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Abstract: We demonstrate in-fiber polarization-depen-
dent optical filter by nanopatterning an asymmetric
metallic metasurface array on the end-facet of polarization-
maintaining photonic-crystal fibers. The asymmetric cross-
typed nanoslit metasurface arrays are fabricated on the
core of the optical fiber using the focused ion beam milling
technique. Highly polarization- and wavelength-dependent
transmission with transmission efficiency of ~70% in the
telecommunication wavelength was observed by launching
two orthogonal linear-polarization states of light into the
fiber. Full-wave electromagnetic simulations are in good
agreement with the experimental results. These advanced
meta-structured optical fibers can potentially be used as
novel ultracompact in-fiber filters, splitters, and polariza-
tion converters.

Keywords: metasurface; nanostructure; optical fiber;

photonic crystal fiber.

Optical fibers have proven to be an efficient platform for
light guiding with low optical loss, leading to wide range
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of emerging optical applications such as long distance
optical communication [1], fiber lasers [2], in-fiber imag-
ing, sensing, and laser surgery [3—8]. While the dielectric
optical fiber waveguide is very efficient in transmitting
light, its functionality is somewhat limited by the dielec-
tric materials of the core and cladding and their fixed
optical properties (e.g., spectral response) after the fiber
drawing fabrication. In addition, most of the available
optical fiber components are bulky in size, thus limiting
the development of novel compact in-fiber optical de-
vices. Therefore, there is a need to integrate new materials
and nanostructures into fiber components for enhanced
processing and transmission capabilities, novel func-
tionalities, and compactivity.

Metasurfaces, arrays of subwavelength elements in
which each element is configured to control the phase and
amplitude of the transmitted, reflected, and scattered light,
provide unique ways for advanced light manipulation
[9-14]. Because metasurfaces are by nature flat (typical
thickness < 100 nm), conventional three-dimensional op-
tical elements such as lenses or filters could be replaced by
flat and low-profile metasurface versions. Integrating these
metasurface nanostructures on the fiber facet could facil-
itate their interactions with the guided core modes of the
optical fibers, creating opportunities for the development
of novel in-fiber optical applications.

Several initial attempts have been made to fabricate
meta-structures on optical fiber for various advanced
in-fiber applications including plasmonic sensors [15-19],
metalens [20-22], diffraction grating [23], amplifier [24],
beam diffraction element [25], Bessel beam generation
[26], and an efficient fiber coupler [27, 28]. These meta-
structures on optical fibers are fabricated by translating
advanced on-chip nanofabrication techniques such as
electron-beam lithography [19, 29], focused ion beam
milling [20], interference lithography [30], self-assembly
[31], nano-imprinting/nano transfer technologies [32-34],
and two-photon polymerization direct laser writing technique
[21, 22] to the optical fiber platform. In particular, developing
an ultracompact wavelength- and polarization-dependent
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optical fiber metasurface/plasmonic filter and resonant
element is particularly important for optical fiber
imaging, laser, and sensing applications. A few attempts
have been made in this direction, including fabricating a
metallic structure to a polymeric membrane on the facet
of a hollow-core PCF for a nanoplasmonic filter [35].
However, the successful integration of an ultracompact
polarization-dependent metasurface optical filter onto an
optical fiber has not been experimentally reported.

In this work, we experimentally demonstrate ultra-
compact in-fiber polarization-dependent optical filters on
the endface of polarization-maintaining photonic crystal
fibers (PM-PCFs) and conventional single mode optical fi-
bers by fabricating asymmetric cross-typed nanoslit met-
asurface array and integrating them onto the optical fibers’
cores. Strongly polarization-dependent transmissions are
observed at resonances of metasurface which are designed
by the nanostructure’s geometry. The results suggest
that asymmetric metasurface-optical fiber could have ap-
plications as compact in-fiber wavelength-dependent fil-
ters and polarizers for optical fiber imaging and sensing
applications.

The metasurface-optical fiber filter consists of periodic
negative cross-typed metallic nanostructures with orthog-
onal slits (Figure 1). A thin layer of gold with thickness of

cladding holes

Au-coated

" Metasurface

unit cell
Ly
Au L,

Nanostructured ™\
SMF

.~ Nanostructured
PM-PCF

Figure 1: Schematics of the metasurface optical fiber color filters.
(Left) Polarization-maintaining photonic crystal fibers (PM-PCFs)
nanostructures covering the core region. (Right) Single mode optical
fibers (SMF) with nanostructures on the core region, (Inset) Unit
element of asymmetric metasurface.

I. Ghimire et al.: Polarization-dependent PCF metasurface optical filters

DE GRUYTER

~118 nm was deposited on the endface of the optical fiber
using magnetron sputtering technique. A customized fiber
holder with multiple v-grooves was used to hold and align
the optical fibers vertically to ensure that the fiber endfaces
were coated with gold uniformly during the sputtering
process. These periodic cross-typed metallic slits were then
fabricated using the focused ion beam (FIB) milling tech-
nique with an accelerated voltage of 30 kV and ion current
of 1.5 pA. To avoid the charging effect from the silica
glass, silver paste and conducting tape were used to con-
nect between the gold and metallic fiber holder. Two types
of optical fibers, conventional single mode fiber and
PM-PCFs, were used for fabrication and comparison of the
optical response. The PM-PCF used in the experiments
consisted of a two-dimensional array of hollow channels
running along the entire length of a glass strand with two
large circular holes located near the core, thus providing
strong birefringence for maintaining the polarization state
of the light to interact with the metasurfaces. To fabricate
the asymmetric structures on the PM-PCF, special care was
taken such that the orthogonal nanoslits were aligned with
the slow and fast axes of the fiber during the FIB fabrica-
tion. During the fabrication, we aligned the outer circle of
the optical fiber using the FIB fabrication program to
identify the center of the optical fiber. Based on the center
of the optical fiber, we pattern the metasurface structures
with precise coordinates with respect to the origin of
the fiber. The holey structures in the PM-PCF helped the
alignment during the FIB milling. Test patterns were first
fabricated in the cladding region to ensure optimal
focusing of the ion beam before the actual patterning to the
core. Both symmetric and asymmetric metallic nanoslits
were fabricated for studying the polarization-dependent
transmission properties.

Light coupling to these metallic nanoslits excited
plasmonic resonance modes and re-emitted through the
transmission, leading to a wavelength-dependent trans-
mission peak. The transmission properties can be designed
by adjusting the geometric parameters of nanoslit struc-
tures such as slit dimension, array period, and the thickness
of gold film. To find the dependence of the transmission
peak on the geometric parameters, we numerically studied
the optical response of the optical filter using the finite
element method (see Method) and performed parametric
sweeps on the width and length of the nanocross. The gold
layer thickness and periodicity of the array were fixed at 118
and 800 nm. The dependence of transmission with different
widths and lengths of the nanocross are shown in Figure 2.
For fixed horizontal input polarization state, varying the
length of the longer arm of nanocross (L,) does not change
significantly the resonant peak and transmission (width (w)
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Figure 2: Map of transmission spectra with geometric parameters of nanoslit structures.
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length of both arms of nanocross (L; and L) (width is fixed at 180 nm). Dependance of transmission peak for varying (d) width of longer arm of
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final designed structure of unit nanocross for asymmetric metasurfaces.
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Figure 3: Scanning electron microscopic images of optical fiber metasurface optical filter.
SEM images of (a) PM-PCFs with symmetric and asymmetric nanocross metasurfaces fabricated in the rectangular core and (b) conventional
single mode fiber with asymmetric nanocross metasurfaces fabricated in the circular core.

and length of shorter arm (L,) are fixed with 180 and
480 nm) (Figure 2a). In contrast, the transmission peak

redshifts linearly as the length of the shorter arm (L,)
(or both L, and L;) increases (Figure 2b and c). Also, the
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Figure 4: Transmission spectra for PM-PCF metasurface optical filter.
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(@) Schematic of experimental measurement setup. (b) Simulated and (c) measured transmission spectra for x- and y-polarization states for
PM-PCF with symmetric nanocross metasurfaces. Symmetric nanocross array has unit element wide of 176 nm and length of the slit of 490 nm.
(d) Simulated and (e) measured transmission spectra for x- and y-polarization states for PM-PCF with asymmetric nanocross metasurfaces.
Asymmetric nanocross consists of unit element with wide of 182 nm and length of slit of 510 and 419 nm.

bandwidth and the strength of the resonant peak increase
as the length of the shorter arm increases. In addition,
transmission is less depended on the width of the nano-
cross as shown in Figure 2d—f (lengths of longer arm and
shorter arm are fixed at 580 and 480 nm, respectively).
Since the plasmonic resonance condition is directly related
to the width and lengths of the nanocross array, by carefully
selecting the geometric factors of the nanocross array, a
desired transmission peak position and efficiency can be

achieved. Based on these geometric simulations, the final
designed structure with a unit nanocross was optimized
with a width of 180 nm and the length of the horizontal and
vertical arms being 580 and 480 nm long, respectively, such
that the transmission peak exhibited high efficiency (~70%)
and was located in the telecommunication band (as indi-
cated with rhombus symbol in Figure 2a, b and f).

The scanning electron microscope (SEM) images of the
fabricated structures are depicted in Figure 3. The symmetric
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(@) Simulated and (b) measured transmission spectra for x- and y-polarization states for SMF with asymmetric nanocross metasurfaces.
Asymmetric nanocross consists of unit element with wide of 193 nm and length of slit of 577 and 465 nm.

nanocross array (unit element width of 176 nm, length of slit
of 490 nm) and asymmetric nanocross (unit element width
of 182 nm, length of arms of 510 and 419 nm) are fabricated
on the core of the PM-PCF with approximately rectangular
core dimensions of ~4.5 x 5.7 pm* (Figure 3a). An asym-
metric nanocross (unit element width of 193 nm, length of
arm of 577 and 465 nm) are also fabricated on the core of the
conventional single mode fiber with a core diameter of 8 um
(Figure 3b).

A schematic of the setup used for optical measure-
ments is shown in Figure 4a. Light from a supercontinuum
laser source (Fianium, 4W) was launched into the fiber
sample (total length ~ 13 cm), taking care to match the
numerical aperture and spot size to that of the fundamental
core mode. A polarizer and half-wave plate were inserted
between the light source and the sample, providing a
defined input polarization state. Light transmitted in the
output end with metasurface was collected by coupling
into multimode fiber to the optical spectrum analyzer. The
measured spectrum was compared to that of an unpat-
terned fiber under the same launching conditions, thus
revealing the effect of the metasurface.

To examine the effect of the metasurface, we measured
the transmission spectra for x- and y-polarizations for
the PM-PCF with the symmetric nanocross metasurface.
The results are shown in Figure 4c. The length of each
perpendicular slit is 490 nm, and the width of each slit is
176 nm. Two orthogonally-polarized beams of light along
the slow or fast axis of the PM-PCF were launched into
the fiber. A clear transmission resonant peak was observed
at the wavelength of ~1460 nm for both horizontal and

vertical polarization states with transmission efficiency
of ~70%. Full-wave electromagnetic simulation was per-
formed with the same fabricated metasurface geometry,
and the results are shown in Figure 4b. Good agreement
was obtained comparing the simulations and the experi-
mental measurements on both the resonant wavelength
and the transmission efficiency.

Next, we explored the polarization dependence of the
PM-PCF with an asymmetric nanocross metasurface with a
unit slit length of 510 nm and width of 419 nm (Figure 3a,
right). The metasurface structures are precisely aligned so
that the longer arm of the nanocross is along the slow axis
of the PM-PCF. Since the polarization state of light can be
preserved in the PM-PCF, horizontal or vertical polarization
states of the light are sure to interact with the desired axis
of the nanocross metasurface. As shown in the measure-
ment results in Figure 4e, distinct transmission resonance
peaks located at the wavelengths of 1350 and 1620 nm were
observed for the horizontal and vertical polarization states,
respectively. Numerical simulations were performed, and
the spectral positions of the simulated transmission peaks
(1350 and 1630 nm) closely matched those of the experi-
ments (Figure 4). In x-polarization, the fundamental core
mode of the optical fiber is coupled strongly with the
plasmonic resonance with the short arm of the nanocross,
leading to a shorter resonant wavelength and lower
transmission efficiency compared to the resonant peak in
the y-polarization state. The slight discrepancy between
measurement and simulation might be attributable to the
non-uniformity and non-ideal shape of the fabricated
nanostructures.
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Finally, we investigated the optical filtering properties
in a conventional single mode fiber integrated with an
asymmetric nanocross metasurface array. In this mea-
surement, unpolarized light was launched into the fiber,
and a polarizer was used in the output of the fiber to
selectively collect the x- or y-polarization of the transmitted
light. Similar to the case in meta-structured PM-PCF,
transmission peaks can be observed at the wavelength of
1400 nm for x-polarization state and at 1650 nm for y-po-
larization state (Figure 5). The resonance peaks are located
in longer wavelengths than in the case of meta-structured
PM-PCF because of the slightly larger fabricated structures
(Figure 3b). These results indicate that the metasurface
filter can be routinely realized in any conventional optical
fiber and can be used as wavelength selective filter
and polarizer. It should be noted that the polarization-
maintaining PCF used in the experiment can maintain the
polarization state even if the light is propagating for long
length of fiber or external perturbations exist (e.g. bending
of fiber or mechanical vibration); thus meta-structured
PM-PCF filter can potentially be used for optical fiber sys-
tem that requires precise polarization control.

1 Conclusions

We experimentally demonstrated a polarization-dependent
in-fiber optical filter with an ultrathin asymmetric metasur-
face patterned on the fiber end-facet by the focused ion beam
milling technique. Highly polarization- and wavelength-
dependent transmission with a transmission efficiency ~70%
in the telecommunication wavelength were observed by
launching light into two orthogonal linear polarization states
of the fiber. The operation wavelength of the metasurface
filter could be widely controlled by nano-engineering the
metasurface’s geometry. This work provides a new paradigm
for developing nanoscale in-fiber devices such as in-fiber
polarization- and wavelength-dependent filters, polarizers,
and metalens for emerging optical fiber imaging and sensing
applications.

2 Methods

2.1 Numerical simulation

Simulation of the nanostructures on the fiber was carried out using a
full-wave simulation of finite domain time difference (FDTD) software
from Lumerical Solutions, Inc. For the simulation, full-wave simula-
tion of unit element was carried out with periodic boundary conditions
along the x- and y-boundaries with mesh size of 1 nm. Full-wave

I. Ghimire et al.: Polarization-dependent PCF metasurface optical filters
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simulation of whole structure on the fiber was carried out with PML
boundary condition with mesh size of 2 nm. The polarization-
maintaining photonic crystal fiber PM-PCF used was pure silica
glass (Thorlabs, PM-1550-01). The PM-PCF consisted of two special
holes which were distinguished from all other holes and which
reduced the six-fold symmetry to a two-fold one. The presence of two
large holes adjacent to the core introduces birefringence in the fiber,
leading to a phase index difference between the x- and y-states. The
diameters of the large and small holes are 4.4 and 2.5 pm, respectively.
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