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This dissertation is a collection of three essays on applied microeconomics. The first

essay examines how local control over property tax revenues generated from large plants affects

local jurisdictions’ willingness to host such projects. We first demonstrate that property tax

payments from plant openings lead to significant increases in local school budgets and that this

change is valued by local residents as measured through home prices. We next show that as

local jurisdictions become less able to raise and retain property tax revenue from large plants, the

number of these plants within the jurisdiction falls significantly relative to nearby jurisdictions

that did not experience such a change. These results suggest that increased property tax revenues

are an important benefit of large plants and as a result, policies that affect local control over
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property taxation can have major unintended consequences.

In the second essay, I examine the effectiveness and equity of automatic driver’s license

suspensions for nonpayment of criminal fines, a policy that is in place in more than 40 states and

that affects millions of drivers annually. Using a unique natural experiment in Washington that

first eliminated and then reinstated driver’s license suspensions for traffic offense punishment

noncompliance. I find that mandating suspensions caused large increases in compliance, fine-

repayment, and total punishment with greater effects for lower-income individuals. I further show

suggestive evidence that the policy causes declines in traffic accidents among low-income drivers

suggesting that such laws are an effective, but highly regressive way to improve traffic safety.

In the third essay, I examine the effects of a major environmental litigation initiative,

which led one-third of the US coal-fired power plant fleet to come under a consent decree. I

show that legal settlements arising out of this initiative caused large decreases in plant pollution

emissions, which further led to meaningful improvements in local air quality and decreases in

local cardiovascular and respiratory mortality rates. I conclude by showing suggestive evidence

that in regulated electricity markets average electricity retail price and utility revenues increased

following a settlement suggesting that a large proportion of the overall costs were borne by

ratepayers.
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Chapter 1

Property Taxation as Compensation for

Local Externalities: Evidence from Large

Plants
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1.1 Abstract

The external costs and benefits of large capital-intensive projects such as industrial plants,

ports and pipelines often occur on dramatically different spatial scales. When local jurisdictions

have control over land-use, this spatial mismatch can prevent socially beneficial projects from

moving forward or allow socially harmful projects to be built. In this paper, we explore how

local control of property taxation, one potentially important localized benefit of these projects,

can impact land-use decisions in the context of large plants. We first demonstrate that property

tax payments from plant openings are both economically large and valued by local residents as

measured through changes in home prices. We next show that limiting local jurisdictions’ access

to property taxation affects their exposure to large plants by using a series of school finance

reforms as plausibly exogenous shocks. Following these reforms, we observe significant declines

in large manufacturing establishments and local manufacturing employment per capita both in

absolute and relative terms. These results suggest that increased property tax revenues are an

important local benefit of large externality-producing projects and that policies which affect local

property taxation can have major unintended consequences for non-residential land-use.1

1.2 Introduction

When local jurisdictions have control over land-use, proposed projects must create net

benefits for the host community in order to be approved. However, many projects create external

costs and benefits on vastly different spatial scales. For example, a large manufacturing plant may

simultaneously increase local exposure to pollution and contribute to the global risk of climate

change, while also boosting regional productivity and employment. This dynamic creates the

potential for substantial inefficiencies; communities will refuse to approve projects that decrease

1This paper is co-authored with Rebecca Fraenkel. Data provided by Zillow through the Zillow Transaction and
Assessment Dataset (ZTRAX). More information on accessing the data can be found at http://www.zillow.com/
ztrax. The results and opinions are those of the author and do not reflect the position of the Zillow Group.
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local welfare even if they benefit society as a whole (e.g. a nuclear power plant that powers a

region cleanly, but significantly lowers nearby home values), while approving projects that are

locally beneficial, but socially costly (e.g. a plant with large local employment effects that poisons

the drinking water of down-river jurisdictions). Because local control of land-use is very common

in the United States (Gyourko, Saiz, and Summers, 2008), these types of inefficiencies likely

have significant impacts on overall well-being.

In this paper, we study how local government control over the revenues created from

property taxation impact these types of land-use decisions. Local property tax payments can act

as a transfer from the externality-producing entity to the jurisdictions responsible for land-use.

If local governments spend tax payments efficiently, the payments should enhance the value of

living within jurisdictions that have these types of projects, increasing their likelihood of approval.

Conversely, state and federal policies that constrain the ability of jurisdictions to raise and retain

local property tax revenues should mute this effect with potentially large implications for local

industrial development and environmental quality.

Our goal in this paper is to evaluate this hypothesis empirically. We begin by testing the

extent to which property tax payments from large projects are valued by local homeowners as

measured through changes in home prices. This question is important not only as a necessary

precursor to the second half of our analysis, but also because these benefits have the potential to

change the distribution of groups that gain and lose from the construction of new capital projects;

depending on the income and demographic characteristics of individuals inside and outside of the

taxing jurisdiction, property tax revenues could either significantly dampen or amplify existing

inequities in exposure to the projects’ negative local externalities.

Our specific empirical context is the effect of power plant openings on school districts.

Power plants exemplify the types of projects that create spatially divergent external costs and

benefits,2 while school districts are the majority recipient of property tax dollars and a major

2An additional benefit of power plants from an identification standpoint is that they are relatively free of large
positive local externalities such as agglomeration or employment effects.
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determinant of home prices and locational choice across the United States. We first look at

the effects of these openings on a school district’s tax base, property tax rates, revenues and

expenditures in order to understand the magnitude of the plant’s tax base effect and how this

increase in fiscal capacity is used. We then examine the extent to which these changes are

capitalized into home values.

To estimate the effects of these openings, we use a border difference-in-differences design,

in which we compare outcomes before and after an opening in neighboring districts that did or did

not receive a plant. To address concerns about non-random plant siting we also introduce a third

element of variation: the expected size of the per-student fiscal impact of the new plant, which

we measure by dividing the plant’s estimated construction cost by the total number of students in

a district in the year of construction.3 To test the effect of this new tax base on home values, we

use Zillow ZTRAX home transaction data and the same border difference-in-differences design,

but restrict our sample to only home transactions within a mile of the border between the plant’s

school district and all neighboring districts to ensure that treated and control homes are similarly

exposed to other positive and negative effects of the plant.4

We find that property tax payments from these plants are both economically large and

highly valued by homeowners. On average, an opening increases a host district’s tax base per

student by 10%. This tax base increase leads to both a small decrease in property tax rates and

a larger increase in educational spending concentrated on capital expenditures. We further find

that these changes are valued by local homeowners; home prices increase by 4-5% following a

plant opening on the plant’s side of the border relative to similar homes directly across the district

boundary. These results suggest that property tax payments by large plants act as a substantial

local benefit for homeowners within the plant’s jurisdiction.

We next test the second half of our hypothesis: restricting jurisdictions’ ability to access

3We also show robustness to using nearest-neighbor propensity score matching to identify counterfactual districts
rather than geographic neighbors, and results are very similar.

4Results are robust to a wide range of bandwidths as well as restricting border regions to be greater than 10km
from the plant.
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property tax revenue should reduce their willingness to be exposed to externality-producing plants.

To examine this question empirically, we use a series of state-level school finance reforms over

the past half century that dramatically increased the magnitude of state education transfers tied to

the level of local property wealth and/or imposed strict property tax limitations, both of which

had the effect of reducing the value of tax base increases to local jurisdictions.

To estimate these effects, we employ a geographically-proximate county pair difference-

in-differences design in which we compare counties in states that had a reform to nearby counties

in states that did not have a reform (or whose reform would occur in the future). Because of

data limitations surrounding the timing and location of old power plant openings, we use large

manufacturing establishments and manufacturing employment per capita at the county level as

our primary outcome of interest.

We show that these reforms led to meaningful (10%) declines in large manufacturing

establishments and manufacturing employment per capita in the fifteen years following enactment

both in absolute and relative terms. These findings suggests that reducing the tax benefits from

large plants has a significant negative impact on local industrial development. Results are robust

to a variety of specifications, covariates and weighting schemes and show no evidence of any

pre-trends.

This paper makes several contributions to the existing literature. By providing new

evidence that property tax payments produced by large externality-producing projects are highly

valued by local homeowners, we build on previous work that has estimated other costs and

benefits of large plants including decreased health and human capital among individuals affected

by pollution (Luechinger, 2014; Barrows, Garg, and Jha, 2018; Persico and Venator, 2018), lower

home values near the plant (Davis, 2011; Currie et al., 2015; Gibbons, 2015) and agglomeration

and employment benefits (Greenstone, Hornbeck, and Moretti, 2010). Because these benefits

accrue to many of the same individuals affected by the plant’s negative externalities, they have

the potential to act as partial compensation for these costs, which has significant implications for
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our understanding of income and racial disparities in who is helped and who is harmed by large,

essential infrastructure projects (Boer et al., 1997; Banzhaf, Ma, and Timmins, 2019).5 Finally,

by showing that a shock to inputs (non-residential tax base) of public goods provision leads to

home price increases, we contribute to a broad public finance literature literature focused on the

capitalization of local public goods (Oates, 1969; Black, 1999; Anderson, 2006; Bayer, Ferreira,

and McMillan, 2007; Nguyen-Hoang and Yinger, 2011) as well as providing new evidence

that local politicians use these tax base shocks for the benefit of local homeowners rather than

engaging in capture (Martinez, 2016).

By demonstrating that shifts in local governments’ ability to retain property tax revenue

significantly affect non-residential land-use decisions and industrial development, we build on a

literature examining the development incentives embedded in fiscal decentralization. Previous

theoretical work established the importance of local governmental incentives in encouraging

economic growth (Weingast, 2009), while empirical work focused largely outside the United

States has found support for the idea that local government’s share of local (non-property) taxation

influences local public good provision and economic development (Han and Kung, 2015; Careaga

and Weingast, 2003; Burnes, Neumark, and White, 2011; Zhuravskaya, 2000), but since reforms

are often nationwide and come with large income and political consequences, well-identified

studies of these effects are scarce (Gadenne and Singhal, 2014). Our results build on this work by

presenting novel evidence from a large developed economy that fiscal centralization can have

large impacts on local development. This finding is particularly important because in a federal

system many higher-level policies aimed at other economic and social goals affect local control

over property taxation and our results imply that these policies may have significant unintended

consequences.

Finally, these results contribute to a growing literature on the effects of centralizing and

5Indeed, in this way, the local fiscal benefits they provide are very similar to those created by natural resource
windfalls as shown in Marchand, Weber, et al. (2015), Martinez (2016), Sances and You (2017), and Bartik et al.
(2018).
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equalizing school finance reforms in the United States. These reforms have been shown to

greatly increase low-income students’ long-run educational and earnings prospects (Biasi, 2019;

Miller, 2018; Lafortune, Rothstein, and Schanzenbach, 2018; Jackson, Johnson, and Persico,

2015; Card and Payne, 2002), while also affecting local housing values by diluting the value of

local tax dollars (Hoxby, 2001; Hoxby and Kuziemko, 2004) and changing local property tax

burdens (Lutz, 2015; Ross, 2013). Our paper is the first to show an additional major unintended

consequence of these reforms—by divorcing the size of the local tax base from available revenue

for schools, these reforms affected local non-residential land-use decisions and, in particular, the

development of local industry.

The remainder of this paper proceeds as follows. Section 2 provides background on our

institutional setting. Sections 3 and 4 describe our empirical strategies and main results. Section

5 concludes.

1.3 Background

In this paper, we first investigate the extent to which local property taxation from large

capital projects are valued by local homeowners and then test how limiting this benefit stream

affects jurisdictions’ willingness to be exposed to these projects. To answer these questions, we

undertake a number of separate analyses that rely upon institutional details in plant siting, local

public finance, and state school finance systems. In this section, we provide some necessary

background information in each of these areas to allow the reader to better understand the validity

of the assumptions behind our identification strategies and the plausibility of our observed effects.
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1.3.1 Plant Siting

Power plant siting is a complex process governed by a large web of state and local

regulations.6 Utilities take into account a number of factors when siting including access to

transportation and energy infrastructure, construction costs and environmental concerns (Cirillo

et al., 1977). There is typically a significant trade-off between the low-cost and low-environmental

impact of locating in rural areas and increased electricity transmission costs (Davis, 2011).

Utilities also face significant constraints imposed by local, state and federal governments.

In general, new plants must be permitted by state and local governments. In 22 states, approval

of a specific site does not require approval from the state (although general permits for plant

construction are still necessary). In these states, local bodies (typically municipal and/or county

governments) have the final say over whether or not a plant can locate in their jurisdiction.

Conversely, twenty-eight states have power plant siting boards whose approval is necessary for a

plant to locate at a specific site. These regulations appear to have changed little since the 1970s

(Cirillo et al., 1977; Ferrey, 2016). In sixteen of these twenty-eight states, the siting board is able

to preempt local land-use rules and grant approval to a site over local opposition. In the remaining

twelve states, local land-use approval is a prerequisite for siting board approval (although there

are some avenues for exceptions). However, even in the sixteen states with preemption powers,

local governments are active participants in the permitting decision, and it is unclear in practice

how often the wishes of these local governments are overruled. For non-power plants, there are

no state siting boards and so local bodies have an even larger say in siting decisions.

Local land-use decisions are typically governed by the local city council (in incorporated

areas) or county commissioners (in unincorporated areas). In most states, school districts, the

focus of our empirical study, have no control over local land-use.7 However, in many localities

school districts are nearly coterminous with municipalities. For instance, Fischel (2010) finds that

6The discussion in this section owes a large debt to Ferrey (2016).
7The exception is in New England and in some states in the Mid-Atlantic where schools are run directly by

municipalities/the county.
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two-thirds of medium-to-large cities in the United States have substantial overlap with a single

school district suggesting that municipal or county leaders will internalize any fiscal benefits to

the school district. This overlap is likely even larger in rural areas. Further, even if a district is

not coterminous with a local zoning jurisdiction, if the harms of a prospective plant within the

home municipality/county are concentrated among individuals within the same school district,

we would again expect the relevant municipal leaders to internalize their preferences.

1.3.2 Local Taxation of Plants

In almost all states, power plants are required to pay local property taxes. In the majority

of states, power plants are assessed by a state body tasked with valuing public utility property, but

pay property taxes locally.8 In a smaller number of states, utility property is both assessed and

taxed locally. With few exceptions (i.e. wind power in Kansas), all privately-owned utilities pay

local property tax. Taxation of publicly-owned utilities is more complex. Most major publicly-

owned utilities including the Tennessee Valley Authority and plants owned by Nebraska’s public

power districts make payments in-leiu of taxes (PILOT) to local areas. The amount of these

PILOTs are typically set by statute and apportioned based on the fraction of a utility’s property in

a given jurisdiction. Non-power plants are almost always assessed and taxed locally.

Anecdotally, large industrial plants and other projects are recognized to be major con-

tributors to local budgets. In communities nearby plants, local newspapers frequently remark on

the magnitude of local power plant tax payments and discuss possible downward reassessments

as being disastrous for local communities (Samilton, 2018; Williams, 2018).9 Public schools

receive the majority of property tax revenue and about 40% of state and local education funding

on average comes from property taxes. Additionally, local property taxes are often the only source

8This can happen either directly or indirectly with the state paying each jurisdiction its share of the total payment
based on the proportion of utility property located in its jurisdiction.

9Similarly, a large threatened downward reassessment of pipelines in Northern Minnesota was reported as being
potentially disastrous for local municipalities and schools.
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of funding over which school districts have direct control (Oates and Fischel, 2016).

In Figure A.1 we show the importance of utility and industrial property to the tax bases of

districts with plants. The top panel shows the share of total valuation made up by utility property

by district generation capacity (100 MW bins) in eight states with local utility valuation data.10

Among districts with no generating capacity, utility property typically makes up 5% of the total

tax base (from infrastructure such as transmission lines and pipelines). However, this proportion

rises quickly as generation capacity increases; in districts with 1,000 MW of generating capacity,

utilities make up 15% of the local tax base and in districts with 2,500 MW capacity they make up

over 30% of the tax base.

In the bottom panel of Figure A.1, we perform similar analysis for industrial plants. The

more large polluting plants in a school district (a proxy for exposure to industry), the larger the

share of industry as a proportion of total taxable value (bottom panel of Figure A.1).11 In both of

these cases because increases are driven by only a small number of plants, it suggests that these

facilities are major contributors to the local tax base.

Property taxes are typically charged as a proportion of the assessed value of local proper-

ties. The value of a property upon which taxes may be levied is commonly known as the taxable

value and is often some state-set proportion of market value (“assessment-ratio”).12 In some

states, utility and industrial property have a different assessment ratio than other types of property

leading to a higher or lower effective tax rate. In most states it would be difficult to increase rates

on these types of property without equivalently increasing rates on local homeowners.

The process of setting local school property tax rates also differs significantly by state.

In some states, tax rates are set annually by local elected officials, while in other states, rates

are set by local referendum. Additionally, because many states have created strict limit on tax

and revenue growth, meaningful increases in tax rates often must be approved directly by voters

10Connecticut, Georgia, Iowa, Minnesota, Ohio, Oklahoma, Oregon and Washington.
11We use plants that report to the EPA’s Toxic Release Inventory (TRI) as a proxy for large polluting plants
12In most states, assessment ratios are created at the state level. In a small minority of states, local control is

possible. A notable exception is Pennsylvania, where assessment ratios are set by the county
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even if small changes need not be. This is also true for school bonds, which are repaid through

increases in the local property tax rates. We discuss this process more in the next subsection.

1.3.3 School Finance Equalization

In response to both court orders and the threat of litigation, many states have undertaken

dramatic reforms to their school finance systems over the past fifty years (Jackson, Johnson, and

Persico, 2015), moving from primarily locally-financed systems to systems with greater levels

of state support. These reforms have typically centered around ensuring some combination of

adequacy or equity. Adequacy-based reforms work to ensure that all districts have sufficient

funding to provide an “adequate” education to their students. Equity-based reforms work to

ensure that large disparities in spending across districts within the state do not exist. In practice,

most reforms have some effect on both adequacy and equity. Hoxby (2001) and Jackson, Johnson,

and Persico (2014) provide a more extensive overview of the history of school finance reforms in

the United States.

Today, most states have a system that at least partially equalizes spending across districts.

Although specifics vary from state to state, the vast majority of states have a foundation formula

which provides a guaranteed amount of funding for a district based on the number of enrolled

students, sometimes weighted by their expected expense of education (i.e. English as a second

language students may be worth more than native speakers in the formula). Local districts are

then assigned a portion of this formula for which they are responsible (“local share”) based off of

their local property wealth (or less-commonly a formula including property wealth, income and

other determinants of local fiscal capacity). In order to maintain equity, districts in many states

also limit the tax rate that districts can charge above the amount that will provide their expected

local share (and in some cases, the state can recapture any revenue above a certain threshold).

The strictness of these limits varies dramatically across states.

In this paper, we are interested in understanding how changes in the marginal value of a
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locality’s tax base affects industrial development. We study school finance reforms because in

many cases they acted as a significant shock to this value both by changing the upper and lower

limits on taxes that can be charged and shifting the degree of crowd-out of state-revenues based

on property wealth. To see this, note that a simplified funding formula common to many states is:

Revd = Fd +Sd− τ
∗Vd + τdVd (1.1)

where Fd are federal transfers to the district (which are independent of the local tax base), Sd is the

state guaranteed funding to the district, which typically depends on local student characteristics

but is independent of local tax base, τ∗ is the state-assigned tax rate used to determine a district’s

local share (typically this is uniform across most districts within a state), Vd is the total assessed

value of a district’s property and τd is the district’s chosen tax rate where τd ∈ (τ, τ̄), state-set

limits on the taxes that can be charged. In reality, these formulas are much more complicated,

but because we are only interested in the effects of changing tax-base on revenue, this simple

illustration acts as a good representation.

All else equal, increasing τ∗ implies that growing a district’s tax base will lead to a larger

reduction in state funding, making any tax base increase less valuable. Similarly, creating a

more stringent limitation on the taxes a district can charge also makes new tax base less valuable

because districts are unable to fully access the tax base’s potential revenue and put it towards their

preferred use (assuming that the tax rate constraint binds).

Thus, to understand how a reform affects the marginal value of new tax base, we need

to know both how a reform affects τ̄ (through new state limitations) and τ∗. In general, there is

no simple summary statistic for either of these terms as funding formulas are written in such a

way that the exact level of crowd-out and tax limitations will vary by district. For our analyses,

we qualitatively describe these quantities for all states over the past half century using Public

Finance in Public Schools in the United States, a report issued roughly every five years from 1952
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to 2018 that describes the school finance system in use by each state as well as relevant taxation

and spending limitations. Using these formula in combination with the narrative descriptions in

the report, we then identify major school finance reforms, in which large changes to crowd-out

or tax limitations occurred for most districts within a state. Our process for identifying these

reforms is discussed in much more detail in Section 4 and Appendix A.4.

1.4 Are Property Tax Payments from Large Capital Projects

Valued by Local Homeowners?

We begin by investigating the extent to which property tax payments from large externality-

producing projects represent a benefit stream to their local jurisdictions. This question is important

for two reasons. One, the value of property tax payments has important implications who bears

the cost and benefits of these types of plants—an issue of large policy interest and an area of

active debate in the environmental justice literature (Banzhaf, Ma, and Timmins, 2019). Two,

in order to answer our second question—how changing jurisdictions’ ability to raise and retain

property tax revenue affects local land-use decisions—it is first necessary to establish that such

revenue is indeed valued by local homeowners. We break our analysis into two parts. We first

estimate the magnitude of these payments and show how they are used by local communities. We

then estimate how homeowners value these payments as measured through changes in local home

values.

1.4.1 Data and Sample Selection

The data to perform the analyses in this section come from four primary sources. First,

we obtain power plant location, opening dates, energy source and nameplate capacity from Form

EIA-860, published annually by the Energy Information Administration (EIA). We assign each
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power plant to its 2000 elementary or unified school district using coordinates provided by the

EIA and shapefiles produced by the 2000 Census.

Second, we obtain data on taxable value and district property tax rates by collecting

information from state Department of Education and Department of Revenue annual reports.

This is to our knowledge a novel dataset of longitudinal district tax rates and assessed values in

both its geographic and temporal scope.13 The left panel of Figure A.2 shows our data coverage

by state. We have data for forty states and the vast majority of these states have data on both

property tax rates and taxable value. The right panel shows coverage over time. By 1999, we

have data for over 50% of the districts in our sample and this number increases to over 80% by

2015.14 It is important to note that states use different assessment ratios (the proportion of the true

market value of a property that is taxable) and therefore although rates and assessed values are

generally comparable within states over time during our sample period, cross-sectional interstate

comparisons of these variables are generally not informative. In our primary analysis, we inflate

taxable values (deflate property tax rates) according to reported assessment ratios, however such

a conversion is imperfect as states sometimes report a summary taxable value, but have different

assessment ratios for different classes of property. As a result, in all regressions we include state

by year (or more restrictive) fixed-effects so all comparisons are only made within state-years.15

Third, we use district finance, staffing and demographic data from the National Center

for Education Statistics (NCES) created by the Rutgers Graduate School of Education Education

Law Center (Weber, Srikanth, and Baker, 2016). For all fiscal years between 1995 and 2016,

we have detailed data on revenue sources, expenditures by type, district staffing by occupation,

13Biasi (2019) and Miller (2018) both collect similar data, but their collection includes fewer states and is over a
more limited time period.

14Several states fund schools through county or municipal budgets. These state include Massachusetts, Connecticut,
New Hampshire, Maryland, Virginia and North Carolina. For these states, we include municipal rather than school
district tax rates.

15In all analyses involving taxable value or tax rates, we drop New York and Pennsylvania because for most years
in our sample, assessment ratios were set by counties and so reinflation is not possible. We also drop Kentucky
because reported tax rates were an order of magnitude higher than other states despite the state officially assessing
properties at fair market value. This is consistent with anecdotal evidence suggesting county assessment offices in
Kentucky systematically undervalue local properties.
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student race/ethnicity and free-lunch eligibility. All financial data are inflation-adjusted and

presented in 2014 dollars. Our sample consists of elementary and unified school districts that

existed in all years between 1995 and 2015, had greater than 200 students and fewer than 50,000

students in 199516 and never underwent a boundary change or a district type (i.e. elementary,

unified, secondary) change over our 22 year time-period.17 This leaves us with 11,824 total

school districts.

Fourth, we use home transaction data from the Zillow ZTRAX database. This nearly-

nationwide database contains almost all home transactions between 2005 and 2017 with much

longer temporal coverage for some counties. There are 12 states for which home transaction

data are not publicly available. Data include information on sales price, home attributes, home

location and owner characteristics. Appendix A.2 provides greater detail on how the ZTRAX

data were processed for this project. We currently use home price data from 13 states that have

both comprehensive transaction coverage and a large number of plant openings. In the future, we

plan to expand our analysis to all states with available data.

1.4.2 Effects on School District Budgets and Property Taxes

Empirical Strategy

We begin by estimating the effect of power plant openings on school district fiscal

outcomes. We focus on power plants because although they create significant negative local

externalities, they do not cause many of the positive local externalities such as large employment

or agglomeration effects created by other types of capitally-intensive projects. This simplifies our

empirical efforts to estimate the property taxation benefits provided by these plants because it

16Because our primary outcome variables are per student, we want to exclude very small districts where small
changes in the student population could lead to large changes in the outcome variable. Because most metro areas
typically have a single large center-city school district, there is a concern that large districts are unlikely to be a good
counterfactual for neighboring districts.

17We exclude districts that have undergone boundary changes to ensure that any observed changes are not simply
arising from changes in composition within the district.
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is less plausible that any observed effects are being driven simply by greater economic activity

within the district.

In an ideal world, we would randomly assign plants to some districts, but not others and

examine the changes in fiscal outcomes that ensued. Instead, we employ two separate but related

strategies to approximate such a randomization. We first use a border difference-in-differences

design in which we compare tax base and school finance outcomes in districts experiencing an

opening between 1995 and 2015 relative to neighboring districts that never experience an opening

during this time period. We use neighboring districts as controls because they are exposed to

many of the same local economic and school funding shocks as treated districts and so plausibly

would be expected to have similar outcomes to the treated districts were they not to have received

a plant—in subsequent sections, we provide extensive evidence supporting this assumption.

We define a treated district as a district receiving a new utility-owned natural gas or wind

turbine in any year between 1995 and 2015—our sample is made up of 55% natural gas plants and

45% wind plants and 10% solar plants.18 In this paper, we are interested in the property tax effects

of large projects—accordingly, we only include plants that are above 25MW in size, a common

cut-off used by the EPA when determining eligibility for pollution control regulations.1920 There

are 1,297 such plant openings in our data.21

We define the treatment year as the year in which the plant first obtained regulatory

approval or began construction because knowledge that a jurisdiction will receive a plant in the

future may affect current taxing or borrowing behavior. For the 25% of plants for which this

18These are the plant types for which we can reliably estimate construction cost, a necessary component of one
aspect of our identification strategy. They also make up the vast majority of new openings during this time period.

19i.e. only coal units greater than 25MW are required to participate in the Continuous Emissions Monitoring
System (CEMS))

20For reference, if running 100% of the time a 25MW plant could provide power for roughly 25,000 homes.
Since most plant’s capacity factor is far below 100%, these plants provide power for closer to 12,000-24,000 homes
depending on the plant type.The vast majority of plant openings smaller than this level are very small (<10 MW)
solar or landfill gas installations.

21We additionally drop 50 plants whose first year reporting to the EIA is more than 2 years after their stated
operation date, 3 plants whose construction date is after their stated operation date and 29 plants whose operation
date was more than 5 years after construction approval.
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information is not available, we instead use the year of operation—note that if districts begin

borrowing or raising revenue after approval, using year of approval would bias our results towards

zero. Because our outcomes are at the district level, we restrict our analysis to only the first plant

opening in a district over our timeframe. In total 852 districts experienced an opening during this

time period.22 Of these districts, 675 fit our district sample criteria23

In the primary analysis, we restrict our sample to only those plants whose approval year

was between 2001 and 2007 in order to create a fully-balanced panel. This addresses concerns

described by Goodman-Bacon (2018) that a difference-in-differences model with time-varying

treatment and an unbalanced panel can place a negative weight on some years, producing an

estimand of different magnitude (and potentially sign) from the average treatment effect. However,

we also show in robustness checks that using the full unbalanced panel produces very similar

results.

For each of these districts we identified all neighboring districts within the same state

that did not also experience an opening and fit our sample inclusion criteria (i.e. in existence

over the full period with greater than 200 students or fewer than 50,000 students at baseline).

If control districts border multiple treatment districts then they will enter the sample multiple

times. To adjust for this, we use two-way clustering at the plant district (all bordering control

districts attached to a treated district) and district level. Different districts have different numbers

of border pairs and so an unweighted regression would overweight districts with high numbers of

pairs. To adjust for this, we weight all districts attached to a given opening by the inverse of the

total number of border pairs the opening has in a given sample year. Using this sample, we then

implement the following difference-in-differences specification:

2275% of these districts only experienced a single opening. Results are robust to restricting our sample to only
these districts.

2359 districts had fewer than 200 students in 1995, 16 districts had greater than 50,000 students in 1995, 81
districts were not in operation for all 22 years or experienced a boundary change, 3 districts had fewer than 3 grades,
2 districts had greater than 1 log point annual change in students.
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Yd pt = αd + τpt +βPostd pt ∗Treatd + εd pt (1.2)

where Yd pt is the outcome variable in district d, in border pair p and time t, αd is a district

fixed-effect, τpt is a pair by year fixed effect, Postd pt ∗ Treatd is our variable of interest, the

interaction between the period following a pair’s plant beginning construction and whether or

not a district is the treated member of the pair, and εd pt is a mean-zero error term. Because our

treatment year is defined as the year of approval, we separately examine effects for two post

periods (years 0-2 which are the years over which most plants are built and years 3-8 when most

plants are already in operation). In our primary analysis, we show results for both all openings

and “non-small” openings (defined as having fewer than $10,000 per student in expected tax base

increase based on plant and district size—≈ 10% of sample), as these small openings are unlikely

to produce sufficient tax revenue per student to make a meaningful impact on district finances.

Table A.1 shows differences in baseline covariates between treated and control districts.

Unsurprisingly, given previous work in the environmental justice literature, there is a significant

2.9 pp difference in the proportion of underrepresented minorities (Black and Hispanic students)

in the treated district relative to the bordering controls. However, reassuringly, there are no

economically or statistically significant differences between treatment and control districts in

number of students in a district, student free and reduced lunch status, school revenues or

local home values. Of course baseline differences do not invalidate our design—what matters

for identification is parallel trends—but nonetheless the fact that differences across most key

covariates are minimal increases confidence in the validity of this strategy.

There are two major related challenges to identification in this setting. First, it is possible

that treatment districts are fundamentally different from control districts and so even in the absence

of treatment they would be expected to have different trajectories in the outcome variables. We

address this possibility in several ways. First, we examine whether pre-trends exist in major

demographic and economic variables that we might expect to be correlated with both plant
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openings and changes in tax base—there is no evidence for any such trends. Second, we estimate

dynamic versions of all models and examine trends prior to plants receiving regulatory approval

for construction—we again find no evidence for any violations. Third, we show that results are

robust to a number of different weightings, sample selection criteria and covariates,

Finally, we estimate an alternate identification strategies as a robustness check. First, we

leverage the fact that the expected revenue per student effect of a plant opening in a district is a

function of both the size of the plant’s estimated effect on the tax base and the number of students

that this new revenue will be split across. Accordingly, we estimate the expected tax base impact

of an opening by dividing a plant’s estimated construction costs (a proxy for the plant’s value)24

by the total number of students enrolled in the district in the year the plant received regulatory

approval and include this variable in a triple difference framework. The underlying assumption

of this analysis is that plants that have a higher value per student should create correspondingly

larger tax base effects in their host district. For omitted variable bias to exist in this approach

it cannot only be the case that receiving districts are systematically different from their control

districts in ways that are correlated with time-trends in the outcome variables, rather it must

instead be the case that differences between treatment districts receiving openings with larger

expected fiscal impacts and their assigned control district are systematically different than the

differences between treatment districts receiving openings with smaller expected fiscal impacts

and their assigned control districts.25

A second and more challenging barrier to identification is the possibility that a jurisdic-

tion’s decision to open a plant is correlated with other factors that may be associated with our

24The vast majority of states use original construction cost as the only or primary method of assessment. States
that rely on other methods typically use either fair market value (which will be correlated with construction costs) or
total production or income, both of which should be correlated with construction costs. Estimated construction costs
are based off of fuel and prime-mover specific estimates of overnight construction costs per megawatt-hour in the
EIA’s Annual Energy Outlook from 1997-2018. More details on these calculations are provided in Appendix B.

25Note that this is not simply the difference between districts receiving large and small plants, but is instead the
interaction between plant value with the size of the receiving district. A small plant in a small district may have a
similar expected fiscal impact as a large plant in a large district because the increased taxable value is split across
fewer students.
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outcome variables. Under this scenario, it could be true that control and treatment districts are

ex-ante similar, but some event (i.e. the election of a developmentally-minded mayor) leads

to both the construction of a plant and other changes correlated with an increased tax base or

education spending, which would lead us to estimate the plant’s effects with bias. Incorporating

treatment intensity into our model helps address this concern, but does not fully solve it—it

could be the case for instance, that the districts that receive the largest fiscal impacts have the

most developmentally-minded leaders. Thus as a second test, we examine if the plant opening

is correlated with openings of other types of (non-utility) environmentally harmful plants using

data from the EPA’s Toxic Release Inventory.26 If local governments are attempting to attract new

facilities, we would expect to see such an increase. Figure A.3 show the main results. There are

no significant spikes in openings of non-utility toxic facilities following (or prior to) the beginning

of the start of plant construction. This provides at least suggestive evidence that the construction

of a plant is not a proxy for a larger development boom.

Results

Table 1.1 show the main effects of a plant opening on major tax base and school finance

outcomes using our primary specification. A new plant increases the local tax base per student by

11% on average suggesting that plant openings can have large effects on the fiscal capabilities

of local districts. This increase is used primarily to increase local school revenues; there is no

economically or statistically significant effects on the local property tax rate. Conversely, a plant

opening increases locally-raised district revenues by $500/student (10%) and total revenues per

student by $380. This gap is explained by a reduction in state funding. Many state school funding

formulas tie the level of state transfers to a district’s property wealth—increases in the property

wealth should leads mechanically to lower levels of state transfers for education and that is

precisely what we see here. Finally, Column 5 shows that expenditures increase by $770/student

26Although imperfect, the TRI provides the best publicly-available record of new plant openings. We say a plant
has “opened” if it is the first year in which it appeared in the TRI.
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or more than 5% following an opening. These results demonstrate that having a plant enter a

school district has important effects on local educational spending.

Figures 1.1 and 1.2 show these results in event study form. Reassuringly, across all

outcomes there are no trends in the six years prior to plant approval. We then observe a rapid

increase in tax base per student, local revenues per student, total revenues per student and total

expenditures per student beginning two to three years following plant approval, after which these

outcomes plateau at a significantly higher level. The opposite pattern is true for property tax

rates, although the decrease is not statistically significant. This timeline makes sense intuitively;

construction was typically completed two to three years after final approval and so this is precisely

when we would expect to see the change in tax base (and by extension district revenues) appear

in the data.

Table 1.3 shows where the additional revenues created by the plant are spent. We first see

that openings lead districts to take a large amount of additional debt ($750-$1,100 per student

or 15%-25% increase). This increase in debt explains why plant openings appear to have a

larger effect on expenditures than on revenues. This debt increase may occur for two reasons.

One, because the plant opening increased the size of the tax base the price in additional tax rate

increments for any given sum has now fallen for a given household. Two, in many school funding

formulas, debt allows local governments to use their additional tax base to increase school budgets

when any other increase in local revenue would simply crowd out of state transfers.

In general, most school district debt is used to fund capital expenditures. We observe a

similar phenomenon here. Despite making up only 10% of total school spending, the majority of

expenditure increases caused by the plant occur on capital projects. Specifically, by 4-10 years

after approval, spending on capital projects increases by $400/student (33% increase). There is

also evidence for smaller increases in non-instructional spending and instructional salaries. The

disproportionate use of new revenue to fund capital expenditures is consistent with previous work

examining school district responses to other forms of revenue shocks (i.e. (Davis and Ferreira,
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2017)).

We finally examine changes in school district revenues by source. If these changes are

driven by plant openings, we would expect several dynamics to hold. First, changes in local

revenue should be driven through property tax revenue, increased parent government contributions

for districts that are not financially independent27, or payment-in-leiu of taxation (PILOT)28 We

should expect no change (or a compensatory decrease) in other sources of local funding such as

sales and income taxes. Second, we should expect a decrease in state aid from the state’s school

finance funding formula as almost all states now tie formula aid to a district’s level of property

wealth. Finally, we should no expect no changes in other state funding or federal funding.

Table 1.2 shows the main results of this analysis and they accord exactly with the pre-

dictions above. The bulk of the increase in local revenues comes from increased property tax

revenues. However, we also see significant increases in parent government contributions and

income from unspecified sources, which likely comes from PILOT payments. There is no chance

in local revenue from other sources, which largely consists of sales and income tax revenue. We

also observe a significant decrease in state transfers through formula aid; this is precisely what

we would expect given that formula aid in most states is inversely proportional to a district’s

level of property wealth. Finally, just as we would expect there is no change in other sources

of state funding or federal revenue. These results provide additional suggestive evidence that

the observed changes are indeed driven by the plant opening and not other correlated trends in

district school finance.

We next turn to examining the robustness of our results to different specification and

sample choices. Table A.2 shows results after controlling for baseline covariate by state by year

27In some states (primarily states in the Northeast and Mid Atlantic) as well as some large cities), school districts
are funded through municipal budgets rather than having independent budgetary and taxing authority. In these states,
increased local property tax revenue would be classified as parental government contributions rather than property
tax revenue since the district’s revenue is technically coming from the parent government.

28Some plants may negotiate tax abatements with local school districts that lead them to make transfers to local
district outside of the tax system. Further, municipal, state and federal utilities are often mandated by law to pay
PILOT because they are exempted from local property taxation.

22



fixed-effects. If baseline differences between treated and control districts were driving results, we

might expect to see effects diminish once these trends are controlled for. However, results remain

nearly identical to the full specification. Table A.4 shows effects when including all districts

instead of excluding those with a very small expected tax base per student impact. Unsurprisingly,

effect sizes fall slightly but remain highly economically and statistically significant. Table A.3

shows results with an unbalanced panel including ten years of data before and after an opening.

Results again remain largely unchanged. Lastly, Table A.5 shows effects separately for natural

gas openings and wind turbine openings. In both cases, results are highly economically and

statistically significant suggesting that effects are not driven by one type of opening. Effects are

about twice as large for wind turbine openings than natural gas openings—this is likely because

wind turbines open in largely rural areas with little property wealth per student where the expected

tax base effect per student is much larger.

Table A.6 shows the results of our triple-difference design. We use the same sample as our

primary analysis, but interact the post by treat term with logged expected tax base per student. All

outcome variables are also logged to create an elasticity29. Results are highly consistent with the

primary analysis despite being identified off of an entirely different source of variation (opening

vs no opening relative to the slope based on size of opening). A 10% increase in expected tax

base per student leads to a .4% increase in tax base per student, a .6% increase in local revenue

per student, a .13% increase in total revenue per student and a .2% increase in expenditures for

student. For context, moving from an opening at the 25th percentile of expected tax base per

student to an opening at the 75th percentile results in an increase of 2 log points, or a 8% increase

in tax base per student, a 12% increase in local revenue, a 2.5% increase in local revenue and a

4% increase in total expenditures.

Interestingly, one exception appears to be the effect on property tax rates. These rates

appear to increase with expected tax base size—a 10% increase in tax base leads to a 2.6 mill

29We log expected tax base per student because this variable is heavily right skewed and results are otherwise
sensitive to how we treat and define outliers.
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increase in tax rate. Likely, this is because increased tax base has two competing effects on the

tax rate. An increased tax base makes district’s richer, which through an income effect should

decrease rates. However, at the same time an increased tax rate lowers the price of debt (which is

financed through tax rate increases to repay bonds), which can lead to tax rate increases. In this

case, it appears that larger tax base increases are more likely to induce districts to undertake large

capital projects and therefore higher rates.

As a final robustness check, Figure 1.3 examines whether these changes lead to large

demographic shifts in the composition of students as well as whether there were any pre-trends

in these variables prior to the start of construction. We focus on black and Hispanic share of

enrollment, the proportion of students eligible for free lunch (a proxy for poverty) and log total

enrollment. There are no significant trends in any outcome prior to plant approval increasing

confidence that any changes in school finance outcomes were not driven by underlying trends

in district demographics in treatment relative to control districts. We also do not observe any

large changes after approvals—there is some evidence for a slight decline in free lunch students

seven to eight years after approval, which suggests some sorting may be beginning to occur in

the long-run, but this effect is not statistically significant. Together these results suggest that

our observed effects are unlikely to be driven by differential trends across treatment and control

districts nor are driven by sorting occurring after a plant opens

In sum, these results suggest that plant openings can have large impacts on the finances of

host school districts. Through their direct tax base effect, these plants lead to large increases in

local revenue per student. Despite some crowd-out of state-transfers, openings The increased tax

base caused by plant openings combined with the structure of state school finance formulas also

induce local districts to take out more long-term debt and finance capital projects, leading to an

even larger increase in expenditures per student with no changes in local property tax rates.
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1.4.3 Effect of Plant Openings on Home Prices: Empirical Strategy

The previous section showed that property tax payments arising from plant openings lead

to appreciable increases in educational spending centered on capital expenditures. However, it is

unclear if such spending actually increases the well-being of local homeowners. Instead, such

payments could be captured by local bureaucrats or simply spent in a way that was not valued by

homeowners. Accordingly, we now turn to the second part of our question: estimating if the fiscal

benefits created by plant openings are actually valued by local residents as measured through

changes in home values.

Empirical Strategy

In this section, we want to estimate the hedonic value of the increase in tax base caused

by a plant opening. To obtain a valid estimate of the effect of tax base increases on home values,

we need to compare homes whose values are both expected to evolve similarly in the absence of

a plant opening and are similarly affected by the non-fiscal positive and negative effects of the

opening. In other words, we want to hold exposure to all other positive and negative plant effects

constant and just estimate the home price effect of the tax base increase. Thus, our results from

this section should not be interpreted as the net home price effect of a plant opening, but instead

as the component of the net effect caused by its effect on local school district fiscal capacity.

As described above, one advantage of using power plant openings as our setting is that

these plants have relatively small agglomeration and employment effects and so we are mostly

concerned with differential exposure to these plant’s negative externalities. Accordingly, to

estimate the home price effects of the property tax shock alone, we use the same border difference-

in-differences approach as above, but instead of comparing whole neighboring districts, we

restrict our sample to only a narrow bandwidth around the border. Specifically, we create border

pairs between all homes that are in bordering districts with a plant opening and neighbors with no

openings and are within two kilometers of the border. We then compare the relative change in
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housing values on either side of the opening after plant approval.30 Both sets of homes should be

exposed to similar economic and pollution shocks from the plant, but only homes on the plant’s

district’s side of the border will get the benefit of the expanded tax base—if the parallel trends

assumption holds, we can then attribute any changes in home prices to the fiscal effect of the

plant. We perform this analysis for openings in fourteen states that have comprehensive home

price data and the largest number of openings.31

One important caveat is that many school district boundaries are shared (or nearby) county

and municipal boundaries. This implies that results should not be interpreted as the home price

effect of the increased school district tax base alone, but as a weighted estimate of the increased

tax base across all local government units that share the same border. We test for robustness by

excluding district boundaries that are shared with county boundaries and results are qualitatively

similar, but there are many other local government taxing units (i.e. municipalities, irrigation

districts, sewage districts, etc) which we lack granular enough geographic data to exclude. Further,

even if we could exclude these districts, our remaining sample of school district boundaries would

likely be too small to obtain valid statistical estimates. Because of these shared boundaries,

we do not use the triple-differences approach above as our primary specification. Home values

will respond to the expected fiscal impact on all relevant governmental units and while we

expect homes inside districts with large expected valuations per student to experience larger

home price increases, there is no reason to believe there is necessarily a monotonic relationship

between the expected impact on a district and the expected impact on the district’s county or other

governmental units (i.e. a plant opening in a small district could be in a very large county or city,

while a plant opening in a moderately sized district may be in a very small municipality) making

estimates hard to interpret. However, for completeness, we also include the results of this analysis

and they are broadly similar.

30If a home is near multiple borders we assign it to its nearest border.
31Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa, Michigan, Minnesota, New York, North Carolina,

Ohio, Oklahoma and Pennsylvania. These make up roughly 60% of openings. Texas and Kansas both have large
number of openings, but do not have publicly available home sale data.
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Our primary specification is as follows:

Yid pt = αd + τpt +βPostd pt ∗Treatd + εd pt (1.3)

where Yid pt is the logged sales price of home i in district d in border pair p and year t. The

vector αd contains indicators for extremely granular spatial controls. In the primary specification

we use border pair x district x .004 degree x .004 degree latitude and longitude cells to ensure

that we are comparing homes in very similar neighborhoods, but show robustness to more or less

granular controls including a parcel indicator in which our estimand is completely identified off

of multiple sales of the same parcel. The vector τpt contains indicators for border pair by year by

month fixed-effects to control for any time-varying characteristics of homes within the border

region. The coefficient on Postd pt ∗Treatd is our coefficient of interest. Our primary model uses a

bandwidth of 2,000 meters, but we show robustness to alternate bandwidths (1,000 meters-3,000

meters).

As with the analysis above, we weight observations such that each plant-opening year

counts equally. One challenge with that approach in this setting is that some openings in rural

districts have very few (i.e. < 2) transactions per year. Because a single transaction per year

provides a very noisy estimate of how local home values are changing, using these openings

in our analysis would decrease our power considerably. As such, we restrict our sample to

only bordering districts that each have at least 10,000 population, while showing robustness to

including all openings. As above, we restrict our primary sample to only openings that have an

expected tax base impact larger than $10,000 per student.

An alternate approach is to run the regression at the home transaction level. This implicitly

gives more weight to openings whose border regions have a higher number of transactions. The

challenge here is that transaction dense areas typically are part of school districts with large

numbers of students—as such, these are exactly the openings where we expect the fiscal impact

per student (and by extension, the effect on home prices) to be lowest.
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The Zillow home transaction data used here does not go back as far as the school finance

data for many counties. As a result, we cannot use a fully balanced panel here as we will have

too few openings to have sufficient power to detect reasonably-sized effects. Thus, our primary

specification uses an unbalanced panel in which all openings have data at least two years prior

and two years subsequent to the plant approval year. We also show robustness to using a balanced

panel.

The primary threats to identification using this empirical approach are twofold. First, as

with the school finance analysis, homes outside the district may not be good counterfactuals for

homes inside the district. We test this assumption in several ways. First we employ a dynamic

difference-in-difference analysis to test for pre-trends and find no evidence for any violations.

Second, we control for a large number of major hedonic characteristics to ensure that we are

comparing similar homes in both the treatment and control districts and find results are similar.

Third, we show that effects are completely driven by plants with larger expected tax base impacts;

there is a minimal and insignificant effect among districts with a small expected tax base impact.

This result suggests that there is nothing specific about the types of districts receiving plants that

are driving our results.

An additional threat to identification is that the border design does not fully control for

other positive or negative effects from the plant. For instance, if the plant increases nearby housing

demand, this may increase home values closer to the plants, which will disproportionately be

inside the plant district’s border region. As power plants do not typically create large amount

of jobs or have large agglomeration effects, these types of positive effects are less of a concern.

Instead, it is more likely that as the bandwidth of included sales increases, there will be unequal

exposure to the plant’s pollution, which would likely bias our results downnward. We test for this

possibility in two ways. First, we show robustness to a large number of border bandwidths and

results are qualitatively similar. Second, we show results when including only border regions that

are “far” from the plant (where far is defined as the nearest home to the plant being at least 10km
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away) as these border regions should be “uncontaminated” by other effects of the plant. Again

results do not exhibit large changes.

A final identification check leverages the existence of California in our data. California’s

school funding formula is very strongly tied to a localities property wealth; outside of taking on

debt, it is almost impossible for a school district to increase its revenue flow from an increase in

the tax base because any revenue increase will be crowded-out one-for-one by a decrease in state

funding.32 Thus, in addition to showing the pooled results, we show results separately for our

California and non-California samples. If the observed home price effects are truly driven by the

local fiscal effects caused by a plant opening, we would expect that the results should be larger

for the non-California states—indeed that is precisely what we see in the data.

Before moving to the results, it is important to reiterate here that this specification attempts

to estimate the effect of the tax base increase on home prices alone, not the net effect of a plant

opening. Previous research has shown both wind turbines and natural gas plants have negative

effects on the values of nearby homes. Because our goal here is to understand the extent to which

the tax base increase from these plants is valued by local homeowners, our aim is to hold these

negative distance-based effects constant and estimate only the effect of the tax base increase itself.

Observing positive effects here does not contradict these earlier results—they are estimating

something akin to the slope of home price changes with respect to distance to the plant, while we

are estimating how the intercept of being in a given district that receives a plant changes after the

plant enters. Both effects are possible and their relative magnitudes will dictate both the average

net effect of the plant and who gains and who loses from a plant entering.

32Technically, the formula is even more extreme. Most school districts in California do not receive their base local
funding from the tax base in their district, but rather as a share of the total county tax base. The exception to this is
taxes raised to repay bonds, which are levied only on the tax base within a district’s borders.
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1.4.4 Effect of Plant Openings on Home Prices

We begin with an estimate of the home price capitalization of the increased tax base

created by plant openings. Table 1.4 shows the main effects. Column (1) show the results for

our full geographic sample when restricting to districts with greater than 10,000 population.

By 3-8 years following approval, home prices increase by 4.8% suggesting that homeowners

meaningfully value the increased tax base created by the plant. In Columns (2) and (3) we can

see that as expected these results are much larger when excluding California, which has a very

strong school finance equalization system, from our sample. Home prices increase by 7% outside

of California, but only by 2.8% within California and the effect is not statistically significant. In

Columns (4)-(6), we show the same specifications, but including all districts, even those with

very low populations. Results remain very similar.

The left panel in Figure 1.4 show these results in event study form for our primary

specification. Because we are only identified off of 71 openings, individual year estimates are

somewhat imprecise, but nevertheless, there do not appear to be any trends prior to plant approval

and then a sustained increase which plateaus three to four years after approval. This provides

some evidence that the observed effects are not simply driven by differential trends between the

border regions. The right panel in Figure 1.4 shows the home price effects across a number of

different distance bandwidths. Coefficients are extremely similar for any bandwidth between 1

kilometer and 3 kilometers suggesting that our results are not driven by bandwidth choice.

Table 1.5 shows results using different expected tax base cut-offs. Columns (1)-(3) show

results weighting all plant opening years equally, while Columns (4)-(6) show these same results,

but weighting by transaction, which implicitly gives more weight to more populous districts.

Several trends are immediately apparent. First, even when including openings with less than

$10,000/student in expected tax base, results in the weighted specification remain economically

and statistically significant. Second, as we include a higher expected tax base cut-off, effect sizes

increase significantly. For districts with an expected increase greater than $75,000/student, home
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prices increase by 7% and for those with an expected increase greater than $150,000/student,

home prices increase by 10.5% in the weighted specification and by 5% and 7% in the unweighted

specification where the average expected tax base effect is lower because high student districts

receive more weight. This is precisely what we would expect if effects are indeed driven by

the tax base effect of a plant and not other, underlying district characteristics. Finally, effects

disappear when we include the full sample in the unweighted specification because the average

expected tax base per student shrinks significant ($38,000/student compared to $108,000/student

in the weighted specification). Again, this is consistent with effects being driven by the size of

the fiscal impact.

One potential confounder of our results would be a change in the composition of homes

in treated districts after the plant opens. We attempt to control for this in our main specification

by controlling for hedonic variables and very granular geographic fixed-effects, but it is of course

possible that other, unobserved home characteristics are driving the results. We address this con-

cern in two ways. First, Table A.7 tests whether key hedonic characteristics differentially change

in homes sold in treated districts after the plant receives approval. There are no economically or

statistically significant differences in lot size, home age, square footage or whether or not a home

is single-family home. There is a marginally significant decrease in the number of bedrooms in

homes sold, but this effects is very small (x) and would appear to suggest that homes sold after

the plant opening are if anything lower value. Second, Table A.8 shows results using our main

specification, but including only repeat sales. Standard errors increase as our estimates are only

identified off of homes that have multiple sales within our sample period, but results are very

similar to our primary analysis suggesting that compositional changes in the underlying types of

houses sold are unlikely to be driving our results.

We can also examine if the quantities of houses sold changes after the opening. Because

the plant opening causes a large shock to local public good provision, we might expect that

households will respond by re-optimizing, increasing home sales, Further, if, as we showed above,
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the plant causes the tax price of public good provision to fall and there are few supply constraints,

we may also expect that districts receiving a plant will see an increase in new construction (Lutz,

2015). Note that as long as the composition of homes is not changing conditional on our covariates

(which includes controls for new homes), an increase in quantity will not bias our home price

estimates. Table A.9 presents some evidence that the opening does indeed induce re-optimization;

home sales in plant’s district increase by 22 sales (25%) following an opening, although the

effect is only marginally significant. This increase is driven by both sales of old homes and

new construction—the probability that a plant district has any new construction increase by 8

percentage points or 20% suggesting that builders are responding to the decreased tax price of

public goods created by the plant pening. To ensure that our price results are not driven by new

construction, Table A.10 shows our main specification, but excluding newly constructed homes.

Results are if anything larger with new homes excluded from the sample.

Table A.11 shows a number of additional robustness tests that aim to rule out alternative

explanations for these effects. Column (1) shows results when restricting to border pairs whose

closest house to the newly-opened plant is at least 5km away, while Column (2) shows results

when dropping boundaries that are also county borders. If anything, home price effects are larger

with both restrictions suggesting results are unlikely to be driven by other direct effects from the

plant (i.e. land payments or increased housing demand), nor by increases in county fiscal capacity.

Column (3) shows results using a fully-balanced panel. Standard errors increase as our sample

size shrinks, but effect sizes remain similar suggesting that our unbalanced panel is not driving

results. Columns (4)-(7) show results with different levels of time and geographic fixed-effects.

Regardless of whether we use district fixed-effects, .004 degree, or .001 degree as our geographic

region fixed-effects, results remain extremely similar. The same is true whether we use border by

year by month fixed effects as in our main specification, or border by year fixed-effects. Together,

these results provide additional reassurance that the observed home price effects are not driven by

a single specification choice.

32



Table A.12 shows results by plant type. As with the school finance results, effects are

significant for both natural gas plants and wind farms, but much larger for wind farms. Districts

receiving a natural gas opening have to a 3% increase in home prices, while those receiving

wind turbines have a 12% increase. As above, this difference between the two is likely because

wind farms are disproportionately located in rural areas with few students so they lead to larger

increases in tax base per student.

Finally, Table A.13 shows the effects of the opening on school finance variables for the

subset of openings studied here using the same border difference-in-differences specification as

in the housing price regression. The odd columns show results for the full sample and the even

columns show results without California. When including California, results are sightly smaller

in magnitude than were observed in Section 3.1 (≈ $300/student increase in local revenue/student,

$250/student increase in total expenditures per student) and statistically insignificant as standard

errors increase relative to 3.1 given our smaller sample size. When excluding California, effect

sizes more than double and become statistically significant reflecting California’s strong school

funding equalization program. The fact that we see correspondingly larger home price effects

when excluding California from our analysis adds confidence that we are indeed uncovering the

causal effect of the effect sizes are now larger and statistically significant for total revenue.

Together, the results in this section imply that the increased tax base caused by new plants

is being used in ways that are valued by local and prospective homeowners. Such a result does

not necessarily follow from more local spending; given rational voter inattention it is certainly

plausible that local bureaucrats could capture this additional revenue through higher salaries

or wasteful spending that bring no benefit to local homeowners, but this does not appear to be

occurring in practice. One mechanism through which this capitalization likely occurs is the

construction of new schools and other capital improvements. We lack exogenous variation on

school construction conditional on receiving a plant, but previous work has suggested that school

construction leads to a roughly 6% increase in home prices, even when it is funded using increased
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taxes on existing properties (Cellini, Ferreira, and Rothstein, 2010; Lafortune and Schonholzer,

2019). This effect size is very similar in magnitude to our observed results.

1.4.5 Valuation of Negative Externalities

The above analyses provide evidence that the tax base increase caused by an entrance of

a plant leads to a meaningful increase in school district home values, all else held equal. But

of course all else is not held equal—the plant opening also brings with it significant negative

externalities. In order to better understand the relevance of the positive effects identified above to

homeowners, we attempt to benchmark these effects by estimating he effect of these negative

externalities on nearby residents.

We use a spatial difference-in-difference model comparing homes that are nearby the

plant relative to those that are further away before and after a plant opens. In particular, our

design follows previous work by Davis (2011) and Gibbons (2015) who estimated the negative

effect of natural gas plant openings and wind turbines respectively on home prices.The main

innovation in our analysis is that we include school district by year fixed-effects in order to control

for any positive fiscal effects the plants may have on home values. In this way, we are ensured of

estimating the negative effect of the plant’s non-fiscal externalities alone and can hold constant

the benefits of the district’s increased tax base. Specifically, we estimate:

Yid pt = αd pt +Distid p ∗Postd pt +Zid pt + εid pt (1.4)

where Yid pt is the log sales price of home i in district d near plant p in month-year t,

αd pt is a plant by year by month fixed-effect, Distid p is a variable capturing distance to the plant

(either 5 kilometer bins or log distance), Postd pt is a vector of indicators for various time periods

following the plant opening, Zid pt is a .004 latitude x .004 longitude fixed effect, which compares

homes within the same .25 mile by .25 mile grid cells and εid pt is a mean-zero error term. We
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restrict our sample to only plants that are larger than 100 megawatts in order to ensure that we

are considering plants large enough to have a community impact; we also perform a robustness

test in which we interact our post by treat indicator with plant size under the assumption that

effects should increase with the size of the plant. As before, we weight all plant openings equally

and therefore restrict our analysis to only plant openings in districts with greater than 10,000

population. Our primary analysis considers homes within 20 kilometers of the plant, but we show

robustness to other cut-offs. We also exclude homes within 500 meters of the plant because there

is a concern that these parcels could have purchased in the construction of the plant themselves,

which may bias our results.

Table 1.6 shows the main results. Columns (1) and (2) show the results with indicators

for home distance to plant for an unweighted and weighted regression respectively. Relative to

homes 10km-20km away, home prices fall by 4%-6% within 5km of the plant. Columns (3) and

(4) show that this result is not simply a function of the distance bins used; here we interact log

distance with plant openings and show that for each log point closer to a plant a house is, its price

falls by 3-4% following an opening. Finally, Columns (5)-(8) provide an additional robustness

check by interacting our post x distance variable with the size of the plant—if the effect is truly

driven by the plant opening, we would expect the negative effect to be larger for bigger plants.

Indeed, that is precisely what we see here; relative to homes 10km-20km from the plant, for each

100 MW increase in plant size, the home price effect of the plant decreases by an additional 1.5%.

We see a similar result when using log distance instead of distance bins.

Figure 1.5 shows these results in event study form with the log distance specification on

the left and the distance bin specification on the right. In both cases there appear to be no trend

prior to approval and then a sharp decreases in prices for homes closer to the plant33 beginning

after two to three years approval, which that plateaus at the new lower level. This is precisely

the time pattern we would expect if the price change was caused by the plant opening. Table

33Note that for log distance this appears as a positive coefficient because it is the effect of being an additional log
point away from the plant site.
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A.14 tests the robustness of our main specification to different sample restrictions and covariate

inclusions. Columns (1)-(2) show the results when restricting to homes within 15km of the plant

instead of 20km—if anything effect sizes increase. Columns (3)-(4) restrict our sample to be

fully balanced—only 27 plants meet this criteria so our standard errors increase considerably, but

coefficients are qualitatively similar to those of the main analysis, albeit statistically insignificant.

1.4.6 Implications of Home Price Analysis

These results provide evidence that households negatively value proximity to natural gas

plants and wind turbines and that the average magnitude of this distaste for households nearby the

plant (at least as proxied through home values) is roughly similar to the average district-wide gains

of allowing these plants to enter into their district. This finding has three important implications

that are worth discussing in more depth. First, it suggests that hedonic estimates purporting to

capture the disamenity of living near power plants and other large industrial plants must be sure

to adjust for jurisdiction by year fixed-effects in order to produce unbiased results. If not properly

controlled for,e stimates may be comparing homes nearby the plant that receive both the benefits

of the increased tax base and the negative disamenity value from the plant to homes far from

the plant that receive less of the tax base benefit (assuming some homes are outside the plant’s

district) and less of the disamenity. Estimating this joint effect leading to an underestimate of

the true disamenity value of these types of projects. We can see that in our setting by estimating

the same model as above, but excluding school district by year fixed-effects. Table A.15 shows

that when implementing this specification effect sizes decrease by nearly two-thirds as we are

now capturing the joint effect of a larger tax base and increased exposure to negative externalities

caused by the plant.

An additional related point is that even if hedonic estimates do properly control for district

effects (or are estimating values in places where both the control and treatment groups are in the

same district), our results suggest that these estimates cannot be used to back-out the change in
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welfare or even the net change in home prices experienced by a given households. These type of

hedonic estimates capture the negative gradient with respect to distance of being near a plant, but

our results suggest that these plants also create a positive shift up in home prices for all homes

within the plants’ district. If the size of the home price increase is larger than the negative price

effect caused by a plant’s negative externalities, it’s possible that a home nearby a plant could

experience a net increase in home value, albeit an increase that would be less than that of its

neighbor who was further from the plant.

Second, these results have important implications for the distributional consequences of

power and other large industrial plant openings. In general, houses within a district receiving a

plant, which are far from a plant will benefit from the plant’s entrance—these households receive

the benefit of increased tax base, but face none of the negative externalities created by the plant.

Homes nearby the plant and in the plant’s district experience an ambiguous effect on home-values

as they both gain the benefits of increased tax base, but also face costs due to their proximity

to the plant. Finally, homes nearby, but not in the same district as the plant will experience an

unambiguous decrease in home values.

Table A.16 shows the demographics of census tracts within these three categories. All

coefficients are relative to being in the plant’s district, but more than 15km from the plant. We

can see that tracts that are within 5km of the plant, but outside the plant’s district—in other words

tracts that see an unambiguous loss from the plant—have 7% lower median incomes, 9% lower

home values, 5 pp fewer homeowners and 4 pp fewer white residents than tracts that gain an

unambiguous benefit (inside the plant’s district, but more than 15km away). Homes within the

plant’s district, but nearby the plant are also much worse off than those faraway, although their

median income and median home value is slightly higher than nearby tracts outside the plant’s

district. These results suggests that despite the fact that plant’s benefit host communities by

increasing the local tax base, the net effect of these plants is highly unequal. Indeed, because

households nearby the plant, and particularly those outside the plant’s district are much poorer
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and more likely to be nonwhite than households inside the plant’s district, but far from the plant,

these tax base increases may actually serve to exacerbate rather than dampen the inequalities

created through these plant’s disparate negative impact.

Finally, these results suggest that property tax payments from a plant create a meaningful

benefit to local homeowners within the receiving district of a similar magnitude to the negative

value created by a plant’s pollution and other negative externalities (i.e. noise and shadow flicker

for wind turbines). Given the size of this effect, we might expect that access to these revenues

could be an important driver in incentivizing local jurisdictions to allow these types of negative-

externality producing developments to go forward. In the next section we turn to examining

this question explicitly by exploiting cross-sectional and temporal changes in local jurisdictions’

ability to access the local tax revenue generated by large industrial plants.

1.5 Effects of Constraining Local Property Tax Revenues on

Industrial Development

The previous section showed that property tax payments from large plants are valued by

local homeowners. This finding suggests that restricting communities’ access to such payments

may have large effects on their willingness to allow large negative externality-producing projects

to enter into their communities. In this section, we test this question empirically by examining

how negative shocks to jurisdictions’ ability to use their local tax base to fund local public goods

affects their exposure to large manufacturing and power plants.

1.5.1 Data and Empirical Strategy

In this section, we use a series of school finance reforms that occurred across US states

between 1970s and 2000s as a plausibly exogenous shock to the marginal value of an additional
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dollar of local tax base with respect to school spending. As described in Section 2, these reforms

were generally aimed at equalizing state education systems and/or increasing the level of education

provided by the state’s poorest districts. These reforms affected the ability of local school districts

to access their local tax base across two dimensions. One, many reforms greatly increased the

degree to which state transfers were tied to a district’s level of property wealth—following the

reform, increases in property wealth would lead to a correspondingly sized decrease in state

transfers, which limited (or in the extreme case, eliminated) any benefit districts would receive

from an increased tax base. Two, reforms also often instituted tax ceilings and floors, which both

limited the amount local districts could tax (and therefore, the amount of revenue they could

obtain from their tax base) as well as their ability to cut rates.

Identifying the precise year and type of school finance reforms are difficult (Hoxby, 2001).

Many court-decisions led to ostensibly large reforms that in reality had little effect on school

finance, while other less-publicized legislative changes led to dramatic shifts in the way in which

schools were financed (Lafortune, Rothstein, and Schanzenbach, 2018). In our analysis, we

identify reforms by isolating major shifts in the amount of crowd-out or tax limitations embedded

within state school funding formulas. In order to find these shocks, we first document state school

funding formulas going back to 1962 using Public School Finance Programs of the United States,

a report published approximately every five years summarizing US states’ school finance systems

and formulas. Using both the funding formulas and narrative descriptions within these reports, we

identified years in which there were large changes in either the crowd-out caused by an additional

dollar of tax base or on the level of taxes that a district could charge. Years with substantial shifts

in either of these variables were defined as reforms—if a state had multiple major reforms we

used the first reform as our event.

Figure A.5 shows summary statistics related to these reforms. The left panel shows the

cumulative number of reforms by year and the right panel shows a map of reform states by

year of reform. There are two major takeaways. One, the majority of states (34) had major
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reforms and these states are geographically and demographically diverse. Two, reforms happened

nearly continuously between 1970 and 1994—thus results are unlikely to be driven by a specific

time-trend like the rapid decline in US manufacturing in the early 2000s.

Using these reform years, we implement a geographically-proximate border pair difference-

in-differences analysis, adapting the methodology used by Dube, Lester, and Reich (2010) in

their analysis of the employment and wage effects of minimum wage changes. Specifically, we

stack all cross-state county pairs whose centroids are within an x mile radius in the United States.

In our primary analysis, we use x=60, but show robustness to larger and smaller bandwidths.

Because pairs increase exponentially with x, we restrict each county to its twenty closest pairs to

ensure results are not driven by more geographically distant counties. Again we show that results

are robust to using fewer or all possible pairs.

We define as treated the county in the pair whose state received a reform first (i.e. if

one county in the pair had a reform in 1975 and the second county in the pair had a reform in

1990, the 1975 county would be treated). We define the year of the event for the pair as the year

of the earliest reform event occurring in either of the pair’s states. We drop all years after the

second county experiences a reform so as to create an uncontaminated control group. In our

primary analysis we maintain a balanced panel by keeping only pairs that have at least 8 years

of data before the event and more than 14 years of data after the event, but we show robustness

to estimating effects for an unbalanced panel over a broader window. Our specific estimating

equation is as follows:

Ycpst = αcps + τpt +Postpst ∗Treatcst + εcpst (1.5)

where Ycpst is the outcome variable in county c, as a part of county pair p, in state s and year t,

αcps is a time-invariant fixed-effect for each county in a given county pair, τpt is a county-pair

by year fixed-effect so that all time shocks to common to both counties in a pair are differenced

out, Postpst is an indicator for whether or not a reform has occurred, Treatcst is an indicator for
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whether or not a given county is “treated,” and εcpst is a mean-zero error term. We implement

two-way clustered standard errors at the border pair and state level.

In this analysis, we use large manufacturing establishments, manufacturing employment

and power plants as our proxy for local externality producing projects. We view manufacturing

plants and establishments as our primary outcome measure for three reasons. First, there are data

limitations in the location and timing of power plant openings going back to the early 1960s. We

are able to reconstruct the presence of plants that were owned by all utilities still in operation in

1990 and were still in operation or had retired subsequent to 1975. However, data on any plants

that may have been owned by utilities that went out of business prior to this period as well as

plants or units that retired prior to 1975 are unavailable. Conversely, County Business Patterns

provides compehensive data on the stock of manufacturing employment and establishments by

county going back to 1964.34 Second, power plant openings and closings are relatively rare

events, while changes in large manufacturing establishments although still rare are far more

common. Thus, using manufacturing as an outcome greatly increases our power to detect an

effect. Finally, because manufacturing plants bring large regional employment and agglomeration

effects, we believe the effect on manufacturing location likely has larger economic implications

and is thus of greater interest than power plants. 35

As described above, our manufacturing data come from County Business Patterns, an

annual measure of employment, establishments and payroll within a county by industry type.

For this reason, we perform our analysis at the county, not district-level. We have data from

1964 to 2013 for all two-digit NAICS industries.36 For counties with low levels of employment,

employment in certain industries is marked as 0 to maintain privacy. We therefore exclude any

34We are in the process of digitizing data to extend our sample back to 1948.
35We cannot perform a parallel analysis to Section 3 with manufacturing plants because publicly available data on

opening date and location are not available. Further, they would be a less desirable subject for such analysis because
their large regional employment and agglomeration effects would make estimating the home price and school finance
effects of the tax base changes more challenging. However given the similarity between large manufacturing plants
and power plants it is likely that a strong relationship between manufacturing plant openings and the local tax base
also exists.

36Earlier data is provided for SIC industry codes, which we then convert to NAICS codes.
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county-year in which the county has a positive number of establishments, but no employment

reported. These are disproportionately small, rural counties and so in our primary analysis we

choose to restrict our sample to only counties with greater than 1,000 population in 1970 (prior to

any reforms). Results are robust to including all counties in our sample as well as restricting our

sample to only counties with greater than 10,000 population in 1970 for which employment is

almost universally available for the entire time period of the sample.

We show results from regressions weighted both such that all counties count equally and

such that all reforms count equally. Our preferred specification weights all counties equally as

this maximizes power, but results are similar (or larger) when weighting all reforms equally. We

also show further robustness to not weighting or weighting by population. To account for county

duplicates across pairs we cluster all standard errors at the state and border region.

There are two major identifying assumption for this analysis to be interpreted as the causal

effect of a shock to reducing local jurisdiction’s ability to raise and/or retain property tax revenue.

First, we must assume that absent the reform event, manufacturing and power plants in the border

counties would evolve on similar paths. This is a priori plausible because these counties are likely

exposed to similar geographic shocks. However, we additionally test this assumption in several

ways. First, we show estimates in event study form to check for pre-trends. Second, we also show

results for manufacturing as a share of all employment and establishments. If effects were driven

by broader economic forces then we would not necessarily expect there to be a disproportionate

effect among manufacturing establishments, a large producer of negative local externalities. Third,

we show that results are robust to a number of different specifications, baseline covariates by year

controls and weighting schemes.

A second and more challenging identification assumption is that no other reforms co-

inciding with the event itself can influence our outcome variables as well as that the reform

itself cannot affect our outcome variable through other channels. For instance, many school

finance reform events restricted local jurisdictions’ ability to raise property tax rates and instead
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instituted increases in the state sales tax to fund education. If manufacturing firms responded to

this changed tax structure, it would change the interpretation of our results. Alternatively, these

reforms could have been part of a broader push for progressive legislation that may independently

affect locational decisions of plants (i.e. environmental legislation), which would bias our estimats.

Finally, these reforms by design increased funding in poor areas—this may have led to changed

household location decisions that could influence communities’ decision to allow plants to enter

through an income effect rather than a price effect.

Although it is difficult to fully rule-out these alternative explanations—and for this reason

we see these results as less well-identified than those from the first part of the paper—we attempt

to address these concerns in several ways. First, we test if there is within state heterogeneity by

local poverty rates—if the observed effects were driven by by the reform increasing funding to

poorer communities, we should expect to see larger effects in areas that were low-income prior to

the reform. Second, we show suggestive evidence that effects are larger in counties where there is

greater overlap between school districts and zoning jurisdictions exactly as theory would predict

if effects were driven by the school finance reforms and not othe correlated reforms. Lastly,

examining pre-trends can also help identify if effects are being driven by correlated legislation—if

so we might expect effects to appear prior to the reforms as not all correlated reforms would be

expected to occur in the exact year of the change. In the future, we will perform a set of analyses

on single reforms within several states that create large intra-state variation in incentives, which

will further help address these concerns.

A final worry may be that our border county design will violate the stable-unit treated

value assumption (SUTVA). If counties in reform states are now less receptive to industrial

development, prospective plants may be more likely to instead open across the state border in the

neighboring county. This is a common feature of all border designs and is unavoidable in our

setting. We address this concern in two ways. First, we might expect that the SUTVA concern

would be larger when comparing a treated counties to control counties that are very nearby the
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state border. Accordingly, we estimate if results vary based on a control counties’ proximity to

the treated state and find no evidence for any such effect.

Second, we can also bound any bias created by this SUTVA violation under the assumption

that the reform does not lead to an aggregate increase in the total number of plants across the

border pair.37 If we conservatively assume that every plant that would have opened in the reform

county now instead opens in the county across the border, our estimates would be overstated by a

factor of 2. Therefore, one-half our observed effect can be thought of as a lower-bound of the true

effect.

Finally, it is important to note that although we are looking at changes in school district

budgets, it is cities and counties that control local land-use decisions. However, as described

in Section 2, in most of the country, there is substantial overlap between school, municipal and

county boundaries (Fischel, 2010).38 Even in places where overlap is incomplete, as long as

individuals near the plant within the host municipality and county are in the same school district,

we would expect local leaders to internalize these benefits. To the extent that this jurisdictional

mismatch leads local municipal and county leaders to discount any school funding benefits, our

results would be an underestimate of the effects that would occur if there were shocks to the

municipal or county capacity to raise and retain local property tax revenue.

1.5.2 Results

In this section, we examine the effects of shifting local jurisdictions’ ability to raise and

retain property tax revenue on exposure to externality-producing plants. We examine this question

in two ways. We first show that the school finance results obtained in the previous section vary

based on their state’s level of school finance equalization—this suggests descriptively that these

reforms do indeed impact the localized benefit created by plant openings. We then examine in a

37Since the reform on net reduces incentives for plant location in the pair, this assumption seems reasonable.
38Using 2000 population data, we similarly estimate that in the average county there is an 85% probability that

two randomly selected individuals within the same zoning jurisdiction will also be in the same school district.
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more causal framework how changing local jurisdictions’ ability to raise and retain local property

tax revenue affect location patterns of large externality-producing plants using changes induced

by school finance reform litigation and legislation.

Heterogeneity in Effects of Plant Openings on School Finance Outcomes

In the previous section, we showed that tax payments produced by these types of projects

were economically meaningful and valued by local homeowners. However, many of these

openings occurred in states that had already undergone significant equalization reforms, making

it likely that these effects are actually much smaller than they would have been in the past, before

the reforms were enacted. To test this idea, we examine how the school finance effects of an

opening differ by a state’s marginal value of tax base (MVTB) with respect to school spending.

We proxy for the MVTB in each state by estimating the relationship between a district’s total

revenue per student and taxable-value per student over time conditional on district and year

fixed-effects.39

The coefficient on taxable value represents the association between a district’s tax-base

per student and the total revenue per student available to the district. The higher the value, the

more district tax base increases translate into revenue increases on average. Tax limitations and

crowd-out will both make this value smaller. Of course, this relationship will also be determined

by the extent to which the average district in a state chooses to respond to a tax base shock by

shifting property tax rates relative to changing spending. However, given that we saw a much

larger spending response than property tax response in Section 3 and because many states have

rate floors for eligibility for state funds, we believe this measure is a reasonably good proxy for a

district’s ability to access its local tax base. We estimate this measure for years 2005 and 2017

to maximize the number of states for which we have data and then apply it to all years in our

39Our qualitative method for identifying reforms compares changes within states over time. However comparing
the relative stringency of reforms across states is difficult because there is no obvious summary statistic to use to
characterize this relationship. In the future, we are working on creating standardized measures of crowd-out and tax
limitations for an average district and will use this as an alternate measure of MVTB.
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sample.

Figure A.4 shows how the expected tax base impact of a plant differs by its state’s MVTB.

We would expect this relationship to be positive; if local jurisdictions’ can raise and retain a

lot of revenue from a plant opening, then the size of a plant’s expected fiscal impact should

be an important consideration in siting. Conversely, if a jurisdiction cannot retain property tax

revenue from a plant then its expected impact is irrelevant. That is precisely the pattern we see

here; states with a higher MVTB see location patterns that create higher tax base impacts per

student. Although descriptive, this plot provides suggestive evidence that a locality’s ability to

gain tax benefits from local industry is an important determinant of location choice. This plot

also reassuringly shows that our estimated values of MVTB (on the x-axis) are of the magnitude

we would expect; in general, states in our sample see a roughly .001 to .01 dollar increase for

each dollar of tax base added. Given that the average school district tax rate is roughly 1% and

almost all states have some degree of crowd-out, this is precisely the range we would expect.

We next examine how the school finance results from Section 3 vary based on a juris-

diction’s estimated MVTB when a plant enters. Table 1.7 shows effects of an opening on total

revenue and total expenditures for state-years by above/below median MVTB (Columns 1,2) and

estimated MVTB as measured in mills (Columns 3,4). The results are exactly as we would expect.

Low equalization (high MVTB) states raise significantly more revenue from plant openings. In

low equalization states moving from 25th to 75th percentile in expected tax base impacts (2

log points) leads to a 7% increase in total revenues per student and an 13% increase in total

expenditures per student, while in a below median state such an increase leads to no change in

revenue and a 2% increase in expenditures. Similarly, a state with an estimated MVTB of 0 sees

no change in revenues when moving from a 25th percentile opening to a 75th percentile opening

and only a 3% increase in expenditures. Conversely moving to the 75th percentile in MVTB (4.4

mills), leads to a 3.2% increase in revenue and a 8% increase in expenditures. In general, we see

that the less able jurisdictions are to raise and retain local property tax revenue the smaller the
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fiscal benefits of a plant opening.

Effect of School Finance Reforms on Local Industrial Development

In this subsection, we examine in a causal framework how changes in incentives created

by school finance reforms impacted local jurisdictions’ exposure to large externality-producing

plants. We answer this question in the context of school finance reforms and large manufacturing

and power plants. We begin by testing whether our qualitatively-identified reforms had meaningful

effects on the way schools in a state were funded. Table 1.8 shows these reforms increased the

state share of school funding by 9 percentage points, increased state revenue per student by $1,000

and decreased property tax revenue per student by $750, suggesting a massive change in how

a state’s schools were funded. Further, these reforms were highly progressive; counties with

higher poverty rates at baseline saw a much larger increase in state aid. These results provide

confirmatory evidence that our qualitatively-identified reforms did indeed lead to a sharp change

in incentives for local districts.

We now investigate how this dramatic change in incentives affected exposure to large

capital projects.We examine the effect of reform events on both large manufacturing establish-

ments/employment and exposure to large power plants. Table 1.9 shows the main results for the

manufacturing analysis. The odd columns show the results using an unbalanced panel of 14 years

before and 14 years after the reform and the even columns show the results using a balanced

panel of 8 years prior and 14 years after the reform.40 Because we are measuring the effects of

the reform on stocks not flows, we show the effect of being within 5 years of the reform as well as

being more than 5 years after a reform as we expect the treatment effect to increase over time. On

average, manufacturing employment per capita falls by roughly 6-7 workers per 1,000 population

in reform counties or 10%. We also observe a 2 percentage point decline in the share of total

employees that work in the manufacturing sector suggesting that this result is not simply driven

40Our data begin in 1964 and a large number of reforms occurred in the early 1970s so we cannot include as many
pre years in the balanced panel.
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by a secular economic decline. Finally, there is a meaningful decline in large manufacturing

establishments (as measured by number of employees). Establishments with greater than 250

employees fall by .009 per 1,000 population (20%). Establishments with greater than 500 workers

fall by .004 per 1,000 population (20%). All results are robust across samples and are highly

statistically significant (p<.01).

Table 1.10 show results for the power plant analysis. As described above, we do not

have reliable retirement data prior to 1975 so our estimates of generating capacity is somewhat

incomplete. With this caveat in mind, the results do provide suggestive evidence of a decline in

large plants in reform counties relative to their control neighbors. Specifically, the probability

of having a plant of any meaningful size (generating capacity greater than 50MW) falls by 3

percentage points off of a base of 23% and the probability of having a large plant (generating

capacity greater than 250MW) falls by 2.5 percentage points off of a base of 15%. Using an

inverse-hyperbolic sine transformation we can further see that the total amount of generating

capacity within a county falls by 15-20%. All results are marginally statistically significant.

Table A.17 shows the effect of the reform on plant openings and retirements. Openings

and retirements are extremely rare events—they occur in less than .5% of county-years and we

therefore lack sufficient power to estimate these effects with any kind of precision. Nonetheless,

the coefficients all go in the expected directions; reforms lead to a large decrease in openings

(in proportional terms) and a somewhat smaller increase in retirements, but given the lack of

precision results are generally statistically insignificant.

Together, these results provide evidence that shocks to local jurisdictions’ ability to access

to their local tax base lead to large changes in siting behavior. However, there are a number of

significant identification concerns that may preclude us from interpreting these results causally.

In the next subsections, we attempt to test for violations of our identifying assumption across four

different domains: omitted variable bias, results driven by other aspects of the reform/correlated

reforms, SUTVA violations and weighting/specification/bandwidth choices. While we are unable

48



to fully rule-out many of these violations our results do provide suggestive evidence that it is

indeed the change in incentives embedded in the reform that are driving our results.

Omitted Variable Bias

One major identification concern is omitted variable bias; we may be worried that even

in the absence of a reform, treated counties would have had different trends in manufacturing

employment or power generation than their control neighbors. We begin testing for omitted

variable bias by examining whether treatment and control counties have different pre-trends in our

outcomes of interest using an event study design. Figure 1.6 shows results dynamically for our

manufacturing outcomes, while Figure 1.7 shows dynamic results for our power plant outcomes.

In all cases, there are no pre-trends prior to the reform and then a decline following the reform’s

onset. Because we are examining stocks as an outcome, we would expect the effect to increase in

magnitude over time until a new equilibrium is reached; indeed that is precisely the pattern we

observe here.

As a second check, we examine whether treatment and control counties differ on baseline

characteristics prior to the reform. We are implementing a differences-in-differences analysis and

so differences across groups would not be a violation of our identifying assumption per se, but a

lack of large differences would still be reassuring that absent a reform these groups of counties

would remain on similar trajectories.

Table A.18 test for differences across key demographic and economic characteristics in

the Decennial Census preceding the reform. There are no economically or statistically significant

differences across any covariates. These results suggest that pre-deterimined differences in

baseline characteristics are unlikely to be driving our results. TableA.19 shows differences

across outcome variables between treated and control counties in the year of the reform. There

are no economically or statistically significant differences in power generation, but treated

counties do appear to have a greater number of manufacturing employees and large manufacturing
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establishments per capita at baseline. Although we did not see any pre-trends in our dynamic

analysis, we may still be worried that that this difference in levels between treatment and control

counties may be driving our results.

To evaluate this possibility, we perform several tests of the robustness of our results in

Tables A.20 (manufacturing employment) and A.21 (large manufacturing establishments). In

Columns (1)-(2), we show the results after logging the outcome variable. If results were driven

by reforms being correlated with a secular proportional decline in manufacturing, the difference

in levels could mechanically create our observed results. Such a scenario is unlikely given that

events happened at different times and we did not see any pre-trends in our dynamic analysis,

but even more reassuringly we see that results are extremely similar to our main analysis when

using a logged dependent variable. Columns (3)-(4) restrict the sample to be only years prior

to the start of the massive decline in US manufacturing jobs (in 1997) to ensure that nothing

about correlations between this decline and baseline levels of manufacturing are driving our

results. Again, results remain largely the same. Columns (5)-(6) restrict our sample to only county

pairs that have manufacturing levels per capita within .5 log points in 1964 (the first year of our

sample), while Columns (7)-(8) use a .25 log point cut-off. Despite significantly reducing our

sample size, results remain qualitatively similar. Finally, Columns (9)-(10) exclude border regions

whose pre-reform differences in manufacturing employment are large positive outliers. In this

sample, there are no economically or statistically significant baseline differences in manufacturing

employment and yet results persist suggesting again that these baseline differences are very

unlikely to be driving our main results.

Finally, if results were driven by other trends we might also expect changes to occur in

other areas of the economy aside from manufacturing. We expect the effects of these reforms

to be largest among large polluting plants for two reasons. One, these plants are often the most

valuable pieces of non-residential real estate in a given district. While properties like warehouses

or office buildings also create tax revenue because they are typically less capital-intensive than
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large plant, each individual property contributes much less to the local tax base and therefore

the tax benefits are less likely to be an important reason for approval. Two, these plants create

large local externalities that are likely to induce substantial local opposition to the project in the

absence of compensation.

We test this supposition in several ways. Table A.22 shows the effects of the reforms on

non-manufacturing employment and industries, while Table A.23 breaks down the effects of the

reform by industry type. There are no significant effects of the reform across non-manufacturing

industries providing further evidence that results are not driven by a secular economic decline

in treated counties. Further, there is suggestive evidence for employment declines that in other

sectors that may have large externality producing projects such as the mining/extraction or

transportation/utility sectors although these effects are not statistically significant. Together, these

results suggest that differential trends among treated and control counties are not likely to be

driving our results.

Simultaneous Shocks

A second and harder to rule-out identification concern is that results are driven by shocks

that occurred simultaneous to the change in incentives. We can divide this concern into two parts:

other aspects of the school finance reform are driving the results and/or reforms correlated with

the adoption of school finance are causing the results. We address each of these possibilities in

turn.

School finance reforms typically increased spending in the poorest districts and weakly

decreased spending in the richest districts. Such changes in spending could induce sorting,

increase land-values in poor districts or the marginal value of additional tax base because of

diminishing marginal returns all of which would lead polluting industries to decline in low-income

areas of reform states for reasons other then the change in incentives. However, if these dynamics

were driving our observed results, we would expect effects of the reforms to be much larger
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in high-poverty relative to low-poverty districts. We test this hypothesis empirically in Table

1.11. This table shows that if anything, effects are larger in low-poverty relative to high-poverty

counties suggesting that these other aspects of the reforms are unlikely to be driving the observed

results.

An additional concern is that these reforms may have occurred as part of a suite of

progressive legislation that may independently have had effects on the location of polluting

industries (i.e. laws requiring strict environmental or community impact assessments prior to

development). We think this is unlikely to be the cause of the observed results for several reasons.

First, many school finance reforms were the results of lawsuits alleging that existing funding

structures violated the state constitution (Jackson, Johnson, and Persico, 2014) and not part of

a broader legislative push. Second, reforms happened across a diverse range of states and over

a long time period. Third, we do not observe major changes outside of the manufacturing and

power generation industries—thus, such reforms would have to be highly targeted to achieve

such an effect. The most likely type of reforms that could lead to this pattern are environmental

reforms, but in the vast majority of states most major environmental initiatives have been federal.

However, we are in the process of collecting information on major environmental reforms across

US states to empirically assess this possibility.

In Table A.24 we provide a further empirical check of this assumption. As discussed

above, the studied reforms affected school districts, but the jurisdictions typically making zoning

decisions are cities and counties. Thus, we might expect that the more closely school districts

align with zoning jurisdictions, the stronger the effect a reform should have. School districts

and zoning jurisdictions can be mismatched on two dimensions; a single zoning jurisdiction can

be spread over multiple school districts and similarly a single school district can be spread over

multiple zoning jurisdictions. Both dimensions should matter for the effect of the reform. If a

zoning jurisdiction is spread over multiple school districts fewer residents will benefit from a

given plant opening. If a school district is spread over multiple zoning jurisdictions, the amount
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of benefit will be diluted within each zoning jurisdiction. Thus, our variable of interest is an

interaction term between the average probability that two given residents of a county’s zoning

jurisdiction will in the same school district and the average probability that two given residents of

a school district will be in the same zoning jurisdiction.

Table A.24 shows some suggestive evidence that effects are larger in areas with greater

overlap between school districts and zoning jurisdictions, although effects are only significant

in the case of employment. The results in this table include state by year fixed-effects and so

are identified wholly off of differences in effect-sizes within treated counties in the same reform

state. Because no other major state environmental laws is likely to target counties in states with

disproportionate overlap between school and zoning jurisdictions, we believe this pattern provides

further suggestive evidence for the change in incentives as the main mechanism driving these

results.

Stable Unit Treatment Value Assumption Violation

An additional concern may be that our analysis may violate the stable unit treatment

value assumption. The idea here would be that if a plant’s previously optimal location was in

a given county, its next most optimal county after the reform may be directly across state lines

in the control county. We address this concern in two ways. First, we can attempt to put a

lower bound on the treatment effect if SUTVA is operative. We first assume that the treatment

does not increase the total number of plants locating in a given pair; this assumption seems

plausible as the treatment is making it less likely on average that the pair will want a plant. Under

this assumption, a violation of SUTVA could overstate our result by at most a factor of 2 if all

plants from the treated county moved to the control county. All results would remain highly

economically significant under this assumption.

In addition to bounding, we attempt to test this supposition empirically in Table A.25.

Specifically, we interact our difference-in-differences estimator with a variable equal to the
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distance of the control county to the treated state border (odd columns) or exclude control

counties that are within 45 miles of the border (even columns). We expand our sample to include

all county pairs that are within 90 miles of each other to provide sufficient power to test these

hypotheses. We find no evidence that effects differ by distance to border or are significantly

smaller after excluding counties nearby the border. These results provide some supportive

evidence that SUTVA violations are not a major determinant of our observed results.

Weighting/Specification/Bandwidth

Finally, we perform several checks to ensure that our weighting, sample selection, or

other specification choices are not driving our results. Table A.26 and A.27 show results when

weighting by reform event or population. We see that results for both manufacturing and power

generation are if anything larger when weighting by population. When weighting by reform

state results are broadly similar although standard errors increase as the effects of several states

are estimated imprecisely. Table A.28, A.30 and A.29 show results using different distance

bandwidths. Results are broadly similar regardless of whether we restrict the bandwidth to 30

miles or increase it to 90 miles.

We might also be concerned that something in our reform identification procedure itself

is driving results. To address this, we perform the same analysis using the first school finance

reform identified for each state in Jackson, Johnson, and Persico (2014) analysis of school finance

reform’s effects on low-income educational achievement and labor market outcomes. We would

expect the effects using these reforms to be smaller because not all reforms used by Jackson,

Johnson, and Persico (2014) change property tax incentives—some simply equalize spending

through lump-sum transfers or other techniques, which do not change local control over property

taxation. The observed results are consistent with this pattern; using the Jackson, Johnson, and

Persico (2014) reforms we see directionally similar results that are also statistically significant,

but the magnitudes are often smaller than those found when using our qualitatively identified
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reforms. These results provide additional reassurance that nothing particular to our qualitative

reform-identification process is causing our results.

Finally, we can identify the effects separately for each reform state to ensure that no one

state is behind our results. Figure A.7 shows the distribution of effects across states. This figure

shows that almost all states have negative treatment effects suggesting that results are not driven

by one or two states. Treatment effect sizes are not correlated with reform timing nor geographic

region of the country. In sum, these results suggest that the observed effects are unlikely to be

driven by specification, bandwidth, weighting or other similar factors.

1.6 Conclusion

Large capital projects create substantial external benefits and costs. When these costs and

benefits occur on different spatial scales in the presence of local control over land-use, inefficien-

cies can emerge. In this paper, we study how access to local property taxation may change local

jurisdictions’ willingness to allow externality-producing projects enter their communities. We

first show that in addition to the negative externalities imposed by plants, nearby residents also

have the potential to experience significant gains from plant openings in the form of increased

property tax payments. The average opening leads to a 10% increase in the tax base on average.

This increased tax base further caused increased educational spending, used largely on capital

expenditures. There is also a small decrease in local property tax rates.

We next show that local homeowners value this increased educational spending. After

the plant opens, homes within the receiving district increase by 3%-7% in value for an average

opening relative to similar homes just across the border. This increase is of a similar magnitude

to the decrease in home prices caused by the plant for nearby residents suggesting that property

taxation of large plants has important distributional consequences for who is helped and who is

harmed by their construction.
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We finally examine how changing local jurisdictions’ ability to access these tax revenue

benefits affects their openness to externality-producing projects. To investigate this question

empirically, we use plausibly exogenous changes in crowd-out and tax limitations caused by

school finance litigation and legislation. We show that following a reform, manufacturing

employment and large establishments fall by 10-15% suggesting that the benefits provided

by property tax payments from these entities can be an important driver of local industrial

development.

These results also suggest that reforms that restrict a local government’s ability to raise

revenue from their tax base may have significant unintended consequence for local land-use. This

is a feature of many common state-level policies including school finance reforms, municipal and

county revenue sharing systems and property tax limitations. However, the welfare implications

of this shift are not clear. Depending on the relative distribution of local and social costs and

benefits, limiting the property taxation benefits of these projects may either increase or decrease

efficiency. Better understanding this trade-off is essential when considering the design and reform

of state-level programs that infringe upon local property taxation. In future work, we will strive

to both characterize the efficiency loss and gains created by this policy as well as investigate how

changes to boundaries of taxing jurisdictions can affect this trade-off.
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Chapter 1, in full, is currently being prepared for submission for publication of the

material. Fraenkel, Rebecca; Krumholz;Samuel. “Property Taxation as Compensation for Local

Exeternalities: Evidence from Large Plants”. The dissertation author was a primary investigator

and author of this material.
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Figure 1.1: Effect of Opening on Taxable Value Per Student and Property Tax Rates

This figure shows the effect of a plant opening on the natural log of district taxable value per student (left) or
property tax rates in mills (right). Coefficients come from a regression of log taxable value/student on district
fixed-effects, year x border pair fixed effects and interactions between indicators for years since approval (-1 is the
omitted category) and whether or not a district receives a plant. Border pairs are any two districts that share a border
within the same state and only one of the two districts experienced a plant opening between 1995 and 2015. We
implement two-way clustered standard errors at the plant (all border districts attached to a given opening) and district
level. Only openings with greater than $10,000 in expected tax base per student are included (≈ 10% of openings are
dropped). All district-years are weighted by the inverse of the total number of districts attached to a given opening in
a year in order to weight all plant openings equally. District taxable values and property tax rates were
hand-collected from state Department of Education and Department of Revenue’s annual reports. Plant opening data
comes from the Energy Information Administration (EIA).
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Figure 1.2: Effect of Opening on Local Revenues/Student, Total Revenues/Student and Total
Expenditure/Student

This figure shows the effect of a plant opening on district revenues and expenditures per student. Coefficients come
from a regression of the relevant outcome variable on district fixed-effects, year x border pair fixed effects and
interactions between indicators for years since approval (-1 is the omitted category) and whether or not a district
receives a plant. Border pairs are any two districts that share a border within the same state and only one of the two
districts experienced a plant opening between 1995 and 2015. Only openings with greater than $10,000 in expected
tax base per student are included (≈ 10% of openings are dropped). We implement two-way clustered standard
errors at the plant (all border districts attached to a given opening) and district level. All district-years are weighted
by the inverse of the total number of districts attached to a given opening in a year in order to weight all plant
openings equally. Revenue and expenditure data came from the National Center for Education Statistics (NCES).
Plant opening data comes from the Energy Information Administration (EIA).
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Figure 1.3: Differences in Key Demographic Groups Before and After Openings

This figure shows the effect of a plant opening on share of students with free and reduced lunch (FRL, 1998-2018
only), log enrollment and share of black and hispanic students. Coefficients come from a regression of the relevant
outcome variable on district fixed-effects, year x border pair fixed effects and interactions between indicators for
years since approval (-1 is the omitted category) nnd whether or not a district receives a plant. Border pairs are any
two districts that share a border within the same state and only one of the two districts experienced a plant opening
between 1995 and 2015. Only openings with greater than $10,000 in expected tax base per student are included
(≈ 10% of openings are dropped). All district-years are weighted by the inverse of the total number of districts
attached to a given opening in a year in order to weight all plant openings equally. We implement two-way clustered
standard errors at the plant (all border districts attached to a given opening) and district level. Demographic data
came from the National Center for Education Statistics (NCES). Plant opening data comes from the Energy
Information Administration (EIA).
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Figure 1.4: Effect of Opening on Host-District Home Prices

This figure shows the effect of a plant opening on log local housing prices using a border difference-in-difference
design. In the left panel, we only include sales within a bandwidth of 2 km from the border. Coefficients come from
a regression of log home prices on an interaction between an indicator for whether a house is in a plant-receiving
district and a vector of indicators for years since approval. In right panel, we show the coefficient of a regression of
ln prices on an indicator for whether a house was in a plant receiving district with an indicator for years 3-8 since
plant approval using different border bandwidths. In both regressions additional controls include border pair by year
by month fixed-effects and .004 degree latitude x .004 degree longitude x year fixed-effects. The outcome variable is
residualized for hedonic by state fixed-effects, which include land-use , home age by plant district (5 year bins with 1
year bins for ages <5), bedrooms , bathrooms, square footage (500 sq ft bins), heating type and lot size (1 acre bins).
Missing hedonics are included as a separate indicator. Each observation is weighted by the inverse of the number of
sales in its treated unit each year (i.e. border pair x treat). Standard errors are clustered at the plant district level. All
housing data come from the Zillow ZTRAX database—sales below $5,000 or greater than $1,500,000 are excluded
as outliers. Only pairs of districts in which both district have a 2000 population greater than 10,000 are included in
the regression. Openings with an expected tax base impact per student of less than $10,000 are excluded. Data are
from fourteen states in total: Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa, Michigan, Minnesota,
New York, North Carolina, Ohio, Oklahoma and Pennsylvania. These make up roughly 60% of openings. Texas and
Kansas both have large number of openings, but do not have publicly available home sale data.
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Figure 1.5: Effect of Opening on Nearby Home Prices

This figure shows the effect of a plant opening on log local housing prices for nearby homes. All regressions include
controls for plant by year by month fixed-effects and .004 degree latitude by .004 degree longitude cell fixed effects.
Coefficients are the interaction between an indicator for years since plant approval (-1 is the omitted variable) and
two distance metrics: ln distance from plant (on left) and an indicator for being less than 5km from the plant (on
right). Homes more than 20km away and closer than .5km from the plant are dropped and the regression on the right
also includes indicators for being 5km-10km from the plant x years since approval. Plants in districts with fewer than
10,000 population are excluded as there are too few annual transactions to create consistent home price estimates.
The outcome variable is residualized for hedonic by state fixed-effects, which include land-use , home age by plant
district (5 year bins with 1 year bins for ages <5), bedrooms , bathrooms, square footage (500 sq ft bins), heating
type and lot size (1 acre bins). Missing hedonics are included as a separate indicator. Each observation is weighted
by the inverse of the number of sales attached to a given plant in each year. Standard errors are clustered at the plant
district level. All housing data come from the Zillow ZTRAX database—sales below $5,000 or greater than
$1,500,000 are excluded as outliers. Data are from fourteen states in total: Arizona, California, Colorado, Georgia,
Illinois, Indiana, Iowa, Michigan, Minnesota, New York, North Carolina, Ohio, Oklahoma and Pennsylvania. These
make up roughly 60% of openings. Texas and Kansas both have large number of openings, but do not have publicly
available home sale data.
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Figure 1.6: Effect of School Finance Reform on Large Manufacturing Establishments and
Manufacturing Employment

This figure shows the effect of a school finance reform on manufacturing outcomes using a county border pair
difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were included.
In the case where both members of a pair were treated, all years after the second event occurred were dropped.
Coefficients come from a regression of the outcome variable on the interaction between an indicator for whether a
district is a reform state and a vector of indicators for periods relative to reform (the year prior to reform is the
omitted category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors are
clustered at the state and state border pair level. Manufacturing employment data come from County Business
Patterns. Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14
years before and after the reform year, while our balanced sample consists of 8 years prior and 14 years following
the event. We exclude outcome values greater than the 99th percentile as outliers. Standard errors are clustered at the
state and state border pair levels.
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Figure 1.7: Effect of School Finance Reform on Power Plant Openings

This figure shows the effect of a school finance reform on power generation outcomes using a county border pair
difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were included.
In the case where both members of a pair were treated, all years after the second event occurred were dropped.
Coefficients come from a regression of the outcome variable on the interaction between an indicator for whether a
district is a reform state and a vector of indicators for periods relative to reform (the year prior to reform is the
omitted category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors are
clustered at the state and state border pair level. Manufacturing employment data come from County Business
Patterns. Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14
years before and after the reform year, while our balanced sample consists of 8 years prior and 14 years following
the event. We exclude outcome values greater than the 99th percentile as outliers. Standard errors are clustered at the
state and state border pair levels.
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Table 1.1: Effects of Plant Opening on District Tax Base and School Finance Outcomes

(1) (2) (3) (4) (5)
VARIABLES Tax Value Rate Loc Rev Tot Rev Tot Exp

Treat x Post Yrs 0-2 0.0260** 0.110 0.141** 0.138* 0.0602
(0.0130) (0.113) (0.0599) (0.0792) (0.175)

Treat x Post Yrs 3-8 0.108*** -0.167 0.501*** 0.409*** 0.765**
(0.0236) (0.134) (0.111) (0.114) (0.344)

Observations 21,240 21,092 38,984 38,962 39,882
R2 0.966 0.973 0.955 0.937 0.853
Pair x Year FE Y Y Y Y Y
Sample Non-Small Non-Small Non-Small Non-Small Non-Small
Dep. Var. Mean 580887 10.56 4.991 11.79 12.15

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on a district’s taxable value per student, tax rate (mills), local revenue per
student (’000s/student), total revenue per student (’000s/student) and total expenditures per student (’000s/student).
Coefficients come from a regression of the relevant outcome variable on district fixed-effects, year x border pair fixed
effects and interactions between periods relative to the treatment district of the pair gaining approval for a plant and
whether or not the district receives a plant. Border pairs are any two districts that share a border within the same state
and only one of the two districts experienced a plant opening between 1995 and 2015. Only openings with data 6
years prior to an opening and 8 years following an opening are included unless otherwise indicated. . Only openings
with greater than $10,000 in expected tax base per student are included (≈ 10% of openings are dropped). We
implement two-way clustered standard errors at the plant (all border districts attached to a given opening) and district
level. All district-years are weighted by the inverse of the total number of districts attached to a given opening in a
year in order to weight all plant openings equally. District property tax rates and tax bases were hand-collected from
state Department of Education and Department of Revenue’s annual reports. Revenue data came from the National
Center for Education Statistics (NCES). Plant opening data comes from the Energy Information Administration
(EIA).
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Table 1.2: Effects of Plant Opening on School Finance Outcomes by Revenue Source

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Ptax PrntGov UnspecLoc OthLoc StFormAid OthSt Fed

/Stud /Stud /Stud Stud /Stud /Stud /Stud

Treat x Post Yr 0-2 0.0697* 0.0315* 0.0287 0.0108 -0.0636 0.00417 -0.00616
(0.0418) (0.0175) (0.0191) (0.0175) (0.0421) (0.0349) (0.0127)

Treat x Post Yr 3-8 0.338*** 0.0666** 0.0714*** 0.0270 -0.134*** 0.0110 -0.0224
(0.0913) (0.0269) (0.0249) (0.0267) (0.0504) (0.0282) (0.0157)

Observations 38,818 38,818 38,818 38,818 39,262 39,262 39,056
R2 0.961 0.983 0.677 0.944 0.964 0.906 0.937
Pair x Year FE Y Y Y Y Y Y Y
Sample Non-Small Non-Small Non-Small Non-Small Non-Small Non-Small Non-Small
Dep. Var. Mean 3.473 0.565 0.210 1.201 4.294 1.537 0.874

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on a district’s revenue streams measured on a per-student basis.
Uncategorized local and state payments represent payments that do not fit into the NCES categories and often
encompass payments in leiu of taxation (PILOT). Other local payments are largely made up of sales and income
taxes. Other state revenues are transfers for state-mandated programs like transportation, special education or English
language learners. Coefficients come from a regression of the relevant outcome variable on district fixed-effects,
year x border pair fixed effects and interactions between periods relative to the treatment district of the pair gaining
approval for a plant and whether or not the district receives a plant. Border pairs are any two districts that share a
border within the same state and only one of the two districts experienced a plant opening between 1995 and 2015.
Only openings with data 6 years prior to an opening and 8 years following an opening are included unless otherwise
indicated. Only openings with greater than $10,000 in expected tax base per student are included (≈ 10% of openings
are dropped). We implement two-way clustered standard errors at the plant (all border districts attached to a given
opening) and district level. All district-years are weighted by the inverse of the total number of districts attached to a
given opening in a year in order to weight all plant openings equally. Revenue data came from the National Center
for Education Statistics (NCES). Plant opening data comes from the Energy Information Administration (EIA).

66



Table 1.3: Effects of Plant Opening on Debt and Expenditures by Type

(1) (2) (3) (4)
VARIABLES LTD Instr Sal. Cap Oth

/Stud /Stud /Stud /Stud

Treat x Post Yrs 0-2 0.248 -0.0134 0.0920 -0.0184
(0.279) (0.0258) (0.129) (0.110)

Treat x Post Yrs 3-8 0.863* 0.0430 0.402*** 0.319
(0.462) (0.0381) (0.142) (0.247)

Observations 39,712 39,882 39,882 39,882
R2 0.829 0.974 0.597 0.878
Pair x Year FE Y Y Y Y
Dep. Var. Mean 5.819 6.103 1.351 4.796

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on a district’s outstanding long-term debt per student, total instruc-
tional personnel salaries per student, total capital expenditures per student and all other expenditures per student.
Coefficients come from a regression of the relevant outcome variable on district fixed-effects, year x border pair
fixed effects and between periods relative to the treatment district of the pair gaining approval for a plant and whether
or not the district receives a plant. Border pairs are any two districts that share a border within the same state and
only one of the two districts experienced a plant opening between 1995 and 2015. Only openings with data 6 years
prior to an opening and 8 years following an opening are included unless otherwise indicated. Only openings with
greater than $10,000 in expected tax base per student are included (≈ 10% of openings are dropped). We implement
two-way clustered standard errors at the plant (all border districts attached to a given opening) and district level. All
district-years are weighted by the inverse of the total number of districts attached to a given opening in a year in
order to weight all plant openings equally. Schol finance data came from the National Center for Education Statistics
(NCES). Plant opening data comes from the Energy Information Administration (EIA).
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Table 1.4: Effects of Plant Opening on Home Prices

(1) (2) (3) (4) (5) (6)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price

Treat x Post Yrs 0-2 0.0220 0.0370 0.00696 0.0290* 0.0552** -0.00175
(0.0145) (0.0227) (0.0166) (0.0152) (0.0247) (0.0152)

Treat x Post Yrs 3-8 0.0485*** 0.0700*** 0.0275 0.0508*** 0.0718** 0.0285
(0.0143) (0.0207) (0.0185) (0.0175) (0.0291) (0.0168)

Observations 501,699 198,576 303,123 538,353 223,992 314,361
R2 0.708 0.639 0.804 0.727 0.685 0.802
Weighted Y Y Y Y Y Y
Spec .4km grid .4Km Grid .4km Grid .4km grid .4km grid .4km grid
Sample Pop Excl >10K Pop >10k Pop >10k Pop All All All
Sample Geo Excl All No CA CA-Only All No-CA CA-only

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on log local housing prices using a border difference-in-difference
design. We only include sales within a bandwidth of 2 km from the border. Coefficients come from a regression of
log home prices on an interaction between an indicator for whether a house is in a plant-receiving district and a vector
of indicators for grouping of years since approval. Controls include border pair by year by month fixed-effects and
.004 degree latitude x .004 degree longitude x year fixed-effects. The outcome variable is residualized for hedonic by
state fixed-effects, which include land-use , home age by plant district (5 year bins with 1 year bins for ages <5),
bedrooms , bathrooms, square footage (500 sq ft bins), heating type and lot size (1 acre bins). Missing hedonics are
included as a separate indicator. Each observation is weighted by the inverse of the number of sales in its treated
unit each year (i.e. border pair x treat). Standard errors are clustered at the plant district level. All housing data
come from the Zillow ZTRAX database—sales below $5,000 or greater than $1,500,000 are excluded as outliers.
A population exclusion of greater than 10,000 population means that only pairs of districts in which both district
have a 2000 population greater than 10,000 are included in the regression. Openings with an expected tax base
impact per student of less than $10,000 are excluded. Data are from fourteen states in total: Arizona, California,
Colorado, Georgia, Illinois, Indiana, Iowa, Michigan, Minnesota, New York, North Carolina, Ohio, Oklahoma and
Pennsylvania. These make up roughly 60% of openings. Texas and Kansas both have large number of openings, but
do not have publicly available home sale data.
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Table 1.5: Effects of Plant Opening on Home Prices: Different Expected Tax Base Per Student
Cut-Offs

(1) (2) (3) (4) (5) (6)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price

Treat x Post Yrs 0-2 0.00945 0.0403** 0.0611** -0.00189 0.0208* 0.0364***
(0.00929) (0.0183) (0.0289) (0.00752) (0.0104) (0.00943)

Treat x Post Yrs 3-8 0.0309*** 0.0708*** 0.105** 0.00650 0.0498** 0.0687***
(0.0104) (0.0241) (0.0430) (0.00967) (0.0207) (0.0171)

Observations 1,107,048 143,277 61,487 1,156,284 165,509 75,216
R2 0.715 0.701 0.704 0.716 0.639 0.640
Weighted Y Y Y N N N
Sample >10k Pop >10k Pop >10k Pop >10k Pop >10k Pop >10k Pop
Exp Tax Base Cut-off All 75K/Stud 150K/Stud All 75K/Stud 150K/Stud
Avg Exp Tax Base/Stud 1.076 2.685 4.130 0.344 1.871 2.878

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on log local housing prices using a border difference-in-difference
design. We only include sales within a bandwidth of 2 km from the border. Coefficients come from a regression of
log home prices on an interaction between an indicator for whether a house is in a plant-receiving district and a vector
of indicators for grouping of years since approval. Controls include border pair by year by month fixed-effects and
.004 degree latitude x .004 degree longitude x year fixed-effects. The outcome variable is residualized for hedonic by
state fixed-effects, which include land-use , home age by plant district (5 year bins with 1 year bins for ages <5),
bedrooms , bathrooms, square footage (500 sq ft bins), heating type and lot size (1 acre bins). Missing hedonics are
included as a separate indicator. Each observation in Columns (1)-(3) are weighted by the inverse of the number of
sales in its treated unit each year (i.e. border pair x treat). Standard errors are clustered at the plant district level. All
housing data come from the Zillow ZTRAX database—sales below $5,000 or greater than $1,500,000 are excluded
as outliers. Only pairs of districts in which both district have a 2000 population greater than 10,000 are included in
the regression. Data are from fourteen states in total: Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa,
Michigan, Minnesota, New York, North Carolina, Ohio, Oklahoma and Pennsylvania. These make up roughly 60%
of openings. Texas and Kansas both have large number of openings, but do not have publicly available home sale
data.
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Table 1.6: Effects of Plant Opening on Nearby Home Prices: Spatial Difference-in-Differences

(1) (2) (3) (4) (5) (6)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price

5-10kM Away x Post Yrs 0-2 -0.00546 -0.00377
(0.0118) (0.0108)

5-10 Km Away x Post Yrs 3-8 -0.0288* -0.0185
(0.0168) (0.0119)

<5km away x Post Yrs 0-2 -0.00633 -0.01277
(0.0130) (0.0108)

<5km away x Post Yrs 3-8 -0.0579** -0.0329*
(0.0252) (0.0168)

Ln Dist x Post Yrs 0-2 0.00864 0.00863
(0.0126) (0.00980)

Ln Dist x Post Yrs 3-8 0.0313* 0.0240**
(0.0157) (0.0115)

5-10Km Away x Post Yrs 0-2 x Nameplate (’00 MW) -0.00284 -0.00393**
(0.00219) (0.00173)

5-10Km Away x Post Yrs 0-2 x Nameplate (’00 MW) -0.00895*** -0.00878***
(0.00309) (0.00123)

< 5Km Away x Post Yrs 0-2 x Nameplate (’00 MW) -0.00620*** -0.00520***
(0.00226) (0.00117)

< 5Km Away x Post Yrs 3-8 x Nameplate (’00 MW) -0.0150*** -0.00920***
(0.00486) (0.00190)

Observations 2,228,378 2,352,691 2,228,378 2,352,691 3,964,489 4,107,232
R2 0.683 0.705 0.683 0.701 0.690 0.698
Size Cutoff >100MW >100MW >100MW >100MW N N
Hedonics Y Y Y Y Y Y
Max Dist 20km 20km 20km 20km 20km 20km
Weighted Y N Y N Y N

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on local housing prices for nearby homes. All regressions include
plant district by year, .004 degree longitude x .004 degree latitude bins, and district x year fixed-effects.The outcome
variable is residualized for hedonic by state controls. These include land-use , home age by plant district (5 year bins
with 1 year bins for ages <5), bedrooms, square footage (500 sq ft bins), and lot size (1 acre bins). Missing hedonics
are included as a separate indicator. Only homes within 20km of the opening plant are included. Only plants who are
in districts with a population greater than 10,000 are included in weighted analysis. Standard errors are clustered at
the plant district level. Only openings with at least two years of pre and two years of post data are included. All
housing data come from the Zillow ZTRAX database—sales that are less than $5,000 or greater than $1,500,000 are
excluded as outliers. Weighted specifications are weighted by the inverse of the number of sales within 20km of the
plants in a given year.
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Table 1.7: Differential Effects of Plant Opening on Key School Finance Variables by State
Equalization Status

(1) (2) (3) (4)
VARIABLES TotRev TotRev TotExp TotExp

Treat x Post Yrs 0-2 x Ln Exp Tax Base Incr/Stud -0.00229 -0.00256 -0.00900 -0.00811
(0.00458) (0.00487) (0.00672) (0.00694)

Treat x Post Yrs 3-8 x Ln Exp Tax Base Incr/Stud -0.00173 0.00367 0.0108* 0.0147**
(0.00431) (0.00460) (0.00609) (0.00678)

Treat x Post Yrs 0-2 x Ln Exp Tax Base Incr/Stud x > Med MVTB 0.0234*** 0.0351***
(0.00682) (0.0109)

Treat x Post Yrs 3-8 x Ln Exp Tax Base Incr/Stud x > Med MVTB 0.0384*** 0.0543***
(0.0110) (0.0158)

Treat x Post Yrs 0-2 x Ln Exp Tax Base Incr/Stud x MVTB (Mills) 0.00305*** 0.00447***
(0.000966) (0.00154)

Treat x Post Yrs 3-8 x Ln Exp Tax Base Incr/Stud x MVTB (Mills) 0.00399*** 0.00650***
(0.00150) (0.00219)

Observations 25,106 25,106 25,708 25,708
R2 0.939 0.938 0.886 0.886
Sample All All All All
Dep. Var. Mean 11.58 11.65 11.89 11.89

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on various district-level school finance outcomes. Coefficients come
from a regression of the relevant outcome variable on district fixed-effects, year x border pair fixed effects and
interactions between indicators for whether a year is after an approval and whether or not a district receives a plant,
log expected tax base per student and various quantiles of estimated size of the increase in tax base per student the
plant will provide. Border pairs are any two districts that share a border within the same state and only one of the two
districts experienced a plant opening between 1995 and 2015. Only openings with data 6 years prior to an opening
and 8 years following an opening are included unless otherwise indicated. All district-years are weighted by the
inverse of the total number of districts attached to a given opening in a year in order to weight all plant openings
equally. We proxy for district’s estimated marginal value of tax base (MVTB) using a coefficient derived from a
state-specific regression of state and local revenue per student on taxable value per student with district and year
fixed-effects. District property tax rates were hand-collected from state Department of Education and Department
of Revenue’s annual reports. Local revenues per student came from the National Center for Education Statistics
(NCES). Plant opening data comes from the Energy Information Administration (EIA).
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Table 1.8: School Finance Reform and County School Revenue by Source: County Pairs Design

(1) (2) (3) (4) (5)
VARIABLES StShare StRev StRev PtaxRev PtaxRev

/Stud /Stud /Stud /Stud

Treat x Post Yr ≤5 0.0605*** 0.794*** -0.373
(0.0176) (0.199) (0.232)

Treat x Post Yr >5 0.0849*** 1.079*** -0.701*
(0.0213) (0.247) (0.357)

Treat x Post Yr ≤5 x BL Poverty Rate 3.344*** -0.394
(1.023) (0.844)

Treat x Post Yr >5 x BL Poverty Rate 3.510*** -1.091
(0.953) (1.087)

Observations 40,296 40,296 40,102 40,580 40,388
R2 0.949 0.924 0.969 0.914 0.970
Unbalanced Y Y Y Y Y
Dep. Var. Mean 0.369 3.507 3.507 2.688 2.688

Two-way standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on school finance outcomes using a county border pair
difference-in-differences design. All revenue outcomes are measured in ’000s of dollars. Counties whose geographic
centroids were less than 60 miles apart were included. Coefficients come from a regression of the outcome variable
on the interaction between an indicator for whether a district is a reform state and a vector of indicators for periods
relative to reform (pre-reform is the omitted category). Baseline poverty rate is the 1970 county poverty rate. Controls
include county pair by year fixed effects and county fixed-effects. Standard errors are clustered at the state and state
border pair level. All school finance data come from the Census of Governments (COG) and National Center for
Economic Statistics (NCES). All statistics are aggregated to the county level, with a district being assigned to its
primary county as defined by COG/NCES. Only districts with data missing in fewer than 10% of years are included
to insure constancy of the sample within each county over time. Counties with fewer than 1,000 population in 1970
are excluded. Our sample consists of 14 years before and after the reform year.
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Table 1.9: School Finance Reform and Manufacturing Presence: County Pairs Design

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES EmpManf EmpManf EmpManf EmpManf >250 Emp Est >250 Emp Est >500 Emp Est >500 Emp Est

/1K Pop /1K Pop /TtlEmp /TtlEmp /1K Pop /1K Pop /1K Pop /1K Pop

Treat x Post ≤5 Years -3.159** -2.529 -0.00996* -0.0101* -0.00673** -0.00520* -0.000869 0.000595
(1.500) (1.595) (0.00514) (0.00501) (0.00265) (0.00258) (0.00122) (0.00123)

Treat x Post >5 Years -7.315*** -6.434*** -0.0206*** -0.0185*** -0.0108*** -0.00938*** -0.00442** -0.00333*
(2.096) (2.263) (0.00643) (0.00641) (0.00314) (0.00317) (0.00167) (0.00175)

Observations 164,626 91,218 165,546 91,644 206,702 119,582 205,986 119,586
R2 0.955 0.959 0.957 0.964 0.902 0.913 0.865 0.874
Weight All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Dep. Var Mean 74.09 73.16 0.324 0.301 0.0649 0.0619 0.0206 0.0237

Two-way clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing outcomes using a county border pair
difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were included.
Coefficients come from a regression of the outcome variable on the interaction between an indicator for whether a
district is a reform state and a vector of indicators for periods relative to reform (pre-reform is the omitted category).
Controls include county pair by year fixed effects and county fixed-effects. Standard errors are clustered at the state
and state border pair level. Manufacturing employment data come from County Business Patterns. Counties with
fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before and after
the reform year, while our balanced sample consists of 8 years prior and 14 years following the event. We exclude
outcome values greater than the 99th percentile as outliers.
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Table 1.10: School Finance Reform and Power Plants: County Pairs Design

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Any >50MW Any >50MW Ttl >50MW Ttl >50MW Any >250MW Any >250MW IHS(MW) IHS(MW)

Treat x Post Yr ≤5 -0.00583 -0.0110 -0.00306 -0.0167 -0.00370 -0.0137 -0.0207 -0.0981
(0.00892) (0.00979) (0.0102) (0.0126) (0.00645) (0.00854) (0.0612) (0.0709)

Post x Treat Yr >5 -0.0281* -0.0302* -0.0276 -0.0379 -0.0230* -0.0279* -0.172* -0.214*
(0.0141) (0.0164) (0.0218) (0.0252) (0.0134) (0.0158) (0.0957) (0.112)

Observations 212,448 122,938 212,448 122,938 212,448 122,938 212,448 122,938
R2 0.965 0.969 0.975 0.977 0.960 0.963 0.965 0.969
Weight All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Unbalanced Unbalanced Unbalanced Unbalanced Unbalanced
Dep. Var Mean 0.226 0.223 0.326 0.356 0.145 0.150 215.4 229.5

Two-way clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on power generation outcomes using a county border pair
difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were included.
Coefficients come from a regression of the outcome variable on the interaction between an indicator for whether a
district is a reform state and a vector of indicators for periods relative to reform (pre-reform is the omitted category).
Controls include county pair by year fixed effects and county fixed-effects. Standard errors are clustered at the
state and state border pair level. Power plant data come from EIA Form 860. For plants that retired prior to 1990,
only plants that were owned by utilities still in operation in 1990 were included. Counties with fewer than 1,000
population in 1970 are excluded. Our unbalanced sample consists of 14 years before and after the reform year, while
our balanced sample consists of 8 years prior and 14 years following the event.
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Table 1.11: School Finance Reform, Manufacturing Presence and Power Plants by Baseline
Poverty

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES EmpManf EmpManf LrgManfEst LrgManfEst AnyGen(50MW) AnyGen(50MW) AnyGen(250MW) AnyGen(250MW)
Pov Status > Med < Med > Med < Med > Med < Med > Med < Med

Treat x Post Yr ≤5 -1.527 -4.215* -0.00560 -0.00525* -0.0110 -0.0111 -0.00578 -0.0218
(2.598) (2.151) (0.00403) (0.00304) (0.00981) (0.0171) (0.00712) (0.0147)

Treat x Post Yr >5 -4.103 -8.350** -0.00984** -0.00793** -0.0166 -0.0443 -0.00760 -0.0489
(3.729) (3.277) (0.00444) (0.00361) (0.0108) (0.0311) (0.00748) (0.0293)

Observations 46,760 47,278 63,706 58,170 64,506 58,432 64,506 58,432
R2 0.956 0.965 0.913 0.927 0.982 0.958 0.979 0.950
Weight All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Dep. Var Mean 0.226 0.223 0.326 0.356 0.145 0.150 215.4 229.5

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing and power generation outcomes using a
county border pair difference-in-differences design. Counties whose geographic centroids were less than 60 miles
apart were included. Coefficients come from a regression of the outcome variable on the interaction between an
indicator for whether a district is a reform state and a vector of indicators for periods relative to reform (pre-reform is
the omitted category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors
are clustered at the state and state border pair level. Manufacturing data come from County Business Patterns. Power
plant data come from EIA Form 860. For plants retiring prior to 1990, only plants that were owned by utilities still in
operation in 1990 were included. Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced
sample consists of 14 years before and after the reform year, while our balanced sample consists of 8 years prior and
14 years following the event. Outcomes with values greater than the 99th percentile are excluded as outliers.
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A.1 Tables and Figures

76



Figure A.1: Utility Share of School District Tax Base by District Generation Level

The top panel of this figure shows the proportion of a district’s 2010 tax base that is made up of utility property as a
function of the amount of generating capacity located in a district. All data are from 2010 and come from the 8 states
with utility valuation data available: Connecticut, Georgia, Iowa, Minnesota, Ohio, Oklahoma, Oregon, and
Washington. Hydroelectric generation is excluded as most dams are federally-owned and pay
payments-in-lieu-of-taxes (PILOT) rather than property taxes. The bottom panel of this figure shows the proportion
of a district’s tax base that is made up by industry as a function of Toxic Release Inventory (TRI) plants per student
within a district . Data is for Ohio only and from 2010.
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Figure A.2: Data Coverage of Property Tax Rates and Taxable Value

This figure shows coverage of district-level data on school district property tax rates and total taxable value. The
figure on the left shows geographic coverage—“Tax Rate/TV” denotes that a state has both tax rate and taxable value
coverage. The figure on the right shows the proportion of districts in our final sample that have property tax rate data
in a given year. Data were hand collected from state Department of Revenue and Department of Education Annual
Reports.

Figure A.3: Opening of Non-Utility TRI Facilities

This figure shows the likelihood of a district having any facility opening in a year surrounding the start of
construction on a power plant. Opening data comes from the Toxic Release Inventory (TRI) and is based on the first
year that a facility appears in the data. Coefficients come from a regression of the relevant outcome variable on
district fixed-effects, year x border pair fixed effects and interactions between indicators for years since approval (-1
is the omitted category) and whether or not a district receives a plant. Estimated effect of the opening comes from
dividing estimated construction costs (created using parameters provided in the EIA’s Annual Energy Outlook)
divided by the number of students in a district at the year of approval. Border pairs are any two districts that share a
border within the same state and only one of the two districts experienced a plant opening between 1995 and 2015.
We implement two-way clustered standard errors at the plant (all border districts attached to a given opening) and
district level. All district-years are weighted by the inverse of the total number of districts attached to a given
opening in a year in order to weight all plant openings equally. Plant data comes from the Toxic Release Inventory
run by the EPA. Plant opening data comes from the Energy Information Administration (EIA).
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Figure A.4: Estimated Tax Base Effect of Opening by Estimated Marginal Value of Tax Base in
Opening State-Year

This figure shows the relationship between the expected marginal value of an additional dollar of tax base with
respect to school spending and the estimated tax base impact of a plant. Estimated tax base impact of a plant is equal
to the plant’s estimated construction cost divided by the number of students in a district in the year of approval.
Construction costs were estimated using parameters from the EIA’s Annual Energy Outlook. We proxy for district’s
estimated marginal value of tax base using a coefficient dervied from a state-specific regression of state and local
revenue per student on taxable value per student with district and year fixed-effects.

Figure A.5: School Finance Reforms Geographic and Temporal Distribution

This figure shows the cumulative number of school finance reforms affecting the marginal value of an additional
dollar of tax base (left panel) and their geographic distribution (right panel). Reforms were identified using funding
formulas reported in the Public School Finance Programs of the United States series.

79



Figure A.6: Effect of School Finance Reform on Ln County Population

This figure shows the effect of a school finance reform on large local manufacturing establishments (>500
employees) and manufacturing employment per 1,000 population using a contiguous border county
difference-in-differences design. Coefficients come from a regression of the outcome variable on indicators for years
since the reform. Controls include border pair by year fixed effects and county fixed-effects. We cluster standard
errors at the state and state border pair level. County-years with outcomes greater than the 99th percentile were
excluded as outliers. Counties with less than 5,000 population in 1970 were also excluded. All employment and
establishment data come from County Business Patterns (CBP).
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Figure A.7: Distribution of Treatment Effects by Reform State

This figure shows the effect of a school finance reform on manufacturing employment per 1,000 population using a
contiguous border county difference-in-differences design. Coefficients come from a regression of the outcome
variable on indicators for years since the reform run separately for each treatment state. Controls include border pair
by year fixed effects and county fixed-effects. We cluster standard errors at the state and state border pair level.
County-years with outcomes greater than the 99th percentile were excluded as outliers. Counties with less than
5,000 population in 1970 were also excluded. All employment and establishment data come from County Business
Patterns (CBP).
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Table A.1: Correlates of Plant Opening

(1) (2) (3) (4) (5) (6)
VARIABLES Ln Stud URM Pct FRL Loc Rev/Stud (’000) Tot Rev/Stud (’000) Ln 1990 Home Val

Treated District 0.0389 0.0222** 0.00855 0.141 0.115 0.00241
(0.0585) (0.00943) (0.00802) (0.120) (0.150) (0.0168)

Observations 2,660 2,660 2,372 2,624 2,626 2,392
R2 0.731 0.845 0.786 0.804 0.780 0.877

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the relationship between various economic, demographic and school funding variables and the
probability that a district ever has a plant locate within it. All demographic characteristics come from the year a plant
opens and are taken from the National Center of Education Statistics (NCES).
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Table A.2: Effects of Plant Opening on School District Tax Base, Revenue and Expenditure
Outcomes: Including Covariate by Year FE

(1) (2) (3) (4) (5)
VARIABLES Ln Tax Base Tax Rate Loc Rev Tot Rev Tot Exp

/Stud (Mills) /Stud /Stud /Stud

Treat x Post Yrs 0-2 0.0210 0.136 0.196*** 0.157* 0.144
(0.0130) (0.130) (0.0706) (0.0869) (0.231)

Treat x Post Yrs 3-8 0.111*** -0.115 0.581*** 0.450*** 0.731*
(0.0267) (0.153) (0.133) (0.128) (0.381)

Observations 19,508 19,290 34,824 34,824 35,704
R2 0.976 0.977 0.967 0.955 0.885
Pair x Year FE Y Y Y Y Y
Sample Non-Small Non-Small Non-Small Non-Small Non-Small
Dep. Var. Mean 580887 10.56 4.991 11.79 12.15

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on the natural log of taxable value per student. Coefficients come from
a regression of log taxable value/student on district fixed-effects, year x border pair fixed effects and interactions
between periods relative to the treatment district of the pair gaining approval for a plant and whether or not the
district receives a plant. Border pairs are any two districts that share a border within the same state (unless otherwise
noted) and only one of the two districts experienced a plant opening between 1995 and 2015. Only openings with
data 6 years prior to an opening and 8 years following an opening are included unless otherwise indicated. . Only
openings with greater than $10,000 in expected tax base per student are included (≈ 10% of openings are dropped).
All specifications also include baseline student, baseline free lunch share and 1990 home value by year by state fixed
effects. All district-years are weighted by the inverse of the total number of districts attached to a given opening in a
year in order to weight all plant openings equally unless otherwise noted. We implement two-way clustered standard
errors at the plant (all border districts attached to a given opening) and district level. District property tax rates were
hand-collected from state Department of Education and Department of Revenue’s annual reports. Local revenues per
student came from the National Center for Education Statistics (NCES). Plant opening data comes from the Energy
Information Administration (EIA).
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Table A.3: Effects of Plant Opening on School District Tax Base, Revenue and Expenditure
Outcomes: Unbalanced Panel

(1) (2) (3) (4) (5)
VARIABLES Ln Tax Base Tax Rate Loc Rev Tot Rev Tot Exp

/Stud (Mills) /Stud /Stud /Stud

Treat x Post Yrs 0-2 0.0189* 0.177** 0.150*** 0.133** 0.109
(0.0111) (0.0737) (0.0509) (0.0585) (0.137)

Treat x Post Yrs 3-8 0.104*** -0.0758 0.441*** 0.345*** 0.546**
(0.0191) (0.108) (0.0918) (0.0914) (0.244)

Observations 47,798 47,292 83,150 83,000 84,752
R2 0.970 0.973 0.949 0.927 0.846
Pair x Year FE Y Y Y Y Y
Sample Non-Small Non-Small Non-Small Non-Small Non-Small
Dep. Var. Mean 580887 10.56 4.991 11.79 12.15

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on the natural log of taxable value per student. Coefficients come from
a regression of log taxable value/student on district fixed-effects, year x border pair fixed effects and interactions
between periods relative to the treatment district of the pair gaining approval for a plant and whether or not the district
receives a plant. Border pairs are any two districts that share a border within the same state (unless otherwise noted)
and only one of the two districts experienced a plant opening between 1995 and 2015. Only openings with greater
than $10,000 in expected tax base per student are included (≈ 10% of openings are dropped). All district-years
are weighted by the inverse of the total number of districts attached to a given opening in a year in order to weight
all plant openings equally unless otherwise noted. We implement two-way clustered standard errors at the plant
(all border districts attached to a given opening) and district level. District property tax rates were hand-collected
from state Department of Education and Department of Revenue’s annual reports. Local revenues per student came
from the National Center for Education Statistics (NCES). Plant opening data comes from the Energy Information
Administration (EIA).

84



Table A.4: Effects of Plant Opening on School District Tax Base, Revenue and Expenditure
Outcomes: All Openings Included

(1) (2) (3) (4) (5)
VARIABLES Ln Tax Base Tax Rate Loc Rev Tot Rev Tot Exp

/Stud (Mills) /Stud /Stud /Stud

Treat x Post Yrs 0-2 0.0219* 0.0343 0.121** 0.0939 0.0222
(0.0122) (0.107) (0.0543) (0.0739) (0.155)

Treat x Post Yrs 3-8 0.0911*** -0.244* 0.404*** 0.329*** 0.604**
(0.0222) (0.127) (0.0998) (0.104) (0.303)

Observations 24,090 23,942 45,414 45,334 46,332
R2 0.966 0.975 0.956 0.937 0.855
Pair x Year FE Y Y Y Y Y
Sample All All All All All
Dep. Var. Mean 584616 10.57 5.007 11.84 12.22

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on the natural log of taxable value per student. Coefficients come from
a regression of log taxable value/student on district fixed-effects, year x border pair fixed effects and interactions
between periods relative to the treatment district of the pair gaining approval for a plant and whether or not the
district receives a plant. Border pairs are any two districts that share a border within the same state (unless otherwise
noted) and only one of the two districts experienced a plant opening between 1995 and 2015. Only openings with
data 6 years prior to an opening and 8 years following an opening are included unless otherwise indicated. . All
district-years are weighted by the inverse of the total number of districts attached to a given opening in a year in
order to weight all plant openings equally unless otherwise noted. We implement two-way clustered standard errors
at the plant (all border districts attached to a given opening) and district level. District property tax rates were
hand-collected from state Department of Education and Department of Revenue’s annual reports. Local revenues per
student came from the National Center for Education Statistics (NCES). Plant opening data comes from the Energy
Information Administration (EIA).
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Table A.5: Effects of Plant Opening on School District Tax Base, Revenue and Expenditure
Outcomes: By Plant Type

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Tax Base Tax Base Rate Rate Loc Rev Loc Rev Tot Rev Tot Rev

/Stud /Stud (Mills) (Mills) /Stud /Stud /Stud /Stud

Treat x Post Yrs 0-2 0.00818 0.0481** -0.0107 0.245 0.0970 0.215* 0.0982 0.199
(0.0168) (0.0200) (0.154) (0.167) (0.0651) (0.119) (0.0967) (0.137)

Treat x Post Yrs 3-8 0.0701** 0.158*** -0.170 -0.166 0.358*** 0.752*** 0.226** 0.727***
(0.0303) (0.0356) (0.190) (0.189) (0.116) (0.226) (0.113) (0.240)

Observations 13,668 7,572 13,060 8,032 26,952 12,032 26,892 12,070
R2 0.958 0.975 0.979 0.964 0.963 0.940 0.936 0.925
Pair x Year FE Y Y Y Y Y Y Y Y
Sample NG WND NG WND NG WND NG WND
Dep. Var. Mean 496473 660553 10.69 10.48 4.608 5.469 11.33 12.86

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on the natural log of taxable value per student. Coefficients come from
a regression of log taxable value/student on district fixed-effects, year x border pair fixed effects and interactions
between periods relative to the treatment district of the pair gaining approval for a plant and whether or not the
district receives a plant. Border pairs are any two districts that share a border within the same state (unless otherwise
noted) and only one of the two districts experienced a plant opening between 1995 and 2015. Only openings with
data 6 years prior to an opening and 8 years following an opening are included unless otherwise indicated. . Only
openings with greater than $10,000 in expected tax base per student are included (≈ 10% of openings are dropped).
Effects for natural gas plants are reported in the odd columns and wind turbines are reported in the even columns.
All district-years are weighted by the inverse of the total number of districts attached to a given opening in a year
in order to weight all plant openings equally unless otherwise noted. We implement two-way clustered standard
errors at the plant (all border districts attached to a given opening) and district level. District property tax rates were
hand-collected from state Department of Education and Department of Revenue’s annual reports. Local revenues per
student came from the National Center for Education Statistics (NCES). Plant opening data comes from the Energy
Information Administration (EIA).
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Table A.6: Effects of Plant Opening on School District Tax Base, Revenue and Expenditure
Outcomes: Triple Difference Design

(1) (2) (3) (4) (5)
VARIABLES Ln Tax Base Tax Rate Loc Rev Tot Rev Tot Exp

Treat x Post Yrs 0-2 x Ln Exp Tax Base/Stud 0.0111 0.241*** 0.0177** 0.00540 0.00454
(0.00885) (0.0693) (0.00733) (0.00390) (0.00554)

Treat x Post Yrs 3-8 x Ln Exp Tax Base/Stud 0.0431*** 0.239*** 0.0571*** 0.0135*** 0.0212***
(0.0163) (0.0868) (0.0110) (0.00494) (0.00741)

Observations 24,076 23,936 45,410 45,332 46,332
R2 0.974 0.978 0.975 0.955 0.909
Pair x Year FE Y Y Y Y Y
Sample Non-Small Non-Small Non-Small Non-Small Non-Small
Dep. Var. Mean 584453 10.40 4.924 11.68 12.22

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on the natural log of taxable value per student. Coefficients come from
a regression of log taxable value/student on district fixed-effects, year x border pair fixed effects and interactions
between periods relative to the treatment district of the pair gaining approval for a plant, whether or not the district
receives a plant and the log expected tax base impact per student. Expected tax base per student is calculated by
Border pairs are any two districts that share a border within the same state (unless otherwise noted) and only one of
the two districts experienced a plant opening between 1995 and 2015. Only openings with data 6 years prior to an
opening and 8 years following an opening are included unless otherwise indicated. . Only openings with greater
than $10,000 in expected tax base per student are included (≈ 10% of openings are dropped). Estimated effect
of the opening comes from dividing estimated construction costs (created using parameters provided in the EIA’s
Annual Energy Outlook) divided by the number of students in a district at the year of approval. All district-years
are weighted by the inverse of the total number of districts attached to a given opening in a year in order to weight
all plant openings equally unless otherwise noted. We implement two-way clustered standard errors at the plant
(all border districts attached to a given opening) and district level. District property tax rates were hand-collected
from state Department of Education and Department of Revenue’s annual reports. Local revenues per student came
from the National Center for Education Statistics (NCES). Plant opening data comes from the Energy Information
Administration (EIA).
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Table A.7: Effects of Plant Opening on Hedonic Characteristics of Homes Sold

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES Lot Size Lot Size Bedrooms Bedrooms Age Age Sqft Sqft SFH SFH

Treat x Post Yrs 0-2 -0.00992 -0.0253 0.0370* 0.0291 -0.457 0.249 6.598 12.50 0.00379 3.85e-05
(0.0122) (0.0211) (0.0194) (0.0437) (0.382) (0.713) (5.801) (11.22) (0.00527) (0.00709)

Treat x Post Yrs 3-8 -0.00992 -0.0215 0.0137 -0.0509* -0.759 -0.741 -0.0295 -0.000517 0.000648 -0.00517
(0.00849) (0.0166) (0.0205) (0.0297) (0.494) (0.482) (4.915) (10.17) (0.00524) (0.00777)

Observations 387,584 133,615 402,197 100,502 441,313 140,445 492,910 189,787 501,701 198,578
R2 0.890 0.899 0.542 0.580 0.845 0.865 0.932 0.894 0.822 0.828
Bandwidth 2 km 2 km 2 km 2 km 2 km 2 km 2 km 2 km 2 km 2 km
Weighted Y Y Y Y Y Y Y Y Y Y
Sample All No CA All No CA All No CA All No CA All No CA
Dep Var Mean. 0.383 0.383 3.203 3.203 20.86 20.86 1736 1736 0.829 0.829

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on various hedonic characteristics using a border difference-in-
difference design. We only include sales within a bandwidth of 2 km from the border. Coefficients come from a
regression of log home prices on an interaction between an indicator for whether a house is in a plant-receiving
district and a vector of indicators for grouping of years since approval. Controls include border pair by year by
month fixed-effects and .004 degree latitude x .004 degree longitude x year fixed-effects. Different observations
for each outcome occur because different variables have different levels of missing values in the Zillow database.
Each observation is weighted by the inverse of the number of sales in its treated unit each year (i.e. border pair
x treat). Standard errors are clustered at the plant district level. All housing data come from the Zillow ZTRAX
database—values of the outcome variables above the 99th percentile are excluded as outliers. Only pairs of districts
in which both district have a 2000 population greater than 10,000 are included in the regression. Openings with
an expected tax base impact per student of less than $10,000 are excluded. Data are from fourteen states in total:
Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa, Michigan, Minnesota, New York, North Carolina,
Ohio, Oklahoma and Pennsylvania. These make up roughly 60% of openings. Texas and Kansas both have large
number of openings, but do not have publicly available home sale data.
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Table A.8: Effects of Plant Openings on Home Prices: Repeat Sales Only

(1) (2) (3) (4) (5) (6)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price

Treat x Post Yrs 0-2 0.0246 0.0246 0.0141 0.0224 0.0348 0.0141
(0.0172) (0.0172) (0.0168) (0.0169) (0.0341) (0.0164)

Treat x Post Yrs 3-8 0.0293 0.0293 0.0161 0.0310* 0.0500 0.0180
(0.0180) (0.0180) (0.0148) (0.0169) (0.0342) (0.0150)

Observations 308,590 308,590 192,032 324,121 125,988 198,133
R2 0.875 0.875 0.942 0.881 0.827 0.941
Weighted Y Y Y Y Y Y
Spec Repeat-sales Repeat-sales Repeat-sales Repeat-sales Repeat-sales Repeat-sales
Distr Sample >10K Pop >10k Pop >10k Pop All All All
State Sample All No-CA CA-Only All No-CA CA-Only

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on log local housing prices using a border difference-in-difference
design. We only include sales within a bandwidth of 2 km from the border. Coefficients come from a regression
of log home prices on an interaction between an indicator for whether a house is in a plant-receiving district and a
vector of indicators for grouping of years since approval. Controls include border pair by year by month fixed-effects
and an individual parcel fixed-effect. The outcome variable is residualized for hedonic by state fixed-effects, which
include land-use , home age by plant district (5 year bins with 1 year bins for ages <5), bedrooms , bathrooms,
square footage (500 sq ft bins), heating type and lot size (1 acre bins). Missing hedonics are included as a separate
indicator. Each observation is weighted by the inverse of the number of sales in its treated unit each year (i.e.
border pair x treat). Standard errors are clustered at the plant district level. All housing data come from the Zillow
ZTRAX database—sales below $5,000 or greater than $1,500,000 are excluded as outliers. Only pairs of districts
in which both district have a 2000 population greater than 10,000 are included in the regression. . Openings with
an expected tax base impact per student of less than $10,000 are excluded. Data are from fourteen states in total:
Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa, Michigan, Minnesota, New York, North Carolina,
Ohio, Oklahoma and Pennsylvania. These make up roughly 60% of openings. Texas and Kansas both have large
number of openings, but do not have publicly available home sale data.
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Table A.9: Effects of Plant Opening on Quantity of Homes Sold

(1) (2) (3) (4) (5) (6)
VARIABLES Ttl Sales Any Sales New Sales Any New Old Sales Any Old Sales

Treat x Post Yrs 0-2 13.39 0.0301 5.925 0.0381 7.463 0.0329
(12.81) (0.0257) (7.488) (0.0344) (6.574) (0.0251)

Treat x Post Yrs 3-8 22.49* 0.000793 8.503 0.0851** 13.99* 0.00610
(12.71) (0.0268) (5.695) (0.0362) (8.383) (0.0255)

Observations 3,268 3,268 3,268 3,268 3,268 3,268
R2 0.944 0.722 0.796 0.862 0.966 0.724
Weighting All Plant = All Plant = All Plant = All Plant = All Plant = All Plant =
Dep. Var. Mean 81.38 0.831 15.36 0.342 66.01 0.818

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on the quantity of homes sold using a border difference-in-difference
design. We only include sales within a bandwidth of 2 km from the border. Coefficients come from a regression
of log home prices on an interaction between an indicator for whether a house is in a plant-receiving district and
a vector of indicators for grouping of years since approval. Controls include border pair by year fixed-effects and
border pair by district fixed-effects. Standard errors are clustered at the plant district level. Sample restrictions are as
indicated. All housing data come from the Zillow ZTRAX database—sales below $5,000 and above$1,500,000 as
likely outliers. Only openings with an expected tax base impact of more than $10,000/student are included.
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Table A.10: Effects of Plant Openings on Home Prices: Excluding New Construction

(1) (2) (3) (4) (5) (6)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price

Treat x Post Yrs 0-2 0.0310** 0.0543** 0.00605 0.0351** 0.0615** 0.00449
(0.0137) (0.0219) (0.0115) (0.0153) (0.0252) (0.0111)

Treat x Post Yrs 3-8 0.0399*** 0.0700*** 0.00979 0.0469*** 0.0776*** 0.0137
(0.0132) (0.0186) (0.0149) (0.0153) (0.0238) (0.0149)

Observations 409,654 164,804 244,850 436,812 184,493 252,319
R2 0.751 0.692 0.827 0.766 0.728 0.830
Weighted Y Y Y Y Y Y
Distr Sample >10K Pop >10k Pop >10k Pop All All All
State Sample All No-CA CA-Only All No-CA CA-Only

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on log local housing prices using a border difference-in-difference
design. We only include sales within a bandwidth of 2 km from the border and that were not constructed within a year
of sale. Coefficients come from a regression of log home prices on an interaction between an indicator for whether
a house is in a plant-receiving district and a vector of indicators for grouping of years since approval. Controls
include border pair by year by month fixed-effects and a border pair by district by .004 degree latitude and .004
degree longitude fixed-effect. The outcome variable is residualized for hedonic by state fixed-effects, which include
land-use , home age by plant district (5 year bins with 1 year bins for ages <5), bedrooms , bathrooms, square
footage (500 sq ft bins), heating type and lot size (1 acre bins). Missing hedonics are included as a separate indicator.
Each observation is weighted by the inverse of the number of sales in its treated unit each year (i.e. border pair
x treat). Standard errors are clustered at the plant district level. All housing data come from the Zillow ZTRAX
database—sales below $5,000 or greater than $1,500,000 are excluded as outliers. Only pairs of districts in which
both district have a 2000 population greater than 10,000 are included in the regression. Openings with an expected
tax base impact per student of less than $10,000 are excluded as are any homes sold in their construction year.
Data are from fourteen states in total: Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa, Michigan,
Minnesota, New York, North Carolina, Ohio, Oklahoma and Pennsylvania. These make up roughly 60% of openings.
Texas and Kansas both have large number of openings, but do not have publicly available home sale data.
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Table A.11: Effects of Plant Openings on Home Prices: Different Sample Criteria and Fixed-
Effect Models

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price Ln PRice

Treat x Post Yrs 0-2 0.0217 0.0247 0.00775 0.0233 0.0208 0.0283 0.0467**
(0.0327) (0.0187) (0.0203) (0.0153) (0.0150) (0.0229) (0.0192)

Treat x Post Yrs 3-8 0.0673** 0.0615*** 0.0294 0.0468*** 0.0304** 0.0373* 0.0550***
(0.0286) (0.0179) (0.0231) (0.0158) (0.0139) (0.0199) (0.0188)

Constant -0.0196** 0.00307 0.0179*** 0.00293 0.00730** -0.00577 -0.0150***
(0.00776) (0.00457) (0.00618) (0.00372) (0.00362) (0.00526) (0.00454)

Observations 201,810 375,062 378,741 502,930 487,046 504,227 504,677
R2 0.730 0.743 0.774 0.676 0.789 0.584 0.651
Weighted Y Y Y Y Y Y Y
Spec Brdr >5km from Plnt No Cnty Bndry Balanced .008 Dgr FE .001 Deg FE Distr FE Border Pair x Yr FE

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on log local housing prices using a border difference-in-difference
design. We only include sales within a bandwidth of 2 km from the border. Coefficients come from a regression of
log home prices on an interaction between an indicator for whether a house is in a plant-receiving district and a vector
of indicators for grouping of years since approval. Controls include border pair by year by month fixed-effects and
.004 degree latitude x .004 degree longitude x year fixed-effects. The outcome variable is residualized for hedonic by
state fixed-effects, which include land-use , home age by plant district (5 year bins with 1 year bins for ages <5),
bedrooms , bathrooms, square footage (500 sq ft bins), heating type and lot size (1 acre bins). Missing hedonics are
included as a separate indicator. Each observation is weighted by the inverse of the number of sales in its treated unit
each year (i.e. border pair x treat). Standard errors are clustered at the plant district level. “Brdr >5km” means all
transactions in the border pair are at least 5km from the plant. “No Cnty Bndry” means there is no county boundaries
within 2.5 km of the school district boundary. Balanced means that all openings have at least data for at least 6
years before approval and 8 years after approval. “.008 Dgr FE” means that a .008 degree latitude x .008 degree
longitude x border pair x district fixed-effect is included as the geographic fixed-effect. ‘.001 Dgr FE” means that
a .001 degree latitude x .001 degree longitude x border pair x district fixed-effect is included as the geographic
fixed-effect. “Distr FE” means that a school district x border pair x district fixed-effect is included as the geographic
fixed-effect. “Border pair by year” means border pair by year (instead of border pair by year by month) is included
as the time varying fixed-effect, a .004 degr x .004 degr x border pair by district fixed-effect is also included as in the
main specification. All housing data come from the Zillow ZTRAX database—sales below $5,000 or greater than
$1,500,000 are excluded as outliers. Only pairs of districts in which both district have a 2000 population greater than
10,000 are included in the regression. Openings with an expected tax base impact per student of less than $10,000
are excluded. Data are from fourteen states in total: Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa,
Michigan, Minnesota, New York, North Carolina, Ohio, Oklahoma and Pennsylvania. These make up roughly 60%
of openings. Texas and Kansas both have large number of openings, but do not have publicly available home sale
data.
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Table A.12: Effects of Plant Openings on Home Prices: By Plant Type

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price

Treat x Post Yrs 0-2 0.0281* -0.0219 0.0281* -0.0219 0.0273** 0.0371 0.0273** 0.0371
(0.0142) (0.0615) (0.0142) (0.0615) (0.0136) (0.0691) (0.0136) (0.0691)

Treat x Post Yrs 3-8 0.0398** 0.123*** 0.0398** 0.123*** 0.0406** 0.122* 0.0406** 0.122*
(0.0151) (0.0377) (0.0151) (0.0377) (0.0172) (0.0667) (0.0172) (0.0667)

Observations 478,916 22,783 478,916 22,783 512,032 26,321 512,032 26,321
R2 0.701 0.730 0.701 0.730 0.712 0.757 0.712 0.757
Weighted Y Y Y Y Y Y Y Y
Spec .4km grid .4km grid .4km grid .4km grid .4km grid .4km grid .4km grid .4km grid
Dist Sample .>10K Pop .>10K Pop >10K Pop .>10K Pop All All All All
Sample NG REN NG-No CA REN-No CA NG REN NG-No CA REN-No CA

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on log local housing prices using a border difference-in-difference
design. We only include sales within a bandwidth of 2 km from the border. Coefficients come from a regression
of log home prices on an interaction between an indicator for whether a house is in a plant-receiving district and a
vector of indicators for grouping of years since approval. Controls include border pair by year by month fixed-effects
and a border pair by district by .004 degree latitude and .004 degree longitude fixed-effect. The outcome variable is
residualized for hedonic by state fixed-effects, which include land-use , home age by plant district (5 year bins with 1
year bins for ages <5), bedrooms , bathrooms, square footage (500 sq ft bins), heating type and lot size (1 acre bins).
Missing hedonics are included as a separate indicator. Each observation is weighted by the inverse of the number of
sales in its treated unit each year (i.e. border pair x treat). Standard errors are clustered at the plant district level. All
housing data come from the Zillow ZTRAX database—sales below $5,000 or greater than $1,500,000 are excluded
as outliers. Only pairs of districts in which both district have a 2000 population greater than 10,000 are included in
the regression. Openings with an expected tax base impact per student of less than $10,000 are excluded. Data are
from fourteen states in total: Arizona, California, Colorado, Georgia, Illinois, Indiana, Iowa, Michigan, Minnesota,
New York, North Carolina, Ohio, Oklahoma and Pennsylvania. These make up roughly 60% of openings. Texas and
Kansas both have large number of openings, but do not have publicly available home sale data.
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Table A.13: Effects of Plant Opening on Key School Finance Variables: Home Price Analysis

(1) (2) (3) (4) (5) (6)
VARIABLES Loc Rev Loc Rev Tot Rev Tot Rev Ttl Exp Ttl Exp

Treat x Post Yrs 0-2 0.281*** 0.338*** 0.331 0.464*** 0.273 0.0116
(0.105) (0.109) (0.234) (0.167) (0.361) (0.418)

Treat x Post Yrs 3-8 0.311 0.484*** 0.247 0.579*** 0.284 0.684
(0.200) (0.139) (0.241) (0.203) (0.344) (0.471)

Observations 498,086 197,591 497,589 197,365 498,086 197,591
R2 0.978 0.991 0.958 0.989 0.923 0.934
Cut-off >10K >20K >10K >20K >10K >20K
Weighted Y Y Y Y Y Y
Sample All No CA All No CA All No CA

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on key school finance variables using a border difference-in-differences
design. We only include sales within a bandwidth of 2km from the border. Coefficients come from a regression
of log home prices on an interaction between an indicator for whether a house is in a plant-receiving district and
a vector of indicators for grouping of years since approval. Controls include border pair by year fixed effects and
border pair by district x distance to border (200 m bins) x distance to plant (200 m bins) fixed effects. Standard errors
are clustered at the plant district level. Sample restrictions are as indicated. Only openings with an expected tax base
impact of more than $10,000/student are included.
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Table A.14: Effects of Plant Opening on Nearby Home Prices: Robustness Check

(1) (2) (3) (4) (5) (6)
VARIABLES Ln Price Ln Price Ln Price Ln Price Ln Price Ln Price

5-10KM x Post Yrs 0-2 0.00210 0.00344 -0.00702
(0.0140) (0.0174) (0.0167)

5-10KM x Post Yrs 3-8 -0.0289 -0.0102 -0.0354
(0.0210) (0.0194) (0.0240)

<5km x Post Yrs 0-2 0.00192 -0.0106 -0.0309*
(0.0143) (0.0150) (0.0176)

<5km x Post Yrs 3-8 -0.0630** -0.0388 -0.0679**
(0.0299) (0.0246) (0.0302)

Ln Dist x Post Yrs 0-2 -0.00673 0.0375* 0.0148
(0.0140) (0.0205) (0.0130)

Ln Dist x Post Yrs 3-8 0.0422* 0.0478** 0.0291
(0.0226) (0.0191) (0.0194)

Observations 1,764,776 1,764,776 1,487,430 1,487,430 1,441,980 1,441,980
R2 0.703 0.703 0.721 0.721 0.850 0.850
Size Cutoff >100MW >100MW >100MW >100MW >100MW >100MW
Hedonics Y Y Y Y Y Y
Max Dist 15km 15km 20km 20km 20km 20km
Weighted Y Y Y Y Y Y
Model Base Base Balanced Panel Balanced Panel Repeat Sale Repeat Sale

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on local housing prices for nearby homes. All regressions include plant
district by year, .004 degree longitude x .004 degree latitude bins, and district x year fixed-effects unless otherwise
indicated.The outcome variable is residualized for hedonic by state controls. These include land-use , home age by
plant district (5 year bins with 1 year bins for ages <5), bedrooms, square footage (500 sq ft bins), and lot size (1
acre bins). Missing hedonics are included as a separate indicator. Only homes within 20km of the opening plant
are included unless otherwise indicated. Only plants who are in districts with a population greater than 10,000 are
included in weighted analysis. Standard errors are clustered at the plant district level. Only openings with at least
two years of pre and two years of post data are included except for the balanced panel specification in which only
plants with at least 6 years of pre data and 8 years of post data are included. All housing data come from the Zillow
ZTRAX database—sales that are less than $5,000 or greater than $1,500,000 are excluded as outliers. Weighted
specifications are weighted by the inverse of the number of sales within 20km of the plants in a given year.
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Table A.15: Effects of Plant Opening on Nearby Home Prices: No District by Year FE

(1) (2) (3) (4)
VARIABLES Ln Price Ln Price Ln Price Ln Price

5-10Km x Post Yrs 0-2 0.00423
(0.0107)

5-10Km x Post Yrs 3-8 -0.00804
(0.0128)

<5Km x Post Yrs 0-2 0.0163
(0.0126)

<5Km x Post Yrs 3-8 -0.00596
(0.0213)

Ln Dist x Post Yrs 0-2 -0.00872
(0.00946)

Ln Dist x Post Yrs 3-8 0.000391
(0.0126)

5-10Km x Post Yrs 0-2 x Nameplate Capac (’00s MW) 0.000140
(0.00215)

5-10Km x Post Yrs 3-8 x Nameplate Capac (’00s MW) -0.00551**
(0.00265)

<5Km x Post Yrs 0-2 x Nameplate Capac (’00s MW) -0.000511
(0.00282)

<5Km x Post Yrs 3-8 x Nameplate Capac (’00s MW) -0.00760**
(0.00374)

Ln Dist x Post Yrs 0-2 x Nameplate Capac (’00s MW) 0.000949
(0.00197)

Ln Dist x Post Yrs 3-8 x Nameplate Capac (’00s MW) 0.00673**
(0.00277)

Observations 2,228,460 2,228,460 3,964,622 4,107,596
R2 0.677 0.677 0.684 0.670
Size Cutoff >100MW >100MW N N
Hedonics Y Y Y Y
Max Dist 20km 20km 20km 20km
Weighted Y Y Y Y

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a plant opening on local housing prices for nearby homes. All regressions include
plant district by year and .004 degree longitude x .004 degree latitude bins.The outcome variable is residualized for
hedonic by state controls. Only homes within 20km of the opening plant with at least two years of pre and two years
of post data are are included. Standard errors are clustered at the plant district level.

96



Table A.16: Census Tract Demographics by Distance to Plant and District Status

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES LnInc LnInc LnHomeVal LnHomeVal OwnShare OwnShare WhiteShare WhiteShare
Type Absolute Pctile Absolute Pctile Absolute Pctile Absolute Pctile

In Distr, ≤5KM from Plant -0.0557*** -0.0510*** -0.0552*** -0.0426** -0.0534*** -0.134*** -0.0311*** -0.0938***
(0.0164) (0.0181) (0.0191) (0.0202) (0.00853) (0.0176) (0.00940) (0.0199)

In Distr, 5KM-15KM from Plant -0.00516 -0.0118 0.00270 0.00792 -0.0390*** -0.0919*** -0.0237*** -0.0776***
(0.0127) (0.0143) (0.0151) (0.0162) (0.00668) (0.0146) (0.00778) (0.0166)

Outside Distr,≤5KM from Plant -0.0660*** -0.0542** -0.0879*** -0.0578** -0.0473*** -0.0787*** -0.0394*** -0.0707***
(0.0225) (0.0221) (0.0248) (0.0243) (0.0114) (0.0213) (0.0129) (0.0231)

Outside Distr, >15KM from Plant -0.0203 -0.0345** -0.0610*** -0.0332** -0.0459*** -0.0869*** -0.0345*** -0.0622***
(0.0147) (0.0149) (0.0189) (0.0169) (0.00694) (0.0147) (0.00894) (0.0170)

Observations 1,894 1,879 1,893 1,879 1,894 1,879 1,894 1,879
R2 0.714 0.203 0.831 0.202 0.470 0.222 0.832 0.221

Twoway clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the association between being within a given distance of a plant opening and inside or outside
the plant’s district and various demographic outcomes. Demographic outcomes categorized are absolute show the
association with that demographic’s value and outcomes categorized as percentiles shows the association between a
tract’s outcome’s percentile within their school district. The omitted variable are tracts that are inside the school
disrict but more than 15km from the plant. All regressions control for plant district fixed-effects and weight all plant
districts equally. Demographic data come from the 2000 Census.

97



Table A.17: School Finance Reform and Power Plants: Openings and Retirements

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Open Open Open Open Retire Retire Retire Retire

50MW 50MW 250MW 250MW 50MW 50MW 250MW 250MW

Treat x Post Yr ≤5 -0.00348 -0.00510* -0.00323 -0.00368 0.00217 0.000969 0.00174 0.001000
(0.00226) (0.00288) (0.00212) (0.00283) (0.00157) (0.00170) (0.00141) (0.00158)

Treat x Post Yr >5 -0.00174 -0.00159 -0.000473 -2.83e-07 0.000196 -0.000630 0.000454 -0.000504
(0.00129) (0.00148) (0.000987) (0.00120) (0.00150) (0.00154) (0.00145) (0.00154)

Observations 212,448 122,938 212,448 122,938 212,448 122,938 212,448 122,938
R2 0.524 0.522 0.521 0.520 0.545 0.556 0.527 0.533
Weight All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Dep. Var Mean 0.00395 0.00368 0.00245 0.00245 0.00165 0.00147 0.00102 0.00102

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on power plant openings and retirements. Counties whose
geographic centroids were less than 60 miles apart were included. Coefficients come from a regression of the
outcome variable on the interaction between an indicator for whether a district is a reform state and a vector of
indicators for periods relative to reform (pre-reform is the omitted category). Controls include county pair by year
fixed effects and county fixed-effects. Standard errors are clustered at the state and state border pair level. Power
plant data come from EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included.
Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before
and after the reform year, while our balanced sample consists of 8 years prior and 14 years following the event.
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Table A.18: Baseline Differences in Key Demographic and Economic Characteristics

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Urban Share Urban Share Ln Pop Ln Pop White Share White Share Pov Share Pv Share

Treat 0.00918 0.000126 -0.0731 -0.140 0.00107 0.00200 -0.00799 -0.00413
(0.0165) (0.0208) (0.0764) (0.105) (0.00584) (0.00662) (0.00482) (0.00640)

Observations 9,000 5,350 9,000 5,350 9,000 5,350 9,000 5,350
R2 0.608 0.594 0.730 0.709 0.856 0.862 0.805 0.810
Balanced Panel N Y Y N Y N Y N

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on baseline covariates Counties whose geographic centroids
were less than 60 miles apart were included. Coefficients come from a regression of the outcome variable on an
indicator for whether a district is in a reform state. Controls include county pair fixed effects. Standard errors are
clustered at the state and state border pair level. All data are from the US Census. Population data are annual
estimates, while other outcomes are assigned the value of the most recent Decennial Census. Counties with fewer
than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before and after the reform
year, while our balanced sample consists of 8 years prior and 14 years following the event.

Table A.19: Baseline Differences in Manufacturing and Power Plant Exposure

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES EmpManf EmpManf BigManfEst BigManfEst AnyPlant AnyPlant AnyLrgPlnt AnyLrgPlnt

Treat 11.73*** 12.24** 0.0126*** 0.0137** 0.0125 0.00747 0.0150 0.00663
(3.596) (5.031) (0.00417) (0.00544) (0.0247) (0.0368) (0.0186) (0.0283)

Observations 8,112 4,256 8,768 4,748 9,034 4,894 9,034 5,382
R2 0.686 0.689 0.654 0.657 0.549 0.551 0.526 0.511
Balanced Panel Y N Y N Y N Y N
Sample Base Base Base Base

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on baseline covariates Counties whose geographic centroids
were less than 60 miles apart were included. Coefficients come from a regression of the outcome variable on an
indicator for whether a district is in a reform state. Controls include county pair fixed effects. Standard errors are
clustered at the state and state border pair level. Manufacturing data come from County Business Patterns. Power
plant data come from EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included.
Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before
and after the reform year, while our balanced sample consists of 8 years prior and 14 years following the event.
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Table A.20: School Finance Reform and Manufacturing Employment: Robustness Check

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES LnEmpManf LnEmpManf EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf

Treat x Post Yr ≤5 -0.0575** -0.0606** -3.287** -2.569 -3.020** -2.290 -1.533 -1.731 -3.316* -2.880
(0.0270) (0.0287) (1.571) (1.672) (1.447) (1.398) (2.347) (1.826) (1.817) (2.182)

Treat x Post Yr >5 -0.113*** -0.0946** -7.270*** -5.910** -8.112*** -7.026*** -4.965** -4.878** -7.753** -6.355*
(0.0372) (0.0409) (2.517) (2.727) (1.930) (2.116) (2.308) (2.145) (3.064) (3.324)

Observations 165,576 91,792 156,840 83,012 56,618 29,860 37,976 32,756 89,902 63,312
R2 0.953 0.957 0.956 0.961 0.957 0.967 0.954 0.961 0.963 0.965
Robustness Log DV Log DV Pre-1998 Pre-1998 w/i .5 ln(bl manuf) w/i .5 ln(bl manuf) w/i 25/1K w/i 25/1K No outlier states No outlier states
Dep. Var Mean 70.29 70.29 72.01 72.01 85.46 85.46 56.23 56.23 61.96 61.96

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing outcomes using a county border pair
difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were included.
Coefficients come from a regression of the outcome variable on the interaction between an indicator for whether a
district is a reform state and a vector of indicators for periods relative to reform (pre-reform is the omitted category).
Controls include county pair by year fixed effects and county fixed-effects. Standard errors are clustered at the state
and state border pair level. Manufacturing data come from County Business Patterns. Power plant data come from
EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included. Counties with fewer
than 1,000 population in 1970 are excluded. Sample restrictions are as indicated. “Outlier states” refers to states
whose baseline difference in manufacturing employment was greater than 20 workers per 1,000 population. Our
unbalanced sample consists of 14 years before and after the reform year, while our balanced sample consists of 8
years prior and 14 years following the event. Outcomes with values greater than the 99th percentile are excluded as
outliers.
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Table A.21: School Finance Reform and Manufacturing Establishments: Robustness Check

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES LnLrgManfEst LnLrgManfEst LrgManfEst LrgManfEst LrgManfEst LrgManfEst LrgManfEst LrgManfEst LrgManfEst LrgManfEst

Treat x Post Yr ≤5 -0.117** -0.109** -0.00680** -0.00495* -0.00492** -0.00423 -0.00324 -0.00407 -0.00306* -0.00359**
(0.0497) (0.0480) (0.00259) (0.00250) (0.00238) (0.00260) (0.00378) (0.00281) (0.00159) (0.00176)

Treat x Post Yr >5 -0.169*** -0.147*** -0.0118*** -0.00959*** -0.0108*** -0.0104*** -0.00682* -0.00929*** -0.00718** -0.00630**
(0.0533) (0.0542) (0.00354) (0.00348) (0.00272) (0.00313) (0.00367) (0.00301) (0.00284) (0.00302)

Observations 201,752 117,162 190,660 106,154 59,498 31,992 45,546 94,870 116,132 85,332
R2 0.902 0.912 0.900 0.915 0.900 0.916 0.889 0.910 0.910 0.916
rob1ustness Log DV Log DV Pre-1998 Pre-1998 w/i .5 ln(bl manuf w/i .25 ln(bl manuf w/i .25 ln(bl manuf w/i .25 ln(bl manuf States w/ no dif States w/ no dif
Dep. Var Mean 68.48 68.48 0.0608 0.0608 0.0743 0.0743 0.0461 0.0630 0.0484 0.0484

Twoway clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing outcomes using a county border pair
difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were included.
Coefficients come from a regression of the outcome variable on the interaction between an indicator for whether a
district is a reform state and a vector of indicators for periods relative to reform (pre-reform is the omitted category).
Controls include county pair by year fixed effects and county fixed-effects. Standard errors are clustered at the state
and state border pair level. Manufacturing data come from County Business Patterns. Power plant data come from
EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included. Counties with fewer
than 1,000 population in 1970 are excluded. Sample restrictions are as indicated. “Outlier states” refers to states
whose baseline difference in manufacturing employment was greater than 20 workers per 1,000 population. Our
unbalanced sample consists of 14 years before and after the reform year, while our balanced sample consists of 8
years prior and 14 years following the event. Outcomes with values greater than the 99th percentile are excluded as
outliers.
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Table A.22: School Finance Reform and Employment and Establishments for Non-
Manufacturing Industries

(1) (2) (3) (4) (5) (6)
VARIABLES Non-Manf Non-Manf Non-Manf Est>250Emp Non-Manf Est>250Emp Non-Manf Est>500Emp Non-Manf Est>500Emp

Treat x Post Yrs ≤5 0.0329 0.0611 -6.72e-05 0.000609 -0.000407 -0.00141
(1.317) (1.562) (0.00100) (0.00114) (0.000652) (0.00128)

Treat x Post Yrs ¿5 0.115 0.364 0.000876 0.00243 0.000211 -0.000402
(2.066) (2.498) (0.00177) (0.00190) (0.000750) (0.00122)

Observations 167,412 92,432 208,062 120,052 119,938 119,938
R2 0.970 0.973 0.873 0.885 0.879 0.892
Weight All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Dep. Var Mean 186.3 160.7 0.0277 0.0324 0.0104 0.0134

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on employment outcomes by industry using a county border
pair difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were
included. Coefficients come from a regression of the outcome variable on the interaction between an indicator for
whether a district is a reform state and a vector of indicators for periods relative to reform (pre-reform is the omitted
category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors are clustered
at the state and state border pair level. Employment data come from County Business Patterns and are suppressed for
counties with few establishments. Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced
sample consists of 14 years before and after the reform year, while our balanced sample consists of 8 years prior and
14 years following the event. We exclude outcome values greater than the 99th percentile as outliers.
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Table A.23: School Finance Reform and Employment by Industry Type

(1) (2) (3) (4) (5) (6) (7)
VARIABLES AgEmp/1KPop MineEmp/1KPop ConstrEmp/1KPop RtlEmp/1KPopr TransUtilEmp/1KPop WholesaleEmp/1KPop OthInd/1KPop

Treat x Post Yr ≤5 0.0859 -1.667 0.108 -0.0799 -0.472 0.251 0.207
(0.171) (1.223) (0.240) (0.531) (0.286) (0.259) (1.344)

Treat x Post Yr >5 0.184 -0.751 -0.238 -0.464 -0.562 0.439 0.0101
(0.205) (1.521) (0.344) (0.791) (0.432) (0.398) (2.124)

Observations 24,686 20,780 102,058 118,298 87,842 103,678 120,498
R2 0.859 0.931 0.913 0.954 0.911 0.935 0.922
Dep. Var Mean 1.612 11.27 11.65 47.08 11.17 13.60 85.82

)
Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on employment outcomes by industry using a county border
pair difference-in-differences design. Counties whose geographic centroids were less than 60 miles apart were
included. Coefficients come from a regression of the outcome variable on the interaction between an indicator for
whether a district is a reform state and a vector of indicators for periods relative to reform (pre-reform is the omitted
category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors are clustered
at the state and state border pair level. Employment data come from County Business Patterns and are suppressed for
counties with few establishments. Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced
sample consists of 14 years before and after the reform year, while our balanced sample consists of 8 years prior
and 14 years following the event. We exclude outcome values greater than the 99th percentile as outliers. There are
different numbers of observations across differnet industries because many smaller industries have many county-year
employment information suppressed to preserve privacy.
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Table A.24: School Finance Reform and Power Plant Openings: School District Overlap

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Open>25MW Open>25MW Open>25MW Open>25MW Open>100MW Open>100MW Open>100MW Open>100MW

Treat x Post Yr ≤5 x Overlap -7.399* -6.682 0.00492 0.00641 -0.0210 -0.0274 -0.0233 -0.0373
(4.294) (5.723) (0.00847) (0.00736) (0.0272) (0.0445) (0.0300) (0.0402)

Treat x Post Yr ≤5 x Overlap -24.61*** -29.17*** -0.00733 -0.0115 -0.0400 -0.0498 -0.0556 -0.0716
(8.596) (10.45) (0.00948) (0.0117) (0.0471) (0.0650) (0.0429) (0.0535)

Observations 197,854 114,286 206,366 119,352 212,112 122,708 212,112 122,708
R2 0.950 0.954 0.912 0.922 0.972 0.976 0.968 0.971
Dep. Var Mean 69.30 69.30 0.0609 0.0609 0.216 0.216 0.140 0.140

)
Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing and power generation outcomes using a
county border pair difference-in-differences design by the degree of overlap between a counties’ school and zoning
jurisdictions. Overlap is measured as the interaction between population-weighted HHI of school districts within
each zoning jurisdiction in a county and the population-weighted HHI of zoning districts within each school district
in a county. Counties whose geographic centroids were less than 60 miles apart were included. Coefficients come
from a regression of the outcome variable on the interaction between an indicator for whether a district is a reform
state and a vector of indicators for periods relative to reform (pre-reform is the omitted category). Controls include
county pair by year fixed effects and county fixed-effects. Standard errors are clustered at the state and state border
pair level. Manufacturing data come from County Business Patterns. Power plant data come from EIA Form 860.
Only plants that were owned by utilities still in operation in 1990 were included. Counties with fewer than 1,000
population in 1970 are excluded. Our unbalanced sample consists of 14 years before and after the reform year, while
our balanced sample consists of 8 years prior and 14 years following the event. Outcomes with values greater than
the 99th percentile are excluded as outliers.
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Table A.25: School Finance Reform and Power Plant Openings: SUTVA Check

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES EmpManf EmpManf LrgMnfEst LrgMnfEst AnyGen(50) AnyGen(50) AnyGen(250) AnyGen(250)

Treat x Post Yrs ≤5 x Dist to Bord. 0.0325 3.17e-05 0.000107 5.63e-05
(0.0720) (0.000130) (0.000611) (0.000519)

Treat x Post Yrs >5 x Dist to Bord. -0.0304 -3.65e-05 0.000194 0.000229
(0.0870) (0.000142) (0.000705) (0.000662)

Treat x Post Yrs ≤5 -1.596 -0.00353 -0.0101 -0.0152 -0.0105
(1.675) (0.00231) (0.0155) (0.0151)

Treat x Post Yrs >5 -7.008** -0.00778** -0.0294 -0.0322 -0.0242
(2.919) (0.00345) (0.0190) (0.0196)

Observations 176,266 95,792 232,134 121,578 238,364 125,856 238,364 125,856
R2 0.957 0.958 0.915 0.902 0.970 0.964 0.964 0.953
Weight All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Balanced Balanced Balanced Balanced Balanced Balanced Balanced Balanced
Sample Type All >50 Mi border All >50 Mi border All >50 Mi border All >50 Mi border
Dep. Var Mean 70.51 67.24 0.0598 0.0529 0.227 0.224 0.133 0.133

Twoway clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing and power generation outcomes using a
county border pair difference-in-differences design. Counties whose geographic centroids were less than 90 miles
apart were included. Coefficients come from a regression of the outcome variable on the interaction between an
indicator for whether a district is a reform state and a vector of indicators for periods relative to reform (pre-reform is
the omitted category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors
are clustered at the state and state border pair level. Manufacturing data come from County Business Patterns. Power
plant data come from EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included.
Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before
and after the reform year, while our balanced sample consists of 8 years prior and 14 years following the event.
Outcomes with values greater than the 99th percentile are excluded as outliers. Distance to border refers to the
mininum distance of the control in a pair to its nearest treated neighbor.
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Table A.26: School Finance Reform and Power Plant Openings: Weighting by State

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES EmpManf EmpManf LrgMnfEst LrgMnfEst AnyPlnt50 AnyPlnt50 AnyPlnt500 AnyPlnt500

Treat x Post Yr ≤5 -4.699*** -3.589** -0.00618*** -0.00638** 0.0165 -0.00108 0.00632 -0.00957
(1.659) (1.726) (0.00217) (0.00237) (0.0154) (0.0158) (0.0113) (0.0104)

Treat x Post Yr >5 -10.33*** -9.210*** -0.0121*** -0.0128*** -0.0233 -0.0297 -0.0284 -0.0331
(2.468) (2.799) (0.00325) (0.00397) (0.0236) (0.0254) (0.0208) (0.0224)

Observations 165,876 94,038 210,828 121,876 212,448 122,938 212,448 122,938
R2 0.959 0.965 0.911 0.925 0.960 0.964 0.956 0.960
Weight All Treated State= All Treated State= All Treated State= All Treated State= All Treated State= All Treated State= All Treated State= All Treated State=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Dep. Var Mean 68.20 67.79 0.0539 0.0532 0.234 0.215 0.159 0.144

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing and power generation outcomes using a
county border pair difference-in-differences design. Counties whose geographic centroids were less than 60 miles
apart were included. Coefficients come from a regression of the outcome variable on the interaction between an
indicator for whether a district is a reform state and a vector of indicators for periods relative to reform (pre-reform is
the omitted category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors
are clustered at the state and state border pair level. Manufacturing data come from County Business Patterns. Power
plant data come from EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included.
Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before
and after the reform year, while our balanced sample consists of 8 years prior and 14 years following the event.
Observations are weighted such that all treated states count equally. Outcomes with values greater than the 99th
percentile are excluded as outliers.
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Table A.27: School Finance Reform and Power Plant Openings: Weighting by Population

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES EmpManf EmpManf LrgMnfEst LrgMnfEst AnyPlnt50 AnyPlnt50 AnyPlnt500 AnyPlnt500

Treat x Post Yr ≤5 -5.651*** -3.240* -0.00734** -0.00720** -0.0678 -0.116 -0.0686 -0.115
(1.559) (1.851) (0.00291) (0.00318) (0.0528) (0.0862) (0.0528) (0.0862)

Treat x Post Yr >5 -10.41*** -9.654** -0.00981*** -0.00973*** -0.222** -0.298** -0.222** -0.293**
(3.333) (4.033) (0.00349) (0.00323) (0.0957) (0.120) (0.0952) (0.122)

Observations 165,876 91,940 210,828 121,876 212,448 122,938 212,448 122,938
R2 0.964 0.968 0.927 0.938 0.947 0.933 0.943 0.928
Weight Pop. Pop. Pop. Pop. Pop. Pop. Pop. Pop.
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Dep. Var Mean 93.70 92.01 0.0760 0.0744 0.497 0.493 0.390 0.393

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing and power generation outcomes using a
county border pair difference-in-differences design. Counties whose geographic centroids were less than 60 miles
apart were included. Coefficients come from a regression of the outcome variable on the interaction between an
indicator for whether a district is a reform state and a vector of indicators for periods relative to reform (pre-reform is
the omitted category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors
are clustered at the state and state border pair level. Manufacturing data come from County Business Patterns. Power
plant data come from EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included.
Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before
and after the reform year, while our balanced sample consists of 8 years prior and 14 years following the event.
Observations are weighted by treated county population times the inverse of the number of county pairs a given
treated county has. Outcomes with values greater than the 99th percentile are excluded as outliers.
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Table A.28: School Finance Reform and Manufacturing Employment by Bandwidth

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf EmpManf

Treat x Post Yr ≤5 -5.068** -4.357** -3.021** -2.008 -2.752* -2.051 -1.876 -1.264 -1.529 -0.846
(2.218) (1.979) (1.486) (1.378) (1.455) (1.527) (1.350) (1.425) (1.301) (1.378)

Treat x Post Yr >5 -7.561*** -8.129*** -6.879*** -6.244*** -7.027*** -6.131*** -5.500*** -4.586** -5.111** -4.267**
(2.714) (2.710) (2.073) (2.233) (2.056) (2.226) (1.877) (2.093) (1.921) (2.110)

Observations 20,950 11,338 69,724 38,962 161,216 89,556 291,016 159,870 446,176 247,654
R2 0.956 0.962 0.957 0.962 0.954 0.959 0.952 0.956 0.952 0.956
Weight All County= All County= All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Max BW 15 15 45 45 60 60 75 75 90 90
Dep. Var Mean 75.25 78.45 71.82 74.95 69.36 73.18 68.98 72.72 68.20 71.98

Twoway standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing and power generation outcomes using a
county border pair difference-in-differences design. County pairs whose geographic centroids were greater than
the max bandwidth specified were excluded in each analysis. Coefficients come from a regression of the outcome
variable on the interaction between an indicator for whether a district is a reform state and a vector of indicators for
periods relative to reform (pre-reform is the omitted category). Controls include county pair by year fixed effects and
county fixed-effects. Standard errors are clustered at the state and state border pair level. Manufacturing data come
from County Business Patterns. Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced
sample consists of 14 years before and after the reform year, while our balanced sample consists of 8 years prior and
14 years following the event. Outcomes with values greater than the 99th percentile are excluded as outliers.
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Table A.29: School Finance Reform and Manufacturing Establishments by Bandwidth

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES LrgMnfEst LrgMnfEst LrgMnfEst LrgMnfEst LrgMnfEst LrgMnfEst LrgMnfEst LrgMnfEst LrgMnfEst LrgMnfEst

Treat x Post Yr ≤5 -0.0116*** -0.00648* -0.00692** -0.00329 -0.00659** -0.00482 -0.00599** -0.00514* -0.00574** -0.00469
(0.00416) (0.00326) (0.00310) (0.00265) (0.00275) (0.00290) (0.00288) (0.00293) (0.00272) (0.00287)

Treat x Post Yr >5 -0.0143*** -0.00942* -0.0116*** -0.00884** -0.0115*** -0.00936*** -0.00974*** -0.00864*** -0.00860*** -0.00737**
(0.00512) (0.00466) (0.00358) (0.00347) (0.00313) (0.00327) (0.00290) (0.00301) (0.00284) (0.00297)

Observations 27,216 15,380 69,724 43,134 161,216 98,716 291,016 176,758 446,176 272,004
R2 0.902 0.917 0.902 0.922 0.903 0.918 0.900 0.913 0.900 0.913
Weight All County= All County= All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Max BW 15 15 45 45 60 60 75 75 90 90
Dep. Var Mean 0.0698 0.0711 0.0665 0.0713 0.0649 0.0682 0.0636 0.0678 0.0627 0.0667

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing outcomes using a county border pair
difference-in-differences design. County pairs whose geographic centroids were greater than the max bandwidth
specified were excluded in each analysis. Coefficients come from a regression of the outcome variable on the
interaction between an indicator for whether a district is a reform state and a vector of indicators for periods relative
to reform (pre-reform is the omitted category). Controls include county pair by year fixed effects and county
fixed-effects. Standard errors are clustered at the state and state border pair level. Manufacturing data come from
County Business Patterns. Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample
consists of 14 years before and after the reform year, while our balanced sample consists of 8 years prior and 14
years following the event. Outcomes with values greater than the 99th percentile are excluded as outliers.
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Table A.30: School Finance Reform and Power Plant Openings by Bandwidth

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES AnyGen AnyGen AnyGen AnyGen AnyGen AnyGen AnyGen AnyGen AnyGen AnyGen

Treat x Post Yr ≤5 -0.0102 -0.00259 -0.00281 -0.00292 -0.00583 -0.0110 -0.00160 -0.00881 -0.00106 -0.00956
(0.0134) (0.0135) (0.00909) (0.00930) (0.00892) (0.00979) (0.00813) (0.00796) (0.00712) (0.00868)

Treat x Post Yr >5 -0.0152 -0.0130 -0.0150 -0.0141 -0.0281* -0.0302* -0.0200* -0.0237* -0.0173 -0.0230*
(0.0151) (0.0182) (0.0135) (0.0159) (0.0141) (0.0164) (0.0119) (0.0135) (0.0106) (0.0128)

Observations 27,438 15,838 91,978 54,032 212,448 122,938 384,308 220,086 588,130 338,396
R2 0.970 0.973 0.968 0.972 0.965 0.969 0.966 0.971 0.965 0.970
Weight All County= All County= All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Max BW 30 30 45 45 60 60 75 75 90 90
Dep. Var Mean 0.246 0.233 0.222 0.217 0.214 0.215 0.211 0.212 0.217 0.220

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on power generation outcomes using a county border pair
difference-in-differences design. Counties whose geographic centroids were closer than the indicated maximum
bandwidth were included in each regression. Coefficients come from a regression of the outcome variable on
the interaction between an indicator for whether a district is a reform state and a vector of indicators for periods
relative to reform (pre-reform is the omitted category). Controls include county pair by year fixed effects and county
fixed-effects. Standard errors are clustered at the state and state border pair level. Power plant data come from EIA
Form 860. Only plants that were owned by utilities still in operation in 1990 were included. Counties with fewer
than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before and after the reform
year, while our balanced sample consists of 8 years prior and 14 years following the event.
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Table A.31: School Finance Reform and Manufacturing Employment: Alternate Reform
Identification Strategy

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES EmpManf EmpManf LrgManf LrgManf AnyGen50 AnyGen50 AnyGen500 AnyGen500

Treat x Post Yrs ≤5 -2.596* -2.112 -0.00654** -0.00586* -0.0245** -0.0466** -0.0137 -0.0300
(1.300) (1.626) (0.00244) (0.00293) (0.00954) (0.0186) (0.00848) (0.0197)

Treat x Post Yrs >5 -4.972* -3.841 -0.00928*** -0.00657* -0.0365** -0.0685** -0.0140 -0.0393
(2.570) (3.310) (0.00327) (0.00365) (0.0171) (0.0259) (0.0156) (0.0260)

Observations 179,022 74,092 215,728 79,856 229,150 86,710 229,150 86,710
R2 0.955 0.959 0.899 0.913 0.966 0.965 0.959 0.958
Weight All County= All County= All County= All County= All County= All County= All County= All County=
Controls Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year Pair x Year
Sample Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced Unbalanced Balanced
Dep. Var Mean 74.12 84.93 0.0671 0.0671 0.224 0.224 0.148 0.148

Twoway clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a school finance reform on manufacturing and power generation outcomes using a
county border pair difference-in-differences design. Counties whose geographic centroids were less than 60 miles
apart were included. Coefficients come from a regression of the outcome variable on the interaction between an
indicator for whether a district is a reform state and a vector of indicators for periods relative to reform (pre-reform is
the omitted category). Controls include county pair by year fixed effects and county fixed-effects. Standard errors
are clustered at the state and state border pair level. Manufacturing data come from County Business Patterns. Power
plant data come from EIA Form 860. Only plants that were owned by utilities still in operation in 1990 were included.
Counties with fewer than 1,000 population in 1970 are excluded. Our unbalanced sample consists of 14 years before
and after the reform year, while our balanced sample consists of 8 years prior and 14 years following the event.
Outcomes with values greater than the 99th percentile are excluded as outliers. Reform events were the first event in
each state identified by Jackson, Johnson, and Persico (2014).
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A.2 ZTRAX Database

Home sales data come from the Zillow ZTRAX database and are merged to assessment

records using parcel ID. We restrict sales to properties categorized by Zillow as single-family

units. This includes single-family homes and condominiums, but excludes multi-family units

although results are robust to their inclusion. Included sales are non-foreclosures with a deed type

that does not reflect a transfer between family members, an inheritance, or another non-market

transfer of property. These sample restrictions are designed to capture arm’s length transactions.

Foreclosures are transactions flagged by Zillow as foreclosures, as well as tax deeds, foreclosure

deeds, commissioner’s deeds, redemption deeds, deeds in lieu of foreclosure, receiver’s deeds,

sheriff’s deeds, beneficiary deeds, notices of sale, and notices of lease pendens. This is a liberal

definition of foreclosure that includes the first notice of foreclosure.

For all sale types, we assume that a house will only transact once in a 93 day window.41

We define a transaction event as beginning with the first time a parcel transacts. If another

transaction is recorded within the next 93 days, that transaction is considered part of the initial

transaction, and we check for another transaction within the following 93 days, until a 93 day

period with no transaction activity passes.42 The transaction date is coded as the date of the first

event. The price is the maximum price observed over the transaction window.

Transaction and assessment data come from county governments. Because data are

provided at the county level, the years in which counties enter our sample differ even within

a state. However, we cannot simply use the first year a county has a transaction in the data as

the year in which data becomes available for a county because many counties include a small

minority of transactions (< .1% of housing units) for many years in the past before reporting

all transactions. Accordingly, we identify the starting year for each county in the following way.

41Many transaction records only provide a month and year of sale. The 93 day window allows for any three month
window regardless of month length.

42Many events have multiple transactions recorded in the ZTRAX database due to mortgage changes, adjustments,
multiple foreclosure notices, etc.
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We first identify all years in which a county had a greater than 300% increase in sales (off a

minimum of a base of 5 transactions). This threshold is chosen because it is greater than any

increase we would expect to observe in the course of normal annual fluctuations and therefore is

likely driven by changes in reporting. We then define a county’s initial year as the most recent

year in which there was a greater than 300% increase observed in our data (or the first year

transactions are recorded if >300% increase never occurred.) We drop all transactions prior to our

empirically-defined “start-year” from our analysis. Results are robust to alternative specifications

of start year. Finally, because our home price analysis uses a border difference-in-differences

design that in some cases span counties we drop all transactions within the border-pair prior to

the year in which the last county began full transaction reporting to ensure sample consistency.

A.3 Imputing Plant Value

To proxy for the effect of a plant opening on the local tax base, we use the estimated

overnight construction cost of a power plant. Overnight construction cost is a term of art that

reflects the estimated hypothetical cost of building a power plant overnight so as to abstract

away from borrowing costs. To do this, we used annual estimates of overnight construction

costs per kWh taken from the EIA’s Annual Energy Outlook between 1997 and 2018. For years

1995 and 1996 we used the 1997 values. For combined-cycle gas turbines and combustion gas

turbines, values for basic and advanced turbines were given. We averaged these two values for

each year, but results are robust to using either one. All estimates were adjusted for inflation and

are presented in 2014 dollars.

An important note is that EIA estimates are presented for the construction of a power plant

of a given size. We use the resulting cost per kwh for all power plants. If, as is likely, economies

of scale exist then we are understating the costs of small plants and overstating the costs of large

plants. This would bias our results toward zero and so to the extent that this affects our overall
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results they should be thought of as a lower-bound.

The left panel of Figure A.8 shows the distribution of estimated plant construction costs,

while the right panel shows the distribution of costs per student. In both cases the distribution

is right-skewed; there is a very long right tail of expected impacts. To allow for better interpret

ability, we drop all impacts above 2 million dollars of construction costs per student (<2%

of plants) from the figure. Most districts have increases in expected tax base large enough to

expect meaningful fiscal impact for local schools—the median opening has roughly $127,000 in

estimated construction costs per student, while the mean opening has approximately $256,000

per student in estimated construction costs.43

Figure A.8: Estimated Fiscal Impact

This figure shows various summary statistics on estimated plant construction costs, which we use as a proxy of plant
valuation. These figures show the distribution of estimated plant construction costs and construction costs per
student (we exclude the small number of plant openings with grater than $2 million in construction costs per student).
Construction cost data and plant opening data come from the EIA, while enrollment data comes from the NCES.

43Most school district property taxes are between .3%-1.5%.
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A.4 Identifying Reforms

In Section 4, we estimate how shocking a district’s marginal value of tax base with respect

to school spending affected local land-use decisions. To do this, we identified school finance

legislation, litigation and initiatives that affected this quantity within a given state between 1970

and 2015. To identify these reforms we used information from Public School Finance Programs

in the United States 1962, 1967, 1972, 1976, 1979, 1994, 1998, 2007, 2011, 2015, and 2018.

Broadly speaking, changes to the marginal value of tax base are determined by the extent to

which increases in local revenue crowd-out state and federal transfers and the level of taxes a local

district can charge. Accordingly, in each report year we attempted to quantify a state’s school

funding formula and tax limitations. We then looked for major changes in crowd-out or tax limits

between report years and identified these changes as potential reforms. We next turned to the

text of the report and online searches to identify the legislation, litigation or initiatives that led

to these changes in order to ensure that such a change had indeed occurred and to identify the

year in which the reform took place. If a state had multiple reform years, we used the first reform

year only. Below, we summarize the year, reform type and changes of each reform used in our

analysis.

Reforms are typically not amenable to simple summary statistics (except for example,

where no crowd-out exists and so total crowd-out for all districts is 0). In the table below, we

provide information on the level of crowd-out as a function of a district’s property value (P). This

is for an “average” district in a state, but should not be thought of as holding for all districts. For

example, some districts with high property values may generate more money than their foundation

value through local sources and so face no effective crowd-out when increasing the tax base.

When necessary, we attempt to provide additional context. We also attempt to describe the tax

limitations in place for each state. These should not be compared across states as assessment ratios

(the ratio of assessed value to true market value) changed dramatically over time. Unfortunately,
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for earlier years we often lack information on the assessment ratio used and so cannot inflate

these rates into a value common across all states.

Figure A.9 shows the correlation between our qualitatively-identified reforms and the

first major reform identified by Jackson, Johnson, and Persico (2014) in their paper examining

the long-run educational and labor market effects of these reforms. Note that Jackson, Johnson,

and Persico (2014) were searching for reforms that changed the distribution of school funding,

not events that shocked the marginal value of tax base per se, and so therefore we would not

necessarily expect to identify all the same reform events. Each state in our reform sample also

appeared in their sample and there is a fairly strong correlation; roughly 3/5 of the reforms

identified in our sample occurred within three years of reforms identified by Jackson, Johnson,

and Persico (2014). There were a further ten states that had reforms as identified by Jackson,

Johnson, and Persico (2014), but for which we did not find a major change in their marginal value

of tax base or tax limitations. Nonetheless, this coincidence in reforms is reassuring.
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Figure A.9: Correlation Between Qualitatively-Defined Reforms and Reforms Identified in
Jackson, Johnson, and Persico (2014)

This figure compares the year of our qualitatively-identified reform with the reform in a state identified by Jackson,
Johnson, and Persico (2014).

117



St
Y

r
Ty

pe
Pr

e-
R

ef
or

m
C

ro
w

d-
ou

t
Po

st
-R

ef
or

m
C

ro
w

d-
ou

t
Pr

e-
re

fo
rm

ta
x

lim
it

Po
st

re
fo

rm
ta

x
lim

it

Sh
oc

k
D

riv
er

A
L

19
95

R
es

po
ns

e
to

lit
ig

at
io

n
.0

02
5*

(1
93

8
T

tl
St

at
e

Pr
op

er
ty

V
al

ue
/T

tl
St

at
e

Pr
op

er
ty

V
al

ue
)*

P
.0

1*
P

15
m

ill
s

(e
xc

ee
d

w
/v

ot
e)

15
m

ill
s

(e
xc

ee
d

w
/v

ot
e)

C
ro

w
d-

ou
t

A
Z

19
80

L
eg

is
la

tio
n

0
.0

47
2*

P
N

on
e

St
at

e-
se

t
ex

pe
nd

i-
tu

re
lim

it

C
ro

w
d-

ou
t

A
R

19
84

L
iti

ga
tio

n
E

qu
al

iz
at

io
n

ai
d

ro
ug

hl
y

10
%

of
st

at
e

ai
d

an
d

di
st

ri
bu

te
d

as
fu

nc
tio

n
of

AV
/T

ea
ch

er
ra

nk

.0
25

*P
N

on
e

St
at

e-
se

t
ex

pe
nd

i-
tu

re
lim

it

C
ro

w
d-

ou
t

C
A

19
78

R
es

po
ns

e
to

lit
ig

at
io

n
+

Pr
op

13
(p

ro
pe

rt
y

ta
x

lim
ita

tio
n)

.0
38

7*
P

≈
fu

ll
cr

ow
d-

ou
t

N
o

lim
it

(w
/

vo
te

)

.0
1

(t
ot

al
ta

xe
s)

C
ro

w
d-

ou
t+

L
im

ita
-

tio
n

C
O

19
74

L
eg

is
la

tio
n

m
in

(.0
17

,ta
x

ne
ed

ed
to

ra
is

e
$2

50
/s

tu
de

nt
).

Ta
x

ne
ed

ed
to

ra
is

e
m

os
tc

om
m

on
,e

ff
ec

tiv
e

cr
ow

d-
ou

t
of

0

G
ua

ra
nt

ee
d

R
ev

en
ue

B
as

e
of

$2
9,

62
0

(a
lm

os
tf

ul
lc

ro
w

d-
ou

tu
p

to
th

is
lim

it—
bi

nd
s

fo
rm

os
t

di
st

ri
ct

s)

N
o

lim
it

(w
/

vo
te

)

N
o

lim
it

(w
/v

ot
e)

C
ro

w
d-

ou
t

118



St
Y

r
Ty

pe
Pr

e-
R

ef
or

m
C

ro
w

d-
ou

t
Po

st
-R

ef
or

m
C

ro
w

d-
ou

t
Pr

e-
re

fo
rm

ta
x

lim
it

Po
st

re
-

fo
rm ta
x

lim
it

Sh
oc

k
D

riv
er

C
T

19
90

Le
g-

is
-

la
-

tio
n

G
ua

ra
nt

ee
d

Ta
x

B
as

e
in

w
hi

ch
ea

ch
di

st
ri

ct
w

as
gu

ar
an

te
ed

τ
*P

85
,b

ut
b/

c
un

de
rf

un
de

d
on

ly
re

ce
iv

ed
pr

o-
ra

te
d

sh
ar

e
of

av
ai

la
bl

e
fu

nd
in

g
(w

hi
ch

w
as

ve
ry

lo
w

)

τ
*

In
c D

/I
nc

M
ax

w
he

re
τ
∗

is
th

e
ta

x
ne

ce
ss

ar
y

to
cr

ea
te

th
e

fo
un

da
tio

n
am

ou
nt

at
th

e
st

at
e

gu
ar

an
te

ed
w

ea
lth

le
ve

l(
1.

56
7

m
ed

ia
n

w
ea

lth
)

N
o

lim
it

N
o

lim
it

C
ro

w
d-

ou
t

D
E

N
on

e

FL
N

on
e

G
A

19
86

Le
g-

is
-

la
-

tio
n

Ta
x

ra
te

ne
ce

ss
ar

y
to

ra
is

e
78

,0
00

,0
00

on
al

l
pr

op
er

ty
in

st
at

e
(o

nl
y

10
%

of
st

at
e

fu
nd

in
g,

so
ra

te
lik

el
y

lo
w

)

.0
08

25
*P

(i
fw

ea
lth

<
90

th
pe

rc
en

til
e)

,
ot

he
rw

is
e

.0
05

*P
20

(n
o

lim
it

w
/

vo
te

)

C
ro

w
d-

ou
t

ID
19

79
In

i-
tia

-
tiv

e

.0
22

*P
.0

03
6*

P
.0

27 (n
o

lim
it

w
ith

vo
te

)

..0
04

Li
m

-
ita

-
tio

n

IL
19

73
Le

g-
is

-
la

-
tio

n

1.
12

*.
01

1*
P

G
ua

ra
nt

ee
d

ta
x

ba
se

of
$4

2,
00

0
(o

rm
or

e
if

el
em

or
hs

di
st

r)
fo

ra
ny

ta
x

ra
te

(a
ff

ec
ts

m
os

t>
80

%
of

di
st

ri
ct

s)

N
o

lim
it

w
/

vo
te

N
o

lim
it

w
/

vo
te

C
ro

w
d-

ou
t

119



St
Y

r
Ty

pe
Pr

e-
R

ef
or

m
C

ro
w

d-
ou

t
Po

st
-R

ef
or

m
C

ro
w

d-
ou

t
Pr

e-
re

fo
rm

ta
x

lim
it

Po
st

re
fo

rm
ta

x
lim

it
Sh

oc
k

D
riv

er

IN
19

73
L

eg
-

is
la

-
tio

n

.0
21

5*
P

.0
3*

P
.0

47
m

in
(.0

3,
ta

x
to

ge
ne

ra
te

la
st

ye
ar

le
vy

)

C
ro

w
d-

ou
t+

L
im

ita
tio

n

IA
19

72
L

eg
-

is
la

-
tio

n

0
00

54
*P

N
o

lim
it

w
/v

ot
e

10
9%

la
st

ye
ar

’s
le

vy
C

ro
w

d-
ou

t+
L

im
ita

tio
n

K
S

19
75

L
eg

-
is

la
-

tio
n

.0
05

*C
ou

nt
y

V
al

ua
tio

n
(a

pp
or

tio
ne

d
by

di
st

ri
ct

sh
ar

e
of

co
un

ty
em

pl
oy

ee
s)

.0
17

*P
N

o
lim

it
w

/v
ot

e

10
7%

la
st

ye
ar

’s
le

vy
C

ro
w

d-
ou

t

K
Y

19
91

L
iti

-
ga

-
tio

n

0
.0

03
6*

P
U

n-
cl

ea
r

U
nc

le
ar

C
ro

w
d-

ou
t

LA
N

on
e

M
E

N
on

e

M
D

N
on

e

M
A

19
93

L
eg

-
is

la
-

tio
n

C
om

pl
ic

at
ed

,b
ut

>
75

%
of

di
st

ri
ct

s
(1

97
9)

in
ho

ld
-h

ar
m

le
ss

an
d

th
er

ef
or

e
ha

d
ef

fe
ct

iv
el

y
0

cr
ow

d-
ou

t

.0
09

4*
P*

In
c d

/A
vg

In
c,

bu
t

co
m

pl
ic

at
ed

so
do

es
no

ta
pp

ly
un

if
or

m
ly

to
al

ld
is

tr
ic

ts

.0
25 (a
ll

ra
te

s)

.0
25

(a
ll

ra
te

s)
C

ro
w

d-
ou

t

M
I

19
93

In
i-

tia
-

tiv
e

τ
*P

if
va

lu
e/

st
ud

en
t<

$4
0K

(u
p

to
fir

st
30

m
ill

s)
.0

18
*P

.0
5

(a
ll

ta
xe

s)
.0

21
C

ro
w

d-
ou

t
(P

ro
po

rt
io

na
l)

+
L

im
ita

tio
n

120



St
Y

r
Ty

pe
Pr

e-
R

ef
or

m
C

ro
w

d-
ou

t
Po

st
-R

ef
or

m
C

ro
w

d-
ou

t
Pr

e-
re

fo
rm

ta
x

lim
it

Po
st

re
fo

rm
ta

x
lim

it
Sh

oc
k

D
riv

er

M
N

19
71

L
it- i- ga
-

tio
n

.0
19

*P
(u

p
to

fo
un

da
tio

n
le

ve
,b

ut
fo

un
da

tio
n

lo
w

—
1/

3
of

ff
or

m
ul

a)
.0

3*
P

(f
ou

nd
at

io
n

le
ve

ld
ra

m
at

ic
al

ly
in

cr
ea

se
d)

N
on

e
N

o
lim

it
w

/
vo

te
C

ro
w

d-
ou

t+
L

im
ita

-
tio

n

M
S

19
94

Le
g-

is
-

la
-

tio
n

0
.0

28
*P

(u
p

to
28

%
of

pr
og

ra
m

co
st

)
10

% in
-

cr
ea

se

.0
55

C
ro

w
d-

ou
t

M
O

19
93

Le
g-

is
-

la
-

tio
n

C
om

pl
ic

at
ed

fu
nc

tio
n

in
in

co
m

e,
th

at
le

ad
s

to
lit

tle
cr

ow
d-

ou
t

τ
*P

*
In

c/
A

vg
In

c
N

o-
lim

it
w

/
vo

te

N
o

lim
it

w
/v

ot
e

C
ro

w
d-

ou
t

M
T

19
89

L
it- i- ga
-

tio
n

0
(τ
∗ )

*P
w

he
re

τ
∗

is
th

e
ta

x
ra

te
ne

ce
ss

ar
y

to
ge

t4
0%

of
st

at
e

fu
nd

in
g

on
17

5%
x

av
g

st
at

e
va

l(
so

0
If
>

17
5%

A
vg

W
ea

lth
)

N
o

w
/

vo
te

N
o

w
/v

ot
e

C
ro

w
d-

ou
t

N
E

19
90

L
it- i- ga
-

tio
n

E
ac

h
di

st
ri

ct
’s

sh
ar

e
is

.0
12

*P
an

d
th

en
re

ce
iv

e
pr

o-
ra

te
d

sh
ar

e
fr

om
eq

ai
d

av
ai

la
bl

e
(b

ut
ty

pi
ca

lly
ai

d
qu

ite
lo

w
—

i.e
.1

97
9

$7
0/

pu
pi

lo
n

av
g,

so
tr

ue
cr

ow
d-

ou
tn

eg
lig

ib
le

)

.0
12

4*
P

(b
ut

bi
te

s,
eq

ai
d

no
w

5x
as

la
rg

e
as

19
79

)
N

o
w

/
vo

te
L

ev
y

to
co

lle
ct

3%
-5

%
>

pr
ev

io
us

ye
ar

C
ro

w
d-

O
ut

+
L

im
ita

-
tio

n

N
V

N
on

e
.

121



St
Y

r
Ty

pe
Pr

e-
R

ef
or

m
C

ro
w

d-
ou

t
Po

st
-R

ef
or

m
C

ro
w

d-
ou

t
Pr

e-
re

fo
rm

ta
x

lim
it

Po
st

re
fo

rm
ta

x
lim

it

Sh
oc

k
D

riv
er

N
H

19
98

L
iti

ga
tio

n
Fu

nd
s

8%
of

ed
u

co
st

ad
ju

st
ed

by
w

ea
lth

(i
n

re
al

ity
fu

nd
in

g
m

uc
h

lo
w

er
,s

o
al

m
os

t
al

ld
is

tr
ic

ts
fa

ce
ef

fe
ct

iv
e

cr
ow

d-
ou

to
f0

)

av
g

st
at

e
ta

x
ra

te
*P

fo
rd

is
tr

ic
ts

w
ith

<
A

vg
W

ea
lth

(.0
23

7
in

20
07

),
0

fo
r

>
A

vg
W

ea
lth

N
on

e
N

on
e

C
ro

w
d-

ou
t

N
J

19
70

L
eg

is
la

tio
n

.0
10

5*
P

G
ua

ra
nt

ee
d

Ta
x

B
as

e
of

$3
0K

,s
o

fu
ll

cr
ow

d-
ou

ti
fl

es
s

an
d

no
ne

if
m

or
e

N
o-

lim
it

N
o

lim
it

C
ro

w
d-

ou
t

N
M

19
74

L
eg

is
la

tio
n

.0
00

5*
P

.0
08

9*
P

.0
02

C
ro

w
d-

O
ut

+
L

im
ita

-
tio

n

N
Y

N
on

e

N
C

N
on

e

N
D

20
07

L
eg

is
la

tio
n

.0
35

*P
G

ua
ra

nt
ee

d
ta

x
ba

se
eq

ua
lt

o
18

0
m

ill
s

at
90

%
av

er
ag

e
w

ea
lth

/s
tu

d
an

d
re

ca
pt

ur
e

ab
ov

e
15

0%
av

g
w

ea
lth

/s
tu

d

.1
85

.1
85

C
ro

w
d-

ou
t

O
H

N
on

e

O
K

19
90

.0
18

*P
(b

ut
m

an
y

di
st

ri
ct

s
(≈

50
%

he
ld

ha
rm

le
ss

)

N
ea

rl
y

fu
ll

cr
ow

d-
ou

tf
or

di
st

ri
ct

s
w

ith
<

$5
5K

/s
tu

de
nt

122



St
Y

r
Ty

pe
Pr

e-
R

ef
or

m
C

ro
w

d-
ou

t
Po

st
-R

ef
or

m
C

ro
w

d-
ou

t
Pr

e-
re

fo
rm

ta
x

lim
it

Po
st

re
fo

rm
ta

x
lim

it

Sh
oc

k
D

riv
er

O
R

19
91

In
i-

tia
-

tiv
e

τ
∗ *

P
w

he
re

τ
∗

is
ta

x
ra

te
ch

os
en

to
di

st
ri

bu
te

eq
ua

liz
at

io
n

do
lla

rs
(t

yp
ic

al
ly

qu
ite

lo
w

)

N
ea

rl
y

fu
ll

cr
ow

d-
ou

t
N

o
lim

it
w

/v
ot

e
.0

05
(1

99
1)

C
ro

w
d-

ou
t+

Li
m

ita
tio

n

PA
N

on
e

R
I

N
on

e

SC
19

77
L

eg
-

is
la

-
tio

n

N
on

e
τ
∗ *

P
w

he
re

τ
∗

is
ta

x
ra

te
ne

ce
ss

ar
y

to
ge

ne
ra

te
30

%
of

gu
ar

an
te

ed
fu

nd
in

g
N

o
N

o
C

ro
w

d-
ou

t

SD
L

eg
-

is
la

-
tio

n

19
86

.0
18

*P
τ
∗ *

P
w

he
re

τ
∗

is
av

g.
no

n-
ag

ri
ta

x
ra

te
(c

am
e

in
to

ef
fe

ct
in

19
90

)
.0

53
.0

18
6

C
ro

w
d-

ou
t

+
L

im
ita

tio
n

TN
19

77
L

eg
-

is
la

-
tio

n

0
(u

se
in

de
x

of
ec

on
.a

bi
lit

y
th

at
do

es
no

ti
nc

lu
de

pr
op

w
ea

lth
)

τ
∗ *

P
w

he
re

τ
∗

is
am

ou
nt

ne
ce

ss
ar

y
to

ra
is

e
10

%
of

gu
ar

an
te

ed
fu

nd
in

g
in

av
g

di
st

ri
ct

N
o

lim
it

N
o

lim
it

C
ro

w
d-

ou
t

TX
19

73
L

eg
-

is
la

-
tio

n

0
(u

se
in

de
x

of
ec

on
.a

bi
lit

y
th

at
do

es
no

ti
nc

lu
de

pr
op

w
ea

lth
)

.0
03

*P
.0

15
.0

15
C

ro
w

d-
ou

t

123



St
Y

r
Ty

pe
Pr

e-
R

ef
or

m
C

ro
w

d-
ou

t
Po

st
-R

ef
or

m
C

ro
w

d-
ou

t
Pr

e-
re

fo
rm

ta
x

lim
it

Po
st

re
fo

rm
ta

x
lim

it

Sh
oc

k
D

riv
er

U
T

N
on

e

V
T

19
97

Le
gi

s
.0

12
97

*P
(b

ut
m

an
y

di
st

ri
ct

s
of

f
fo

rm
ul

a)
Fu

ll
cr

ow
d-

ou
t(

be
ga

n
in

19
97

an
d

ef
fe

ct
iv

el
y

fu
ll

st
at

e
fu

nd
in

g
in

20
01

)
no

N
A

C
ro

w
d-

ou
t

+
L

im
ita

tio
n

VA
N

on
e

W
A

19
74

L
eg

-
is

la
-

tio
n

.0
11

9*
P

A
ll

pr
op

er
ty

ta
x

re
v

se
nt

to
st

at
e

w
/

ex
ce

pt
io

n
of

sm
al

l(
25

%
of

bu
dg

et
)l

oc
al

op
tio

n
le

vi
es

N
o

lim
it

w
/v

ot
e

.0
15

C
ro

w
d-

ou
t

+
L

im
ita

tio
n

W
V

N
on

e

W
I

19
73

Le
gi

s
τ
∗ *

P
w

he
re

τ
∗

is
ta

x
pr

od
uc

in
g

eq
ua

liz
at

io
n

am
ti

n
di

st
ri

ct
w

ith
45

k
va

l/s
tu

d

τ
∗ *

P
w

he
re

τ
∗

is
ta

x
pr

od
uc

in
g

ttl
co

st
in

di
st

ri
ct

w
ith

98
k

va
l/s

tu
d

.0
25

.0
25

C
ro

w
d-

ou
t

W
Y

19
83

L
iti

-
ga

-
tio

n

.0
1*

P
.0

25
*P

(r
ec

ap
tu

re
if

ab
ov

e
10

9%
fo

un
da

tio
n

gu
ar

an
te

e)
.0

28
.0

28
C

ro
w

d-
ou

t

124



Chapter 2

Enforcing Compliance: The Case of

Automatic License Suspensions
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2.1 Abstract

Non-incarcerative punishments such as fines are an essential part of the United States

criminal justice system. Theoretically, the deterrence and distributional effects of these pun-

ishments will depend upon the consequences for punishment noncompliance. In this paper, I

test this idea empirically using a unique natural experiment in Washington that first eliminated

and then reinstated driver’s license suspensions for traffic offense punishment noncompliance,

a common state policy affecting millions of drivers annually. Mandating suspensions caused

large increases in compliance, fine-repayment, and total punishment with greater effects for

lower-income individuals, while also leading to suggestive declines in traffic accidents among

low-income drivers.1

2.2 Introduction

In the United States, the vast majority of criminal offenses and traffic infractions involve

non-incarcerative punishments. Unlike incarceration, compliance with these types of punishments

is not compelled, but is instead an individual choice; after receiving their punishment, an offender

can choose between complying with the terms of the punishment or facing the consequences of

noncompliance. Thus, the actual expected punishment for many crimes is not the court-ordered

punishment itself, but will instead be the lesser of the cost of complying with the punishment

and the cost of whatever consequences exist for noncompliance. For instance, the expected cost

of a speeding ticket in utility terms is not simply the cost of paying the ticket, but is instead the

1I thank the Washington Administrative Office of the Courts for dealing with my many questions. This work does
not reflect the opinions of the Washington Administrative Office of the Courts.
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minimum of the cost of paying the ticket and the cost of whatever will happen if the ticket is not

paid (i.e. added financial penalties, automatic license suspensions, imprisonment, etc).

The existence of this compliance choice has two important implications. First, it sug-

gests that the government can shift average punishment levels not only by changing statutory

punishments, but also by changing the consequences of noncompliance. Second, in cases such

as fines where punishment compliance costs are negatively correlated with income, a two-tiered

punishment system can emerge; higher-income individuals will choose to accept the statutory

punishment, while lower-income individuals will choose to face the consequences of noncompli-

ance. As a result, different relative levels of statutory punishments and sanctions for punishment

noncompliance that achieve the same level of average deterrence may have very different distribu-

tional consequences.

In this paper, I provide novel theoretical and empirical evidence on the average and

distributional effects of changing consequences for noncompliance in a criminal justice context.

Gaining a better understanding of these effects is particularly important because punishment

noncompliance for low-level crimes and infractions is extremely common in the United States.

Although no nationwide statistics exist, I find that 16% of traffic offenses in Washington state are

out of compliance 18 months after the offense and that approximately 14% of all adults had their

licenses suspended due to noncompliance at least once between 2008 and 2017. Legal scholars

have found similar levels of noncompliance in other states; for instance, a report by the Legal Aid

Center found that 10%-20% of licensed drivers in Virginia have their license suspended due to

failure to pay a fine or appear in court (Ciaramella, 2016).

Thus, for a meaningful proportion of the population, and particularly the low-income

population, the operative punishment for a criminal offense or traffic infraction is not the court-

ordered punishment, but is instead whatever consequence exists for noncompliance. While a large

body of work examines how changing statutory punishments affects crime and criminal offenders

(Chalfin and McCrary, 2017), the effects of punishments for noncompliance have gone largely
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unstudied by economists. In this paper, I attempt to fill this gap by examining both theoretically

and empirically how changing consequences for noncompliance with court-ordered punishments

affects punishment compliance, overall punishment levels and long-run criminal behavior both

on average and across the income distribution.

I begin by providing a simple theoretical framework that integrates an offender’s punish-

ment compliance decision into a model of deterrence. The model produces several key predictions:

increasing costs of non-compliance should increase total punishment faced by low-income offend-

ers, increase compliance by middle-income offenders and decrease crime rates by low-income

individuals.

I next examine the model’s predictions empirically using a natural experiment that caused

a change in the consequence for noncompliance with traffic infractions and misdemeanors in

Washington state. In June 2004, the Washington State Supreme Court invalidated a law mandating

license suspensions for noncompliance with traffic offenses. In 2005, the Washington legislature

responded by enacting a new law that reinstated these suspensions for any traffic violation that

occurred on or after July 1st, 2005, creating a discontinuity in the consequences for noncompliance

depending upon the timing of a violation. This law change was largely unpublicized2 and I find

no discontinuities around the law enactment date in the number of cases filed, case punishment

severity or previous criminal history of offenders.

Accordingly, I begin by using a regression discontinuity design to test the effect of shifting

to the license suspension regime on compliance and punishment outcomes. I show that this

increase in the costs of noncompliance had a large effect on compliance (5 pp increase or 22%)

and amount of fines repaid ($67 increase or 10%). This effect was largest for offenders from

middle-income zip codes, consistent with the model’s predictions. I next show that the new license

suspension regime also greatly increased the total punishment faced by traffic offenders. Exposure

to the policy increases the probability of a ever having license suspension for noncompliance

2I can find no mention of it in a newspaper archive search of major Washington newspapers at the time and there
is no noticeable change in state-level Google trend search data for driver’s licenses.
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attached to a case by 24 percentage points for traffic misdemeanors and 6 percentage points for

traffic infractions (relative to levels close to 0% for offenses committed prior to the policy change).

These effects on punishment were much larger among individuals from the lowest-income zip

codes. Suspensions also had additional legal ramifications including fines and jail time arising

from Driving with License Suspended (DWLS) charges, which again were disproportionately

large for residents of lower-income areas.

I next examine if the increase in the consequences for fine nonpayment caused changes

in unsafe driving behavior as proxied through traffic accidents using a series of difference-

in-difference and triple difference designs.3 I exploit both the changes in consequences for

noncompliance over time induced by the suspension policy being first eliminated and then

reinstated, as well as the fact that changing the costs of complying with a fine should differentially

affect individuals at the bottom of the income distribution. To control for secular trends in accident

rates, I use Northern California as a control group.4

I begin by using vehicle age as a proxy for driver income and examine whether older

vehicles were more likely to get in injury-producing accidents5 during the period in which the

Supreme Court decision prohibiting license suspensions was in effect in Washington relative to

Northern California. I show that relative to Northern California, there was a marked increase

in the average age of vehicles in injury-producing crashes in Washington state during the year

in which the Supreme Court decision was active suggesting that low-income drivers were more

likely to get into crashes when the costs of noncompliance fell. I then show that similar results

hold when comparing changes in crashes per capita among high and low poverty jurisdictions

in Washington state and Northern California—crash rates increased by 12% in high poverty

3Note that the offense-date cut-off used in the regression discontinuity design only creates variation in the
noncompliance punishment for a given offense, but does not create variation in the noncompliance penalties for any
future offenses, which is the object of interest in this analysis. Thus it is not possible to use a regression discontinuity
design to examine the effects of the policy on overall deterrence.

4Northern California was chosen as a control group because it has similar geographic and economic characteristics
to Washington state and has crash data available during the time period of the study.

5I also test robustness to only serious and fatal injuries to address endogenous reporting concerns.
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jurisdictions relative to low-poverty jurisdictions when the Supreme Court decision was in effect.

Examining these analyses dynamically provides a much stronger than normal test of the

parallel trends assumption because I can compare changes during this period to both the period

prior to the court decision and to the period following the law change reinstating suspensions and

I find no evidence for any violations. Results are also robust to the inclusion of a large number of

time-varying controls, as well as other checks addressing endogenous reporting concerns. In sum,

these results suggest that the license suspension policy is effective in increasing overall traffic

safety, but does so in a highly regressive manner.

This paper contributes to both a theoretical and empirical literature on the economics of

deterrence. In the years since the publication of the seminal Becker (1968) model of rational

criminal-decisionmaking, an enormous literature has emerged extending his results both theoreti-

cally and empirically (Nagin, 2013; Chalfin and McCrary, 2017). To date, this work has largely

focused on the direct deterrence effects of different types of statutory punishments, be it prison

(Mueller-Smith, 2015; Aizer and Doyle Jr, 2015; Mueller-Smith and Schnepel, 2016; Bhuller

et al., 2016), a blend of prison, rehabilitative classes, fines and license suspension (Hansen, 2015),

speeding fines (Goncalves and Mello, 2017) or short-term license suspensions (Gehrsitz, 2017).

In this paper, I extend this work by showing that in many cases it is not sufficient to examine the

deterrence effect of the punishment alone, but instead is necessary to consider the interaction

between statutory punishments and consequences for punishment noncompliance. This idea

builds upon the theoretical work of Levitt (1997) and Polinsky (2006), both of whom create

models that show when wealth is unobservable and fines are not costlessly enforced, a social

planner will want to introduce imprisonment as part of a deterrence scheme. This paper extends

their analysis by focusing on the average and distributional effects of changing each policy

independently and importantly, provides empirical estimates of the effects of these changes.

This paper also contributes to a growing empirical literature on the costs and benefits

of fines and forfeitures as an enforcement tool. Fines have been shown to deter traffic offenses
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(Goncalves and Mello, 2017), but also impose large costs on affected individuals. Short-term (30

day) license suspensions have also been found to have negative effects on financial outcomes

and lead to meaningful increases in borrowing and decreases in employment (Mello, 2018).

Additionally, Makowsky, Stratmann, and Tabarrok (2018) show that when police agencies are the

end recipients of money collected through fines and forfeitures, their policing decisions will be

distorted towards revenue generating crimes. In this paper, I build on this literature by showing

new theoretical and empirical evidence that noncompliance costs, an important consequence of

fine-based systems of enforcement, differentially affect low-income offenders, but also deliver

meaningful reductions in unsafe driving behavior. I also provide the first causal analysis of

the most commonly-used noncompliance sanction, automatic license suspension, which affects

millions of Americans each year.

The remainder of this paper is organized as follows. Section 2 provides descriptive

evidence of noncompliance in the US criminal justice system. Section 3 provides a simple

theoretical model that will guide my empirical analysis. Section 4 describes the policy setting

and data used in the empirical analysis. Section 5 describes the empirical strategy for estimating

the effect of greater compliance costs on individual compliance and punishment outcomes and

then presents the results. Section 6 outlines the empirical strategy for the analysis of the effects

of greater compliance costs on unsafe driving behavior and then presents the results. Section 7

concludes.

2.3 Background

Crimes that have non-incarcerative punishments make up the bulk of Americans’ interac-

tions with the criminal justice system. In 2016, there were 13.2 million misdemeanor cases filed,

compared to less than 3 million felony cases (Stevenson and Mayson, 2018) and the number of
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traffic infractions per year is likely closer to 40 million.6 Fines are a major component of the total

punishment for most misdemeanors and traffic infractions.7 Nonpayment of fines for traffic and

criminal offenses is widespread across the United States, but consequences vary across states. The

most common consequence is license suspension; approximately fifteen states suspend licenses

for any unpaid court debt and more than 40 states impose license suspensions for unpaid debt

related to traffic offenses. Although no systematic data exists on the total number of individuals

with suspended licenses, state-level estimates have found that between 10%-20% of licensed

drivers have a suspended license for failure to appear in court or pay a fine at any given time in a

subset of states with strong suspension policies (Legal Aid Justice Center, 2018).

In this section, I will provide descriptive statistics on noncompliance with traffic offenses

in Washington state, the setting of my empirical study. The descriptive facts in this section serve

two purposes. First, they demonstrate that the types of policies studied in this paper have large

impacts on a broad swath of the state’s population—descriptive evidence that is largely lacking

from the academic literature. Second, the trends discussed here will motivate how I theoretically

model the effects of policies affecting punishment noncompliance.

I begin by showing the proportion of adults who were charged with a traffic infraction or

misdemeanor between 2014 and 2016 in Washington state as a function of a zip code’s median

income (Figure 2.1, left panel).8 The vast majority of these offenses are traffic infractions and

speeding violations are the plurality offense. We first see that the proportion of adult with any

traffic offense over this three-year period is quite high, above 25%. However, traffic offense rates

are only weakly correlated with zip code income.9

6Although no nationwide estimates exist; the state of Washington, the setting of my study, has approximately 1
million traffic cases a year alone and makes up only 2% of the US population.

7Most felonies also carry large fines, but in a relative sense they are a smaller part of the overall punishment.
8I exclude all zip codes that have fewer than 1,000 people, are outside of Washington state or which do not

match a 2000 Zip Code Tabulation Area (ZCTA). I use 2014-2016 because these are the years in which I observe the
universe of all traffic infractions (I observe the universe of misdemeanors for beginning in 2003) with sufficient time
to measure noncompliance.

9I provide results as shares of the population. This is not entirely correct as even within this three year period
there will be some migration implying that the total potential population is larger than the population used here.
However, given the three year timeframe, this difference is unlikely to be large.
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I next show the proportion of individuals who have still failed to comply with the terms of

their traffic offense as proxied by the issuance of a Failure to Appear (FTA) 18 months after their

offense,10 again by zip code median income (Figure 2.1, right-panel). Across all cases, 16% had

at least one FTA notice active 18 months following the offense and a further 12% of cases had

an already-resolved FTA over this time frame. These numbers suggest that the consequences of

noncompliance are preferable to the costs of paying the fine for many offenders. Unsurprisingly,

the income gradient in noncompliance is quite steep. Among zip codes with median income less

than $40,000/year, nearly 25% of cases had one instance of noncompliance active at 18 months.

Conversely, for zip codes with median income above $80,000, this number is closer to 5%. This

relationship is not simply an artifact of different case composition among different income groups;

even when I restrict individuals to have the same offense, the pattern remains.

I also provide descriptive evidence on the consequences of noncompliance. The left

panel of Figure 2.2 shows the proportion of over-16 residents whose license was suspended for

noncompliance with a punishment for an offense at any point over the ten years between 2008

and 2017. There is again a clear gradient by zip code income; in zip codes with less than $40,000

median income, roughly 20% of adult residents had a license suspension initiated at some point

during this ten year time period. Conversely, for zip codes with greater than $80,000 median

income, only about 7% of residents had a suspension. This number for low-income adults is

remarkably high, highlighting the importance of understanding the costs and benefits of this

policy.11

A suspended license has a potentially large effect on individual well-being. More than

70% of Washington workers drive alone to work and many individuals rely on vehicles to bring

10In the Washington data, FTAs signal failure to appear at a hearing, but also (and more commonly) for failure to
comply with the terms of a punishment such as fine repayment.

11Note that this is an under-count of the actual number of individuals with a suspended license during this time
period as many individuals will have had a suspension that began prior to 2008, but remained active. However,
because we are now using a ten year period the number of potential individuals who could be suspended in each zip
code will likely be significantly larger than the population because of migration so this may lead to an overestimate.
Given the available data, I believe these are the best estimates possible.
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children to school and run errands. Thus, the utility (and financial) costs of not driving are likely

extremely high. However, the costs of driving with a suspended license are also high. If an

individual is caught driving on a suspended license they can be arrested for driving with license

suspended (DWLS), a class A misdemeanor. In general, the first offense is typically punished

with large fines and a suspended jail sentence, but later offenses can lead to days or weeks in

jail. The right panel of Figure 2.2 shows the proportion of adults with a DWLS charge between

2008 and 2017 by zip code median income. Individuals in zip codes with greater than $80,000 in

median income have very low DWLS charge rates—around 1-2%—while in zip codes with less

than $40,000 in median income nearly 10% of adults received such a charge during this ten year

period.12

Together, these results show that noncompliance with traffic fines is a fairly common

phenomenon, but occurs disproportionately among the poor. This noncompliance has large

consequences; individuals lose access to their license and both lose the ability to legally drive to

work or perform other necessary tasks in addition to becoming much more likely to be convicted

of driving with a suspended license, an offense that carries large fines and the potential for jail

time. In the next section, I use these facts as a guide while modeling how we expect changes to

fines or consequences to fine nonpayment affect the overall and distribution of costs and benefits

of criminal behavior.

2.4 Theoretical Framework

In this section, I introduce a simple conceptual framework for thinking about how changes

to both fine levels and the consequences for nonpayment of fines affect total deterrence and the

12This relationship is even steeper than the gradient between incomes and suspensions suggesting that not only are
lower income individuals more likely to have their licenses suspended, but conditional on suspension they are also
more likely to have a DWLS charge. This may be because higher income individuals are less likely to be charged
with crimes conditional on being caught, because higher-income drivers can more easily substitute away from driving,
or because they have the means to hire higher quality lawyers conditional on being caught among other reasons.
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distribution of costs across income groups. I assume individuals in a population have a level

of disposable income that is uniformly distributed between 0 and 1. As in the standard Becker

(1968) framework, the expected cost of committing a crime is:

C j = f (p j, f j,u j) (2.1)

Where p j is individual j’s probability of being caught, f j is his expected punishment

if caught and u j are other individual specific factors such as income that increase or decrease

the utility loss caused by this punishment. For simplicity, I assume that the only individual-

specific factor that affects punishment costs is an individual’s income, i j and that the probability

of being caught, p j, is independent of both income and expected punishment. I assume that

i j ∈ (0,1) for all individuals. An individual can choose between two punishments, the statutory

fine fy or the consequence for fine nonpayment, fn.13 I assume that the utility costs of fy are

decreasing in income because of the diminishing marginal utility of income. Specifically, I let

C( fy, i j) = fy(1− i j) where fy ∈ (0,1). For analytic simplicity I assume that the utility costs of

fn are constant across the population, where C( fn, i j) = fn and fn ∈ (0,1).14 I further assume

that fy > fn so we are in the interesting case where some individuals will choose the fine and

others will choose not to comply.15

I now examine how changing either fy or fn affects an individual’s expected costs of

punishment and the probability of committing a crime. To determine expected costs, we first

13Note that fn groups together a nested set of compliance choices. For instance, if the consequence for nonpayment
is a license suspension, an individual would then have to decide about whether or not he would comply with that
suspension. I consider fn to be a summary of the total costs that arise out of each of these compliance decisions. I
assume this cost is also known to the potential offender using backwards induction.

14Note that for results to hold it will only be necessary that the relationship between non-monetary punishment
and income be less negative than the relationship between the fine and income. Non-monetary punishments can be
measured primarily in time—this is true for incarceration, but also for attending drug, alcohol and/or driving classes,
license suspensions and even dealing with debt collection agencies. Higher income individuals have higher hourly
wages and so time costs imply a larger income loss for these individuals (although of course income loss is only
one dimension of the costs caused by non-monetary punishments). Because fines impose a constant monetary costs
across individuals of all incomes, this suggests at the very least a less negative slope for the relationship between the
costs of non-monetary punishments and income than the costs of fines and income.

15Under this set-up, if fn > fy, everyone would choose to comply with the fine.
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describe an individual’s punishment choice. An individual will choose the punishment that

minimizes individual costs. Because the assumptions enumerated above imply that C( fy, i j) and

C( fn) cross at a single point, we know that for a given fy and fn there must exist some income

level i∗ such that:

• If i j > i∗ then C j =C( fy, i j)

• If i j < i∗ then C j =C( fn)

• If i j = i∗ then C j =C( fy, i j) =C( fn)

In other words, all individuals with incomes greater than i∗ will choose to comply with the fine

and individuals with income less than i∗ will choose to face the consequences of nonpayment.

Individuals with income of exactly i∗ will be indifferent. We can then define i∗ as

C( fy, i j) =C( fn)

which after plugging in and solving for i, we find:

i∗ = 1− fn

fy
(2.2)

Because I assumed the population’s income was uniformly distributed from 0 to 1, we

can further define the share of the population who will choose to pay the fine as:

F = 1− i∗

or

F =
fn

fy
(2.3)

Intuitively, the larger the ratio between costs of the non-compliance and the costs of the

fine, the more people who will choose to comply with the fine. I now consider the effects of an
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increase in fn, the consequence for non-compliance on fine compliance and overall costs. Taking

the derivative of the proportion of population paying the fine with respect to fn, I first find that:

∂F
∂ fn

=
1
fy

(2.4)

As we increase the consequences for nonpayment, the share of people who choose to pay

the fine will increase and the rate at which this occurs will be decreasing in the fine level. Turning

to costs, I find:

∂C( f j)

∂ fn
=


1 if i j < i∗

0 if i j ≥ i∗
(2.5)

or an increase in the consequences of nonpayment increases costs among those who

previously chose not to pay the fine, but creates no change among those paying the fines. Put

together, we can see that increasing the consequence for nonpayment has two distinct effects. For

inframarginal individuals who would previously have not paid the fine, expected costs increase

at the level of fn. For individuals whose incomes are infintesimally below i∗, the increased

consequences of fine nonpayment induce fine compliance. There is no effect on the expected

costs of higher-income individuals already paying the fine.

If we instead increase fy, the fine level, the effects are nearly identical, but reversed.

Specifically, we have:

∂F
∂ fy

=
− fn

( fy)2 (2.6)

∂C( f j)

∂ fy
=


0 if i j < i∗

1− i j if i j ≥ i∗
(2.7)

Increasing fy decreases the proportion of individuals who would choose to pay the fine
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and this effect is increasing in fn and decreasing in fy. Additionally, from a cost perspective,

increasing the fine level has no effect on individuals with incomes less than i∗ because these

individuals had already chosen not to pay the fine. It increases the costs of infra-marginal

individuals who would choose to pay the fine even at the higher fine level and these marginal

costs are decreasing in income.

Figure 2.3 shows these effects graphically for the case of an increase in the consequences

for noncompliance.16 As we saw above, shifting up the costs of nonpayment has two primary

effects on costs. Individuals with low-incomes see overall costs increase as paying the fine

remains too costly, but the cost of nonpayment has gone up. Individuals whose income is above

the new i∗, but below the old i∗ are now induced to pay the fine, which is more costly than not

complying under the old regime, but is less costly then not complying under the new regime.

There is no change for individuals whose income is above i∗. In short, increasing the consequences

for non-compliance greatly increases costs for low-income individuals, moderately increases

costs for middle income individuals and has no effect on high income individuals. It also leads to

increased compliance with the fine, but this increased compliance is concentrated entirely among

middle-income individuals.

I now turn to examining how changes in the fine level and the consequences for nonpay-

ment affect deterrence. Let b j denote the private benefit to an individual for committing a crime

and assume it is also distributed uniformly between 0 and 1 across the population. Since costs are

also constrained to be between 0 and 1 by the assumptions above, the proportion of people who

will commit the crime at each income level must be 1−C( f j, i j). Thus, we can define the total

proportion of individuals, P, who will engage in an offense as:

P =
∫ 1

0
1−C( f j, i j) di

16As shown above, effects are nearly identical but opposite for increases in the fine level.
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Plugging in the cost function from above, we have:

P =
∫ i∗

0
1− fn di+

∫ 1

i∗
1− ( fy(1− i j)) di

Integrating and plugging in i∗ = (1− fn/ fy), we find

P = 1− fn + .5(( fn)
2/ fy)

Thus, the marginal change in crime for changes in fn and fy are equal to:

∂P
∂ fn

=
fn

fy
−1 di

∂P
∂ fy

=−( fn

fy
)2 di

As expected, both increases in fn and fy change criminal behavior. The magnitude of

this change is driven by the relative levels of fn and fy. A higher starting ratio of fn to fy will

lead to larger marginal changes in crime rates for increases in fy and vice-versa. The reason is

simple—when fn is high relative to fy most people are already choosing to comply with the fine

and so the change in sanction for noncompliance affects the costs of committing an offense for

relatively few individuals. When the ratio is low, the opposite is true—changing the costs of

noncompliance changes the effective punishment for much of the population.

Finally, these results suggest that both increasing the fine level and increasing the conse-

quences for nonpayment will decrease overall crime rates, but do so at the expense of different

segments of the population. When the consequences for nonpayment are increased, only individu-

als with income less than i∗ face higher costs through a combination of inframarginal individuals

still committing the crime, but facing higher expected costs and compliers now choosing to not

commit the crime when previously they would have enjoyed a private benefit from offending.
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The opposite is true when the fine levels are changed.17

Although highly-stylized, this model provides important intuition for how to think about

the effects of changes in fines and consequences for nonpayment on compliance, punishment

and willingness to engage in criminal behavior across the income distribution. Specifically, the

model makes several key predictions. First, an increase in punishment for fine nonpayment should

increase average expected costs of the crime, but these costs will be distributed unevenly; only

individuals with incomes less than i∗ should expect to see an increase in punishment, with no

change for higher income individuals. This change in punishment will take two forms. Individuals

with incomes just below i∗ who were close to indifferent between paying and not paying will

now be induced to pay, while individuals with incomes further below i∗ will now face a higher

expected sanction for nonpayment. Second, the shift in costs should decrease overall unsafe

driving behavior, but this reduction should be driven largely by a change of behavior among

lower income individuals—individuals who would have paid the fine under the old regime see

no change in expected costs and so we would expect no change in behavior. The remainder of

this paper will test these theoretical predictions in the context of a large change in penalties for

noncompliance with traffic offenses in Washington state.

2.5 Policy Setting

2.5.1 Background

The empirical analysis in this study uses a series of court decisions and law changes in

Washington state that first invalidated and then mandated automatic license suspension when

17Note that if the benefits from crime reduction are independent of the income of the individual committing
the crime, this implies an income-based redistribution of utility is taking place when these changes are made. If
the benefits are perfectly positively correlated with the income of the offender then the redistribution only occurs
between individuals with the same income but different private benefits of committing the crime. Thus, understanding
the correlation between crime offenders’ income and the income of those harmed by the crime is an important
determinant of the equity implications of these two deterrence policies.
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individuals failed to comply with the punishment for a traffic offense. Since at least the 1970s,

noncompliance with the terms of a traffic offense in Washington state had resulted in the automatic

suspension of a driver’s license. However, in the spring of 2002, two men sued the state

of Washington arguing that “mandatory suspension of a driver’s license...without granting an

administrative hearing violates due process.” In June 2004, the Washington State Supreme Court

ruled for the plaintiffs and found the existing license suspension infrastructure unconstitutional

on due process grounds (City of Redmond v. Moore 2004). This ruling effectively invalidated all

existing suspensions due to nonpayment or failure to comply with a citation as well as prevented

any new suspensions from being put in place. Suspensions that occurred as a result of a direct

criminal penalty rather then in response to the “failure to comply with the terms of a notice of

traffic infraction, criminal complaint or citation for a moving violation” remained in effect.18

During this period, the penalty for nonpayment of fines was ambiguous, but appears to be

relegated to the threat of collection calls by the state (and eventually) debt collection agencies.19

This court decision was well-publicized. Numerous articles were written about the

decision in all of the state’s major newspapers along with op-eds and letters-to-the-editors. Patrol

officers were instructed to no longer issue citations or arrest warrants for suspensions arising out

of noncompliance and individuals in jail awaiting trial for DWLS charges were released. Thus, in

addition to the media attention, it is likely that news of the court decision quickly disseminated

through word-of-mouth as friends, neighbors and family members with suspended licenses were

no longer sanctioned after being pulled over.

In 2005, the state legislature pursued a successful statutory fix to the Supreme Court

ruling and mandated that all violations that took place after July 1, 2005 would again be subject

to automatic license suspension for noncompliance. Unlike the initial court ruling, the new

18In other words, if a drunk driving conviction was punished with a 60-day suspension and fines, the 60-day
suspension would remain in place, but any longer-term suspension arising from an individual’s failure to pay fines
would be invalidated.

19Further, individuals with previous suspensions who did not get their licenses reinstated would still potentially be
charged with lesser offenses such as operating a vehicle without a valid license, but would not be eligible for being
charged with the much more serious Driving with License Suspended (DWLS).
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legislative fix received almost no attention. Newspaper archive searches reveal only a single

article written about the new law in a minor local paper and there are no trend breaks in Google

search activity for “suspended license” or “driver’s license.” Further, because any individual

affected by the law would not be aware of the new suspension sanction for several months after

their offense, it is unlikely that information could have spread quickly through word-of-mouth.

Importantly, I will further show in the next subsection that there were no observable changes in

the level or composition of cases before or after the law went into effect.

Under the new law, failure to comply with the terms of a traffic infraction or criminal

charge would result in an automatic license suspension. Actions that trigger a “failure to comply”

include ignoring a summons in response to a charge, missing hearings or noncompliance with

some aspect of a penalty (typically fine nonpayment). License suspension notices are mailed to

an offender’s address when a suspension goes into effect, beginning two to three months after the

violation date for traffic infractions and over a longer time period for traffic misdemeanors, which

may have multiple court dates prior to sentencing. License suspensions are dropped when the

activity triggering the failure to comply is resolved and reinstated after a reinstatement fee is paid.

In practice, suspensions are often dropped ten years after an offense even if no resolution occurs.

Figure B.1 shows total monthly driving with a suspended license (DWLS) charges before

and after the policy change as a proxy for the underlying level of license suspensions in the

population; it is clear that both the initial court decision and subsequent law change had a dramatic

impact on license suspensions. After the court decision there was an immediate drop in the number

of DWLS charges because the court invalidated all previous suspensions in addition to preventing

new suspensions, depleting the stock of individuals with suspended licenses. Conversely, the

2005 law change lead to a steady increase in suspensions over an extended period of time as the

stock of individuals with license suspensions gradually increased. Importantly, the first jump in

DWLS cases occurs not at the July 1st threshold, but three months later when the first suspensions

caused by the law went into effect. Figure B.2 shows a timeline of the major policy changes.
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2.5.2 Data

The data for this analysis come from three main sources. First, I have data on all

available misdemeanor and felony court cases between January 2003 and August 2018 from the

Washington Administrative Office of the Courts (AOC). These data include information on all

charge types, charge violation dates, filed dates, dispositions, disposition dates, sentences, fines

ordered, jail time ordered, other punishments ordered, fine repayment and Failure to Appear

(FTA) announcements. FTAs in the Washington court system refer to notices issued when an

individual fails to comply with any aspect of his or her violation, not just failure to appear in

court.20

The AOC also provides information on infraction cases. Traffic infractions include

violations like speeding or improper passing. However, unlike the misdemeanor and felony

samples, the AOC only maintains infraction records for five years following case closure (typically

after all payment is received and active FTAs are closed). As a result, the infraction records

provided are only those cases that were not closed prior to August 2013. Fortunately, the

Washington AOC has archived monthly reports of the number of cases filed by category by month.

Although these are only snapshots in time and cases can in theory be reclassified, they nonetheless

provide a reasonably accurate estimate of the universe of total cases each month. Using these

two data sources, I can then find the proportion of infraction cases from each month that have

an outstanding FTA and outstanding suspension ten years after the violation date by combining

counts of cases in my data with total case counts from the archive. This allows me to estimate the

effect of the policy on punishment compliance and suspension rates of infraction offenders under

the assumption that case disposal rules were correctly followed.21

20Data are provided at the charge-level for some variables (i.e. charge description and disposition), but the
case-level for other variables. Accordingly, all analyses are performed at the case-level. For the vast majority of
cases, the violation dates of all charges are identical. For the small minority of cases where different violation dates
exist, the most recent violation date is used.

21Unlike for the traffic misdemeanor sample, I cannot examine the effect of the policy on individual-level
recidivism outcomes because I do not observe the recidivism outcomes of individuals who paid their fines, only those
whose cases remained open.
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As a result, my primary analysis uses only traffic misdemeanor cases, but I also show

results for traffic infractions when data are available (punishment and compliance outcomes). My

primary analysis also excludes cases that consist only of license-related traffic misdemeanors. The

impact of a sanction of license suspension is expected to be minimal for individuals who already

have their licenses suspended (as would be suggested by being charged with a license-related

offense). Additionally, there is a large increase in these cases beginning several months after the

policy goes into effect as the first new automatic license suspensions arising from the policy occur.

This increase does not occur discontinuously at the policy threshold, but it does imply that if

these cases are included, some large differences in case composition emerge as we move several

months away from the threshold (see Figure B.1). Results are generally robust to the inclusion

of all cases, but given these concerns, I exclude cases consisting of only license misdemeanor

charges from my primary analysis.

Second, I have data from the Washington Department of Licensing (DoL) on license

suspensions beginning in 2004. These data provide information on all license suspensions in the

state of Washington including individual birth-date, zip code and reason for suspension but also

come with several caveats. First, for suspensions related to FTA, I do not observe if a suspension

was resolved, only its issue date. Thus, I can see if a given offense ever received a suspension, but

I cannot see that suspension’s duration. Second, the matching between license suspensions and

court records is incomplete. I restrict my suspension sample to only suspensions for FTAs, all of

which contain the citation number of the offense associated with the suspension. However, in the

AOC data it is clear that for data in earlier years, citation numbers repeat across some jurisdictions,

but the DoL data lacks jurisdictional information for many suspensions which would allow for a

unique match. When restricting my sample to two years before and after the law change, I see

that 22% of citation numbers in the sample are duplicates. Accordingly, in my primary analysis,

I drop all duplicate citation numbers and only consider suspensions that start within two years

of the original offense (ensuring that I am not picking up duplicates that occur outside of my
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sample). For bias to be introduced in this setting, it would be necessary that the rate of duplicates

shifts discontinuously at the threshold. In Figure B.3, I show that this is not the case.

As a separate test of the validity of this matching strategy, I also examine whether actors

defined to be the same person in the license data across multiple citations are also defined as the

same person in the court data. In the extreme case where the matching procedure is as good as

random, the chance that different citations assigned to the same person in the license data would

also be assigned to the same person in the court data would be very small. Instead, I find that

84% of multiple citations assigned to the same person in the license data are also assigned to the

same person in the court data suggesting a high match rate.

Finally, I have data from the Washington Department of Transportation and California

Department of Transportation on all motor vehicle crashes in both states between 2003 and 2018.

These data include date, time, location of crash, driver license status (Washington only), driver

insurance status, driver intoxication status, reason for crash, number and severity of injuries,

vehicle make and vehicle model (Washington only). Zip-code and municipal demographic data

come from the 2000 Census and 2009-2013 ACS.

2.6 Effects of Automatic License Suspensions on Compliance

and Punishment Outcomes

2.6.1 Empirical Strategy

The goal of this section is to estimate the effects of changes in consequences of nonpay-

ment of traffic-related fines on various compliance and punishment outcomes. In an ideal world, I

would randomize whether or not cases were eligible for license suspensions for noncompliance

and examine differences between these two groups. Of course, such an experiment is both

impractical and illegal. Instead, I use the strict cut-off imposed by Washington state’s legislation
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reinstating automatic license suspensions to approximate such an experiment with a regression

discontinuity design. Individuals with violations just after the law’s July 1st, 2005 cut-off had their

licenses suspended for noncompliance, while no such sanction existed for cases just before the

cut-off. Thus, if we assume the cut-off date is orthogonal to a defendant’s willingness to comply

or expected punishment, examining differences in compliance and punishment between cases

just before and after the cut-off date should provide a valid estimate of the effects of automatic

license suspensions.

Accordingly, I estimate:

Yc = f (Timec)+βPostc + εc (2.8)

where Yc is a case-level outcome for case c, f (Timec) is a function transforming the

variable Timec, which measures the difference between the violation date and July 1, 2005 and

εc is a mean zero error term. In my primary specification, I use a local quadratic regression to

account for any non-linear trends induced by seasonality, but also test robustness to local linear

regressions as suggested by Gelman and Imbens (2018). I use a bandwidth of one year, but test

robustness to both the Calonico et al. (2017) MSE-optimal bandwidth formula (between 300 and

400 days for most specifications) and bandwidths of 3 months. Additionally, every estimate is also

displayed as a regression discontinuity plot so that the reader can see for her or himself that the

obtained estimate is not an artifact of specification choices. For traffic misdemeanors, the running

variable (Timec) is days since July 1, 2005, while for traffic infractions the running variable is

months since July 2005 because these data are only available at the monthly level. All estimates

are performed at the case-level. Because the same individual may be involved in multiple cases

over time, standard errors are all clustered at the defendant level. Continuous outcomes such as

fine levels and sentence days have several clear outliers that are implausibly large.22 In these

22For fines, many of these likely come from restitution payments—for instance a greater than $50,000 fine for a
traffic offense
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cases, I drop all values greater than the 99th percentile of non-zero values, however results are

generally robust to their inclusion.

I use two strategies to estimate the heterogeneous effects of the policy based on income,

The AOC provides zip codes for each offender, but this is the most recent zip code on file not the

zip code at the time of the offense. Thus, while zip code provides the most granular information

about an individual’s expected income level there is a concern that it may also be endogenous;

for instance, exposure to the policy may lead to adverse outcomes, which may drive individuals

to move to lower-income zip-codes. If these individuals are then charged with future crimes,

only their new zip code will appear in my data. Although I show empirically that there is no

evidence for statistically or economically significant differences in zip code median income at the

discontinuity, to allay any remaining endogeneity concerns I also use an alternative method based

entirely on pre-arrest characteristics.

Specifically, instead of zip code median income, I use the median income of the offender’s

arresting agency (i.e. the city of Bellingham if the arresting agency was the Bellingham Police

Department.) I exclude cases initiated by the Washington State Patrol, which are responsible for

the whole state and sheriff departments which typically have jurisdiction over unincorporated

parts of a county, but may also patrol county roads within incorporated cities. Ultimately, roughly

one-third of my sample is arrested by a municipal police force and is included in this analysis.

The correlation between zip code median income rate and arresting agency median income is

.425, suggesting that both measures are capturing similar, but not identical information.

In both cases, I divide the sample into five quintiles based on zip-code or municipal

median income. Results are also robust to using poverty rates. In my main specification, I prefer

the zip code specification despite the endogeneity concerns because I believe it still provides more

accurate information about an offender’s likely income; offenders arrested by a municipal agency

need not live there and so the correlation between an offenders’ true income and the median

income of the municipality in which he is arrested is likely much weaker than the relationship
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with zip code. Nevertheless, I show that both analyses lead to substantively similar conclusions

suggesting that the choice of measure is not driving the results.

2.6.2 Validity of Regression Discontinuity Design

For a regression discontinuity design to be valid, it is necessary that there be no manip-

ulation of the outcome variable at the threshold (Lee and Lemieux, 2010). In my setting, this

primarily implies two conditions: i) there was no change in behavior by either individuals or law

enforcement agencies in response to the new policy that is correlated with the outcomes of interest

and ii) no other changes occurred on July 1, 2005 that would have affected violation frequency

or composition. It is unlikely that defendants changed behavior on July 1, 2005 because the law

change received very little publicity—newspaper archive searches return only a single article that

references the law’s passage and it was published in the King County Journal, a minor paper with

limited circulation. There also do not appear to be other contemporaneous law changes that may

have changed compliance behavior; a search of the Washington State Session Laws in 2005 does

not return any evidence for law changes that would affect punishments or definitions of traffic

infractions or misdemeanors.

These qualitative explanations for lack of manipulation are supported by the empirical

evidence. Figure B.4 shows the number of non-license-related traffic misdemeanor and infraction

cases over time; there appear to be no discontinuous changes in number of cases filed at the July

1, 2005 threshold. If either law enforcement agencies or individuals reacted immediately to the

law, we would expect to see some changes on this dimension. Figure 2.4 shows the effect of

the discontinuity on the composition of traffic misdemeanor offenders and the sentences meted

out for the various offenses. If the composition of offenders changed, we would expect to see

a discontinuous change in offenders’ criminal history. If the composition of offenses changed

or judges endogenously responded to the law change by changing their punishments, we would

expect to see changes in sentenced fines or jail time at the discontinuity. Again, there are no
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apparent differences around the threshold. Of particular note, the bottom row shows changes in

zip code median income—there appears to be no significant changes at the discontinuity implying

that the income-level of the reported zip code in the data was not affected by treatment. Tables

2.1 and 2.2 show these analyses in regression form; point estimates are small and statistically

insignificant, again bolstering confidence that results are not driven by compositional changes or

other forms of manipulation.

A final important check of the validity of the design is to examine the effects of placebo

“law change” dates on our primary outcomes. Table B.1 shows the effect of a placebo “law

change” on July 1st, 2006 or July 1st, 2007 on my primary outcomes of interest (FTAs, fines

paid, suspensions). In all cases effects are small and statistically insignificant suggesting that

there is nothing inherent about a cutoff on July 1st that creates large discontinuities in the studied

outcomes.

2.6.3 Results

Theory suggests that increasing the consequences for nonpayment of fines should increase

the costs of committing future crimes in two ways: a) increasing payment of fines for individuals

who were previously close to indifferent between payment and nonpayment and b) increasing

costs of nonpayment for inframarginal individuals. Increases in fine payment should be driven by

individuals in the middle of the income distribution and increased costs of nonpayment should be

driven by individuals at the bottom of the income distribution. Theory would predict little change

for individuals at the top of the income distribution.

I test these predictions empirically here. I begin by examining the effects of the new

license suspension regime on an offender’s compliance with the terms of his or her punishment.

Compliance is proxied by the presence of a Failure to Appear (FTA) notice, which is issued

after an individual has failed to comply with some aspect of his or her punishment—typically

nonpayment, but also ignoring hearings or summons. Figure 2.5 and Table 2.3 show the primary
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results. As expected, the threat of license suspension leads to a large and persistent decrease

in outstanding FTAs. The effect grows from a 3 percentage point decrease (10%) after 2 years

to 5 percentage point decrease (22%) after ten years. These effects are all highly statistically

significant. The bottom right panel of Figure 2.5 show a similar effect for traffic infractions;

after the license suspension regime begins, open FTAs at ten years post-violation fall by about

6 percentage points (40%). These effects are all robust to different specification, weighting or

bandwidth choices (Table B.2).

The adoption of the license suspension regime causes a meaningful proportion of offenders

to increase compliance with the terms of their offense. The theory developed above predicts that

this increased compliance will occur in a predictable manner; very rich and very poor offenders

should exhibit little change in compliance behavior because most rich offenders will already

be complying and poor offenders will still find it too costly to comply. Conversely, middle

income offenders should be induced to begin compliance because they were likely to be the

marginal noncompliers prior to the policy change. I test that theory here by examining differential

effects by zip-code median income. Note that because all zip codes contain some mix of low,

medium and high-income individuals, the effects by zip code should be much noisier than what

is predicted by the theory. Nevertheless, the results shown in the left panel of Figure 2.6 are

broadly consistent with the theory’s predictions; offenders from zip codes with low or high

median incomes experience relatively little change in behavior. Conversely individuals from zip

codes near the middle of the income distribution see a large increase in compliance behavior.

The right panel of Figure 2.6 shows that we see a similar pattern when performing the same

analysis using municipal law-enforcement agency median income—again the largest reduction in

noncompliance comes from the center of the income distribution.

Figure 2.7 and Table 2.4 show the effects of the license suspension policy on the actual

amount of money paid for each case. Consistent with the compliance results above, the license

suspension policy significantly increases the amount of money paid for a traffic misdemeanor
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offense as well as the probability that any amount is paid.23 Specifically, the threat of license

suspension increases the total amount of money paid for an offense by approximately $67 (10%)

and the probability of any repayment by 3 percentage points off a base of 76 percent. Further,

as a placebo test Columns (4) and (8) show the effects of the policy on fine repayment for non-

traffic criminal misdemeanors, which were never subject to license suspension for nonpayment.

Reassuringly, we see that the policy has no effect on this group, again providing us with increased

confidence that the observed effects are indeed causal.24

I next estimate the effect of the license suspension policy on the costs of fine noncom-

pliance for inframarginal individuals, which should occur largely through increased license

suspensions. Figure 2.8 shows the main results. The left panel of Figure 2.8 demonstrates that

unsurprisingly, the license suspension policy led to a large increase in the number of traffic

misdemeanor cases that had a suspension by two years after an offense.25 Although this effect

is somewhat mechanical as suspensions were banned for offenses that occurred before the law

change, the magnitude of the effect is important; for traffic misdemeanor offenders there was

a greater than 20 percentage point increase in the probability that a suspension would ever be

attached to their case in the new policy regime. Among traffic infraction offenders (right panel) the

effect is similar, but much smaller (6 pp increase), reflecting the fact that baseline fine compliance

rates are much higher for infractions that misdemeanors. Unfortunately, I lack data to see how

long these suspensions persist. However, given that nearly 20% of individuals with offenses after

July 1, 2005 still had active FTAs ten years after the offense, it seems likely that the vast majority

of these suspensions also remained active for multiple years.

The left panel of Figure 2.9 shows how this effect differs by zip code median income for

traffic misdemeanor offenders. Consistent with the theory developed above, the license suspension

23Data limitations prevent examining the effect on traffic infraction offenses.
24I cannot do parallel placebo checks for FTAs because data on FTAs for non-traffic misdemeanors are not

available. I cannot do a parallel analysis for suspensions because noncompliance with non-traffic misdemeanors does
not lead to license suspensions in Washington state.

25Note that this is the proportion with a suspension tied to their specific case, not the probability that the offender
has a suspension due to any offense.
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policy leads to a much larger increase in license suspensions among offenders from lower-income

zip codes—the policy causes suspensions due to FTA for offenders in these zip codes at nearly

double the rate of those from the highest-income zip codes and this effect decreases linearly in

zip code median income. The right panel of Figure 2.9 shows that results are similar if we instead

use law-enforcement agency service area median income.

Finally, I examine the effects of the policy on the major legal downstream consequences

of license suspensions: driving with license suspended (DWLS) charges. As discussed above,

DWLS are class A misdemeanors and can lead to jail time. Unlike with the outcomes above,

future DWLS offenses are an individual, not a case-level outcome. As a result, a regression

discontinuity estimate of these effects based on whether or not a violation occurred before or after

the new law only estimates the effect of having an additional case under the new law, not the effect

of being in a new punishment regime going forward.26 Individuals with cases before the threshold

may (and often do) quickly accumulate cases after the threshold, which expose them to the new

punishment regime, “diluting” the effect of treatment. Accordingly, I instead instead estimate

the effect of the new law’s legal consequences using time-series and difference-in-differences

designs.

Figure B.5 first provides some descriptive evidence of the magnitude of the new law’s

effect by comparing average total charges, fines and sentenced days for license misdemeanors and

non-traffic misdemeanors such as shoplifting and disorderly conduct in each court before and after

the law comes into effect. All three outcomes for license misdemeanors increase dramatically

after the new law relative to non-traffic misdemeanors, with a particularly large effect for charges

and fines. Prior to the law coming into effect, courts on average had four times as many non-traffic

misdemeanor charges as license misdemeanor charges and collected twice as many dollars in

fines. By two years after the law, courts had only 1.3 times more non-traffic misdemeanor charges

and collected similar amounts in fines from both case types.

26For instance, an individual with a speeding event before the threshold and after the threshold face the same
potential penalty for any new traffic offenses that occur after the threshold.
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While suggestive, this analysis only shows trends over time across crime types—it is in

theory possible that other contemporaneous events could be driving these results. To address this

concern, I next perform a separate analysis comparing total charges, total fines, sentenced jail days

and served jail days for license misdemeanors by zip code median income under the assumption

that lower income individuals would be much more affected by changes in consequences to

noncompliance than higher income individuals.27 Figure 2.10 shows the main results. For context,

the difference between the 10th and 90th percentile of median income is roughly $30,000. Thus,

relative to a zip code in the 90th percentile of income, two years following the law change, a zip

code at the 10th percentile would have 7 additional license misdemeanor charges/1,000 population

per year, an additional $2,400 per 1,000 population per year in license misdemeanor fines, an

additional 480 sentenced days in jail per 1,000 population per year and an additional 50 served

days in jail per 1,000 population per year.28

Figure B.6 shows that results are qualitatively similar when using municipal median

income suggesting that results are not driven by endogenous sorting due to the policy. Figure B.7

shows that this increase in fines and sentenced days is not simply crowding out penalties from

other types of crime—when we look at the effect on total misdemeanor fines and sentenced days,

results persist. Together, these results suggest that the license suspensions induced by the new

policy had large disproportionate effects on low-income residents.

Combined with the compliance results, these estimates suggest that imposing a license

suspension penalty for non-compliance with traffic offenses imposes large costs and that these

costs are highly heterogeneous by income. Low-income individuals exhibit smaller changes

in their compliance behavior, but see a large increase in the severity of their total punishment

27I restrict my sample to only areas with greater than 5,000 population in order to get consistent quarterly estimates.
Results are robust to including all zip codes

28Most sentenced jail days for DWLS (and other traffic misdemeanors) are suspended. If an offender completes a
probationary period without any violations, these days will never be served. However, if the offender violates their
probation, even for a minor offense, the judge can order the offender to serve some or all of this suspended sentence.
Even in the absence of serving the sentence, the threat of suspension is a potent cudgel that gives judges significant
power over defendants’ lives following the sentence and so sentenced jail days should be thought of as costly in and
of themselves.
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as shown through increases in license suspensions and driving with a suspended license cases.

Medium-income individuals are more likely to be induced to comply with the policy, but also see

some increase in their effective punishment. Finally, high-income offenders face a much smaller

change in costs.

It is lastly important to note that a large potential unmeasured cost of the policy change is

the effect of license suspensions on employment or other measures of financial stress. Unfortu-

nately, given data limitations it was not possible to estimate the effects on these outcomes using

the regression discontinuity framework here. However, recent work by Mello (2018) finds that

short-run (30 day) license suspensions for unsafe driving leads to increased financial distress and

decreased levels of employment. Mello (2018) cannot causally identify the effect of automatic

suspensions for nonpayment studied here, but given the extreme length of these suspensions

(many last up to ten years), it is likely their effect on financial stress is significantly higher.

Estimating these costs is an important area of future research.

2.7 Effects of Automatic Suspensions on Traffic Safety

I next examine the effect of the license suspension policy on changes in driving behavior.

The previous section showed that the license suspension policy increased the costs of engaging in

illegal traffic behavior and that these increased costs were larger for lower-income individuals.

Theory predicts that these increased costs should decrease unsafe driving. These decreases could

occur either through individuals without suspensions driving more safely because they are aware

that a consequence of a future driving violation may now be a license suspension or through

an increase in the number of individuals with license suspensions, who presumably will reduce

unsafe driving because the consequences of driving at all (and particularly unsafe driving) has

increased. In this section, I first focus on the total effect of automatic license suspensions on

driving behavior because this is the relevant parameter from a policy perspective. I then attempt
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to perform some suggestive tests to shed light on the underlying mechanism driving the results.

2.7.1 Empirical Strategy

In this section, my objective is to estimate the extent to which changes in the consequences

for noncompliance with traffic punishments affects overall levels of road safety. To estimate

this object causally, I would ideally like to have some individuals randomly assigned to have

their licenses suspended if they do not comply with the terms of a traffic offense and other

individuals randomly assigned to not be eligible for license suspension. Note that this is not

what the regression discontinuity design used in the above section does; it instead approximates

a randomization of different cases to different policies, but not individuals. All individuals

regardless of whether their offense was before or after the new law came into effect are exposed

to the new punishment regime for any future offenses that occur after July 1, 2005. Thus, while

the regression-discontinuity design is ideal for estimating the effect of the policy on case-level

outcomes such as fine-repayment or license suspensions, it will not provide an estimate of the

average deterrence effect of the policy.29 Instead, to estimate the effect of the law on future

driving violations, I will use a series of difference-in-differences and triple-difference models

aimed at comparing the driving behavior of groups expected to be differentially affected by the

changes in the consequences of noncompliance before and after the policy change.

I begin by analyzing the effects of the law changes on driver safety by investigating

changes in injury-producing crashes during the period in which license suspensions for noncom-

pliance were unconstitutional relative to both periods before the court decision and after the law

29Instead, the regression discontinuity design recovers the effect of having one offense after the law change.
Having a post law-change offense leads to an increased likelihood of license suspension and may also lead to
increased awareness of the new policy. Thus, if much of the effect of the new policy is driven by license suspensions,
we may still uncover an effect using the regression discontinuity design. Conversely, if much of the effect of the
policy is driven by a general change in driving behavior by individuals who are at risk of suspensions then we
would likely observe no effect in the regression discontinuity design despite the policy having an overall deterrence
effect. In either case, any effect of a post-policy offense on recidivism will likely decay as “control” individuals with
offenses in the pre-policy period begin accumulating offenses after the new law goes into effect, thereby “diluting”
any treatment effect of an additional post-law change offense.
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change for low relative to high-income drivers.I use only crashes that result in injuries to address

endogenous reporting concerns. I proxy for driver income using vehicle age under the assumption

that lower-income drivers drive older vehicles—I also show robustness to using imputed vehicle

value. The idea underlying this analysis is that if vehicle age is correlated with driver income and

if increasing the sanction for noncompliance disproportionately affected low-income drivers, then

the average age of vehicles in crashes when automatic suspensions are eliminated should increase

if drivers are indeed responding to this decreased punishment. To control for other correlated

trends that may be separately affecting low-income drivers during this period, I use vehicles

involved in crashes in Northern California, a region that is similar demographically, economically

and geographically to Washington state as a control group.30 My sample starts in 2003, the first

year Washington has data available, and ends in July 2008, three years after the law reinstating

license suspensions came into effect. My primary specification is:

Ydat = τa +βPolicyt ∗Washingtond +Zat + εdat (2.9)

where Ydat is the age of the car of driver d who was in an accident in the jurisdiction

of agency a on day t, τa is an agency (i.e. the law enforcement agency that responded to the

crash) fixed-effect, Policyt is a vector of indicators for the policy regime a crash occurs under,

Washingtond is an indicator for whether or not a crash occurred in Washington state, and εdat

is a mean zero error term. In the base specification, I further include agency type (state police,

county, municipal) by date fixed-effects (Zat) to ensure that we are only comparing changes in

crash composition within the same types of places (i.e. interstates, county roads, local roads)

in Northern California and Washington.31 All vehicles older than 20 years were excluded as

outliers.
30The state of Oregon may be a better control group, but unfortunately there is no crash-level data available for the

time period studied.
31Generally, state police are responsible for highway crashes, sheriff departments are responsible for crashes in

rural areas and county roads, and municipal police departments are responsible for crashes within incorporated areas.
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The identifying assumption in this analysis is that absent the policy changes and condi-

tional on covariates, trends in the likelihood that a crash involves differently-aged vehicle should

be identical between Washington and Northern California. The most obvious potential violation to

this assumption is that low-income drivers in Northern California are not a good counterfactual for

drivers in Washington. I attempt to control for this potential problem by including an increasing

number of fixed-effects that restrict the sample to observably-similar locations in Washington and

Northern California. I begin by introducing county population decile by date and county poverty

rate decile by date fixed-effects, but also show robustness tests using municipal population and

poverty rate deciles when restricting the sample to only crashes that come under the jurisdiction

of municipal police departments.

I also further test this assumption by performing the same estimation as above using a

dynamic difference-in-difference design to see if any pre-trends exist prior to the first policy

change in June 2004 and whether effects begin to converge back towards zero in the period after

the July 2005 law begins to take effect. The combination of the introduction and ending of the

non-suspension policy between the court-decision and the law change proves a stronger than

normal test of parallel trends and I find no evidence for any violation. An additional concern is

that even after restricting my sample to only injury-producing crashes, results may still be driven

by endogeneity in reporting. Thus, in addition to my primary analysis using only injury-producing

crashes, I separately report results for only crashes with serious injuries—results are much noisier

given the smaller sample size, but qualitatively similar.

A final concern is that perhaps any observed differences are simply being driven by

changes in the composition of the vehicle stock in Washington state relative to California. To

address this potential issue, I perform a second test comparing changes in crashes per capita

in high and low poverty jurisdictions in Washington state relative to California using a triple

difference design. Reassuringly, results are highly consistent with the vehicle-level regression.
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2.7.2 Results

Table 2.6 shows the primary result of the traffic accident analysis. The outcome variable is

a proxy for driver income: the age of a vehicle involved in an injury-producing crash. Columns (1),

(3) and (5) show the effects of being in the period during which suspensions were unconstitutional

relative to both the year and a half before the court-decision and three years after the law change

reinstating license suspensions. Column (1) shows the base analysis with agency type (i.e.

highway patrol, sheriff or municipal police) by date fixed-effects and jurisdiction by county

fixed-effects. Column (3) shows results after adding in controls for county population decile by

date and county poverty decile by date fixed-effects to try to compare crashes in comparable

counties in Northern California and Washington. Column (5) limits the sample to even more

similar localities by comparing only crashes that occurred in the jurisdiction of municipal police

forces and including municipal population decile by date and municipal poverty rate by date

fixed-effects.32 Across all specifications, we see that the average age of vehicles involved in

injury-producing crashes during the period in which suspensions were unconstitutional increased

by about .15 years, a roughly 2% increase. Coefficients are similar across all three specifications.

Columns (2),(4), and (6) show parallel specifications, but here I examine the effects of

being in either the period prior to the court decision, the first year after the law change, the

second year after the law change or the third year after the law change relative to the period

in which suspensions were invalidated. If the observed effects are truly driven by the license

suspension policy we would expect that average age of vehicles in injury-producing crashes be

lower both before the court-decision and after the new law goes into place relative to the period in

which suspensions were unconstitutional. That is precisely what we see in the data—the average

vehicle age in a crash is significantly lower both before the court decision and after the new law

comes into place. Further, average vehicle age converges slowly back to the pre-decision mean,

32Because county sheriffs and state police patrol both inside and outside of incorporated areas, I exclude them
from this analysis.

158



consistent again with the new law not being well-publicized. Figure 2.11 shows this pattern at the

half-year level in event-study form. Although noisier, these results demonstrate the same general

pattern; an increase immediately after the court decision and then a slow convergence back to

the pre-court decision mean. Note that this is a much stronger than normal test of the parallel

trends assumption as the policy turns both on and off. Thus, the fact that we observe this pattern

increases confidence that the observed effect is indeed causal.

Table B.3 show these same analyses, but using estimated vehicle value rather than vehicle

age as the outcome variable.33 Results are substantively similar; the period in which license

suspensions are unconstitutional leads to a $150-$300 decrease in the value of vehicles involved

in crashes or a 1%-2% decline. Table B.4 shows the effects of using different accident-severity

cut-offs. Results using only fatal or serious accidents where any reporting decision should be

minimal are larger, but much noisier, consistent with the much smaller sample sizes.34 The effect

when using a sample of accidents that include even the possibility of an injury is smaller (.8%

decline), but remains statistically significant. In general, effects appear larger the more restrictive

the criteria, which provides suggestive evidence that these results are not driven by endogenous

reporting of accidents. Finally, Table B.5 shows the effects when using all of California as a

control group rather than just Northern California. Results are broadly similar, especially in

the specifications adjusting for covariates, suggesting that effects are not driven by changes in

Northern California alone.

In addition to looking at the average age of a vehicle in a crash, we can also look at

how crash rates varied based on the poverty level of a given jurisdiction. Theory would predict

that we should see higher crash rates in higher poverty jurisdictions in Washington state during

the period in which the Supreme Court decision was in effect. Accordingly, I perform a triple

33We use vehicle age as our primary outcome variable because the vehicle value estimation process requires
relatively strong assumptions about depreciation curves within various makes and models and insufficient information
is available to provide estimation for a substantial subset of vehicles. See Appendix B.2 for more information about
how these values are estimated.

34Given the small sample size, I do notinclude specifications with additional covariates with these outcomes.
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difference design comparing municipalities above the median poverty level to those below the

median poverty line in Washington state and Northern California.35

Table 2.7 shows the results of this analysis; being above the median poverty line in

Washington state leads to a .17 per 1,000 population increase in the number of cars involved in

injury-producing crashes per month when the Supreme Court decision was in effect, a roughly

12% increase. As with the previous analysis, crash rates in high-poverty jurisdiction were lower

both before the court decision and after the new law came into effect (Column (2)), providing

additional evidence that the changes were caused by the shift in suspension policy and not a

broader secular trend. Results are qualitatively similar, albeit statistically insignificant when

using the poverty rate of a jurisdiction instead of a binary indicator for above or below median

(Columns 3-4). Particularly reassuring, results are also robust to performing a difference-in-

differences within Washington state alone (Columns 5-6) suggesting that nothing about the

California counterfactual is driving our results. Finally in Columns (7)-(8) we can see that results

are broadly similar when using a 1,000 instead of 5,000 population threshold for inclusion into

the analysis.

Table B.6 shows the results of a similar analysis, but with total traffic accident injuries

per 1,000 population per month as the outcome variable. Effects are proportionally similar; the

court decision led to a 9% increase in accident victims per capita in higher poverty districts, but

are statistically insignificant (p=.25). Together, these results provide additional evidence that the

existence of these policies can have important implications for road safety.

To conclude, I examine who reaped the benefits of these increases in traffic safety. If

low-income individuals largely get in accidents with one another then the policy change would

be redistributive within each income group from unsafe drivers to safe drivers, but have no

cross-income distributional consequences. However, if driver incomes are uncorrelated with the

35The primary analysis includes only jurisdictions with population greater than 5,000 population because smaller
jurisdictions have large amounts of inter-month variation in crashes per capita, which introduces a substantial amount
of noise into the estimates. However, results are robust to using lower (i.e. 1,000 population) cut-offs.
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income of other drivers in an accident then the observed reduction in bad driving by low income

individuals is redistributive both from safe to unsafe drivers and from low-income to high-income

drivers because the costs only affect unsafe, low-income drivers, but the benefits accrue to both

low and high-income drivers. Figure B.8 shows that indeed there is very little correlation between

vehicle age among vehicles involved in a multi-car traffic accident. Increasing the age of the

at-fault vehicle from 1 to 15 years is associated with only a .2 year increase in the value of

the non-at-fault vehicle. Thus, while the costs of the increased deterrence were largely felt by

low-income drivers, the benefits in road safety were shared across the income distribution.

2.7.3 Mechanisms

The above deterrence effects could be caused either by low-income individuals driving less

(or more safely) in response to knowledge that the consequences of a traffic violation has increased

or because more low-income individuals now have license suspensions, which themselves raise

the costs of driving and particularly driving unsafely. From a policy perspective, we only care

about the total deterrence effects estimated above. However, from a theoretical perspective we

may be interested in the extent to which these results are driven by unsuspended individuals’ fear

about increased future consequences for unsafe driving through increased costs of noncompliance

relative to the increase in license suspensions levels. In other words, one could consider the

following thought experiment: if a penalty for noncompliance existed that incurred the same

utility cost as license suspensions (i.e. wage garnishment), but had no independent consequences

on driving, how much of the increase in safe driving would persist?

Answering this question is challenging given the existing data. Ideally, I would esti-

mate the effect of the court-decision invalidating suspensions on changes in driving behavior

of individuals without license suspensions, but who had different underlying likelihoods of

noncompliance—however because all suspension records were purged following the court de-

cision, the data to perform this analysis does not exist. Similarly, I could estimate whether
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individuals with different propensities for noncompliance had different rates of accumulating

their first post-law change offense—this first offense could not possibly be influenced by suspen-

sions because the court-decision invalidated all previous suspensions. However, because I lack

historical data on infraction cases, which are a large driver of suspensions, such an estimation is

not possible.

Instead, I perform a more suggestive test aimed at uncovering the extent to which suspen-

sions may limit driving (or lead to safer driving). I use more recent data where I have the full

universe of traffic infractions and take advantage of the fact that noncompliance with infractions

and misdemeanors only officially occurs several months after the case is filed as individuals are

given a grace period to comply. Accordingly, I create a sample of all individuals with license

suspensions for noncompliance between 2014 and 2016. I then examine violation behavior in

the 2 months before and 4 months after the suspension is in place (2 months is the minimum

time following a case filing in which a suspension would occur). I exclude cases in which the

suspension occurs more than 6 months after the filing date (≈ 10% of cases). If suspensions

were driving the observed results, we would expect traffic violations and misdemeanors to fall

sharply following the suspension. Individuals are notified of suspensions by mail and so should

be generally aware that their license is now suspended, All outcome variables are adjusted for

day-of-week, month and days since the case was filed to ensure I am not picking up other secular

trends.

As the top and middle panels of Figure B.9 show, there is no evidence of changes in

traffic offenses following a suspension—there is neither a discontinuity around the suspension

day threshold, nor any major change in slope following the suspension for either traffic infractions

or traffic misdemeanors. The results for traffic misdemeanors are particularly reassuring as it is

likely that police officers have less discretion in citations for more serious offenses. These results

suggests at least in the shorter-run, suspensions are not driving safer behavior among suspended

individuals in this population. Finally, as a sanity check that suspensions are indeed taking effect,
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the bottom panel of Figure B.9 shows changes in annualized daily rates of license misdemeanors

relative to the suspension date. Suspensions have a large effect on this outcome; relative to the

days just before the suspension goes into place, individuals have a .45 charge per year increase

in the probability of having a license-related misdemeanor charge. Thus, the lack of a large

driving response is not due to the suspension for some reason not coming into effect. Although

far from definitive, the above analysis suggests that at least in the short-run, license suspensions

do not cause large improvements in driving behavior—it is not therefore implausible that a large

proportion of the effects observed in Section 6.2 could be driven by changing perception of costs

rather than the suspensions themselves.

2.8 Conclusion

Every year, the American criminal justice system processes tens of millions of criminal

and civil cases for violations of misdemeanor criminal offenses and traffic violations. These

crimes have large effects on societal health and well-being. Unsafe driving causes traffic accidents,

which lead to property loss, injury and death. Minor misdemeanor offenses such as retail theft,

low-level assault and criminal mischief harm local businesses, reduce property values and degrade

a neighborhood’s quality of life. These offenses are primarily punished by fines and other forms

of non-incarcerative punishments. Because compliance with non-incarcerative punishments is an

individual choice, the level of deterrence these punishments create will depend not only on the

level of the court-ordered punishment, but also the costs of punishment noncompliance. These

fines and associated consequences for noncompliance also impose significant costs on offenders

including financial distress and loss of employment (Mello, 2018). However, despite the high

levels of noncompliance in the United States and the high social costs of both these crimes and

their associated punishments, little theoretical or empirical evidence exists on how changing

noncompliance costs affects compliance, overall punishment and total deterrence.
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This paper begins to fill this gap in knowledge. I show theoretically that increasing costs

of noncompliance should deter individuals from engaging in the original criminal offense, but

the costs of crime reduction will be borne disproportionately by the low-income population. I

next show that these theoretical predictions are supported empirically using a natural experiment

in Washington state whereby offenders with violations after a certain date were eligible for

automatic driver license suspension if they did not comply with the terms of their punishments.

I demonstrate that this increase in noncompliance costs led to large increases in compliance

and in the effective punishment faced by traffic offenders. I further show that the increased

noncompliance costs decreased unsafe driving from low-income residents as demonstrated

through fewer traffic misdemeanors and injury-causing traffic accidents, while the benefits from

these improvements in road safety were shared across the income distribution. This suggests that

increasing costs of noncompliance through license suspensions can be an effective, but highly

regressive way to improve road safety.

However, these findings have important applications beyond traffic safety. In the United

States, recent research has emphasized a “criminalization of poverty”, whereby the inability

of low-income individuals to pay small fees or fines has dramatic consequences that have the

potential to restrict individuals’ future income-earning possibilities. One rationale for such

“criminalization” is that without such consequences, low-income individuals face little effective

punishment for many lower-level crimes punished by fines. In a sense, absent such punishments

for noncompliance, these individuals would face a situation akin to the judgment-proof problem

for small firms. In this paper, I show that in some ways this argument is supported empirically;

increasing the costs of noncompliance does indeed increase compliance with punishments for a

given law and deter lower-income individuals from engaging in unsafe driving. However, such

increased noncompliance costs also lead to dramatically higher punishment costs for low-income

individuals even though the benefits of the policies are widely-shared, creating important equity

concerns.
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One potential way to address this inequity without dramatically reducing noncompliance

costs is to set fines and other non-incarcerative punishments in ways that work to equalize utility

costs across the income distribution. While doing so in an exact way is impossible, adopting the

“day-fine” method used in many Northern European countries, whereby fines are assessed at a

certain proportion of an individual’s income (Kantorowicz-Reznichenko, 2015), is a promising

way forward. Alternatively, US states could improve processes for individual judges to change

fine levels based on an individual’s income. In most states, judges already have this prerogative,

but in practice, these decisions are ad-hoc, have the potential for significant bias and are sparingly

used. Systematizing this process while still maintaining significant costs for noncompliance

would go a long way towards reducing the inequity of the current system without sacrificing

the benefits of deterrence. In general, future research on how to better adapt punishments for

low-level crimes such that they create sufficient levels of deterrence without exacerbating existing

inequalities is essential to create a more effective and more fair American criminal justice system.
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Chapter 2, in full, is currently under submission for publication of the material. Krumholz;Samuel.

“Enforcing Compliance: The Case of Automatic License Suspensions”. The dissertation author

was the primary investigator and author of this material.
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Figure 2.1: Traffic Offense and Noncompliance Rates by Zip Code Poverty Level (Offenses
between 2014-2016)

This figure shows the share of 18-and-over population with any traffic offense (left panel) and the proportion of
individuals with traffic offenses who were out of compliance with the punishment 18 months after the offense (right
panel). Traffic offenses are all offenses coded by the Administrative Office of the Court (AOC) as traffic infractions
or traffic misdemeanors. Only individuals with offenses between 2014 and 2016 are included. Zip codes outside the
state of Washington, that do not match with a Zip Code Tabulation Area (ZCTA) or with fewer than 1,000 residents
are excluded. All data come from the Washington Administrative Office of the Courts (AOC).
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Figure 2.2: Poverty Rate, License Suspensions and Driving with License Suspended Convictions

This figure shows the share of 18-and-over population with any license suspension (left panel) and driving with
license suspended charge (right panel) in 2008-2017 by zip code median income. Zip codes outside the state of
Washington, that do not match with a Zip Code Tabulation Area (ZCTA) and with fewer than 1,000 residents are
excluded. Data come from the Washington Administrative Office of the Courts and the Washington Department of
Licensing.

Figure 2.3: Changes in Fine Repayment Caused by Changes in Consequences for Non-Payment
( fn)

This figure shows how theoretical predictions of total punishment and fine repayment change in response to an
increase in the costs of noncompliance from fn1 to fn2. In response to the shift in noncompliance costs, all
individuals with incomes less than i2∗ experience in increase in total costs of punishment equivalent to fn2− fn1. All
individuals with incomes between i2∗ and i1∗ are now induced to comply with the fine and experience an increase in
total punishment equal to C( fy)− fn1. All individuals with incomes greater than i1∗ see no changes in behavior or
expected costs.
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Figure 2.4: No Change in Offender Composition or Case Attributes across Threshold

Figure shows changes at the July 1, 2005 discontinuity in offender previous criminal history in the year and a half
prior to the offense (the maximum length possible given the start of sample), violation fine and jail sentences,
offender zip code and law enforcement agency service territory median income. All demographic data come from
the US Census. All data on criminal history and sentencing come from the Washington Administrative Office of the
Courts. Values greater than the 99th percentile of non-zero outcomes were excluded as outliers for all non-binary
outcomes, as the distributions are heavily right-skewed. The sample consists only of traffic misdemeanor cases with
at least one charge unrelated to suspended or invalid licenses.
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Figure 2.5: Effect of Discontinuity on Outstanding FTAs: Traffic Misdemeanors and Infractions

Figure shows the effect of the discontinuity on the existence of an outstanding FTA various time periods after the
original violation. A violation is considered to have an outstanding FTA if an FTA is open at the date described (i.e if
two years, then is considered to have an FTA if FTA is open exactly two years after violation). FTAs are issued for
failure to appear in court, failure to respond to a citation or failure to comply with a punishment. Outcomes are
binned at the weekly level. The sample consists of traffic misdemeanor cases with at least one charge unrelated to
suspended or invalid licenses (top panel, bottom-left panel) or any traffic infraction (bottom-right panel). All data
come from the Washington Administrative Office of the Courts.
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Figure 2.6: Effect of Suspension Policy on FTAs by Income

Figure shows the effect of the discontinuity on the existence of an outstanding FTA ten years after the original
violation. FTAs are issued for failure to appear in court, failure to respond to a citation or failure to comply with a
punishment. Coefficients come from five separate regressions for zip code (left) or law-enforcement agency service
territory (right) quintiles of median income. Median income levels come from the 2000 US Census. All regression
discontinuity models use a bandwidth of 1-year and local quadratic regression with a triangular weights. The sample
consists of traffic misdemeanor cases with at least one charge unrelated to suspended or invalid licenses. All data
come from the Washington Administrative Office of the Courts. Standard errors are clustered at the defendant level.

Figure 2.7: Effect of Discontinuity on Fine Repayment: Traffic Misdemeanors

Figure shows the effect of the discontinuity on the amount of money paid for an offense by ten years after the original
violation. Outcomes are binned at the weekly level. The sample consists of traffic misdemeanor cases with at least
one charge unrelated to suspended or invalid licenses unless otherwise noted. All data come from the Washington
Administrative Office of the Courts and are as of August 2018. Values greater than the 99th percentile of non-zero
outcomes were excluded as outliers for all non-binary outcomes, as the distributions are heavily right-skewed.
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Figure 2.8: Effect of Threat of License Suspension on Actual License Suspension

Figure shows the effect of the discontinuity on whether or not a case had a license suspension attached to it for an
FTA two years after the violation date. FTAs are issued for failure to appear in court, failure to respond to a citation
or failure to comply with a punishment. Outcomes are binned at the weekly level. The sample consists of traffic
misdemeanor cases with at least one charge unrelated to suspended or invalid licenses (left panel) or any traffic
infraction (right panel). All case data come from the Washington Administrative Office of the Courts and all license
data come from the Washington Department of Licensing (DoL). License suspensions and case data were merged
using citation numbers; approximately 22% of citation numbers in the court data were duplicates across jurisdictions
and so were dropped from the sample as a unique match could not be found.
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Figure 2.9: Effect on Suspensions by Income

Figure shows the effect of the discontinuity on the probability that a case has a license suspension attached to it two
years after the original violation by zip code (left) or law-enforcement agency service area (right) median income.
Coefficients come from five separate regressions for zip code (left) or law-enforcement agency service territory
(right) quintiles of median income. Median income levels come from the 2000 US Census. All regression
discontinuity models use a bandwidth of 1-year and local quadratic regression with a triangular weights. Standard
errors are clustered at the defendant level. The sample consists of traffic misdemeanor cases with at least one
charged unrelated to suspended or invalid licenses. All case data come from the Washington Administrative Office of
the Courts and all license data come from the Washington Department of Licensing (DoL). License suspensions and
case data were merged using citation numbers; approximately 22% of citation numbers in the court data were
duplicates across jurisdictions and so were dropped from the sample as a unique match could not be found.
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Figure 2.10: Effect of New Law on License Misdemeanor Charges, Sentenced Jail Days and
Fines by Zip Code Median Income

The figure shows the coefficients from a regression of zip code monthly license charges per 1,000 population, license
misdemeanor fines per 1,000 population, license misdemeanor sentenced jail days per 1,000 population and license
misdemeanor served days per 1,000 population on an interaction between months relative to law change and and a
zip code’s median income (’0,000s). All regressions include zip code fixed-effects and year by month fixed-effects.
All standard errors are clustered at the zip-code level. Only zip codes in Washington state with greater than 5,000
population and which matched a zip code tabulation area are included. Standard errors are clustered at the zip code
level.
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Figure 2.11: Event Study: Effect on Average Age of Vehicles in Accident by Policy Regime

Figure shows effect of the license suspension policy on the average age of vehicles involved in an accident in
Washington State and Northern California. All coefficients come from regressions with jurisdiction by county fixed
effects and agency type by date fixed effects. All standard errors are clustered at the jurisdiction level. Sample
includes all accidents between January 2003 and June 2008. Crash data are from the Washington Department of
Transportation and the California Statewide Integrated Traffic Reporting System (SWITRS). Standard errors are
clustered at the jurisdiction level.
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Table 2.1: Placebo Test: Prior Offenses in 18 Months Before Offense

(1) (2) (3) (4) (5) (6) (7)
VARIABLES Any DWLS Ttl DWLS Any Oth Traf Any Oth Traf Any Non-Traf Misd Ttl Non-Traf Misd All Cases Dism

New Law -0.000139 -0.0104 0.00218 0.00150 0.00139 -0.00638 0.00823
(0.00715) (0.0144) (0.00737) (0.0147) (0.00739) (0.0123) (0.00676)

Sample All All All All All All All
Dep. Var. Mean 0.0988 0.151 0.0859 0.139 0.0949 0.132 0.124
Obs Left 49139 49128 49139 49101 49139 49080 49139
Obs Right 49349 49321 49349 49316 49349 49295 49349

Clustered standard errors in parentheses

Table shows the effect of the discontinuity on various measures of criminal history in the year and a half prior to the
violation. All coefficients come from a local quadratic regression with triangular weights and a one-year bandwidth.
Standard errors are clustered at the defendant level. The sample consists of traffic misdemeanor cases with at least
one charge unrelated to suspended or invalid licenses. All case data come from the Washington Administrative
Office of the Courts. Values greater than the 99th percentile of non-zero outcomes were excluded as outliers for all
non-binary outcomes, as the distributions are heavily right-skewed.
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Table 2.2: Placebo Test: Punishment for Original Offense and Demographic Characteristics

(1) (2) (3) (4) (5) (6)
VARIABLES Total Unsusp. Fine Sentenced Fine Ttl Jail Time Srvd Total Jail Time Sent. Ln Zip Med Inc Ln LEA Med Inc

New Law 8.168 -48.98 -0.552 -0.849 -0.00405 0.0100
(15.28) (49.38) (1.368) (3.712) (0.00601) (0.00939)

Sample All All All All All All
Dep. Var. Mean 758.1 2006 23.22 216.1 43799 42801
Obs Left 48797 49042 48916 49091 46539 19855
Obs Right 48950 49139 49090 49266 46686 21188

Clustered standard errors in parentheses

Table shows the effect of the discontinuity on sentenced fine, total fine, sentenced jail days, served jail days, zip
code median income and law enforcement agency service territory median income. For fines and jail days, values
greater than the 99th percentile were excluded as outliers. All coefficients come from a local quadratic regression
with triangular weights and a one-year bandwidth. Standard errors are clustered at the defendant level. The sample
consists of traffic misdemeanor cases with at least one charge unrelated to suspended or invalid licenses. All case data
come from the Washington Administrative Office of the Courts. Values greater than the 99th percentile of non-zero
outcomes were excluded as outliers for all non-binary outcomes, as the distributions are heavily right-skewed.

Table 2.3: Effects of License Suspension Threat on Outstanding FTAs

(1) (2) (3) (4) (5)
VARIABLES Any FTA (2Yrs) Any FTA (4Yrs) Any FTA (6Yrs) Any FTA (8Yrs) Any FTA (10Yrs)

New Law -0.0302 -0.0397 -0.0499 -0.0532 -0.0519
(0.00926) (0.00925) (0.00915) (0.00889) (0.00867)

Sample All All All All All
Dep. Var. Mean 0.268 0.268 0.258 0.242 0.227
Obs Left 49139 49139 49139 49139 49139
Obs Right 49349 49349 49349 49349 49349

Clustered standard errors in parentheses

Table shows the effect of the discontinuity on the existence of an outstanding FTA various time periods after the
original violation. A violation is considered to have an outstanding FTA if an FTA is open at the date shown (i.e if
two years, then is considered to have an FTA if FTA is open exactly two years after violation). FTAs are issued for
failure to appear in court, failure to respond to a citation or failure to comply with a punishment. All coefficients
come from a local quadratic regression with triangular weights and a one-year bandwidth. Standard errors are
clustered at the defendant level. The sample consists of traffic misdemeanor cases with at least one charge unrelated
to suspended or invalid licenses. All case data come from the Washington Administrative Office of the Courts.
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Table 2.4: Effects of License Suspension Threat on Fine Repayment

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Paid Amt Paid Amt Paid Amt Paid Amt Any Paid Any Paid Any Paid Any Paid

New Law 67.15 69.18 77.57 -4.338 0.0330 0.0332 0.0737 0.0109
(13.58) (11.93) (15.99) (4.050) (0.00897) (0.00826) (0.0179) (0.00683)

Sample All All Outliers Non-Traf Misd All All All Non-Traf Misd
Bandwidth 1 yr Optimal 1 yr 1 yr 1 yr Optimal 3 mths 1 yr
P 2 2 2 2 2 2 2 2
Kernel Tri Tri Tri Tri Tri Tri Tri Tri
Dep. Var. Mean 666.5 666.5 666.5 163.5 0.755 0.755 0.755 0.464
Obs Left 48429 64281 49139 95650 49139 57750 12314 95714
Obs Right 48445 64378 49349 98712 49349 58184 12263 98822

Clustered standard errors in parentheses

Table shows the effect of the discontinuity on the amount and probability of payment by May 2018. All coefficients
come from a local quadratic regression with triangular weights and a one-year bandwidth. Standard errors are
clustered at the defendant level. The sample consists of traffic misdemeanor cases with at least one charge unrelated
to suspended or invalid licenses except where indicated. All case data come from the Washington Administrative
Office of the Courts. Except where indicated, values greater than the 99th percentile of non-zero outcomes were
excluded as outliers for all non-binary outcomes, as the distributions are heavily right-skewed.
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Table 2.5: Effects of License Suspension Threat on FTA-Related License Suspensions

(1) (2) (3) (4) (5)
VARIABLES Any Susp (2Yrs) Any Susp (2Yrs) Any Susp (2Yrs) Any Susp (2Yrs) Any Susp (2Yrs)

New Law 0.242 0.243 0.241 0.245 0.241
(0.00683) (0.00467) (0.00566) (0.0134) (0.00641)

Sample Outliers All All All All
Bandwidth 12 mths 12 mth Optimal 2 mths 12 mths
P 2 1 2 2 2
Kernel Tri Tri Tri Tri Uniform
Dep. Var. Mean 0.00117 0.00117 0.00117 0.00117 0.00117
Obs Left 43862 43862 63985 10703 43862
Obs Right 43967 43967 64457 10659 43967

Clustered standard errors in parentheses

Table shows the effect of the discontinuity on the probability that a license suspension for FTA (failure to appear,
failure to comply or failure to respond) is attached to a case ten years after the original violation. All coefficients
come from a local quadratic regression with triangular weights and a one-year bandwidth. Standard errors are
clustered at the defendant level. The sample consists of traffic misdemeanor cases with at least one charge unrelated
to suspended or invalid licenses. All case data come from the Washington Administrative Office of the Courts and all
license data come from the Washington Department of Licensing (DoL). License suspensions and case data were
merged using citation numbers; approximately 22% of cases have duplicate citations numbers and so were dropped
from the sample. Only suspensions that began two years or less following the offense were included.
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Table 2.6: Effects of Court Decision on Average Age of Vehicles in Accidents: Any Evident
Injuries

(1) (2) (3) (4) (5) (6)
VARIABLES Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age

WA x Court Decision Active 0.157 0.143 0.125
(0.0564) (0.0692) (0.0953)

WA x Pre-Decision -0.187 -0.141 -0.163
(0.0592) (0.0856) (0.107)

WA x Post Law Yr 1 -0.0326 0.0406 -0.0338
(0.0648) (0.0996) (0.108)

WA x Post Law Yr 2 -0.174 -0.229 -0.121
(0.0817) (0.0918) (0.145)

WA x Post Law Yr 3 -0.243 -0.292 -0.179
(0.0823) (0.0981) (0.119)

Observations 220,691 220,691 208,284 208,284 113,277 113,277
R2 0.058 0.058 0.183 0.183 0.233 0.234
Sample All All All All Muni-only Muni-only
Spec Base Base Cnty Char x Date FE Cnty Char x Date FE Muni Char x Date FE Muni Char x Date FE
Dep. Var. Mean 8.239 8.239 8.239 8.239 8.228 8.228

Robust standard errors in parentheses

Table shows the effect of the license suspension policy on the age of vehicles involved in an accident in Washington
State and Northern California. All regressions include jurisdiction by county fixed effects and agency type by
date fixed effects. Other controls and sample restrictions are specified. Only accidents with evident injuries were
included. Baseline-characteristics include county poverty decile and poverty population decile for the full sample
and municipal poverty decile and municipal population decile for the municipal sample. All standard errors are
clustered at the jurisdiction level. Sample includes all injury-producing accidents between January 2003 and June
2008. “Court Decision Active” refers to the period between June 2004 and July 2005 and is the omitted category
in Columns (2),(4), and (6). Crash data are from the Washington Department of Transportation and the California
Statewide Integrated Traffic Reporting System (SWITRS).
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Table 2.7: Effects of Court Decision on Crash Rates in Accidents with Any Evident Injuries by
Jurisdiction Poverty Status

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop

Court Decis Active x WA x > Med Pov 0.166 0.143
(0.0771) (0.0695)

Pre-Decision x WA x >Med Pov -0.197 -0.128
(0.106) (0.0853)

Post Law Yr 1 x WA x >Med Pov -0.144 -0.0681
(0.0789) (0.0758)

Post Law Yr 2 x WA x >Med Pov -0.215 -0.244
(0.0976) (0.0925)

Post Law Yr 3 x WA x >Med Pov -0.0955 -0.139
(0.131) (0.118)

Court Decis Active x WA x Pov Share 0.647
(0.497)

Pre-Decision x WA x Pov Share -0.846
(0.612)

Post Law Yr 1 x WA x Pov Share -0.640
(0.437)

Post Law Yr 2 x WA x Pov Share -0.879
(0.642)

Post Law Yr 3 x WA x Pov Share -0.141
(0.860)

Court Decis Active x > Med Pov 0.189
(0.0667)

Pre -Decision x > Med Pov -0.152
(0.0899)

Post Law Yr 1 x > Med Pov -0.161
(0.0688)

Post Law Yr 2 x > Med Pov -0.242
(0.0804)

Post Law Yr 3 x > Med Pov -0.217
(0.112)

Observations 14,048 14,048 14,048 14,048 6,062 6,062 19,591 19,591
R2 0.806 0.806 0.807 0.807 0.770 0.771 0.706 0.706
Spec Triple-Dif Triple-Dif Triple-Dif Triple-Dif Dif-in-Dif Dif-in-Dif Triple-Dif Triple-Dif
Sample Muni-only Muni-only Muni-only Muni-only Muni-only Muni-only Muni-only Muni-only
Pop Cut-off 5k 5k 5k 5k 5k 5k 1k 1k
Dep. Var. Mean 1.252 1.252 1.252 1.252 1.518 1.518 1.252 1.252

Clustered standard errors in parentheses

Table shows effect of the license suspension policy on the crash rate of vehicles in injury-producing accidents in
Washington State and Northern California by poverty status. Above median poverty rate refers to all jurisdictions
above the median poverty rate for our sample (10.3 percent). All regressions include jurisdiction fixed effects,
state by year-month fixed-effects and poverty indicator (or continuous variable) by year-month fixed-effects. Other
controls and sample restrictions are specified. All standard errors are clustered at the jurisdiction level. Sample
includes all injury-producing accidents between January 2003 and June 2008. “Court Decision Active” refers to the
period between June 2004 and July 2005 and is the omitted category in Columns (2),(4), and (6). Crash data are
from the Washington Department of Transportation and the California Statewide Integrated Traffic Reporting System
(SWITRS).
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B.1 Tables and Figures

Figure B.1: Driving With a Suspended Licenses by Month

Figure shows total Driving with License Suspended (DWLS) cases in the state of Washington by month between
2003 and 2008. Data come from the Washington Administrative Office of the Courts.
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Figure B.2: Policy Timeline

This figure shows the timeline of events relating to license suspension laws in Washington state over the time period
studied.

Figure B.3: Examination of Bias in Citation Matching Procedure

Figure shows the effect of the discontinuity on whether or not a case has a duplicate citation number. Outcomes are
binned at the weekly level. The sample consists of traffic misdemeanor cases with at least one non-license
misdemeanor charge. All case data come from the Washington Administrative Office of the Courts and all license
data come from the Washington Department of Licensing (DoL).
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Figure B.4: Number of Traffic Misdemeanor Cases (biweekly) and Traffic Infractions (monthly)
Relative to Discontinuity

Figure shows total number of traffic misdemeanor (left) and traffic infraction cases (right). Traffic misdemeanor
cases are from the charge-level records provided by the Washington AOC and are aggregated at the weekly-level.
Only cases with at least one non-license offense are included. Traffic infraction cases are from the AOC monthly
caseload archive and are provided at the monthly level.
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Figure B.5: Changes in Charges, Fines and Sentenced Days by Court by Case Type

The figure shows number of charges, number of sentenced days and total fines by court by quarter associated with
license misdemeanors and non-traffic misdemeanors. The grey dashed line represents the law change reinstating
license suspensions.
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Figure B.6: Effect of New Law on DWLS by Law Enforcement Agency Service Area Median
Income

The figure shows the coefficients from a regression of zip code monthly license charges per 1,000 population, license
misdemeanor fines per 1,000 population, license misdemeanor sentenced jail days per 1,000 population and license
misdemeanor served days per 1,000 population on an interaction between months relative to law change and a
municipalities’ median income (’0,000s). All regressions include law-enforcement agency fixed-effects and year by
month fixed-effects. Only law enforcement agencies in Washington state with greater than 5,000 population are
included. All standard errors are clustered at the law enforcement agency level.
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Figure B.7: Effect of New Law on Total Misdemeanor Sentenced Jail Days and Fines by Zip
Code Median Income

The figure shows the coefficients from a regression of zip code monthly misdemeanor fines per 1,000 population and
misdemeanor sentenced jail days per 1,000 population on an interaction between months relative to law change and
and a zip code’s median income (’0,000s). All regressions include zip code fixed-effects and year by month
fixed-effects. All standard errors are clustered at the zip-code level. Only zip codes in Washington state with greater
than 5,000 population and which matched a zip code tabulation are are included.
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Figure B.8: Correlation Between Ages of Vehicles in Accident

Figure shows the correlation between the age of the vehicle at fault in the accident and the age of the vehicle not at
fault in an accident. Only accidents in Washington state between 2003 and 2008 with evident injuries were included.
Data are from the Washington Department of Transportation.
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Figure B.9: Changed in Annualized Probability of Various Offenses Around Suspension Date

Figure shows effect of a license suspension on the annualized probability (daily rate of offense*365) of moving
traffic infractions (top), non-license traffic misdemeanors (middle) or driving with license suspended offenses
(bottom). Only license suspensions for FTAs that occurred between 2014 and 2017 are used. Less than 2% of cases
with duplicate citation numbers were dropped. All outcome variables are residuals from a regression of the outcome
on month, day-of-week and days since a case was filed. Data on suspensions comes from the Washington
Department of Licensing and data on case filing and outcomes comes from the Washington Administrative Office of
the Courts.
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Table B.1: Placebo Check: Effect of 2006 or 2007 “Law Change”

(1) (2) (3) (4) (5) (6)
VARIABLES FTA 10 Yr FTA 10 Yr Paid Amt Paid Amt Susp 10 Yr Susp 10 Yr

New Law 0.00593 0.00369 -7.934 -0.145 0.00850 -0.0138
(0.00854) (0.00819) (13.62) (12.70) (0.00962) (0.00910)

Placebo Date 7/1/2006 7/1/2007 7/1/2006 7/1/2007 7/1/2006 7/1/2006
Dep. Var. Mean 0.220 0.217 344.9 348.3 0.253 0.249

Clustered standard errors in parentheses

Table shows the effect of the discontinuity on the probability of a FTA 10 years after the violation date, total amount
repaid by 2018 and the probability of a license suspension for FTA is attached to a case at any time in the 2 years
after the original violation using two placebo law dates: July 1st 2006 and July 1st 2007. All coefficients come from
a local quadratic regression with triangular weights and a one-year bandwidth. Standard errors are clustered at the
defendant level. The sample consists of traffic misdemeanor cases with at least one charge unrelated to suspended
or invalid licenses. All case data come from the Washington Administrative Office of the Courts and all license
data come from the Washington Department of Licensing (DoL). License suspensions and case data were merged
using citation numbers; approximately 22% of cases have duplicate citations numbers and so were dropped from the
sample.
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Table B.2: Effects of License Suspension Threat on Outstanding FTAs: Robustness Check

(1) (2) (3) (4) (5)
VARIABLES Any FTA (10Yrs) Any FTA (10Yrs) Any FTA (10Yrs) Any FTA (10Yrs) Any FTA (10Yrs)

New Law -0.0512 -0.0500 -0.0785 -0.0557 -0.0511
(0.00591) (0.00887) (0.0177) (0.00809) (0.00866)

Sample All All All All All
Bandwidth 1 Yr Optimal 3 mths 12 mths 12 mths
P 1 2 2 2 2
Kernel Tri Tri Tri Uniform Tri
Dep. Var. Mean 0.227 0.227 0.227 0.227 0.227
Obs Left 49139 47226 12044 49139 49139
Obs Right 49349 47320 12018 49349 49349

Clustered standard errors in parentheses

Table shows the effect of the discontinuity on the existence of an outstanding FTA ten years after the original
violation. A violation is considered to have an outstanding FTA if an FTA is open at exactly ten years following the
violation. Specifications, weights and bandwidths are as indicated. Standard errors are clustered at the defendant
level. The sample consists of traffic misdemeanor cases with at least one charge unrelated to suspended or invalid
licenses. All case data come from the Washington Administrative Office of the Courts.
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Table B.3: Effects of Court Decision on Average Vehicle Value in Accidents

(1) (2) (3) (4) (5) (6)
VARIABLES Vehic Val Vehic Val Vehic Val Vehic Val Vehic Val Vehic Val

WA x Court Decis Active -151.4 -160.6 -340.7
(72.63) (118.8) (148.7)

WA x Pre-Decision 185.3 180.6 354.4
(84.82) (148.0) (173.1)

WA x Post Law Yr 1 4.977 -69.62 252.4
(90.64) (138.6) (166.9)

WA x Post Law Yr 2 169.0 208.2 192.0
(93.56) (139.3) (224.4)

WA x Post Law Yr 3 255.1 375.4 590.2
(105.6) (151.4) (172.8)

Observations 200,259 200,259 188,073 188,073 101,317 101,317
R2 0.057 0.057 0.184 0.184 0.241 0.242
Sample All All All All Muni-only Muni-only
Spec Base Base Base Base Bl Char x Date FE Bl Char x Date FE
Dep. Var. Mean 14262 14262 14262 14262 14230 14230

Clustered standard errors in parentheses

Table shows effect of the license suspension policy on the value of vehicles involved in an accident in Washington
State and Northern California. All regressions include jurisdiction by county fixed effects and agency type by
date fixed effects. Other controls and sample restrictions are specified. Only accidents with evident injuries were
included. Baseline-characteristics include county poverty decile and poverty population decile for the full sample and
municipal poverty decile and municipal population decile for the municipal sample. All standard errors are clustered
at the jurisdiction level. Sample includes all accidents between January 2003 and June 2008. “Court Decision Active”
refers to the period between June 2004 and July 2005 and is the omitted category in Columns (2),(4), and (6). Crash
data are from the Washington Department of Transportation and the California Statewide Integrated Traffic Reporting
System (SWITRS). Crash data are from the Washington Department of Transportation and the California Statewide
Integrated Traffic Reporting System (SWITRS).
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Table B.4: Effects of Court Decision on Average Vehicle Age in Accidents: By Accident
Severity

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age

WA x Court Decis Active 0.525 0.332 0.0609 0.0959
(0.397) (0.137) (0.0302) (0.0440)

WA x Pre-Decision -1.023 -0.376 -0.0459 -0.136
(0.473) (0.179) (0.0347) (0.0454)

WA x Post Law Yr 1 -0.258 -0.203 0.0279 -0.0529
(0.486) (0.180) (0.0381) (0.0645)

WA x Post Law Yr 2 -0.793 -0.479 -0.0586 0.0137
(0.561) (0.183) (0.0429) (0.0658)

WA x Post Law Yr 3 0.617 -0.243 -0.192 -0.195
(0.743) (0.172) (0.0410) (0.0596)

Observations 6,498 6,498 36,806 36,806 754,567 754,567 443,407 443,407
R2 0.372 0.373 0.168 0.168 0.035 0.035 0.093 0.093
Sample All All All All All All Muni Muni
Spec Base Base Base Base Base Base Full Full
Inj Type Fatal Fatal Serious+ Serious+ Possible+ Possible+ Possible+ Possible+

Clustered standard errors in parentheses

Table shows effect of the license suspension policy on the age of vehicle in an accident in Washington State and
Northern California. Accident injury severity cut-offs are as indicated. All regressions include jurisdiction by
county fixed effects and agency type by date fixed effects. Other controls and sample restrictions are specified.
Baseline-characteristics include county poverty decile and poverty population decile for the full sample and municipal
poverty decile and municipal population decile for the municipal sample. All standard errors are clustered at the
jurisdiction level. Sample includes all accidents between January 2003 and June 2008. “Court Decision Active”
refers to the period between June 2004 and July 2005 and is the omitted category in Columns (2),(4), and (6). Crash
data are from the Washington Department of Transportation and the California Statewide Integrated Traffic Reporting
System (SWITRS). Crash data are from the Washington Department of Transportation and the California Statewide
Integrated Traffic Reporting System (SWITRS).
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Table B.5: Effects of Court Decision on Average Age of Vehicles in Accidents: All California
Control

(1) (2) (3) (4) (5) (6)
VARIABLES Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age Vehic Age

WA x Court Decis. Active 0.0512 0.143 0.125
(0.0464) (0.0692) (0.0953)

WA x Pre-Decision -0.208 -0.141 -0.163
(0.0480) (0.0856) (0.107)

WA x Post Law Yr 1 0.0916 0.0406 -0.0337
(0.0529) (0.0996) (0.108)

WA x Post Law Yr 2 0.0265 -0.229 -0.121
(0.0678) (0.0918) (0.145)

WA x Post Law Yr 3 -0.0540 -0.292 -0.179
(0.0681) (0.0981) (0.119)

Observations 583,028 583,028 208,284 208,284 113,282 113,282
R2 0.042 0.042 0.183 0.183 0.233 0.234
Sample All All All All Muni-only Muni-only
Spec Base Base Cnty Char x Date FE Cnty Char x Date FE Bl Char x Date FE Bl Char x Date FE

Clustered standard errors in parentheses

Table shows effect of the license suspension policy on the age of vehicles involved in an accident in Washington
State and California. All regressions include jurisdiction by county fixed effects and agency type by date fixed
effects. Other controls and sample restrictions are specified. Only accidents with evident injuries were included.
Baseline-characteristics include county poverty decile and poverty population decile for the full sample and municipal
poverty decile and municipal population decile for the municipal sample. All standard errors are clustered at the
jurisdiction level. Sample includes all accidents between January 2003 and June 2008.“Court Decision Active” refers
to the period between June 2004 and July 2005 and is the omitted category in Columns (2),(4), and (6). Crash data
are from the Washington Department of Transportation and the California Statewide Integrated Traffic Reporting
System (SWITRS). Crash data are from the Washington Department of Transportation and the California Statewide
Integrated Traffic Reporting System (SWITRS).
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Table B.6: Effects of Court Decision on Injury Rates in Accidents with Any Evident Injuries by
Jurisdiction Poverty Status

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop Crashes/1KPop

Court Decis. Active x WA x > Med Pov 0.0290 0.0250
(0.0259) (0.0230)

Pre Decis x WA x > Med Pov -0.0235 -0.0204
(0.0378) (0.0306)

Post Law Yr 1 x WA x > Med Pov -0.0288 -0.0187
(0.0312) (0.0342)

Post Law Yr 2 x WA x > Med Pov -0.0364 -0.0494
(0.0335) (0.0289)

Post Law Yr 3 x WA x > Med Pov -0.0296 -0.0135
(0.0359) (0.0323)

Court Decis. Active x WA x Pov Share 0.0687
(0.155)

Pre-decision x WA x Pov Share -0.0755
(0.203)

Post Law Yr 1 x WA x Pov Share -0.0919
(0.178)

Post Law Yr 2 x WA x Pov Share -0.0573
(0.203)

Post Law Yr 3 x WA x Pov Share -0.0472
(0.235)

Court Decis. Active x WA 0.0590
(0.0226)

Pre-Decision x WA -0.0311
(0.0325)

Post Law Yr 1 x WA -0.0607
(0.0271)

Post Law Yr 2 x WA -0.0724
(0.0283)

Post Law Yr 3 x WA -0.0835
(0.0313)

Observations 14,058 14,058 14,058 14,058 6,072 6,072 19,602 19,602
R2 0.598 0.598 0.598 0.598 0.574 0.574 0.447 0.447
Spec Triple-Dif Triple-Dif Triple-Dif Triple-Dif Dif-in-Dif Dif-in-Dif Triple-Dif Triple-Dif
Sample Muni-only Muni-only Muni-only Muni-only Muni-only Muni-only Muni-only Muni-only
Pop Cut-off 5k 5k 5k 5k 5k 5k 1k 1k
Dep. Var. Mean 0.307 0.307 0.307 0.307 0.342 0.342 0.307 0.307

Robust standard errors in parentheses

Table shows effect of the license suspension policy on the injury rate of vehicles in injury-producing accidents
in Washington State and Northern California by poverty status. Above median poverty rate are all jurisdictions
with greater than a 10.3 percent poverty rate. All regressions include jurisdiction fixed effects, state by year-month
fixed-effects and poverty indicator (or continuous variable) by year-month fixed-effects. Other controls and sample
restrictions are specified. All standard errors are clustered at the jurisdiction level. Sample includes all injury-
producing accidents between January 2003 and June 2008. “Court Decision Active” refers to the period between
June 2004 and July 2005 and is the omitted category in Columns (2),(4), and (6). Crash data are from the Washington
Department of Transportation and the California Statewide Integrated Traffic Reporting System (SWITRS).
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B.2 Vehicle Valuation Estimation

To estimate the effect of the license suspension policy on traffic safety, it was necessary

to impute values for vehicles involved in traffic accidents. Unfortunately, historical data on

used car vehicles are not readily available, so I instead created depreciation curves based on

contemporaneous (as of 2017) new and used car values by vehicle make. Specifically, I used

data on vehicle valuations from a full scrape of the truecars.com website on September 24, 2017,

a large online advertiser of used-car sales. Data were taken from a dataset publicly posted on

kaggle.com, a data science website and various robustness tests were performed to test whether

the available data matched publicly available estimates of relative brand values and depreciation

scales. More than 1.2 million sales listings were included.

The Washington crash data includes information on the car make, model, year while the

California data includes data on make and year. To standardize across states, I created average

prices for each vehicle make x age cell for all ages up to 20 years old. I dropped the following

discontinued makes: Saturn, Plymouth, Mercury, Oldsmobile and Saab as well as any cell years

with fewer than twenty sales. For the remaining makes, I interpolated (or extrapolated) any

missing age cells using log price to reflect the log-linear relationship between price and age (and

then exponentiating so as to return the outcome variable to levels). I then used these variables to

create depreciation curves for each make. Using this balanced panel of make x vehicle age cells,

I then merged with crash-level data for Washington and California. The underlying assumption is

that the relative values and depreciation curves of each make is similar in the 2017 period and the

2004-2008 study period. While this procedure certainly creates measurement error, so long as this

error is uncorrelated with the court decision and subsequent law change, it will only increase the

standard errors of our estimates for my primary traffic accident analysis (comparing Washington

and Northern California) and not introduce bias because I am using the price as a left-hand side

variable.
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Chapter 3

Litigation as a Policy Instrument: The

Case of the New Source Review Litigation
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3.1 Abstract

Enforcing regulations through litigation against noncompliant firms is an important policy

tool for environmental regulators, but there is limited empirical evidence on the effectiveness

of this mechanism. In this paper, I study this question by examining the effects of a major

environmental enforcement initiative, which led one-third of the US coal-fired power plant fleet to

come under a consent decree. I show that legal settlements arising out of this initiative did indeed

lead to large decreases in plant pollution emissions. These decreased emissions further led to

meaningful improvements in local air quality and decreases in local cardiovascular and respiratory

mortality rates. I then conclude by showing suggestive evidence that in regulated electricity

markets average electricity retail price and utility revenues increased following a settlement.

3.2 Introduction

In many areas of administrative law, the definition of a violation depends upon interpreta-

tions of often ambiguously-worded rules. As such, even in the absence of changes in existing

rules, regulations can be made more or less strict through strategic decisions about enforcing

borderline rule violations, often through litigation. This type of litigation, either by the gov-

ernment or by third parties has been an important driver of environmental regulation.1 Yet,

despite the importance of litigation-based enforcement, we know relatively little about its overall

effectiveness in the environmental context.

In particular, there are two major reasons why we might expect that litigation, even if

successful, may deliver only limited environmental benefits. One, both regulators and firms may

have incentives to agree to changes that the firm would have undertaken even in the absence of

litigation. Two, any agreed-upon changes must be enforced by the government. Because policy

1According to the EPA’s Enforcement and Compliance History Online (ECHO) database, EPA enforcement cases
originating between 2009 and 2015 have led firms to agree to compliance actions valued between $1 and $10 billion
each year between 2009 and 2015.
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priorities and political regimes change over time and because incentives for ensuring compliance

may differ from incentives for achieving a settlement, it is not a foregone conclusion that any

changes dictated in a legal settlement will occur in practice. Finally, even if litigation is successful

in forcing change, the ultimate incidence of the costs of these changes are unclear.2

In this paper, I attempt to investigate these questions empirically by examining the effects

of a major set of environmental litigation: the EPA/DOJ New Source Review (NSR) Initiative.

This initiative led more than one-third of the US coal-fired power plant fleet to come under

consent decrees between 2000 and 2015. These consent decrees required affected generating units

to meet certain emissions standards and/or install costly pollution control equipment—actions

estimated by the EPA to cost more than $20 billion.3

I begin by examining whether or not these settlements were successful in accomplishing

their stated pollution reduction goals. Using a series of difference-in-differences designs, I first

show that settlements arising out of this litigation did indeed lead to large reductions in emissions

of NOx and SO2. Emissions of both pollutants fell by 10-20% on average and this decline was

driven by changes in emission rates; there were no changes in overall levels of generation.

I next find suggestive evidence that these emission declines led to meaningful changes in

local ambient air quality and mortality. Specifically, using air pollution monitor data I observe that

ambient sulfur dioxide levels fell by more than 10% around affected plants after the settlement

was in place with suggestive evidence for additional smaller declines in PM 2.5. I then show

evidence that cardiovascular and respiratory mortality fell significantly in counties near plants

under NSR consent decrees; having a plant come under consent decree within 40 miles of a

county’s centroid lead to a 3.5 deaths per 100,000 population decline in cardiovascular-related

deaths and 2.2 deaths per 100,000 population decline in respiratory-related deaths. There were no

2For instance, regulated utilities may be expected to recoup any capital expenses forced by policy, but the same
may not be true if changes occur as a result of litigation.

3This number is based on the author’s calculation using data from the EPA’s ECHO database. It is important to
note that EPA estimates are likely based on engineering estimates and so may either overestimate or underestimate
the true costs to utilities.
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changes in externally-caused deaths, nor changes in mortality in counties where a consent decree

occurred 40-80 miles from the county centroid.

I finally analyze who bore the cost of these improvements in pollution. I show suggestive

evidence that regulated investor-owned utilities (IOUs), which are typically guaranteed a minimum

rate of return on their investment, increased both prices and revenues increased by more than

10% after a settlement relative to similar non-settling utilities. These results imply that at least in

regulated electricity markets, utilities were able to pass on a substantial proportion of the overall

compliance costs to ratepayers.

This paper contributes to several major literatures. First, it supports a growing literature on

the use of the courts to enact policy in areas including education (Jackson, Johnson, and Persico,

2015), equal employment (Miller and Segal, 2012) and civil rights (Cascio and Washington,

2013). In the environmental context, there has been a growing body of work examining the

specific and deterrence effects of various enforcement actions (Gray and Shimshack, 2011), as

well as more recent research demonstrating the importance of non-environmental regulations

for firm pollution decisions (Boomhower, 2019) and the importance of the dynamic structure of

enforcement actions (Blundell, Gowrisankaran, and Langer, Forthcoming). However, the vast

majority of research examining environmental enforcement has focused on either the effects

of fines and other regulator penalties for rule violations or the threat of litigation; there has

been relatively little evidence on the effects of major environmental litigation programs. One

major contribution of this paper is to provide novel evidence showing that, at least in the air

pollution context, these settlements can have large, independent effects on environmental and

health outcomes.

This paper also builds on a small economics literature examining the effect of the NSR

litigation itself. Keohane, Mansur, and Voynov (2009) examined whether firms responded to the

threat of the onset of litigation studied here and found some evidence that targeted firms were

more likely to reduce emissions prior to the onset of litigation, while Chan and Zhou (2019) show

200



that plants at greater risk of being sued for NSR violations experienced greater reductions in

carbon-dixoide emissions as well as SO2 and NOx. Other work by legal scholars have provided

an overview of the regulatory issues at stake in this litigation, but have not examined the effects

of the litigation in a causal framework (Nash and Revesz, 2007; McGarity, 2012). This paper

builds on this body of work by providing novel causal evidence of the pollution-reducing effects

of the NSR litigation settlements themselves.

This paper additionally adds to a new literature examining the causes of the extraordinary

decline in pollution over the past two decades in the United States (Shapiro and Walker, 2018;

Holland et al., 2018) as well as the effect of that decline on local air quality and health outcomes

(Barreca, Neidell, and Sanders, 2017; Johnson, LaRiviere, and Wolff, 2017). In particular, it

complements other estimates (Bushnell and Wolfram, 2012; Heutel, 2011; Lange and Linn, 2008;

List et al., 2003) of the impact of grandfathering old plants into the Clean Air Act regulations on

local pollution. I show that NSR settlements alone were an important reason that power plant

SO2 and NOx pollution rates declined over the past two decades. These results further imply that

the existence of NSR grandfathering had a large and persistent effect on overall pollution levels.

Finally, this paper contributes to a growing literature on the interaction between restruc-

tured electricity markets and environmental protection. Both Fowlie (2010) and Cicala (2015)

found that plants in states with restructured electricity markets were less likely to invest in more

capital-intensive pollution control technology. In this paper, I build on this work by showing that

regulated utilities were able to pass a substantial proportion of settlement costs onto ratepayers

providing further evidence of an incentive to invest in pollution control in regulated markets.

The remainder of this paper is organized in the following manner. Section 2 provides

background on the studied litigation. Section 3 describes the data and empirical strategy. Section

4 describes the primary results and Section 5 concludes.

201



3.3 Policy Background

This paper studies the effects of a series of enforcement initiatives undertaken by the EPA

and Department of Justice over violations of the Clean Air Act. In the Clean Air Act (CAA,1970)

and Clean Air Act Amendments (CAAA,1977), Congress created emissions standards for new

sources of pollution. These New Source Performance Standards (NSPS) required all major new

sources or modified existing sources of pollution that commenced construction after a certain date

meet emissions thresholds for major pollutants.4 Additionally, after 1977 plants built or modified

in NAAQS non-attainment areas were required to install control technology to meet the lowest-

achievable emissions rate (LAER), while those in attainment areas were required to install the

best available control technology (BACT). Both rules led to large reductions in emissions among

affected units. However, a large proportion of the infrastructure used in America’s most-polluting

industries was built prior to these rule changes. For instance, units built prior to 1971 supplied

more than half of the United States’ coal-fired energy generation in 1998, while 85% of current

operating US petroleum refineries were built prior to 1975. As a result, these new construction

requirements did not bind for many highly-polluting industries.

Yet, because the rules also applied to major modifications at existing plants, it was

expected that plants grandfathered in to the new rules would soon be forced to comply as they

either undertook “major modifications” to extend the life of the plant or retired. However, the

definition of what constituted a major modification was ambiguous, especially with respect to

routine maintenance operations or changes that increased the plant’s overall efficiency. The EPA

generally held that any modifications that increased the total annual emissions of a plant were

classified as major, an interpretation that was upheld in Wisconsin Elec. Power Co. v. Reilly

4Specifically, the Clean Air Act stated that these performance standards would apply to: “any stationary source,
the construction or modification of which is commenced after the publication of regulations (or, if earlier, proposed
regulations) prescribing a standard of performance under this section which will be applicable to such source” where
modification is defined as “any physical change in, or change in the method of operation of, a stationary source
which increases the amount of any air pollutant emitted by such source or which results in the emission of any air
pollutant not previously emitted.” (Wisconsin Elec. Power Co. v. Reilly 1990)
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(1990) and Environmental Defense v. Duke Energy Corporation (2007).5 After the ruling in

Wisconsin Elec. Power Co. v. Reilly (1990), the EPA expected that plants would begin applying

for New Source Review permits for many actions that would lead to increased plant utilization

(and by extension, increased emissions) such as major maintenance and efficiency-enhancing

changes. However, in the years following this case despite a boom in electricity and industrial

production, relatively few permit applications were received (Nash and Revesz, 2007).

In response, the EPA began enforcing New Source Review through litigation, with separate

initiatives against the petroleum refining industry, the cement industry, the glass industry and the

focus of this paper, the coal-fired power plant industry.6 In October 1999, the EPA and Department

of Justice brought suit against seven utilities for violations of New Source Review. Violations

typically consisted of efficiency-enhancing modifications that allowed for more intensive use of

the unit and/or extended its life and that often occurred many years prior to the suit. Over the

next decade, suits against more than thirty additional utilities and over a hundred plants continued

to be filed. Almost all sued firms ultimately signed consent decrees (>80%).

Table 3.1 shows differences across key variable for coal plants involved in litigation and

settling at different times, while Table C.2 shows these same associations, but conditioning on state

fixed effects so as to parallel the main empirical specifications used in the paper. Unsurprisingly,

in both cases we see that coal units that ever settle litigation use more heat input at baseline

(1998) than non-settlers. Plants that are sued also appear to have (marginally) significantly

higher baseline emission rates, although such differences shrink dramatically when including

state fixed effects. Examining timing of settlement, we see that earlier settlements are associated

with higher baseline emission rates and older plants, but again after controlling for state fixed

effects these associations, with the exception of 1998 NOx emission rate, shrink dramatically.

In the next section, I discuss various empirical strategies for identifying the effects of the NSR

5Many utilities argued both before and after these rulings that an hourly standard should instead hold—as long as
the average hourly emissions of a unit did not increase, a major modification had not occurred.

6Data limitations prevent a detailed examination of the effects on other affected industries.
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settlements and overcoming the potential biases created through these underlying differences

between affected and unaffected plants.

The left panel of Figure 3.1 shows the proportion of 1998 sulfur dioxide production that

was under litigation and signed onto a consent decree for the years between 1999 to 2016. Coal

units responsible for more than 40% of 1998 sulfur dioxide production ultimately signed consent

decrees and these settlements were staggered over time. These consent decrees typically imposed

strong pollution control requirements on covered plants. McGarity (2012), in his overview of the

NSR litigation, notes that these consent decrees all “contained similar features, including a denial

of liability by the defendants, retirement or installation of control technologies on existing units,

a prohibition on selling or trading any excess emissions allowances from controls required by the

consent decrees (to ensure that the emissions reductions actually occurred), relatively low fines, a

requirement to invest in supplemental environmental projects, and protection from future NSR

enforcement actions for a specified number of years.” Many decrees also included emission rate

limits.7

The right panel of Figure 3.1 shows the cumulative costs of these consent decrees as

estimated by the EPA. Unsurprisingly, given the strict requirements embedded in the consent

decrees, these settlements imposed large costs on firms; by 2016, the EPA estimated that firms

had paid more than 20 billion dollars of costs through settlement agreements, but these costs

almost all arose from expensive compliance actions such as the installation of pollution control

equipment.8 Other costs such as civil penalties to local, state or federal governments were

negligible in comparison.

However, despite the ostensible success of the litigation, it was a priori unclear whether

the requirements enumerated in the consent decrees would actually lead firms to change behavior.

7The prohibition against selling excess emissions permits is particularly important for understanding the general
equilibrium effects of these consent decrees on overall pollution levels. Otherwise, the changes created by these
consent decrees could have just led to a reallocation rather than a reduction in overall emissions.

8It is important to note that EPA estimates are likely based on engineering estimates and so may either overestimate
or underestimate the true costs to utilities.
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Many other regulations were coming into effect during this time period and firms could have

agreed to compliance actions that they would have undertaken regardless of the settlement.

Additionally, consent decrees must be enforced and it is not obvious that the Environmental

Protection Agency and the Justice Department would have the political will or institutional

capacity to do so. Finally, even if consent decrees were enforced it was unclear who would bear

the burden of these settlements: ratepayers or other utility stakeholders. In the remainder of this

paper, I use a variety of empirical techniques to shed light on these questions.

The left panel of this figure shows the proportion of 1998 sulfur dioxide emissions by coal-fired power plants that
were under litigation or consent decree by year. The right panel of this figure shows the cumulative total compliance
and noncompliance costs associated with NSR settlements by year as estimated by the EPA.

Figure 3.1: Plants Litigation Status and Total Penalties Paid by Year
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Table 3.1: Association Between Treatment and Key Baseline Variables

(1) (2) (3) (4) (5) (6) (7) (8)

Heat input NOx Rate SO2 Rate Op Year Heat input NOx Rate SO2 Rate Op Year

Ever-Settled 3.497* 27.96* 116.7 -2.148

(1.871) (16.44) (91.21) (1.503)

Settlement Year -0.332 -4.756* -21.21* -0.399*

(0.348) (2.455) (10.95) (0.220)

Observations 1,068 1,068 1,068 1,068 350 350 350 350

R2 0.007 0.008 0.008 0.007 0.005 0.018 0.017 0.026

Dep. Var Mean (1998) 18.89 289.4 794.3 1965 18.89 289.4 794.3 1965

Units Tril. BTU Tons/Tril BTU Tons/Tril BTU Years Tril. BTU Tons/Tril BTU Tons/Tril BTU Years

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of ever settling or settlement year on various baseline outcomes. There are 1,068 units
included in the regression from 409 plants. In Columns (5)-(8) only units that ever settle are included—there are 350
of such units from 109 plants. Regressions are weighted by a unit’s share of a plant’s heat input in 1998, the baseline
year in order to not overweight plants with many units. Standard errors are clustered at the state level.

3.4 Data and Empirical Strategy

3.4.1 Empirical Strategy

Effect on Emissions

The goal of each empirical analysis in this paper is to find a suitable counterfactual for

generating units that came under consent decrees.9 My primary analysis compares generating

9I define a unit at a plant to be treated if any unit at the plant came under consent decree because of the high
likelihood of within-plant spillovers if some units in a plant are under a consent decree and not others. Despite this,
all analyses still use the generating unit as the unit of analysis. Different units within the same plant may be subject
to different regulations and have different expected trajectories in power generation and emission rates depending
upon various unit characteristics such as size and existing pollution control equipment; by using the generator as my
unit of analysis I can better control for these potential confounders. If instead the analysis were run at the plant level,
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units before and after coming under a consent decree relative to units that are not yet under a

consent decree or which were never under litigation. To control for confounding variables that

may be associated with both coming under a consent decree and changing levels of emissions,

all comparisons are made within narrowly defined, mutually-exclusive cells. Units are placed

in the same cell if they are in the same state, all above/below the median of 1998 heat input,

above/below the median of 1998 SO2 emission rate and all above/below the median of 1998

NOx pollution rate. I show robustness to creating cells with more granular quantiles as well as

alternative approaches. To ensure that I am not overweighting plants with more units, I weight all

regressions by a unit’s 1998 share of its plant’s overall energy use. The identifying assumption in

this model is that absent a consent decree, units within the same cell would have similar trends in

pollution levels over time. My main specification is then as follows:

Ypt = αp +βPostpt + γZpt + εpt

where Ypt is an outcome variable in unit p in year t, αp is a generating unit fixed-effect,

and Postpt is an indicator variable equal to one if a year is after a unit’s settlement date10 and 0

otherwise. Units that never have a consent decree have a value of zero for all years. The vector

Zpt is a vector of cell by year fixed effects, which ensures that I am only comparing units that are

within the same cell in a given year. I also further include controls for (fully-interacted) county

ozone, PM and SO2 nonattainment status by year fixed effects to control for a unit’s National

Ambient Air Quality Standards (NAAQS) regulatory regime and NOx Budget Trading Program

status by year fixed effects to control for a unit’s inclusion in the NOx Budget Trading Program,

both of which may influence pollution control investment decisions. Finally, εpt is a mean-zero

error term. The sample includes all years between 1998 and 2014, but is robust to including only

I would be less sure I was comparing similar plants as plants that have similar mean 1998 SO2 emission rates for
example, may actually be made up of different units with very different emission rates (i.e. one plant may have two
moderately clean units, one plant may have one very dirty and one very clean unit).

10For years in which the settlement date occurred, the post indicator is equal to 1 if the settlement occurred before
July 1st.
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a narrower window around a consent decree.

I also run a similar event-study specification to look at dynamics before and after the

settlement comes into place. In this specification, the post variable is replaced by a vector of

indicators for years relative to settlement with the indicator for 1 year prior to settlement acting

as the omitted variable. I assign units in non-settling plants a value of 0 for all years. All standard

errors in all models are clustered at the state level.

There are three major challenges to identification using this specification. First, there may

exist unobserved factors that are correlated with both a plant’s decision to enter into a consent

decree and its future pollution outcomes. To better understand this threat to identification, it is

helpful to understand what factors may have driven utilities to settle. One likely factor is the

timing and substance of judicial rulings in each case. Almost all firms chose to fight this litigation

and so settlement depended on both the speed and outcomes of rulings by local District Court and

Circuit Court of Appeal judges. Because this litigation involved complex and ambiguous legal

issues, judicial rulings also varied significantly across cases at both the District and Circuit Court

levels, affecting the prospective value of settlement to a firm. Additionally, changing political

and legal environments also likely affected firm’s willingness to settle depending upon the state

of the firm’s case. For instance, two utilities had tentative settlements in place in 2000, which

were withdrawn after the election of George W. Bush brought a more pro-business orientation

to the EPA (McGarity, 2012). Similarly, American Electric Power (AEP) chose to settle after

the 2007 Supreme Court ruling that upheld the EPA’s interpretation of major modifications, but

this decision did not affect the settlement choices of several other utilities who had won cases in

District Court and were awaiting the outcome of government appeal (Clayton, 2007).11

The key assumption in this paper is that to the extent that the factors that influence an

individual utility to settle are correlated with future pollution outcomes, they are also common

11As the spokesman for Alabama Power, a company under litigation, said after the suit: “Basically, the AEP
decision to settle has no impact on the Alabama Power case. We won the lower court decision and the government
has appealed and is challenging that decision.”
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to the units that serve as the settling units’ counterfactuals (i.e. the other units within their

cells). The specific timing of legal rulings within the confines of the NSR case are unlikely to be

correlated with future pollution trends for a settling unit relative to other units in their cell, as

they are plausibly orthogonal to other firm-specific factors affecting pollution outcomes around

the settlement date. Similarly, while a more utility-friendly NSR ruling may indicate that a

company is in a more pro-utility District or Circuit, the existence of this pro-utility orientation

would not be expected to lead to a discontinuous change in unit pollution outcomes relative to

counterfactual units following the settlement date. Further, to extent this ruling produced new

knowledge about the “pro-utility” alignment of a given district or circuit, this knowledge should

still be common to both the treated unit and its counterfactual units in the same cell (which are in

the same geographies) and so should not lead to differential changes in the treated unit.

However, other potential explanations for differential settlement timing are more wor-

risome from an identification perspective. Most prominently, changed exposure to state and

federal regulations may have influenced settlement timing if these regulations would have induced

installation of the needed pollution control equipment regardless of the settlement. To address this

concern, in my primary specification I control for many time-varying “common” factors that we

might expect to influence a unit’s expectation of future pollution status including NAAQS nonat-

tainment status, state-level regulation and other federal regulations administered at the state-level

(through state by year fixed effects) and regulations that affect plants with different pre-litigation

levels of pollution (through comparing outcomes only within narrowly-defined cells based on

pollution rates) to ensure that settling units are only compared to other units equally affected by

these factors. I also show through event plots that there is no evidence of pollution trends prior to

the signing of the consent decree and that pollution responds immediately to settlement, adding

confidence that plant-specific pollution trends are not driving settlement decisions. Additionally,

because settlements typically occur at the firm, not plant level, it is unlikely that for a given

unit, plant-specific factors are driving settlement decisions. As a robustness check, I restrict
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my analysis to only plants that settled in a group and find that effects are qualitatively similar.

Finally, I perform a number of additional robustness checks testing sensitivity of estimates to

other specification and sample choices—in all cases estimates remain largely unchanged.

Second, because the treatment effect in the above model is estimated off of both variation

in timing in settlement among plants that settle and variation in whether or not a plant settles at

all, an additional challenge is that plants that are sued may have different trends from those that

are not (or those that are sued earlier or later). To understand the plausibility of this identification

concern, it would be helpful to know the underlying decision rules the government used in

deciding which cases to pursue. Anecdotal evidence from McGarity (2012) and GAO (2012)

suggests that the EPA and DOJ were capacity-constrained in their ability to undertake litigation.

In Table 3.1, I show that the EPA chose to sue larger, higher-polluting plants first—a fact also

found in Keohane, Mansur, and Voynov (2009) and Chan and Zhou (2019). Such a decision rule

is not a problem for my identification strategy so long as conditional on the baseline covariates

included, the choice of utility to be sued is uncorrelated with future pollution outcomes.

I attempt to test this assumption empirically in several ways. First, as above, event plots

show no clear trends prior to settlement. Because the median time to settlement was six years

after the onset of litigation, if it were truly the case that litigated firms conditional on covariates

had different pollution trajectories, these trends should appear as pre-trends in my data, but I see

no evidence of such effects. Second, I perform an analysis testing whether being under litigation,

but not yet settling has an effect on key pollution outcomes—I find no such effect. Again, if

litigated plants were on different pollution trajectories then non-litigated plants, we would not

expect these differences to first show up many years later after a settlement, but instead should

manifest themselves in the intervening period. Third, as a robustness check, I perform the same

main specification as above, but only including plants that ever-settled so treatment variation is

driven entirely by time of settlement. Results are qualitatively similar although standard errors

increase substantially with the smaller sample. Finally and importantly, plants are typically sued
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over violations that occurred a decade or more in the past and were not clearly recognized as

violations at the time, implying that sued and non-sued plants may be less different than typical

comparisons between contemporaneous violators and non-violators.

A third challenge to identification is using settlement date as the event date rather than

litigation date. This choice is motivated by my desire to understand the effect of a settlement

alone. The median time to settlement is six years and there is a wide variation across settling firms.

If I used litigation date rather than settlement date, the years since litigation coefficients would be

a weighted average of the effect of litigation and the effect of settling, leading to a potentially

large underestimation of the effect of settlement. However, a disadvantage of using settlement

year as my event date is that if firms reacted to litigation by changing emissions patterns, I am

only estimating the effect of settlement relative to being under litigation rather than the effect of

settlement relative to pre-litigation norms. This concern is particularly acute given the results of

Keohane, Mansur, and Voynov (2009), who found that at the onset of this litigation (plants sued

in 1999), plants responded in the very short-term (1-year) by reducing emissions.12

I address this concern in two ways. First, if the onset of litigation changed behavior,

we would then again expect to see differential trends prior to settlement as the pre-settlement

period in the event study graphs encompasses the period in which litigation occurred; there is no

evidence for these effects. Second, as described above, I perform a separate analysis in which I

include an indicator for years in which a plant is under litigation but has not yet settled. These

effects are typically very small and highly insignificant suggesting that on average sued plants

are not differentially changing their behavior in response to litigation alone. These results may

differ from those of Keohane, Mansur, and Voynov (2009) because I include different controls

(i.e. state by year fixed effects), because I am looking at long-run responses and/or because I am

looking at the full sample of litigating plants.13

12As described above, Keohane, Mansur, and Voynov (2009) and Chan and Zhou (2019) also found that plants
perceived to be at greater risk of litigation responded by changing emissions, but as long as my baseline controls are
identifying similar plants, this should not bias my results.

13It is additionally possible that even if pre-settlement litigated plants are not acting differently than non-litigated
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A final concern is the potential bias created through using a two-way fixed-effect model

with time-varying treatment as identified in Goodman-Bacon (2018) and Callaway and Sant’Anna

(2019). In Appendix C.2, I describe an alternate empirical specification that addresses these

concerns by creating a pure control group for each treated unit and a balanced panel. I show that

results remain similar when using this alternative specification.

Effect on Air Quality and Mortality

I additionally examine the effect of settlements on local pollution and mortality outcomes.

I cannot use exactly the same methodology here because each plant may impact pollution

and mortality over a large geographic area leading air quality monitors and counties, my unit

of analysis for mortality, to be potentially treated by multiple plants. Accordingly, I instead

implement a modified analysis that attempts to convert the preceding analysis to the air-quality

monitor (county) setting where units may be multiply-treated depending on the number of nearby

plants coming under consent decree. My sample consists of all monitors (counties) within 80

miles of a coal plant. I then create indicator variables equal to 1 if a plant has come under a

consent decree within 40 miles and within 40 miles to 80 miles of each monitor (county centroid)

respectively. I use a 80 mile radius in my primary analysis both because many plants have tall

smokestacks that disperse pollutants many miles from their source (Barreca, Neidell, and Sanders,

2017) and because the large size of many American counties means that even counties whose

population centroids are many miles from the plant may still contain areas that are relatively

close-by. I show robustness to using differently sized distance bins.

As above, I group together similarly exposed monitors (counties) into narrowly-defined,

mutually exclusive cells. In the primary analysis, I group together monitors (counties) that are in

the same state, that are all above/below the median 1998 level of heat input used by plants within

plants, instead all firms may change behavior in response to the threat of litigation. Although I cannot test for this
empirically, this is consistent with the findings of both Keohane, Mansur, and Voynov (2009) and Chan and Zhou
(2019) and would suggest that I am underestimating the true total effects of litigation.
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40 miles, are all above/below the median of 1998 heat input used by plants within 40-80 miles

and are all above and below the median 1998 value of the outcome variable (pollution levels and

mortality respectively).14 Specifically, I estimate:

Ymt = αm +Post40mt +Post80mt +Zmt + εmt

where Ymt is the outcome variable of interest for monitor (county) m in year t, αm is

a monitor (county) fixed-effect, Post40 is an indicator equal to 1 if a consent-decree has been

implemented in a plant within 40 miles of the monitor (county), Post80 is an indicator equal to 1

if a consent-decree has been implemented in a plant within 40 to 80 miles of the monitor (county),

and Zmt is a vector of indicators for cell by year fixed effects. I further include controls for

(fully-interacted) county ozone, PM and SO2 nonattainment status by year fixed effects to control

for nearby units’ National Ambient Air Quality Standards (NAAQS) regulatory regime and NOx

Budget Trading Program status by year fixed effects to control for nearby units’ inclusion in the

NOx Budget Trading Program.15 Finally, εmt is a mean zero error term.

This specification implicitly compares monitors (counties) near plants that experienced a

consent decree before and after the consent decree occurred relative to counties near plants that

did not experience (or had not yet experienced) a consent decree. The identifying assumption here

is that absent the consent decree these monitors (counties) outcomes should evolve on similar

paths. I test this assumption in two ways. First, as above, I create event study plots to see how

monitors’ (counties’) outcomes evolve before and after a consent decree occurs. Second, if the

effects are truly caused by the consent decree, we should expect effects to be larger for monitors

(counties) that are closer to the plants—with this design I can test whether this pattern holds

14I do not include NOx and SO2 emission rate here for two reasons. One, these values are undefined when monitors
(counties) have no plants in a given distance bin. Two, the average value here may be somewhat uninformative as
monitors (counties) with the same averages may have dramatically different patterns of underlying rates in their
nearby plants.

15In both cases, the indicator is equal to 1 if any plant within 80 miles of the monitor (county centroid) was in a
nonattainment zone or under the NOx Budget Trading Program.

213



empirically. In both cases, there are no evident violations of the identifying assumptions. Air

quality analyses are clustered at the monitor level,

3.4.2 Data and Sample Selection

Data for this project comes from several sources. First, data on annual unit-level gener-

ation, heat input and emissions for coal-fired power plants comes from the EPA’s Continuous

Emissions Monitoring System (CEMS) for all plants that were included in the Acid Rain Program,

which includes almost all coal-fired plants in the contiguous United States. CEMS also includes

data on plant characteristics including year of operation and latitude and longitude. My sample

consists of the years 1998 to 2014.16 Only the 1,068 coal-fired units with positive heat input in

1998, the baseline year, are included. Data on NAAQS county attainment status were taken from

the EPA Green Book.

Second, data on New Source Review settlements comes from the Environmental Protection

Agency’s New Source Review Initiative website, which includes links to consent decrees of all

settled cases. Using this information, I created a dataset of all plants affected by consent decrees,

the date the case was initiated and the date the consent decree was signed. I matched each named

plant to pollution data which could then be merged with CEMS data. These data were also

cross-referenced with the EPA Enforcement and Compliance History Online (ECHO) database to

identify non-settling cases, case milestone dates and penalty amounts.

Third, data on air pollution comes from the EPA air pollution monitoring system and

data were obtained from AQS Datamart. Only monitors in use for all years between 1999 and

2014 are used to control for endogenous monitor openings/closings. Fourth, data on mortality

comes from the Center for Disease Control (CDC) WONDER Database for years between 1998

16A new regulatory regime, the Cross-State Air Pollution Rule (CSAPR), came into effect in 2015, which put a
new price on sulfur dioxide and may have changed plant decisionmaking. While this should not have affected settling
and non-settling plants differentially conditional on covariates (and results are robust to including the full sample),
my primary sample includes only years prior to 2014 to avoid the possibility that CSPAR may have influenced plant
settlement and investment decisions. I show robustness to including all years in my sample.
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and 2014. I use age-adjusted mortality rates and drop county-years with fewer than 20 deaths,

which are deemed by the CDC to be “unreliable.” These rates typically occur in low-population

counties and in order to prevent selection in my sample based on population or mortality changes,

I restrict my sample to only counties with greater than 25,000 population in 1998—less than 3%

of county-years in this group have rates that are “unreliable” for any outcome and less than 1% of

county-years have unreliable cardiovascular mortality rates. I show robustness to relaxing this

population restriction. Finally, data on utility revenues, pricing and ownership structure come

from the Energy Information Administration (EIA) form 861.

3.5 Results

3.5.1 Pollution

Consent decrees typically included requirements to install SO2 and NOx control equip-

ment, undertake other actions to reduce total SO2 and NOx pollution or decrease emission rates

below a certain threshold. In this section, I estimate whether these requirements succeeded in

reducing emissions. Figure 3.2 shows the primary results for total emissions and emission rates

of SO2 and NOx pollution. Across all outcomes, there appear to be no major differences among

settling and non-settling plants conditional on covariates in the lead up to settlement. However,

pollution emissions begins to decrease in the year of a settlement and this decrease grows larger as

time progresses. The size of the decline is quite large—by six years after a settlement, emissions

have fallen by more than 15%. Further, this decline occurs for both total emissions and emission

rates suggesting that it is not simply caused by changes in output.
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Figure 3.2: Effect of Settlement on Pollution and Output in Coal-Fired Power Plants

This figure shows the effect of a settlement on total emissions and emission rates among coal-fired power plants.
Coefficients come from a unit-level regression of the outcome variable on indicators for years relative to settlement
(never-settling plants have a value of 0 for all years), with -1 years to settlement the omitted variable. Never-settling
units have a value of 0 for all indicators. All regressions include unit fixed effects, cell by year fixed effects, controls
for NAAQS non-attainment status by year fixed effects and NOx Budget Trading Program by year fixed effects.
Cells are defined as all units in the same state, below/above median 1998 heat input, below/above median SO2
emission rates, and above/below median NOx emission rate. Regressions are weighted by a unit’s share of a plant’s
heat input in 1998, the baseline year. Standard errors are clustered at the state level.
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Table 3.2: Effect of Settlement on Coal-Fired Power Plant Pollution and Generation Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)

NOx SO2 NOx rate SO2 rate Heat Input (MMBTU) Gross load Retired SO2

Post Consent Decree -1,069*** -2,105** -30.99*** -77.94 0.274 0.000375 -0.0326 0.0435

(189.3) (861.0) (6.432) (55.71) (0.547) (0.0616) (0.0221) (0.0577)

Observations 17,421 17,421 14,972 14,972 17,421 17,421 17,421 17,421

R2 0.863 0.856 0.878 0.886 0.969 0.969 0.742 0.968

Dep. Var Mean (1998) 5707 12366 276.3 733.4 21.91 2.069 0 2.240

Units Tons Tons Tons/Tril. BTU Tons/Tril. BTU Tril BTU TWh Share Mil. Short Tons

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of settlement on pollution and generation outcomes among coal-fired power plants.
“Post Consent Decree” is equal to 1 if a year is after any unit in a plant came under a consent decree. For the year
in which the consent decree was signed, the “Post Consent Decree” variable is equal to 1 if the consent decree
happened prior to July of that year. Never-settling units have a “Post Consent Decree” value of 0 for all years. The
number of observations for emission rates shrinks because I drop years with less than 1 Tril BTU of heat input in
a given year; rates become unstable with low-levels of heat input. All regressions include unit fixed effects, cell
by year fixed effects, controls for NAAQS non-attainment status by year fixed effects and NOx Budget Trading
Program by year fixed effects. Cells are defined as all units in the same state, below/above median 1998 heat input,
below/above median SO2 emission rates, and above/below median NOx emission rate. Regressions are weighted by
a unit’s share of a plant’s heat input in 1998, the baseline year. Standard errors are clustered at the state level. These
regressions includes 1,026 units across 395 plants—this is fewer than the 1,068 units in the full sample because all
cells (including the NAAQS nonattainment indicators by year cells) that have only singleton values are dropped.
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Table 3.3: Effect of Settlement on Coal-Fired Power Plant Pollution and Generation Outcomes:
By Litigation Status

(1) (2) (3) (4) (5) (6) (7) (8)

NOx SO2 NOx rate SO2 rate Heat Input Gross load Retired CO2

Post Litig, Pre-Settlement -91.05 -32.37 -4.276 15.30 -0.141 0.0297 0.0101 -0.0212

(173.0) (609.0) (5.290) (36.13) (0.520) (0.0481) (0.0269) (0.0525)

Post Consent Decree -1,153*** -2,617*** -35.06*** -78.25* 0.179 -0.00465 -0.0232 0.0305

(231.6) (872.0) (7.002) (45.93) (0.644) (0.0629) (0.0316) (0.0683)

Observations 16,401 16,401 14,015 14,015 16,401 16,401 16,401 16,401

R2 0.878 0.862 0.882 0.888 0.969 0.970 0.742 0.968

Dep. Var Mean (1998) 5493 12132 273.6 729.2 21.79 2.050 0 2.227

Units Tons Tons Tons/Tril. BTU Tons/Tril. BTU Tril BTU TWh Share Mil. Short Tons

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of the onset of litigation and settlement on pollution and generation outcomes among
coal-fired power plants. “Post Litigation, Pre-Settlement” is equal to 1 if any unit in a plant is under litigation, but
has not yet settled in a given year. “Post Settlement” is equal to 1 if a year is after any unit in a plant came under a
consent decree. For the year in which litigation started or the consent decree was signed, these variables are equal to
1 if the event occurred prior to July of that year. Never-litigated units have a “Post Litigation, Pre-Settlement” and
“Post Settlement” value of 0 for all years. Cases settled by the Tennessee Valley Authority are excluded as the original
suit against the TVA was thrown out in the early 2000s, but the TVA then chose to settle in 2011, so it is unclear
exactly when they perceived themselves to be “under litigation.” The number of observations for emission rates
shrinks because I drop years with less than 1 million BTU of heat input; rates become unstable with very low-levels
of heat input. All regressions include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment
status by year fixed effects and NOx Budget Trading Program by year fixed effects. Cells are defined as all units
in the same state, below/above median 1998 heat input, below/above median SO2 emission rates, and above/below
median NOx emission rate. Regressions are weighted by a unit’s share of a plant’s heat input in 1998, the baseline
year. Standard errors are clustered at the state level. These regressions includes 966 units across 384 plants.

Table 3.2 shows the average treatment effect of coming under a consent decree. Consistent

with Figure 3.2, the settlement led to large and significant declines in emissions. On average

following a settlement, both SO2 and NOx emissions fell by 15%-20% relative to 1998 levels.

There are also economically large declines in SO2 and NOx emission rates, although only NOx

rates are significant at conventional levels. The effect on total electricity generation (gross load)
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and heat input are small and insignificant implying that these changes happened almost entirely

on the intensive margin. There is also no change in carbon-dioxide production suggesting that

these settlements provided few climate-related co-benefits.17

Table 3.3 shows these effects with an additional indicator for whether or not a plant is

in a post-litigation, but pre-settlement year.18 This table shows that the effects of being in the

pre-settlement, post-litigation period are very small and statistically insignificant, suggesting

that litigated plants did not undergo large behavior change following the onset of the suit, at

least relative to non-sued plants. Second, the effects of being in a post-settlement period relative

to a pre-litigation period remain large and significant for all four pollution outcomes. This

suggests the post-settlement results are not driven by responses to the onset of litigation, but

instead represent declines even relative to the pre-litigation period. Further, the fact that I do not

observe any significant differences between the pre-litigation and post-litigation, pre-settlement

periods provides additional reassuring evidence that the observed effects are not merely driven by

differential time trends among settling and non-settling plants.

Tables C.3, C.4, C.5 and C.6 attempt to address some of the identification concerns

identified in Section 3. Each table shows robustness checks for a different primary outcome (NOx

emissions, NOx emission rates, SO2 emissions, and SO2 emission rates respectively). Columns 1

and 2 show results are robust to constructing cells with 1998 generation and pollution quartiles

(1) or cells additionally including 5-year bins for year of unit construction (2). Column (3) shows

that results are also robust to including only state by year fixed effects—there is nothing in the

cell-based specification that mechanically creates these results. Columns (4) and (5) shows that

results are robust to only including settling plants. Column 5 removes cell by year fixed effects

17The EPA CEMS data does not track emissions of other pollutants, which may also be reduced as a byproduct of
action taken to reduce SO2 emissions. Thus, other co-beneifts from the policy may exist, but I am unable to examine
them here.

18Plants affected by the TVA settlement are excluded from this analysis. The enforcement action against the TVA
began in 1999 was deemed unconstitutional in 2001 by the 11th Circuit Court of Appeals and then never pursued. In
2011, the Obama administration created a new consent decree with the TVA based on the claims of this original
action. It is therefore unclear whether (or when) the TVA perceived itself to be under litigation during the intervening
period.
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and state by year fixed effects as there is limited variation in settlement timing of plants within

states, creating very large standard errors in Column (4), but in both cases point estimates are

very similar. Column 6 shows effects using settlements that occur in groups of plants (>3)—

results for NOx remain largely unchanged, but effects for SO2 do shrink and become statistically

insignificant, although they remain highly economically significant. Column 7 shows results

for all years (including 2015-2017 when CSPAR was in effect)—results do not change. Finally,

Column 8 shows that results are robust to logging the dependent variable, suggesting that results

are not driven by changes at the largest or highest polluting plants alone. Together these results

add confidence that I am indeed estimating a causal effect of the settlements.

Table C.7 further tests robustness to exposure to federal and state cap and trade programs.

In theory, it is possible that differential exposure to these programs even conditional on covariates

could both influence settlement decisions and future pollution control investment decisions

creating bias in my estimates. Two major regional cap-and-trade programs are the Regional

Greenhouse Gas Initiative and independent SO2 and NOx emissions trading programs run by the

state of Texas. In Columns (1) and (2), I exclude these states from the regression for the periods in

which their cap-and-trade programs were in place and the results remain largely unchanged. An

additional concern is that unit’s may be differentially affected by exposure to federal emissions

trading programs including the Acid Rain Program and the NOx Budget Trading Program. The

cell-based approach implicitly controls for many of the plant’s baseline characteristics that we

might expect to lead to differential impact across plants, but it is possible the cells are not granular

enough to fully control for these differences. Accordingly, in Columns (3)-(6), I use even more

granular controls for emission rates, which are likely to be the main determinant of differential

response to these programs prices. Specifically in Columns (3)-(4), I control for 1998 NOx SO2

emission rate ventile by year fixed effects, while in columns (5)-(6), I control for state by 1998

emission rate ventile by year fixed effects. These restrictive controls ensure that I am comparing

units that have very similar baseline pollution profiles, but reassuringly results remain very similar
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to those in the primary analysis.

I next show the effects of these settlements on the adoption of new pollution control

equipment.19 Tables 3.4 and 3.5 show the results for an analogous regression to the pollution

and generation analysis, but looking at the adoption of NOx and SO2 control technology. In both

cases, we see that settlements do not have large effects on the extensive margin of technology

adoption. However, the settlement does appear to lead units to upgrade existing equipment. The

settlement increases the probability that a new pollution control system is installed in a given

year by 2 percentage points for NOx and 1 percentage points for SO2. Although the effects are

not statistically significant at conventional levels, they represent a very large proportional effect.

These point estimates imply a 40% increase in annual installation rate of new equipment for new

NOx control equipment relative to baseline and a more than doubling of the installation rate of

new SO2 control technology.

These newly-installed systems also appear to be different in type from existing technolo-

gies although again point estimates, while economically significant, are generally not statistically

significant at conventional levels. Units are induced to switch from overfire air systems to selective

catalytic and non-catalytic reduction systems, which provide higher levels of NOx control. Simi-

larly, plants are induced to increase their dry-scrubber SO2 technology. There is also suggestive

evidence that plants are adopting lower sulfur coal in response to settlements—the average sulfur

content of burned coal falls by 8% in the six years after a settlement is in place, although again

this effect is not statistically significant.20

19For retired years, I code each plant as having the pollution control equipment it had at retirement. For outcomes
examining whether or not a plant installed a new piece of equipment in a given year or examining the sulfur content
of a plant’s coal, I examine pollution control adoption only in years in which units were operating. In both cases, it is
therefore important to note that although there was no evidence of settlement causing large changes in retirement
rates, if the types of units induced to retire changed in unobservable ways because of settlements, these results may
be biased. Retirement rates are relatively low over the entire sample since it goes only until 2014 and so it is unlikely
that this is driving the observed results. However, these results should nonetheless be interpreted with more caution.

20There is no effect in the absolute level of sulfur content, but I also observe an effect on the absolute level of
sulfur content if several plants that use coal with very high sulfur content is excluded.
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Table 3.4: Effects of Settlement on Coal-Fired Power Plants NOx Pollution Control

(1) (2) (3) (4) (5) (6)

Any NOx Contr New NOx Contr/Yr SCR Contr OFA Contr Low NOx Contr Oth Contr

Post Consent Decree 0.0259 0.0222 0.0662 -0.0312 0.0690* 0.00141

(0.0614) (0.0193) (0.0510) (0.0374) (0.0395) (0.00594)

Observations 17,421 15,853 17,421 17,421 17,421 17,421

R2 0.868 0.346 0.838 0.892 0.896 0.893

Dep. Var Mean (1998) 0.527 0.0501 0.0172 0.145 0.445 0.0311

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on NOx pollution control installation among coal-fired power plants. “Post
Consent Decree” is equal to 1 if a year is after any unit in a plant came under a consent decree. For the year in which
the consent decree was signed, the “Post Consent Decree” variable is equal to 1 if the consent decree happened
prior to July of that year. Never-settling units have a “Post Consent Decree” value of 0 for all years. All regressions
include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and NOx Budget
Trading Program by year fixed effects. Cells are defined as all units in the same state, below/above median 1998
heat input, below/above median SO2 emission rates, and above/below median NOx emission rate. SCR refers to
selected catalyic and non-catalytic reduction, OFA refers to overfire air, low NOx controls refers to low NOx burners
and cells and other controls refer to all other controls. Regressions are weighted by a unit’s share of a plant’s heat
input in 1998, the baseline year. Standard errors are clustered at the state level. These regressions includes 1,026
units across 395 plants—this is fewer than the 1,068 units in the full sample because all cells (including the NAAQS
nonattainment indicators by year cells) that have only singleton values are dropped.
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Table 3.5: Effects of Settlement on Coal-Fired Power Plants SO2 Pollution Control

(1) (2) (3) (4) (5) (6) (7)

Any SO2 Contr New SO2 Contr/Yr Wet Scrubber Dry Scrubber Oth Contr Sulf Content Ln Sulf Content

Post Consent Decree 0.00547 0.0104 -0.0158 0.0244 0.00189 -0.000481 -0.0836

(0.0305) (0.0148) (0.0327) (0.0197) (0.00145) (0.00111) (0.0707)

Observations 17,421 15,853 17,421 17,421 17,421 13,822 14,347

R2 0.898 0.362 0.907 0.880 0.934 0.939 0.952

Dep. Var Mean (1998) 0.221 0.00438 0.160 0.0310 0.0244 0.0121 -0.0946

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on SO2 pollution control installation among coal-fired power plants. “Post
Consent Decree” is equal to 1 if a year is after any unit in a plant came under a consent decree. For the year in which
the consent decree was signed, the “Post Consent Decree” variable is equal to 1 if the consent decree happened
prior to July of that year. Never-settling units have a “Post Consent Decree” value of 0 for all years. All regressions
include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and NOx Budget
Trading Program by year fixed effects. Cells are defined as all units in the same state, below/above median 1998 heat
input, below/above median SO2 emission rates, and above/below median NOx emission rate. Sulfur content refers to
a plant’s coal input average sulfur content in a given year. Regressions are weighted by a unit’s share of a plant’s heat
input in 1998, the baseline year. Standard errors are clustered at the plant level. These regressions includes 1,026
units across 395 plants—this is fewer than the 1,068 units in the full sample because all cells (including the NAAQS
nonattainment indicators by year cells) that have only singleton values are dropped.

3.5.2 Air Quality

I next examine the effect of settlements on ambient air quality around affected plants.

Examining the effect of the settlement on ambient air quality in addition to changes in pollution

emissions from CEMS data is important for three reasons. First, although CEMS data are regularly

audited, it may still be possible for affected plants to manipulate their data. Second, in theory,

pollution decreases from affected plants may be offset by changes in behavior from other nearby

power sources or industrial facilities. Third, ambient pollution levels are the relevant outcome for

impacts on health and well-being.

I examine the effect of settlements on three major pollutants that have the potential to be

223



affected by changes in coal-fired power plant pollution: SO2, ozone, and PM 2.5.21 SO2 should

be affected directly by the units’ control strategies, while NOx is a precursor to ozone and both

NOx and SO2 are precursors to PM 2.5. Table 3.6 shows the main results. Odd columns show

results controlling for cell by year fixed effects where cells are defined as all monitors in the same

state, all above/below median heat input of plants within 40 miles and all above/below median of

heat input of plants of plants 40-80 miles away, while even columns show specifications with

cell by year by baseline (1998) outcome median. In Columns (1)-(2), we first see evidence for

a large reduction in sulfur-dioxide pollution; having a plant come under consent decree within

40 miles of a monitor leads to a 3.5 ppb decline in SO2 (15% decline). There is no effect for

monitors 40-80 miles from a plant with a consent decree. This large proportional decline is

exactly what would we expect given the observed effect of settlements on unit SO2 emissions;

coal-fired power plants are one of the largest sources of sulfur dioxide pollution in the United

States and so plant-level reductions in sulfur dioxide should lead to large proportional reductions

in ambient sulfur dioxide levels.

In Columns (3) and (4), we can see that consent decrees do not appear to lead to any

economically or statistically significant changes in ozone levels. NOx from coal-fired power

plants are a relatively small contributor to overall ozone levels and ozone exhibits significant

variation due to local weather patterns, so such a null result is perhaps unsurprising. Finally, we

see that PM 2.5 declines both among monitors within 40 miles of a plant with a consent decree and

monitors 40-80 miles from a plant with a consent decree, but effects are slightly larger and only

significant for monitors 40-80 miles away. The reduction is relatively small (.75%-1.5% decline),

consistent with coal-fired power plants again being a relatively small contributor to overall PM

2.5 levels. While we would expect the effect to be larger for monitors closer to the plants, the

difference between the two coefficients is not statistically significant and tall smokestacks on

many coal-fired power plants allow particles to travel many miles from the plant. Further, as we

21NO2 should also be affected, but there are relatively few monitors within 40 miles of a plant so I lack sufficient
power to examine this outcome.
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will see in Table C.8, there is no effect for monitors 50-100 miles or 60-120 miles suggesting

that these effects are concentrated among monitors that are plausibly close enough to the treated

plants to be affected by their change in emissions.

Figure C.1 show the effect of a consent decree occurring within 40 miles of a monitor

in event study form. Given the smaller sample, these estimates are noisier than our estimates of

CEMS-based pollution. Nonetheless, there is little evidence of strong pre-trends for either of the

three pollutants prior to a monitor’s first settlement at a plant within 40 miles and SO2 and to a

lesser-extent, PM 2.5, exhibit clear and significant declines after this settlement comes into place.

This provides further reassuring evidence that pollution declines are driven by plant settlements

and not other correlated factors.
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Table 3.6: Effect of Settlement on Ambient Air Quality

(1) (2) (3) (4) (5) (6)

SO2 SO2 Ozone Ozone PM 2.5 PM 2.5

Post Consent Decree w/i 40 Mi -3.587*** -3.956** 0.000284 0.000177 -0.136 -0.108

(1.368) (1.512) (0.000315) (0.000335) (0.125) (0.143)

Post Consent Decree w/i 40-80 Mi -0.322 -0.408 -0.000182 -0.000236 -0.201** -0.205**

(1.086) (1.020) (0.000208) (0.000219) (0.0807) (0.0886)

Observations 2,181 1,822 6,866 6,476 5,056 4,760

R2 0.919 0.944 0.915 0.922 0.962 0.969

Cell x Year FE Y Y Y Y Y Y

Cell x Year x BL Val FE N Y N Y N Y

Dep. Var Mean (1998) 19.28 19.28 0.0582 0.0582 14.18 14.18

Monitors 137 115 405 381 337 318

Units ppb ppb ppm ppm µg/m3 µg/m3

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on observed pollution levels in monitors nearby the plant. Only monitors
that began operation prior to 1999 and were still in operation in 2017 were included. Ozone is measured in parts per
million and is the annual maximum daily 1-hour value. Sulfur dioxide is measured in parts per billion and is the
average annual hourly value. PM 2.5 is measured in µg/m3 and is the average annual average daily value. Coefficients
come from a regression of the outcome variable on indicators for whether or not a monitor has a plant under consent
decree within 40 miles and and within 40-80 miles. All regressions include unit fixed effects, cell by year fixed
effects, controls for NAAQS non-attainment status and NOx Budget Trading Program by year fixed effects. Cells
are defined as all units in the same state, below/above median 1998 heat input within 40 miles and below/above
median 1998 heat input within 40-80 miles. “BL Val FE” refer to an indicator if a monitor was above or below the
median value for the outcome variable in the monitor’s baseline year (typically 1998 for SO2 and ozone monitors
and 1999 for PM2.5 monitors). Fewer monitors and observations exist in the even columns because monitors that
are singletons within a given cell by year are dropped and the more restrictive cell definitions in the even columns
increase the number of singletons. Standard errors are clustered at the monitor level.

Table C.8 shows the same specification using different distance cut-offs. The results for
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SO2 are very similar when looking at plants within 30 miles of a monitor that settle relative to

those that are 30=60 miles away. When I expand the distance bins in Column (4) and (7) to 50

and 60 miles relative to 50-100 miles and 60-120 miles respectively, results shrink suggesting that

the SO2 effects are driven by monitors relatively close to the plant. The results for ozone are small

and insignificant regardless of the cut-off used. Finally, for PM 2.5 when using the <30 mile vs

30-60 mile cut-off settlements appear to cause about a 1% decrease in pollution levels in both

distance bins although the effect is not statistically significant. In the <50 mi vs 50-100 mile and

< 60 mile vs 60-120 mile specifications, PM 2.5 drops by 1.5-2% (p<.01) in the closer distance

bin, with a smaller and statistically insignificant decrease for monitors 50-100 and 60-120 miles

away. Taken together, these three specifications suggest that the PM 2.5 decreases are indeed

caused by consent decrees and that the effects may persist further from the plant than SO2.

3.5.3 Mortality

I now turn to examining whether the reductions in pollution observed above affected local

mortality rates. I use the same specification as above but with counties as the unit of analysis.

Distances from the county to nearby coal plants are calculated using a county’s population-

weighted centroid. Table 3.7 shows the main results. As above, odd columns show results

controlling for cell by year fixed effects where cells are defined as all counties in the same state,

all above/below median heat input of plants within 40 miles and all above/below median of

heat input of plants of plants 40-80 miles away. Even columns show specifications with cell

by year by baseline (1998) outcome mortality rate median. Under both specifications, having

a plant come under consent decree within 40 miles of a county centroid leads to 6.5 fewer

cardiovascular and respiratory deaths per 100,000 population decline per year, or a 1.5% decrease.

This decrease is driven by both cardiovascular (1% decline) and respiratory (2.4%) deaths. There

are no economically or statistically significant effects of having a plant come under consent decree

40 to 80 miles from a county centroid for any of the three outcomes. Additionally, in Columns
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(7)-(8), we see that there is no negative effect of consent decree on externally-caused deaths

such as motor vehicle accidents, overdoses, suicides and homicides; coefficients are positive,

small and statistically insignificant. Together, these results add confidence that the declines in

cardiovascular and respiratory mortality are caused by the consent decrees themselves and not

other confounding factors.
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Table 3.7: Effect of Settlement on Cardiovascular, Respiratory and External Mortality Rate

(1) (2) (3) (4) (5) (6) (7) (8)

Ttl Card+Resp Ttl Card+Resp Ttl Card Ttl Card Ttl Resp Ttl Resp Ttl External Ttl External

Mort. Rate Mort. Rate Mort. Rate Mort. Rate Mort. Rate Mort. Rate Mort. Rate Mort. Rate

Post Consent Decree w/i 40 Mi -6.352** -6.029*** -3.991** -4.034** -2.394** -2.085** 0.104 0.176

(2.507) (2.196) (1.863) (1.762) (1.066) (0.840) (0.852) (0.905)

Post Consent Decree w/i 40-80 Mi 0.303 0.789 0.143 0.792 0.168 0.190 0.686 0.480

(1.792) (2.057) (1.521) (1.965) (0.955) (0.806) (0.557) (0.614)

Observations 21,470 20,705 21,493 20,754 21,354 20,072 19,597 17,359

R2 0.893 0.902 0.888 0.897 0.679 0.721 0.775 0.799

Cell x Year FE Y Y Y Y Y Y Y Y

Extended Cell x Year FE N Y N Y N Y N Y

Dep. Var. Mean (1998) 468.5 468.5 373.1 373.1 95.75 95.75 62.72 62.72

Units Deaths Deaths Deaths Deaths Deaths Deaths Deaths Deaths

Units /100K Pop /100K Pop /100K Pop /100K Pop /100K Pop /100K Pop /100K Pop /100K Pop

Counties 1265 1219 1265 1221 1264 1195 1261 1062

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on mortality rates in counties near plants with and without consent decrees.
Only counties whose centroids are within 80 miles of a coal-fired power plant are included. All mortality rates are
age-adjusted and expressed as rates per 100,000 population County-years with mortality rates deemed unreliable by
CDC Wonder because they are based on fewer than 20 deaths in a year are excluded. Only counties with greater than
25,000 population in 1998 are included. All regressions include unit fixed effects, cell by year fixed effects, controls
for NAAQS non-attainment status and NOx Budget Trading Program by year fixed effects. Cells are defined as all
units in the same state, below/above median 1998 heat input within 40 miles and below/above median 1998 heat input
within 40-80 miles. Counties in the same extended cells must also be all above/below median of the outcome variable
at baseline. Fewer counties and observations exist in the even columns because monitors that are singletons within a
given cell by year are dropped and the more restrictive cell definitions in the even columns increase the number of
singletons. There are more observations for the cardiovascular mortality rate outcome because cardiovascular deaths
are more common than respiratory deaths, so more counties have reliable cardiovascular death rates than respiratory
death rates. There are fewer cardiovascular+respiratory mortality observations than cardiovascular mortality alone
because several counties with data for cardiovascular mortality have suppressed data on respiratory mortality (fewer
than 10 deaths in a year), making cardiovascular+respiratory mortality undefined. Standard errors are clustered at the
state level.

Figure C.2 shows the dynamic effect of a consent decree occurring within 40 miles of

a county centroid in order to test whether the observed results could be driven by differential
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trends among treated counties.22 As with the air quality analysis, the individual year coefficients

are noisy but there appears to be no trends prior to the consent decree for either cardiovascular

or respiratory deaths. Following the consent decree, both cardiovascular and respiratory deaths

exhibit a steady decline in mortality rate.

Table C.9 shows the results of the primary analysis without using the 25,000 population

cut-off. Effects for cardiovascular+respiratory mortality and respiratory mortality alone remain

statistically and economically significant. The coefficient size for cardiovascular mortality shrinks

by about a third and is no longer statistically significant, but remains highly economically

significant (2.5 deaths per 100,000 population per year reduction). Table C.10 shows results when

using the crude death rate instead of an age-adjusted death rate. Results again remain largely

unchanged and if anything increase. Table C.11 shows results when using different distance

cut-offs. In Columns (1)-(3), we can see that both counties 0-30 miles and 30-60 miles away

from a settling plant appear to have meaningful mortality reductions for cardiovascular mortality,

although the effect in both bins is no longer statistically significant. The effect for respiratory

mortality remains highly statistically significant and is concentrated in counties whose centroids

are less than 30 miles from the treated unit. In Columns (4)-(9), we see that results for the < 50

mile and <60 mile are similar, but slightly smaller than the coefficients observed in the primary

specifications. As in the main specification, there is no effect on mortality when a plant comes

under consent decree 50-100 miles or 60-120 miles from a county centroid.

The specifications above estimate the effect of having at least one plant within a given

distance of a county centroid under consent decree. This makes the total effect somewhat difficult

to interpret—some counties have multiple plants with consent decrees within a given distance bin

and we are averaging effects across all such counties. Table C.12 attempts to address this concern

by showing effects separately for counties that have a single nearby plant under consent decree

and counties that have multiple nearby plants come under consent decree. There are two important

22All estimates come from regressions that continue to control for consent decrees 40-80 miles away as in the
main specification.
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takeaways from this table. First, the effect of having a single nearby plant under consent decree on

cardiovascular and respiratory mortality remains economically large and statistically significant.

Second, effect sizes are larger for counties with multiple plants under consent decree—this is

precisely the pattern we would expect if the mortality decline was truly caused by the changes

induced by the consent decree and not other confounding factors.

The results from both the CEMS and air monitor analysis suggest that the New Source

Review litigation was extremely successful in reducing air pollution from affected plants. I show

further suggestive evidence that these pollution declines led to decreases in mortality—evidence

that is bolstered by much previous research establishing links between sulfur-dioxide pollution

and health outcomes (Luechinger, 2014; Barreca, Neidell, and Sanders, 2017). However, these

pollution improvements also came with large costs for utilities. Accordingly, in the next section,

I discuss the incidence of the costs imposed by litigation, examining whether these costs were

borne by ratepayers or other utility stakeholders.

3.5.4 Settlement Incidence

New Source Review litigation settlements created substantial costs for settling firms.

The EPA estimated that total compliance costs were more than $20 billion across all firms.23

Settlements also likely created significant indirect costs of compliance not included in the EPA’s

estimates such as the increased expense of power generation once pollution control equipment was

installed. In this section, I analyze the extent to which these costs were passed onto consumers

through increases in retail electricity prices. To do this, I first restrict my sample to utilities that

both operated plants and distributed electricity—this excludes utilities in states with restructured

electricity markets that only sell electricity on the wholesale market. The expected effect of

settlements on electricity prices (and firm revenues) in restructured markets will depend upon

23Author’s calculation from EPA ECHO database. The EPA’s estimates are likely highly imprecise. However,
even if overestimated by an order of magnitude, these compliance costs would still be quite large.
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where affected plants were in the dispatch order prior to the settlement and how settlement shifted

the costs of the region’s marginal unit. I lack sufficient variation to provide good empirical

estimates of these changes and so I focus only on the effect of the policy in regulated markets.

In regulated markets, we might expect that utilities will attempt to pass on the increased

capital costs arising from settlements onto ratepayers. However, such rate increases must be

approved by state Public Utility Commissions and it is ex-ante unclear the extent to which these

commissions will allow litigation-related expenses to be passed onto local consumers. In this

section, I test for such pass through empirically by comparing changes in average electricity prices

and utility revenues before and after a settlement relative to other utilities that either had not yet

settled or were never under litigation. Because 89% of settling plants were large, investor-owned

utilities, I focus my analysis on only utilities that meet the following criteria in order to create

comparable counterfactuals: privately-owned utilities with a 1998 customer base greater than

25,000. I show robustness to relaxing both of these constraints. This leaves me with a sample of

123 utilities of which 20 had at least one plant come under a consent decree.

I use a similar cell-based empirical strategy as in the analyses above. I create cells

that attempt to group together utilities that are similar in terms of size, customer base and

energy generation mix. Specifically, cells consist of utilities that are above/below median 1998

customers, above/below median 1998 average electricity price, above/below median average

share of generation from coal and above/below median average share of generation generated by

natural gas. Because there are only 123 utilities, some of which operate in multiple states, I do

not include state by cell by year fixed effects in main analysis. However, I show robustness to

North American Electric Reliability Corporation (NERC) region by cell by year fixed effects for

all outcome variables. Standard errors are clustered at the utility level.

232



Figure 3.3: Effect of Settlement on Utility Prices and Revenue

This figure shows the effect of a settlement on utility average retail price and log total revenue. Only investor-owned
utilities that both operate plants and distribute electricity and had greater than 25,000 population in 1998 are
included. Settlement is considered the year of the utility’s first New Source Review settlement. Coefficients come
from a regression of the outcome variable on indicators for years relative to settlement (never-settling utilities have a
value of 0 for all years). All regressions include utility fixed effects and cell by year fixed effects. Cells consist of all
utilities that are both above/below median 1998 customer level ,above/below median 1998 average price,
above/below median 1998 coal share of generation and above/below median 1998 natural gas share of generation.
All standard errors are clustered at the utility level.
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Table 3.8: Effect of Settlement on Utility Price, Revenue and Usage Outcomes

(1) (2) (3) (4) (5) (6) (7) (8)

Average Average Total Total Total Total Annual Usage/ Annual Usage/

Price Price Revenue Revenue Customers Customers Customer Customer

Post Consent Decree 0.00949*** 0.00523 0.129** 0.145* 0.0253 0.0162 -0.481 0.865

(0.00353) (0.00519) (0.0530) (0.0839) (0.0324) (0.0391) (0.818) (0.870)

Observations 1,849 1,322 1,849 1,231 1,849 1,322 1,849 1,322

R2 0.877 0.914 0.969 0.989 0.982 0.988 0.946 0.969

Utility FE Y Y Y Y Y Y Y Y

Cell x Year FE Y Y Y Y Y Y Y Y

NERC x Cell x Year FE N Y N Y N Y N Y

Dep. Var Mean (1998) 0.106 0.106 1.778e+06 1.778e+06 669507 669507 26.84 26.84

Units $/kWh $/kWh ’000 $ ’000 $ Cust. Cust MWh/Cust MWh/Cust

Utilities 122 91 122 91 122 91 122 91

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on utility average retail price, log total revenue, log total customers and
average energy use per customer. Only investor-owned utilities that both operate plants and distribute electricity and
had greater than 25,000 population in 1998 are included. Settlement is considered the year of the utility’s first New
Source Review settlement. Coefficients come from a regression of the outcome variable on an indicator for whether
or not a utility has signed a consent decree (never-settlers have a 0 for all years). All regressions include utility fixed
effects and cell by year fixed effects. Cells consist of all utilities that are both above/below median 1998 customer
level ,above/below median 1998 average price, above/below median 1998 coal share of generation and above/below
median 1998 natural gas share of generation. In even columns, utilities in the same cell must also be in the same
NERC region. Regressions without NERC fixed effects contain 122 utilities, while regressions with NERC fixed
effects have 91 utilites. These differences from the 123 utilities that meet the sample criteria occur because utilities
that are the only observation within their cells are dropped as cell-by-year fixed-effects become unidentified—more
singletons exist as cells become more granular with the inclusion of NERC by year fixed effects. All dependent
variable means are unlogged for logged outcome variables. All standard errors are clustered at the utility level.

Figure 3.3 show the main results for average retail prices and log utility revenue. Average

retail price is defined as total annual utility retail revenue divided by total annual utility electricity

sold.24 There appears to be little trend in price or total revenue per customer prior to the settlement.

24Many utilities use block pricing schemes—unfortunately the best dataset on the levels of such block rates begins
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After the settlement, both prices and revenues increase dramatically—by 4 or 5 years after the

settlement both prices and revenues have increased by approximately 10%-15% and the difference

relative to the pre-settlement year is statistically significant. Table 3.8 shows the average treatment

effect of this specification both with (even columns) and without (odd columns) NERC by year

fixed effects. The settlement led to a $.009 increase in price per kWh and a 14% increase in total

revenue following the settlement. Effects are less precise when I add in NERC by cell by year

fixed effects, but remain broadly similar. Reassuringly, there is little evidence for large changes in

the total number of customers after a consent decree. There is also little evidence for changes in

customers’ average annual electricity use.25

In Tables C.13 and C.14, I show that these results are not reliant on specific specification

choices or sample inclusion criteria for either average price (Table C.13) or total revenue (Table

C.14). In Column (1) I show that results are robust to using both levels and logs. In Column

(2) I show results are unchanged if we restrict our sample to only those utilities with data for

all years between 1999 and 2014. In Column (3), I show results are similar if we only look at

six years before and after the settlement date. In Columns (4)-(5), I show results are robust to

fewer fixed effects (NERC by year only) or more restrictive fixed effects (energy source share

quartiles). In Columns (6), I show results are unchanged if we restrict our sample to pre-2011

when the natural gas boom accelerated, which may have differentially affected electricity pricing.

Finally, in Columns (7)-(9), I show results are broadly similar to the main specification when

including IOUs with fewer than 25,000 customers (Column 7), including publicly-owned utilities

with greater than 25,000 population (Column 8) and including all utilities that both generate and

transmit electricity (Column 9), suggesting that the sample exclusion criteria are not driving the

results.

These results provide suggestive evidence that, at least among regulated IOUs, a sub-

only in 2014 (Borenstein and Bushnell, 2018) and so I lack data on such rates for almost my entire sample. As a
result, I instead use the average rate paid, which I can calculate for all years that a utility reported data to the EIA.

25Although, we may expect use to decline in response to average prices, I am under-powered to detect small
changes and so would not expect to be able to detect such changes here.
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stantial proportion of the costs of environmental improvements from litigation are passed onto

ratepayers. Results from Table C.14 suggest that the average settling utility had an extra 197

million dollars per year after the settlement. There were twenty settling IOUs in states with

regulated electricity markets and cumulative compliance costs as reported by the EPA among

these utilities came to roughly 15 billion dollars. Thus, a back-of-an-envelope calculation suggests

that under reasonable discount rate assumptions, almost the entire compliance cost as reported

by the EPA was passed onto ratepayers rather than other utility stakeholders. However it is

important to note that there are likely additional costs that the EPA did not estimate including

foregone revenue from an increase in the cost of producing electricity, litigation costs and the

opportunity cost of using $15 billion dollars in compliance investments. Further, the accuracy of

the EPA estimates of compliance costs is unknown, although the EPA likely had an incentive to

overestimate rather than underestimate costs. As a result, the true share of costs created by the

litigation that were passed onto ratepayers remains highly uncertain.

3.6 Conclusion

Litigation is an important tool available to policymakers when rules and regulations are

written ambiguously. This is particularly true in the environmental setting, which is governed

by thousands of pages of complex administrative law. However, even if litigation is successful

in extracting settlements from sued firms, there are a number of reasons to believe that these

settlements will not lead to the desired policy outcomes. In particular, settlements may include

requirements that the litigated firm would have complied with even in the absence of litigation.

Further, any settlement agreements must be enforced, which may be difficult if the political

and policy priorities of the government change. Finally, the incidence of costs imposed by the

settlement is unclear.

In this paper, I provide new evidence on these questions in the context of the coal-fired
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power plant initiative, a EPA and Department of Justice program that sued coal-fired power plants

for violations of the New Source Review provision of the Clean Air Act. The initiative led to

more than $21 billion in compliance activities as estimated by the EPA and led one-third of US

coal-fired power plants to come under consent decree. I show that these consent decrees did indeed

lead to large (15-20%) reductions in pollution emissions. This reduction led to improvements in

local ambient air quality and decreases in local cardiovascular and respiratory mortality. I further

show suggestive evidence that among regulated utilities, a significant share of the costs for these

large reductions were borne by ratepayers. In sum, these results suggest that litigation initiatives

have the potential to be a successful policy tool in the environmental setting, but that any gains

achieved in regulated utility markets may come at least partially at the expense of ratepayers

rather than other utility stakeholders.
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Chapter 3, in full, is currently under submission for publication of the material. Krumholz;Samuel.

“The Effectiveness of Litigation as a Policy Instrument: The Case of the New Source Review

Litigation”. The dissertation author was the primary investigator and author of this material.
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C.1 Tables and Figures

Figure C.1: Effect of Settlement on Ambient Air Quality Near Coal-Fired Power Plants

These figures show the effect of a settlement on observed pollution levels in monitors nearby the plant. Only
monitors that began operation prior to 1999 (2000 for PM 2.5) and were still in operation in 2017 were included.
Ozone is measured in parts per million and is the annual maximum daily 1-hour value. Sulfur dioxide is measured in
parts per billion and is the average annual hourly value. PM 2.5 is measured in µg/m3 and is the average annual
average daily value. Coefficients come from a regression of the outcome variable on indicators for whether or not a
monitor has a plant under consent decree within 40 miles and and within 40-80 miles. All regressions include unit
fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and NOx Budget Trading Program
by year fixed effects. Cells are defined as all monitors in the same state, below/above median 1998 heat input within
40 miles and below/above median 1998 heat input within 40-80 miles. Standard errors are clustered at the monitor
level.

239



Figure C.2: Effect of Settlement on Mortality Rate in Counties Nearby Coal-Fired Power Plants

This figure shows the effect of a settlement on mortality rates in counties near plants with and without consent
decrees. Only counties whose centroids are within 80 miles of a coal-fired power plant are included. All mortality
rates are age-adjusted and expressed as rates per 100,000 population County-years with mortality rates deemed
unreliable by CDC Wonder are excluded. Only counties with greater than 25,000 population in 1998 are included.
All regressions include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and
NOx Budget Trading Program by year fixed effects. Cells are defined as all units in the same state, below/above
median 1998 heat input within 40 miles and below/above median 1998 heat input within 40-80 miles. Standard
errors are clustered at the state level.
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Table C.1: Summary Statistics of Primary Outcome Variables

Variable N Mean SD Min Max
NOx tons emitted 18,156 2,888 3,586 0 70,213
SO2 tons emitted 18,156 7,343 10,0096 0 145,724
NOx emission rate (tons/Tril BTU) 16,525 190 108 0 2,272
SO2 emission rate (tons/Tril BTU) 16,525 576 531 0 16,679
Ambient SO2 (ppb) 3,185 11.45 10.89 0 94.11
Ambient ozone (ppm) 8,594 .0514 .0062 .0273 .0762
Ambient PM2.5 (µ/m3) 6,615 11.2 3.19 2.1 24.6
Age Adj Cardio Mort Rate (/100K Pop) 24,403 293 73 75 646
Age Adj Resp Mort Rate (/100K Pop) 23,967 88 23 30 261
Average Retail Elec. Price ($/kWh) 2,179 .099 .042 .037 .442
Average Utility Revenue (Mil $) 2,193 1,981 2,307 0 14,022

This table shows summary statistics for the primary outcome variables used in this paper. Mortality outcomes are
only shown for counties with population greater than 25,000 that have reliable age-adjusted death rates as determined
by the CDC. Utility prices and revenue are only shown for Investor Owned Utilities that both generate and transmit
electricity and serve more than 25,000 customers. Both sets of restrictions are put in place to match the restrictions
used in my primary analyses.
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Table C.2: Conditional Correlation Between Treatment and Key Baseline Variables: State Fixed
Effects

(1) (2) (3) (4) (5) (6) (7) (8)

Heat input NOx Rate SO2 Rate Op Year Heat input NOx Rate SO2 Rate Op Year

Ever Settle 6.813*** 3.879 17.62 0.129

(2.010) (16.03) (112.7) (1.569)

Settlement Year -0.230 11.30** 4.168 -0.336

(0.414) (4.963) (23.57) (0.388)

Observations 1,065 1,065 1,065 1,065 350 350 350 350

R2 0.194 0.157 0.221 0.267 0.155 0.196 0.315 0.190

Dep. Var Mean (1998) 18.89 289.4 794.3 1965 18.89 289.4 794.3 1965

Units Tril. BTU Tons/Tril BTU Tons/Tril BTU Years Tril. BTU Tons/Tril BTU Tons/Tril BTU Years

Clustered standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of ever settling or settlement year on various baseline outcomes. All regressions include
state fixed effects. There are 1,068 units included in the regression from 409 plants, but three units are the only units
within their respective states and so are dropped. In Columns (5)-(8) only units that ever settle are included—there
are 350 of such units from 109 plants. Regressions are weighted by a unit’s share of a plant’s heat input in 1998, the
baseline year in order to not overweight plants with many units.
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Table C.3: Effect of Settlement on Coal-Fired Power Plant NOx Pollution: Robustness Check

(1) (2) (3) (4) (5) (6) (7) (8)
NOx NOx NOx NOx NOx NOx NOx Ln NOx

Post Consent Decree -1,357*** -1,327*** -1,707*** -720.4** -1,018*** -1,149*** -968.5*** -0.326***
(422.7) (482.6) (282.9) (356.7) (297.1) (362.3) (203.7) (0.0416)

Observations 13,867 13,580 18,028 5,678 5,950 15,347 20,499 15,320
R2 0.948 0.928 0.759 0.852 0.680 0.863 0.856 0.902
Spec Cells w/ Quartiles Cells w/ Open Yr State x Year FE Only Only Settling Plants Only Settling Plants >3 Plants in Stmnt All Yrs Logged Dep Var
Dep. Var Mean (1998) 5707 5707 5707 7309 7309 5667 5707 5707
Units Tons Tons Tons Tons Tons Tons Tons Tons

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of settlement on pollution and generation outcomes among coal-fired power plants.
Never-settling units have a “post” value of 0 for all years. ‘Post Consent Decree” is equal to 1 if a year is after any
unit in a plant came under a consent decree. For the year in which the consent decree was signed, the “Post Consent
Decree” variable is equal to 1 if the consent decree happened prior to July of that year. Never-settling units have a
“Post Consent Decree” value of 0 for all years. All regressions include unit fixed effects, cell by year fixed effects,
controls for NAAQS non-attainment status and NOx Budget Trading Program by year fixed effects unless otherwise
stated. Cells are defined as all units in the same state, below/above median 1998 heat input, below/above median SO2
emission rates, and above/below median NOx emission rate. In Column (1) quartiles are used instead of medians.
In Column (2) cells include year of operation bins (5 yr). In Column (3), cells are defined as state’s only. Column
(4) includes only settling plants with cell by year fixed effects, while Column (5) contains only settling plants with
year fixed effects and unit fixed effects. Column (6) is restricted to settlements with more than 3 plants, Column
(7) shows the base specification for all years between 1998 and 2018 and in Column (8), the dependent variable is
logged. All dependent variable means are presented in levels. Regressions are weighted by a unit’s share of a plant’s
heat input in 1998, the baseline year. Standard errors are clustered at the state level. These regressions includes 1,026
units across 395 plants—this is fewer than the 1,068 units in the full sample because all cells (including the NAAQS
nonattainment indicators by year cells) that have only singleton values are dropped. Specifications with settling
plants only contain 350 units at 109 plants. These estimates are clustered at the plant level, as only 20 states have a
plant with a consent decree.
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Table C.4: Effect of Settlement on Coal-Fired Power Plant NOx Pollution Rate: Robustness
Check

(1) (2) (3) (4) (5) (6) (7) (8)
NOx rate NOx rate NOx rate NOx rate NOx rate NOx rate NOx rate Ln NOx rate

PPost Consent Decree -46.36*** -33.49** -37.30*** -26.25** -26.16*** -26.77*** -31.14*** -0.308***
(12.56) (12.43) (10.30) (10.39) (7.359) (7.376) (5.945) (0.0416)

Observations 11,626 11,404 15,602 4,967 5,256 13,198 16,580 14,849
R2 0.945 0.929 0.783 0.871 0.715 0.880 0.879 0.869
Spec Cells w/ Quartiles Cells w/ Open Yr State x Year FE Only Only Settling Plants Only Settling Plants >3 Plants in Stmnt All Yrs Logged Dep Var
Dep. Var Mean (1998) 275.1 275.1 275.1 307.7 307.7 272.9 275.1 275.1
Units Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of settlement on pollution and generation outcomes among coal-fired power plants.
Never-settling units have a “post” value of 0 for all years. ‘Post Consent Decree” is equal to 1 if a year is after any
unit in a plant came under a consent decree. For the year in which the consent decree was signed, the “Post Consent
Decree” variable is equal to 1 if the consent decree happened prior to July of that year. Never-settling units have a
“Post Consent Decree” value of 0 for all years. All regressions include unit fixed effects, cell by year fixed effects,
controls for NAAQS non-attainment status and NOx Budget Trading Program by year fixed effects unless otherwise
stated. Cells are defined as all units in the same state, below/above median 1998 heat input, below/above median SO2
emission rates, and above/below median NOx emission rate. In Column (1) quartiles are used instead of medians.
In Column (2) cells include year of operation bins (5 yr). In Column (3), cells are defined as state’s only. Column
(4) includes only settling plants with cell by year fixed effects, while Column (5) contains only settling plants with
year fixed effects and unit fixed effects. Column (6) is restricted to settlements with more than 3 plants, Column
(7) shows the base specification for all years between 1998 and 2018 and in Column (8), the dependent variable is
logged. All dependent variable means are presented in levels. Regressions are weighted by a unit’s share of a plant’s
heat input in 1998, the baseline year. Standard errors are clustered at the state level. These regressions includes 1,026
units across 395 plants—this is fewer than the 1,068 units in the full sample because all cells (including the NAAQS
nonattainment indicators by year cells) that have only singleton values are dropped. Specifications with settling
plants only contain 350 units at 109 plants. These estimates are clustered at the plant level, as only 20 states have a
plant with a consent decree.
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Table C.5: Effect of Settlement on Coal-Fired Power Plant SO2 Pollution: Robustness Check

(1) (2) (3) (4) (5) (6) (7) (8)
SO2 SO2 SO2 SO2 SO2 SO2 SO2 Ln SO2

Post Consent Decree -3,930** -3,389** -3,818*** -2,128 -2,790*** -876.0 -1,984** -0.295**
(1,697) (1,391) (1,160) (2,275) (864.6) (1,475) (756.8) (0.141)

Observations 13,867 13,580 18,028 5,678 5,950 15,347 20,499 15,324
R2 0.929 0.910 0.761 0.825 0.643 0.860 0.846 0.835
Spec Cells w/ Quartiles Cells w/ Open Yr State x Year FE Only Only Settling Plants Only Settling Plants >3 Plants in Stmnt All Yrs Logged Dep Var
Dep. Var Mean (1998) 12366 12366 12366 15696 15696 12415 12366 12366
Units Tons Tons Tons Tons Tons Tons Tons Tons

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of settlement on pollution and generation outcomes among coal-fired power plants.
Never-settling units have a “post” value of 0 for all years. ‘Post Consent Decree” is equal to 1 if a year is after any
unit in a plant came under a consent decree. For the year in which the consent decree was signed, the “Post Consent
Decree” variable is equal to 1 if the consent decree happened prior to July of that year. Never-settling units have a
“Post Consent Decree” value of 0 for all years. All regressions include unit fixed effects, cell by year fixed effects,
controls for NAAQS non-attainment status unless otherwise stated and NOx Budget Trading Program by year fixed
effects. Cells are defined as all units in the same state, below/above median 1998 heat input, below/above median
SO2 emission rates, and above/below median NOx emission rate. In Column (1) quartiles are used instead of medians.
In Column (2) cells include year of operation bins (5 yr). In Column (3), cells are defined as state’s only. Column
(4) includes only settling plants with cell by year fixed effects, while Column (5) contains only settling plants with
year fixed effects and unit fixed effects. Column (6) is restricted to settlements with more than 3 plants, Column
(7) shows the base specification for all years between 1998 and 2018 and in Column (8), the dependent variable is
logged. All dependent variable means are presented in levels. Regressions are weighted by a unit’s share of a plant’s
heat input in 1998, the baseline year. Standard errors are clustered at the state level. These regressions includes 1,026
units across 395 plants—this is fewer than the 1,068 units in the full sample because all cells (including the NAAQS
nonattainment indicators by year cells) that have only singleton values are dropped. Specifications with settling
plants only contain 350 units at 109 plants. These estimates are clustered at the plant level, as only 20 states have a
plant with a consent decree.
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Table C.6: Effect of Settlement on Coal-Fired Power Plant SO2 Pollution Rate: Robustness
Check

(1) (2) (3) (4) (5) (6) (7) (8)
SO2 rate SO2 rate SO2 rate SO2 rate SO2 rate SO2 rate SO2 rate Ln SO2 rate

Post Consent Decree -122.2 -106.5 -103.7* -134.8** -101.2*** -42.38 -69.74 -0.300**
(107.6) (84.86) (55.21) (55.35) (34.38) (77.19) (48.21) (0.139)

Observations 11,626 11,404 15,602 4,967 5,256 13,198 16,580 14,850
R2 0.952 0.939 0.821 0.902 0.762 0.890 0.888 0.836
Spec Cells w/ Quartiles Cells w/ Open Yr State x Year FE Only Only Settling Plants Only Settling Plants >3 Plants in Stmnt All Yrs Logged Dep Var
Dep. Var Mean (1998) 720.4 720.4 720.4 828.3 828.3 725 720.4 720.4
Units Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU Tons/Tril BTU

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of settlement on pollution and generation outcomes among coal-fired power plants.
Never-settling units have a “post” value of 0 for all years. ‘Post Consent Decree” is equal to 1 if a year is after any
unit in a plant came under a consent decree. For the year in which the consent decree was signed, the “Post Consent
Decree” variable is equal to 1 if the consent decree happened prior to July of that year. Never-settling units have
a “Post Consent Decree” value of 0 for all years. The number of observations for emission rates shrinks because I
drop years with less than 1 MM BTU of heat input; rates become unstable with very low-levels of heat input. All
regressions include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status unless
otherwise stated and NOx Budget Trading Program by year fixed effects. Cells are defined as all units in the same
state, below/above median 1998 heat input, below/above median SO2 emission rates, and above/below median NOx
emission rate. In Column (1) quartiles are used instead of medians. In Column (2) cells include year of operation
bins (5 yr). In Column (3), cells are defined as state’s only. Column (4) includes only settling plants with cell by year
fixed effects, while Column (5) contains only settling plants with year fixed effects and unit fixed effects. Column (6)
is restricted to settlements with more than 3 plants, Column (7) shows the base specification for all years between
1998 and 2018 and in Column (8), the dependent variable is logged. All dependent variable means are presented in
levels. Regressions are weighted by a unit’s share of a plant’s heat input in 1998, the baseline year. Standard errors
are clustered at the state level. These regressions includes 1,026 units across 395 plants—this is fewer than the 1,068
units in the full sample because all cells (including the NAAQS nonattainment indicators by year cells) that have
only singleton values are dropped. Specifications with settling plants only contain 350 units at 109 plants. These
estimates are clustered at the plant level, as only 20 states have a plant with a consent decree.
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Table C.7: Effect of Settlement on Coal-Fired Power Plant Pollution and Generation Outcomes:
Robustness to Sensitivity to Existing Cap-and-Trade Programs

(1) (2) (3) (4) (5) (6)

NOx Tons SO2 Tons NOx Tons SO2 Tons NOx Tons SO2 Tons

Post Consent Decree -1,073*** -2,091** -1,048*** -2,131** -1,387*** -3,854**

(191.1) (849.8) (184.9) (852.8) (248.4) (1,480)

Observations 16,441 16,441 17,421 17,421 12,795 12,795

R2 0.863 0.855 0.887 0.874 0.964 0.961

Spec No RGGI States or TX No RGGI States or TX Emis. Ventiles x year Emis. Ventiles x year State x Emis. Ventiles x year State x Emis. Ventiles x year

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of settlement on pollution and generation outcomes among coal-fired power plants. “Post
Consent Decree” is equal to 1 if a year is after any unit in a plant came under a consent decree. For the year in which
the consent decree was signed, the “Post Consent Decree” variable is equal to 1 if the consent decree happened
prior to July of that year. Never-settling units have a “Post Consent Decree” value of 0 for all years. All regressions
include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status by year fixed effects
and NOx Budget Trading Program by year fixed effects. Cells are defined as all units in the same state, below/above
median 1998 heat input, below/above median SO2 emission rates, and above/below median NOx emission rate.NO
RGGI states or Texas excludes all states in New England, New York, New Jersey, Delaware and Maryland from
2009-2014 and Texas for all years. “Emis. Ventiles” specifications include ventiles of 1998 NOx and SO2 emission
rates interacted with year fixed effects. “State by Emis. Ventiles” include state by 1998 NOx and SO2 emission rate
ventiles interacted with year. Regressions are weighted by a unit’s share of a plant’s heat input in 1998, the baseline
year. Standard errors are clustered at the state level.
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Table C.8: Effect of Settlement on Ambient Pollution Values: By Different Distance Cut-Offs

(1) (2) (3) (4) (5) (6) (7) (8) (9)
SO2 Ozone PM 2.5 SO2 Ozone PM 2.5 SO2 Ozone PM 2.5

Post Consent Decree w/i 30 Mi -4.191*** 0.000183 -0.178
(1.374) (0.000320) (0.127)

Post Consent Decree w/i 30-60 Mi 0.0751 -0.000344 -0.130
(0.998) (0.000267) (0.127)

Post Consent Decree w/i 50 Mi -1.534 0.000216 -0.229*
(1.143) (0.000311) (0.121)

Post Consent Decree w/i 50-100 Mi -0.131 -0.000264 -0.0954
(1.071) (0.000206) (0.0768)

Post Consent Decree w/i 60 Mi -1.707 -0.000115 -0.288***
(1.056) (0.000283) (0.0947)

Post Consent Decree w/i 60-120 Mi -0.0669 -4.72e-05 -0.102
(0.547) (0.000197) (0.0846)

Observations 2,033 6,348 4,589 2,240 7,283 5,298 2,512 7,810 5,506
R2 0.928 0.909 0.961 0.912 0.913 0.962 0.924 0.911 0.962
Cell by Year FE Y Y Y Y Y Y Y Y Y
Dep. Var Mean (1998) 20 0.0587 14.51 19.14 0.0579 14.16 18.98 0.0577 14.11
Units ppb ppm µ/m3 ppb ppm µ/m3 ppb ppm µ/m3

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on observed pollution levels in monitors nearby the plant. Only monitors
that began operation prior to 1999 (2000 for PM2.5, were still in operation in 2017 were included and are within 60
miles (cols (1)-(3)), 100 miles (Cols (4)-(6), or 120 miles (Cols (7)-(9)) of an ever settling plant are included. Only
monitors that began operation prior to 1999 (2000 for PM 2.5) and were still in operation in 2017 were included.
Ozone is measured in parts per million and is the annual maximum daily 1-hour value. Sulfur dioxide is measured
in parts per billion and is the average annual hourly value. PM 2.5 is measured in µg/m3 and is the average annual
average daily value. Coefficients come from a regression of the outcome variable on indicators for whether or not a
monitor has a plant under consent decree within 30,50, or 60 miles and and within 30-60, 50-100 or 60-120 miles.
All regressions include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and
NOx Budget Trading Program by year fixed effects. Cells are defined as all units in the same state, below/above
median 1998 heat input within 30,50 or 60 miles and below/above median 1998 heat input within 30-60,50-100 or
60-120 miles. All standard errors are clustered at the monitor level.
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Table C.9: Effect of Settlement on Cardiovascular, Respiratory and Other Mortality: Full
Sample

(1) (2) (3) (4) (5) (6)
VARIABLES Ttl Card+Resp Ttl Card+Resp Ttl Card Ttl Card Ttl Resp Ttl Resp

Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate

Post Consent Decree w/i 40 Mi -3.851* -3.145* -2.384 -2.490 -2.594*** -2.435**
(2.172) (1.751) (1.713) (1.536) (0.920) (0.987)

Post Consent Decree w/i 40-80 Mi 0.991 0.952 1.371 1.928 0.231 -0.0817
(1.521) (1.541) (1.361) (1.569) (0.689) (0.732)

Observations 35,039 33,061 38,511 37,761 26,889 23,864
R2 0.829 0.846 0.793 0.807 0.710 0.715
Extended Cell by Year FE N Y N Y N Y
Dep. Var. Mean 477 477 380.3 380.3 99.35 99.35

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on mortality rates in counties near plants with and without consent decrees.
Only counties whose centroids are within 80 miles of an ever settling plant are included. All mortality rates are
age-adjusted and expressed as rates per 100,000 population County-years with mortality rates deemed unreliable
by CDC Wonder are excluded (<20 deaths per year). The CDC does not report death rates for counties below a
given number of deaths—because there are fewer deaths for respiratory than cardiovascular death, there are fewer
observations available for both respiratory deaths (and cardiovascular plus respiratory deaths) than cardiovascular
deaths alone. All regressions include unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment
status and NOx Budget Trading Program by year fixed effects. Cells are defined as all units in the same state,
below/above median 1998 heat input within 40 miles and below/above median 1998 heat input within 40-80 miles.
Counties in the same extended cells must also be both above/below median of the outcome variable at baseline.
Standard errors are clustered at the state level.

249



Table C.10: Effect of Settlement on Cardiovascular, Respiratory and Other Mortality: Crude
Mortality Rates

(1) (2) (3) (4) (5) (6)
VARIABLES Ttl Card+Resp Ttl Card+Resp Ttl Card Ttl Card Ttl Resp Ttl Resp

Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate

Post Consent Decree w/i 40 Mi -7.466*** -7.745*** -4.813** -5.244** -2.640*** -2.364***
(2.206) (2.014) (2.113) (2.041) (0.811) (0.687)

Post Consent Decree 40-80 Mi -0.121 0.124 -0.242 0.188 0.251 0.119
(2.008) (1.987) (1.973) (1.965) (0.937) (0.902)

Observations 21,470 20,705 21,493 20,754 21,079 20,072
R2 0.930 0.935 0.919 0.925 0.804 0.821
Extended Cell by Year FE N Y N Y N Y
Dep. Var Mean (1998) 467.8 468.8 364 367.6 110.5 110.5

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on mortality rates in counties near plants with and without consent decrees.
Only counties whose centroids are within 80 miles of a coal plant and with greater 25,000 population in 1998 are
included. All mortality rates are expressed as rates per 100,000 population County-years with mortality rates deemed
unreliable by CDC Wonder are excluded (<20 deaths in a year). All regressions include unit fixed effects, cell by
year fixed effects, controls for NAAQS non-attainment status and NOx Budget Trading Program by year fixed effects.
Cells are defined as all units in the same state, below/above median 1998 heat input within 40 miles and below/above
median 1998 heat input within 40-80 miles. Standard errors are clustered at the state level.
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Table C.11: Effect of Settlement on Cardiovascular and Respiratory Mortality: Different
Distance Bins

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Card+Resp Card Resp Card+Resp Card Resp Card+Resp Card Resp
Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate

Post Consent Decree w/i 30 Mi -4.469 -2.007 -2.341**
(2.762) (2.088) (1.047)

Post Consent Decree w/i 30-60 Mi -2.823 -2.517 -0.501
(1.911) (1.767) (0.672)

Post Consent Decree w/i 50 Mi -4.686** -3.252* -1.428
(2.280) (1.767) (1.007)

Post Consent Decree w/i 50-100 Mi -0.287 0.170 -0.306
(1.573) (1.537) (0.683)

Post Consent Decree w/i 60 Mi -4.414* -2.974 -1.605*
(2.222) (1.936) (0.810)

Post Consent Decree w/i 60-120 Mi -0.779 0.351 -0.849
(1.086) (0.956) (0.699)

Observations 19,540 19,544 19,202 22,616 22,631 22,192 23,389 23,412 22,939
R2 0.897 0.890 0.698 0.893 0.887 0.685 0.892 0.886 0.680
Cell by Year FE Y Y Y Y Y Y Y Y Y

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on mortality rates in counties near plants with and without consent
decrees. Only counties whose centroids are within 60 miles (cols (1)-(3)), 100 miles (Cols (4)-(6), or 120 miles (Cols
(7)-(9)) of an ever settling plant are included. All mortality rates are age-adjusted and expressed as rates per 100,000
population County-years with mortality rates deemed unreliable by CDC Wonder are excluded (<20 deaths in a
year). Only counties with greater than 25,000 population at baseline are included. Because cardiovascular deaths are
more common than respiratory deaths, more counties have reliable cardiovascular death rates than respiratory death
rates—this is why the cardiovascular mortality regressions have slightly more observations. All regressions include
unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and NOx Budget Trading
Program by year fixed effects. Cells are defined as all units in the same state, below/above median 1998 heat input
within 40 miles and below/above median 1998 heat input within 40-80 miles. Standard errors are clustered at the
state level.
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Table C.12: Effect of Settlement on Cardiovascular and Respiratory Mortality: Single vs
Multiple Plants Under Consent Decree

(1) (2) (3) (4) (5) (6)
VARIABLES Ttl Card+Resp Ttl Card+Resp Ttl Card Ttl Card Ttl Resp Ttl Resp

Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate

1 Plant Post Consent Decree w/i 40 Mi -5.628** -5.154** -3.525* -3.245** -2.110* -1.960*
(2.531) (2.124) (1.788) (1.594) (1.201) (1.025)

>1 Plant Post Consent Decree w/i 40 Mile -8.586** -8.849** -5.649* -6.696* -2.937*** -2.190**
(3.691) (3.748) (3.061) (3.705) (1.062) (0.927)

1 Plant Post Consent Decree w/i 40-80 Mi 0.505 0.923 0.741 1.330 -0.240 -0.163
(1.890) (2.190) (1.642) (2.175) (0.952) (0.833)

>1 Plant Post Consent Decree w/i 40-80 Mi -0.272 0.418 -1.435 -0.512 1.159 1.051
(2.675) (2.987) (2.189) (2.456) (1.094) (1.034)

Observations 21,470 20,705 21,493 20,754 21,470 20,072
R2 0.893 0.902 0.888 0.897 0.678 0.721
Extended Cell by Year FE N Y N Y N Y

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on mortality rates in counties near plants with and without consent decrees.
Only counties whose centroids are within 80 miles of a coal plant and with greater than 25,000 population in 1998
are included. All mortality rates are age-adjusted and expressed as rates per 100,000 population County-years with
mortality rates deemed unreliable by CDC Wonder are excluded (<20 deaths). Because cardiovascular deaths are
more common than respiratory deaths, more counties have reliable cardiovascular death rates than respiratory death
rates—this is why the cardiovascular mortality regressions have slightly more observations. All regressions include
unit fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and NOx Budget Trading
Program by year fixed effects. Cells are defined as all units in the same state, below/above median 1998 heat input
within 40 miles and below/above median 1998 heat input within 40-80 miles. Counties in the same extended cells
must also be both above/below median of the outcome variable at baseline. Standard errors are clustered at the state
level.
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Table C.13: Effect of Settlement on Utility Price: Robustness Check

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ln Avg Price Avg Price Avg Price Avg Price Avg Price Avg Price Avg Price Avg Price Avg Price

Post Consent Decree 0.118*** 0.00940** 0.00871*** 0.0123** 0.00901** 0.00805*** 0.00894** 0.0103*** 0.00794**
(0.0421) (0.00369) (0.00286) (0.00486) (0.00353) (0.00282) (0.00397) (0.00332) (0.00378)

Observations 1,727 1,666 1,685 1,656 1,606 1,330 2,429 2,750 13,632
R2 0.870 0.885 0.889 0.831 0.836 0.905 0.955 0.869 0.938
Spec Base Base Base NERC x Year only En Share Quart Base Base Base Base
Sample Base Balanced 6yr Pre/Post Base Cust>100K Pre-2011 No Cust Cut-off All Util Types,>25K Cust All Util
Dep. Var Mean (1998) 0.0999 0.100 0.0999 0.0999 0.0951 0.100 0.128 0.100 0.113

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on utility average retail price measured in $/kWh. Only investor-owned
utilities that both operate plants and distribute electricity and had greater than 25,000 population in 1998 are included
unless otherwise noted. Settlement is considered the year of the utility’s first New Source Review settlement.
Coefficients come from a regression of the outcome variable on indicators for years relative to settlement (never-
settling plants have a value of 0 for all years). All regressions include utility fixed effects and year by cell fixed
effects unless otherwise noted. Cells consist of all utilities that are all above/below median 1998 customer level
,above/below median 1998 average price, above/below median 1998 coal share of generation and above/below
median 1998 natural gas share of generation. Robustness specifications are as follows. In Column (1), the dependent
variable is logged. In Column (2), only utilities with observations in all years are included. In Column (3), only 6
years before and after a settlement are included for treated utilities. In Column (4), controls include only NERC
by Year and utility fixed-effects. In Column (5), cells include energy generation share quartiles instead of medians.
In Column (6), only IOUs with >100,000 1998 customers are included. In Column (7), IOUs with <25,000 1998
customers are included. In Column (8), all publicly-owned utilities with >25,000 1998 customers are included. In
Column (9), all utilities that generate and transmit electricty are included. In the latter three specifications, cells are
interacted with a utility ownership type fixed effects. All standard errors are clustered at the utility level.
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Table C.14: Effect of Settlement on Utility Revenue: Robustness Check

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Ttl Rev Ln Ttl Rev Ln Ttl Rev Ln Ttl Rev Ln Ttl Rev Ln Ttl Rev Ln Ttl Rev Ln Ttl Rev Ln Ttl Rev

Post Consent Decree 187,327 0.121*** 0.118*** 0.179*** 0.118*** 0.101*** 0.122* 0.130** 0.0858
(122,382) (0.0447) (0.0358) (0.0656) (0.0434) (0.0320) (0.0692) (0.0508) (0.0593)

Observations 1,740 1,666 1,685 1,656 1,606 1,330 2,429 2,750 13,632
R2 0.964 0.869 0.874 0.788 0.832 0.899 0.984 0.986 0.995
Spec Base Base Base NERC x Year only En Share Quart Base Base Base Base
Sample Base Balanced 6yr Pre/Post Base Cust>100K Pre-2011 No Cust Cut-off All Util Types All
Unlogged Dep. Var Mean (1998) 1.992e+06 2.084e+06 1.992e+06 1.992e+06 2.242e+06 1.966e+06 1.528e+06 1.329e+06 290925

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on log utility revenue. Only investor-owned utilities that both operate
plants and distribute electricity and had greater than 25,000 population in 1998 are included unless otherwise noted.
Settlement is considered the year of the utility’s first New Source Review settlement. Coefficients come from a
regression of the outcome variable on indicators for years relative to settlement (never-settling plants have a value of
0 for all years). All regressions include utility fixed effects and cell fixed effects. Cells consist of all utilities that
are all above/below median 1998 customer level, above/below median 1998 average price, above/below median
1998 coal share of generation and above/below median 1998 natural gas share of generation unless otherwise noted.
Robustness specifications are as follows. In Column (1), the dependent variable is in levels. In Column (2), only
utilities with observations in all years are included. In Column (3), only 6 years before and after a settlement are
included for treated utilities. In Column (4), controls include only NERC by Year and utility fixed-effects. In Column
(5), cells include energy generation share quartiles instead of medians. In Column (6), only IOUs with >100,000
1998 customers are included. In Column (7), IOUs with <25,000 1998 customers are included. In Column (8), all
publicly-owned utilities with >25,000 1998 customers are included. In Column (9), all utilities that generate and
transmit electricty are included. In the latter three specifications, cells are interacted with a utility ownership type
fixed effects. All standard errors are clustered at the utility level.
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C.2 Alternative Empirical Specification Accounting for Po-

tential Bias with Two-way fixed effects

Recent work by Goodman-Bacon (2018) and Callaway and Sant’Anna (2019) have

shown that difference-in-differences models with time-varying treatment may be biased in certain

circumstances. In this section, I use an alternative empirical specification for the main analyses in

the paper to address these concerns. In these alternate specifications, I use the same cell-based

approach as in the main specification. However, within each cell I identify the first year in which

any unit is treated and call this the event year for the cell.26 I then compare these first-treated

units with units in the cell that are never treated (dropping any units that receive treatment after

the first treated unit). In this way, every treated unit has only a pure never-treated counterfactual

(the average values of all untreated units in its cell in each year), ensuring that earlier treated

units are not serving as counterfactuals for later treated units. I show further robustness to using a

balanced panel of openings with exactly six years of data before and after each cells’ treated year.

Both specifications have substantially less power than the main specifications used in the paper

because I am abandoning one source of variation (settlement timing among units that ever settle).

Nonetheless, the results remain broadly consistent with the paper’s main findings.

Table C.15 show the unit-level pollution emission results under this alternative specifi-

cation. Results are nearly identical to the main analysis with large reductions in NOx and SO2,

which are driven by changes in the level of the emission rates. Table C.16 and C.17 show results

for the air quality and mortality analyses. Again, results are very similar to those observed using

our primary identification strategy. It is important to note that in these analyses I am using only

treated units that have the earliest consent decree occurring within 40 miles of the monitor (county

centroid) within their cell; I control for consent decrees occurring within 40-80 miles of the

26In the case of the air quality and mortality analyses, I use the first year that a unit had a consent decree within
40 miles of the monitor (county centroid). The 40-80 miles indicator remains the same as in the primary analysis
in order to control for consent decrees outside the 40 mile radius, which could still potentially affect local air
pollution/mortality rates.
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monitor (centroid) in the same manner as in the primary analysis.. Finally, Table C.18 show

the results for the incidence analysis under this new specification. As above, the results remain

largely unchanged. Together these results provide additional reassurance that the main effects

observed in the paper are truly caused by the plant’s coming under consent decrees and not bias

induced through the chosen empirical specification.

Table C.15: Effect of Settlement on Coal-Fired Power Plant: Pure Controls Only

(1) (2) (3) (4) (5) (6) (7) (8)
NOx Tons NOx Tons SO2 Tons SO2 Tons NOx Emis Rate NOx Emis Rate SO2 Emis Rate SO2 Emis Rate

(0) (0) (0) (0) (0) (0) (0) (0)

Post Consent Decree x Treated Plant -1,156** -1,162** -2,616** -3,549* -31.68*** -26.03*** -82.50 -103.3
(450.4) (540.1) (1,140) (2,036) (12.06) (8.059) (53.81) (98.34)

Observations 8,852 2,717 8,852 2,717 7,582 2,278 7,582 2,278
R2 0.866 0.907 0.843 0.820 0.884 0.917 0.872 0.902
Sample Full Balanced Full Balanced Full Balanced Full Balanced
Dep. Var Mean (1998) 6084 6084 13524 13524 299.8 299.8 857.7 857.7

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of settlement on pollution and generation outcomes among coal-fired power plants. The
number of observations for emission rates shrinks because I drop years with less than 1 MM BTU of heat input;
rates become unstable with very low-levels of heat input. All regressions include unit fixed effects, cell by year fixed
effects, controls for NAAQS non-attainment status and NOx Budget Trading Program by year fixed effects. Cells
are defined as all units in the same state, below/above median 1998 heat input, below/above median SO2 emission
rates, and above/below median NOx emission rate Only treated units whose settlement years were the first in their
cell and never-treated units are included in order to create a pure control group. A “balanced” sample includes only
monitors whose cell’s settlement year was between 2004 and 2007, which allows for 6 years of pre and 6 years of
post data. Pollution and generation data come from CEMS and nonattainment data come from the EPA’s Green
Book. Regressions are weighted by a unit’s share of a plant’s heat input in 1998, the baseline year. Standard errors
are clustered at the state level.
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Table C.16: Effect of Settlement on Ambient Pollution Values: Pure Controls Only

(1) (2) (3) (4) (5) (6)
SO2 ppb SO2 ppb Ozone ppm Ozone ppm PM 2.5 µg/m3 PM 2.5 µg/m3

Post Consent Decree x Treated Unit -5.216*** -6.720*** 0.000539 0.000901 -0.132 -0.224
(1.770) (1.506) (0.000444) (0.00173) (0.180) (0.232)

Observations 1,703 378 5,796 491 4,276 533
R2 0.948 0.958 0.929 0.911 0.971 0.945
Sample Full Balanced Full Balanced Full Balanced
Dep. Var Mean (1998) 0.0900 0.0900 2.548e+06 2.548e+06 1.045e+06 1.045e+06

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on observed pollution levels in monitors nearby the plant. Only monitors
that began operation prior to 1999, were still in operation in 2017 were included and had a plant under consent
decree within 80 miles from the monitor were included. Ozone is measured in parts per million and is the annual
average maximum 8 hour value. Sulfur dioxide is measured in parts per billion and is the average annual hourly
value. Coefficients come from a regression of the outcome variable on indicators for whether or not a monitor has a
plant under consent decree within 40 miles and and within 40-80 miles. All regressions include unit fixed effects,
cell by year fixed effects, controls for NAAQS non-attainment status and NOx Budget Trading Program by year fixed
effects. Cells are defined as all units in the same state, below/above median 1998 heat input within 40 miles and
below/above median 1998 heat input within 40-80 miles. Only treated monitors whose settlement years were the first
in their cell and never-treated monitors are included in order to create a pure control group. A “balanced” sample
includes only monitors whose cell’s settlement year was between 2004 and 2007, which allows for 6 years of pre
and 6 years of post data. Air monitor data come from the EPA’s AQS datamart. Standard errors are clustered at the
monitor level.
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Table C.17: Effect of Settlement on Cardiovascular, Respiratory and Other Mortality: Pure
Controls Only

(1) (2) (3) (4) (5) (6)
VARIABLES Ttl Card+Resp Ttl Card+Resp Ttl Card Ttl Card Ttl Resp Ttl Resp

Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate Mort Rate

Post Consent Decree w/i 40 Mi -5.917** -4.128 -4.125* -2.084 -2.846** -2.003
(2.713) (2.958) (2.205) (2.321) (1.190) (1.306)

Post Consent Decree w/i 40-80 Mi 0.812 1.906 -0.115 -2.762 1.134 0.990
(2.516) (3.026) (2.742) (2.211) (1.095) (1.470)

Observations 17,849 5,748 18,272 6,826 17,613 5,928
R2 0.908 0.921 0.902 0.909 0.719 0.759
Sample Full Balanced Full Balanced Full Balanced

Clustered standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on mortality rates in counties near plants with and without consent decrees.
Only counties whose centroids are within 80 miles of an ever settling plant are included. County-years with mortality
rates deemed unreliable by CDC Wonder are excluded. All mortality rates are per 100,000 population and are
age-adjusted. The CDC does not report death rates for counties below a given number of deaths—because there are
fewer deaths for respiratory than cardiovascular death, there are fewer observations available for both respiratory
deaths (and cardiovascular plus respiratory deaths) than cardiovascular deaths alone. All regressions include unit
fixed effects, cell by year fixed effects, controls for NAAQS non-attainment status and NOx Budget Trading Program
by year fixed effects. Cells are defined as all units in the same state, below/above median 1998 heat input within 40
miles and below/above median 1998 heat input within 40-80 miles. Counties in the same extended cells must also be
both above/below median of the outcome variable at baseline. Mortality rate data comes from the CDC Wonder
database. Standard errors are clustered at the state level.
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Table C.18: Effect of Settlement on Ln Average Electricity Prices, Ln Utility Revenue and Ln
Total Customers: Pure Controls Only

(1) (2) (3) (4) (5) (6)
Ln Avg Price Ln Avg Price Ln Tot Rev Ln Tot Rev Ln Tot Cust Ln Tot Cust

Post Consent Decree x Treated Unit 0.167*** 0.0931* 0.177** 0.119 0.0244
(0.0506) (0.0517) (0.0678) (0.0746) (0.0378)

Observations 1,003 299 1,003 299 610 299
R2 0.810 0.772 0.961 0.979 0.987 0.998
Sample Full Balanced Full Balanced Full Balanced
Unlogged Dep. Var Mean (1998) 0.0900 0.0900 2.548e+06 2.548e+06 1.045e+06 1.045e+06

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

This table shows the effect of a settlement on log average electricity price, log utility revenue and log total customers.
Only investor-owned utilities that both operate plants and distribute electricity and had greater than 25,000 population
in 1998 are included unless otherwise noted. Settlement is considered the year of the utility’s first New Source
Review settlement. Coefficients come from a regression of the outcome variable on indicators for years relative to
settlement (never-settling plants have a value of 0 for all years). All regressions include utility fixed effects and cell
fixed effects. Cells consist of all utilities that are are both above/below median 1998 customer level ,above/below
median 1998 average price, above/below median 1998 avg annual energy usage, above/below median 1998 coal
share of generation and above/below median 1998 natural gas share of generation. Utility data come from EIA Form
861. All standard errors are clustered at the utility level.
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