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ABSTRACT OF THE DISSERTATION 

 

 

Landscape and Conservation Genetics of  

Amphibians and Reptiles in California 

 

 

by 

 

Erin Maurine Toffelmier 

Doctor of Philosophy in Biology 

University of California, Los Angeles, 2019 

Professor Howard Bradley Shaffer, Chair 

 

 

Examining patterns of diversity at fine and global spatial scales is an important 

component of to inferring underlying evolutionary mechanisms, understanding species 

distributional patterns, and informing conservation. Globally, amphibians and reptiles are among 

the fastest declining taxonomic groups, and now more than ever, it is necessary to quantify 

diversity and its spatial drivers in order to most effectively conserve species. In this dissertation, 

I examine the population, landscape, and conservation genomics of several species along a 

continuum of endangerment, from highly endangered and on the brink of extinction to 

widespread and abundant. Throughout, I use large-scale molecular data sets coupled with spatial 
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analyses to examine spatial genetic diversity in these varied species. My goals were to contribute 

to our understanding of how genetic diversity is distributed across a multitude of landscapes and 

to provide genetic context for the conservation of these species.  

In Chapters 1 and 2, I examined how genetic diversity is spread across the limited ranges 

of two ecologically disparate species, California tiger salamanders, Ambystoma californiense, in 

Santa Barbara County, and the Panamint alligator lizard, Elgaria panamintina, found only in the 

isolated desert mountain ranges of eastern California, and found surprising parallels. In both, I 

found populations with exceedingly low levels of genetic diversity and genetic effective 

population sizes. For tiger salamanders, genetic diversity and divergence is strongly correlated 

with the number of suitable breeding habitats in regional neighborhoods and presence of natural 

vernal pools, while divergence across the range of E. panamintina is primarily mediated by 

geographic distance. In both cases, our findings have important implications for how 

management and mitigation efforts may more effectively assist the recovery and/or protection of 

these groups. In Chapter 3, I examined the drivers of spatial genetic structure in the widespread 

southern alligator lizard, Elgaria multicarinata. I found that patterns of genetic isolation are 

driven primarily by geographic distances, but that regional ecological niches have also diverged. 

Collectively, my work demonstrates the utility of integrating genetic and spatial analyses across 

spatial scales to help elucidate how genetic diversity is distributed across variable landscapes.  
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CHAPTER 1 

CONSERVATION AND LANDSCAPE GENETICS OF AN ENDANGERED VERNAL POOL 

AMPHIBIAN, AMBYSTOMA CALIFORNIENSE 

 

Erin Maurine Toffelmier 

 

ABSTRACT 

 Habitat loss and fragmentation are leading drivers of species and population declines. 

Changes to the arrangement and quality of important habitat features may interrupt gene flow 

and, in turn, lead to associated reductions in diversity and fitness if the effects of drift are strong 

in newly isolated populations. To better understand how changes to habitat configuration may 

impact populations, it is important to understand spatial population structure and how the 

landscape may promote (or impede) the maintenance of diversity. We used thousand of genome-

wide genetic markers to examine population genetic structure, gene flow, and patterns of genetic 

diversity in the heavily impacted Santa Barbara County Distinct Population Segment of the 

California tiger salamander, Ambystoma californiense. We found that genetic diversity in 

population is among the lowest measured in any vertebrate and further that this diversity is 

unevenly distributed across its small range. We used environmental niche modeling and 

landscape resistance surfaces to identify important landscape variables that promote gene flow 

between breeding habitats. Across the region, proximity to potential breeding ponds was an 

important correlate of gene flow. When we further examined the local distribution of suitable 

breeding habitat, we found that local genetic diversity (i.e. of a individual vernal pool 

population) was positively correlated with the number of vernal pools within 2200m, the 
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maximum dispersal distance observed for this species. We also found that existing genetic 

diversity was closely correlated with the number of nearby natural vernal pools, suggesting that 

regional diversity is driven primarily by the presence of longstanding breeding habitat, rather 

than recently constructed habitat. Our results indicate that management efforts should include 

preservation of the few remaining natural ponds as reservoirs of diversity. Additionally, 

maintaining or promoting connectivity through suitable habitat will be essential to the success of 

conservation efforts for A. californiense in Santa Barbara County. 

 

 

INTRODUCTION 

A growing body of evidence suggests that change in habitat configuration through 

fragmentation is a leading driver of population and species declines (Collins and Storfer, 2003a; 

Cushman, 2006; DiLeo and Wagner, 2016; Grant et al., 2016). Metapopulation (Hanski, 2015; 

Hanski et al., 2013) and landscape genetic theory (McRae, 2006; Wright, 1943) also support the 

prediction that changes in habitat configuration, including disruption of connectivity and 

isolation, may lead to population declines. These interruptions lead to the loss of genetic 

diversity through isolation and drift, and may negatively impact populations by reducing fitness, 

limiting their ability to respond to environmental change or disease, and ultimately increasing 

extinction risk (DiLeo and Wagner, 2016; Frankham, 2005).  

Amphibians are one of the fastest declining taxonomic groups worldwide (Collins and 

Storfer, 2003b; Hoffmann et al., 2010; Stuart et al., 2004). Pond breeding amphibian populations 

are particularly susceptible to changes in landscape configuration given their dependence on both 

aquatic breeding habitat and terrestrial upland habitat (and the need to migrate between the two), 
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relatively limited dispersal ability, and reliance on between-patch dispersal for maintenance of 

regional populations (Allentoft and O’Brien, 2010; Cushman, 2006; Hecnar and M’Closkey, 

1996). For at-risk species, these qualities can elevate vulnerability in threat assessments, and the 

California Amphibian and Reptiles of Special Concern considers “population 

concentration/migration” to be one of eight key threats to persistence (Thomson et al., 2016). 

Unfortunately, it can be difficult to assess the impact of fragmentation, particularly at small 

spatial scales, although expanded genetic data sets now offer greater resolution to examine 

population structure and gene flow on large and fine spatial scales (Manel et al., 2003; 

McCartney‐Melstad and Shaffer, 2015; Shaffer et al., 2015).  

To mitigate the negative genetic consequences of isolation and loss of connectivity, an 

ecologically-informed understanding of how genetic diversity and connectivity are distributed 

across the landscape is needed (Cushman, 2006). Wetland loss and augmentation is one of the 

major threats to amphibian populations, and in many regions where natural ponds are rare, the 

majority of amphibian breeding ponds are constructed agricultural or stock (Drayer and Richter, 

2016). In systems that have lost natural ponds, artificial ponds therefore often become essential 

elements for sustaining local populations and regional connectivity (Knutson et al., 2004; 

Semlitsch, 2002). Success of artificial ponds, as measured by species abundance or richness, has 

often been linked to the specific attributes of these ponds, such as presence of fish, water quality, 

and topography (Drayer and Richter, 2016; Porej and Hetherington, 2005; Shulse et al., 2010). 

However, constructed ponds often fall short of replicating natural ponds in achieving natural 

community composition (Drayer and Richter, 2016), and investigations of the population genetic 

impact of artificial breeding ponds has been limited (Furman et al., 2016; Wang et al., 2011). 
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Because the modification of habitats will undoubtedly continue, understanding the role of 

artificial ponds on the landscape will be an essential part of conservation management.  

 The Santa Barbara County distinct population segment of the California tiger salamander 

(Ambstoma californiense, “SBCTS”) is an example of an amphibian on the brink of extinction. 

This distinct population segment (DPS) was first emergency listed as Endangered in 2000 under 

the Federal Endangered Species Act of 1973 (U.S. Fish and Wildlife Service, 2000a, 2000b) 

based on its phylogenetic and geographic distinctness, as well as immediate conservation 

concern (Shaffer et al., 2004; U.S. Fish and Wildlife Service, 2000a, 2000b). Later, the state of 

California, which does not use the DPS management approach, included the SBCTS as part of 

the state listing of the entire species (California Department of Fish and Game (CDFG), 2010). 

The decline of SBCTS populations is largely attributed to habitat loss and fragmentation 

(Davidson et al., 2002; U.S. Fish and Wildlife Service, 2000b). The entire range of SBCTS, 

particularly on the northern end of its range, has experienced extensive land conversion over the 

last 150 years, which impacts both the aquatic breeding and terrestrial non-breeding habitats on 

which the species relies. Historically, livestock ranching predominated, which frequently results 

in the construction of artificial, but suitable breeding ponds (U.S. Fish and Wildlife Service, 

2000a). More recently, large areas have been converted to row-crops and vineyards, a process 

that often results in complete habitat loss (Curado et al., 2011). Combined with recent 

urbanization, SBCTS has seen an enormous loss of its preferred grassland habitat and vernal 

pool breeding sites, resulting in small, isolated patches of suitable habitat across its limited 

range. This has undoubtedly led to population isolation and dissociation, which will likely have 

long term impacts on population viability (Frankham et al., 2017).  
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 A new and looming threat for SBCTS is potential hybridization with non-native barred 

tiger salamanders, Ambystoma mavortium. In the Central DPS of A. californiense, hybridization 

has become a significant conservation concern with respect to the genetic integrity of the species 

and the cascading changes in vernal pool ecosystem functionality (Fitzpatrick and Shaffer, 2007; 

Ryan et al., 2009; Searcy et al., 2016). Non-native genotypes have been identified in several 

ponds in the Santa Barbara region (U.S. Fish and Wildlife Service, 2016), although the spatial 

and genetic extent of introgression has not been quantified since 2011. Because tiger 

salamanders are capable of relatively long-distance dispersal, the existence of non-native 

populations poses a real and immediate threat to native populations. Identification of geographic 

regions where non-native introgression has occurred will therefore be invaluable in determining 

how management actions should proceed. 

Because A. californiense are iteroparous with overlapping generations and relatively long 

lifespans, one or a few years of poor or null recruitment does not necessarily lead to local 

population extinction. However, several years of limited breeding or recruitment may hasten 

genetic drift in a population, which in turn can lead to population decline (Vucetich and Waite, 

1999). These effects of extreme drift or local extinction could be ameliorated by dispersal from 

neighboring ponds (Frankham et al., 2017), and in many cases sets of proximal vernal pools 

function as a metapopulation where neighboring breeding populations exchange individuals. 

Based on the presumed existence of such groups of populations, the Santa Barbara DPS is 

managed as six units, each of which is a cluster of adjacent ponds separated by small watershed 

boundaries and estimates of upland population movement (U.S. Fish and Wildlife Service, 

2016). Empirical research from other parts of the range suggests that A. californiense populations 

consist of multiple suitable breeding ponds with relatively high intra-pond dispersal and are not 
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truly independent patches as required by classic metapopulation framework (Hanski, 1994; 

Trenham et al., 2001). It therefore seems reasonable that the configuration and extent of these 

neighborhoods and the surrounding landscape should play an important role in maintaining A. 

californiense diversity.  

In this study, we examine the effect of landscape configuration and the distribution of 

natural and artificial ponds on genetic diversity and differentiation in the Santa Barbara tiger 

salamander. We examine the population genomics of extant populations with the following 

goals: 1) quantify the genetic health, as measured by genetic variation, of populations 2) identify 

potential landscape correlates of genetic diversity, effective population size and divergence at the 

neighborhood and range-wide level, 3) assess population structure and evaluate the reality of the 

six-metapopulation framework, and 4) determine the geographic range of non-native genotypes 

across the management unit.   

 

MATERIALS AND METHODS 

Sample collection and genetic data generation 

We used samples collected from 1986 to 2017 from across the range of SBCTS (total N = 

471). Samples consisted of field collected larval tail tips (N = 431) and post-metamorphic tail 

tips from terrestrial individuals (N = 40) collected opportunistically from road kills or pitfall 

traps as part of local monitoring efforts. These represent 61 localities (both aquatic and 

terrestrial), including at least one breeding pond from each metapopulation and representatives 

from virtually every accessible breeding site and most of the known, remaining ponds utilized by 

the DPS.  



 7 

We extracted genomic DNA using a salt extraction method following Sambrook and 

Russel (2001), and generated reduced representation exon target capture libraries following 

McCartney-Melsted, Mount, and Shaffer (2016). Ambystomatid salamanders have extremely 

large and repetitive genomes, making genomic data generation difficult with standard methods. 

The estimated genome size is presumably the same as the closely related Ambystoma 

mexicanum, ~32 gigabases (Keinath et al., 2015). The protocol targets 5,237 genic regions from 

across the genome based on expressed sequence tag sequences from the A. mexicanum 

(McCartney-Melstad et al., 2016). We sequenced samples over several Illumina HiSeq 4000 

lanes at the UC Berkeley Vincent Coats Genomic Sequencing Laboratory. Raw sequence data 

were trimmed of barcodes and for quality (Q30) in CUTADAPT v.1.12 (Martin, 2011), and we 

followed the Genome Analysis Tool Kit Best Practices pipeline for sequence data preparation to 

align reads and call genotypes (DePristo et al., 2011; McKenna et al., 2010; Van der Auwera et 

al., 2002). For alignment, we used a pseudo-reference genome that consisted of reciprocal best 

blast hits for the sequence capture targets, aligned with BWA-MEM (Li, 2013; McCartney-

Melstad et al., 2016). We first used GATK’s genotypeGVCFs to jointly genotype all samples. 

Because genomically similar, non-native barred tiger salamanders (A. mavortium, BTS) are 

known from the region, we assembled three data sets. First, we generated a single nucleotide 

polymorphism (SNP) data set for all samples. We then removed samples identified as BTS (see 

below for methods) and re-called genotypes. For these pure SBCTS samples, we generated two 

genetic data sets: all sequenced bases including invariant sites (with the IncludeNonVariantSites 

flag in GenotypeGVCFs) and a variants-only data set (GenotypeGVCFs with default settings). 

For all three datasets (all samples, SBCTS-allsites, SBCTS-variants), we retained sites that 

passed basic filters suggested by GATK (QualbyDepth < 2.0, RMSMappingQuality<40.0, 



 8 

FisherStrand > 60.0, MappingQualityRankSum < -12.5, ReadPosRankSum < -8.0, Quality <30) 

and excluded insertions and deletions. To remove potentially paralogous loci, we excluded SNP 

variants with more than one alternate allele and loci exhibiting heterozygote excess (p < 0.05). 

We used VCFTOOLS (Danecek et al., 2011) to calculate the probability of heterozygote excess. 

We further filtered the SBCTS-variants dataset by selecting one SNP per locus that had less than 

50% missingness across all SBCTS samples. 

 

Non-native introgression 

Introgression from non-native A. mavortium introduced to California in the 1950s has 

been identified as a potential management issue in Santa Barbara County (Fitzpatrick et al., 

2010; Riley et al., 2003; U.S. Fish and Wildlife Service, 2016) and non-natives have been found 

in close proximity to native populations (Johnson et al., 2011). To examine introgression of non-

native alleles, we used a SNP database comprised of 16,933 SNP variants, which are fixed for 

different alleles in pure A. californiense and pure BTS (E. McCartney-Melstad, pers. comm.). 

These fixed differences were identified from a panel that includes known non-hybrid samples 

from across the geographic range of A. californiense (including SBCTS), samples from 

representative regions in the native range of BTS, and samples from known introduced 

populations of BTS in California. For each sample, we calculated the non-native score as the 

total number of BTS alleles divided by the total number of alleles successfully sequenced in that 

individual. 

 

Neighborhood qualities and population genetic diversity 



 9 

Because adult A. californiense can migrate between breeding ponds over relatively long 

distances with moderate frequency, ponds in close proximity to each other might functionally 

operate together as a single population. In the Central DPS populations of A. californiense, adults 

have been documented up to 2200 meters away from the nearest breeding ponds, while 95% of 

the adult population is estimated to occur within 0.6 -1.8 km from the pond edge (Orloff, 2011; 

Searcy and Shaffer, 2011; Searcy et al., 2013; Trenham et al., 2001). Probability of dispersal 

between ponds is a non-linear function of intra-pond distance with a median adult migration 

distance of 667m (Searcy et al., 2013; Trenham et al., 2001). Dispersal in SBCTS has not been 

studied as extensively, although recent landscape-level mark-recapture data suggest that SBCTS 

exhibit similar dispersal distances to populations in the Central DPS (Searcy and Shaffer, 

Unpublished). We therefore examined clusters of ponds (“neighborhoods”) within the known 

median and maximum dispersal distances of adult SBCTS (667m and 2200m, respectively). 

These distances also roughly correspond to the protected upland habitat requirements set out in 

the SBCTS Recovery plan (U.S. Fish and Wildlife Service, 2016). For each genetically sampled 

pond, we determined the statistical relationship between environmental attributes of potentially 

interacting ponds and genetic descriptors of population health.  

 

Focal pond and neighborhood environmental attributes: Focal pond attributes included pond type 

(natural or artificial), surface area of focal pond, and distance to the nearest pond. We also 

calculated a metric of connectivity relating the number of, and distance to, neighbor ponds for 

each focal pond (Moilanen and Nieminen, 2002; Peterman et al., 2015). We calculated the 

connectivity, Ci, of pond i as: 
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Ci = Σ[ exp(-kdij) ]          [1]  

 

where dij is the Euclidean geographic distance between focal pond i and pond j, we sum across 

all populations (j ≠ i), and k is a scaling parameter equal to 1/(average dispersal distance). For 

each focal pond, we calculated connectivity to all ponds and connectivity to only natural ponds 

using an empirically derived migration distance of 667m (Moilanen and Nieminen, 2002; 

Peterman et al., 2015; Searcy et al., 2013). To assign ponds to neighborhoods, we calculated a 

667m or 2200m buffer around each pond and assigned ponds to the same 667m or 2200m 

neighborhood if the buffers around adjacent ponds overlapped (Figure 1.1A). If a neighborhood 

did not have at least one genetically sampled representative, it was dropped as a focal pond from 

further analyses. For both 667m and 2200m neighborhoods, we tallied the total number of ponds 

in the neighborhood, and the proportion of ponds in the neighborhood that were natural, based on 

records provided by the US Fish and Wildlife Service (USFWS, pers. comm.). 

 

Population Genetics: We calculated population diversity metrics for each pond to examine the 

relationship between environmental attributes and focal pond genetics. Most adult samples were 

collected within several hundred meters of a breeding pond, so we assigned adult samples to this 

nearest pond locality to utilize them for genetic analyses. We used the SBCTS-allsites genetic 

data set to calculate nucleotide diversity (π) across all samples within each pond for every 

sequenced base using VCFTOOLS (--site-pi option) and report the mean across all sequenced 

bases. We used the SBCTS-variants dataset to calculated genetic diversity, differentiation and 

effective population sizes. For each pond, we calculated observed per-SNP heterozygosity (Ho), 

gene diversity (Hs, also called expected heterozygosity), allelic richness (AR), and population 
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inbreeding coefficient (FIS) in hierfstat (Goudet, 2005). Pond values for !!, !!, !! , and !!" are 

reported as the mean of the per-SNP values (excluding missing data). We calculated individual 

inbreeding (Find) in VCFTOOLS and calculated the mean for each pond (!!"#). We calculated 

pairwise FST between all pond pairs and assessed significance by randomly permuting SNPs in 

1000 bootstrap iterations. We conducted an analysis of variance (ANOVA) in R to test whether 

genetic attributes differed between the metapopulations. When the effect was significant (P < 

0.05), we used a Tukey post-hoc test for differences between metapopulation pairs. We included 

the East Santa Maria (ESM), West Santa Maria (WSM), West Los Alamos (WLA), Purisima 

(PUR), and Santa Rita (SAR) metapopulations in the ANOVAs, but excluded the East Los 

Alamos (ELA) metapopulation because it is represented by a single locality. For localities with 

multiple years of sampling, we first estimated diversity indices per pond-year (i.e. for groups of 

samples collected from the same pond in the same year) and tested for significant differences 

across years using Wilcoxon rank sum tests in R. We also tested whether diversity indices across 

all ponds and years sampled in the DPS have changed through time with linear mixed models in 

nlme v. 3.1-99 (Pinheiro et al., 2019) setting metapopulation as a random effect. We then pooled 

samples across years within ponds to re-calculate genetic diversity and differentiation metrics for 

the neighborhood analyses. We separated samples by pond-year to calculate effective population 

size (!!) in NEESTIMATOR using the molecular co-ancestry method with a minor allele 

frequency cutoff of 0.05 (Do et al., 2014). For ponds with multiple pond-year estimates, we 

tested for significant differences between time points with a Wilcoxon rank sum test and tested 

for changes through time across all ponds and years sampled in the DPS with a linear mixed 

model in nlme, setting metapopulation as the random effect. For ponds with multiple pond-year 

estimates, we generated a mean !! to use in the neighborhoods analyses below.  
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Statistical approach: To test the hypothesis that pond and neighborhood attributes contribute to 

genetic diversity, we took an information theoretic approach to examine competing hypotheses 

simultaneously and pick the best set of models (Grueber et al., 2011). We fit generalized least 

squares (GLS) models relating pond/neighborhood environmental attributes to patterns of 

diversity (!!, !!, !! , π, !!", !!"#), and effective population size (!!). Each model also included 

a spatial correlation structure based on the pond coordinates (longitude and latitude calculated 

from the centroid of each pond) to account for genetic spatial autocorrelation in the response 

variables. For each response, we included three types of predictor variables: 1) focal pond 

attributes, 2) attributes of its 667m neighborhood, and 3) attributes of its 2200m neighborhood. 

We also included two interaction terms that reflect the interaction between the total number of 

ponds and the proportion of natural ponds for each neighborhood size. Because the predictors 

were measured on different scales, all numeric predictors were centered on zero and then scaled 

by dividing by the standard deviation of each centered predictor. We used nlme to construct 

individual GLS models and MuMln v. 1.43.6 (Bartoń, 2019) to compare models with all possible 

combinations of predictor variables. We performed model averaging and report the conditional 

average parameter estimates from models with ΔAICc < 2 (Burnham et al., 2011; Dochtermann 

and Jenkins, 2011; Grueber et al., 2011).  

 

Population structure 

To identify genetic clusters and examine differentiation across the range of SBCTS, we 

conducted a principle components analyses in SNPRelate v1.6.4 (Zheng et al., 2012). We also 

examined DPS-wide population structure using the Bayesian method implemented in 
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FASTSTRUCTURE V1.0 (Raj et al., 2014). We first ran 10 replicates for each of k=1 to k=20 with 

the logistic model and examined the marginal likelihoods with the chooseK.py function to 

identify the best-supported value of k across replicate runs. We then iteratively re-ran 

FASTSTRUCTURE for the northern and southern metapopulations to examine fine-scale structure, 

testing values of k = 1 to k = 15 with 10 replicates each. We used the choosek.py function to 

examine marginal likelihoods.  

 

Landscape modeling  

We used species distribution modeling and landscape resistance surfaces to examine 

habitat suitability, gene flow and genetic differentiation across the range. First, we generated a 

species distribution model in MAXENT V3.4.1 with 42 landscape and environmental layers 

including digital elevation model (“DEM”, US Geological Survey, 2013); slope, aspect, TPI 

(topographic position index, extracted from the DEM using the R package raster v2.8-19; 

Hijmans et al., 2019); 19 bioclimatic variables (Karger et al., 2017), 18 expanded bioclimatic and 

topographic variables (Title and Bemmels, 2018); land cover and canopy cover (U.S. Geological 

Survey, 2011a, 2011b), and the distance to nearest freshwater lake or pond (“DP”). Because 

SBCTS require freshwater ponds or lakes to breed, the DP layer allows us to test the hypothesis 

that the species breeding distribution is limited by distance to suitable water bodies. To generate 

the DP layer, we extracted “freshwater pond” and “lake” features from the National Wetlands 

Inventory (U.S. Fish and Wildlife Service, 2019) and then calculated a new raster layer as the 

distance of each pixel to the nearest pond or lake (Hijmans et al., 2019). All layers were 

normalized to 30 arc-second resolution and cropped to within 10km of the metapopulation 

boundaries on the eastern and northern sides of the DPS and were bounded by the Pacific Ocean 
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on the western and southern sides of the DPS. We used 142 locality records for this DPS, based 

on our own collections work and records from VertNet (www.VertNet.org), to generate 10 

replicate MAXENT models, with default parameters. Each locality record is a single point from a 

unique geographic location, primarily representing breeding ponds. Here we report the average 

of these 10 models (hereafter referred to as “SDM”) and rank variable contribution by 

permutation importance (Phillips and Dudík, 2008; Searcy and Shaffer, 2016).  

 To examine gene flow and differentiation in a landscape context we used ResistanceGA 

v4.0-10 in R to generate landscape resistance surfaces. This approach uses maximum likelihood 

population effects (MLPE) models to evaluate relative support for the fit of genetic distance 

matrices to a variety of surface transformations (Peterman, 2018). We used pairwise FST as the 

response variable, and included only ponds with N > 2. We calculate resistance distances as 

commute distance, and evaluated model fit with AICc. Because optimization of all possible 

multi-surface combinations would be computationally intractable, we first optimized resistance 

surfaces individually to identify candidate layers for multi-surface optimization. To further 

streamline optimization, we masked all environmental and landscape layers to a 10km-buffered 

minimum convex polygon derived from all known breeding ponds and terrestrial localities. We 

optimized single surfaces for each of the 42 landscape and environmental layers, the SDM and a 

null model of Euclidean distance with three replicates each with different random number seeds. 

From these single surface optimizations, we chose a subset of surfaces with ΔAICc < 10 across 

all three replicates. We then optimized single surfaces and combinations of 2 or 3 surfaces in 

these subsets and conducted a pseudo-bootstrap procedure that refits the MLPE models with a 

random subset of localities to rank single and combined surface models by their average AICc 

among bootstrap replicates. For each repetition, we included geographic distance and an 
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intercept-only model for the final bootstrap analysis. We report the best-fit multi surface models 

within 10 AICc units of the best scoring model (ΔAICc < 10) and for each model report the 

ΔAICc, marginal R2, and proportion of times the model was the top scoring among bootstrap 

replicates, averaged across the three replicates.  

 

RESULTS 

Genotyping and variant filtration 

Sequencing yielded an average of 2,258,247 (SD 1,332,068) reads per individual. After 

joint genotyping and basic filtering, we recovered a total of 5,041 biallelic loci for the 471-

sample data set. After removing BTS samples (see below) and conducting joint genotyping on 

the CTS samples, we recovered 2,076,838 mono- and bi-allelic sites across all CTS samples, 

with an average of 1,859,722 bases per sample. From this, we generated a variant dataset 

consisting of 3,811 biallelic SNPs. A single individual exhibited high individual heterozygosity 

(18.7% of variable sites versus ~2% in most other samples), a potential indicator of sample 

contamination or unexpected introgression, and was removed from further analyses. 

 

Non-native introgression 

From the panel of diagnostic SNPs, we identified non-native genotypes in 22 out of 471 

samples. In each of these 22 samples, >98% of the diagnostic positions were homozygous for 

BTS. These represent all of the samples collected from four source ponds, and no BTS genotypes 

were identified at any other sites.  
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Neighborhood qualities and population genetic diversity 

Pond and neighborhood attributes: Thirteen out of 33 genetically sampled ponds were natural 

and 26 out of 66 known breeding ponds (including non-sampled ponds) were natural. Surface 

area across all focal (genetically sampled) ponds ranged from 240 m2 to 91,284 m2 (median 

3,184 m2). Mean distance to nearest pond for focal ponds was 548m ± 49. Mean focal pond 

connectivity was 1.51 ± 1.15, and mean neighborhood size ranged from 1 to 20 known breeding 

ponds in 667m neighborhoods, and 1 to 23 known breeding ponds in 2200m neighborhoods. On 

average, 48% of all known breeding ponds were natural in 667m neighborhoods, and 55% were 

natural in 2200m neighborhoods. 

 

Neighborhood trends in diversity: Across all ponds and years, !! and FIS were slightly 

negatively correlated with time (!!: β = -0.00012 , t-value =-2.29, p = 0.0270; FIS: β = -

0.003053 t-value = -2.03, p = 0.0485), while !!, !!, and  π were not (!!: p = 0.42, !!:  p = 

0.30, π: p = 0.19). ANOVA tests of genetic variation did not differ between years in ponds with 

multiple years of sampling (!!:  W = 69, p = 0.61, !!: W = 58, p = 0.90, !!: W = 67, p = 0.70). 

We therefore report diversity values for samples pooled across years for each pond. However it 

is measured, genetic variation was extremely low across the DPS (π: 0.00019 ± 5.95e-05; !!: 

0.0162 ± 0.0061; !!: 0.162 ± 0.0067, !!: 1.02 ± 6.6e-3). We report all per locality metrics in 

Table 1.1. Population inbreeding, measured as FIS, ranged from -0.32 to 0.16 (mean: -0.04 ± 

0.10; global: 0.29). Individual inbreeding averaged within ponds (!!"#) ranged from -0.79 to 0.73 

(mean: 0.17 ± 0.17.  Pairwise FST ranged widely (from 1e-13 to 0.54), was generally high (mean: 

0.20 ± 0.13, global: 0.30) and increased with geographic distance within metapopulations and 

across the DPS (Figure 1.2A). The geometric mean of pairwise FST (!!") for each population 
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ranged from 0.02 to 0.32 (mean: 0.14 ± 0.07). Effective population size (Ne) ranged from 1.0 

(CI: 0.9 -1.1) to 141.2 (CI: 23.4-362.4) (Table 2), and there was no trend in Ne over time across 

all populations and years (p = 0.25, marginal R2 = 0.034) or between years for ponds with 

multiple years of sampling (W=14.5, p = 0.073). Observed and expected heterozygosity, allelic 

richness and π were significantly different among metapopulations (Figure 1.2B-1.2E) while π, 

Ne, Find, and FIS were not. Attributes of the neighborhoods were generally better predicators of all 

diversity indices than individual pond attributes. We report all best fit models and their 

parameters in Table 1.3 and illustrate two example relationships in Figure 1.1B and 1.1C. For 

each of !! (Figure 1.1B), !!, !!, and π (Figure 1.1C), the best-fit models included significant 

positive parameter estimates for the contribution of the number of ponds in the 2200m 

neighborhood, the proportion of natural ponds in the 2200m neighborhood, and the number of 

ponds in the 667m neighborhood, but negative parameter estimates for the interaction between 

the number of ponds and proportion of natural ponds in the 2200m neighborhood. Natural ponds 

had an additional positive effect on !! and π. Pond area positively correlated with allelic 

richness and π. Connectivity to natural ponds had an additional positive effect on allelic richness. 

No variables were significant predictors of Ne, FIS or !!"#.  

 

Population structure 

Bayesian clustering across the DPS identified genetic clusters that are largely concordant 

with geography and previously identified metapopulation management units. The number of 

model components used to fit the data ranged from k = 8 to k = 9, with k = 9 the most common 

(8/10 replicates, Figure 1.2A). A general trend of northern (Eastern Santa Maria, Western Santa 

Maria and Western Los Alamos) and southern (Eastern Los Alamos, La Purisima and Santa Rita) 
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clusters of metapopulations emerged, with varying levels of admixture within them. When we re-

ran FASTSTRUCTURE for the southern group, the number of model components used to fit the data 

were between k = 3 and k = 4 (Figure 1.2A). At k = 3 and k = 4, there are two primary clusters 

into which most samples fall (or an admixture of the two) and one or two (in k = 3 and k = 4, 

respectively) genetic clusters which are comprised of 3-4 samples. For the northern group (West 

Santa Maria, East Santa Maria and West Los Alamos), replicate runs for k = 2 failed to converge 

in the initial set of 10 replicates and in 40 additional replicates. After excluding these failed runs, 

the number of models components used to fit the data was always k = 1, suggesting very little 

structure in that region. Examination of the admixture proportions of additional k values reveals 

very little to no admixture at any level of k (Figure 1.2A).  

 Principal components analysis reflects similar, but not identical, population structure to 

FASTSTRUCTURE results. PC1 (31.9%) distinguishes a northern cluster (West and East Santa 

Maria) from a southern cluster (La Purisima and Santa Rita) and splits West Los Alamos 

localities into a north and south group (Figure 1.2B-D). West Los Alamos is isolated in PC2 

(5.4%) and East and West Santa Maria are isolated PC3 (4.8%). PC2 also isolates West and East 

Los Alamos from all others and PC4 (3.1%) separates northern ponds in West Los Alamos. PC5 

(2.9%) primarily isolates Santa Rita from the other metapopulations. In PC space, East Los 

Alamos clusters more closely with the West Los Alamos populations, while it clusters with the 

La Purisima and Santa Rita populations in Bayesian clustering at k = 8 or is isolated as its own 

cluster at k = 9.  
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Landscape modeling 

Species distribution modeling with MAXENT performed well (mean AUC = 0.922 SD 

0.053, Figure 1.4A). Five layers contributed > 75% of the average SDM: isothermality (37.47%), 

continentality (21.79%), precipitation in the coldest quarter (7.41%), temperature annual range 

(5.18%), and annual potential evapotranspiration (3.87%) We report values for all tested 

variables in Table 2.4. The best-fit resistance surface was distance to nearest pond (“DP”, 54.2% 

of top models, !!=0.63, Figure 2.4B) followed by DP + SDM (25.37%, !!=.64, ΔAICc= 4.27, 

Figure 1.4C) and mean annual temperature + SDM (13.5%, !!=0.593, ΔAICc=3.97, Figure 

1.4D). SDM alone performed poorly (0.10%, !!= 0.61). We report all models within 10 AICc 

units in Table 1.5.  

 

DISCUSSION 

Effective conservation management has two primary components: documenting patterns 

of decline, and understanding the ecological underpinnings of landscape use so that we can 

conserve and restore habitat and the populations that utilize it. The Santa Barbara DPS of A. 

californiense is one of the most imperiled amphibians in North America, and understanding how 

genetic diversity is spread across the landscape is essential to formulating management actions. 

As emphasized by McCartney-Melstad et al. (2018) for another member of the tiger salamander 

complex, meaningful estimates of population genetic parameters of relevance to conservation are 

particularly difficult to obtain for species with small ranges and low levels of genetic variation. 

The Santa Barbara distinct population segment of CTS fulfills both, with a total geographic 

range of roughly 35 x 20 km, and among the lowest levels of genomic variation reported for any 

metazoan (Robinson et al., 2016; Romiguier et al., 2014). Ongoing field studies of one 
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metapopulation (Purisima) confirm that both census and effective population sizes are extremely 

low, and may be approaching a point where intervention is necessary to avoid inbreeding 

depression (Searcy and Shaffer, Unpublished).  

Landscape configuration contributes to genetic diversity 

 Previous studies of pond breeding amphibians, including ambystomatids, have 

demonstrated that pond placement and landscape composition are important components of 

species richness and density (Peterman et al., 2014; Shulse et al., 2010; da Silva et al., 2012; 

Wang et al., 2011). We find similar results for genetic diversity when considering the spatial 

distribution of ponds on the landscape for SBCTS. When we examined potential landscape 

correlates of diversity, we found that the number and type (natural versus artificial) of 

neighboring ponds are significantly correlated with genetic diversity. Heterozygosity, allelic 

richness, and π of individual breeding ponds were each positively correlated with the number of 

ponds within the 667m neighborhood, the number of ponds within the 2200m neighborhood and 

the proportion of ponds in the 2200m neighborhood that were natural (e.g., Figure 1.1B). 

Nucleotide diversity (π, Figure 1.1C) and allelic richness were additionally positively correlated 

with whether the focal pond itself was natural. Taken together, our results suggest that both the 

number of neighboring ponds and the spatial organization of those neighbors contribute to the 

genetic diversity in a neighborhood. This relationship of diversity to isolation (in this case 

measured as the number of neighbors, both total and natural) is in line with empirical (Trumbo et 

al., 2013) and theoretical (Wright, 1943) work that demonstrates that isolation negatively 

impacts genetic diversity.  

While a focus on maintaining connectivity between suitable habitat patches is not novel 

(Cushman, 2006), our work helps define criteria for preserving and bolstering connectivity in 
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CTS. The number of ponds within long (2200m) and short (667m) dispersal distances was highly 

correlated with diversity. This suggests that these longer dispersal events play an important role 

in maintaining genetic diversity on this landscape. Previous studies of pond breeding amphibians 

have demonstrated that the negative effect of fragmentation may increase with dispersal 

capability (Cushman, 2006; Gibbs, 1998; Homan et al., 2004). Therefore, pond loss, particularly 

within longer dispersal distances, may compound this effect in the SBCTS system. Current 

recovery goals for SBCTS include preservation of upland habitat up to 2000m from the pond 

edge (U.S. Fish and Wildlife Service, 2016); our results suggest that management at a landscape 

level should also place a high value on connected networks of ponds within 2200m. 

In this study, measures of diversity were also highly correlated with the proportion of natural 

ponds in 2200m neighborhoods in addition to the total number of neighboring ponds, suggesting 

that regional diversity is highly reflective of surviving natural ponds. Importantly, we found no 

significant differences in genetic diversity between natural and constructed wetlands, a finding in 

line with several previous studies of other pond-breeding amphibians (Furman et al., 2016). This 

suggests that constructed wetlands appear to help maintain existing levels of diversity, which are 

in turn driven by natural wetlands. Due to the ongoing loss of naturally occurring breeding 

ponds, artificial ponds will undoubtedly continue to be important refuges for pond breeding 

amphibians (Brand and Snodgrass, 2010). While construction of new ponds as mitigation for loss 

of existing ponds is a common management action, our results demonstrate that the simple 

addition of more breeding ponds to the landscape does not compensate for the effects of lost 

natural ponds, and that careful consideration should be given to the placement of new ponds.  

Because most of the artificial ponds in our study region are constructed stock ponds, 

intended for agricultural use rather than as amphibian habitat, it is likely that they do not function 
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optimally as breeding habitat for SBCTS. However, that SBCTS utilize these ponds at all 

demonstrates that they do have a role in species survival. Across species and regions, there are 

few consistent patterns of artificial habitat use. For example, a study of amphibian utilization of 

artificial breeding habitats in Idaho found that several species, including A. macrodactylum, 

successfully colonized artificial ponds while other local species, including A. tigrinum, did not 

(Monello, 1999). This same study, and many others (e.g. Brand and Snodgrass, 2010; Semlitsch 

et al., 2015) have linked particular habitat qualities, such as slope, hydroperiod, and the presence 

of emergent vegetation or fish, to utilization of potential amphibian breeding habitat. We were 

not able to quantify specific breeding pond quality, but it is probable that it plays an important 

role in the promotion or maintenance of genetic diversity. Additionally, in the SBCTS system, 

the relative timing of loss of natural ponds and construction of artificial ponds is unknown. 

However, the length of time between the loss of natural ponds and the construction of artificial is 

likely an important factor in the rate at which diversity erodes. 

 

Population genetic health 

 Overall, we found that genetic diversity in the Santa Barbara County DPS is lower than 

in other ambystomatid salamanders, as well as most other taxonomic groups (McCartney‐

Melstad et al., 2018; Robinson et al., 2016). Population estimates for π, a measure of 

polymorphism across the genome, was extremely low (π  = 0.00008 to 0.0003) and among the 

most monomorphic of other imperiled vertebrate species (Robinson et al., 2016). This puts 

SBCTS at risk for inbreeding depression (Frankham et al., 2017) and future work should include 

examination of the fitness consequences of this reduction of diversity. Genetic effective 

population sizes were much lower than those found in CTS populations outside of the SBCTS 
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range. The median Ne for sampled SBCTS ponds was 12.15 (interquartile range: 7.9 - 20.3), 

while Wang et al. (2011) found effective population sizes about twice this in the more 

ecologically intact Central DPS in eastern Merced County (median 29, interquartile range: 16.8 - 

38.35). We also failed to find any strong pond or landscape attribute correlates of effective 

population size in SBCTS. Wang et. al (2011) also found a strong correlation with breeding pond 

size and effective population size for natural ponds in Merced County, a result that is mirrored in 

other ambystomatids (McCartney‐Melstad et al., 2018), suggesting that large natural ponds 

should support larger effective population sizes and therefore higher levels of genetic diversity 

(Storfer et al., 2007; Wang et al., 2011). That we recovered only marginal correlation of diversity 

with pond attributes could reflect the loss of natural ponds in this region and thus the loss of 

landscape-level correlates of genetic variation that require many generations to develop. There 

was also no discernable trend in effective population size change through time, overall or when 

comparing ponds with multiple years of sampling. Similarly, we found no landscape or focal 

pond correlates with population or individual estimates of inbreeding, but did identify a slightly 

negative decrease in heterozygosity through time, suggesting that diversity might be declining 

overall. Regionally, breeding habitat has acquired more protection over the last 30 years, but 

without a concomitant rise in effective population sizes or increases in diversity, direct 

management actions may be necessary to support genetically healthy populations.  

 

Range wide patterns of diversity, structure and divergence 

 Genetic diversity varied among metapopulations: northern metapopulations exhibited 

higher diversity than the southern metapopulations (Figure 1.2B-D). Given that the northern 

metapopulations are in the most impacted part of the range, this spatial pattern of diversity is 
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somewhat counter intuitive. However, our results demonstrate that the larger number of 

surviving natural ponds there likely contributes to higher overall diversity in the north. 

Cumulative potential landscape conductance is moderately higher in the East and West Santa 

Maria metapopulations (Figure 1.4B-D), a result consistent with our observation of higher 

diversity in the northern populations as higher levels of gene flow likely contribute to higher 

levels of diversity in this region. This disparity among regions also suggests that management 

actions for each metapopulation should be developed on a case-by-case basis.  

We found that population genetic structure reflects the metapopulation management 

framework fairly well. Both Bayesian and unsupervised clustering revealed major genetic 

clusters largely congruent with the current metapopulation management boundaries. Landscape 

resistance mapping, based on genetic distance matrices between breeding ponds, primarily 

identified distance to freshwater lakes and ponds, followed marginally by distance to freshwater 

lakes and ponds + suitability, as important contributors to connectivity between ponds (Figure 

2.4B-2.4C). Resistance models based solely on the species distribution model performed poorly, 

as did models that excluded habitat suitability, indicating that habitat utilized for migration might 

be more flexible than habitat requirements at breeding sites (Mateo-Sánchez et al., 2015). The 

geographic distance-only models also performed poorly, despite an obvious linear relationship of 

genetic distance to geographic distance (Figure 2.2A). Distance to freshwater lakes or ponds did 

not significantly contribute to the species distribution model, but was included in the top 

resistance model. Taken together, these results suggest that population divergence is mediated by 

the distribution of suitable habitat and constrained by the location of suitable breeding ponds. 

Together, these results underscore the importance of the maintenance of (natural) breeding ponds 
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and suitable terrestrial habitat that surrounds them as a key to long-term population health (Wang 

et al., 2011).  

 

CONCLUSIONS 

Our results demonstrate the importance of examining fine scale drivers of genetic 

diversity in human altered landscapes (Cushman 2006). The configuration of suitable breeding 

ponds in regional neighborhoods appears to be an important driver of diversity and this work 

offers new insights into how landscape management for this DPS might proceed. This work also 

underscores the need to examine landscape genetic patterns at spatial scales that are biologically 

relevant, rather than for localities in isolation. For amphibian populations, constructed wetlands 

undoubtedly play important roles in maintaining diversity in impacted populations, but a primary 

focus of conservation efforts should be maintaining natural habitats. However, artificial ponds, 

especially in our study region, are generally constructed for purposes other than amphibian 

breeding and may represent only marginal habitat. A better understanding of the characteristics 

that promote wetland and upland habitat use would aid in restoration and mitigation efforts. 
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Figure 1.1. Location, type, genetic sample availability of all known breeding ponds in this 
region, the buffers used to generate the 667m and 2200m neighborhoods, and the presence of 
non-native alleles (A). Red points with a black asterisk (*) are ponds that had 1-2 genetic 
samples and as such were unsuitable for calculating population estimates of diversity, divergence 
and effective population size. These are not included as focal ponds in the regression analyses, 
but are included in Bayesian and PCA analyses. Blue points which fall outside the 667m or 
2200m buffer zones are known breeding ponds that were too distant to be included in 
neighborhoods, but are displayed to show the full distribution of known breeding ponds in this 
region. Shaded grey regions in the small map of California represent the total range of 
Ambystoma californiense. Heterozygosity (Hs) is positively correlated with the total number of 
ponds in the 2200m neighborhood and the proportion of those neighbors that are natural (B). 
Nucleotide diversity is positively correlated proportion of natural neighbors in the 2200m 
neighborhood and the pond type of the focal pond (C).  
  



 29 

 
 

 
 
Figure 1.2. Pairwise genetic distances compared to geographic distance show a strong pattern of 
isolation by distance across the range (A). Genetic diversity is higher in northern 
metapopulations and significantly different between northern and southern metapopulations (B-
D). In panels B-D, populations with the same lower case letter are not significantly different.  
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Figure 1.3. Hierarchical FASTSTRUCTURE results for all samples (range-wide), northern samples 
and southern samples (A). Across the DPS, k =8 and k = 9 were well supported, while a single 
population resolved for the northern three metapopulations (West and East Santa Maria and West 
Los Alamos) and two major genetic clusters with several individual outliers resolved in the 
southern group (East Los Alamos, Purisima and Santa Rita). Population clusters resulting from 
PCA are colored by metapopulation of origin for PC1 and PC2 (B), PC 3 and PC4 (C), and PC5 
and PC6 (D).  
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Figure 1.4: A map of the average species distribution model (A). The best fit resistance surface 
was distance to nearest freshwater lake or pond (B, 54.2% of top models, R2=0.63), and two 
additional composites surfaces: DP + SDM (C, 25.4%, R2=.64, ΔAICc= 4.27) and slope + SDM 
(D, 10.0%, R2=0.61, ΔAICc=7.07). In panels B-D, we display conductance (1/resistance) for 
clarity. Gray bars at the top and side of the surfaces represent the sum of the values across each 
column or row of cells, respectively. SDM = species distribution model, DP = Distance to 
nearest freshwater pond or lake.  
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TABLES 

Table 1.1: Estimates of genetic diversity in A. californiense breeding ponds in Santa Barbara 
County.  

 
Meta-

population Pond Year(s) sampled Ho Hs FIS AR π F (ind) 

Western 
Santa 
Maria 

GUAD-2 2017 0.02 0.02 0.08 1.02 0.0002 0.14 
GUAD-3 2000 0.03 0.03 -0.07 1.03 0.0003 0.08 

SAMA-10 2001 0.02 0.02 -0.06 1.02 0.0002 0.25 
SAMA-2c 2000 0.03 NA NA 1.03 0.0002 0.00 
SAMA-3 2000 0.02 0.02 0.02 1.02 0.0003 0.16 
SAMA-7 2001, 2017 0.03 0.03 0.08 1.03 0.0003 0.20 

Eastern 
Santa 
Maria 

SAMA-1 2016 0.02 NA NA 1.02 0.0002 NA 
TWDA-10 1986, 1991 0.03 0.03 -0.05 1.03 0.0003 0.19 

TWDA-11* 2009, 2010, 
2014, 2016, 2017 0.02 0.02 -0.03 1.02 0.0003 NA 

West Los 
Alamos 

ORCU-13 2017 0.02 0.02 -0.26 1.02 0.0002 0.00 
ORCU-3 2017 0.02 0.02 -0.32 1.02 0.0002 -0.17 
SISQ-1 1986, 1991 0.02 0.02 -0.03 1.02 0.0003 0.19 

SISQ-11 2009, 2017 0.01 0.01 -0.01 1.01 0.0002 0.12 
SISQ-17 2010 0.01 NA NA 1.01 0.0001 0.00 
SISQ-3e 2001 0.02 0.02 0.16 1.02 0.0002 0.39 
SISQ-6 1986, 1991, 2000 0.02 0.02 0.06 1.02 0.0003 0.30 

East Los 
Alamos LOAL-18 2017 0.01 0.01 -0.17 1.01 0.0001 0.05 

Purisima 

LOAL-11 2009 0.01 0.01 -0.06 1.01 0.0002 0.04 
LOAL-12 2000 0.01 0.02 0.06 1.02 0.0002 0.28 
LOAL-15 2000 0.02 0.02 -0.08 1.02 0.0002 0.21 
LOAL-16 2000, 2017 0.02 0.01 -0.03 1.01 0.0002 0.26 
LOAL-17 2000, 2017, 2018 0.01 0.01 0.03 1.01 0.0002 0.16 
LOAL-32 2001 0.02 0.01 -0.14 1.01 0.0001 0.17 
LOAL-33 2001, 2017 0.01 0.01 0.00 1.01 0.0002 0.15 
LOAL-34 2001 0.01 0.01 -0.04 1.01 0.0002 0.22 
LOAL-36 2001, 2017 0.01 0.01 -0.05 1.01 0.0002 0.15 
LOAL-37 2001 0.01 0.01 0.01 1.01 0.0002 0.22 
LOAL-38 2001, 2003 0.01 0.01 -0.06 1.01 0.0002 0.14 
LOAL-39 2001, 2017 0.01 0.01 0.00 1.01 0.0002 0.17 
LOAL-47 2015 0.01 0.01 -0.08 1.01 0.0002 0.10 
LOAL-61 2003 0.01 0.01 -0.09 1.01 0.0001 0.04 
LOAL-62 2016 0.01 0.01 0.00 1.01 0.0002 0.11 

Santa Rita 

LOAL-2e 2008 0.01 0.01 -0.04 1.01 0.0001 0.04 
LOAL-2w* 2010 0.01 0.02 -0.15 1.01 0.0001 NA 
LOAL-40 2001 0.01 0.01 -0.06 1.01 0.0001 0.10 

LOAL-43* 2008 0.01 NA NA 1.01 0.0001 NA 
LOAL-70 2008 0.01 0.01 0.15 1.01 0.0001 0.21 

 * includes adult samples collected nearby      
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Table 1.2. Molecular co-ancestry estimates of effective population size across years in A. 
californiense breeding ponds in Santa Barbara County.  
 

Meta-
population Pond Year 

Sampled 
Sample 

Size 
Effective Population Size 

(range) 

Western Santa 
Maria 

GUAD-2 2017 4 72.7  (15-175) 
GUAD-3 2000 4 21.3  (14.6-29.3) 

SAMA-10 2001 5 25.7  (15.7-38.1) 
SAMA-3 2000 7 7.8  (6.1-9.8) 
SAMA-7 2001 21 1.6  (1.3-1.8) 
SAMA-7 2017 18 9.6  (7.2-12.4) 

Eastern Santa 
Maria 

TWDA-10 1986 19 6.4  (4.6-8.4) 
TWDA-10 1991 19 10.2  (7.3-13.6) 

West Los 
Alamos 

ORCU-13 2017 5 12.2  (7.6-17.8) 
ORCU-3 2017 10 43.2  (23-69.6) 
SISQ-1 1986 13 5.2  (3.7-6.9) 
SISQ-1 1991 3 Infinite 

SISQ-11 2009 2 Infinite 
SISQ-11 2017 2 Infinite 
SISQ-3e 2001 5 13.9  (8.3-21) 
SISQ-6 1986 16 9.6  (6.8-12.8) 
SISQ-6 1991 7 7.8  (6-9.8) 
SISQ-6 2000 4 Infinite 

East Los 
Alamos LOAL-18 2017 4 14.8  (8.3-23.1) 

Purisima 

LOAL-11 2009 6 11.9  (8.5-15.8) 
LOAL-12 2000 7 0.9  (0.9-0.9) 
LOAL-15 2000 5 43.7  (15.2-87) 
LOAL-16 2000 18 8  (5.5-11) 
LOAL-16 2017 10 15.9  (8.1-26.4) 
LOAL-17 2000 5 4.5  (3.6-5.5) 
LOAL-17 2017 14 18.1  (11.5-26.2) 
LOAL-17 2018 5 19.6  (13.2-27.2) 
LOAL-32 2001 4 141.2  (23.4-362.4) 
LOAL-33 2001 14 8  (5.5-10.8) 
LOAL-33 2017 18 6.1  (4.3-8.3) 
LOAL-34 2001 6 20.7  (11.3-32.8) 
LOAL-36 2001 15 14.2  (9.9-19.1) 
LOAL-36 2017 8 8.7  (5.7-12.3) 
LOAL-37 2001 6 15.8  (9.3-24) 
LOAL-38 2001 8 3.5  (2.7-4.4) 
LOAL-38 2003 3 Infinite 
LOAL-39 2001 19 7  (5.1-9.2) 
LOAL-39 2017 20 15  (8.1-24) 
LOAL-47 2015 10 18.1  (12.1-25.3) 
LOAL-61 2003 17 6.8  (5-8.9) 
LOAL-62 2016 4 12.1  (8.3-16.7) 

Santa Rita 

LOAL-2e 2008 6 Infinite 
LOAL-40 2001 7 41.7  (18-75.2) 
LOAL-70 2008 9 19.1  (9.5-32) 

LOAL-70-a 2008 15 1  (0.9-1.1) 
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Table 1.3. Conditional averages for regression model coefficients for pond genetic metrics. 
 

Hs (Gene Diversity/Expected 
Heterozygosity) Estimate Std. 

Error 
Adjusted 

SE z value Pr(>|z|)  
(Intercept) 0.006 0.002 0.002 3.183 0.001 ** 
Distance to Closest Pond 0.001 0.001 0.001 1.315 0.188  
Focal Pond Connectivity to All Ponds -0.001 0.001 0.001 0.725 0.468  
Focal Pond Connectivity to Natural 
Ponds 0.002 0.001 0.001 1.404 0.160  
Number of Ponds (2200m) 0.004 0.002 0.002 2.641 0.008 ** 
Number of Ponds (2200m) * Prop. 
Natural Ponds (2200m) -0.007 0.003 0.003 2.138 0.032 * 

Number of Ponds (667m) 0.005 0.001 0.002 3.621 0.00029 *** 
Pond Type: Natural 0.002 0.001 0.002 1.485 0.137  
Prop. Natural Ponds (2200m) 0.026 0.006 0.006 4.300 1.71E-05 *** 
Prop. Natural Ponds (667m) 0.004 0.002 0.002 1.843 0.065 . 

       
Ho (Observed Heterozygosity) Estimate Std. 

Error 
Adjusted 

SE z value Pr(>|z|)  
(Intercept) 0.006 0.001 0.001 4.016 5.91E-05 *** 
Focal Pond Connectivity to All Ponds -0.002 0.001 0.001 1.423 0.155  
Number of Ponds (2200m) 0.007 0.001 0.001 5.783 1.00E-08 *** 
Number of Ponds (2200m) * Prop. 
Natural Ponds (2200m) -0.009 0.003 0.003 3.347 0.001 *** 

Number of Ponds (667m) 0.007 0.001 0.002 4.420 9.85E-06 *** 
Pond Type: Natural 0.003 0.001 0.001 2.242 0.025 * 
Prop. Natural Ponds (2200m) 0.026 0.006 0.006 4.352 1.35E-05 *** 

       
AR (Allelic Richness) Estimate Std. 

Error 
Adjusted 

SE z value Pr(>|z|)  
(Intercept) 1.005 0.002 0.002 606.425 < 2.00E-16 *** 
Focal Pond Connectivity to All Ponds -0.001 0.001 0.001 0.827 0.408  
Focal Pond Connectivity to Natural 
Ponds 0.002 0.001 0.001 2.359 0.018 * 

log(Area of Focal Pond) -0.001 0.000 0.000 2.714 0.007 ** 
Number of Ponds (2200m) 0.008 0.002 0.002 4.873 1.10E-06 *** 
Number of Ponds (2200m) * Prop. 
Natural Ponds (2200m) -0.011 0.004 0.004 2.898 0.004 ** 

Number of Ponds (667m) 0.007 0.001 0.002 4.722 2.30E-06 *** 
Prop. Natural Ponds (2200m) 0.028 0.006 0.007 4.273 1.93E-05 *** 
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Table 3 (Continued) 
 
 
π  (Nucleotide Diversity) Estimate 

Std. 
Error 

Adjusted 
SE z value Pr(>|z|) 

 

(Intercept) 8.14E-05 1.80E-05 1.87E-05 4.35E+00 0.00001 *** 
Focal Pond Connectivity to All Ponds 1.70E-05 5.43E-05 5.46E-05 3.12E-01 0.755  
log(Area of Focal Pond) -1.38E-05 3.97E-06 4.15E-06 3.33E+00 0.001 *** 
Number of Ponds (2200m) 6.73E-05 1.49E-05 1.56E-05 4.32E+00 0.00002 *** 
Number of Ponds (2200m) * Prop. 
Natural Ponds (2200m) -1.03E-04 3.73E-05 3.86E-05 2.68E+00 0.007 ** 

Number of Ponds (667m) 5.74E-05 1.41E-05 1.48E-05 3.89E+00 0.0001 *** 
Pond Type: Natural 5.13E-05 2.28E-05 2.34E-05 2.19E+00 0.028 * 
Prop. Natural Ponds (2200m) 2.68E-04 6.46E-05 6.59E-05 4.07E+00 0.00005 *** 
Prop. Natural Ponds (667m) -4.99E-05 3.60E-05 3.70E-05 1.35E+00 0.178  

       
Geometric mean of Pairwise 
FST Estimate Std. 

Error 
Adjusted 

SE z value Pr(>|z|)  
(Intercept) 0.002 0.000 0.000 7.414 <2e-16 *** 
Focal Pond Connectivity to Natural 
Ponds -0.002 0.001 0.001 3.258 0.001 ** 

Number of Ponds (667m) -0.001 0.000 0.000 2.767 0.006 ** 
Pond Type: Natural 0.002 0.001 0.001 3.568 3.59E-04 *** 
Prop. Natural Ponds (2200m) -0.003 0.001 0.001 2.901 0.004 ** 
Prop. Natural Ponds (667m) 0.005 0.002 0.002 3.141 0.002 ** 
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Table 1.4. Layer contributions to the species distribution model.  
 

Layer 
Percent 

Contribution 
Permutation 
Importance 

Isothermality 32.95 39.13 
Continentality 3.59 20.48 

Annual PET 9.47 6.39 
Mean Diurnal Range 0.75 5.04 

Precipitation of Coldest Quarter 3.19 4.31 
Annual Mean Temperature 1.00 3.37 

Temperature Seasonality 0.89 2.86 
Aspect 2.34 2.53 

Slope 5.69 2.40 
Emberger Q 0.54 2.06 

Precipitation of Wettest Quarter 1.96 1.71 
Min Temperature Warmest Month 0.14 1.35 

PET Warmest Quarter 14.29 1.15 
Max Temperature of Warmest Month 2.21 1.10 

Aridity 0.26 1.05 
Month Count By Temperature 10 6.81 0.85 

PET Seasonality 4.52 0.71 
Temperature Annual Range 0.04 0.65 

PET Coldest Quarter 0.04 0.55 
Topographic Wetness Index 0.16 0.55 

Precipitation of Driest Quarter 0.52 0.50 
Precipitation of Wettest Month 0.06 0.42 

Distance to Ponds and Lakes (DP) 0.91 0.34 
Terrain Roughness Index 0.17 0.23 
Precipitation Seasonality 0.25 0.13 

Max Temperature Coldest Month 0.06 0.04 
Mean Temperature of Coldest Quarter 0.04 0.03 

Climatic Moisture Index 1.44 0.02 
Annual Precipitation  0.09 0.02 

Topographic Position Index 0.03 0.01 
Elevation 0.00 0.01 

PET Driest Quarter 5.45 0.00 
PET Wettest Quarter 0.10 0.00 

Mean Temperature of Driest Quarter 0.02 0.00 
Precipitation of Driest Month 0.01 0.00 

Min Temperature of Coldest Month 0.00 0.00 
Mean Temperature of Warmest Quarter 0.00 0.00 

Precipitation of Warmest Quarter 0.00 0.00 
Mean Temperature of Wettest Quarter 0.00 0.00 

Growing Deg. Days 0 0.00 0.00 
Growing Deg. Days 5 0.00 0.00 

Thermicity 0.00 0.00 
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Table 1.5. Rankings of composite and single surface models generated by ResistanceGA for the 
pairwise FST matrix. Not shown are models that were never ranked as the top model (Mean 
percent top replicate = 0). SDM = Species Distribution Model, DP = Distance to Nearest 
Freshwater Lake or Pond, CMI = Climate Moisture Index. 

  

Surface Mean AICc Mean R2 
Mean Percent Top 

Replicate 

DP -262.06 0.63 54.20 

DP + SDM -257.79 0.64 25.37 

Slope + SDM -255.00 0.61 10.03 

CMI + SDM -253.31 0.60 3.93 

Annual Mean Temp. + SDM -253.29 0.60 3.70 

Aspect + SDM -250.41 0.64 2.60 

SDM -236.13 0.62 0.10 

Annual Mean Temp. + DP + SDM -244.84 0.62 0.07 
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CHAPTER 2 

GENETIC DIVERSITY AND POPULATION STRUCTURE IN A NARROW ENDEMIC, THE PANAMINT 

ALLIGATOR LIZARD 

 

Erin Maurine Toffelmier 
 
 
 

ABSTRACT 

 Narrow endemic species may be more susceptible to extinction or decline because the 

relative impacts of extrinsic (e.g. climate change or habitat loss) or intrinsic (e.g. increased drift 

and inbreeding leading to loss of diversity) factors may be greater than in species with greater 

ranges and inherently larger populations. Furthermore, these species are often poorly studied 

because of their limited geographic ranges, leading to a general lack of knowledge about their 

spatial population structure and diversity, which makes conservation management difficult. 

Using thousands of genome-wide single nucleotide polymorphisms and landscape genetic 

approaches, we explored population genetic structure and diversity in one of the least described 

North American squamates, the Panamint alligator lizard, Elgaria panamintina, a Species of 

Special Concern in California. The range of this species is limited to the remote desert mountain 

ranges of eastern California, and has been primarily documented in isolated riparian corridors. 

While we expected to find highly differentiated populations with limited gene flow, we found a 

strong general pattern of genetic isolation concordant with geographic distance and large-scale 

biogeographic features, and evidence to suggest on-going or recent gene flow among 

populations. Despite this, genetic diversity is extremely limited and population and individual 
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inbreeding estimates are relatively high, both of which increase extinction risk.  Our work 

underscores the need to examine genetic patterns at fine spatial scales.  

 

INTRODUCTION 

Narrowly distributed species are often, by their very nature, targets for conservation 

management. Extent of occurrence, area of occupancy, population size and endemicity, are all 

frequently used alone or in combination as criteria for listing at most status levels on both 

international (e.g. IUCN RedList; IUCN, 2019) and regional (e.g. California’s Amphibians and 

Reptiles of Special Concern; Thomson et al., 2016) management scales. Such small, isolated taxa 

are more susceptible to local extinctions due to extrinsic factors, including habitat loss, 

competition, and disease (Diamond, 1989; Sodhi et al., 2009). Coupled to these, the genetic 

consequences of small population size alone may push localized endemics further up the list for 

conservation concern and management. Reduction in genetic diversity due to inbreeding and 

drift may lead to loss of adaptive potential and resilience to diseases and environmental 

perturbations, including climate change (Frankham et al., 2017). Further, inbred populations 

typically exhibit higher extinction risk and island endemic populations are particularly prone to 

extinction associated with reduced genetic variation (Frankham, 1998). While patterns of genetic 

diversity within endemic species with narrow ranges vary across taxonomic groups and 

geographic contexts, localized endemics frequently conform to the patterns of low overall 

genetic diversity with highly structured populations, making them especially susceptible to drift 

and inbreeding (Ellstrand and Elam, 1993; Gaston, 1994; Karron, 1997; Templeton et al., 1990; 

Wright, 1969), although several recent studies have demonstrated high levels of diversity despite 

narrow ranges (Forrest et al., 2017; Mateu‐Andrés and Segarra‐Moragues, 2000).  
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In addition to population dynamics, the landscape influences genetic structure and may 

restrict opportunities for gene-flow (Sork and Waits, 2010; Storfer et al., 2007). This may be the 

case for endemics that are typically habitat specialists that utilize patchy habitats where isolation 

among populations is the norm (Manel et al., 2003). In order to understand population structure 

within narrowly distributed endemics, it is therefore important to understand how landscape and 

environmental features shape genetic differentiation.   

The Great Basin desert, comprised of montane ranges interspersed with lowland desert, 

has long been a target for the study of island biogeography and phylogeography of terrestrial 

habitat islands (Brown, 1971; Fleishman et al., 2001; Floyd et al., 2005). As a region, the Great 

Basin is home to a multitude of narrow or localized endemic species. Within this complex 

environment, riparian habitat patches make up a tiny, yet vital, component of the desert habitat 

mosaic (Chambers et al., 2008; Sada et al., 2001). These specialized habitats, supported by small 

perennial streams sustained by local springs or snowmelt runoff, are generally small and isolated, 

representing habitat islands in a matrix of unsuitable or low-quality habitat (Chambers et al., 

2008) (Minshall et al., 1989; Sada et al., 2001). These are areas of high biodiversity and high 

endemism, resulting from apparent long-term climate stability coupled with long-term isolation 

(Batzer and Baldwin, 2012; Chambers et al., 2008; Shepard, 1993; Stevens and Meretsky, 2008). 

Consequently, many of the species and/or populations present in these habitats have been 

identified as relictual (Hall, 1991; Stebbins, 1958). Geography and historic climate change can 

be isolating mechanisms: remnant populations are left behind as deserts expand and regions 

become drier (Riddle et al., 2014; Stevens and Meretsky, 2008). Long-term isolation, whether 

partial or complete, contributes to inter- and intra-specific divergence over long and short 

timescales, resulting in high levels of endemism in the former case and population divergence in 
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the latter (e.g. Houston et al., 2012; Mac et al., 1998; Sada et al., 2001; Stebbins, 1958). 

Conversely, there are several examples of aquatic or riparian habitat specialists which exhibit a 

broad pattern of isolation by distance and gene-flow among habitat patches (e.g. Lawlor, 1998; 

Wang, 2009).  

In the Southwestern Great Basin Desert, the Panamint alligator lizard (Elgaria 

panamintina) is narrowly distributed in isolated riparian corridors within the White, Inyo, 

Nelson, Argus, and Panamint ranges (Stebbins, 1958, 2003; Thomson et al., 2016). The species 

is one of the least studied North American squamates. Since its first documented observation in 

1954 and subsequent description in 1958, very little has been published on its life history or 

ecology (Clause et al., 2018; Stebbins, 1958; Thomson et al., 2016). Much of our understanding 

of its habitat use and physiological requirements is based on a handful of observations or drawn 

from parallels with the closely related Elgaria multicarinata (Mahrdt and Beaman, 2002; 

Stebbins, 1958; Yasuda, 2015). The species is thought to have low population densities, though it 

is also described frequently as “secretive” and can be nocturnal; both underscore the difficulty in 

collecting field data. Although it is characterized as restricted to riparian woodlands, individuals 

have also been found in desert scrub and Joshua tree habitat adjacent to riparian corridors, 

suggesting that it may be less of a habitat specialist than normally assumed. Very little beyond 

anecdotal evidence is known about its life history and habitat use (Clause et al., 2018; Mahrdt 

and Beaman, 2002; Stebbins, 1958, 2003). Due to its extremely limited and remote range, the 

Panamint alligator lizard has been listed as a California Species of Special Concern for the last 

two assessments (Jennings and Hayes, 1994; Thomson et al., 2016), and is, as of 2019, under 

consideration for listing as Threatened under the Federal Endangered Species Act (Adkins Giese 

et al., 2012).  
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Examining the genetic consequences of small populations has become a major tool in the 

species conservation framework and its implementation has grown substantially with the advent 

of recent DNA sequencing technologies. Additionally, advances in GIS and remote sensing 

technologies provide new and higher resolution data layers from which to glean information 

about species distributions and connectivity. Together, these approaches can contribute a wealth 

of information about species that are difficult to work on in the field, including E. panamintina. 

In the present study, we examine population genetic structure using thousands of genetic markers 

applied to the largest collection of E. panamintina ever assembled. We combined population 

genetic analysis with environmental niche and landscape resistance modeling to examine 

connectivity across the range, and use these data to evaluate several key issues in the molecular 

ecology and conservation of the species. First, given its restricted range and apparent reliance on 

rare, isolated habitat patches, we predicted that populations would be small and highly inbred. 

We further predicted that extant populations would be highly structured, and that structure would 

be driven by habitat-based barriers to gene flow. Taken together, these results are relevant to the 

impending conservation and management of the Panamint alligator lizard, and we discuss our 

results in the context of the conservation of this species.   

 

MATERIALS AND METHODS 

Sample collection, genotyping and data filtering 

  We obtained 51 tissue samples from 14 localities from across the range of E. 

panamintina (Table 2.S1). These samples consist of a combination of new tissues collected in 

2015-2017, and historical museum collections (Figure 2.6B). These comprise, to the best of our 

knowledge, all available tissues that are suitable for genomic DNA sequencing and represent 
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almost all known localities, and the largest data set ever assembled for E. panamintina. Because 

these samples are somewhat geographically clustered, we refer to our sampling as: WM (White 

Mountains; N=40 from 9 localities), IM (Inyo Mountains; N=8 from four localities), and SM 

(southern mountains, representing three poorly sampled ranges: Panamint Mountains, N=1; 

Argus Mountain, N=1; and Nelson Mountains, N=1, each from a single locality).  

We extracted genomic DNA using a salt extraction method following Green and 

Sambrook et al. (2012). We then generated reduced representation genomic libraries for each 

individual using the 3RAD protocol of Glenn et al. (2017). Briefly, high genomic weight DNA is 

digested with three restriction enzymes (SphI, MspI and ClaI; NEB; Beverly, MA, USA). We 

selected genomic fragments with the MspI cut site on the 5’ end and the SphI cut site on the 3’ 

end with 3RAD stubs designed to match the sticky end resulting from restriction enzyme 

digestion. The third enzyme, ClaI, has a complementary sticky end to MspI and is included to 

help reduce adapter dimers. Additionally, each stub contained a unique 5-8bp internal barcode to 

help identify individuals. Illumina-compatible libraries were completed using iTru adapaters 

(Glenn et al., 2019) with dual 8-bp indices using KAPA LTP reactions (KAPA Biosystems). 

This protocol yields quadruple indexed libraries (one internal barcode in each of the two 3RAD 

stubs, one external barcode in each of the two Illumina adapters). All samples were then pooled 

into a single equimolar pool (we also included 19 samples from Elgaria multicarinata and 

Elgaria coerulea for other projects) and size selected on a Pippin Prep (Sage Science, Inc.) in a 

window size of 350-450 base pairs. This pool was sequenced on an Illumina HiSeq 4000 

(Illumina, Inc.) with 150bp paired-end sequencing.  

Raw sequence reads were de-multiplexed based on the external Illumina adapters. Raw 

reads trimmed of the 3RAD stub sequences with CUTADAPT v. 1.12 (Martin, 2011) and read 
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pairs were discarded if they did not contain the correct internal 3RAD barcodes. Reads were also 

trimmed of low quality bases and 20 base pairs were removed from both the 5’ and 3’ end of 

both R1 and R2 reads. Sequences from each sample were clustered and genotypes were called 

across samples using IPYRAD 0.7.28 (Eaton, 2014). We used a clustering threshold of 0.94 for 

within and between sample clustering, and retained clusters with minimum read depth of 6 and 

maximum read depth of 10000. Within group loci were retained in IPYRAD with the following 

parameters: max 8 heterozygous sites/locus, max 0.5 shared heterozygous sites per locus, max 5 

Ns (uncalled bases), max 10 SNPs, max 10 insertions or deletions (“in/del”), locus must be 

present in 6 or more individuals. We then excluded in/del variants to retain only SNPs, and 

removed SNPs with more than one alternate allele and those with greater than 50% missing data 

in VCFTOOLS V0.1.15 (Danecek et al., 2011).  

 

Population genetics 

Genetic diversity: We conducted a Hardy Weinberg Equilibrium test for each variant for in 

VCFTOOLS, removed loci containing an excess of heterozygotes (p < 0.001; a potential indicator 

of paralogous loci), and then randomly selected one SNP per locus using custom perl scripts to 

limit linkage disequilibrium between markers. From this set of SNPs, we calculated several 

genetic diversity metrics. For all individuals, we calculated individual inbreeding (F) for all loci 

in VCFTOOLS, then averaged among individuals within populations to obtain population mean 

individual F. For localities with n > 2 samples, we also calculated average observed 

heterozygosity (Ho), average gene diversity (HS), population inbreeding (FIS), and allelic richness 

(AR) as the average of per-locus estimates within each populations. Per-locus estimates were 

calculated in the R package Adegenet v2.1.1 (Jombart and Ahmed, 2011). To assess total genetic 
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diversity, we calculated nucleotide diversity per site, π using PopGenome v2.6.1 in R (Pfeifer et 

al., 2014) which follows Nei’s calculation (Nei, 1987). We excluded three samples that had 

missingness >12% and calculated π for all sequenced loci with no missing data across the 48 

remaining samples. We excluded missing loci to avoid bias due to null alleles and allelic 

dropout, and calculated average π for each locality separately and also for all locality pairs to 

assess patterns of both intra- and inter-population diversity. 

 

Effective population size: We calculated effective population (Ne) sizes for all localities with N > 

6 (Piute Creek, Coldwater Canyon, Silver Canyon and Toll House Spring, all in the White 

Mountains group). We excluded singletons and private doubletons, retained only loci with no 

missing data, and then randomly selected one SNP per RAD locus to limit physical linkage 

disequilibrium between loci. We used NEESTIMATOR (Do et al., 2014) to estimate effective 

population using the single sample linkage disequilibrium (LD, (Waples and Do, 2008)) method 

for each replicate data set. The LD method has been demonstrated to be the most robust 

estimator when sample size, N, is much smaller than actual Ne (Wang, 2016). We replicated this 

procedure of randomly selecting one SNP per locus and recalculating Ne 30 times for each 

locality to avoid biases that any one random set of SNPs might yield. We report the mean of 

these estimates for the Ne and the mean of the lower and upper bound of the confidence intervals.  

 

Population structure: For analyses of population structure, we excluded singleton and private 

doubleton SNPs, which has been demonstrated to increase the accuracy of population inference 

(Linck and Battey, 2017), and excluded SNPs with greater than 50% missingness across all 

samples. To visualize and describe total variation among individuals, we used principal 
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components analysis (PCA) in the R package SNPRelate v1.14.0 (Zheng et al., 2012). Several 

localities consist of a single sample and are also geographically isolated (particularly the IM and 

SM groups, see Figure 2.1D). Range-wide PCA revealed a strong signal in these single 

sample/geographically distant samples so we ran three additional PCAs to examine the impact of 

uneven sampling: 1) PCA with all localities randomly subsampled for up to two individuals 

(retaining localities with only one sample) to examine sample size effects, repeated 10 times to 

assess the impact of random sampling individuals, 2) PCA including all White Mountains and 

Inyo Mountains samples (excluding Southern Mountains samples) to examine the effects of the 

geographic outlier samples and 3) PCA of the White Mountains samples only to examine fine-

scale structure across the region with the best sampling.  

We examined population structure in a Bayesian framework with the software 

FASTSTRUCTURE V1.0 (Raj et al., 2014). We ran 10 replicates with the logistic model for values 

of k =1 to k =20 to identify the number of populations and admixture in the range-wide group. 

We then re-ran FASTSTRUCTURE with 10 replicates each for k =1 to k =10 for the White 

Mountains group to examine more fine-scale structure. For each subset (range-wide and White 

Mountains), we used the ChooseK.py function to calculate the marginal likelihoods, and random 

seeds with the highest marginal likelihoods are presented here. We inferred an unrooted 

phylogentic tree for all samples based on a concatenated data set comprised of all sequenced 

bases for loci present in greater than 50% of samples in RAXML 8.2.4 using the GTRGAMMA 

model of rate heterogeneity (Leaché et al., 2015; Stamatakis, 2014).  Additionally, we used 

TREEMIX v1.13 (Pickrell and Pritchard, 2012) to examine putative migration events among all 

localities. TREEMIX was run for 10 random number seeds for each of 0 to 10 migration edges. 

After selecting an optimal migration edge, we ran 100 replicates of this tree with the optimal 
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migration edge to generate a consensus tree. Because several localities consist of a single sample, 

we ran TREEMIX with sample size correction turned off in all cases (Pickrell and Pritchard, 

2012). 

We calculated global FST and pairwise population FST based on localities with N >2 

(Willing et al., 2010). We carried out a hierarchical analysis of molecular variation (AMOVA) in 

the R package Poppr v2.8.2, first partitioning variation among individual washes and the three 

major geographic groupings (WM, IM, SM), then examining variation within the WM and IM 

groups separately. The SM group consists of three samples, so we did not conduct an AMOVA 

on this group. For all AMOVAs, we assessed significance with a permutation test with 10,000 

repetitions.  

 

Landscape analyses 

We also examined population structure in a landscape framework. We first used species 

distribution modeling (SDM) to visualize potential habitat. We then examined the relative 

contributions of geographic isolation and landscape resistance to genetic divergence across the 

range and on a fine scale in the White Mountains Region.  

 

Species distribution models: We first developed a distribution probability based on an ecological 

niche model for E. panamintina using 41 climate and landscape variables (Table 2.1) with a 

resolution of ~10m. We used a presence only model implemented in MAXENT 3.4.1 because 

observations for this species are extremely limited and its distribution likely extends to regions 

that lack historical survey records (Phillips and Dudík, 2008). MAXENT has been shown to be 

effective for predicting environmental niche even with a small number of occurrence records 
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(Pearson et al., 2007). For presence points, we compiled 84 observations derived from 

VertNet.org records and our own sampling records. Together, these comprise virtually all geo-

located sampling records for this species. To increase model accuracy, we used a target 

background selection approach, limiting background points to localities in the region for which 

observations of any reptile or amphibian species have been made (N = 7,067 points) (Merow et 

al., 2013; Phillips and Dudík, 2008; Searcy and Shaffer, 2016). We ran 10 replicate models and 

report an average among all replicates. We evaluate layer rankings by permutation importance, 

which has been demonstrated to more accurately reflect biologically relevant responses (Searcy 

and Shaffer, 2016).  

 

Isolation by distance: We examined the relative contribution of geographic distance to genetic 

distance in two ways. First, we examined the relationship between Euclidean geographic distance 

and genetic distance between individuals with Mantel correlograms (Legendre and Fortin, 1989, 

2010) implemented in ecodist v2.0.1 in R. We generated a 95% confidence interval with 100,000 

bootstrap iterations and set breaks so that the number of sample pairs within each class was 

roughly equal (Diniz-Filho et al., 2013). Genetic distance and geographic distance matrices were 

calculated in the R packages poppr v2.8.2 and fields v9.7, respectively. We further visualized the 

relationship between Euclidean geographic and genetic distance with a scatterplot. Second, we 

used the R package conStruct v1.0.3 to explore individual ancestry proportions in a spatially 

explicit framework to isolate the geographic contribution to apparent co-ancestry (Bradburd et 

al., 2018). We ran conStruct with individuals as the sampling unit for both the spatial and non-

spatial model for k = 1 to k =10. We used a cross-validation procedure with 10 replicates 

implemented in conStruct and examined predictive accuracy to determine the best model. To 
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avoid potential pitfalls of over-fitting the model, we also examined the contribution of all 

population layers to determine a biologically meaningful number of layers. We repeated the 

conStruct analysis for the White Mountains group separately to examine isolation by distance on 

a fine scale with k values 1 to 10. 

 

Isolation by resistance: We used the R package ResistanceGA v4.0-10 to generate resistance 

surfaces to model functional connectivity based on genetic distances between localities 

(Peterman, 2018). The ResistanceGA approach generates surfaces parameterized by their 

concordance with genetic distances, rather than expert opinion or other parameterization 

schemes, which should more accurately reflect biological reality. Because the spatial distribution 

of our samples on the landscape is biased towards the White Mountains region, we examined 

resistance surfaces in the White Mountains only. Because calculation of resistance surfaces is 

computationally intensive, we down-sampled all layers to a resolution of ~30 meters and cropped 

them to the White Mountains Region. For samples with identical locality coordinates (or fell 

within the same 30x30m raster cell), we randomly selected one sample from that locality. For the 

remaining samples, we selected SNPs present in the White Mountains populations with less than 

20% missingness (2097 SNPs), and calculated Nei’s genetic distance (D) for all sample pairs in 

hierfstat. We calculated landscape distance based on commute distance, which is functionally 

equivalent to the resistance distance of CIRCUITSCAPE (Kivimäki et al., 2014; Marrotte and 

Bowman, 2017). We first singly optimized each of the 42 layers (41 climate and landscape 

variables plus the composite SDM). We then selected the top 10 layers with lowest AICc and 

checked for correlation within this set. From these, we selected six uncorrelated layers (VIF < 

10, calculated in the R package usdm v1.1-18 and included the SDM, resulting in 7 total layers 
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(Table 2.1, Table 2.2). We optimized combinations of 2, 3 or 4 layers to evaluate the 

performance of composite surfaces relative to single surfaces, and included a simple model of 

Euclidean distance and a null model. We examined ΔAICc, and the variance components 

(marginal R2 of the model) to select the best-fit surfaces. We also assessed the relative support of 

each surface via a pseudo bootstrap procedure in which we subsampled individuals and distance 

matrices without replacement to assess the sensitivity of the model to individual sampling points.  

 

RESULTS 

Genotyping and data filtration 

Sequencing resulted in an average of 4,570,382 (SD 1,302,980) base pairs per individual. 

Following clustering and basic filters, the average number of clusters retained per individual was 

17,633.9 (SD 2617.2) with mean depth of 15.55 (SD 10.75). This yielded 90,782 total clusters 

with average per sample missingness of 69% (0.00-98%). 

 

Population genetics 

Genetic diversity and effective population size: After filtering, we retained 10,726 SNPs (one 

SNP per locus). All population genetic values are reported in Table 2.3. Levels of genetic 

diversity were generally low to moderate across the range (mean population HO: 0.12 ± 0.03; HS: 

0.14 ±0.03; AR: 1.13 ±0.03), with moderate levels of inbreeding (population FIS: 0.12 ±0.10; 

individual F: 0.41 ±0.14). To calculate π, we retained 3,589 loci comprised of 797,386 bases 

with only 748 variable sites for 48 samples (we excluded three samples total; one locality, Black 

Canyon (BCa), was excluded because it consisted of a single sample with high missingness). 

Total nucleotide diversity is extremely low (mean pairwise π: 8.70e-05, ± 4.06e-05, mean 
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population π: 2.36e-05 ± 2.35e-05). Mean estimates of effective population sizes (Ne) for Piute 

Creek (PCr), Coldwater Canyon (CCa), Silver Canyon (SiCa), and Tollhouse Spring (THSp) 

were 321.43 (LB:77.15, UB:infinite), 54.48 (LB:33.8, UB:139.14), 15.02 (LB:13.83, UB:16.38) 

and 18.45 (LB:16.46, UB:20.89), respectively.  

 

Population structure: Multiple clustering methods reveal a strong signal of geography, reflecting 

a general pattern of differentiation among mountain ranges. The PCA of all samples clearly 

separates all major geographic groupings (Figure 2.1C). Principal components (PC) 1 through 4 

isolate the White Mountains (WM) from the Inyo Mountains (IM) and from southern mountain 

ranges (SM). This pattern remained when localities were down-sampled to 1-2 individuals and 

PC contribution remains stable (Figure 2.2), indicating that the single sample localities do not 

bias this pattern. When the SM samples (which are outliers in the range-wide PCA) are withheld 

from the analysis,  geography resolves in PC1 and PC2, isolating WM from IM populations 

(Figure 2.1B). Within the WM group, PC1 and PC2 also reveal a geographic gradient and 

separates individual localities (Figure 2.1C). 

 FASTSTRUCTURE for the range-wide group identified three primary groups in the total 

data set. FASTSTRUCTURE was generally consistent among replicates, with k=3 model 

components explaining structure in the data (Figure 2.3). Marginal likelihoods modestly 

increased after k=2, and the maximum marginal likelihood was always for the largest value of k 

tested, though admixture proportions for additional ks are always less than 5.0x10-5. For k=3, 

clusters assignments are concordant with geographic groupings. Hierarchical clustering in 

FASTSTRUCTURE reveals further substructure within the White Mountains group (Figure 2.3B). 
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Within the WM subgroup, k = 2 was the number of groups that explained structure in the data, 

while k =10 (the highest number of tested groups) maximized the marginal likelihood.   

 The maximum likelihood tree resolves four major geographically cohesive groups with 

strong bootstrap support (Figure 2.4). The deepest split separates the White Mountains from the 

Inyo + southern mountains. A southerly group consisting of the Inyo Mountains and Southern 

Mountains is sister to the White Mountains. Within this group, Barrel Spring (BSp), which is the 

northern-most locality of the Inyo Mountains group, is sister to a group comprised of the 

remaining Inyo Mountains localities and the southern mountain localities.  

 Pairwise population FST values were moderate to high across localities, ranging from 

0.08-0.15 among White Mountains population pairs and 0.18-0.30 between populations from 

different mountain ranges (Table 2.3). Global FSTs were 0.13 and 0.10 for WM and IM, 

respectively (and could not be calculated for SM due to low sample size). AMOVA indicates that 

the major source of variation (48.75%) in the total group is distributed among the major 

geographic clusters, with a further 37.34% partitioned among all localities within regions (Table 

2.4). When the WM and IM groups were considered independently, variation within localities 

was 2-3 times greater than variation between localities.  

 Among all TREEMIX runs, major geographic clusters were consistently resolved and 

almost perfectly reflect geographic relationships (Figure 2.5). For example, Tollhouse Spring and 

the Narrows form a monophyletic group separate from the rest of the White Mountains 

populations, while Payson Canyon, is sister to the rest of the White Mountains. Similarly, Barrel 

Spring is sister to all other Inyo mountains populations plus the southern clade, while the 

southern clade forms a monophyletic group nested within the Inyo group. For all models with 

migration edges (i.e. m > 0), TREEMIX identified potential migration events between the 
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southern-most populations of the White Mountains clade and southern mountains clade, but not 

between the Inyo Mountains clade and anywhere else. Model likelihoods increased with each 

additional migration edge added, increasing sharply until five edges (Figure 2.5) were added and 

minimally thereafter. 

 

Landscape analyses 

Species distribution models: MAXENT models performed well (AUC of the training data = 0.993) 

and identified topographic roughness, seasonality of potential evapotranspiration, and mean 

diurnal temperature range as the most important drivers in the model based on permutation 

importance (Figure 2.6B, Table 2.1).  

 

Isolation by distance and isolation by resistance: Simple tests of isolation by distance show 

positive correlation of genetic distances within short geographic distance (<25km), which 

correspond to populations within major geographic units (Figure 2.7A). At larger geographic 

distances, correlation with genetic distance becomes strongly negative, indicating genetic 

dissimilarity. Similarly, a scatter plot of the relationship between geographic distance and genetic 

distance reveals a relatively linear relationship (Figure 2.7B. However, pairwise genetic 

distances are higher among IM localities than among WM localities over similar geographic 

distances (Figure 2.7B). Results of the CONSTRUCT analysis demonstrate that geographic distance 

does contribute significantly to population structuring for all values of k (Figure 2.7C). When 

accounting for spatial distance, the contribution of additional layers beyond k=1 is minimal both 

on the range-wide and White Mountains scale (range-wide: Figure 2.7D). Cross validation also 
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supports higher predictive accuracy for all k-layers when comparing the spatial and non-spatial 

models. 

For the White Mountains region, the best multi-surface optimization was 

Bio12+SDM+Continentality (Figure 2.6A), followed by Bio12+Continentality and 

Bio12+Bio09+Continentality (Table 2.2; SDM = species distribution model, Bio12 = annual 

precipitation, Bio09 = mean temperature of driest quarter). Bio12 was included in seven of the 

top 10 models. The distance only model was consistently ranked lowest of all single-surface and 

multi-surface models. 

 

DISCUSSION 

For narrow endemic species, understanding how populations are structured is a critical 

component for adequate conservation management (Frankham et al., 2017). Here, we examine 

population structure across the range of E. panamintina to help elucidate current population 

structure and connectivity. We found that population genetic structure strongly reflects 

geography and isolation by distance, genetic diversity and heterozygosity are both extremely 

low, and levels of individual and population inbreeding tend to be high. From a management 

perspective, these results are implicated in extinction risk (Frankham, 1995, 1998, 2005; 

Spielman et al., 2004). Several populations of E. panamintina exhibit elevated inbreeding 

coefficients on par with other species with demonstrated declines (Frankham, 1995). Isolated 

species and populations tend to face higher extinction risks, which is exacerbated by endemism 

(Frankham, 1998). Habitat specialization and limited geographic range, two hallmarks of E. 

panamintina, have also been linked to elevated extinction risk (Tingley et al., 2013). Although 

we find that while populations are small with extremely low genetic diversity, individual habitat 
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patches were not completely genetically isolated. This is somewhat surprising given the narrative 

surrounding the natural history of this species. Several instances of E. panamintina individuals 

have been documented well outside the riparian corridors suggesting at least the capacity to 

travel beyond what is traditionally thought of as suitable habitat (Hall, 1991). Our resistance 

surfaces based on genetic distances corroborate these observations and suggest that gene flow 

may occur between isolated riparian patches. 

 

Diversity and population structure in Elgaria panamintina 

In this study, we used a large genomic data set to examine patterns of genetic 

differentiation in a threatened, range-restricted species. Our results reveal a species with very 

low overall genetic diversity and population structure largely concordant with major geographic 

units. A rough comparison with other species for which similar data are available underscores 

the limited pool of genetic diversity in E. panamintina, which shows orders of magnitude less 

diversity (π), lower heterozygosity and higher levels of inbreeding, than similarly range-

restricted taxa (Table 2.5). In fact, our data puts the Panamint alligator lizard on par with the 

island fox, (Urocyon littoralis), the most extreme example known of geographic isolation leading 

to genomic monomorphism (Robinson et al., 2016). A likely contributor to this pattern in E. 

panamintina is small genetic effective population sizes, ranging from ~18 to ~300 (the latter with 

a large confidence interval), which corroborate field observations of low-density populations 

(Clause et al., 2015; Mahrdt and Beaman, 2002; Stebbins, 2003; Thomson et al., 2016). Low 

effective population sizes can result from population bottlenecks, reproductive skew, limited 

connectivity between populations (Charlesworth, 2009); all of which make populations more 
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susceptible to environmental stochasticity which may result in extinction (Melbourne and 

Hastings, 2008).  

Strikingly, pairwise population differentiation is low to moderate, despite overall low 

levels of genetic variation. Major structure is apparent at the scale of mountain ranges, with the 

White Mountains, Inyo Mountains and a Southern Ranges group all identified as distinct genetic 

clusters. Within these major geographic units, pairwise FSTs range from 0.08 to 0.18 (Table 2.3), 

a “moderate” level of differentiation (Hall and Clark 1997), while between these geographic 

units FSTs range from 0.19-0.30. Similarly, global FSTs indicate high population structure on the 

range-wide scale and moderate population substructure within geographic subunits. AMOVAs 

indicate that beyond the major geographic units, diversity is more partitioned within localities 

than between them, reflecting a weak signal of population structure at the within-mountain range 

spatial scale. This is corroborated by FASTSTRUCTURE results, which, on the range-wide scale, 

reflect major geographic units with relatively little admixture.  

 Maximum likelihood trees largely agree with FASTSTRUCTURE and PCA, which indicate 

that the deepest split is between the White Mountains populations and the rest of the range. 

Further, major divisions are concordant with geographic clusters with the exception of Barrel 

Spring, the northern-most population in the Inyo Mountains, which resolves as sister to both the 

Inyo Mountains and the southern mountains while PCA suggests that this locality is closer to the 

Inyo Mountains group. The variable position of this locality could be the result of admixture or 

incomplete lineage sorting. However, given our general results, this locality is likely 

intermediate to the north and the south due to isolation by distance and clustering assignments 

are unable to resolve this due to incomplete geographic sampling. Further, TREEMIX analyses 

suggest a signal of historical migration between the Southern Mountains and the White 
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Mountains group, but not with the geographically proximate Inyo Mountains, suggesting that 

some corridor exists or existed between the northern and southern ends of the range.   

We expected gene flow to be restricted and to observe relatively higher levels of 

differentiation between populations due to the apparent distributional pattern and habitat 

restriction of E. panamintina. However, our results suggest some level of ongoing or historical 

gene flow among adjacent localities within mountain ranges, with relatively less across mountain 

ranges. This is consistent with other desert-refugia adapted species, such as West African 

crocodiles (Crocodylus suchus) and American pika (Ochotona princeps), both of which exhibit 

broad scale patterns of genetic structure concordant with large-scale landscape features (river 

drainages in the former and mountain ranges in the latter (Velo-Antón et al., 2014; Wilkening et 

al., 2011).  

Climate fluctuations over the last 10,000 years are likely a major contributor to genetic 

patterns evident in extant populations. This region has experienced considerable drying since the 

late Pleistocene, with the reduction or loss of regional lakes and springs and overall expansion of 

lowland scrub habitats (Grayson, 1993, 2000; Quade et al., 1998). Large-scale population 

structure and low genetic diversity could therefore be a result of contracting habitat suitability 

and climatic oscillations leading to small population sizes and eventual drift. 

 

Spatial patterns and connectivity: We also investigated the role of landscape features in 

contributing to genetic structure and find that geography and environmental features likely 

constrain suitable habitat for this species. Our high-resolution species distribution model partially 

validates the existing dogma about this species: suitable habitat within the known range of E. 

panamintina is extremely restricted, particularly by terrain roughness, seasonality in potential 
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evapotranspiration, diurnal temperatures (Figure 2.6B, Table 2.1). However, examination of the 

SDM reveals that despite apparent habitat restriction, suitable habitat exists outside of our 

traditional understanding of habitat usage in this species. Genetic resistance surfaces echo this 

finding in the White Mountains region and suggest that connectivity exists between heretofore 

“isolated” localities. There is a strong component of isolation by distance at small and large 

geographic distances, likely due to the linear arrangement of the mountain ranges and 

intervening washes to which this species is restricted. This is similar to results of niche modeling 

for montane mammals of the Great Basin which demonstrate potential available habitat area and 

intra-mountain connectivity is more common than previously thought (Waltari and Guralnick, 

2009). A mix of terrain, thermal and hydrological climate variables contributes to habitat 

suitability and connectivity, which most likely reflects both physiological constraints (i.e. 

thermoregulation) and habitat preferences. Elgaria species, in general, are eurythermic and 

exhibit far broader and cooler operative temperature ranges than other squamates, a characteristic 

that is validated by their relatively higher use of shaded habitat (Kingsbury, 1993; Telemeco, 

2014). While field observations of habitat use in E. panamintina suggest similar habitat use to 

other species in the genus, thermal niches have not been characterized. That this species is 

sometimes nocturnal suggests that daytime temperatures or water loss rates may limit activity. 

 

CONCLUSIONS 

Our results suggest that E. panamintina is a species with extremely limited genetic 

diversity and small population sizes, despite some apparent gene flow between populations. 

Given its geographic limitation and overall low genetic diversity, E. panamintina is a species 

whose extinction risk is elevated simply by its population parameters and distribution 
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(Frankham, 2005; Thomson et al., 2016). Regionally, human development in the form of 

infrastructure is limited, but potential human mediated threats to this species have not been 

adequately understood or quantified (Thomson et al., 2016). The largest single landowners in the 

region are the City of Los Angles and LA Department of Water and Power, which extract ground 

water and divert streams. Many of the tributary streams to the Owens River have been modified 

in some way to aid in water diversion, including channelization or diversion into pipes (US 

Geological Survey, 1991) which leads to degradation and loss of important riparian habitats. 

While the isolated nature of its distribution may partially protect this species from the pervasive 

influence of human-mediated habitat loss, even a small reduction of already limited riparian 

habitat due to water diversion may constitute a breaking point for this species. An additional 

regional concern is the development of new mining infrastructure. Mining has a long history in 

the region, but on a relatively small scale. New large-scale modern mines, such as the recently 

proposed lithium mine in the Panamint Valley, could pose a real threat to the persistence of this 

species.  
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Figure 2.1: Principal components analysis (PCA) of the White Mountains (A), the Inyo + White 
Mountains (B), range-wide (C) all demonstrate a clear effect of large biogeographic regions, 
primarily defined by the White and Inyo Mountain Ranges. A map of sampling localities (D) 
demonstrates three broad scale genetic clusters identified in Bayesian clustering (dashed 
ellipses).  
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Figure 2.2: PCA replicates for sub-sampled populations in all localities (range-wide) 

demonstrate that broad-scale patterns of structure across the range are not driven solely by single 

sample localities. The final panel is the PCA of all samples for comparison. 
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Figure 2.3: FASTSTRUCTURE results for range-wide (A) and the White Mountains region (B). 
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Figure 2.4: Midpoint rooted maximum likelihood tree of all samples identified four well-

supported clades within E. panamintina.  
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Figure 2.5: The highest likelihood tree with five migration edges suggests some level of current 

or historic gene flow between disjunct southern populations (GVCa, LSp, WaCa) and the 

southern end of the White Mountains (THSp, Nar, Pca), and between the northern (Mca) and 

southern White Mountains. 
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Figure 2.7: A Mantel correlogram demonstrates high positive correlation of genetic distance at short 
distance classes and negative correlation at large distance classes (A). A comparison of pairwise 
geographic distance to pairwise genetic distance demonstrates a strong linear effect of isolation by 
distance (B). Each point represents a comparison between two samples and points are colored based on 
the major geographic units of the two samples. Layer contributions of successive values of k in conStruct 
while ignoring (C) or accounting (D) for geographic proximity. 
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TABLES  
 

Table 2.1: Permutation values for layers contributing to the averaged MAXENT model and single 
surface optimization results ResistanceGA. 
 
 

  

 

Maxent 
Permutation 
Importance 

ResistanceGA           Single 
Surface 

Layer AICc R2 
Topographic Roughness Index 39.20 - - 
PET Seasonality 17.45 - - 
Mean Diurnal Range (Bio2) 11.89 -596.20 0.15 
Aspect 8.04 - - 
Precipitation of Warmest Quarter (Bio18) 5.41 - - 
Emberger Q 3.99 - - 
Topographic Wetness Index 3.96 - - 
Slope 2.85 - - 
Precipitation Seasonality (Bio15) 2.15 -599.54 0.20 
Topographic Position Index 1.02 - - 
Isothermality (Bio3) 0.93 - - 
Mean Temperature of Wettest Quarter (Bio8) 0.80 - - 
PET Warmest Quarter 0.59 - - 
Landcover 0.52 - - 
Precipitation of Coldest Quarter (Bio19) 0.34 - - 
Elevation 0.32 - - 
Canopy Cover 0.23 - - 
Precipitation of Wettest Month (Bio13) 0.22 - - 
Mean Temperature of Driest Quarter (Bio9) 0.04 -592.99 0.06 
Annual Precipitation (Bio12) 0.03 -595.36 0.11 
Growing Deg. Days 0 0.02 - - 
Precipitation of Driest Quarter (Bio17) 0.01 - - 
Continentality 0.00 -592.89 0.07 
Precipitation of Driest Month (Bio14) 0.00 - - 
Mean Temperature of Warmest Quarter (Bio10) 0.00 - - 
Mean Temperature of Coldest Quarter (Bio11) 0.00 - - 
Precipitation of Wettest Quarter (Bio16) 0.00 - - 
Annual Mean Temperature (Bio1) 0.00 - - 
Temperature Seasonality (Bio4) 0.00 - - 
Max Temperature of Warmest Month (Bio5) 0.00 - - 
Min Temperature of Coldest Month (Bio6) 0.00 - - 
Temperature Annual Range (Bio7) 0.00 - - 
PET Coldest Quarter 0.00 - - 
PET Driest Quarter 0.00 - - 
PET Wettest Quarter 0.00 - - 
Annual PET 0.00 - - 
Aridity 0.00 - - 
Climatic Moisture Index 0.00 - - 
Growing Deg. Days 5 0.00 - - 
Max Temperature Coldest Month 0.00 - - 
Min Temperature Warmest Month 0.00 - - 
Month Count By Temp 10 0.00 - - 
Thermicity 0.00 - - 
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Table 2.2: Best scoring resistance surfaces (single and composite). Bio02 = mean diurnal range, 
Bio09 = mean temperature of the driest quarter, Bio12 = annual precipitation, Bio15 = 
precipitation seasonality, SDM = species distribution model, topowet = topographic wetness 
index.  

 
 
  

Surface mean AICc mean R2m 
mean Log 
Likelihood 

Percent as the 
top model 

Bio12 + Continentality + SDM -384.66 0.57 197.52 18.80 
Bio12 + Continentality -384.62 0.52 196.92 13.60 
Bio12 + SDM -382.92 0.52 196.07 21.50 
Bio12 + topoWet + SDM -382.07 0.46 196.22 2.80 
Bio02 + Bio12 + SDM -381.93 0.53 196.16 3.60 
Bio12 + Bio15 + Continentality + SDM -381.62 0.52 196.81 8.90 
Bio12 + Bio15 + SDM -381.35 0.50 195.86 5.70 
SDM -381.28 0.31 195.04 4.90 
Bio09 + Bio15 + SDM -379.45 0.32 194.92 2.60 
Bio02 + Bio15 + Continentality -378.56 0.28 194.47 5.10 
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Locality
N

H
o

H
s

AR
Population π

Pairw
ise π

Find
FIS

FST
N

ei's D
N

e (LD
)

Piute C
reek

4
0.09 ± 0.18

0.12 ± 0.19
1.11 ± 0.19

0.000053
0.000071 ± 0.000053

0.53
0.19 ± 0.49

0.15 ± 0.07
0.11 ± 0.08

C
oldw

ater C
anyon

6
0.09 ±0.18

0.12 ± 0.19
1.11 ± 0.18

0.000054
0.000069 ± 0.000054

0.52
0.19 ± 0.49

0.16 ± 0.08
0.11 ± 0.08

54.48 (33.8 - 139.14)

Silver C
anyon

1
0.09 ±0.17

0.12 ± 0.17
1.12 ± 0.17

0.000053
0.000069 ± 0.000053

0.52
0.24 ± 0.47

 - 
0.11 ± 0.08

R
edding C

anyon
12

0.11 ±0.23
0.14 ± 0.23

1.13 ± 0.22
0.000053

0.000067 ± 0.000053
0.42

0.13 ± 0.54
 - 

0.11 ± 0.08
15.02 (13.83 - 16.38)

B
lack C

anyon
1

0.11 ±0.31
 - 

1.18 ± 0.31
-

 - 
0.41

 - 
 - 

0.12 ± 0.07

M
arble C

anyon
2

0.11 ±0.28
0.12 ± 0.24

1.11 ± 0.26
0.000054

0.000064 ± 0.000054
0.39

-0.09 ± 0.6
 - 

0.12 ± 0.08

Toll H
ouse

7
0.13 ±0.21

0.15 ± 0.21
1.15 ± 0.2

0.000053
0.000067 ± 0.000053

0.33
0.14 ± 0.48

0.15 ± 0.04
0.1 ± 0.07

18.45 (16.46 - 20.89)

The N
arrow

s
1

0.13 ±0.33
 - 

1.13 ± 0.33
0.000057

0.000071 ± 0.000057
0.33

 - 
 - 

0.13 ± 0.07

Payson C
anyon

6
0.11 ±0.31

 - 
1.11 ± 0.31

0.000056
0.00006 ± 0.000056

0.42
 - 

0.17 ± 0.09
0.13 ± 0.07

321.43 (77.16 - inf.)

B
arrel Spring

3
0.15 ±0.27

0.19 ± 0.27
1.11 ± 0.26

0.000053
0.000077 ± 0.000053

0.22
0.12 ± 0.55

0.21 ± 0.03
0.14 ± 0.06

South fork U
nion W

ash
1

0.16 ±0.37
 - 

1.16 ± 0.37
0.000055

0.000073 ± 0.000055
0.12

 - 
0.14 ± 0.06

0.15 ± 0.06

French Spring
3

0.16 ±0.28
0.18 ± 0.27

1.18 ± 0.26
0.000053

0.000073 ± 0.000053
0.15

0.05 ± 0.56
0.25 ± 0.04

0.15 ± 0.06

Long John C
anyon

1
0.15 ±0.36

 - 
1.15 ± 0.36

0.000055
0.000062 ± 0.000055

0.16
 - 

 - 
0.16 ± 0.06

G
rapevine C

anyon
1

0.16 ±0.36
 - 

1.16 ± 0.36
0.000047

0.000131 ± 0.000047
0.16

 - 
 - 

0.19 ± 0.05

W
ater C

anyon
1

0.07 ±0.26
 - 

1.07 ± 0.26
0.000054

0.000195 ± 0.000054
0.61

 - 
 - 

0.22 ± 0.07

Lim
ekiln Spring

1
0.1 ±0.31

 - 
1.1 ± 0.31

0.000045
0.000158 ± 0.000045

0.43
 - 

 - 
0.22 ± 0.07

Table 2.3: G
enetic diversity indices and effective population sizes. 
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Table 2.4: Results of AMOVA analyses for range-wide, White Mountains and Inyo Mountains. 
The southern mountains group was not analyzed separately because it consisted of only 3 
samples.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Range-wide                 
Groups = Mountain Range Group; 
Samples = Locality 

       

 
Sigma % d.f. 

Sum of 
squares Mean sq. Obs. Std.Obs P 

Variations Between Groups 119.53 48.76 2 2514.88 1257.44 119.53 8.26 1.00E-04 
Variations Between samples 
Within Groups 34.09 13.91 13 2563.94 197.23 34.09 12.02 1.00E-04 

Variations Within samples 91.54 37.34 35 3203.79 91.54 91.54 -9.19 1.00E-04 

Total Variations 245.16 100 50 8282.61 165.65       

         Within the White 
Mountains                 

Groups = Localities 
        

 Sigma % d.f. Sum of 
squares Mean sq. Obs. Std.Obs P 

Variations Between Groups 22.48 22.72 7 1246.55 178.08 22.48 15.33 1.00E-04 

Variations Within Groups 76.47 77.28 31 2370.43 76.47    
Total Variations  98.95 100 38 3616.97 95.18       

         
Within the Inyo Mountains                 

Groups = Localities 
        

 Sigma % d.f. Sum of 
squares Mean sq. Obs. Std.Obs P 

Variations Between Groups 101.17 32.63 4 1510.11 377.53 101.17 3.05 101.17 

Variations Within Groups 208.92 67.37 4 835.67 208.92    
Total Variations  310.08 100 8 2345.78 293.22       
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Table 2.5: Comparison estimates of genetic diversity from various other taxa demonstrate that E. 
panamintina exhibits extremely low diversity.  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Organism data type HO HE AR FIS π Reference

AustraliansSmall mammals  RAD  0.14-0.31 0.13-034 1.13-1.33 White et al., 2018

American pika, Ochotona 
princeps RAD 0.30-0.361 0.29-0.33 -0.079 Waterhouse et al., 2018

Foothill yellow-legged frog, 
Rana boylii RAD 0.001-0.003 McCartney-Melstad et al., 2017

leguminous shrub, 
Caragana microphylla  GBS 0.19-0.28 Xu et al.,  2017

mayflies, Baetis spp. RAD 0.12-0.18 0.25-0.28 Polato et al., 2017

Desert iguana, Disosaurus 
dorsalis 

cytb, MC1R 
and Rag1 0.0005-0.0028 Hague et al., 2016

Chuckwalla, sauromalus 
ater 

cytb, MC1R 
and Rag1 0.001-0.003 Hague et al., 2016

Zebratail lizards, Calisaurus 
spp. 

cytb, MC1R 
and Rag1 0.003-0.006 Hague et al., 2016

Black toad, Bufo exul microsatellite 0.518-0.558 0.484 - 0.539 3.00-3.909 -0.11 - 
0.071 Wang 2009

Panamint alligator lizard, 
Elgaria panamintina RAD 0.12 ± 0.03 Hs: 0.14 ±0.03 1.13 ±0.03 0.12 ±0.10 0.000024 ± 

0.0000235 Present Study
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Table 2.S1: Catalog number and locality information for samples used.  

Catalog Number Location 
TC2975 Piute Creek 
AGC1258 Piute Creek 
AGC1257 Piute Creek 
TC2974 Piute Creek 
AGC1259 Piute Creek 
EMT057 Piute Creek 
AGC1251 Coldwater Canyon 
AGC1234 Coldwater Canyon 
AGC1239 Coldwater Canyon 
AGC1232 Coldwater Canyon 
EMT051 Coldwater Canyon 
AGC1238 Coldwater Canyon 
MVZ269776 Silver Canyon 
TC2986 Silver Canyon 
TC3035 Silver Canyon 
TC3037 Silver Canyon 
TC2957 Silver Canyon 
TC2972 Silver Canyon 
TC3036 Silver Canyon 
TC3034 Silver Canyon 
TC2959 Silver Canyon 
TC2976 Silver Canyon 
TC2971 Silver Canyon 
TC2996 Silver Canyon 
TC2985 Redding Canyon 
AGC1245 Redding Canyon 
AGC1246 Redding Canyon 
AGC1244 Redding Canyon 
AGC1223 Payson Canyon 
AGC1247 Black Canyon 
AGC1253 Marble Canyon 
AGC1254 Marble Canyon 
AGC1222 The Narrows 
AGC1224 Toll House 
AGC1260 Toll House 
AGC1262 Toll House 
TC2941 Toll House 
TC2955 Toll House 
AGC1261 Toll House 
AGC1221 Toll House 
TC2080 Water Canyon 
TC2077 Limekiln Spring 
TC2063 South fork Union Wash 
MVZ191076 Grapevine Canyon 
AGC1230 Barrel Spring 
AGC1229 Barrel Spring 
AGC1267 Barrel Spring 
TC1577 French Spring 
AGC1162 French Spring 
AGC1163 French Spring 
TC1580 Long John Canyon 
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CHAPTER 3 

GEOGRAPHIC AND ECOLOGICAL ISOLATION CONTRIBUTE TO RANGE-WIDE PATTERNS IN 

POPULATION STRUCTURE IN A WIDESPREAD LIZARD, ELGARIA MULTICARINATA 

 

Erin Maurine Toffelmier  

 

ABSTRACT 

Understanding how the landscape influences patterns of population differentiation is an 

important step in examining how diversity is maintained across species’ ranges. This is 

particularly true for species with large and heterogeneous ranges because regional evolutionary 

and demographic dynamics may change across the large spatial scale, depending on the local 

landscape context. We examined the interplay of isolating mechanisms in the wide-ranging 

southern alligator lizard, Elgaria multicarinata. This species is distributed through much of 

Western North America and is found in many terrestrial habitat types, thus providing an 

opportunity to examine how range-wide and regional dynamics contribute to divergence on large 

and small spatial scales. We used thousands of genetic markers to assess population structure, the 

relative importance of isolation by distance and environment, and constructed environmental 

niche models to assess ecological niche divergence among genetic clusters. We found that 

genetic divergence across the range of E. multicarinata is primarily driven by habitat suitability 

based distances, but that ecological divergence has occurred among genetic lineages. 

Comparisons of projected historical to current niches suggests that the total range of E. 

multicarinata has expanded since the Last Glacial Maximum and that current ecological 

divergence may have occurred following this range expansion.   
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INTRODUCTION 

Environmental and geographic heterogeneity contribute to genetic differentiation across 

species’ ranges (Avise, 2000; Jenkins et al., 2010; Ortego et al., 2012; Sork and Waits, 2010). 

This may be particularly true for widespread species, or for species with heterogeneous ranges, 

when both geographic and environmental distances are large. Across ranges, spatial patterns in 

population differentiation emerge due to the interplay of of genetic drift, selection, and gene flow 

(Rousset, 1997; Slatkin, 1985). Examining genetic differentiation with respect to geographic and 

environmental distance is a first step to identifying underlying evolutionary processes (e.g. 

natural selection, gene flow and drift) and examining spatial patterns in divergence has become a 

cornerstone of landscape genetic approaches (Holderegger and Wagner, 2008; Manel et al., 

2003; Sork and Waits, 2010).  

Two commonly quantified patterns are isolation by distance (“IBD”; Rousset, 1997; 

Wright, 1943) and isolation by environment (“IBE”; Sexton et al., 2014; Wang and Bradburd, 

2014). IBD is the correlation of genetic distance with geographic distance: populations that are 

farther apart exchange relatively fewer migrants than populations that are close together 

(Duforet-Frebourg and Slatkin, 2016; Wright, 1943). While IBD is thought to be a relatively 

common phenomenon, landscape complexity and environmental differences likely contribute to 

divergence in many species (Crispo et al., 2006; Lee and Mitchell-Olds, 2011; Wang and 

Bradburd, 2014). IBE occurs when genetic divergence is correlated with environmental 

dissimilarity rather than geographic distance, and may result from divergent selection within 

different environments or biased dispersal between them (Crispo et al., 2006; Sexton et al., 2014; 

Wang and Bradburd, 2014; Wang and Summers, 2010; Wang et al., 2013). Parapatric lineages 
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that exhibit niche divergence may be a result of historical geographic isolation followed be niche 

divergence (Coyne and Orr, 1998; Mayr, 1963). Alternatively, geographic isolation may occur 

due to niche divergence followed by distributional shifts (Coyne and Orr, 1998; Wang and 

Bradburd, 2014). Moreover, geography and environment likely operate in tandem, reinforcing 

divergence at several levels (Nosil et al., 2005; Thorpe et al., 2008; Wang et al., 2013). It is 

therefore important to consider the effects of both geographic and ecological isolation when 

examining spatial patterns in phylogeographic structure.  

Spatial patterns in population structure and divergence may also change across a species’ 

range and it is important to consider both spatial scale and geographic range when making 

landscape inferences (Cushman and McGarigal, 2002; Trumbo et al., 2013). Because 

evolutionary processes may act differentially among scales and regions, conclusions drawn from 

a particular region or scale might not be applicable to other levels (Cushman and McGarigal, 

2002; Wiens, 1989). Few studies examine the influence of landscape variation on genetic 

structure in more than one region and across spatial scales, despite the fact that many species 

exist in heterogeneous habitats.  

Here we explore the roles of geography, and current and past climates in shaping regional 

and range-wide population structure in Elgaria multicarinata, the southern alligator lizard. This 

species ranges from southern Washington state to northern Baja, Mexico and inhabits chaparral, 

grasslands, oak woodlands and pine forests (Fitch, 1934, 1938; Stebbins, 2003). That it 

encompasses wide geographic and climatic gradients makes it an ideal target to examine how 

landscape heterogeneity acts differentially across species ranges. Previous analyses of 

mitochondrial and nuclear DNA revealed a deep north-south genetic split within E. multicarinata 

and further north-south clade subdivision largely concordant with geography (Feldman and 
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Spicer, 2006; Leavitt et al., 2017), suggesting that at least large scale landscape features are 

important drivers of structure in this species. However, because of the large heterogeneous range 

of E. multicarinata, ecologically mediated processes are likely to be significant contributors to 

range-wide substructure, though to date, no study has explicitly examined the role of biotic and 

abiotic factors in contributing to spatial structure in this species. We combine genome-wide 

genetic markers with ecological niche modeling and landscape genetics approaches to quantify 

the relative importance of IBD, IBE, and environmental niche in shaping spatial genetic structure 

in E. multicarinata.  

 

MATERIALS AND METHODS 

Laboratory methods 

We obtained 208 samples (Table 3.S1) from five of the six species in the genus Elgaria 

(198 samples from across the range of E. multicarinata, six samples from across the range of E. 

panamintina, and one representative each of E. coerulea, E. cedrosensis, E. paucicarinata, and 

E. kingii). Genomic DNA for 99 samples was provided by C. Feldman that was extracted by 

phenol-chloroform purification (Feldman and Spicer, 2006; Maniatas et al., 1982). Forty-five of 

the samples from the current study are a subset of those used for previous genetic work on E. 

multicarinata in Feldman and Spicer (2006). We used salt extraction to extract genomic DNA 

from the remaining 109 samples following Sambrook and Russel (2001). For all samples, we 

generated reduced representation libraries with a three-enzyme restriction site associated DNA 

protocol (3RAD; Glenn et al., 2017) using the enzymes MspI, ClaI and SphI. Each individual 

sample was quadruple barcoded with unique 5’ and 3’ internal RAD-stub barcodes and external 

Illumina indices. Samples were aggregated in equimolar ratios into four pools ranging from 135 
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to 150 samples per pool (we included 294 samples for other projects). Each pool was size 

selected for 450-550bp fragments on a Pippin Prep (Sage Science, Beverly, MA) and sequenced 

individually on 150bp paired Illumina HiSeq 4000 lanes at the Vincent J. Coats Genomic 

Sequencing Laboratory. Following sequencing, samples were de-multiplexed based on external 

Illumina indices. We discarded reads that did not contain the correct internal RAD-stub 

barcodes, trimmed 20 base pairs from both the 3’ and 5’ ends of each read, and removed 

remaining low quality bases from the ends of reads using CUTADAPT V1.12 (Martin, 2011). We 

used IPYRAD v0.7.28 (Eaton, 2014) to de novo cluster reads within samples and align consensus 

sequences among samples using a clustering threshold value of 0.94 and all other default IPYRAD 

settings. We constructed data sets for 1) all species and samples and 2) E. multicarinata and E. 

panamintina together. For each set, we used VCFTOOLS v0.1.15 (Danecek et al., 2011) to select 

single nucleotide polymorphism (SNP) variants with 50% or less missing data, minor allele 

count greater than two, which did not exhibit an excess of heterozygotes (p < 0.05), and which 

were present in more than one individual.  

 

Population structure and phylogenetic reconstruction 

We examined broad scale patterns in population structure with two methods. First, we 

used a Bayesian approach to estimate individual ancestry coefficients in a spatially constrained 

framework implemented in the R program tess3r (Caye et al., 2016). We ran tess3r using a 

projected least squares algorithm with k values from 1 to 50, a maximum of 200 iterations per 

run, with 10 repetitions of each k. We masked 10% of genotypes to calculate the cross-entropy 

criterion to choose k. For visualization, we used a Kriging model to interpolate a projected map 

of genetic clusters. Second, we conducted maximum likelihood phylogenetic analysis in RAXML 
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V8.2.4 using the GTRGAMMA model of rate heterogeneity and 100 rapid bootstrap searches to 

assess node confidence (Leaché et al., 2015; Stamatakis, 2014). We included all samples from all 

species, setting E. coerulea as the outgroup, and included all SNPs present in a locus.  

 

Genetic analyses 

We excluded samples from E. coerulea, E. cedrosensis, E. paucicarinata, and E. kingii 

for all further genetic analyses. For each of the primary genetic clusters identified in clustering 

Bayesian clustering and phylogenetic reconstruction, we calculated Tajima’s D as the average 

across loci for each genetic cluster in VCFTOOLS. To match the spatial resolution of the 

landscape layers we used in subsequent analyses, we thinned samples to one randomly selected 

sample per 5 km raster cell (N = 124) and calculated individual pairwise Euclidean genetic 

distance in adegenet v2.1.1 (Jombart and Ahmed, 2011). We used analysis of variance 

(ANOVA) implemented in R to compare the distributions of within-clade genetic distances.  

 

Environmental niche modeling 

To explore current and past distributional patterns, we estimated the geographic range 

and environmental niche of E. multicarinata with ecological niche models (ENM). We collected 

geo-referenced presence localities for E. multicarinata from the Global Biodiversity Information 

Facility (GBIF.org), including museum records from several collections and research grade 

records from the community generated database iNaturalist.org. We excluded records if their 

estimated coordinate error was greater than 1000m. To build the ENMs, we selected background 

points with a target group selection (TGS) approach based on locality records for all other 

species of reptiles that fell within 200km of the suspected range of E. multicarinata (Phillips and 
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Dudík, 2008; Searcy and Shaffer, 2016). We thinned both the presence localities and TGS 

localities to one locality per ~5km grid cell to match the resolution of the landscape and 

environmental layers (N = 8110). We collected a set of 19 bioclimatic variables (Karger et al., 

2017), 18 expanded bioclimatic and topographic variables (Title and Bemmels, 2018), and three 

topological variables (slope, aspect, topographic position index (TPI)) extracted from a digital 

elevation model (US Geological Survey, 2013) using the terrain function in the R package raster 

v2.8-19 (Hijmans et al., 2019). To reduce multicollinearity among predictor variables, we used a 

stepwise procedure to remove layers with a variance inflation factor of 10 or greater and used the 

remaining variables (N= 17) to generate an average suitability model based on 10 replicates 

based on current climate and landscape variables in MAXENT v3.3.3 (Phillips and Dudík, 2008; 

Searcy and Shaffer, 2014). We obtained climate data from the Last Glacial Maximum (LGM; 

21,000 years before present) generated from the Community Climate System Model version 4 

based on PMIP3 data for the same bioclimatic and topographic variables (Karger et al., 2017; 

Title and Bemmels, 2018). All layers were standardized to ~5 km resolution using the RASTER 

package. We used the current ENM model to generate suitability layers for the current climate 

(range-ENMCUR) and climate at LGM (range-ENMLGM). Global ENMs may not fully capture the 

nuances of regional distributions because they estimate suitability based on representative 

localities from potentially very ecologically different parts of the range (Searcy and Shaffer, 

2014). We therefore we also generated ENMs for each genetic cluster separately to examine 

regional distributional patterns. We defined the range of each cluster by generating a 1km-

buffered minimum convex polygon around the genetic samples assigned to each cluster. We 

excluded four samples from Oregon, seven samples from Catalina and Coronado Islands, six 

samples from the eastern side of the Sierra Nevada mountains, and six E. panamintina samples 
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because there were large sampling gaps in between these and the remaining samples, which can 

make differentiating real spatial patterns from sampling artifacts difficult. Additionally, these 

excluded localities occur at the boundaries of the range, which often experience different or more 

extreme spatial processes and evolutionary forces (Sexton et al., 2009) and therefore may 

confound our attempts to identify more general processes and patterns. We selected presence and 

TGS background localities falling within these regional polygons to use in regional MAXENT 

models. We then projected these to generate regional current and historical suitability layers. 

 

Assessing IBD and IBE 

To assess the relative effects of IBD and IBE, we calculated five geographic distances 

(Euclidean geographic distance, least cost path distance for ENMCUR, least cost path distance for 

ENMLGM, optimized resistance distance for Bio13, optimized resistance distance based on slope), 

and three environmental distances (environmental dissimilarity, dissimilarity in current 

suitability, dissimilarity in LGM suitability).  

 

Geographic distances: Landscape resistance surfaces can be used to generate a biologically-

informed distance measure which is representative of the movement cost on a landscape (McRae, 

2006; Peterman et al., 2019; Wang and Bradburd, 2014). Common approaches to generate 

resistance surfaces include utilizing suitability models (Wang et al., 2008) or relying on expert 

opinion. However, estimation of resistance values for particular landscape elements can be 

challenging when empirical data on movement are lacking (Peterman, 2018). We used two 

approaches to measure effective landscape distances, which we include under the umbrella of 

IBD hypotheses because they are representative of functional distances between localities rather 
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than differences in climatic or topographic qualities. First, we used ENM-defined habitat 

suitability to estimate pairwise least cost path (LCP) distances, which as been shown to 

reasonably estimate gene-flow in other systems (Wang et al., 2008). Pairwise LCP distances 

were calculated with gdistance v.1.2-2 (Etten, 2018) using Dijkstra’s algorithm (Dijkstra, 1959) 

for range-ENMCUR and range-ENMLGM. We also calculated pairwise LCP distances within 

previously identified genetic clusters based on based on each regional ENMCUR and regional 

ENMLGM for within-region comparisons. Second, we used a maximum likelihood parameter 

estimation framework to estimate resistance values of individual landscape variables based 

genetic distances (ResistanceGA V4.0-14; (Peterman, 2018). We optimized resistance values 

based on commute distance for each of these remaining surfaces (N = 17) using the pairwise 

Euclidean genetic distance matrix as the response variable. We evaluated model fit in each of 

three replicates to select the two best performing optimized surfaces. Bio13 (precipitation in the 

wettest month) and slope were the best scoring surfaces in each replicate and we used gdistance 

to calculate pairwise commute distances between localities for each of these two surfaces. 

Finally, we calculated great-circle Euclidean geographic distance between localities in fields v9.7 

(Nychka et al., 2017). 

 

Environmental Dissimilarities: We characterized the environment at each locality by conducting 

a PCA of all variables using prcomp in R, and then calculated the environmental dissimilarity 

between points as the distance in all PCs. We calculated ENMCUR and ENMLGM dissimilarity as 

the difference in suitability between locality pairs. Dissimilarity in suitability is one measure of 

pairwise environmental distance between two localities, while LCP distance  uses suitability to 
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calculate a weighted distance between localities and therefore is a measure of geographic 

distance (see above; Wang et al., 2013).  

 

Statistical Approach: We used multiple matrix regression with randomization (MMRR) to 

quantify the effects of IBD and IBE on genetic distances using the R script ‘MMRR’ (Wang, 

2013). Euclidean geographic distance, least cost path for ENMCUR, and least cost path for 

ENMLGM, exhibited high multicollinearity (Pearson’s r  > 0.8). Because each represents a 

plausible biological hypothesis explaining landscape genetic differentiation, we created three 

separate models which each included one of these three variables plus the remaining five 

uncorrelated distances. We constructed these three models for each of two spatial scales: 1) 

range-wide (excluding geographic outliers as outlined above) and 2) regional (the five primary 

regions defined by genetic clusters). The range-wide MMRRs included the LCP distances based 

on range-ENMCUR and range-ENMLGM, while the regional MMRRs include LCPs based on each 

region’s ENMCUR and ENMLGM. All predictors were centered and scaled prior to analysis. We 

used 10,000 random permutations to construct a null distribution to assess model and parameter 

significance, and evaluated model fit (R2) of the three different models at each spatial scale to 

determine the best model.  

 

Niche identity and divergence 

We used niched identity and background tests to examine niche divergence among the 

five primary genetic groups. Niche identity tests compare the empirically measured niches of 

each group to a null distribution of pseudo-niches, which are generated by randomly reshuffling 

the occurrence points of both groups and recalculating the niche space (Warren et al., 2008, 
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2010). Species inhabiting different geographic regions may exhibit divergent niches simply due 

to differences in available bioclimatic space resulting from spatial autocorrelation in the 

environment. We therefore also conducted background tests to further test whether two ENMs 

were more similar than expected by chance given their respective available environmental 

spaces. We used ENMTools v0.2 (Warren et al., 2010) in R to conduct both identity and 

background tests for pairwise comparison of all regions (five groups, N = 10 comparisons), and 

generated two similarity indices (Schoener’s D and Warren’s I) for each test, and generated a 

null distribution based on 99 pseudo-replicate MAXENT models using the set of 17 uncorrelated 

landscape variables to assess significance. To explore whether current ecological and genetic 

divergence are related to distributions at the LGM, we examined overlap of current and historic 

distributions of both the range-wide ENM and the regional ENMs. Relative to current 

distributions, greater overlap at the LGM would suggest recent post-glacial expansion and 

parapatric ecological divergence, whereas isolation at the LGM would support a role for past 

allopatry. To generate a conservative estimate of regional range overlap, we calculated the total 

number of regions at each point with suitability > 0.3. Finally, we visualized overall change in 

the suitable range of E. multicarinata since the LGM as the difference between the current and 

LGM range-wide suitability models.  

 

RESULTS 

Genetic data  

The mean number of raw reads per sample was 3,311,251 (SE 1,988,018). After filtering, 

43,964 SNP variants were retained across all species for use in RaxML, and 1,413 unlinked SNP 

variants were retained across E. multicarinata and E. panamintina and used for all other genetic 
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analyses. Tajima’s D was positive for the South (0.067), coast (0.092), and Bay Area (0.002) 

clades, but negative for the north (-0.132) and west Sierra (-0.403) clades, indicative of recent 

demographic bottlenecks or range expansions in the latter two (Tajima, 1989). Within-clades 

genetic distances were significantly different among all clades, and followed a general south to 

north pattern of decreasing distances (Figure 2a and 2b).  

 

Population structure and phylogenetic reconstruction 

Maximum likelihood phylogenetic reconstruction identified four major clades with 100% 

bootstrap support (Figure 3.1b): 1) North (north of the San Francisco Bay through the north coast 

ranges, east through the Sacramento Valley, and northern Sierra Nevada Mountains), 2) Bay 

Area (coastal and valley habitats from San Francisco to Monterey Bays) , 3) Central Coast (coast 

ranges from Monterey Bay to south of Point Conception in Ventura County), 4) Western Sierra 

(west-slope of the central and southern Sierra Nevada Mountains). We also found strong support 

for an East Sierra group (eastern side of the Sierra Nevada Mountains in Inyo County) and 

Elgaria panamintina (the White and Inyo Mountains east of the Owen’s Valley). The remaining 

southern California samples form a poorly support South group (Ventura county south through 

the Transverse Ranges and onto the Baja Peninsula). The rate of decrease in tess3r cross-

validation scores slowed after k = 7, but reaches a minimum value at k = 35 before increasing 

(Figure 3.S1A). Examination of hierarchical tess3r k-values suggests that samples from the 

eastern Sierra Nevada mountains and E. panamintina are part of the South group at k = 5, 

comprise a single group at k =6, and are two separate groups at k = 7 (Figure 3.S1B-C, Figure 

3.1A and 3.1C). These two sample clusters are identified in RAXML as well supported 

monophyletic groups (consistent with k = 7), but nested within the south clade, rather than 
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reciprocally monophyletic with respect to it, as suggested by k = 5 and k = 6 (Figure 3.S1B and 

S.S1C) in tess3r. Internal RAXML node support within this south clade is generally low, so the 

precise arrangement of each of these groups remains unresolved. Pending this resolution, we 

focus on the five primary genetic clusters (North, Bay Area, Coast, West Sierra, and South) 

given that they are geographically cohesive and generally strongly supported. 

 

Environmental niche modeling and niche divergence 

Range-wide (Figures 3.3A and 3.3B) and regional ENMs (Figures 3.S2 and 3.S3) 

performed well (AUC > 0.64, Table 1). All niche identity tests among the five genetic clusters 

were significant (P < 0.03 for all comparisons), indicating that each cluster encompasses a 

unique environmental niche. The empirical values of Warren’s I ranged from 0.18 to 0.57, and 

Schoener’s D ranged from 0.05 to 0.33 (Table 3.2). Similarly, background tests demonstrated 

that habitats occupied by each of the two genetic clusters in each comparison were less similar 

than expected based on their available habitat (P < 0.01 for all comparisons). Empirical values of 

Warren’s I ranged from 0.18 to 0.45, and Schoener’s D ranged from 0.03 to 0.25 for background 

tests (Table 3.2). Comparisons of the geographic extent of ENM overlap in historical (Figures 

3.3C, 3.S2 and 3.S3) and current (Figures 3.3D, 3.S2 and 3.S3) climates indicated that current 

potential distributions overlap more than overlap of historical distributions. Additionally, the 

total geographic extent of regional niches has generally increased since the LGM. Similarly, 

comparison of the range-wide current to historic ENMs demonstrates that the extent of suitable 

habitat has also increased since the LGM (Figure 3.4B and 3.S3).  
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IBD versus IBE 

The range-wide model MMRR model explained 55.0% of total genetic variance while 

clade-specific models explained 29.3%-58.2% of genetic variance within each geographic region 

(Table 3.3, Figure 3.2B). The best fit range-wide model (R2 = 0.55, P = 9.999e-05) included 

significant contributions from least cost path for ENMCUR, (βIBD = 4.80, P = 9.99e-05) and 

environmental dissimilarity (βIBE = 0.97, P = 0.003). When clades were considered separately, 

all models were significant overall, and all best-fit models were primarily driven by IBD, though 

the strength of this correlation varied somewhat. LCP based on regional-ENMCUR had the highest 

correlation with genetic distance in both the North (βIBD = 1.22, P = 0.00009999) and West 

Sierra clades (βIBD = 1.22, P = 0.00009999). The West Sierra model also included a significant 

effect of resistance distance based on slope (IBD, βIBD = 0.58, P = 0.038), and environmental 

dissimilarity (IBE, βIBD = 0.50, P = 0.033). Geographic distance was the only significant 

component in the model for the Bay Area group (IBD, βIBD = 1.40, P = 0.00009999), while LCP 

based on regional-ENMLGM was the only significant component in the model for the South (IBD, 

βIBD = 1.89, P = 0.00019998). The Coast model was significant overall, but no individual 

predictor was individually significant (R2 = 0.58, P = 0.02) 

 

DISCUSSION 

Range-wide population structure in Elgaria multicarinata 

Our analyses of phylogeography and population structure identified five major genetic 

units across the range of E. multicarinata, which are strongly concordant with geography. 

Additionally, Bayesian clustering suggests that the eastern Sierras and E. panamintina may be 

most closely related to each other, and together related to the rest of southern California (Figure 
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3.S2B and 3.S2C). Maximum likelihood phylogenetic reconstruction strongly supports the 

North, Bay Area, Coast, and West Sierra groups as monophyletic, but returned relatively weak 

support for a monophyletic South group. The east Sierra and E. panamintina groups also 

received high bootstrap support individually, but may be nested within the Couth group (Figure 

3.1B). This work, coupled with previous genetic and morphological analyses (Feldman and 

Spicer, 2006; Leavitt et al., 2017; Telemeco, 2014), firmly support the monophyly of E. 

panamintina, and the likely paraphyly of E. multicarinata. Previous phylogenetic work has also 

found strong support for northern and southern clades, but variably placed E. panamintina as 

sister to a northern E. multicarinata clade (Leavitt et al., 2017) or nested within a southern E. 

multicarinata clade (Feldman and Spicer, 2006; Leavitt et al., 2017). Also based on RAD data, 

we found that E. panamintina exhibits extremely low levels of genetic variation (Chapter 1 of 

this dissertation), which supports a hypothesis of peripatric speciation followed by incomplete 

lineage sorting as posited by Telemeco (2014). However, the position of E. panamintina relative 

to the rest of the southern clade remains unresolved and additional sampling of the Tehachapi 

Mountains, Transverse ranges and the southern extent of the eastern Sierra Nevada Mountains.  

Within E. multicarinata, Feldman and Spicer (2006) identified four mtDNA lineages: 

Northern California, Southern Sierra Nevada, Coastal, and Southern California. With our large 

set of genome-wide genetic markers, we identified four well supported northern clades (Coast, 

Bay Area, West Sierra and North), as putatively sister to a southern group (Figure 3.1B). 

Phylogenetic and population genetic breaks occurring at the northern end of the Transverse 

Ranges, Monterey Bay, and the Sierra Nevada range echo similar patterns in many other western 

taxa and are largely concordant with the California Floristic Provinces (Calsbeek et al., 2003; 
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Feldman and Spicer, 2006; Lapointe and Rissler, 2005; McCartney-Melstad et al., 2018; Spinks 

and Shaffer, 2005).  

 

IBD and IBE mediate patterns of divergence  

Range-wide: We investigated how historical and contemporary landscape factors affect genetic 

differentiation across the range of E. multicarinata, and found evidence that range-wide genetic 

structure is linked to contemporary IBD and IBE. Range-wide, least cost path distance based on 

current suitability exhibited the strongest correlation with genetic distance (βIBD = 4.80, P = 

0.0001) and its regression coefficient was ~five times greater than that of environmental 

dissimilarity (βIBE = 0.97, P = 0.003). Overall, this suggests that on large biogeographic scales, 

spatial isolation occurs as dispersal costs accrue due to low suitability in intervening habitat. 

Differences in dispersal has been linked to increased divergence, even on small spatial scales 

(Garant et al., 2005). One caveat is that LCP and Euclidean geographic distances are highly 

correlated, especially over long geographic distances. However, when we compared the 

Euclidean geographic distance based model to a LCP distance based model, the LCP model 

explained more variation than the simple model (R2 = 0.604 versus 0.429), and in all models IBD 

was a stronger predictor than IBE.  

While IBD appears to be the largest overall factor contributing to differentiation, the 

smaller signal of IBE was corroborated by niche background and identity tests. These tests, 

which quantify niche similarity, demonstrated that all five of the occupied regional niches are 

significantly less similar than expected by chance (Table 3.2). Moreover, across regional ENMs, 

permutation importance of landscape predictors varied widely (Table 3.2) with no clearly shared 

patterns. Taken together, these highly divergence niche spaces likely contribute to the pattern of 
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IBE on the range-wide scale. Moreover, the projected extents of current regional niches are much 

larger than the spatial extent of the underlying genetic clusters (Figure 3.S2), which suggests that 

niche divergence alone does not drive genetic divergence. If genetic isolation was due to niche 

divergence exclusively, we would expect that the geographic extent of the projected regional 

niche spaces should exhibit minimal overlap. Given the results of our correlational modeling, 

IBD appears to be the stronger driving force.  

Comparison of the potential range at the Last Glacial Maximum (LGM) to the current 

range (Figure 3.3A and 3.3B) indicated that the total range of E. multicarinata has expanded 

since the LGM. Putative range overlap of the regional niches at the LGM was more limited than 

potential contemporary overlap (Figure 3.3C versus Figure 3.3D), and the intersections of 

regional niches correlate well with projected suitability based on range-wide data at point time 

points (Figure 3.3A compared to 3.3C, and Figure 3.3B compared to 3.3D). A smaller total 

number of sympatric LGM niches might suggest that contemporary divergence is a result of past 

allopatry through long term isolation. However, the niche currently occupied by the west Sierra 

cluster was virtually absent at the LGM (Figure 3.S2G). After adjusting the total number of 

potential overlaps at the LGM, it appears that potential sympatry across the LGM range is 

roughly similar to potential sympatry across the current range. Additionally, the limited of 

geographic overlap in current genetic groups is consistent with an parapatric or allopatric mode 

of divergence (Losos and Glor, 2003). Taken together, our range-wide correlational models and 

comparative niche modeling suggest that genetic divergence among genetic clusters is due 

primarily to IBD and that subsequent niche divergence occurred following postglacial expansion 

and geographic isolation.  
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Within regions: Within regions, IBD was again the primary correlate to divergence in most 

regions, though the type of IBD differed. The North and West Sierra clusters both show a strong 

signal of IBD based on LCP of current suitability. The model for the West Sierra clade also 

includes minor contributions from slope resistance (IBD) and environmental dissimilarity (IBE), 

and was the only region that exhibited any signal of IBE (Table 3.3). Based on both regional and 

range-wide models, the historic distribution for the West Sierran niche was extremely limited 

and overlapped minimally with current regional distribution (Figure 3.S3G-I) which suggests 

that E. multicarinata recently expanded into this niche space as the Sierra Nevada glaciations 

receded. Similarly, historic and current distributions for the northern clade, especially into the 

extreme north of the current distribution (dashed lines in Figure 3.S2A), exhibit minimal 

geographic overlap (Figure 3.S2A and S2B). Range expansions after the LGM northward into 

Oregon and Washington, and eastward into the Sierras are consistent with a genetic signature of 

bottlenecks associated with colonization (Tajima’s D:-0.403 and -0.132 for West Sierra and 

North clades, respectively). Recent work on an amphibian species co-distributed with the 

northern clade also demonstrated negative Tajima’s D, suggesting a shared history of range 

expansion (McCartney-Melstad et al., 2018). In the Bay Area cluster, IBD based on geographic 

distance was the only important correlate in the MMRR models (Table 3.3). Because suitability 

is relatively homogeneous across this small region (Figure 3.S3E), this signature of geographic 

distance likely resolves in the absence of a strong signal of suitability-based distance. For the 

South cluster, which exhibited the highest pairwise genetic distances, IBD based on LGM 

suitability was the only significant correlate with genetic distance (Table 3.3), although the 

alterative model including LCP of ENMCUR, explained nearly as much variation (27% versus 

29%, data not shown). Current suitability is marginally higher and more evenly distributed than 
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during the LGM (Figure 3.S3M-O), potentially leading to higher recent gene flow in the region. 

Historical isolation of sub-regional populations may have contributed to relatively higher 

pairwise genetic divergence in this region, although we did not find a strong concordant signal of 

reciprocal monophyly of putative sub clades in phylogenetic reconstruction (geographically 

proximate localities do tend to cluster together, but node support is low, Figure 3.1B). The 

current pattern of large pairwise distances but relative lack of strong local population structure 

may therefore be the result of historical subpopulation isolation or limited gene flow, followed 

by secondary contact and increased gene flow since the LGM.  

While many studies examine landscape drivers of differentiation on small spatial scales, 

we combined landscape analyses on regional and range-wide scales to examine how the impact 

of isolating mechanisms across these spatial scales may change. Our results indicate that both 

geographic and environmental variation play important roles in contributing to genetic 

differentiation in species with wide and heterogeneous ranges. We found that patterns of 

differentiation in E. multicarinata are largely mediated by geographic distances based on habitat 

suitability, but that regional environmental niches are divergent. Future work examining whether 

there are further isolating mechanisms, especially at the contact zones between apparently 

ecologically and genetically divergent lineages, would be informative.  
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Figure 3.1: Range map of E. multicarinata, genetic sampling localities and spatial interpolation of ancestry 
coefficients for k = 7 from tess3r (A). The maximum likelihood phylogeny (B) recovers a split between a south clade 
and all localities north of the Transverse ranges (except eastern Sierra Nevada mountains E. multicarinata (red) and 
E. panamintina (grey), which cluster with the south clade (green)). Tips are labeled with county of origin and colored 
by their cluster assignment at k = 7 in tess3r. A barplot of spatially informed admixture assignment for k = 7 (C) 
demonstrates concordant patterns in range-wide genetic structure.  
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A	

B	

Figure 3.2: The distribution of  within cluster genetic distances among major genetic clusters is significant for all 
comparisons between clusters and follows a general south to north trend of decreasing distances with increasing latitude 
(A). MMRR modeling demonstrates a strong correlation of IBD + IBE with pairwise genetic distances (B). In panel B, 
light grey points represent between clade comparisons, while colored points represent within-clade comparisons. The 
black dashed line represents the range-wide trend, while the thinner, colored lines represent models for each genetic 
cluster separately. We include localities from E. panamintina (dark grey) and E. multicarinata from the eastern Sierra 
Nevada Mountains (red) for comparison, but we did not build individual MMRR models for these groups due to limited 
sampling.  
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TABLES 

 
Table 3.1: MAXENT performance and variable importance ranked by permutation importance for 
regional models. Values shaded with grey indicate top contributing variables to each model 
(Permutation importance ≥ 10). 

 
  

  North 
West 
Sierra Bay Area Coast South 

Model AUC 0.67 0.86 0.64 0.70 0.67 
Landscape Variable – Permutation Importance 

 Isothermality 23.17 0.94 14.33 19.49 14.90 
Precipitation of Warmest Quarter 10.14 4.53 6.77 17.76 11.64 

Mean Temperature of Driest Quarter 0.52 14.16 6.07 1.75 10.00 
Mean Monthly PET of Driest Quarter 3.83 9.22 33.56 2.20 1.88 

Mean Monthly PET of Wettest Quarter 1.23 11.15 2.92 1.30 26.20 
Min Temperature of Warmest Quarter 18.68 2.89 0.00 7.23 1.98 

Precipitation Seasonality 18.31 5.62 2.51 8.00 2.30 
Aspect 3.72 9.20 3.36 1.28 0.90 

Monthly Variability in Potential Evapotranspiration 2.55 10.01 0.00 5.66 0.37 
Terrain Roughness Index 1.65 4.44 3.92 10.95 4.18 

SAGA-GIS Topographic Wetness Index 0.70 5.07 3.53 5.27 1.73 
Mean Temperature of Wettest Quarter 0.13 3.99 6.54 0.10 14.06 

Topographic Position Index 7.49 7.89 4.28 1.11 2.63 
Mean Diurnal Range 5.86 4.25 0.00 6.35 2.46 

Slope 1.98 1.08 4.84 1.44 0.04 
Precipitation of Wettest Month 0.05 5.55 4.50 5.65 3.06 

Thornthwaite aridity index 0.00 0.00 2.88 4.46 1.67 
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Table 3.2: Results of background and identity tests for niche divergence. All tests were 
significant (P < 0. 01) and indicated regional niches diverge more than expected under the null 
hypothesis of niche identity. 
 

  Background   Identity 

Comparison 
Schoener's 

D P(D) 
Warren's 

I P(I) 
 

Schoener's 
D P(D) 

Warren's 
I P(I) 

Coast – Bay Area 0.188 0.0100 0.447 0.0100 
 

0.188 0.0300 0.447 0.0200 

Coast - North 0.051 0.0100 0.182 0.0100 
 

0.051 0.0100 0.182 0.0100 

Coast - Sierra 0.172 0.0099 0.430 0.0099 
 

0.172 0.0100 0.430 0.0100 

Coast - South 0.035 0.0100 0.147 0.0100 
 

0.035 0.0100 0.147 0.0100 

North - Bay Area 0.230 0.0100 0.455 0.0100 
 

0.230 0.0323 0.455 0.0323 

North - Sierra 0.152 0.0100 0.377 0.0100 
 

0.152 0.0100 0.377 0.0100 

North - South 0.249 0.0100 0.471 0.0100 
 

0.249 0.0100 0.471 0.0100 

Sierra - Bay Area 0.174 0.0100 0.417 0.0100 
 

0.174 0.0100 0.417 0.0100 

Sierra - South 0.165 0.0100 0.418 0.0100 
 

0.165 0.0100 0.418 0.0100 

South - Bay Area 0.328 0.0100 0.555 0.0100   0.328 0.0200 0.569 0.0100 
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Figure 3.S1: Cross validation scores for K = 1 to K = 50 for tess3r (A). Spatial 
interpolation of admixture coefficients for K = 5 (B) and K = 6 (C). 
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Figure 3.S2: LGM and current projects of 
regional ENMs. White polygons represent the 
region used to select presence and TGS 
background points to build the MAXENT models. 
The dashed polygon in panels A and B represent 
the total potential range of the north genetic 
cluster, while the solid white polygon represents 
the region used for generating models.  
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Figure 3.S3 (continued on next page) 
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Figure 3.S3: Regional ENMs for historical (A, D, G, J, M) and current (B, E, H, K, N) 
climate. The difference between current and historical suitability in the regional ENMs 
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Table 3.S1: Sample information for tissues used in this study. ELPA = E. panamintina. 

 
Catalog 
Number Location State Country Species 

Genetic 
Cluster 

AGC 1279 Inyo California USA E.  coerulea - 
CAS 208956 Arizona Arizona USA E.  kingii - 

MVZ 182148 
Baja California 

Norte Baja California Mexico E.  cedrosensis - 

MVZ 191079 Baja California Sur 
Baja California 

Sur Mexico E.  paucicarinata - 
CAS 205794 Monterey California USA E.  multicarinata Coast 
CAS 208948 Monterey California USA E.  multicarinata Coast 
CAS 226091 Monterey California USA E.  multicarinata Coast 
CAS 241848 Monterey California USA E.  multicarinata Coast 
EMT   075 Monterey California USA E.  multicarinata Coast 
EMT   076 Monterey California USA E.  multicarinata Coast 
EMT   077 Monterey California USA E.  multicarinata Coast 
RDC 1207 Monterey California USA E.  multicarinata Coast 
RDC 1208 Monterey California USA E.  multicarinata Coast 
RDC 1212 Monterey California USA E.  multicarinata Coast 
RDC 1218 Monterey California USA E.  multicarinata Coast 
RDC 1219 Monterey California USA E.  multicarinata Coast 

YS 012 Monterey California USA E.  multicarinata Coast 
YS 013 Monterey California USA E.  multicarinata Coast 
YS 014 Monterey California USA E.  multicarinata Coast 
YS 015 Monterey California USA E.  multicarinata Coast 
YS 016 Monterey California USA E.  multicarinata Coast 

CAS 208514 San Luis Obispo California USA E.  multicarinata Coast 
CAS 208515 San Luis Obispo California USA E.  multicarinata Coast 
CAS 241826 San Luis Obispo California USA E.  multicarinata Coast 
CAS 241827 San Luis Obispo California USA E.  multicarinata Coast 
MVZ 150173 San Luis Obispo California USA E.  multicarinata Coast 
MVZ 228813 San Luis Obispo California USA E.  multicarinata Coast 
CAS 241917 Santa Barbara California USA E.  multicarinata Coast 
MVZ 137539 Santa Barbara California USA E.  multicarinata Coast 

AGC 1155 Inyo California USA E.  multicarinata EastSierra 
AGC 1156 Inyo California USA E.  multicarinata EastSierra 
AGC 1157 Inyo California USA E.  multicarinata EastSierra 
AGC 1158 Inyo California USA E.  multicarinata EastSierra 
AGC 1159 Inyo California USA E.  multicarinata EastSierra 

MVZ 227733 Inyo California USA E.  multicarinata EastSierra 
AGC 1162 Inyo California USA E.  panamintina ELPA 
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AGC 1224 Inyo California USA E.  panamintina ELPA 
AGC 1229 Inyo California USA E.  panamintina ELPA 

MVZ 191076 Inyo California USA E.  panamintina ELPA 
TC 1577 Inyo California USA E.  panamintina ELPA 
TC 2063 Inyo California USA E.  panamintina ELPA 

CAS 208683 Alameda California USA E.  multicarinata Monterey 
CAS 208964 Alameda California USA E.  multicarinata Monterey 
CAS 238961 Alameda California USA E.  multicarinata Monterey 
CAS 243754 Contra Costa California USA E.  multicarinata Monterey 
MVZ 162061 Contra Costa California USA E.  multicarinata Monterey 
MVZ 191101 Contra Costa California USA E.  multicarinata Monterey 
MVZ 191125 Contra Costa California USA E.  multicarinata Monterey 
CAS 247262 San Francisco California USA E.  multicarinata Monterey 

CRF 10 San Joaquin California USA E.  multicarinata Monterey 
CAS 201818 San Mateo California USA E.  multicarinata Monterey 
CAS 203541 San Mateo California USA E.  multicarinata Monterey 
CAS 204814 San Mateo California USA E.  multicarinata Monterey 
CAS 204817 San Mateo California USA E.  multicarinata Monterey 
CAS 208089 San Mateo California USA E.  multicarinata Monterey 
CAS 208947 San Mateo California USA E.  multicarinata Monterey 
CAS 218626 San Mateo California USA E.  multicarinata Monterey 
CAS 218719 San Mateo California USA E.  multicarinata Monterey 
CAS 223936 San Mateo California USA E.  multicarinata Monterey 

CRF 170 San Mateo California USA E.  multicarinata Monterey 
MVZ 230557 Santa Clara California USA E.  multicarinata Monterey 
CAS 252939 Santa Cruz California USA E.  multicarinata Monterey 
CAS 252942 Santa Cruz California USA E.  multicarinata Monterey 
MVZ 191127 Benton Oregon USA E.  multicarinata North 
CAS 205830 Butte California USA E.  multicarinata North 
CAS 228313 Douglas Oregon USA E.  multicarinata North 
MVZ 150172 El Dorado California USA E.  multicarinata North 
CAS 223707 Glenn California USA E.  multicarinata North 
MVZ 191137 Glenn California USA E.  multicarinata North 
MVZ 162062 Humboldt California USA E.  multicarinata North 

REW 301 Klickitat Oregon USA E.  multicarinata North 
REW 302 Klickitat Oregon USA E.  multicarinata North 

CAS 209176 Lake California USA E.  multicarinata North 
CAS 219450 Lake California USA E.  multicarinata North 
CAS 219530 Lake California USA E.  multicarinata North 
CAS 220804 Lake California USA E.  multicarinata North 
CAS 201252 Mendocino California USA E.  multicarinata North 
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CAS 208852 Mendocino California USA E.  multicarinata North 
CAS 220770 Mendocino California USA E.  multicarinata North 
MVZ 162059 Mendocino California USA E.  multicarinata North 
CAS 241784 Napa California USA E.  multicarinata North 
CAS 251756 Napa California USA E.  multicarinata North 
HBS 122003 Napa California USA E.  multicarinata North 
HBS 122146 Napa California USA E.  multicarinata North 
HBS 122147 Napa California USA E.  multicarinata North 
HBS 122149 Napa California USA E.  multicarinata North 
HBS 122150 Napa California USA E.  multicarinata North 

HBS 122218A Napa California USA E.  multicarinata North 
HBS 123537 Napa California USA E.  multicarinata North 
HBS 123538 Napa California USA E.  multicarinata North 
HBS 123540 Napa California USA E.  multicarinata North 
MVZ 191108 Napa California USA E.  multicarinata North 
MVZ 191110 Napa California USA E.  multicarinata North 
MVZ 191113 Napa California USA E.  multicarinata North 
MVZ 175428 Nevada California USA E.  multicarinata North 
CAS 206370 Placer California USA E.  multicarinata North 
MVZ 175432 Placer California USA E.  multicarinata North 
MVZ 162053 Shasta California USA E.  multicarinata North 
CAS 202917 Sierra California USA E.  multicarinata North 
HBS 122139 Solano California USA E.  multicarinata North 
HBS 122141 Solano California USA E.  multicarinata North 
HBS 122142 Solano California USA E.  multicarinata North 

HBS 122206A Solano California USA E.  multicarinata North 
HBS 122611 Solano California USA E.  multicarinata North 
CAS 236169 Sonoma California USA E.  multicarinata North 
CAS 236534 Sonoma California USA E.  multicarinata North 
CAS 236558 Sonoma California USA E.  multicarinata North 
CAS 238471 Sonoma California USA E.  multicarinata North 
CAS 250301 Sonoma California USA E.  multicarinata North 
CAS 251453 Sonoma California USA E.  multicarinata North 
CAS 251457 Sonoma California USA E.  multicarinata North 
MVZ 162054 Sonoma California USA E.  multicarinata North 
CAS 206459 Tehama California USA E.  multicarinata North 
CAS 227441 Tehama California USA E.  multicarinata North 
CAS 235901 Tehama California USA E.  multicarinata North 
CAS 252952 Yolo California USA E.  multicarinata North 

MVZ 161393 
Baja California 

Norte Baja California Mexico E.  multicarinata South 
HBS 130992 Isla Coronado Baja California Mexico E.  multicarinata South 
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HBS 130993 Isla Coronado Baja California Mexico E.  multicarinata South 
HBS 130994 Isla Coronado Baja California Mexico E.  multicarinata South 
HBS 130995 Isla Coronado Baja California Mexico E.  multicarinata South 
HBS 130996 Isla Coronado Baja California Mexico E.  multicarinata South 

BG Los Angeles California USA E.  multicarinata South 
CAS 227987 Los Angeles California USA E.  multicarinata South 

CHAR03 Los Angeles California USA E.  multicarinata South 
CHAR04 Los Angeles California USA E.  multicarinata South 
CHAR05 Los Angeles California USA E.  multicarinata South 
CRF 146 Los Angeles California USA E.  multicarinata South 
CRF 149 Los Angeles California USA E.  multicarinata South 

EMT   059 Los Angeles California USA E.  multicarinata South 
EMT   060 Los Angeles California USA E.  multicarinata South 
EMT   061 Los Angeles California USA E.  multicarinata South 
EMT   078 Los Angeles California USA E.  multicarinata South 
EMT   079 Los Angeles California USA E.  multicarinata South 
EMT   080 Los Angeles California USA E.  multicarinata South 
EMT   081 Los Angeles California USA E.  multicarinata South 
EMT   082 Los Angeles California USA E.  multicarinata South 
HAHA01 Los Angeles California USA E.  multicarinata South 
HAHA02 Los Angeles California USA E.  multicarinata South 

HBS 130997 Los Angeles California USA E.  multicarinata South 
JL1113 Los Angeles California USA E.  multicarinata South 
JL2015 Los Angeles California USA E.  multicarinata South 

LACM 145480 Los Angeles California USA E.  multicarinata South 
SDSU 4071 Los Angeles California USA E.  multicarinata South 
SDSU 4072 Los Angeles California USA E.  multicarinata South 

ST Los Angeles California USA E.  multicarinata South 
TB SAL1 Los Angeles California USA E.  multicarinata South 
TB SAL2 Los Angeles California USA E.  multicarinata South 

TP Los Angeles California USA E.  multicarinata South 
CAS 208712 Riverside California USA E.  multicarinata South 
CAS 228319 Riverside California USA E.  multicarinata South 

JLG701 Riverside California USA E.  multicarinata South 
JLG702 Riverside California USA E.  multicarinata South 
JLG703 San Bernardino California USA E.  multicarinata South 
JLG704 San Bernardino California USA E.  multicarinata South 
JLG705 San Bernardino California USA E.  multicarinata South 

HBS 130982 San Diego California USA E.  multicarinata South 
HBS 130983 San Diego California USA E.  multicarinata South 
HBS 130984 San Diego California USA E.  multicarinata South 
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HBS 130985 San Diego California USA E.  multicarinata South 
HBS 130986 San Diego California USA E.  multicarinata South 
HBS 130987 San Diego California USA E.  multicarinata South 
HBS 130988 San Diego California USA E.  multicarinata South 
HBS 130989 San Diego California USA E.  multicarinata South 
HBS 130990 San Diego California USA E.  multicarinata South 
HBS 130991 San Diego California USA E.  multicarinata South 
MVZ 162058 San Diego California USA E.  multicarinata South 
MVZ 230919 San Diego California USA E.  multicarinata South 
MVZ 162381 Santa Barbara California USA E.  multicarinata South 
MVZ 162066 Calaveras California USA E.  multicarinata WestSierra 
MVZ 175287 Calaveras California USA E.  multicarinata WestSierra 
CAS 234675 El Dorado California USA E.  multicarinata WestSierra 
CAS 235942 El Dorado California USA E.  multicarinata WestSierra 
CAS 236556 El Dorado California USA E.  multicarinata WestSierra 
CAS 208825 Fresno California USA E.  multicarinata WestSierra 
CAS 224866 Fresno California USA E.  multicarinata WestSierra 
CAS 235937 Fresno California USA E.  multicarinata WestSierra 
AGC 1151 Kern California USA E.  multicarinata WestSierra 
AGC 1152 Kern California USA E.  multicarinata WestSierra 
AGC 1153 Kern California USA E.  multicarinata WestSierra 

CAS 206440 Kern California USA E.  multicarinata WestSierra 
CAS 220919 Kern California USA E.  multicarinata WestSierra 
CAS 220920 Kern California USA E.  multicarinata WestSierra 
CAS 236212 Kern California USA E.  multicarinata WestSierra 
CAS 247436 Kern California USA E.  multicarinata WestSierra 
CAS 247437 Kern California USA E.  multicarinata WestSierra 

KLW 69 Kern California USA E.  multicarinata WestSierra 
MVZ 137822 Kern California USA E.  multicarinata WestSierra 
MVZ 137823 Kern California USA E.  multicarinata WestSierra 
MVZ 137826 Kern California USA E.  multicarinata WestSierra 
MVZ 137827 Kern California USA E.  multicarinata WestSierra 
CAS 212976 Madera California USA E.  multicarinata WestSierra 
CAS 212986 Madera California USA E.  multicarinata WestSierra 
CAS 205780 Mariposa California USA E.  multicarinata WestSierra 
CAS 209201 Mariposa California USA E.  multicarinata WestSierra 
MVZ 137825 Mariposa California USA E.  multicarinata WestSierra 
MVZ 243330 Mariposa California USA E.  multicarinata WestSierra 
MVZ 243333 Merced California USA E.  multicarinata WestSierra 
CAS 219611 Tulare California USA E.  multicarinata WestSierra 
CAS 220864 Tulare California USA E.  multicarinata WestSierra 
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CAS 220884 Tulare California USA E.  multicarinata WestSierra 
CAS 220908 Tulare California USA E.  multicarinata WestSierra 
CAS 223541 Tulare California USA E.  multicarinata WestSierra 
CAS 223578 Tulare California USA E.  multicarinata WestSierra 
CAS 235936 Tulare California USA E.  multicarinata WestSierra 
CAS 236172 Tulare California USA E.  multicarinata WestSierra 
MVZ 137828 Tulare California USA E.  multicarinata WestSierra 

MVZ 230094 Tulare California USA E.  multicarinata WestSierra 
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