142.91 2.95 < 0.001 148.20 2.25 < 0.001 characters

Table 2: Results of 1-stage mixed linear regression (crossed maximal random effects by user and word, participant; N = 100)
and two-stage regression (participant N = 462) analyses.

effects. We further validate these effects with t-tests on the
recovered parameter estimates from our two-stage model —
Left: t = 8.05, p < 0.001; Right: t = 2.57, p = 0.01; Left
vs. Right: t = 3.22, p = 0.001. This result is of particular in-
terest for two reasons. Firstly, it demonstrates that in-context
predictability plays a significant role even when race prompts
are provided prior to the race suggesting prediction is a some-
what automatic part of production and processing. Secondly,
the opposite relative effect strength (i.e., Right < Left) has
been demonstrated in spoken language production. While
different modalities of language production seem sensitive to
overlapping factors they need not show the same fine-grained
patterns of sensitivity, and typing seems especially sensitive
to Left context.

We also show the effects of each of the other predictors
in Table 2. Because these latter predictors are treated as lin-
ear in our analysis without rigorous verification, these results
are somewhat provisional. Several factors bear significantly
on typing time. Unsurprisingly, length had the largest effect
on typing time. The two predictors with the next highest ab-
solute t-values were orthographic neighborhood density and
unigram surprisal. Taken together, these suggest that while
humans are well tuned to the statistics of their language and
use these statistics to coordinate typing behavior, they are also
subject to influence from orthographic factors (neighborhood
density) to a large degree. We see significant effects from sev-
eral other Glasgow norms (Age of Acquisition, Gender Asso-
ciation, Dominance, Semantic size). Interestingly, repetition
did not significantly improve predicted typing time, unlike in
spoken language production (Kahn & Arnold, 2013).

General Discussion
Our results provide what are, to our knowledge, the first
demonstration of contextual probability effects on word-level

typing speed. We find that typists are reliably sensitive to
both the forward (Left) and backward (Right) predictability
of words in the text prompts provided on Typeracer. Sim-
ilar to well-documented effects in spoken language produc-
tion, words that are more probable in context take less time
to produce. But in contrast to spoken language production,
the effect of predictability based on left context is a stronger
determinant of word typing time than predictability based on
right context (Bell et al., 2009), and repetition had no effect,
which is at odds with the well-attested effect in spoken pro-
duction (Bell et al., 2009; Lam & Watson, 2010; Kahn &
Arnold, 2013). Moreover, we find that other word-level fac-
tors studied in spoken language production, or analogous to
those studied in spoken language production, predict typing
time as well. Thus, efficiency in typed language production
turns out to have similar overall sensitivity to the factors that
influence spoken language production—but the weighting of
these factors is different. Notably, unlike most past work in
spoken production, we estimate in-context predictability with
LSTM language models that have access to the entire (Left
or Right) context (as opposed to bigram estimates as in e.g.
(Bell et al., 2009)). It is not clear how this modeling differ-
ence would affect the difference in sensitivities demonstrated
in typing/spoken language.

There are several limitations of the data presented here,
most of which stem from the fact that data collection on
Typeracer.com was not designed with psycholinguistic
analysis in mind. First, with a self-selected population we
do not have fine grain control over participant demographics.
Furthermore, past work shows that there is a large effect of
motor control that bears on typed production that our word-
level analysis does not address. Looking ahead, the character-
level typing time information available in TypeRacer can pro-
vide a testbed for competing hypotheses for the role of mo-
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tor control in typing. Morpheme and character-level condi-
tional probability can be analyzed with similar methods to
the ones we deploy at the word level and we leave these av-
enues to future work. Additionally, because the text is dis-
played on-screen while participants type, typing time delays
are not fully disentangled from delays due to reading time
(Smith & Levy, 2013). For a full characterisation of typing
behavior, targeted in-lab experiments will likely be a use-
ful supplement to the analysis approach demonstrated here.
Lastly, because languages can have quite variable typing sys-
tems, the interpretations of effects reported here would likely
hold most strongly for language with typing systems most
similar to English (i.e., one character, one keystroke typing
systems). Still, massive, publicly available datasets like the
one examined here permit analysis at a scale far beyond what
is possible in the lab, helping scientists ask qualitatively dif-
ferent questions than those possible with small-scale experi-
mentally collected data (Griffiths, 2015).
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Meinhardt, E., Baković, E., & Bergen, L. (2020, July).
Speakers enhance contextually confusable words. In
Proceedings of the 58th annual meeting of the as-
sociation for computational linguistics (pp. 1991–
2002). Online: Association for Computational Lin-
guistics. Retrieved from https://www.aclweb.org/
anthology/2020.acl-main.180 doi: 10.18653/v1/
2020.acl-main.180

Merity, S., Xiong, C., Bradbury, J., & Socher, R. (2016).
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843.

Momma, S., Slevc, L. R., & Phillips, C. (2016). The timing of
verb selection in japanese sentence production. Journal
of Experimental Psychology: Learning, Memory, and
Cognition, 42(5), 813.

Oldfield, R., & Wingfield, A. (1965). Response latencies
in naming objects. Quarterly Journal of Experimental
Psychology, 17(4), 273–281.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., . . . Chintala, S. (2019). Pytorch: An
imperative style, high-performance deep learning
library. In H. Wallach, H. Larochelle, A. Beygelz-
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