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HPC systems are continuously experiencing exponential growth in their scale. The issue 

of fault tolerance in these systems is becoming increasingly important for applications 

like Real-Time Time-Dependent Density Functional Theory (RT-TDDFT) that run for 

extended periods. Checkpoint - restart is a common method to achieve fault tolerance in 

HPC systems.  In this thesis, we analyze the performance of single file checkpoint-restart 

implementation in RT-TDDFT where data is collectively checkpointed to a single file, 

and find that storing the checkpoints in persistent storage adds significant performance 

overhead. We demonstrate multi-file checkpoint-restart in RT-TDDFT by creating 

multiple checkpoint files to improve the performance of checkpointing. We further 

reduce the performance overhead using in-memory checkpoint-restart where checkpoints 

are stored in-memory instead of persistent storage. We perform a comparative analysis 

and show that significant performance gains are achieved using multi-file and in-memory 

checkpoint-restart over single file checkpoint-restart. In this way, we implement multi-
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file and in-memory checkpoint-restart for fault tolerant RT-TDDFT on high performance 

computing systems. 
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1. Introduction 

 Checkpointing and restart is used to provide fault tolerance in high performance 

computing systems. As the number of processing nodes increases, the probability of 

failure in these nodes increases. If a failure occurs, applications need to restart the 

computations from the start thereby wasting computing resources. An application that 

checkpoints the data can be recovered from the checkpointed point on failure. 

Checkpointing can consume a significant portion of the execution time due to the time 

spent in storing the checkpoint on stable storage.  

 

In this thesis, we implement fault tolerance for Real-Time Time-Dependent Density 

Functional Theory (RT-TDDFT) implementation in Qbox [5] using multi-file and in-

memory checkpoint-restart. Qbox is a large-scale parallel implementation of First-

Principles Molecular Dynamics that runs on high performance computing systems. It 

implements a disk-based single file checkpoint wherein all the MPI tasks write their data 

to a single file on the disk using MPI collective I/O. A preliminary analysis of the 

performance of the checkpointing in HPC systems found writing speed to be the 

bottleneck and hence we focused on improving the writing speeds. We reduced the 

bottleneck by multi-file checkpoint-restart for fault tolerant RT-TDDFT. Instead of 

writing a single large file, each MPI task wrote its data into separate files using POSIX 

I/O instead of MPI collective I/O to the disk which improved the performance of 

checkpointing. Writing a file to a disk still introduces latency and writing overhead. To 
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reduce this overhead, we then stored the checkpointed data in the memory instead of the 

disk. We then show a comparative study on the improvement of checkpointing 

performance of in-memory checkpoint-restart and multi-file checkpoint-restart with that 

of single-file checkpoint-restart in RT-TDDFT on high performance computing systems.  

 

2. Background 

The usage of HPC systems is continuously increasing due to the increasing need for 

computing power. These systems come with their fair share of problems [7] and one of 

them being fault tolerance. They can go through hardware or software failures as the 

applications running in these systems are long running, sometimes running days or 

months. A failure could mean that days of computations could be lost, and the 

computations must start over again. These applications are usually written in MPI 

(Message Passing Interface) is used to write parallel software and a failure in MPI results 

in the application to completely stop and abort all the operations.  

Due to these reasons, fault tolerance is an important feature in high performance 

systems. Different methods of fault tolerance techniques approaches are used to achieve 

this. Proactive fault tolerance involves taking corrective action before failure occurs. This 

requires us to predict the failure and take appropriate action to avoid the failure. Failure 

prediction algorithms or hardware sensors [49] can be used to predict the failure. RAS 

log file or Reliability, Availability, and Serviceability log files are generally used to 

implement prediction algorithms for prediction [48]. However, false negatives of these 
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algorithms can have a very high impact. After failure is detected, corrective action could 

be migration methods like process-level migration and VM migration [49]. Process-level 

migration [52] involves the transfer of a process from one node to another on failure 

whereas VM migration involves the transfer of a VM from one node to another [50,51].  

Redundancy can also be used for fault tolerance. Hardware redundancy is created by 

adding more physical components that can be used on failure. This helps in providing 

fault tolerance for hardware failures. Having redundant is a form of software redundancy 

where one behaves as an active process and others as a passive process. ABFT or 

Algorithm based fault tolerance [22,24,25] is to detect and correct failures that happened 

during computation after the termination of the computation. ABFT usually is not 

applicable to all algorithms, but the overhead is low when it applies. Offline ABFT 

algorithms detect and correct the failure after the program has completed execution; 

however, this may not work if the number of failures exceeds a particular threshold [10]. 

Online ABFT algorithms [16, 33] correct the failures dynamically during execution. This 

is more useful for long running HPC applications where failure rates are high.  Recovery 

methods are also employed for fault tolerance. Recovery can consist of either forward 

recovery [10] or rollback recovery. Recovery [1] is to bring the system to a consistent 

state after a failure. Forward recovery is to bring the system to a new state so it can 

continue without repeating the computation. This method tries to let the systems recover 

by on its own to a normal execution and depends on algorithms that are designed for such 

cases [11]. On the other hand, rollback recovery consists of checkpointing, failure 
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detection, and recovery. Checkpointing stores the state of the program from which the 

program can recover after failure.  

 

 There are two types of rollback-recovery methods that can be used: 

Checkpointing-based and Log-based. Checkpointing based rollback-recovery based fault 

tolerance involves going back to the most recent consistent state. Since it is a distributed 

system, different processes could be at different stages of computation and hence there is 

a need to find a consistent global previous state [11]. Protocols are designed depending 

on the way checkpointing is carried out. In uncoordinated checkpointing, each process 

checkpoints at its own feasible point, and hence it can be difficult to find a globally 

consistent state during recovery [21]. Each process can checkpoint when it is feasible or 

when the state to be stored is minimal. Dependency among the processes can be used to 

find the point to recover from. However, this could cause excess storage use to multiple 

checkpoints or the recovery point could reach initial state called domino effect [45]. In 

coordinated checkpointing [20], all the processes synchronize the checkpoints. This way 

all the processes maintain the state at the same point and recovery becomes easier. 

Algorithms like Chandy and Lamport's algorithm are used [54]. Log-based rollback 

recovery is similar to checkpoint-based rollback recovery just that here the changes are 

recorded in a log [45]. The log is called the determinant, and the process is recovered 

using a checkpoint and then applying the determinants. We focus on two checkpoint-

based rollback-recovery methods, multi-file and in-memory checkpoint-restart in our 

thesis. 
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 Checkpoint-based rollback-recovery can done at different levels [1,3]. System-

level checkpointing involves the checkpointing being performed at the system-level and 

it is transparent to the user and no change is required in the application [55]. It can be 

implemented in OS kernel or hardware level. However, kernel-level source code might 

not always be available, and the implementation might not be portable to other platforms.  

Hardware-level checkpointing is done by building additional hardware that is transparent 

to the user. BLCR [47] is an example of system-level checkpointing.  User-level 

checkpointing uses a library that is linked to the application [56]. Hence this method is 

not transparent. A commonly known library implementation is libckpt [9]. In application 

level checkpointing [3], the checkpointing is implemented in the source code by the 

programmer [46]. This gives the flexibility to checkpoint only the required data that is 

needed to restart the application at the time when it is most feasible. It can run on 

heterogeneous systems but is not transparent to the user. The checkpointed data is stored 

in the persistent storage and the program is restarted from the checkpoint when a failure 

is detected. Implementation of checkpoints in the application requires a good 

understanding of the application by the implementer and it needs to be done for every 

application that needs to be checkpointed. However, it gives high flexibility to implement 

checkpointing and the checkpointing can be implemented in a way that works best for the 

intended application. We implement application-level checkpoint-restart for fault tolerant 

RT-TDDFT. 
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Research has shown that writing checkpoints on a stable storage is the dominant 

cost in checkpointing [8, 53]. Various techniques are designed to reduce this overhead 

[1,3].  Incremental checkpointing, checkpointing is done in increments and only the 

changed portion is checkpointed [10, 9]. The part that is not changed is recovered from 

the previous checkpoints. Techniques like page-level incremental checkpoint [57] where 

page-faults are used to find modified pages.  Compilers can be instrumented to add 

checkpointing code to the source code during compilation. One of the projects that 

implements this is C3 [53] which automates checkpointing for MPI programs. In forked-

checkpointing [9], parent process forks a child process. The child process carries out 

checkpointing and the parent process continues the execution. Other techniques like 

memory exclusion checkpointing [59], diskless checkpointing [60], and compression 

checkpointing [61] are also used to reduce the overhead. 

 

 In this thesis, we implement application-level checkpoint-restart for fault tolerant 

RT-TDDFT in HPC systems. We implement two new approaches of checkpoint-restart, 

starting from existing single file checkpoint-restart implementation we implement multi-

file and in-memory checkpoint-restart and demonstrate the performance benefits of the 

two approaches.  

3. Method 

The architecture of Qbox [6] is designed to run in thousands of processors to perform 

first-principles simulations. Qbox implements First-Principles Molecular Dynamics 
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(FPMD) [11] an atomistic simulation method and a large part of the computation 

involves computing the electronic structure. This computation is done using Density 

Functional Theory. During simulation, one-particle electronic wavefunctions are 

calculated using Kohn-sham equations. This calculation involves linear algebra and 

Fourier transforms. The wavefunction Fourier coefficients are block-distributed on a two-

dimensional grid. The third and fourth levels of data distribution include k-points and 

spins. Hence the wavefunction coefficients are distributed in a 4-dimensional grid. 

 

The Sample data structure in Qbox represents the data needed to simulate the physical 

system being simulated in Qbox [12]. It includes the set of atoms and species. It also 

includes the wavefunctions that consist of multiple slater determinants all distributed in 

the 2D structure.  The wavefunction matrix is of the form: (spins * k-points * bands * 

plane wave basis). Here, (bands * plane wave basis) represents the slater determinants.  

This matrix is distributed in a 4D grid of MPI tasks. All the sample information is needed 

to be present in the checkpointed data for proper recovery during a failure.  

The algorithms used to modify the samples are called steppers [5]. We experiment 

checkpoint-restart on Real-time Time-dependent density functional theory stepper. As 

shown in Algorithm 3.1, it is an iterative algorithm that updates the wavefunction on 

every iteration. Every iteration requires the wavefunction in the present state and the 

wavefunction in the previous iteration (Line 7) to generate the updated wavefunction. 

Because of this, we need to store two samples (Line 6, 16) having the given 

wavefunctions during checkpointing for recovery. 
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Algorithm 3.1: 

 

1. run_rt_sample_stepper(sample) 

2. { 

3.  for (rtiter) 

4.  { 

5.        compute1(); 

6.        checkpoint(sample_prev); 

7.   wavefunction_prev = sample_prev.wavefuntion; 

8.   compute2(sample_prev, wavefunction_prev); 

9.   for(rtitscf) 

10.        { 

11.          for(rtite) 

12.       { 

13.       compute3(); 

14.        }  

15.        } 

16.   checkpoint(sample); 

17.  } 

18. } 
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The number of iterations required is defined by the parameters ritter, rtitscf, and rtite. For 

recovery as shown in Algorithm 3.2, we need to read both the samples. We first read the 

previous sample and stored the wavefunction and then read the present sample to restart 

the computation. 

 

 

Algorithm 3.2: 

 

1. sample = recover(sample_prev) 

2. wavefunction_prev = sample.wavefunction; 

3. sample = recover(sample) 

4. run_rt_sample_stepper(sample, wavefunction prev)  

 

 

Failure was simulated using MPI_Allreduce (Line 7) where all the MPI tasks send their 

status whether they are healthy or not as shown in Algorithm 3.3. If a task fails at a 

particular iteration, it is detected by all the tasks. Once a failed task is detected, all the 

tasks restart their computation from the last checkpointed state (Line 10-14). 

 

Algorithm 3.3: 

 

1. if(iter == failure_iter && rank() == failure_rank) 

2. { 
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3.    Sample.rt_failure = true; 

4. } 

5.      

6. bool failure = false; 

7. MPI_Allreduce(&rt_failure, &failure, 1, MPI_C_BOOL, MPI_LOR,  

8.  MPI_COMM_WORLD); 

9.  

10. if(failure) 

11. { 

12.    Sample.rt_restart = true; 

13.    return; 

14. } 

 

Qbox keeps the sample on which simulations are performed in a single XML file using 

MPI collective I/O and these sample files could increase in sizes eventually causing I/O 

bottleneck. We instead first break the single file into multiple files and write using 

POSIX I/O to further parallelize the writes and improve I/O performance and then we 

forgo disk writing and instead store the data in the memory thereby further improving the 

performance.  

 

We talk about the single file checkpoint-restart techniques of checkpointing implemented 

in RT-TDDFT. Then we talk about how we implemented multi-file and in-memory 
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checkpoint-restart technique in the same.  We ran the iterative RT-TDDFT algorithm 

where the data was checkpointed between iterations. Failure was simulated using 

MPI_Allreduce where all the MPI tasks send their status whether they are healthy or not. 

If a task fails at a particular iteration, it is detected by all the tasks. Once a failed task is 

detected, all the tasks restart their computation from the last checkpointed state. 

 

3.1. Single File Checkpoint-Restart  

Single File Checkpoint-Restart uses the SampleWriter and SampleReader implementation 

present in the QBox source code. Data is checkpointed as a single file by all the MPI 

tasks collectively using MPI_File_write_at_all. Before writing the data, the data is 

shuffled using MPI_Alltoallv so that all the MPI tasks now hold the data that it is 

supposed to write. The file is written to Lustre File System using MPI collective I/O 

where the stipe count is kept according to the size of the checkpointing file. On failure, 

the programs recover to the previous checkpointed state. All the tasks clear the present 

data and start reading the checkpointed file. The file is read in parallel by all MPI tasks 

and reshuffled using MPI_Alltoallv. The computation then resumes from the last 

checkpointed state. 

 

Figure 3.1 shows the flow of single file checkpoint-restart. PEn is the MPI task where n 

denotes the rank of the task each holding data Dn. All the tasks checkpoint their data as a 

single file denoted as C_D in the disk storage.  
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Figure 3.1: Single File Checkpoint-Restart 

 

We used Perlmutter’s Scratch, an all-flash Lustre file system. On failure, all the tasks go 

through recovery where they clear the modified data after checkpointing present in the 

memory denoted in the figure as D’n. All the tasks then read the checkpointed data C_D 

where each task then holds the previous checkpointed data Dn and then the computation 

is continued from the previously checkpointed state.  

The following algorithm shows how sample writing in single file checkpointing is 

performed. 
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Algorithm 3.4: 

 

1. checkpoint(sample) 

2. { 

3.  MPI_File fh; 

4.  MPI_File_open(sample_file_name, &fh); 

5.  SharedFilePtr sfp(fh); 

6.  if(rank == 0) 

7.  {  

8.   // data written in XML format 

9.   write_header_data(sfp); 

10.   write_atom_data(atom); 

11.  } 

12.  // gather distributed 4D wavefunction matrix 

13.  vector<vector<string> > sdstr; // serialized data of local data present  

14.  for (spin_local) 

15.  { 

16.   const int ispin = isp_global(isp_loc); 

17.   for (kpoint_local) 

18.   { 

19.    // serialize  



 14 

20.    // slater_determinant[spin_local][kpoint_local] 

21.    // into sdstr[spin_local][kpoint_local] 

22.    st_sting; 

23.    for(band_local in slater_determinant[spin_local][kpoint_local]) 

24.    { 

25.     //perform 3D fft_backward 

26.     fft_backward(band_local);  

27.     // redistribute segments between processes; 

28.     MPI_Alltoall(band_local);  

29.     st_string += serialize(band_local);  

30.    }  

31.   sdstr[spin_local][kpoint_local] = st_sting;  

32.   // store serialized data in XML form; 

33.   } 

34.  } 

35. } 

36. // sdstr now contains all data to be written 

37. for(global_spin) 

38. { 

39.  for(global_kpoint) 

40.  {  

41.   MPI_Barrier(MPI_COMM_WORLD); 
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42.   offset = 0; 

43.   spin_local = get_local_spin(global_spin); 

44.   kpoint_local = get_local_kpoint(global_kpoint); 

 

45.   if(spin_local>=0 && kpoint_local>=0) 

46.   { 

47.    // compute offset of data on current task 

48.    offset = MPI_Scan(local_size, local_offset) 

49.   } 

50.   MPI_File_write_at_all(sfp.file(),offset,sdstr[spin_local][kpoint_local]); 

51.  } 

52. } 

 

 

Algorithm 3.4 starts with a shared file pointer and initially rank 0 writes the metadata and 

the atom and species data since this data is common across all the MPI tasks (Line 6-11). 

Then the 4D distributed wavefunction is written. First, every task serializes its own share 

of local data into a string by iterating in two-dimensions: spin and kpoint (Line 14-35). 

For each band within the slater determinant a 3D FTT backward is performed in 

coordination with all the tasks (Line 26). The data segments are redistributed among the 

involved tasks using MPI_Alltoall (Line 28) and then serialized into a string. After this 

process, all the tasks contain the data they are supposed to write. Now all the tasks write 

into the file in coordination. All the tasks again iterate in two dimensions with a 
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MPI_Barrier before every iteration (Line 41). The tasks which hold the data for the 

specific spin and kpoint (Line 45) concurrently write into the file by first calculating the 

file offset for themselves using their local offset size and MPI_Scan of all the offsets 

(Line 48). Then all the tasks write into the file MPI_File_write_at_all (Line 50). 

 

Recovery takes place in a similar approach as shown in the following algorithm: 

 

Algorithm 3.5: 

 

1. restart(sample_file_name) 

2. { 

3.  // All the tasks read the sample in parallel 

4.  file infile(sample_file_name); 

5.  // Create a distributed 2D matrix to store parsed wavefunction data 

6.  DoubleMatrix gfdata(gctxt); 

7.  // all the processes read their share of data from string to numerical values 

8.  XMLProcess(infile, gfdata);  

9.  // All the tasks read the atom and species data and store it in the sample 

10.  // Wavefunction handler reads the data from gfmatrix and performs redistribution 

11.  AtomSetHandler(sample, infile) 

12.  vector<complex<double> > wftmp 

13.  for(global_spin) 
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14.  { 

15.   for(global_kpoint) 

16.   {  

17.    MPI_Barrier(MPI_COMM_WORLD); 

18.    offset = 0; 

19.    spin_local = get_local_spin(global_spin); 

20.    kpoint_local = get_local_kpoint(global_kpoint); 

21.  

22.    if(spin_local>=0 && kpoint_local>=0) 

23.    { 

24.     for(band_local) 

25.     { 

26.      // redistribute data from gfdata to wftmp   

27.      MPI_Alltoallv(&gfdata, &wftmp) 

28.      fft_forward(slater_determinant[spin_local] 

29.       [kpoint_local][band], wftmpr); 

30.     } 

31.     MPI_Barrier(MPI_COMM_WORLD); 

32.    } 

33.   } 

34.  } 

35. } 



 18 

 

We see in Algorithm 3.5 that the checkpointed file is read in parallel by all the tasks 

(Line 4) and the atom and species data is parsed (Line 11) and stored in the sample. The 

wavefunction data is parsed from the XML file and then stored in a distributed matrix 

gfdata initially (Line 8). The 4D distributed wavefunction matrix of the sample is filled 

from the gfdata. The wavefunction is iterated in two dimensions: spin and kpoint having 

a barrier after every iteration. Each band is then iterated where gfdata for that band is 

redistributed and into wftmp which is a 2D grid (Line 27) and forward FFT is performed 

to change the data from real basis to Fourier basis and then saved in the 4D wavefunction 

grid (Line 28). 

Thus, we see how checkpoint and restart were performed using a single file in RT-

TDDFT code.  

 

3.2. Multi-File Checkpoint-Restart 

For multi-file checkpoint-restart, every MPI task writes its own data as a separate file. 

Each task writes its own data as a separate file in the Lustre File System using POSIX I/O 

having stripe length 1. Here, reshuffling of data is not required as each task is just writing 

its own data. On failure, the programs restart to the previous checkpointed state like the 

single file checkpoint-restart approach. The task clears their present data and then starts 

reading their checkpointed files. On completion, the MPI tasks resume their computation. 
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Multi-file checkpoint-restart is demonstrated in Figure 3.2. PEn is the MPI task where n 

denotes the rank of the task each holding data Dn.  

 

 

Figure 3.2: Multi-File Checkpoint-Restart 

 

While checkpointing each task stores the data in the disk i.e., Perlmutter’s Scratch as a 

separate file, and hence each task would have its own checkpointed file C_Dn. On 

failure, the tasks recover by first clearing their modified data D’n and then reading the 

checkpointed file C_Dn from the disk. The computation then restarts from the previous 

checkpointed state. 

 

 

 



 20 

The following algorithm shows how we implement multi-file checkpointing. 

 

Algorithm 3.6: 

 

1. checkpoint(sample) 

2. { 

3.  ofstream os; 

4.  // each task writes a separate file 

5.  os.open(sample_file_name + rank); 

6.  // data written in XML format by all the tasks 

7.  write_header_data(os); 

8.  write_atom_data(os, atom); 

9.  

10.  for(global_spin) 

11.  { 

12.   for(global_kpoint) 

13.   {  

14.    spin_local = get_local_spin(global_spin); 

15.    kpoint_local = get_local_kpoint(global_kpoint); 

16.    // each task writes only the data local to itself 

17.    st_sting; 

18.    if(spin_local>=0 && kpoint_local>=0) 
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19.    { 

20.     st_string.clear() 

21.     for(band_local in slater_determinant 

22.      [spin_local][kpoint_local]) 

23.     { 

24.      //perform 3D fft_backward 

25.      fft_backward(band_local); 

26.      // redistribute segments between process; 

27.      MPI_Alltoall(band_local);  

28.      st_string += serialize(band_local); 

29.     }  

30.    } else  

31.    { 

32.     st_string.clear(); 

33.     // this is needed for recovery 

34.     st_string << “mention meta data for kpoint and spin”  

35.    } 

36.   os << st_string; 

37.  } 

38.  MPI_Barrier(MPI_COMM_WORLD); 

39. } 
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Algorithm 3.6 shows the approach for multi file checkpoint. We see that each task creates 

a separate file for itself (Line 5) and all the tasks write the atom and species information 

in their own file (line 7 and 8). For writing the wavefunction, every task iterates through 

the 4D grid and checks if it has the part of the grid being iterated (Line 18). If it has the 

data for that iteration, each band within the slater determinant a 3D FTT backward is 

performed in coordination with all the tasks having the data (Line 25). The data segments 

are redistributed amongst the involved tasks using MPI_Alltoall and then serialized into a 

string (Line 27 and 28).  If the task does not have the data, the metadata of the spin and 

kpoint is added (Line 34).  We see that after this step we do not need to coordinate the 

write between the processes unlike the single file approach and we used POSIX I/O 

instead of MPI collective I/O and the checkpointing is completed. 

 

Recovery takes place as shown in the following algorithm: 

 

Algorithm 3.7: 

 

1. restart(sample_file_name) 

2. { 

3.  // All the tasks read their own sample checkpointed file in parallel 

4.  // Create a local 2D matrix to store parsed wavefunction data 

5.  file infile(sample_file_name + rank()); 

6.  vector<vector<double>> mul_gfdata; 
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7.  // all the processes read their data from string to numerical values 

8.  XMLProcess(infile, mul_gfdata);  

9.  // All the tasks read the atom and species data and store it in the sample 

10.  AtomSetHandler(sample, infile)  

11.  // Wavefunction handler reads the data from mul_gfdata 

12.   for(global_spin) 

13.  { 

14.   for(global_kpoint) 

15.   {  

16.    MPI_Barrier(MPI_COMM_WORLD); 

17.    spin_local = get_local_spin(global_spin); 

18.    kpoint_local = get_local_kpoint(global_kpoint); 

19.    for(global_band) 

20.    { 

21.     band_local = get_local_band(global_band) 

22.     if(band_local) 

23.     { 

24.     fft_forward(slater_determinant[spin_local] 

25.      [kpoint_local][band], mul_gfdata[spin_local] 

26.      [kpoint_local][band_local]); 

27.     } 

28.     MPI_Barrier(MPI_COMM_WORLD); 
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29.    } 

30.   } 

31.  } 

32. } 

 

We see in Algorithm 3.7 that every file reads its own checkpointed file.  The 

wavefunction data is parsed from the XML file and then stored in a local matrix 

mul_gfdata initially (line 5 and 8). The 4D distributed wavefunction matrix of the sample 

is filled from the mul_gfdata. The wavefunction is iterated in two dimensions: spin and 

kpoint having a barrier after every iteration. Here, every band is iterated and only if the 

band is part of the local band of the process (Line 19 and 22), the process carries out FFT 

transformation. All these steps are synchronized using MPI_Barrier (Line 28). 

Hence, we saw how we implemented multi-file checkpoint-restart for fault tolerant RT-

TDDFT. 

 

3.3. In-Memory Checkpoint-Restart 

In In-Memory Checkpoint-Restart, every MPI task stores a copy of its data in its own 

memory. Along with storing its own data, each task also stores the data of the previous 

task i.e. task i will store data of task i –1.  This sending and receiving of data is performed 

using MPI_Sendrecv. This is because, on failure, the failed task will lose the data present 

in its memory. The healthy tasks can recover from the data already present in their own 

memory. The failed task i will recover its data from its data stored in adjacent i + 1 tasks 
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memory by using MPISend and MPI_Recv and store the data in its own memory. It will 

also store its adjacent task i – 1 data in its memory to maintain a consistent state. Once 

this is done, all the tasks can recover by reading the data from its own memory and 

continue the computation.  

 

Figure 3.3 shows the working of in-memory checkpoint-restart.  PEn are the MPI tasks 

where n denotes the rank of the task each holding data Dn. During the checkpointing 

phase, each task creates a checkpoint of its own data that will be present in its memory. It 

is represented as C_Dn for task PEn. After that, every task sends the same checkpointed 

data to the next task to be stored in its memory represented as C_D(N-1) for task PEn. 

Thus, every MPI task PEn, after checkpointing, has its data Dn, and checkpointed data 

C_DN and C_D(N-1).  On failure, the failed task loses all the data present in the memory 

including the checkpoints stored. During recovery, all the healthy tasks clear their own 

modified data D’n and the failed task does not have any data due to failure. During 

restart, the healthy tasks recover from reading from their own checkpointed data in 

memory. The failed task goes through a different process. Assuming that PE1 task failed, 

PE1 receives its checkpointed data C_D1 from PE2, stores the checkpointed data in its 

own memory as C_D1, and then recovers the data from the checkpointed data from its 

memory as D1. PE1 also receives PE0’s checkpointed data C_D0 and stores it in its 

memory. This way we have a consistent state after restart and the computation continues 

from the previous checkpointed state. 
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Figure 3.3: In-Memory Checkpoint-Restart 
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The following algorithm shows how we implement in-memory checkpointing. 

 

Algorithm 3.8: 

 

1. checkpoint(sample) 

2. { 

3.  // the below two data structures map the name of the  

4.  // checkpoint file to the checkpoint data 

5.  // std::unordered_map<std::string, std::string> swriter.chkpt; 

6.  // std::unordered_map<std::string, std::string>  swriter.buddy_chkpt; 

7.  

8.  ostringstream os; 

9.  write_header_data(os); 

10.  write_atom_data(os, atom); 

11.  

12.  // This part of the algorithm is same as the multi-file approach, only  

13.  // difference being data being written to ostringstream instead of the file 

14.  

15.  // Send and receive size of checkpoint data from the adjacent tasks  

16.  int my_count = (int)os.tellp(); 

17.  int buddy_count; 

18.  MPI_Status status_sendrecv; 
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19.   

20.  int next_task = (MPIdata::rank() + 1) % MPIdata::size(); 

21.  int prev_task = (MPIdata::size() + MPIdata::rank() - 1) % MPIdata::size(); 

22.  

23.  MPI_Sendrecv(&my_count, 1, MPI_INT, next _task, 0, &buddy_count, 1,  

24.   MPI_INT, prev_task, 0, MPI_COMM_WORLD, &status_sendrecv); 

25.   

26.  // storing the tasks own checkpoint in-memory 

27.  chkpt[filename] = os.str(); 

28.  os.clear(); 

29.  

30.  buddy_chkpt[filename].resize(buddy_count); 

31.  

32.  char* osStringPtr = (char *)chkpt[filename].c_str(); 

33.  char* buddy_char = (char *)buddy_chkpt[filename].c_str(); 

34.   

35.  // getting the checkpoint task of the other task and storing it in-memory 

36.  MPI_Sendrecv(osStringPtr, my_count, MPI_CHAR, next_task, 0,  

37.   buddy_char, buddy_count, MPI_CHAR, 

38.   prev_task, 0, MPI_COMM_WORLD, &status_sendrecv); 

39. } 

 



 29 

The initial stage of Algorithm 3.8 is the same as multi-file checkpoint algorithm. All the 

data that is stored in the file is instead stored in the output string stream (ostringstream) 

(Line 8). Then we send and receive the size of the checkpoint data adjacent task using 

MPI_Sendrecv (Line 23). This is later used to specify the data size to receive from the 

adjacent task (Line 36). The task's own data is stored in the memory (Line 27) and the 

output string stream is cleared (Line 28). After that, the checkpoint data is sent and 

received from the adjacent tasks (line 36). 

 

Recovery takes place as shown in the following algorithm: 

 

Algorithm 3.9: 

 

1. restart(sample, my_failure) 

2. {  

3.  // my_failure is a boolean value that specifies 

4.  // the task is a failed task or a health task before recovery 

5.    

6.    // Below two MPI_Sendrecv is used to send and receive the health status i.e. 

7.  // healthy or  failed to both the adjacent nodes 

8.    bool buddy_failure_l; 

9.    bool buddy_failure_r; 

10.    MPI_Status status_sendrecv; 

11.  int next_task = (MPIdata::rank() + 1) % MPIdata::size(); 
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12.  int prev_task = (MPIdata::size() + MPIdata::rank() - 1) % MPIdata::size(); 

13.  

14.    MPI_Sendrecv(&my_failure, 1, MPI_C_BOOL,next_task, 0,&buddy_failure_l, 1, 

15.    MPI_C_BOOL, prev_task, 0, MPI_COMM_WORLD,  

16.   &status_sendrecv); 

17.  

18.    MPI_Sendrecv(&my_failure, 1, MPI_C_BOOL, prev_task, 0, &buddy_failure_r, 

19.    1, MPI_C_BOOL, next_task, 0, MPI_COMM_WORLD, 

20.   &status_sendrecv); 

21.  

22.  // if both the task and the task holding the failed tasks checkpoint has failed 

23.  // we cannot recover hence abort the recovery. 

24.    if(my_failure && buddy_failure_r) 

25.    { 

26.   MPI_Abort(MPIdata::comm(),1); 

27.    } else if(my_failure) 

28.    { 

29.   // if the task has failure the task receives its checkpointed data from 

30.   // the adjacent task and the other adjacent tasks checkpointed data 

31.  

32.   int my_count; 

33.   MPI_Recv(&my_count, 1, MPI_INT, next_task, 0, 
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34.     MPI_COMM_WORLD, &status_sendrecv); 

35.      

36.   swriter.chkpt[uri].resize(my_count); 

37.   char* my_char = (char* )swriter.chkpt[uri].c_str(); 

38.   MPI_Recv(my_char, my_count, MPI_CHAR, next_task, 0, 

39.     MPI_COMM_WORLD, &status_sendrecv); 

40.      

41.   MPI_Recv(&my_count, 1, MPI_INT, prev_task 0, 

42.       MPI_COMM_WORLD, &status_sendrecv); 

43.  

44.   swriter.buddy_chkpt[uri].resize(my_count); 

45.   my_char = (char* )swriter.buddy_chkpt[uri].c_str(); 

46.   MPI_Recv(my_char, my_count, MPI_CHAR, prev_task, 0, 

47.     MPI_COMM_WORLD, &status_sendrecv); 

48.    } 

49.  else if(buddy_failure_l) 

50.    { 

51.   // if the adjacent task has failed send its checkpointed data  

52.   //for the task to recover 

53.   int buddy_count = swriter.buddy_chkpt[uri].size(); 

54.   MPI_Send(&buddy_count, 1, MPI_INT, prev_task, 0, 

55.     MPI_COMM_WORLD); 
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56.  

57.  const char* osStringPtr = swriter.buddy_chkpt[uri].c_str(); 

58.  MPI_Send(osStringPtr, buddy_count, MPI_CHAR, prev_task, 0, 

59.    MPI_COMM_WORLD); 

60.    } else if (buddy_failure_r){ 

61.   // The task sends its own checkpointed data if the 

62.    // failed task has lost its data 

63.   int buddy_count = swriter.chkpt[uri].size(); 

64.   MPI_Send(&buddy_count, 1, MPI_INT, next_task, 0, 

65.     MPI_COMM_WORLD); 

66.  

67.  const char* osStringPtr = swriter.chkpt[uri].c_str(); 

68.      

69.  MPI_Send(osStringPtr, buddy_count, MPI_CHAR, next_task,  

70.   0,MPI_COMM_WORLD); 

71.   } 

72.   MPI_Barrier(MPI_COMM_WORLD); 

73. // After this point the same process is followed like the multi-file approach  

74. //instead of reading form file, data is read from the memory 

75. } 
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Thus, we see in Algorithm 3.9, 4 cases need to be handled while recovering. If both the 

tasks (Line 24) i.e., failed tasks and the task holding the failed tasks checkpointed data 

fails, we abort as it is not recoverable. If not, the failed task receives data from both the 

adjacent tasks (Line 41), and the adjacent sends the required data to the failed task using 

MPI_Sendrecv (Line 58 and 69). After this point, the execution continues similarly like 

the multi-file approach. Instead of reading from the file, data is read from the memory 

and the tasks are recovered. Thus, using the above approach we implemented in-memory 

checkpoint-restart for fault tolerant RT-TDDFT. 

 

Thus, we saw how two new checkpoint-restart techniques of multi-file and in-memory 

checkpoint-restart were implemented in RT-TDDFT implementation that runs high 

performance computing systems. 

 

4. Results 

4.1. Preliminary Analysis 

We performed a preliminary performance analysis on single file checkpoint-restart 

implementation in RT-TDDFT implementation. We analyzed serial writes where MPI 

collection I/O writes to Lustre File System with stripe count 1, 8, and 24. These tests ran 

for 100 iterations with checkpointing every 10 iterations.  
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As seen in Figure 4.1, time spent on writing keeps reducing as we use more 

parallelization in writing. Increasing the stripe count partitions the data into multiple 

OSTs thereby increasing the writing parallelism.  This achieves higher writing speeds.  

 

 

Figure 4.1: Percentage of time spent in writes vs storage methods 

 

Figure 4.2 shows the increase in writing speed with an increase in stripe count of Luster 

File System. We tried increasing the number of nodes to achieve higher writing speeds.  

Figure 4.3 shows the writing speed changes with respect to an increase in the number of 

nodes. We see that writing speed does not improve with the increase in the number of 

nodes.  This shows the bottleneck in the writing process.  
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Figure 4.2: Writing speeds vs Lustre FS stipe count 

 
Figure 4.3: Writing speed vs number of nodes 
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To further increase the sample size, we ran a large sample having the checkpointed file 

size of around 120GB, checkpointing every iteration for 10 iterations and the profiling 

results showed that 14.01% time was spent on writing to the disk using MPI collective 

I/O as shown in Figure 4.4. Thus, we see a significant amount of time being spent in 

checkpointing is due to slow writing speed. An increase in data size could further 

increase the overhead hence there is a need to improve the performance of checkpointing. 

 

 

Figure 4.4: Profiling result for large samples 

 

Thus, we see that writing speed is consuming a significant portion of the computation 

time for checkpointing in RT-TDDFT and is a bottleneck that needs to be improved to 

decrease the overhead of checkpointing. 

 

4.2. Comparative Analysis 

We performed a comparative analysis of our two newly implemented methods, multi-file 

checkpoint-restart and in-memory checkpoint-restart in RT-TDDFT with single-file 
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checkpoint restart. By trying different checkpointing frequencies in the iterations and 

comparing the time taken for checkpointing, program execution time, and recovery time. 

We performed the tests with 100 iterations on 5 nodes having 640 MPI tasks with around 

4GB of checkpointing data. For single file checkpoint-restart, the files were written to the 

Lustre file system with stripe count 8 and for multi-file checkpoint-restart, the files were 

written with stripe count 1. 

 

For time spent in checkpointing, as shown in Figure 4.5 we see that there is significant 

performance gain as the frequency of checkpointing increases. We see that there is an 

85.93% decrease in checkpointing time from single file checkpoint-restart to multi-file 

checkpoint-restart and a 26.9% decrease in checkpointing time from multi-file 

checkpoint-restart to in-memory checkpoint-restart for checkpointing every iteration.  

 

 
Figure 4.5: Checkpointing time vs checkpointing frequency 
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This shows that writing a single file to a disk is much slower than writing multiple files 

and writing to the main memory is much faster than writing to the disk. 

 

We see similar results for the total program execution time as well as shown in Figure 

4.6. There was a 38.55% decrease in program execution time from single file checkpoint-

restart to multi-file checkpoint-restart and a 2.45% decrease from multi-file checkpoint-

restart to in-memory checkpoint-restart for checkpointing every iteration. As the 

checkpointing time decreased the program execution time improved as well. We see an 

overall better result as the overhead of writing to the disk decreases.  

 

 

Figure 4.6: Program time vs checkpointing frequency 
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From these two results, we found that the percentage of time spent on checkpointing in 

the total execution time reduced from 44.33% to 10.14% from single file checkpoint-

restart to multi-file checkpoint-restart and from 10.14% to 7.6% from multi-file 

checkpoint-restart to in-memory checkpoint-restart for checkpointing every iteration as 

shown in Figure 4.7. Thus, we see that the performance of checkpointing improved 

significantly as more parallelism is achieved due to having multiple files, and writing in-

memory is much faster than writing to the disk. 

 
 

 
Figure 4.7: Percentage time spent in checkpointing 

 

Having faster recovery time is important where failures are a common occurrence as too 

much time being spent on recovery would increase the program execution time. We also 

compared the recovery time taken for the three approaches.  
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As shown in Figure 4.8, we see a 67.56% decrease in recovery time from single file 

checkpoint to multi-file checkpoint-restart and a 6.53% decrease in recovery time from 

multi-file checkpoint-restart to in-memory checkpoint. This shows that time spent in 

recovery also decreases when separate files are used and when reading data in-memory. 

 

 
Figure 4.8: Recovery time vs checkpoint type 

 

We ran a test for a checkpointing sample having 254GB of checkpointing data compared 

to the previous test of 4GB data. We found similar results for higher data sizes as well 

indicating good performance irrespective of the size of the checkpointing data. In Figure 

4.9, we see that single file checkpoint-restart took 43.20% of execution time but multi-

file checkpoint-restart and in-memory checkpoint-restart took just 12.69% and 10.53% of 

execution time respectively when checkpointing every iteration. 
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Figure 4.9: Percentage time spent in checkpointing for higher data size 

 

We analyzed data transfer speeds for multi-file checkpoint-restart and in-memory 

checkpoint-restart. We ran tests on 5 nodes, 640 MPI tasks for saving a checkpoint file of 

around 130 GB. Each task had a file size of around 217 MB. The aggregate writing speed 

of all tasks includes computation time and serialization time was 20.08 GB/s and 20.25 

GB/s for multi-file checkpoint-restart and in-memory checkpoint-restart respectively and 

individual task writing speed for the same was 33.61 MB/s and 33.9 MB/s.  

For multi-file checkpoint-restart, the file stream writing without compute and 

serialization had an aggregate speed of 230.11 GB/s and an individual writing speed per 

task was 385.20 MB/s. 
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For in-memory checkpoint-restart, the MPI_Sendrcv bandwidth without compute and 

serialization had an aggregate speed of 260.38 GB/s and the individual writing speed per 

task was 435.88 MB/s. 

 

 

Multi-File 

Checkpoint-

Restart 

In-memory 

Checkpoint-Restart 

Number of nodes, MPI 

tasks 5 nodes, 640 MPI tasks 

Write Time 6.47 s 6.42 s 

Aggregate file size 130 GB 130 GB 

File size per MPI task 217 MB 217 MB 

Aggregate write speed 

(including computation + 

serialization time) 20.08 GB/s 20.25 GB/s 

Write speed (including 

computation + 

serialization time) 33.61 MB/s 33.9 MB/s 

Aggregate write speed 

230.11 GB/s 

(ofstream) 

260.38 GB/s 

(MPI_Sendrcv) 

Write speed per MPI task 

385.20 MB/s 

(ofstream) 

435.88 MB/s 

(MPI_Sendrcv) 

Bandwidth Limit 

5 TB/s (Permultter Scratch Lustre FS, 

aggregate, 298 OST, 4864 perlmutter 

nodes) 

25 GB/s (NIC, 1 per node) 

204.8 GB/s (memory bandwidth per 

CPU, 2 CPUs/node, 64 cores/CPU) 

 

 Table 4.1: Data transfer speed 



 43 

5. Discussion 

In this thesis, we implement checkpoint-restart in RT-TDDFT using multi-file and in-

memory checkpoint-restart techniques. We performed a comparative analysis of multi-

file and in-memory checkpoint-restart with single file checkpoint-restart. Compared to 

other techniques for performance improvement, multi-file checkpoint-restart, and in-

memory checkpoint-restart provide multiple benefits. 

 

Incremental checkpointing requires storing multiple increments of changes. This 

could increase the cost of storage. The recovery also becomes complex as multiple files 

involving changes are kept and need to be applied on recovery. Both multi-file and in-

memory checkpoint-restart overwrite the original file so it does not involve finding the 

previous changes. This improves the ease of checkpointing and recovery. Forked-

checkpointing creates a fork of the process to checkpoint the data which requires an 

additional overhead of creating a separate copy of the process. It is possible that both 

processes could be competing for resources. Multi-file and in-memory checkpoint-restart 

is much simpler in that it does not require creating unwanted copies of the resources and 

in-memory checkpoint-restart utilizes memory only for the data needed for recovery. 

Using compilers for instrumenting checkpointing code might not always be effective as it 

is not always possible to decide where to checkpoint and at what interval. Compared to 

that, our method gives us complete flexibility in deciding at what point and at what 

frequency to checkpoint. Compilers may not be able to fully utilize the parallelization of 
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multiple processes. In-memory checkpoint-restart utilizes parallelization by storing 

checkpoints in adjacent process memory and all the processes can perform this in parallel 

and the same goes for multi-file checkpoint-restart. All the processes write their 

checkpointing file in parallel utilizing complete parallelization. System level 

checkpointing is not necessarily portable as they are performed on the kernel level or 

hardware level. Our implementation is portable and does not depend upon the underlying 

kernel or hardware.  

 

Our approach does have some limitations as well. In-memory checkpoint-restart 

requires the application to have enough free memory to store the checkpointing data of 

itself and its peers.  However, an application having enough free memory benefits from 

this approach as extra disk space is not required and it helps in utilizing the free resources 

available. An application not having enough free memory can still fall back on multi-file 

checkpoint-restart and can benefit from the performance gains compared to the single file 

checkpoint-restart. There is also a possibility that the task holding the checkpointed data 

for a failed task also fails and the failed task is not able to recover. Such issues can be 

fixed by either storing the checkpoints to the disk with less frequency or by storing the 

checkpointed data with few a more tasks as well to have more redundancies. The multi-

file checkpoint-restart approach could generate too many small files if the number of MPI 

tasks is high, and the data held by each task is less. Approaches like grouping tasks and 

generating single file for the group i.e., using a hybrid approach of single and multi-file 

checkpoint-restart can lower the cost of generating too many small files.  



 45 

 

Thus, we see that both approaches give a lot of flexibility in the way of 

implementation compared to the other approaches used for checkpointing. Other 

approaches can be paired with it and can be further improved to reduce the cost of 

checkpointing. 

 

6. Conclusion 

Checkpointing an application provides fault tolerance in high performance computing 

systems. However, checkpointing comes with a dominant cost of writing on a stable 

storage. In this thesis, we analyzed the overhead of single-file checkpoint-restart present 

in Real-Time Time-Dependent Density Functional Theory implementation. We then 

decreased the overhead by creating multiple files for checkpointing. We further improved 

the checkpointing process by storing the data in-memory instead of the disk. These two 

techniques for checkpoint-restart showed significant checkpointing performance gains in 

RT-TDDFT computation in HPC systems. Similar results were seen in restoration times 

on failure as well. Restoring from multiple files or from memory performed better than 

restoring from a single file. Thus, we implement fault tolerant RT-TDDFT by in-memory 

and multi-file checkpoint-restart in high performance computing systems. 
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