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Journal Name

Alloying ZnS in the hexagonal Phase to Create High-
Performing Transparent Conducting Materials

Alireza Faghaninia,a Kunal Rajesh Bhatt,b and Cynthia S. Lo∗a

Alloyed zinc sulfide (ZnS) has shown promise as a relatively inexpensive and earth-abundant
transparent conducting material (TCM). Though Cu-doped ZnS has been identified as a high-
performing p-type TCM, the corresponding n-doped ZnS has, to date, been challenging to syn-
thesize in a controlled manner; this is because the dopant atoms compete with hole-inducing
zinc vacancies near the conduction band minimum as the most thermodynamically stable intrinsic
point defects. We thus aim to identify the most promising n-type ZnS-based TCM, with the optimal
combination of physical stability, transparency, and electrical conductivity. Using a new method
for calculating the free energy of both the sphalerite (cubic) and wurtzite (hexagonal) phases of
undoped and doped ZnS, we find that doped ZnS is more stable in the hexagonal structure. This,
for the first time, fundamentally explains previous experimental observations of the coexistence of
both phases in doped ZnS; hence, it profoundly impacts future work on sulfide TCMs. We also
employ hybrid density functional theory calculations and a new carrier transport model, AMSET
(ab initio model for mobility and Seebeck coefficient using the Boltzmann transport equation),
to analyze the defect physics and electron mobility of the different cation- (B, Al, Ga, In) and
anion-doped (F, Cl, Br, I) ZnS, in both the cubic and hexagonal phases, at various dopant com-
positions, temperatures, and carrier concentrations. Among all doped ZnS candidates, Al-doped
ZnS (AZS) exhibits the highest dopant solubility, largest electronic band gap, and highest electrical
conductivity of 3830,1905, and 321 S ·cm−1, corresponding to the possible carrier concentrations
of n = 1021,1020, and 1019 cm−3, respectively, at the optimal 6.25% dopant concentration of Al and
the temperature of 300 K.

1 Introduction
Transparent conducting materials (TCMs) are an integral com-
ponent of optoelectronic devices, including thin film solar cells
and LCD displays, and increasing efforts have been devoted to
identifying, synthesizing, and characterizing inexpensive, earth-
abundant, and nontoxic materials for these purposes. Currently,
toxic cadmium-based compounds dominate the window layers in
inorganic thin film photovoltaics, and the small band gap (e.g.,
2.4 eV for CdS) limits the transparency of these materials. There-
fore, there is great interest in searching for alternatives that
can also provide variability in band alignment and energy level
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matching1, which can then be rewarded by improving transmis-
sion characteristics and enhancing the PV efficiency (2). For ex-
ample, n-doped zinc oxide (ZnO), including Al-doped (AZO)3,4,
F-doped5, and Si-doped6, has shown promise for widespread
adoption, as the the highest reported conductivities of ZnO films
are in the range of 5000−7000 S/cm and the highest reported Hall
mobilities are about 60 cm2/V ·s7. Also the carrier concentrations
of AZO samples have been reported to be 1.8×1020−1.0×1021 8,9.
However, defect-driven Fermi level pinning and unintentional n-
type conductivity in ZnO makes p-type doping difficult10. Never-
theless, the possibility of both n- and p-doping of the same mate-
rial would confer a competitive advantage in device fabrication,
much as it does for silicon. Therefore, developing a comprehen-
sive understanding of the defect physics of alternative wide-gap
semiconductors is crucial for TCM design.

Even though zinc sulfide (ZnS) has a similar electronic struc-
ture to, but with a higher band gap than, ZnO, it has only re-
cently been identified as a potential host for dopant atoms to in-
crease conductivity. The use of sulfur over oxygen reduces the
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problems associated with the localized character of the ZnO va-
lence band, which is formed by O 2p orbitals11; instead, the
incorporation of sulfur could delocalize the valence band mini-
mum (VBM), lower the VBM effective mass, and potentially in-
crease the hole mobility. Indeed, several such materials have re-
cently been synthesized and characterized. Cu-doped ZnS has
also shown promising characteristics, as it was recently shown
to exhibit the best reported hole conductivity and optical trans-
parency for a room temperature-deposited p-type TCM12,13; pair-
ing this with n-doped ZnS may result in many promising device
applications for photovoltaics, optoelectronics and transparent
devices14. Traverse et al.2 enhanced the efficiency of thin film or-
ganic solar cells by introducing ZnS co-deposited with Al2S3; they
reported that the wide band gap hexagonal zinc sulfide (ZnS)
(Eg = 3.7 eV) can be a good alternative to conventional materials
as the anodic buffer layer in OPVs and IGS-based PVs, as it can
be thermally deposited in a vacuum environment. Using chem-
ical bath deposition (CBD), Long et al.15, grew ZnS doped with
0−4% In. Jrad et al.16, Liao et al.17 and Nagamani et al.18 have
all grown 0-10% Al-doped ZnS (AZS). Relatively high values of
electrical resistivity – on the orders of 103−5 Ω ·cm – are reported
in these studies for AZS. However, Prathap et al.19 reported that
polycrystalline AZS samples grown by a chemical precipitation
method exhibit resistivities as low as 24 Ω · cm at the optimal 6%
concentration of Al.

To better understand and control the properties of doped ZnS,
we take a closer look at the possible phases and potential struc-
tural transformations upon doping. Previous studies15–19 have
largely focused on the cubic polymorph of ZnS, although there
are differences in the XRD patterns of their samples. However,
a few researchers considered the hexagonal polymorph as well.
Hichou et al.20 observed a polycrystalline mixture of both cu-
bic (β) and hexagonal (α) phases in their samples, as grown by
spray pyrolysis techniques. Heiba et al.21 reported coexistence
of the cubic and hexagonal phases in doped ZnS. Deepa et al.22

reported hexagonal undoped ZnS and hexagonal Co-doped ZnS
prepared via chemical bath deposition, with varying crystallinity
as a function of dopant concentration. Nevertheless, the lack of
discussion on the fundamental and compelling reasons for the
phase shift undergone by doped ZnS motivates us to probe the
electronic structure of these materials.

In this study, we employ density functional theory (DFT) and
AMSET (ab initio model for calculation of Mobility and SEebeck
coefficient using Boltzmann Transport equation)23 to analyze the
defect physics and screening of different cation and anion alloyed
ZnS as candidates for n-type TCMs. Our hypothesis is that there
exists an ideal composition of alloyed ZnS, which results in opti-
mal transparent conducting behavior, as outlined above. We use
DFT and phonon calculations to calculate the defect formation
energy and the phase stability of ZnS alloyed with B, Al, Ga, In,
F, Cl, Br and I, and propose Al as the most promising candidate.
Also, using ab inbitio thermodynamic calculations, we show that
the hexagonal phase (wurtzite) of ZnS is more thermodynami-
cally favorable, compared to the cubic (sphalerite) phase, upon
doping over a wide temperature range. Finally, we calculate the
theoretical limits for electrical conductivity of single crystalline

AZS at different carrier concentrations and temperatures. The
aim is that the integration of density functional theory calcula-
tions, ab initio thermodynamics, and electronic transport models
can be leveraged to search for high-performing, yet inexpensive,
transparent conductors that may one day become the commercial
standard.

2 Methods

In order to calculate the electrical drift mobility, we use AMSET23,
which explicitly solves the Boltzmann transport equation (BTE)
using Rode’s iterative method24 to obtain the electron distribu-
tion in response to a small electric field. We do not use either
the variable or constant relaxation time approximation (RTA) in
solving the BTE. This enables us to account both for elastic and
inelastic scattering mechanisms, such as ionized impurity and po-
lar optical phonon, respectively. Therefore, the prediction of the
change in electrical conductivity with temperature or carrier con-
centration is quite accurate23. The general form of the electron
distribution remains the equilibrium Fermi-Dirac distribution in
response to a small electric field. We can then write:

f (ε) = f0 (ε)+g(ε) (1)

where f is the actual distribution of the electrons including both
elastic and inelastic scattering mechanisms, f0 is the equilibrium
Fermi-Dirac distribution, and g(ε) is the perturbation to the dis-
tribution caused by the small driving force. After calculating g,
the mobility can be calculated by integrating the perturbation,
the electronic density of state, DS and group velocity of electrons,
v, over energy (Equation 2):

µ =
1

3E

∫
v(ε)DS (ε)g(ε)dε∫

DS (ε) f (ε)dε
(2)

The details of this methodology, as well as its validation with ex-
perimental data on GaAs and InN, can be found elsewhere23.

For each composition of ZnS alloyed with B, Al, Ga, In, F,
Cl, Br and I, the geometry of the unit cell is optimized, and
the density of states, total energy and band structure are cal-
culated. We use Kohn-Sham density functional theory (KS-
DFT)25,26, as implemented in the Vienna ab initio Simulation
Package (VASP)27–30. The generalized gradient approximation of
Perdew, Burke, and Ernzerhof (GGA-PBE)31 is used to express the
exchange-correlation potential, and Projector Augmented Wave
(PAW) potentials32,33 are used to represent the valence wave-
functions. The initial structures are obtained from the ICSD
and Materials Project34,35. Upon geometry optimization, the lat-
tice constant of the cubic phase increases by 0.6%, and hexago-
nal phase increases by 2.4%. We then create a 2× 2× 2 super-
cell, containing 32 zinc and 32 sulfur atoms (Zn32S32 for the
cubic phase and Zn16S16 for the hexagonal phase). We simu-
late alloying by replacing Zn atoms with M in the supercell, or
simply, MnZn32−nS32 (n ∈ {0,1,2,3,4}) for the cubic phase and
MnZn16−nS16 (n ∈ {0,1,2}) for the hexagonal phase; M can be B,
Al, Ga, or In. Similarly for anion doping, S atoms are replaced
with A, where A can be F, Cl, Br or I. Since Zn only has one
occupation site in the cubic cell and two in the hexagonal cell,
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it does not matter which of the Zn atoms are replaced with the
dopant atom. We confirmed this by examining all 32 Zn sites
for the cubic supercell and all 16 Zn sites for the hexagonal su-
percell, when replaced by an Al site. The maximum difference
in the energy of all the configurations was 4.8× 10−9 eV/atom
and 2.2× 10−6 eV/atom, respectively, for cubic and hexagonal
phases. Therefore, only the atom at the center resulting in the
energy minimum is replaced by different dopant atoms to gener-
ate the defect formation energy plots. For higher concentrations
of dopants, particularly for Al for which mobility calculations are
also performed, we examined all 31 of the possible sites for the
second Al dopant and performed geometry optimizations on these
configurations. This is necessary because the symmetry is broken
upon introduction of the first dopant. We then selected the system
with the minimum energy representing 3.125% doping for the cu-
bic cell and 6.25% doping for the hexagonal cell. The difference
between the maximum and minimum energy of these configura-
tions is 0.003 eV/atom for the cubic cell and 0.01 eV/atom for the
hexagonal cell.

The energy cutoff for the plane wave basis set is set to 520 eV.
We choose a k-point mesh of 4×4×4 for DOS calculations, since
the supercell is sufficiently large that increasing the k-point mesh
to 6×6×6 results in less than 0.01 eV difference in the total en-
ergy. The non-self consistent energy calculations are performed
in a special k-point mesh around the Γ point, at which the CBM
occurs in the direct band gap ZnS and all the alloyed ZnS com-
pounds. This k-point mesh contains a total of 992 k-points (for
unit cell GW calculations) and 391 k-points (for supercell DFT cal-
culations) in the Irreducible Brillouin Zone (IBZ), with adaptive
mesh spacing, to completely account for band anisotropy while
remaining dense enough around the Γ point to obtain accurate
group velocity and effective mass values.

In order to calculate the group velocities, v(k), and the over-
all average effective mass, m∗, we fit high-order polynomials to
the calculated conduction band around the CBM, with R2 > 0.99.
After polynomials are carefully fitted to the conduction band cal-
culated ab initio, v(k) and m∗ are calculated using Equations 3
and 4, respectively:

v(k) =
1
h̄

∂ε

∂k
(3)

m∗ =

(
1
h̄2

∂ 2ε

∂k2

)−1
∣∣∣∣∣
at k=0

(4)

It should be noted that we calculate m∗ only to determine its
changes with composition together with changes in overall elec-
trical mobility. Therefore, careful and accurate calculation of the
value of the effective mass itself is not the main goal of this study,
as it does not appear in the full band formulation of AMSET. All
phonon calculations are performed using the Phonopy code36.
The list of parameters that have been used in AMSET for mobility
calculations are provided in Table 1. We assume constant de-
formation potential, dielectric, elastic and piezoelectric constants
for all systems, since mobility is less sensitive to these parame-
ters than the band structure, density of states and optical phonon
frequencies23. While we used the experimental values24 for the

Table 1 Inputs to AMSET, as calculated ab initio and/or measured
experimentally. The bolded numbers are used in the present
calculations.

Parameter ab initio Experimental24

PO phonon frequency, ωpo (THz) 9.5±0.2 10.6
Low-frequency dielectric constant, ε0 — 8.32
High-frequency dielectric constant, ε∞ — 5.13
Deformation potential, ED (eV) — 4.9

dielectric constants, they could, in principle, be calculated ab ini-
tio using DFPT. One value for PO-phonon frequency is reported
in Table 1, along with the range in calculated values, as obtained
using DFT for undoped ZnS. The larger dopant atoms reduce the
frequency down to 9.3 THz (e.g., by I) while the smaller ones
increase the frequency up to 9.7 THz (e.g., by B).

In order to calculate the formation energy of the defects, we
use Equation 5:

∆H f (D,q) = Etot(D,q)−Etot(I,0)−∑
i

∆ni(Ei +∆µi)+qEF (5)

where Etot(D,q) and Etot(I,0) are the total energies of the defec-
tive (e.g. Zn31S32 for simulating a zinc vacancy) and ideal su-
percell (i.e. Zn32S32), respectively, as calculated using the HSE
hybrid functional. Ei is the energy of bulk element i and ∆ni is the
change in its numbers, q is the charge state of the defect, EF is the
value of the Fermi level (i.e., the sum of valence band maximum
and relative Fermi level), and the chemical potential, ∆µi, is de-
termined by the growth conditions. Many possible intermediate
phases can be formed by the dopants together with either Zn or S
atoms. We assume that the dopants are present in their elemental
form (i.e., no secondary phases form). Therefore, as an exam-
ple, under Zn-rich conditions, the chemical potential of Zn is as-
sumed to be 0, while that of S is ∆µS = ∆H f ,ZnS =−1.63 eV; also,
∆µAl = 0. However, under S-rich conditions, ∆µZn = ∆H f ,ZnS =

−1.63 eV and ∆µS = 0, but the chemical potential of Al should
be equal or lower than formation of the most stable intermedi-
ate phase; therefore, ∆µAl =

1
2 ×∆H f ,Al2S3

=−2.75 eV. Similarly,
we have determined the chemical potential of B, Ga, In, F, Cl, Br
and I considering the following phases: BS2, B2S3, B12S, Al2S3,
GaS, Ga2S3, InS, In5S4, In2S3, In6S7, In3S4, ZnF2, ZnCl2, ZnBr2,
and ZnI2. The data for the energy of these phases have been
extracted from Materials Project34,35 via an in-house automated
Python code which uses pymatgen37. The energy correction of
Makov and Payne38 is also used to minimize the effect of charge
self interaction under periodic boundary conditions. More de-
tails on the methodology for defect formation energy calculations
are available elsewhere39. We use these calculations to quickly
screen many defects at different charge states to identify the com-
peting and relevant defects and dopants. Furthermore, we per-
form a more extensive ab initio thermodynamic calculations in
the framework used by Jackson and Walsh40. We calculate the
vibrational contribution to the entropy (Gibbs free energy) of al-
loyed ZnS at relevant temperatures (i.e., room temperature and
higher). The zero temperature contribution to the Gibbs energy is
calculated using DFT and the GGA-PBE functional, and the non-
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zero temperature contribution is calculated via Phonopy36. Our
calculations of the phonon band structure and density of states
agree well with the literature41. These calculations are crucial for
identifying the thermodynamically most favorable phases of ZnS,
before and after doping, at physically relevant temperatures. The
details of the calculations are also available elsewhere42.

3 Results and Discussion

3.1 Thermodynamic Stabilities

First, to calculate the stability of the dopant candidates, we cal-
culated the enthalpy of formation of intrinsic defects, such as the
zinc vacancy, V Zn and sulfur vacancy, V Zn. Furthermore, the ex-
trinsic cation dopants – B, Al, Ga, In – and anion dopants – F,
Cl, Br, I – all with possible charge states of q ∈ {−2,−1,0,1,2},
were considered. At each Fermi level, the most favorable charge
state for each defect is plotted in Figure 1 under Zn-rich and S-
rich conditions for both cubic and hexagonal phases. According
to these calculations, the aluminum dopant is the only one that
forms a stable compound at Fermi levels close to the CBM, un-
der Zn-rich conditions, in both phases. Otherwise, for all other
dopants, the compounds formed are less favorable than the for-
mation of V Zn

−2, which is the strong driver of p-type behavior
due to Fermi level pinning; this makes it difficult to push the
Fermi level closer to the CBM (i.e. n-type doping)39,43. This is
also consistent with the hybrid functional calculations of Varley
and Lordi1 for the cubic phase of ZnS. This effect is much less
significant in buffer layers, such as CdS — making it easier to n-
dope such materials17. The calculated formation energy values of
V Zn

−2 defects, when the Fermi level is at the CBM, are 0.107 eV
in the cubic and −0.247 eV in the hexagonal phase — both of
which are the lowest among the defects considered here. How-
ever, there is an uncertainty associated with the levels at which
AlZn and V Zn cross, as the calculated band gap with the HSE hy-
brid functional is 3.24 eV (3.29 eV), compared to the experimen-
tal value of 3.54 eV (3.91 eV) for the cubic (hexagonal) phases,
respectively. It is recommended to have the growth environment
as rich as possible in Zn, to reduce the possibility of the formation
of zinc vacancies. Then, the formation of AlZn sites will result
in an n-type semiconductor with high carrier concentration and
electrical conductivity.

On the other hand, under S-rich conditions, FS forms more fa-
vorably compared to other anion dopants. However, it is only
more favorable than the hole inducer, V Zn

−2, deep inside the
band gap, which results in low carrier concentrations. Therefore,
considering only the stability analysis, Al is the most promising
candidate.

Our ab initio thermodynamic calculations for ZnS alloyed with
Al (shown in Figure 2) and other dopants at different concentra-
tions show that once alloyed, the hexagonal phase is more ther-
modynamically favorable than the cubic phase, even at room tem-
perature. The preference for the hexagonal phase has previously
been reported for Co-doped ZnS22. It is also expected that, upon
doping, a mixture of the two phases forms20, which may be the
main reason for the lower-than-expected conductivity measured
for polycrystalline samples15–18. This phenomenon can be ex-

Table 2 Change in the lattice constant |a| of cubic and hexagonal ZnS,
upon alloying with Al at different dopant concentrations. Incorporation of
Al increases the ZnS lattice constant at all dopant compositions.

x in AlxZn1−xS (%): 3.125 6.25 9.375 12.5
Cubic (%) 0.27 0.63 0.97 1.26
Hexagonal (%) - 1.01 - 1.20

plained with the calculations presented in Figure 2, which show
the transition between cubic and hexagonal phases between 600-
800 K. We also present in Supplementary Information, a compar-
ison between Al:ZnS and Al:ZnO, where we show why Al is more
easily integrated in the ZnO lattice compared to ZnS – the lack
of two-phase complexity in ZnO and forming short/strong/ionic
bonds between Al and O in AZO. Nevertheless, AZS is still a viable
TCM, particularly if efforts are made to preferentially synthesize
the hexagonal phase at lower temperatures.

Finally, the incorporation of Al in the ZnS lattice, whether cubic
or hexagonal, results in an increases in the lattice constants. This
is evident upon ab initio geometry optimization of AZS at differ-
ent dopant concentrations, as presented in Table 2. The hexag-
onal phase tends to expand more at lower concentrations of Al,
but ultimately is limited to a net 1.25% increase in the lattice con-
stant.

3.2 Electronic properties
Candidate TCMs must also possess good optical transparency and
electrical conductivity. To qualitatively assess these properties,
we first calculate the band gap and effective mass of ZnS alloyed
with various elements, and summarize the results in Table 3. As
shown, most of the alloying elements, regardless of whether they
are cations or anions, increase the electron effective mass of ZnS,
particularly at high dopant concentrations. Of these, ZnS1−xFx at
3.125%, and BxZn1−xS, ZnS1−xClx, and ZnS1−xBrx at 9.375% dop-
ing, show a significant increase in their effective masses, which
is detrimental to the conductivity. The effect of dopants on ef-
fective mass can be attributed to the hybridization of the dopant
s-orbital with the Zn-s and S-s orbitals at the CBM. This can also
be seen in the density of states (DOS) plots available in Sup-
plementary Information. The DOS plot also shows that Al does
not introduce mid-gap states, which can be highly detrimental
to the optical absorption. It should be noted that here we sim-
ulate substitutional doping17,43,44. To evaluate the dependence
of the calculated effective mass on the doping site, we calculated
this property for all 16 Zn sites in 6.25% Al-doped hexagonal ZnS
(i.e., AlZn15S16), and we obtained an average effective mass of
0.175449±0.0000124. The small deviation shows that calculating
the effective mass at the selected sites can be a good represen-
tation of substitutional doping at the corresponding doping per-
centage. On the other hand, Table 3 shows that alloying ZnS with
Al gives the smallest reduction in the band gap with no mid-gap
states present, even at high concentrations, which may preserve
the optical transparency of the host material. Even at the high
dopant concentration of 12.5%, the calculated band gap for AZS
is 2.92 eV, which is only 0.32 eV lower than the calculated value
for undoped ZnS. For comparison, Cl doping of 9.375% into the
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Fig. 1 Formation energy of defects in cubic ((a) and (b)) and hexagonal ((c) and (d)) phases of ZnS. At each Fermi level, the most favorable charge
state is plotted. The slope of the lines is equal to the charge of the defect (e.g., +1 for AlZn

+). The Fermi level (abscissa) ranges from 0 at the VBM, up
to the calculated band gap (from the HSE hybrid functional) of 3.24 eV (3.29 eV) for the cubic (hexagonal)

ZnS.
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Fig. 2 ab initio thermodynamic calculations for both cubic and
hexagonal ZnS alloyed with Al with different concentrations. The
hexagonal phase is more favorable than the cubic phase for doped ZnS.
The Gibbs energy (ordinate) includes the zero temperature
contributions, which are calculated using DFT, and the vibrational
entropy, which is calculated using DPFT and the Phonopy code.

ZnS lattice results in a 1.16 eV reduction in the band gap. Thus,
AZS is likely to remain transparent even as its conductivity im-
proves over undoped ZnS.

As reported in Table 3, the band gap of ZnS slightly decreases
upon introduction of dopants. However, the question is whether
the increase in electron concentration overcomes both the in-
crease in effective mass (and concomitant decrease in mobil-
ity) to yield a net increase in conductivity, and the reduction
in band gap that decreases the optical transparency. AMSET is
thus used to calculate the electronic transport properties at rele-
vant temperatures. Since the unit cell of ZnS is relatively small,
we also perform GW band structure calculations to obtain the
correct band shape; this results in a calculated effective mass
closer to experimental measurements (see Table 3). We present
here the AMSET calculations for the hexagonal phase of AZS.
The calculated mobilities of ZnS at electron concentrations of
n∈
{

1014,1018,1019,1020,1021} cm−3, over the temperature range
of 50−600 K, are shown in Figure 3a. These concentrations were
chosen to best match the experimentally-available conductivity
data at n = 1.0× 1014 cm−3 46. Furthermore, higher concentra-
tions are also considered for higher dopant concentrations or
higher ionization. We acknowledge that the Al dopant concen-
tration and the carrier concentrations are not independent; how-
ever, as the band structures of Al-doped systems are very similar,
we do consider different hypothetical carrier concentrations for
a selected Al dopant concentration, in order to show the behav-
ior of AZS at different dopant concentrations. Carrier concen-
trations of 8.8× 1018 − 1.1× 1021 cm−3 have been reported for
doped ZnS15, and AZS is even more likely to achieve the high-

Journal Name, [year], [vol.], 1–8 | 5



Table 3 Calculated band gap and effective mass of undoped ZnS and
that alloyed with B, Al, Ga, In, F, Cl, Br and I. The effective mass of the
alloyed systems has is calculated using the PBE functional only, while
the band gap is calculated using the HSE hybrid functional and
compared to the 3.24 eV value calculated for undoped ZnS.

Effective mass Band gap (eV)
ZnS (exp.45) 0.31 3.80
Cubic ZnS (GW) 0.25 3.69
Cubic ZnS (DFT) 0.171 2.02
Hexagonal 0.173 2.07
MxZn1−xS 3.125 % 9.375 % 3.125 % 9.375 %
B 0.165 0.310 3.09 2.03
Al 0.171 0.203 3.11 2.46
Ga 0.173 0.229 2.91 1.90
In 0.171 0.191 2.85 1.98
ZnS1−xAx 3.125 % 9.375 % 3.125 % 9.375 %
F 0.184 0.216 2.75 2.60
Cl 0.167 0.353 3.07 2.08
Br 0.164 0.292 3.06 1.64
I 0.163 0.240 3.04 1.77
AlxZn1−xS 6.25 % 12.5 % 6.25 % 12.5 %
Cubic 0.167 0.173 3.04 2.92
Hexagonal 0.176 0.178 3.09 2.92

est carrier concetnration because Al is, as shown in Figure 1,
marginally more energetically favorable than other dopant candi-
dates. It should be noted that at very high carrier concentrations
the reflectivity of the material can be detrimental to its optical
properties47. However, the calculated electrical conductivity of
AZS is still high, even at relatively lower carrier concentrations
of n = 1019 and 1020. As shown in Figure 3a, the decrease in the
mobility due to the increase in carrier concentration (i.e., ion-
ized impurity scattering) asymptotes as the electron concentra-
tion reaches 1.0× 1020 cm−3. After that, ionized impurities are
the main limiting scattering mechanism at all temperatures, and
the mobility monotonically decreases with increasing concentra-
tions. At n = 1.0× 1021 cm−3, the mobility is almost constant at
all temperatures, with no scattering contribution from polar op-
tical phonons. The effect of each scattering mechanism on the
overall mobility can be seen in Figure 3b at n = 1.0× 1018 cm−3,
where ionized impurities are the limiting scattering mechanism
at low temperatures, and polar optical phonons are the limiting
scattering mechanism at higher temperatures.

The calculated mobility by AMSET is sensitive to the calculated
band shape – particularly closer to the CBM, which dictates the
effective mass. Therefore, we also report the calculated effective
mass in Table 3. However, it should be noted AMSET does not
use the effective mass as a fitting parameter; rather, its results are
merely sensitive to this value. As reported in Table 3, DFT un-
derestimates the band gap and the effective mass. Since we need
large supercells for simulating the process of alloying in ZnS, GW
calculations are very computationally demanding for these large
systems, and thus, only DFT is used for these supercell calcula-
tions.

The increase in effective mass as a result of alloying is in-
evitable, as shown in Table 3. However, aluminum does not sig-
nificantly reduce the band gap, nor does it significantly increase
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Fig. 3 Calculated mobility of 6.25% Al-doped hexagonal ZnS from the
band structure calculated ab initio using DFT. (a) The reduction in the
mobility at higher electron concentrations, n, as caused by ionized
impurity scattering. (b) Importance of different limiting scattering
mechanisms at low temperatures.

the effective mass. Therefore, among the candidates studied here,
aluminum makes an excellent dopant with high solubility, stabil-
ity, and optical transparency (around 75%48); in particular, the
6.25% dopant concentration results in the highest conductivity
and the lowest reduction in the band gap. Therefore, we propose
6.25% as the optimal dopant concentration, which is consistent
with the 6% reported by Prathap et al.19, even though the cubic
phase was studied there (see Table 3; 6.25% Al is also optimal for
the cubic phase). AZS thus exhibits relatively high electrical con-
ductivity even though it is an inexpensive transparent conductor.

The combined effect of the change in the band structure and
carrier concentration is taken into account by calculating the elec-
trical conductivity as σ = nqµ, where q is the charge of an elec-
tron and µ is the mobility. According to Figure 4, the conduc-
tivity can increase up to 6 orders of magnitude by doping ZnS
with 6.25% Al. The increase in conductivity is primarily due to
the increase in the carrier concentration that counteracts the de-
crease in mobility due to ionized impurity doping. For exam-
ple, in 6.25% Al, the 505,000-fold increase in the conductivity
at n = 1021 cm−3, compared to undoped ZnS at n = 1014 cm−3,
is the product of the 10,000,000-fold increase in carrier con-
centration and the 0.0505-fold decrease in mobility caused by
alloying. Meanwhile, the calculated conductivity of 6.25% Al-
doped ZnS at 300 K is 3830 S · cm−1 at n = 1.0× 1021cm−3 and
1905 S · cm−1 at n = 1.0× 1020 cm−3. This is comparable to the
reported conductivity of 1000−5000 S ·cm−1 for AZO synthesized
with n = 0.5− 1.0× 1021 cm−3 49, but much higher than the cor-
responding values of 0.042 S · cm−1 19 and 10−3 S · cm−1 reported
for AZS films48. Again, we believe this discrepancy can be pri-
marily attributed to the presence of the polycrystallinity and the
mixed phases present in the experimentally synthesized samples
discussed here, and secondarily due to the errors in the DFT cal-
culations reflected in the underestimation of the effective mass
and concomitant overestimation of the calculated conductivity at
n= 1014 cm−3 (Figure 4). A more accurate description of the band
structure of alloyed ZnS would enable us to obtain the theoreti-
cal limits for conductivity in single-crystalline AZS. Nevertheless,
the main findings outlined in this work confirm the viability of
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Fig. 4 Conductivity of undoped (black) and hexagonal AZS (6.25% Al)
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aluminum-doped ZnS, at dopant concentrations around 6%, as a
high-performing transparent conducting material.

4 Conclusion
We use hybrid density functional calculations to obtain formation
energies and band gaps of ZnS alloyed with B, Al, Ga, In, F, Cl,
Br and I, and calculate the effective mass and electrical mobil-
ity and conductivity of these compounds at various dopant con-
centrations, temperatures, and carrier concentrations, to identify
potential high-performing n-doped ZnS for transparent conduct-
ing applications. We found that aluminum is soluble in ZnS, and
more significantly, leads to an increase in the electrical conduc-
tivity with minimal reduction in the band gap. Also, our calcula-
tions show that upon doping, the hexagonal phase of ZnS is more
thermodynamically favorable to form than the cubic phase, which
may be significant in guiding further experimental efforts in syn-
thesis and characterization. We believe that AZS is the best candi-
date for an n-type ZnS based transparent conductor, with 6.25%
Al-doped ZnS exhibiting a calculated conductivity of 3830 S ·cm−1

at n= 1.0×1021 cm−3 at 300 K. The methodology outlined should
also be broadly applicable to the design of compound semicon-
ductors for optoelectronic applications.
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