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Learning Nouns with Domain-General Associative Learning Mechanisms 
 

George Kachergis 
gkacherg@indiana.edu 

Department of Psychological & Brain Science / Cognitive Science Program 
Bloomington, IN 47405 USA 

 
Abstract 

Associative learning has been meticulously studied in many 
species, and diverse effects have been explained using a 
handful of basic assumptions and mechanisms. Human 
language acquisition proceeds remarkably quickly and is of 
great interest, but is arguably more difficult to capture under 
the microscope. Nonetheless, empirical investigations have 
led researchers to theorize a variety of language learning 
principles and constraints. While there may indeed be 
language-specific learning mechanisms that are distinct from 
more universal associative learning mechanisms, we seek to 
explain some basic principles of language acquisition using 
domain-general mechanisms. Using an experiment and a 
model, we show how the principles of mutual exclusivity—an 
assumption of 1-to-1 word-object mappings, contrast, and 
other constraints related to fast mapping may stem from 
attention mechanisms attributed to associative learning effects 
such as blocking and highlighting, but directed by competing 
biases for familiar and unfamiliar pairs instead of surprise. 
Keywords: statistical learning; language acquisition; cross-
situational learning; associative learning; attention 

Introduction 
All organisms learn, but only humans master human 
languages. Since many neural structures and basic learning 
mechanisms are conserved across species, it bears asking 
how much of human language learning can be explained 
with domain-general mechanisms, without appealing to 
innate (i.e., evolved) linguistic knowledge, exemplified by 
the work of Noam Chomsky, or domain-specific principles 
and constraints, whether innate or developed early in life 
(e.g., Markman, 1992). 

One essential part of language learning is learning word-
object mappings—nouns. Two border collies have been 
shown to learn hundreds of nouns over years of training 
(Pilley & Reid, 2011; Kaminski, Call, & Fischer, 2004). Of 
course, this feat pales in comparison to human language 
learning: infants begin producing words at 1 year, and by 
the end of high school have command of 60,000 words, 
conservatively (Bloom, 2000). However, both dogs and 
infants have been shown to fast map: given a new word, 
they will choose a new object over an object with a known 
label, and retain the mapping weeks later (see Bloom, 
2000). Fast mapping is a powerful ability for word learning, 
but is it based on domain-general or domain-specific 
learning mechanisms? 

One approach to studying language acquisition views 
word learning as a problem of induction with an enormous 
hypothesis space, and proposes a number of constraints to 
restrict the space (Markman, 1992). In this view, infants 
generate hypotheses that are consistent with this set of 
constraints and principles. The present paper is concerned 

with a subset of these principles that relate to how people 
map new words to objects. 

Mutual exclusivity (ME) is the assumption that every 
object has only one name (Markman & Wachtel, 1988). A 
fill-the-lexical gap bias, which causes children to want to 
find a name for an object with no known name, has also 
been proposed (Clark, 1983) and argued (Merriman and 
Bowman, 1989). When given a set of familiar and 
unfamiliar objects, it has been shown that 28-month-olds 
assume that a new label maps to an unfamiliar object (e.g., 
Mervis & Bertrand, 1994). Similarly, the principle of 
contrast states that an infant given a new word will seek to 
attach it to an unlabeled object (Clark, 1983). Fill-the-gap, 
ME, and contrast make many of the same predictions made 
by the more general novel name-nameless category 
principle (N3C), which states that novel labels map to novel 
objects (Golinkoff, Mervis, & Hirsh-Pasek, 1994).  

It is not our goal to explore the overlapping and nuanced 
ways that these various principles interact. Indeed, we hope 
to avoid this confusing plurality of explanations by showing 
that many of the behaviors ascribed to these theories can be 
explained by domain-general learning mechanisms 
uncovered by studies of associative learning. Nor are we the 
first to suggest that human language acquisition—as fast 
and yet difficult as it is—can be explained with domain-
general learning mechanisms: Smith (2000) argued as much, 
and much recent work in statistical learning (described 
below) is motivated by this premise. Recent work has even 
found that children show a 1-to-1 bias in domains other than 
language: voices to faces (Moher, Feigenson, & Halberda, 
2010) and actions to objects (Childers & Tomasello, 2003). 
However, few direct analogies have been drawn between the 
models and paradigms of word learning and associative 
learning, but see Ramscar et al. (2010). After introducing 
some associative learning paradigms and linking them to 
word learning, we discuss how universal attentional biases 
may account for many behaviors observed across domains. 
Finally, we report a new empirical word learning study 
using an associative learning highlighting design, and 
explain the results with a word-learning model that has 
competing attentional biases for familiarity and uncertainty. 

Associative Learning 
Associative learning paradigms typically present one or 

more perceptual cues (e.g., objects, sounds), learners make a 
response (e.g., a button press), and feedback is given (e.g., 
food, a shock). When one cue q1 is paired with outcome o 
on each trial, the resulting q1-o association is stronger than 
q1-o when two simultaneous cues {q1, q2} predict o during 
training; thus, q2 is said to overshadow q1 (Pavlov, 1927). A 
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reasonable way to explain overshadowing is that attention is 
split between the two cues, and thus the associations q1-o 
and q2-o grow more slowly than when q1 appears alone. 
Attention is also used to explain the blocking effect (Kamin, 
1968), which can be induced using a design with two 
training stages. In the early stage, cue q1 is repeatedly paired 
with outcome o, and in the late stage q1 and q2 appear jointly 
preceding o. The association between q2 and o is found to be 
much weaker than when only the late stage occurs. Thus q2 
has been blocked by q1’s earlier association with o—much 
like mutual exclusivity (ME) states that learners will not 
map a second label (q2) to a known object (o). Learning 
models, updating knowledge trial-to-trial, account for 
blocking using selective attention to q1: since q1 already 
predicts o, there is no need to strengthen q2-o (e.g., Rescorla 
& Wagner, 1972; Pearce & Hall, 1980). Is blocking found 
in word-learning experiments? Can ME be thought of as 
blocking? As it happens, two cross-situational word-
learning studies can be seen to address these questions. 

Cross-situational Word Learning 
A key challenge in early word learning is to deal with the 

referential uncertainty intrinsic to complex scenes and 
utterances. Recent research has focused on how regularities 
in the co-occurrence of words and objects in the world can 
significantly reduce referential ambiguity across situations. 
Statistical word learning relies on two assumptions: 1) that 
spoken words are often relevant to the current situation, and 
2) that learners can remember to some degree the co-
occurrence of multiple words and objects in a scene. Thus, 
as the same words and objects are observed in different 
situations across time, people can learn the correct word-
object mappings.  

In adult cross-situational learning studies (e.g., Yu & 
Smith, 2007), participants are asked to learn the meaning of 
alien words from a series of training trials, each of which 
contains a few spoken words and a few objects. Although 
each word refers to a particular onscreen object, the 
intended referent is not indicated in any way, leaving 
meanings ambiguous on individual trials. Ichinco, Frank, 
and Saxe (2009) used a cross-situational word-learning task 
in which learners are first exposed to 1-to-1 pairings on a 
series of trials with four word-object pairs per trial. In the 
late stage, after people had presumably learned some of the 
mappings, a fifth object (or word, in another condition) 
began to consistently co-occur with one of the early words 
(or objects). The result was little learning of the association 
between old word (or object) and new object (or word) 
association, consistent with ME. However, this design can 
be seen to closely match a blocking design (see Table 1), 
with a few notable differences.  

First, it is unclear whether words should be construed as 
cues and objects as outcomes, or the reverse—an issue we 
will return to. Second, a cross-situational trial has multiple 
outcomes, unlike associative learning paradigms. Finally, no 
trial-to-trial feedback is given, but the learner may generate 
it on the basis of the preceding training trials. We contend 
that none of these differences are a fundamental problem 

with seeing cross-situational learning as associative 
learning. Indeed, if anything the learning problem in the real 
world is more like cross-situational learning: with a 
multitude of stimuli that may simultaneously serve as either 
cues or outcomes for as many other stimuli, learners attempt 
to associate correlated stimuli. 

 
Training Stage Ichinco et al., 2009 Kamin, 1968 

Early {w1, wx, wy, wz}- 
{o1, ox, oy, oz} q1-o 

Late {w1, wx, wx, wz}-
{o1, o2, ox, oy, oz} {q1, q2}-o 

Table 1: Comparison of the blocking paradigm (right) with 
a cross-situational word learning paradigm (left). In both 
paradigms, the late-stage stimulus (q2 / o2) is blocked from 
becoming associated with the outcome (o / w1), despite 
consistent co-occurrence in the late stage.  
 

Thus, learners in the Ichinco et al. study may not learn the 
extra association (w1-o2) because attention remains focused 
on strengthening the still-present early-trained association 
(w1-o1). This attentional account is equivalent to the popular 
account for blocking, and is corroborated by an earlier result 
that defies ME: Yurovsky and Yu (2008) used a two-stage 
cross-situational design much like Ichinco et al., but in the 
late stage when adding a new stimulus to an existing 
association, removed the old object (or word). Faced with a 
word (w1) they have associated with o1, but now seeing o2 
without o1 repeatedly, people learned the association, but 
also retained w1-o1 at test. Yurovsky & Yu’s learners cast 
about for a new associate, unblocked by the presence of an 
old associate to attend to—unlike in Ichinco et al.’s study. 
In summary, by establishing an analogy of cross-situational 
learning as a complex associative learning paradigm, we 
found that two cross-situational studies can be explained 
with a domain-general selective attention mechanism, 
without recourse to a language-specific constraint such as 
ME. To further examine the role of attention in cross-
situational learning, we do a word learning experiment using 
a design that in associative learning yields the interesting 
order effect of highlighting. 

Experiment: Highlighting 
Like blocking, highlighting is a learning order effect that 

has been attributed to selective attention (Medin & Edelson, 
1988; Kruschke, 1996). In an early stage of training, a cues 
PE (Perfect Early) and I (Imperfect) jointly appear on each 
trial, followed by outcome E (Early). In a late stage, cue I 
appears with PL (Perfect Late), followed by outcome L. 
Thus, I imperfectly predicts both outcomes, having first 
predicted E, and later L. On the other hand, PE perfectly 
predicts E, and symmetrically, PL perfectly predicts L. As 
depicted in Figure 1, learners show an order effect: PE and I 
both become associated with E in the early stage, and then 
PL becomes more strongly linked with L while I-PL 
languishes. This is presumably because attention is shifted 
away from I, since it already predicts E in the early stage. 
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Formerly known as the inverse-base rate effect (note that I 
is twice as frequent as PE or PL), Kruschke (2009) 
presented a study with balanced frequency of the early and 
late training stages and still found highlighting, lending 
further credence to the attention account. 

 
Figure 1: The co-occurrences of cues and outcomes in the 
highlighting design (right), and the estimated strength of 
associations between each cue and outcome (left), shown by 
the thickness of the lines. 

 
Following a similar design, we use the Experiment to ask 

1) whether highlighting occurs in a cross-situational 
framework with no explicit feedback on each trial, and 2) if 
words are cues and objects are outcomes, vice versa, or if 
they are interchangeable. As shown in Figure 2, this is done 
by making the cues in a highlighting design correspond to 
either words or objects, resulting in 2 words (cues) and 1 
object (outcome) per trial, or 2 objects (cues) and 1 word 
(outcome) displayed per trial. Seeing a highlighting effect in 
one condition and not the other may suggest one 
correspondence over the other, whereas highlighting in both 
conditions suggests that words and objects can act as either 
cues or outcomes. Finally, finding no highlighting would 
suggest that domain-specific mechanisms may be at work in 
word learning. 

 
Figure 2: Highlighting designs in the Experiment (left), with 
word x object co-occurrence matrices (right). In the words 
as cues condition, 2 words and 1 object were given on each 
trial (top), while 2 objects and 1 word were given in the 
objects as cues condition (bottom). 

Subjects 
Participants were 67 undergraduates at Indiana University 
who received course credit for participating. None had 
previously participated in cross-situational experiments. 
Stimuli & Procedure 
Twelve pseudowords and 12 objects were randomly drawn 
from larger sets of stimuli, randomly paired, and split 
between the two conditions. The pseudowords (words) are 
phonotactically-probable in English (e.g., “bosa”), and were 
spoken by a monotone, synthetic female voice. The objects 
were photographs and drawings of uncommon objects (e.g., 
sculptures, specialty tools). Each training trial in the words 
as cues condition consisted of one object and two spoken 
words, while training trials in the objects as cues condition 
had two objects visible while one word was spoken. In both 
conditions, the object(s) remained visible for the duration of 
the trial. Each trial began with 2s of silence before the first 
1s word was heard. In the words as cues condition, the 
second word was played after 1s of silence. In both 
conditions, the last word was followed by 3s of silence. In 
total, each trial in the objects as cues condition lasted 6s and 
trials in the words as cues condition lasted 7s. 

Training for each condition consisted of 28 trials. The 
highlighting structures shown in Figure 2 were replicated 
within each condition: in words-as-cues, people heard six 
words and saw four objects, while in objects-as-cues, people 
heard four words and saw six objects. Knowledge was 
assessed after the completion of each condition using 6AFC 
testing: learners were asked to choose the best object for 
each of the six words. That is, we are probing the 
conditional probability objects, given a word. Note that in 
words-as-cues, two of the six objects available at test had 
not been seen during training, while in objects-as-cues, two 
words were never heard. These were not removed to keep 
the conditions symmetric, and in case systematic response 
deviations were found. Words were tested in random order. 
Note that the test in the words as cues condition corresponds 
most directly to associative learning testing: participants are 
given a cue (word) and asked to predict the outcome 
(object). In the objects as cues condition, we are actually 
asking learners to choose the best cue (object) when given 
an outcome (word). Participants completed both conditions 
in counterbalanced order. 
Results & Discussion 
Figure 3 displays the conditional probabilities of choosing 
each object1, given each word, and the corresponding 
estimated relative strengths of each word-object association. 
The results in both conditions exhibit all the characteristics 
of highlighting: cue I is more strongly linked to E than L, 
and although PE-E and PL-L are both quite strong, PL-L is 
stronger. In the words as cues condition, object o1 (E) was 

                                                             
1 As noted before, there were two highlighting replications in 

each condition, so there were six objects available at test. Here we 
have collapsed the two replications for ease of presentation, and 
left out incorrect responses (e.g., choosing o4, o5, or o6 for w1, w2, 
or w3). The mean response probability for these cells is .08. 
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chosen significantly more than o3 (L; .51 vs. .25) for word 
w3 (I; χ2(1,N=79) = 9.23, p<.01). In the objects as cues 
condition, o3 (I) was chosen significantly more often for w1 
(E) than w3 (L; .28 vs. .16; χ2(1,N=73) = 6.04, p=.01). Thus, 
the early association of I with E kept I from becoming 
strongly associated with L—much like a mutual exclusivity 
constraint would keep people from associating a second 
word with an already-labeled object. Given words as cues, L 
(o3) was chosen more often for PL (w2) than E (o1) was 
chosen for PE (o1; .82 vs. .69), though the difference was 
not significant (χ2(1,N=157) = 1.08, p=.30). Similarly, given 
objects as cues, PL (o2) was chosen more often for L (w3) 
than PE (o1) was chosen for E (w1; .71 vs. .60), but again 
the difference was not significant (χ2(1,N=215) = 1.68, 
p=.20). Despite not being statistically significant2, these 
conditional response rates match a highlighting result in 
both cases: PL-L is learned faster (stronger) because little 
attention is given to I-L, as cue I is already associated with 
E. In terms of word learning, this is much like the novel 
name-nameless category principle (N3C; Golinkoff et al., 
1994): given a new object (or word—PL), it is reasonable to 
associate this with a new word (or object—L), rather than a 
word (or object—PE) with an already-known associate (E).  

 
Figure 3: Collated response probabilities (p(o|w)) for the 
two conditions in the Experiment (right). Both conditions 
show evidence of highlighting, with estimated association 
strengths shown by thickness of cue-outcome links (left). 
 
In summary, the Experiment shows that highlighting can 
take place in a cross-situational word learning context, both 
with objects as cues and words as outcomes, and vice versa. 
The selective attention account of highlighting holds that the 
early association of PE and I with E reduces attention to the 

                                                             
2 Testing the relative strength of PE-E and PL-L would ideally 

be done with a trial that presents both cue PE and PL, and asks 
learners which outcome is preferred. However, a test of this sort is 
difficult to do in a paradigm with spoken words, and we instead 
chose to match previous word learning paradigms for consistency. 

later co-occurrence of I with L, thereby leaving PL-L to gain 
more attention (i.e., strength). We contend that this domain-
general account explains word-learning behavior not only in 
this Experiment, but in many situations that have motivated 
verbal theories of language-specific constraints. In the next 
section, we introduce a version of a recent associative model 
of word learning that shows what sort of attentional biases 
can account for highlighting—and word learning. 

Model 
Familiarity and novelty are among the simplest ways to be 
aware of one’s knowledge state about stimuli, and both 
biases have been observed in infants—inferred from their 
influence on attention (for an overview, see Hunter & Ames, 
1988). Kachergis, Yu, and Shiffrin (2012) introduced an 
associative model with these biases, and showed that it 
accounts for fast mapping in adults, as well as gradual 
relaxation of ME with further training. The model assumes 
that word-object pairings on each trial compete for attention 
(i.e., associative strength). Attention is preferentially given 
to word-object pairings that are already associated by 
previous co-occurrence. Such a mechanism naturally 
exhibits blocking, since after the early association of q1 with 
o, it will continue to strengthen q1-o in the late stage, barely 
attending q2-o. However, the model’s bias for familiar 
pairings competes with a bias to attend to stimuli with no 
strong associate (e.g., a novel stimulus). This bias can help 
explain behaviors covered by language-learning principles 
such as contrast and N3C. We describe the model below, 
and show how it accounts for highlighting using competing 
attention for familiar pairings and uncertain stimuli. 

Formally, let M be an m word × m object association 
matrix that is arbitrarily large (here, m=100). Cell Mw,o is the 
strength of association between word w and object o. 
Strengths are subject to forgetting (i.e., general decay) but 
are augmented by viewing the particular stimuli. Before the 
first trial, M has no information: each cell is set to 1/m. On 
each training trial t, a subset S of words and objects appear.  

Association strengths are allowed to decay, and on each 
new trial a fixed amount of associative weight, χ, is 
distributed among the associations between words and 
objects, and added to the strengths. The rule used to 
distribute χ (i.e., attention) balances a preference for 
attending to unknown stimuli with a preference for 
strengthening already-strong associations. When a word and 
referent are repeated, extra attention (i.e., χ) is given to this 
pair—a bias for prior knowledge. Pairs of stimuli with no or 
weak associates also attract attention, whereas pairings 
between uncertain objects and known words, or vice versa, 
do not attract much attention. To capture stimulus 
uncertainty, we allocate strength using entropy (H), a 
measure of uncertainty that is 0 when the outcome of a 
variable is certain (e.g., a word appears with one object, and 
has never appeared with any other object), and maximal 
(log2n) when all of the n possible object (or word) 
associations are equally likely (e.g., when a stimulus has not 
been observed before, or if a stimulus were to appear with 
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every other stimulus equally). In the model, on each trial the 
entropy of each word (and object) is calculated from the 
normalized row (column) vector of associations for that 
word (object), p(Mw,·), as follows: 

 
The update rule for adjusting and allocating strengths for 

the stimuli presented on a trial is: 

 
In this equation, α is a parameter governing forgetting, χ 

is the weight being distributed, and λ is a scaling parameter 
governing differential weighting of uncertainty and prior 
knowledge (familiarity). As λ increases, the weight of 
uncertainty (i.e., the exponentiated entropy term, which 
includes both the word and object’s association entropies) 
increases relative to familiarity. The denominator 
normalizes the numerator so that exactly χ associative 
weight is distributed among the potential associations on the 
trial. For stimuli not on a trial, only forgetting operates. 
After training, for each word the model’s choice 
probabilities on k alternative objects is determined by the 
softmax choice rule (Bridle, 1990):  

 
where ϕ is a scaling parameter that determines the level of 
discrimination the model shows: ϕ values above 1 amplify 
small differences in association weights. 

The model was trained on the same 28 trials of word-
object co-occurrences experienced by participants in the two 
conditions, and the four parameters were fit to minimize the 
discrepancy between the model’s predicted response rates 
and the 36 human choice proportions for each condition. In 
the words as cues condition, the best-fitting parameters 
(χ=.11, λ=.46, α=1, ϕ=6.16) achieved an R2 of .984 
(MSE=9.5e-4). In the objects as cues condition, the best-
fitting parameters (χ=.12, λ=.37, α=1, ϕ=6.16) achieved an 
R2 of .884 (MSE=.0044). Both fits are quite good, and the 
best-fitting parameters are close in value. With α=1, 
forgetting was not operating; perhaps memory is not taxed 
by such a small number of words and objects—cross-
situational studies typically have more than a dozen pairs. 
With ϕ=6.16, the model showed good discrimination at test. 

Shown in Figure 4, the model’s response proportions are 
close to the data and fit qualitatively well, showing the 
highlighting effect in both conditions. How does the model 
do this? In the first stage of words-as-cues, when w1 (PE) 
and w3 (I) co-occur with o1 (E), attention is split between 
the associations w1-o1 and w3-o1, and the uncertainty about 
all three stimuli drops as knowledge grows. Moving to the 
second stage, when w2 (PL) and w3 (I) appear with o3 (L), 
w2-o3 demands more attention than w3-o3 because w3 has 
lower uncertainty from early training, while w2 is novel and 
has no associates. During the second stage, w2-o3 thus gets 

more attention than w3-o3, and becomes relatively stronger 
than the early w1-o1 association. Thus, using competing 
biases for uncertain stimuli and familiar associations, the 
model mimics the highlighting effect shown by people. 

 
Figure 4: Human response probabilities (right) and model 
response probabilities (left) closely match in the words as 
cues condition (top), and match well with objects as cues, 
showing highlighting in both cases. 
 

Intriguingly, the model shows an asymmetry between 
conditions that is less striking in humans. With objects as 
cues, when given w1 (E), the model shows less bias towards 
o1 (PE) than humans do: people choose o1 twice as often as 
o3 (I), whereas the model chooses o1 only a bit more than o3. 
Humans may show a stronger bias for o1 (PE) because they 
have retrospectively decreased the association between o3 
and w1 once o3 began appearing with w3. Another 
possibility is that people use uncertainty at test: o1 (PE) has 
lower entropy than o3 (I) since it only occurred with w1. 
With words as cues, both objects have equal entropy. This 
asymmetry deserves future study, and may yet leave room 
for language-specific constraints. 

General Discussion 
We have presented an analogy between cross-situational 
word learning and associative learning, shown how a study 
of the former (Ichinco et al., 2009) is a blocking design, and 
suggested the result is straightforwardly explained with the 
same domain-general attention mechanism. As evidence that 
attention creates order effects in word learning, we found 
highlighting—an associative learning effect ascribed to 
attention (Medin & Edelson, 1988; Kruschke, 1996)—in a 
cross-situational word learning experiment. Moreover, we 
showed that an associative word-learning model with 
competing attentional biases for familiarity and uncertainty 
(Kachergis, Yu, & Shiffrin, 2012) accounts for these results. 

By linking word learning to associative learning, as 
suggested by Smith (2000), we may find that the plurality of 
overlapping language-specific constraints (e.g., ME, N3C, 
contrast, and fill-the-gap) are unnecessary to explain many 
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language learning behaviors. Instead, we predict that a more 
parsimonious explanation will emerge, built upon a 
foundation of domain-general mechanisms. Language-
specific principles and constraints may yet exist, but we 
should first see how far more universal mechanisms take us.  

Moreover, note that this bridge between domains is two-
way: the present study used what was originally a word-
learning model to explain highlighting. Although our 
model’s attentional account is similar to the account given 
by other learning models (for an overview see Kruschke, 
2011), other models do not use competing uncertainty and 
familiarity biases to shift attention. Instead, many models 
use a measure of prediction error to determine the rate of 
association change (e.g., Rescorla & Wagner, 1972; Pearce 
& Hall, 1980). In language, objects produce words in 
speakers (“Watch out—snake!”), but words predict objects 
for listeners. For language learners, we have shown that 
both directions of training produce a highlighting effect, 
captured by our model’s symmetric associations and simple 
biases without generating predictions. These mechanisms, 
based on some of the simplest cues of knowledge state, may 
also fare well in other associative learning paradigms—in 
and out of a word-learning context. 

Thus, future work in both domains can benefit from an 
exchange of ideas to uncover commonalities and 
differences, and to flesh out and refine verbal theories. We 
hope that others will find it enlightening to explore the link 
between associative learning, language acquisition, and 
other domains.  
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