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Advances in Stochastic Optimization for Machine Learning

Abstract

We discuss two advances made in Stochastic Optimization where they arise out of a general

problem, namely minimizing an objective function of the form f(x) = Eξ[F (x, ξ)] for x ∈ X ⊆ Rn,

where F (x, ξ) is a stochastic function with some random variable ξ.

The first project, in Chapter 2, deals with minimizing an objective function of the form

f1 ◦ · · · ◦ fT (x) where fi(x) = Eξi [Gi(x, ξi)]. In this setting, we assume that each component fi is

smooth, and in addition, we assume the access of a first-order oracle that outputs noisy estimates

of the components and their derivatives. We introduce two algorithms that utilize moving average

updates, and we prove that they converge to an ε-stationary point. The difference between these

two algorithms is the first uses a mini-batch of samples in each iteration while the second uses

linearized stochastic estimates of the function values. The sample complexities of the mini-batches

and the stochastic linearized approaches for obtaining an ε-stationary point are O( 1
ε6

) and O( 1
ε4

),

respectively.

The second project, in Chapter 3, discusses minimizing a convex function f0(x) = Eξ0 [F0(x, ξ0)]

with functional inequality constraints fi(x) = Eξi [Fi(x, ξi)] 6 0 (i ∈ {1, . . . ,m}) using a zeroth-

order oracle. We assume that we have access to noisy function value evaluations. The algorithm

performs an extrapolation and numerically solves the dual optimization problem by performing

a gradient ascent and descent at each iteration. Finally, the numerical solution is the weighted

average of the iterates from the gradient descents. The number of calls to the oracle to find an

ε-approximate optimal solution is O( (m+1)n
ε2

). Next, we present an algorithm in the non-convex

setting based on [25]; utilizing our algorithm for the convex setting, the non-convex algorithm has

sample complexity O( (m+1)n
ε3

).
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CHAPTER 1

Introduction

Optimization lies at the heart of machine learning. Most machine learning methods utilize

optimization algorithms. When we train a machine learning model that makes predictions, so as

a first step, we need to optimize its corresponding loss function - it tells us how much error is

incurred from our training dataset. During training, one would optimize the model’s parameters

by gradient descent, an optimization algorithm that minimizes a convex, smooth function. In the

machine learning community, there are many scientific papers on deep learning - learning based on

a network of layered nodes. As part of the training process, backpropagation is used to compute

the gradient of the neural network and is used to optimize the weights through mini-batch gradient

descent.

So far, we have seen that Optimization plays a huge role in machine learning; in fact, it has a

huge intersection in the training phase of a learning algorithm - minimizing a function. Now we turn

our attention to a subfield of Optimization - Stochastic Optimization. This field refers to methods

for minimizing or maximizing an objective function where randomness is present. One application of

a stochastic optimization problem is least squares: minimizing ‖Ax−b‖22. To see this as a stochastic

optimization problem, we can rewrite the least squares problem as f1 ◦ f2(x) = ‖Ax − b‖22 where

f1(x) = ‖x‖22, f2(x) = Ax−b, and these functions can be rewritten in the form fi(x) = Eξi [Gi(x, ξi)]

for i ∈ {1, 2} and random variables ξ1, ξ2.

In this dissertation, we examine two projects. The first project examines the T -level composition

problem:

min
x∈X⊂RdT

f1 ◦ f2 ◦ · · · ◦ fT (x),

where fi(x) = Eξi [Gi(x, ξi)] with fi : Rdi → Rdi−1 for each i ∈ {1, 2, 3, . . . , T} (d0 = 1), and

it proposes two stochastic algorithms to solve this problem. The second project examines the
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following objective function with functional inequality constraints:

min
x∈X⊂Rn

f0(x)

s.t. fi(x) 6 0, i = 1, . . . ,m,

where i ∈ {0, 1, . . . ,m}, fi(x) = Eξi [Fi(x, ξi)], and it solves the problem in the convex and non-

convex setting using zeroth-order information.

1.1. Soft introduction to Stochastic Optimization

We focus on a stochastic optimization problem of the form

min
x∈X⊆Rn

{f(x) = Eξ[F (x, ξ)]} (1.1)

since this closely resembles our two projects. We discuss solving this problem using a zero-order

and a first-order oracle. Before doing so, we look at the following minimization problem

min
x∈X⊆Rn

f(x) (1.2)

where we do not know the form of f , in contrast to problem (1.1). We briefly discuss what zero-order

and first-order Optimization means - both use zeroth-order and first-order oracles, respectively.

In first-order Optimization, a first-order oracle grants access to the function value f(x) and

its gradient ∇f(x) for each x ∈ X ⊆ Rn. Therefore, we can use projected gradient descent

method to find the minimizer. In the unconstrained case, our update is just gradient descent:

xk+1 = xk − λ∇f(xk) with λ > 0.

For zeroth-order Optimization, we only have access to function values f(x) for each x ∈ X = Rn.

We cannot use gradient information since we do not have access to such information, but we can

approximate the gradient using Gaussian smoothing. According to [99], we form the Gaussian

smoothing fν of f by the following formula:

fν(x) = Eu[f(x+ νu)] where u ∼ N (0, In) and ν > 0.

2



If we further assume that f is Lipschitz continuous, [99] says that

|fν(x)− f(x)| 6 νLf
√
n for x ∈ X = Rn,

where Lf is the Lipschitz constant of f - see [99] for other error bounds when f has a certain degree

of smoothness. [99] showed that

Eu
[
f(x+ νu)− f(x)

ν
u

]
= ∇fν(x)

where ν > 0 and

‖∇fν(x)−∇f(x)‖∗ 6
ν

2
L∇f (n+ 3)3/2,

provided that f is continuously differentiable and has gradient lipschitz. Here, ‖ · ‖∗ denotes the

dual norm. We refer interested readers to [99] for other types of error bound depending on the

smoothness of f . We can use this gradient estimator and use gradient descent to minimize f(x).

In the zeroth-order setting for (1.1), we have a zeroth-order oracle: for each x ∈ X, the

stochastic oracle outputs F (x, ξ) such that

E[F (x, ξ)] = f(x).

Furthermore, an additional assumption in the stochastic oracle may include the following variance

assumption:

E[‖F (x, ξ)− f(x)‖22] 6 σ2
f . (1.3)

As done previously, we need first-order information or some estimation of it, so we can come up

with a method to solve this minimization problem. One approach is to use Gaussian smoothing on

F (x, ξ) for fixed ξ. Therefore, we have

Eu,ξ
[
F (x+ νu, ξ)− F (x, ξ)

ν
u

]
= ∇fν(x).

We add this biased derivative estimate to our zeroth-order oracle assumptions and add a variance

assumption similar to (1.3). We can call this difference quotient expression G(x, ξ, u) which is
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an unbiased estimator for ∇fν(x) - see (3.1). From this, we can make the following variance

assumption: E[‖G(x, ξ, u)−∇fν(x)‖2] ≤ σ2 for some σ ≥ 0. These quantities F (x, ξ) and G(x, ξ, u)

would be our calls from the zeroth-order oracle, and we can perform a gradient descent method to

solve the perturbed problem - minimizing fν(x) over x ∈ X = Rn.

Returning to problem (1.1), we discuss the set up of the first-order method. Remark: In the

first-order setting, we will use the notation G(x, ξ) instead of F (x, ξ) as our unbiased estimator of

f(x). Our first-order oracle will have the following setup: for each x ∈ X ⊆ Rn, the stochastic

oracle delivers a random variable and vectors G(x, ξ) and J(x, ξ) such that

E[G(x, ξ)] = f(x),

E[J(x, ξ)] = ∇f(x),

E[‖G(x, ξ)− f(x)‖2] ≤ σ2
0,

E[‖J(x, ξ)−∇f(x)‖2] ≤ σ2
1,

where σ0, σ1 are some non-negative constants, and we can perform a gradient descent using these

random quantities to achieve an acceptable numerical solution.

Depending on whether our problem is convex or non-convex, the metric of convergence would

measure how small E[f(xk) − f(x∗)] is when f is convex and x∗ minimizes f . In the non-convex

setting, we examine the smallness of the quantity E[‖∇f(xk)‖].

1.2. Introduction to Chapter 2: Optimizing nested functions

The research direction done in the first project - our contribution - started from [63]. In that

research paper, the authors examined the following optimization problem:

min
x∈X

f1 ◦ f2(x), (1.4)

where f1(x) = Eξ1 [G1(x, ξ1)] and f2(x) = Eξ2 [G2(x, ξ2)] are Lipschitz smooth with G1, G2 being

some stochastic functions, and X is a closed convex set. To solve this, an approach used in [63]

utilizes a first-order oracle to obtain function and derivative estimates to our component functions

f1, f2. Using these information, the authors use a gradient descent and make appropriate updates
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using moving averages; these updates include our approximate solutions, approximate gradients,

and other approximations.

In the unconstrained setting and for simplicity, our convegence metric for this non-convex

problem will measure in expectation how close our spatial iterates are to the local minimum and

to the stational point - see [63] for more information.

Here comes our contribution: we numerically solve the optimization problem of the composition

of T > 3 functions where our assumptions are similar to the two-level nested problem.

1.3. Introduction to T -level nested problem

We consider multi-level stochastic composition optimization problems of the form

min
x∈X

{
F (x) = f1 ◦ · · · ◦ fT (x)

}
, (1.5)

where fi : Rdi → Rdi−1 for i = 1, . . . , T (d0 = 1) are continuously differentiable function and X is

a closed convex set. We assume that the exact values and derivatives of fi’s are not available. In

particular, we assume that fi(x) = Eξi [Gi(x, ξi)] for some random variables ξi ∈ Rd̃i .

Note that when T = 1, the problem reduces to the standard stochastic optimization prob-

lem which has been well-explored in the literature; see, for example [27, 62, 79, 106, 115], for

a partial list. In this work, we consider stochastic first-order algorithms for solving eq. (1.5)

when T ≥ 1. Note that the gradient of the function F (x) in eq. (1.5), has the form ∇F (x) =

∇fT (yT )∇fT−1(yT−1) · · · ∇f1(y1), where yi = fi+1 ◦ · · · ◦ fT (x) for 1 ≤ i < T and yT = x. Our

goal is to solve the above optimization problem, given access to noisy evaluations of ∇fi’s and fi’s.

Precise assumptions on our stochastic first-order oracle considered will be stated later in section 2.1.

Because of the nested nature of the gradient ∇F (x), obtaining an unbiased gradient estimator in

the online setting, with controlled higher moments, becomes non-trivial.

Although problems of the form in eq. (1.5) have been considered since the work of [51], recently

there has been a renewed interest on this problem due to applications arising in mathematical

finance, nonparametric statistics, deep generative modeling and reinforcement learning. We refer

the reader to [22, 26, 38, 52, 63, 100, 125, 126, 129, 131] for such applications and various algorithmic

approaches for solving problem eq. (1.5). In particular [125] and [129] considered the case of
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T = 2 and general T respectively, and analyzed stochastic gradient-type algorithms. Such an

approach leads to level-dependent and sub-optimal convergence rates. However, large deviation

and Central Limit Theorem results established in [52] and [38], respectively, show that in the

sample-average or empirical risk minimization setting, the arg min of the problem in eq. (1.5) based

on n samples, converges at a level-independent rate (i.e., the target accuracy is independent of T )

to the true minimizer, under suitable regularity conditions. Hence, it is natural to ask the following

question: Is it possible to construct iterative online algorithms for solving problem eq. (1.5) with

level-independent convergence rates? Recently, for the case of T = 2, [63] proposed a single time-

scale Nested Averaged Stochastic Approximation (NASA) algorithm with complexities matching

the case of T = 1. This resolved the above question for T = 2. However, constructing similar

algorithms for the case of general T had remained less investigated.

Main contributions. In this work, we propose two algorithms for solving problem (1.5)

with level-independent convergence rates in the stochastic first-order oracle setting, under mild

assumptions. Our complexity results are summarized in Table 1.1. The first algorithm is based

on an extension of the NASA algorithm from [63] (proposed for the case of T = 2) to the general

T ≥ 1 setting, requiring a mini-batch of sample in each iteration. Although this algorithm has

level-independent convergence rates, the sample complexity (i.e., the number of calls to stochastic

first-order oracle) does not match that of standard stochastic gradient algorithm for T = 1 or

the NASA algorithm for T = 2. The second algorithm is based on a modification to the NASA

algorithm, motivated by the standard linearization technique [37, 45, 109, 110], mainly used for non-

smooth problems. For any T ≥ 1, we show that this algorithm has the same oracle complexity as

that of the regular stochastic gradient algorithm for the case of T = 1, thereby providing a complete

answer to the question above. We emphasize that unlike our first algorithm, this algorithm does

not require a mini-batch of samples in any iteration and hence is more suitable to the online setting.

Comparisons to related works. A summary of our results, in comparison to the most re-

lated work of [129] is provided in Table 1.1. We remark that the approach and the results in [129]

are provided only for the unconstrained setting. We also highlight the related work of [131] which

considered problems of the form minx∈RdT {F (x) +H(x)}, with F (x) being a multi-level composite
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function as in eq. (1.5) and H(x) being a convex and lower-semi-continuous function. Typically

H(x) could be considered as an indicator function of the constrained set X to relate the above prob-

lem to our setup in eq. (1.5). The algorithm proposed in [131] is a proximal variant of SPIDER

variance reduction technique [53] and is a double-loop algorithm. Hence, it is predominantly appli-

cable for finite-sum problems and is not so suitable for the general online problems that we focus

on. Indeed, they assume that for a fixed batch of samples, one could query the oracle on different

points, which is not suited for the general online stochastic optimization setup. Furthermore, [131]

assume a much stronger mean-square Lipschitz smoothness assumption on the individual functions

fi and their gradients, to obtain a complexity bound of O
(
T 6ρT /ε3

)
, where ρ is a problem depen-

dent constant factor. Furthermore, to obtain their result, they also need a mini-batch of samples,

with batch sizes of the order T 3ρT , which makes their approach impractical to be used even for

moderately large values of T . As mentioned above, our second algorithm does not have any such

requirements, making it easy to be practically applicable for large values of T .

Furthermore, our Algorithm 2 is similar to the one proposed more recently in [110] for multi-

level composition optimization. In his work, the author focuses on the nonsmooth case and provides

asymptotic convergence of the proposed algorithm to a stationary point of the problem by analyzing

a system of differential inclusions which requires the compactness of the feasible set X. The finite-

time convergence analysis however, from our communication with the author, is not complete in

the released manuscript. Hence we are not able to provide a detailed comparison of the sample

complexities and assumptions on the oracle. We also remark that our choice of Lyapunov function

in (2.15) is different from that used in [110], which makes an important part of our convergence

analysis, distinct. This enables us, unlike [110], to relax the boundedness assumption of the feasible

set thereby making our method applicable to the unconstrained applications as well.

1.3.1. Motivating Application. We now discuss a concrete motivating application for the

T -level stochastic composition optimization problem we consider in this work. Let x∗ ∈ Rd denote

an unknown signal that we wish to recover. Suppose we are allowed to observe measurements of

the form y = a>x∗ + ε, where a ∈ N(0, Id) is the random measurement vector and ε ∼ N(0, 1) (for
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Method Convergence Rate Oracle Complexity

[129] O
(
N−4/(7+T )

)
O
(
1/ε(7+T )/2

)
Algorithm 1 O

(
N−1/2

)
O
(
1/ε6

)
Algorithm 2 O

(
N−1/2

)
O
(
1/ε4

)
Table 1.1. Convergence rates and Oracle complexity results for finding an ε-pair
x̄, z̄ of eq. (1.5); see Definition 2.1.1 for details. Convergence rate refers to the upper
bound on E[V (x, z)] and oracle complexity refers to the number of calls to the
stochastic first order oracle to obtain a ε-pair. Here, we only present the ε-related
T dependencies. See Remark 2.1.1 and Remark 2.2.1 for more details.

simplicity) is the noise in the measurement. In this case, the following estimator,

x̌ = arg min
x∈Rd

E(y − a>x)2,

that minimizes the expected reconstruction error servers as good estimator of the true signal. This

is indeed a single-level stochastic optimization problem. To actually get the minimizer, one could

run the standard stochastic gradient algorithm for N iterations with a single sample (yi, ai) ∈ Rd+1

in each iteration. Without further assumptions on x∗, we require N ≈ d to accurately estimate

x∗ [103, 108]. In compressed sensing [31, 42], the signal x∗ is assumed to be k-sparse, i.e., it is

assumed to consist of only k non-zero entries. Denote by ‖ · ‖0, L0 norm of a vector counting

the number of non-zero coordinates of the vector. Then, under the sparsity assumption, for the

stochastic gradient algorithm, to solve the following problem,

x̄ = arg min
x∈Rd:‖x‖0≤k

E(y − a>x)2,

it is enough to require N ≈ k log d (as opposed to N ≈ d) samples for accurate reconstruction [3, 4].

Hence, when k � d, we get a huge improvement in terms of oracle complexity. Furthermore, real-

world signals, like images, are empirically observed to satisfy the sparsity assumption stated above.

Hence, the field of compressed sensing has revolutionized the field of signal processing [24, 49, 124].

Recently, motivated by the success of deep learning, [26] proposed a generative approach to

compressed sensing. Here, it is assumed that there is a latent signal vector z∗ ∈ Rk, with k � d,

such that for a given neural network G : Rk → Rd, the true signal is given by x∗ = G(z∗). In other

words, the true signal is assumed to lie in the range of a neural network, given the latent signal z∗.

Similar to above, we are allowed to observe measurements of the form y = a>G(z∗) + ε. In this
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case, the following estimator,

x̄ = arg min
z∈Rk

E(y − a>G(z))2,

was proposed in [26]; see also [70, 100, 128] for more details. Furthermore, the mapping G is

assumed to be deep neural network with depth T ′. That is, G(z) = f1 ◦ f2 · · · ◦ fT ′(z), where for

1 ≤ i ≤ T ′, the function fi : Rdi−1 → Rdi , with dT ′ = k and d1 = d. Here, each component of the

function [fi]ji for 1 ≤ i ≤ T ′ is given by

[fi]ji(y) = Ep(g,b)[σ(g>y − b)]

where σ(s) is the activation function and p(g, b) ∈ Rd+1 is a distribution over the weight and

the bias at each layer. Typically the activation function is the ReLU function σ(s) := max{0, s} or

the sigmoidal function σ(s) := 1/(1 + e−s) and the distribution p(g, b) is typically assumed to be

Gaussian. Hence, the problem is a special case of the T -stage stochastic composite optimization

problem outlined in (1.5). The statistical sample complexity of the above problem, for accurate

reconstruction, requires the number of measurement to be of the order of k [26]. However, efficient

algorithms for solving the above problem are less explored; see [70, 118] for some related works. Our

proposed algorithms in this work, could potentially be used to solve the above problem efficiently

– a thorough investigation is beyond the scope of the current project, however is interesting future

work. It is worth emphasizing that, in the case of ReLU activation function, our smoothness

assumptions are not immediately satisfied. However, it is possible to construct accurate and smooth

approximations to ReLU functions, that satisfy our assumptions.

The rest of our project is organized as follows. In section 2.1, we present our first algorithm and

analyze its convergence analysis for solving eq. (1.5) with any T ≥ 1. In section 2.1, we present a

modification of this algorithm and show that it can recover the best-known sample complexity for

(single-level) smooth stochastic optimization. Some concluding remarks are also given in section 2.3.
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1.4. Introduction to Chapter 3: Zeroth order Optimization with functional

inequality constraints

Before we discuss our next contribution, we discuss the following optimization problem of

minimizing an objective function with functional inequality constraints:

min
x∈X⊆Rn

f0(x)

s.t. fi(x) 6 0, i = 1, . . . ,m; (1.6)

where fi is smooth for each i ∈ {0, 1, . . . ,m} and X is a convex compact set. In [25], this stochastic

optimization problem is solved using a first-order oracle in the smooth convex and nonconvex

setting; the authors optimize the dual problem of (1.6). Hence, the algorithm in the convex setting

performs a gradient ascent and descent in each iteration. At the end of the algorithm, a weighted

average of the iterates from the gradient descent is set as the numerical solution to the convex

problem.

In terms of the convergence analysis metric, we examine the following quantities

E[f0(x̄T )− f∗0 ] and E[‖[max(f1(x̄T ), 0), . . . ,max(fm(x̄T ), 0)]>‖2],

where T is the number of iterations of the algorithm, and the authors show these quantities are

at most ε for a certain sample complexity T := Tε. This algorithm in [25] (known as the ConEx

method) is used in the non-convex setting.

The idea in the non-convex setting is to augment the objective and contraint functions with

strongly convex terms and use the ConEx method to numerically solve the augmented problem

K > 1 times. Next, randomly pick k̂ ∈ {1, . . . ,K} (where each has uniform chance of being

picked), and return xk̂ as the numerical solution to the non-convex problem.

The convergence rate measures how much in expectation the numerical solution deviates from

the KKT conditions - see [25]. The total number of calls to the first-order oracle to solve the

non-convex setting is O(Tε/ε). These two methods lead to our contribution: in the convex and

non-convex setting, we solve these optimization problems using a zeroth-order oracle; the sample

complexities are O((m+ 1)n/ε2) and O((m+ 1)n/ε3), respectively.

10



1.5. Introduction to optimization of an objective function with funtional constraints

in Zeroth Order setting

We develop and analyze stochastic zeroth-order algorithms for solving the following non-linear

optimization problem with functional constraints:

min
x∈X

f0(x)

s.t. fi(x) 6 0, i = 1, . . . ,m,

(1.7)

where, for i ∈ {0, 1, . . . ,m}, fi(x) = Eξi [Fi(x, ξi)] : Rn → R, are continuous functions which are

not necessarily convex, ξi is the noise vector associated with function fi, and X ⊆ Rn is a convex

compact set. In the stochastic zeroth-order setting, we neither observe the objective function f0

nor the constraint functions fi directly. We only have access to noisy function evaluations of

them. Such zeroth-order optimization algorithms have been successfully applied to a diverse set of

fields including culinary engineering [117], chemical engineering [69] and water-plant treatment [66,

91]. Within the field of statistical machine learning, such algorithms have proved to be useful

for hyperparameter tuning [116] (see [65] for an overview of how Google uses such algorithms for

hyperparameter tuning for their products), reinforcement learning [34, 56, 90, 112] and robotics [75,

76].

The study of stochastic zeroth-order optimization algorithms for unconstrained optimization

problems goes back to the early works of [23, 73, 77, 97, 98, 105, 119, 121]. However, the study

of zeroth-order algorithms and their oracle complexities for constrained problem as in (1.7) is

limited (see Section 1.5.2 for details), despite the fact that several real-world machine learning

problems fall under the setting of (1.7) (see Sections 1.5.1). This serves as our main motivation for

developing stochastic zeroth-order optimization algorithms for solving (1.7), and analyzing their

oracle complexity.

Our methodology is based on the recently proposed constrained extrapolation based primal-

dual approach in [25] for the stochastic first-order setting. In this work, we extend this methodology

to the stochastic zeroth-order setting based on Gaussian smoothing based zeroth-order stochastic

gradient estimators. We characterize the precise way to set the tuning parameters of the algorithm

so as to mitigate the issues caused by the bias in the stochastic zeroth-order gradient estimates.
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Based on this, we demonstrate that for the case when the functions fi, i = 0, . . . ,m, are convex, the

number of calls to the stochastic zeroth-order oracle to achieve an appropriately defined ε-optimal

solution for (1.7) is of order O((m + 1)n/ε2). Furthermore, in the nonconvex setting, the number

of calls to obtain an appropriately defined ε-optimal KKT solution of (1.7) is of order O((m +

1)n/ε3). To our knowledge, these are the first non-asymptotic oracle complexity result for stochastic

zeroth-order optimization with stochastic zeroth-order functional constraints. We illustrate the

practical applicability of the developed methodology by testing its performance on benchmark

simulation experiments for functionally constrained optimization problems, and a hyperparameter

tuning problem which we discuss below.

1.5.1. Motivating Application. Our main motivation for studying constrained optimization

problems in the zeroth-order setting is their applicability to hyperparameter tuning for machine

learning algorithms. We refer the interested reader, for example, to [59, 71, 107, 116] for more

details. Automating the process of selecting the optimal hyperparameters is crucial for making

statistical machine learning methods widely applicable in practice.

In this work, we specifically concentrate on tuning the parameters of Hybrid or Hamiltonian

Monte Carlo (HMC) sampling algorithm. HMC, proposed by [44], and popularized in the statis-

tical machine learning community by [96] is a gradient-based sampling algorithm that works by

discretizing the continuous time degenerate Langevin diffusion [82]. It has been used successfully

as a state-of-the art sampler or a numerical integrator in the Bayesian statistical machine learning

community [32, 33, 64, 72, 127]. However, in order to obtain successful performance in practice

using HMC, several hyperparameters need to be tuned optimally.

Typically, the functional relationship between the hyperparameters that need to be tuned and

the performance measure used is not available in an analytical form. We can only evaluate the

performance of the sampler for various settings of the hyperparameter. Furthermore, in practice

several constraints, for example, constraints on running times and constraints that enforce the gen-

erated samples to pass certain standard diagnostic tests [60, 61], are enforced in the hyperparameter

tuning process. The functional relationship between such constraints and the hyperparameters is

also not available analytically. This makes the problem of optimally setting the hyperparameters

12



for HMC as a constrained zeroth-order optimization problem. In the context of HMC, [59, 71, 89]

used Bayesian optimization techniques to set the hyperparameters.

1.5.2. Related works. The methodology developed for zeroth-order optimization in the op-

erations research and statistics communities has a long and illustrious history to be summarized

entirely. Similarly, in the machine learning community, Bayesian optimization techniques have

been developed for optimizing functions with only noisy function evaluations. We refer the reader

to [7, 13, 28, 35, 55, 78, 81, 86, 92, 93, 113, 120] for more details. In what follows, we focus on rele-

vant literature from zeroth-order optimization and Bayesian optimization literature for constrained

optimization problems.

When the constraint set is analytically available and only the objective function is not, [84]

and [29] considered an augmented Lagrangian approach and an inexact restoration method respec-

tively, and provided convergence analysis. Furthermore, [5, 14, 78] extended the popular mesh

adaptive direct search to this setting. Projection-free methods based on Frank-Wolfe methods,

have been considered in [19, 111] for the case when the constraint set is a convex subset of Rn. Fur-

thermore, [85] considered the case when the constraint set is a Riemannian submanifold embedded

in Rn (and the function is defined only over the manifold).

When the objective function f and the constraint functions fi, i = 1, . . . ,m are both not

available analytically, the methodology and the related analysis becomes relatively complicated.

For this case, in the deterministic setting (i.e., we could obtain exact evaluations of the objective

and the constraint functions at a given point), filter methods which reduce the objective function

while trying to reduce constraint violations were proposed and analyzed in [10, 48, 104]. Barrier

method in the zeroth-order setting was considered in [11, 12, 47, 54, 54, 67, 87, 88], with some works

also developing line search approaches for setting the tuning parameters. Model based approaches

were considered in the works of [16, 36, 66, 95, 123]. Furthermore, [15, 30] developed extensions

of Nelder–Mead algorithm to the constrained setting. Several works in the statistical machine

learning community also considered Bayesian optimization methods in the constrained setting, in

both the noiseless and noisy seeting. We refer the reader, for example, to [1, 8, 17, 18, 50, 57, 58,

68, 71, 80, 83, 102]. On one hand, the above works demonstrate the interest in the optimization and

machine learning communities for developing algorithms for constrained zeroth-order optimization
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problems. On the other hand, most of the above works are not designed to handle stochastic zeroth-

order constrained optimization that we consider. Furthermore, a majority of the above works are

methodological, and the few works that develop convergence analysis do so only in the asymptotic

setting. To the best of our knowledge, there is no rigorous non-asymptotic analysis of the oracle

complexity of zeroth-optimization when the constraints and the objective values are available only

via noisy function evaluations.
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CHAPTER 2

Stochastic Multi-level Composition Optimization Algorithms with

Level-Independent Convergence Rates

2.1. Multi-level Nested Averaging Stochastic Gradient Method

In this section, we present our first algorithm for solving problem (1.5). As mentioned in sec-

tion 1.3, the previously proposed stochastic gradient-type methods suffer in terms of the convergence

rates when applied for solving this problem [129]. The main reason is the increased bias when esti-

mating the stochastic gradient of F , for T ≥ 2. Our proposed algorithm has a multi-level structure

– in addition to estimating the gradient of F , we also estimate the values of inner functions fi

by a mini-batch moving average technique, extending the approach in [63] for any T > 1. This

will enable us to provide an algorithm with improved convergence rates to the stationary points

compared to the prior work [129]. Our approach is formally presented in Algorithm 1.

We now add a few remarks about Algorithm 1. First, note that at each iteration of this

algorithm, we update the triple (xk, {wk}Ti=1, z
k), which are the convex combinations of the solutions

to subproblem (2.1), the estimates of inner function values fi, and the stochastic gradient of F at

these points, respectively. It should be mentioned that we do not need to estimate the values of the

outer function f1. However, we include wk1 in for the sake of completeness. Second, when T = 2

and bk = 1, this algorithm reduces to the NASA algorithm presented in [63]. Indeed, Algorithm 1

is a direct generalization of the NASA method to the multi-level case T ≥ 3. However, to prove

convergence of Algorithm 1, we need to take a batch of samples in each iteration to reduce the

noise associated with estimation of the inner function values, when T > 2. We now provide our

convergence analysis for Algorithm 1. To do so, we define the following filtration,

Fk := σ({x0, . . . , xk, z0, . . . , zk, w0
1, . . . , w

k
1 , . . . , w

0
T , . . . , w

k
T , u

0, . . . , uk}).
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Algorithm 1 Multi-level Nested Averaging Stochastic Gradient Method

Input: Positive integer sequence {bk}k≥0 and initial points x0, z0 ∈ X, w0
i ∈ Rdi 1 ≤ i ≤ T ,

for k = 0, 1, 2, . . . , do
1. Compute

uk = arg min
y∈X

{
〈zk, y − xk〉+

βk
2
‖y − xk‖2

}
, (2.1)

stochastic gradients Jk+1
i , and function values Gk+1

i,j at wki+1 for i = {1, . . . , T}, j = {1, . . . , bk}
by denoting wkT+1 ≡ xk.

2. Set

xk+1 = (1− τk)xk + τku
k, (2.2)

zk+1 = (1− τk)zk + τk

T∏
i=1

Jk+1
T+1−i, (2.3)

wk+1
i = (1− τk)wki + τkḠ

k+1
i , 1 ≤ i ≤ T, (2.4)

where

Ḡk+1
i =

1

bk

bk∑
j=1

Gk+1
i,j . (2.5)

Output:

Next, we state our main assumptions on the individual functions and the stochastic first-order

oracle we use.

Assumption 1. All functions f1, . . . , fT and their derivatives are Lipschitz continuous with

Lipschitz constants Lfi and L∇fi, respectively.

Assumption 2. Denote wkT+1 ≡ xk. For each k, wki+1 being the input, the stochastic oracle

outputs Gk+1
i ∈ Rdi and Jk+1

i ∈ Rdi×di−1 such that

(1) E[Jk+1
i |Fk] = [∇fi(wki+1)]>, and E[Gk+1

i |Fk] = fi(w
k
i+1), for 1 ≤ i ≤ T .

(2) E[‖Gk+1
i − fi(wki+1)‖2|Fk] ≤ σ2

Gi
, and E[‖Jk+1

i ‖2|Fk] ≤ σ2
Ji

, for 1 ≤ i ≤ T . Here ‖ · ‖ is

any vector or matrix norm. For concreteness the reader could view them as the standard

Euclidean norm (for vectors) and the operator norm (for matrices).

(3) Given Fk, the outputs of the stochastic oracle at each level i, Gk+1
i and Jk+1

i , are

independent.

(4) Given Fk, the outputs of the stochastic oracle are independent between levels i.e.,

{Gk+1
i }i=1,...,T are independent and so are {Jk+1

i }i=1,...,T .
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Assumption 1 is a standard smoothness assumption made in the literature on nonlinear op-

timization. Similarly, Parts 1 and 2 in Assumption 2 are standard unbiasedness and bounded

variance assumptions on the stochastic gradient, common in the literature. At this point, we re-

emphasize that the assumptions made in [131] are stronger than our assumptions above, as they

require mean-square smoothness of the individual random functions Gi and their gradients. Parts 3

and 4 are also essential to establish the converge results in the multi-level case; similar assumptions

have been made, for example, in [129]. In the next couple of technical results, we provide some

properties of composite functions that are required for our subsequent results.

Lemma 2.1.1. Define Fi(x) = fi ◦ fi+1 ◦ · · · fT (x). Under Assumption 1, the gradient of Fi is

Lipschitz continuous with constant

L∇Fi =

T∑
j=i

L∇fj j−1∏
l=i

Lfl

T∏
l=j+1

L2
fl

 .
Proof. We show the result by backward induction. Under Assumption 1, gradient of FT = fT

is Lipschitz continuous and so does that of FT−1 since for any x, y ∈ X, we have

‖∇FT−1(x)−∇FT−1(y)‖ = ‖∇fT (x)∇fT−1(fT (x))−∇fT (y)∇fT−1(fT (y))‖

≤ ‖∇fT (x)‖‖∇fT−1(fT (x))−∇fT−1(fT (y))‖

+ ‖∇fT−1(fT (y))‖‖∇fT (x)−∇fT (y)‖

≤ (L2
fT
L∇fT−1

+ LfT−1
L∇fT )‖x− y‖.

Now, suppose that gradient of Fi+1 is Lipschitz continuous for any i ≤ T − 1. Then, similar to the

above relation, ∇Fi is Lipschitz continuous with constant

L∇Fi =L2
Fi+1

L∇fi + LfiL∇Fi+1

=L∇fi

T∏
j=i+1

L2
fj

+ Lfi

T∑
j=i+1

L∇fj j−1∏
l=i+1

Lfl

T∏
l=j+1

L2
fl


=

T∑
j=i

L∇fj j−1∏
l=i

Lfl

T∏
l=j+1

L2
fl

 .
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We remark that the above result has also been proved in [131], Lemma 5.2., with a slightly

different proof.

Lemma 2.1.2. Define Fi(x) = fi ◦ fi+1 ◦ · · · fT (x) and ∇f̄i(x) = ∇fT (x)∇fT−1(wT ) · · · ∇fi(wi+1)

for any x ∈ X,wj ∈ Rdj j = i+ 1, . . . , T . Then under assumption 1, we have

‖∇Fi(x)−∇f̄i(x)‖ ≤
T−1∑
j=i

L∇fj
Lfj

Lfi · · ·LfT ‖Fi+1(x)− wj+1‖.

Proof. We show the result by backward induction. The case i = T is trivial.

When i = T − 1, under Assumption 1, we have

‖∇FT−1(x)−∇fT (x)∇fT−1(wT )‖ = ‖∇fT (x)[∇fT−1(fT (x))−∇fT−1(wT )]‖

≤ L∇fT−1
LfT ‖fT (x)− wT ‖.

Now assume that for any i ≤ T − 2,

‖∇Fi+1(x)−∇f̄i+1(x)‖ ≤
T−1∑
j=i+1

L∇fj
Lfj

Lfi+1
· · ·LfT ‖Fj+1(x)− wj+1‖.

We then have

‖∇Fi(x)−∇f̄i(x)‖ = ‖∇Fi+1(x)∇fi(Fi+1(x))−∇f̄i(x)‖

≤ ‖∇fi(Fi+1(x))‖‖∇Fi+1(x)−∇f̄i+1(x)‖+ ‖∇f̄i+1(x)‖‖∇fi(Fi+1(x))−∇fi(wi+1)‖

≤ Lfi‖∇Fi+1(x)−∇f̄i+1(x)‖+ L∇fiLfi+1
· · ·LfT ‖Fi+1(x)− wi+1‖

≤ Lfi
T−1∑
j=i+1

L∇fj
Lfj

Lfi+1
· · ·LfT ‖Fj+1(x)− wj+1‖+ L∇fiLfi+1

· · ·LfT ‖Fi+1(x)− wi+1‖

=

T−1∑
j=i

L∇fj
Lfj

Lfi · · ·LfT ‖Fj+1(x)− wj+1‖.
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Lemma 2.1.3. Under Assumption 1, for any j ∈ {1, . . . , T − 1}, we have

‖fj ◦ · · · ◦ fT (wT+1)− wj‖ ≤ ‖fj(wj+1)− wj‖+
T∑

`=j+1

`−1∏
i=j

Lfi

 ‖f`(w`+1)− w`‖.

Proof. We show the results by backward induction. For j = T − 1, we have

‖fT−1 ◦ fT (wT+1)− wT−1‖ ≤ ‖fT−1 ◦ fT (wT+1)− fT−1(wT )‖+ ‖fT−1(wT )− wT−1‖

≤ LfT−1
‖fT (wT+1)− wT ‖+ ‖fT−1(wT )− wT−1‖.

Now suppose the result holds for j + 1, j ∈ {1, . . . , T − 2}. Then, we have

‖fj ◦ fj+1 ◦ · · · fT (wT+1)− wj‖ ≤ ‖fj ◦ · · · fT (wT+1)− fj(wj+1) + fj(wj+1)− wj‖

≤ Lfj‖fj+1 ◦ · · · ◦ fT (wT+1)− wj+1‖+ ‖fj(wj+1)− wj‖

≤ Lfj

‖fj+1(wj+2)− wj+1‖+
T∑

`=j+2

 `−1∏
i=j+1

Lfi

 ‖f`(w`+1)− w`‖


+ ‖fj(wj+1)− wj‖

= ‖fj(wj+1)− wj‖+
T∑

`=j+1

`−1∏
i=j

Lfi

 ‖f`(w`+1)− w`‖,

where the third inequality follows by induction hypothesis.

Lemma 2.1.4. Define

R1 = L∇f1Lf2 · · ·LfT ,

Rj = Lf1 . . . Lfj−1
L∇fjLfj+1

· · ·LfT 1 < j ≤ T − 1,

C2 = R1,

Cj = R1Lf2◦···◦fj−1
+R2Lf3◦···◦fj−1

+ · · ·+Rj−2Lfj−1
+Rj−1 with 2 < j ≤ T.

Assume that Assumption 1 holds. Then for T ≥ 3,∥∥∥∥∥∇F (x)−∇fT (x)

T∏
i=2

∇fT+1−i(wT+2−i)

∥∥∥∥∥ ≤
T−1∑
j=2

Cj‖fj(wj+1)− wj‖+ CT ‖fT (x)− wT ‖. (2.6)
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Proof. By lemma 2.1.2 and lemma 2.1.3, we have∥∥∥∥∥∇F (x)−∇fT (x)

T∏
i=2

∇fT+1−i(wT+2−i)

∥∥∥∥∥ ≤
T−1∑
j=1

Rj‖fj+1 ◦ · · · ◦ fT (wT+1)− wj+1‖

=
T−2∑
j=1

Rj‖fj+1 ◦ · · · ◦ fT (wT+1)− wj+1‖+RT−1‖fT (wT+1)− wT ‖

=

T−2∑
j=1

Rj‖fj+1(wj+2)− wj+1‖+

T−2∑
j=1

Rj

T∑
`=j+2

 `−1∏
i=j+1

Lfi

 ‖f`(w`+1)− w`‖

+RT−1‖fT (wT+1)− wT ‖.

The conclusion follows. To see this, term collecting ‖f2(w3)− w2‖, we have C2.

For 2 < j ≤ T , term collecting ‖fj(wj+1)− wj‖, we have Cj .

The following result also shows the Lipschitz continuity of the objective function of the

subproblem (2.1). One can see [63] for a simple proof.

Lemma 2.1.5. Let η(x, z) be defined as

η(x, z) = min
y∈X

{
〈z, y − x〉+

β

2
‖y − x‖2

}
.

Then the gradient of η w.r.t. (x, z) is Lipschitz continuous with the constant

L∇η = 2
√

(1 + β)2 + (1 + 1
2β )2.

In the next result, we provide a recursion inequality for the error in estimating fi(wi+1) by wi.

Lemma 2.1.6. Let {xk}k≥0 and {wki }k≥0 1 ≤ i ≤ T be generated by algorithm 1. Denote

dk = uk − xk, wkT+1 ≡ xk ∀k ≥ 0, Ak,i = fi(w
k+1
i+1 )− fi(wki+1) 1 ≤ i ≤ T. (2.7)

a) For any i ∈ {1, . . . , T},

‖fi(wk+1
i+1 )− wk+1

i ‖2 ≤ (1− τk)‖fi(wki+1)− wki ‖2 +
1

τk
‖Ak,i‖2 + τ2

k‖ek+1
i ‖2 + rk+1

i , (2.8)

‖wk+1
i − wki ‖2 ≤ τ2

k

[
‖fi(wki+1)− wki ‖2 + ‖ek+1

i ‖2 − 2〈ek+1
i , fi(w

k
i+1)− wki 〉

]
, (2.9)
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where

rk+1
i = 2τk〈ek+1

i , Ak,i + (1− τk)(fi(wki+1)− wki )〉, ek+1
i = fi(w

k
i+1)− Ḡk+1

i . (2.10)

b) If, in addition, fi’s are Lipschitz continuous, we have

‖fT (xk+1)− wk+1
T ‖2 ≤ (1− τk)‖fT (xk)− wkT ‖2 + LfT τk‖d

k‖2 + τ2
k‖ek+1

T ‖2 + rk+1
T , (2.11)

‖fi(wk+1
i+1 )− wk+1

i ‖2 ≤ (1− τk)‖fi(wki+1)− wki ‖2 + L2
fi
τk

[
‖fi+1(wki+2)− wki+1‖2 + ‖ek+1

i+1 ‖
2
]

+ τ2
k‖ek+1

i ‖2 + r̄k+1
i 1 ≤ i ≤ T − 1, (2.12)

where

r̄k+1
i = −2τkL

2
fi
〈ek+1
i+1 , fi+1(wki+2)− wki+1〉+ rk+1

i . (2.13)

Proof. Noting eq. (2.4), eq. (2.8), and eq. (2.10), we have

‖fi(wk+1
i+1 )− wk+1

i ‖2 = ‖Ak,i + fi(w
k
i+1)− (1− τk)wki − τk(fi(wki+1)− ek+1

i )‖2

= ‖Ak,i + (1− τk)(fi(wki+1)− wki ) + τke
k+1
i ‖2

= ‖Ak,i + (1− τk)(fi(wki+1)− wki )‖2 + τ2
k‖ek+1

i ‖2 + rk+1
i .

Then, in the view of eq. (2.10), eq. (2.8) follows by noting that

‖Ak,i + (1− bτk)(fi(wki+1)− wki )‖2 = ‖Ak,i‖2 + (1− τk)2‖fi(wki+1)− wki ‖2

+ 2(1− τk)〈Ak,i, fi(wki+1)− wki 〉

≤ ‖Ak,i‖2 + (1− τk)2‖fi(wki+1)− wki ‖2

+

(
1

τk
− 1

)
‖Ak,i‖2 + (1− τk)τk‖fi(wki+1)− wki ‖2

= (1− τk)‖fi(wki+1)− wki ‖2 +
1

τk
‖Ak,i‖2, (2.14)
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due to Cauchy Schwartz and Young’s inequalities. Also, eq. (2.9) directly follows from eq. (2.4)

since

‖wk+1
i − wki ‖2 = ‖τk(Gk+1

i − wki )‖2 = τ2
k‖fi(wki+1)− wki − ek+1

i ‖2

= τ2
k

[
‖fi(wki+1)− wki ‖2 + ‖ek+1

i ‖2 − 2〈ek+1
i , fi(w

k
i+1)− wki 〉

]
.

To show part b), note that by eq. (2.2), eq. (2.7), and Lipschitz continuity of fi, we have

‖Ak,T ‖ ≤ LfT ‖w
k+1
T+1 − w

k
T+1‖ = LfT τk‖d

k‖, ‖Ak,i‖ ≤ Lfi‖w
k+1
i+1 − w

k
i+1‖ 1 ≤ i ≤ T − 1.

The results then follows by noting eq. (2.8) and eq. (2.9).

We remark that the mini-batch sampling in (2.5) is only used to reduce the upper bound on the

expectation of τk‖ek+1
i+1 ‖2 in the right hand side of (2.12). Moreover, we do not need this inequality

for i = 1 when establishing the convergence rate of Algorithm 1. Thus, when T ≤ 2, this algorithm

convergences without using mini-batch of samples in each iteration, as shown in [63].

Denoting w := (w1, . . . , wT ), we define the merit function

W (x, z, w) = F (x)− F ∗ − η(x, z) +

T−1∑
i=1

γi‖fi(wi+1)− wi‖2 + γT ‖fT (x)− wT ‖2 (2.15)

which will be used in our next result for establishing convergence analysis of Algorithm 1.

Lemma 2.1.7. Suppose that {xk, zk, uk, wk1 , . . . , wkT }k≥0 are generated by Algorithm 1 and

Assumption 1 holds.

a) If

γ0 := 0, γ1, λ > 0, βk ≡ β ≥ λ+ γT ,

γj − γj−1L
2
fj−1
− λ > 0, 4(β − λ− γT )(γj − γj−1L

2
fj−1
− λ) ≥ TC2

j j = 2, . . . , T, (2.16)

where Cj ’s are defined in Lemma 2.1.4, we have

λ

N−1∑
k=0

τk

[
‖dk‖2 +

T−1∑
i=1

‖fi(wki+1)− wki ‖2 + ‖fT (xk)− wkT ‖2
]
≤W (x0, z0, w0) +

N−1∑
k=0

Rk+1, (2.17)
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where

Rk+1 := τ2
k

T∑
i=1

γi‖ek+1
i ‖2 + τk

T−1∑
i=1

γiL
2
fi
‖ek+1
i+1 ‖

2 +
T−1∑
i=1

γir̄i
k+1 + γT r

k+1
T + τk〈dk,∆k〉,

+
(L∇F + L∇η)τ

2
k

2
‖dk‖2 +

L∇η
2
‖zk+1 − zk‖2, (2.18)

∆k := ∇fT (xk)
T∏
i=2

∇fT+1−i(w
k
T+2−i)−

T∏
i=1

Jk+1
T−i+1, (2.19)

and rk+1
i , r̄k+1

i are defined in eq. (2.10) and eq. (2.13), respectively.

b) If parameters are chosen as

γ0 = 0, γ1 = 1, γj := 2j−1(Lf1 · · ·Lfj−1
)2 2 ≤ j ≤ T,

λ =
1

2
min

1≤i≤T
(γi − γi−1L

2
fi−1

), β ≥ λ+ γT +
T max2≤i≤T C

2
i

4λ
. (2.20)

Then, conditions in eq. (2.16) are satisfied.

Proof. First, note that by Lemma 2.1.1, we have

F (xk+1) ≤ F (xk) + 〈∇F (xk), xk+1 − xk〉+
L∇F

2
‖xk+1 − xk‖2

= F (xk) + τk〈∇F (xk), dk〉+
L∇F τ

2
k

2
‖dk‖2. (2.21)

Second, note that by the optimality condition of eq. (2.1), we have

〈zk + βk(u
k − xk), xk − uk〉 ≥ 0, 〈zk, dk〉+ βk‖dk‖2 ≤ 0. (2.22)
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Then, noting eq. (2.2), eq. (2.3), and in the view of Lemma 2.1.5, we obtain

η(xk, zk)− η(xk+1, zk+1) ≤ 〈zk + βk(u
k − xk), xk+1 − xk〉 − 〈uk − xk, zk+1 − zk〉

+
L∇η

2

[
‖xk+1 − xk‖2 + ‖zk+1 − zk‖2

]
= τk〈2zk + βkd

k, dk〉 − τk〈dk,
T∏
i=1

Jk+1
T−i+1〉 (2.23)

+
L∇η

2

[
‖xk+1 − xk‖2 + ‖zk+1 − zk‖2

]
≤ −βkτk‖dk‖2 − τk〈dk,

T∏
i=1

Jk+1
T−i+1〉+

L∇η
2

[
τ2
k‖dk‖2 + ‖zk+1 − zk‖2

]
.

(2.24)

Third, noting Lemma 2.1.6.b), we have

T−1∑
i=1

γi

[
‖fi(wk+1

i+1 )− wk+1
i ‖2 − ‖fi(wki+1)− wki ‖2

]
+ γT

[
‖fT (xk+1)− wk+1

T ‖2 − ‖fT (xk)− wkT ‖2
]

≤
T−1∑
i=1

γi

{
−τk

[
‖fi(wki+1)− wki ‖2 − L2

fi
‖fi+1(wki+2)− wki+1‖2 − L2

fi
‖ek+1
i+1 ‖

2
]

+ τ2
k‖ek+1

i ‖2 + r̄i
k+1
}

+ γT

{
−τk

[
‖fT (xk)− wkT ‖2 − L2

fT
‖dk‖2

]
+ τ2

k‖ek+1
T ‖2 + rk+1

T

}
= −τk{γ1‖f1(wk2)− wk1‖2 +

∑T−1
j=2 [γj − γj−1L

2
fj−1

]‖fj(wkj+1)− wkj ‖2 (2.25)

+ [γT − γT−1L
2
fT−1

]‖fT (xk)− wkT ‖2}+ τk

[
T−1∑
i=1

γiL
2
fi
‖ek+1
i+1 ‖

2 + γT ‖dk‖2
]

(2.26)

+ τ2
k

T∑
i=1

γi‖ek+1
i ‖2 +

T−1∑
i=1

γir̄i
k+1 + γT r

k+1
T . (2.27)
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Combining the above relation with eq. (2.23), eq. (2.21), noting definition of merit function in

eq. (2.15), and in the view of lemma 2.1.4, we obtain

W (xk+1, zk+1, wk+1)−W (xk, zk, wk)

≤ −τk(βk − γT )‖dk‖2 + τk‖dk‖

T−1∑
j=2

Cj‖fj(wj+1)− wj‖+ CT ‖fT (x)− wT ‖

+Rk+1

− τk{γ1‖f1(wk2)− wk1‖2

+
∑T−1

j=2 [γj − γj−1L
2
fj−1

]‖fj(wkj+1)− wkj ‖2 + [γT − γT−1L
2
fT−1

]‖fT (xk)− wkT ‖2},

where Rk+1 is defined in eq. (2.18). Thus, if eq. (2.16) holds, we have

W (xk+1, zk+1, wk+1)−W (xk, zk, wk)

≤ λ
N−1∑
k=0

τk

[
‖dk‖2 +

T−1∑
i=1

‖fi(wki+1)− wki ‖2 + ‖fT (xk)− wkT ‖2
]

+Rk+1.

Summing up the above inequalities and re-arranging the terms, we obtain eq. (2.17). It can be

easily verified that condition eq. (2.16) is satisfied by the choice of parameters in eq. (2.20).

We introduce the following additional lemmas.

Lemma 2.1.8. Consider a sequence {τk}k≥0 ∈ (0, 1], and define

Γk = Γ1

k−1∏
i=1

(1− τi) k ≥ 2, Γ1 =


1 if τ0 = 1,

1− τ0 otherwise.

(2.28)

a) For any k ≥ 1, we have

αi,k =
τi

Γi+1
Γk 1 ≤ i ≤ k,

k−1∑
i=0

αi,k =


1 if τ0 = 1,

1− Γk otherwise.

25



b) Suppose that qk+1 ≤ (1− τk)qk + pk k ≥ 0 for sequences {qk, pk}k≥0. Then, we have

qk ≤ Γk

[
aq0 +

k−1∑
i=0

pi
Γi+1

]
, a =


0 if τ0 = 1,

1 otherwise.

Proof. To show part a), note that

k−1∑
i=0

αi,k = Γk

k−1∑
i=0

τi
Γi+1

=
τ0Γk
Γ1

+
k−1∑
i=1

τiΓk
Γi+1

=
τ0Γk
Γ1

+ Γk

k−1∑
i=1

(
1

Γi+1
− 1

Γi

)
= 1− Γk

Γ1
(1− τ0).

To show part b), by dividing both sides of the inequality by Γk+1 and noting eq. (2.28), we have

q1

Γ1
≤ (1− τ0)q0 + p0

Γ1
,

qk+1

Γk+1
≤ qk

Γk
+

pk
Γk+1

k ≥ 1.

Summing up the above inequalities, we get the result.

Proposition 2.1.1. Suppose that Assumption 2 holds and (for simplicity) τ0 = 1, βk = β > 0

for all k. Then, for any k ≥ 1, we have

β2E[‖dk‖2|Fk] ≤ E[‖zk‖2|Fk] ≤
T∏
i=1

σ2
Ji , (2.29)

E[‖zk+1 − zk‖2|Fk] ≤ 4τ2
k

T∏
i=1

σ2
Ji . (2.30)

If, in addition, the batch size bk in Algorithm 1 is set to

bk =

⌈
max1≤i≤T L

2
fi

τk

⌉
k ≥ 0, (2.31)

we have

E[Rk+1|Fk] ≤ τ2
k

[
1

2

(
T∏
i=1

σ2
Ji

)(
L∇F + (1 + 4β2)L∇η

β2

)
+

T∑
i=1

γiσ
2
Gi

]
:= τ2

kσ
2, (2.32)

where Rk+1 is defined in eq. (2.18).

Proof. The first inequality in eq. (2.29) directly follows by eq. (2.22) and Cauchy-Schwarz

inequality. Noting eq. (2.3), the fact that τ0 = 1, and in the view of Lemma 2.1.8, we obtain
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zk =
k−1∑
i=0

αi,k

(
T∏
`=1

J i+1
T+1−l

)
.

By convexity of ‖ · ‖2 and conditional independence, we conclude that

E[‖zk‖2|Fk] ≤
k−1∑
i=0

αi,kE

∥∥∥∥∥
T∏
`=1

J i+1
`

∥∥∥∥∥
2 ∣∣∣∣∣ Fk


≤

k−1∑
i=0

αi,k

T∏
`=1

E[‖J i+1
` ‖2|Fi] ≤

k−1∑
i=0

αi,k

(
T∏
`=1

σ2
J`

)
=

T∏
`=1

σ2
J`
.

Noting eq. (2.29), we have

E[‖zk+1 − zk‖2|Fk] ≤ τ2
kE

∥∥∥∥∥zk −
T∏
`=1

Jk+1
`

∥∥∥∥∥
2 ∣∣∣∣∣ Fk


≤ 2τ2

k

E[‖zk‖2|Fk] + E

∥∥∥∥∥
T∏
`=1

Jk+1
`

∥∥∥∥∥
2 ∣∣∣∣∣Fk


≤ 2τ2

k

(
T∏
`=1

σ2
J`

+
T∏
`=1

σ2
J`

)

= 4τ2
k

(
T∏
`=1

σ2
J`

)
.

Now, observe that by eq. (2.10), eq. (2.13), the choice of bk in eq. (2.31), and under Assumption 2,

we have

E[∆k|Fk] = 0, E[ek+1
i |Fk] = 0, which implies E[rk+1

i |Fk] = E[r̄k+1
i |Fk] = 0,

E[‖ek+1
i ‖2|Fk] = E[‖ 1

bk
Gk+1
i,j − fi(w

k
i+1)‖2|Fk] ≤

σ2
Gi

bk
≤ min

{
1,

τk
max1≤i≤T L2

fi

}
σ2
Gi .

Noting eq. (2.18), eq. (2.29), eq. (2.30), and the above observation, we obtain eq. (2.32).

Observe that Lemma 2.1.7 shows that the summation of ‖dk‖ and the errors in estimating the

inner function values is bounded by summation of error terms Rk which is in the order of
∑N

k=1 τ
2
k

as shown in Proposition 2.1.1. This is the main step in establishing the convergence of Algorithm 1.
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Indeed, x̄ ∈ X is a stationary point of eq. (1.5), if u = x̄ and z̄ = ∇F (x̄), where

u = arg min
y∈X

{
〈z̄, y − x̄〉+

1

2
‖y − x̄‖2

}
. (2.33)

Thus, for a given pair of (x̄, z̄), we can define our termination criterion as follows.

Definition 2.1.1. A pair of (x̄, z̄) generated by Algorithm 1 is called an ε-stationary pair, if

E[
√
V (x̄, z̄)] ≤ ε, where

V (x, z) = ‖u− x‖2 + ‖z −∇F (x)‖2, (2.34)

and u is the solution to (2.33).

When X = RdT , V (x, z) provides an upper bound for the ‖∇F (x)‖2. One can see [63] for the

relation between V (x̄, z̄) and other common gradient-based termination criteria such as gradient

mapping. Furthermore, as shown in [63], we have

V (xk, zk) = max(1, β2
k)‖uk − xk‖2 + ‖zk −∇F (xk)‖2, (2.35)

where (xk, uk, zk) are the solutions generated at iteration k−1 of Algorithm 1. Noting this fact, we

provide convergence rate of this algorithm by appropriately choosing βk and τk in the next results.

Theorem 2.1.9. Suppose that {xk, zk}k≥0 are generated by Algorithm 1, Assumption 1 and

Assumption 2 hold. Also assume that the parameters satisfy eq. (2.20) and step sizes {τk} are

chosen such that

N∑
i=k+1

τiΓi ≤ cΓk+1 ∀k ≥ 0 and ∀N ≥ 1, c is a positive constant. (2.36)

(a) For every N ≥ 1, we have

N∑
k=1

τkE[‖∇F (xk)− zk‖2|Fk] ≤ B1(σ2, N), (2.37)

where

B1(σ2, N) =
4cL2(T − 1)

λ

[
W (x0, z0, w0) + σ2

N−1∑
k=0

τ2
k

]
+ c

T∏
`=1

σ2
J`

N−1∑
k=0

τ2
k , (2.38)

28



σ2 is defined in eq. (2.32) and

L2 = max

{
L2
∇F , max

1≤i≤T
C2
j

}
. (2.39)

(b) As a consequence, we have

E[V (xR, zR)] ≤ 1∑N
k=1 τk

{
B1(σ2, N) +

max(1, β2)

λ

[
W (x0, z0, w0) + σ2

N∑
k=0

τ2
k

]}
, (2.40)

where the expectation is taken with respect to all random sequences generated by the method and an

independent random integer number R ∈ {1, . . . , N}, whose probability distribution is given by

P[R = k] =
τk∑N
j=1 τj

.

(c) If, in addition, the stepsizes are set to

τ0 = 1, τk =
1√
N

∀k = 1, . . . , N, (2.41)

we have

E[‖∇F (xR)− zR‖2] ≤ 1√
N

[
4L2(T − 1)

[
W (x0, z0, w0) + 2σ2

]
λ

+ 2

T∏
`=1

σ2
J`

]
:=
B2(σ2, N)√

N
, (2.42)

E[V (xR, zR)] ≤ 1√
N

[
B2(σ2, N) +

max(1, β2)

λ

[
W (x0, z0, w0) + 2σ2

]]
, (2.43)

E[‖fi(wRi+1)− wRi ‖2] ≤ 1

λ
√
N

[
W (x0, z0, w0) + 2σ2

]
i = 1, . . . , T. (2.44)

Proof. We first show part (a). Noting eq. (2.3), we have

∇F (xk+1)− zk+1 = (1− τk)(∇F (xk)− zk) + τk(δ
k + δ̄k + ∆k),

where ∆k is defined in eq. (2.18) and

δk = ∇F (xk)−∇fT (xk)
T∏
i=2

∇fT+1−i(w
k
T+2−i), δ̄k =

∇F (xk+1)−∇F (xk)

τk
.
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Denoting ∆̄k = 〈∆k, (1− τk)(∇F (xk)− zk) + τk(δ
k + δ̄k)〉, we have

‖∇F (xk+1)− zk+1‖2 = ‖(1− τk)(∇F (xk)− zk) + τk(δ
k + δ̄k)‖2 + τ2

k‖∆k‖2 + 2τk∆̄k

≤ (1− τk)‖∇F (xk)− zk‖2 + 2τk

[
‖δk‖2 + L2

∇F ‖dk‖2 + ∆̄k

]
+ τ2

k‖∆k‖2,

where the inequality follows from convexity of ‖·‖2 and Lipschitz continuity of gradient of F . Thus,

in the view of Lemma 2.1.8, we obtain

‖∇F (xk)− zk‖2 ≤ 2Γk

k−1∑
i=0

τi
Γi+1

(
‖δi‖2 + L∇F ‖di‖2 + ∆̄i +

τi
2
‖∆i‖2

)
,

which implies that

N∑
k=1

τk‖∇F (xk)− zk‖2 = 2

N∑
k=1

τkΓk

k−1∑
i=0

τi
Γi+1

(
‖δi‖2 + L2

∇F ‖di‖2 + ∆̄i +
τi
2
‖∆i‖2

)

= 2

N−1∑
k=0

τk
Γk+1

(
N∑

i=k+1

τiΓi

)(
‖δk‖2 + L2

∇F ‖dk‖2 + ∆̄k +
τk
2
‖∆k‖2

)

≤ 2c
N−1∑
k=0

τk

(
‖δk‖2 + L2

∇F ‖dk‖2 + ∆̄k +
τk
2
‖∆k‖2

)
, (2.45)

where the last inequality follows from eq. (2.36).

Now, observe that under Assumption 2, we have

E[∆̄k|Fk] = 0, E[‖∆k‖2|Fk] ≤ E

∥∥∥∥∥
T∏
`=1

Jk+1
`

∥∥∥∥∥
2 ∣∣∣∣∣Fk

 ≤ T∏
`=1

σ2
J`
.

Moreover, by Lemma 2.1.4 and the fact that (
∑n

i=1 ai)
2 ≤ n

∑n
i=1 a

2
i for nonnegative ai’s, we have

‖δk‖2 =

∥∥∥∥∥∇F (x)−∇fT (x)

T∏
i=2

∇fT+1−i(wT+2−i)

∥∥∥∥∥
2

≤ 2(T − 1)
T−1∑
j=2

C2
j ‖fj(wj+1)− wj‖2 + 2C2

T ‖fT (x)− wT ‖2.
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Combining the above observations with eq. (2.46) and in the view of eq. (2.39), we obtain

N∑
k=1

τkE[‖∇F (xk)− zk‖2|Fk] ≤ 4cL(T − 1)
N−1∑
k=0

τk

T−1∑
j=2

‖fj(wj+1)− wj‖2 + ‖fT (x)− wT ‖2 + ‖dk‖2


+ c
T∏
`=1

σ2
J`

N−1∑
k=0

τ2
k . (2.46)

Then, eq. (2.37) follows from the above inequality, eq. (2.17), and eq. (2.32).

Part (b) then follows from part (a), eq. (2.35), eq. (2.17), and noting that

E[V (xR, zR)] =

∑N
k=1 τkV (xk, zk)∑N

j=1 τj
.

Part (c) also follows by noting that choice of τk in eq. (2.41) implies that

N∑
k=1

τk ≥
√
N,

N∑
k=0

τ2
k = 2, Γk =

(
1− 1√

N

)k−1

,

N∑
i=k+1

τiΓi =

(
1− 1√

N

)k 1√
N

N−k−1∑
i=0

(
1− 1√

N

)i
≤
(

1− 1√
N

)k
,

ensuring condition eq. (2.36) with c = 1.

Remark 2.1.1. The result in (2.43) implies that to find an ε-stationary point of (1.5) (see, def-

inition 2.1.1), Algorithm 1 requires O(ρTT 4/ε4) number of iterations, where ρ is a constant de-

pending on the problem parameters (i.e., Lipschitz constants and noise variances). Thus, the total

number of used samples is bounded by

T∑
k=1

bk = O
(
ρTT 6

ε6

)

due to (2.31) and (2.41). This bound is much better than O
(
1/ε(7+T )/2

)
obtained in [129] when

T > 41 . In particular, it exhibits the level-independent behavior as discussed in Section 1.3. Note

that, we obtain constants of order ρT , for example, when σ2
Ji

in eq. (2.32) are all of equal. We

1Following the presentation in [129], we only present the ε-related T dependence for their result.
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emphasize that [129] and [131] also have such constant factors that depend exponentially on T , in

their proofs and the final results.

Remark 2.1.2. The bound in (2.44) also implies that the errors in estimating the inner function

values decrease at the same rate that we converge to the stationary point of the problem. This is

essential to obtain a rate of convergence similar to that of single-level problems. Moreover, (2.42)

shows that the stochastic estimate zk also converges at the same rate to the gradient of the objective

function at the stationary point where xk converges to.

Although our results for Algorithm 1 show improved convergence rates compared to [129], it is

still worse than O
(
1/ε4

)
obtained in [63] for the case of T = 2. Furthermore, the batch sizes bk

is of order ρT for some constant ρ which makes it impractical. In the next section, we show that

both of these issues could be fixed by a properly modified variant of Algorithm 1.

2.2. Multi-level Nested Linearized Averaging Stochastic Gradient Method

In this section, we present a linearized variant of Algorithm 1 which can achieve the state-of-art

rate of convergence for problem (1.5) for any T ≥ 1. Indeed, when T > 2, we have accumulated

errors in estimating the inner function values. Hence, in Algorithm 1 we use mini-batch sampling

in (2.4) to reduce the noise associated with the stochastic function values. However, this increases

the sample complexity of the algorithm. To resolve this issue, instead of using the point estimates

of fi’s, we use their stochastic linear approximations in (2.47). With this modification, a refined

convergence analysis enables us to obtain a sample complexity of O(1/ε4) with Algorithm 2, for

any T ≥ 1 without using any mini-batches. Here, we remark that similar linearization techniques

have been proposed as early as [109] in other contexts. Furthermore, it was also used in [37, 45]

and [110] recently for the two-level and multi-level cases respectively.

Algorithm 2 Multi-level Nested Linearized Averaging Stochastic Gradient Method

Set bk = 1 in Algorithm 1 and replace (2.4) with

wk+1
i = (1− τk)wki + τkG

k+1
i + Jk+1

i (wk+1
i+1 − w

k
i+1), 1 ≤ i ≤ T. (2.47)

To establish the rate of convergence of Algorithm 2, we need to make the following additional

assumption on the fourth-moments of the outputs of the stochastic oracle, similar to [129].
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Assumption 3. Denote wkT+1 ≡ xk. Instantiate the conditions in Assumption 2. In addition

to that, the stochastic oracle satisfies, for 1 ≤ i ≤ T ,

(1) E[‖Jk+1
i ‖4|Fk] ≤ κ4

Ji
, E[‖Jk+1

i − ∇fi(wki+1)‖2|Fk] ≤ %2
Ji

, E[‖Jk+1
i − ∇fi(wki+1)‖4|Fk] ≤

κ4
Ji

,

(2) E[‖Gk+1
i − fi(wki+1)‖4|Fk] ≤ κ4

Gi
.

The above assumptions are trivially satisfied when the ξis are drawn from any light-tailed distri-

butions (for example, sub-Gaussian). Relaxing the bounded fourth-moment assumptions to the

bounded second-moment assumption, as in section 2.1 seems extremely challenging without strong

assumptions on the objective function and the constraint set X. The next result provides the

recursion on the errors in estimating the inner function values.

Lemma 2.2.1. Let {xk}k≥0 and {wki }k≥0 1 ≤ i ≤ T be generated by Algorithm 2. Define, for

1 ≤ i ≤ T ,

ek+1
i := fi(w

k
i+1)−Gk+1

i , êi
k+1 := ∇fi(wki+1)− Jk+1

i , (2.48)

Ak,i := fi(w
k+1
i+1 )− fi(wki+1)−∇fi(wki+1)(wk+1

i+1 − w
k
i+1). (2.49)

a) Under Assumption 1, we have, for 1 ≤ i ≤ T ,

‖fi(wk+1
i+1 )− wk+1

i ‖2 ≤ (1− τk)‖fi(wki+1)− wki ‖2 +
L2
∇fi

4τk
‖wk+1

i+1 − w
k
i+1‖4 + τ2

k‖ek+1
i ‖2 + ṙk+1

i

+ ‖êik+1‖2‖wk+1
i+1 − w

k
i+1‖2, (2.50)

where,

ṙk+1
i := 2τk〈ek+1

i , Ak,i + (1− τk)(fi(wki+1)− wki ) + êi
k+1(wk+1

i+1 − w
k
i+1)〉

+ 2〈êik+1(wk+1
i+1 − w

k
i+1), Ak,i + (1− τk)(fi(wki+1)− wki )〉. (2.51)
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b) Furthermore, we have for 1 ≤ i ≤ T ,

‖wk+1
i − wki ‖2 ≤ τ2

k

[
2‖fi(wki+1)− wki ‖2 + ‖ek+1

i ‖2 +
2

τ2
k

‖Jk+1
i ‖2‖wk+1

i+1 − w
k
i+1‖2

]
+ 2r̈k+1

i ,

r̈k+1
i := τk〈−ek+1

i , τk(fi(w
k
i+1)− wki ) + Jk+1

i (wk+1
i+1 − w

k
i+1)〉,

‖wk+1
i − wki ‖4 ≤ τ4

k

[
6‖fi(wki+1)− wki ‖4 + 35‖ek+1

i ‖4 +
40

τ4
k

‖Jk+1
i ‖4‖wk+1

i+1 − w
k
i+1‖4

]
+ 4r̈k+1

i

[
2τ2
k‖fi(wki+1)− wki ‖2 + τ2

k‖ek+1
i ‖2 + 2‖Jk+1

i ‖2‖wk+1
i+1 − w

k
i+1‖2

]
.

Proof. We first prove part a). When 1 ≤ i < T , by definition of Ak,i, êi
k+1, Gk+1

i , wk+1
i , and

ṙk+1
i , we have

‖fi(wk+1
i+1 )− wk+1

i ‖2

=‖Ak,i + fi(w
k
i+1) +∇fi(wki+1)(wk+1

i+1 − w
k
i+1)− (1− τk)wki − τkGk+1

i − Jk+1
i (wk+1

i+1 − w
k
i+1)‖2

=‖Ak,i + êi
k+1(wk+1

i+1 − w
k
i+1) + (1− τk)(fi(wki+1)− wki ) + τke

k+1
i ‖2

=‖êik+1(wk+1
i+1 − w

k
i+1)‖2 + ‖Ak,i + (1− τk)(fi(wki+1)− wki )‖2 + τ2

k‖ek+1
i ‖2 + rk+1

i

≤‖Ak,i + (1− τk)(fi(wki+1)− wki )‖2 + τ2
k‖ek+1

i ‖2 + ṙk+1
i + ‖êik+1‖2‖wk+1

i+1 − w
k
i+1‖2.

Combining the above inequality with (2.14) and noting that under Assumption 1,

‖Ak,i‖ ≤
1

2
min

{
4Lfi‖w

k+1
i+1 − w

k
i+1‖, L∇fi‖w

k+1
i+1 − w

k
i+1‖2

}
, (2.52)
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we obtain eq. (2.50).

We now prove part b). Note that by the definition of eq. (2.4) and eq. (2.48), Cauchy-Schwartz

and Young’s inequality, we have for 1 ≤ i ≤ T ,

‖wk+1
i − wki ‖2 = ‖τk(Gk+1

i − wki ) + Jk+1
i (wk+1

i+1 − w
k
i+1)‖2

= τ2
k‖Gk+1

i − wki ‖2 + ‖Jk+1
i (wk+1

i+1 − w
k
i+1)‖2 + 2τk〈Gk+1

i − wki , Jk+1
i (wk+1

i+1 − w
k
i+1)〉

≤ τ2
k‖Gk+1

i − wki ‖2 + 2‖Jk+1
i ‖2‖wk+1

i+1 − w
k
i+1‖2 + τ2

k‖fi(wki+1)− wki ‖2

+ 2τk〈−ek+1
i , Jk+1

i (wk+1
i+1 − w

k
i+1)〉

= 2τ2
k‖fi(wki+1)− wki ‖2 + τ2

k‖ek+1
i ‖2 + 2‖Jk+1

i ‖2‖wk+1
i+1 − w

k
i+1‖2

+ 2τk〈−ek+1
i , τk(fi(w

k
i+1)− wki ) + Jk+1

i (wk+1
i+1 − w

k
i+1)〉.

Computing the squared of both sides of the above inequality and noting that

〈a, b+ c〉2 ≤ ‖a‖2‖b+ c‖2 ≤ 2‖a‖4 + ‖b‖4 + ‖c‖4,

we obtain the last result.

We now require the following intermediate results to proceed.

Lemma 2.2.2. For two vectors x, y of equal dimension and any δ > 0, we have

‖x+ y‖2 ≤ (1 + δ)‖x‖2 +

(
1 +

1

δ

)
‖y‖2, (2.53)

‖x+ y‖4 ≤ (1 + δ)3‖x‖4 +

(
1 +

1

δ

)3

‖y‖4. (2.54)

Proof. By Cauchy Schwartz inequality, Young’s inequality, and the fact that

2〈x, y〉 = 2

〈√
δx,

y√
δ

〉
≤ δ‖x‖2 +

‖y‖2

δ
,
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eq. (2.53) follows. Next, by eq. (2.53) and Young’s inequality, we have

‖x+ y‖4 ≤ (1 + δ)2‖x‖4 +

(
1 +

1

δ

)2

‖y‖4 + 2(1 + δ)

(
1 +

1

δ

)
‖x‖2‖y‖2

≤ (1 + δ)2‖x‖4 +

(
1 +

1

δ

)2

‖y‖4 + (1 + δ)2δ‖x‖4 +

(
1 +

1

δ

)2 1

δ
‖y‖4

= (1 + δ)3‖x‖4 +

(
1 +

1

δ

)3

‖y‖4.

Lemma 2.2.3. Let αi, pi, qi, be sequences such that αi = pi + αi+1qi for 1 ≤ i ≤ T . Then, for

1 ≤ i < T , we have

αi = pi +

T∑
j=i+1

pj

(
j−1∏
`=i

q`

)
+ αT+1

(
T∏
`=i

q`

)
.

Proof. Base case for i = T − 1, we have

αT−1 = pT−1 + αT qT−1 = pT−1 + qT−1pT + qT−1qTαT+1.

Assume for all 1 < i+ 1 ≤ T − 1, the result holds. We show it holds for the ith case. By induction

hypothesis,

αi+1 = pi+1 +
T∑

j=i+2

pj

(
j−1∏
`=i+1

q`

)
+ αT+1

(
T∏

`=i+1

q`

)
.

Then

αi = pi + qi

pi+1 +

T∑
j=i+2

pj

(
j−1∏
`=i+1

q`

)
+ αT+1

(
T∏

`=i+1

q`

) = pi +

T∑
j=i+1

pj

(
j−1∏
`=i

q`

)
+ αT+1

(
T∏
`=i

q`

)
.

This proves the inductive step.

In the next result, we show how the moments of ‖wk+1
i − wki ‖ decrease in the corresponding order

of τk. This is a crucial step on bounding the errors in estimating the inner function values.
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Lemma 2.2.4. Under Assumption 1 and Assumption 3, for 1 ≤ i ≤ T , and with the choice of

τ0 = 1 (for simplicity), we have

E[‖wk+1
i − wki ‖2|Fk] ≤ c̃i τ2

k , (2.55)

E[‖wk+1
i − wki ‖4|Fk] ≤ ci τ4

k , (2.56)

where

c̃i =


18
[
σ2
Gi

+
(∑T−1

j=i+1 σ
2
Gj

+ σ2
GT

)
Υ
]

+
(∏T

i=1 σ
2
Ji

)
β−2 Υ for 1 ≤ i < T − 1,

32 σ2
GT−1

+ 18 σ2
GT

Φ +
(∏T

i=1 σ
2
Ji

)
β−2 Ψ for i = T − 1,

5 σ2
GT

+
(∏T

i=1 σ
2
Ji

)
β−2 [16L2

fT
+ 4%2

JT
+ 2σ2

JT
] for i = T.

ci =


3107 κ4

Gi
+ Θ (

∑T
j=i+1 3107 κ4

Gj
+ σd) for 1 ≤ i < T − 1,

3107 κ4
GT−1

+ 3107 κ4
GT

Ξ + σd Ω for i = T − 1,

3107 κ4
GT

+ σd [28 · 3L4
fT

+ 28 · 3κ4
JT

+ 24 · 3κ4
JT

] for i = T.

with

Υ :=

j−1∏
`=i

18L2
f`

+ 8%2
J`

+ 4σ2
J`
, Θ :=

T−1∏
`=i

28 · 3L4
f`

+ 28 · 3κ4
J`

+ 24 · 3σ4
J`
,

Φ := 18L2
fT−1

+ 8%2
JT−1

+ 4σ2
JT−1

, Ξ := 28 · 3L4
fT−1

+ 27 · 3κ4
JT−1

+ 24 · 3σ4
JT−1

,

Ψ :=
T∏

`=T−1

18L2
f`

+ 8%2
J`

+ 4σ2
J`
, Ω :=

T∏
`=T−1

28 · 3L4
f`

+ 27 · 3κ4
J`

+ 12σ4
J`
.

Before proceeding, we remark the order of c̃i and ci could be O(CT ) for some universal constant

C > 1. We did not try to optimize the constants appearing in the definition of c̃i and ci, as our

main focus in this work is on the convergence rates.

Proof of lemma 2.2.4. First, we start with some notations. Recall the definitions of

Ak,i, e
k+1
i , êk+1

i and define for 1 ≤ i ≤ T ,

Dk,i := Ak,i + τke
k+1
i + êk+1

i (wk+1
i+1 − w

k
i+1). (2.57)
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Then, we have for i ≤ i ≤ T ,

fi(w
k+1
i+1 )− wk+1

i = (1− τk)(fi(wki+1)− wki ) +Dk,i. (2.58)

We now prove eq. (2.55). By equation eq. (2.58), Lemma 2.2.2 using δ = τk, we obtain

‖fi(wk+1
i+1 )− wk+1

i ‖2 ≤ (1− τ2
k )(1− τk)‖fi(wki+1)− wki ‖2 +

(1 + τk)

τk
‖Dk,i‖2

≤ (1− τk)‖fi(wki+1)− wki ‖2 +
2

τk
‖Dk,i‖2. (2.59)

Moreover, we have

‖Dk,i‖2 = ‖Ak,i‖2 + τ2
k‖ek+1

i ‖2 + ‖êk+1
i (wk+1

i+1 − w
k
i+1)‖2 + 2r̃k,i, (2.60)

r′k,i = 〈Ak,i, τkek+1
i + êk+1

i (wk+1
i+1 − w

k
i+1)〉+ τk〈ek+1

i , êk+1
i (wk+1

i+1 − w
k
i+1)〉

which together with the fact that E[r̃k,i|Fk] = 0 under Assumption 2, we have imply that

E[‖Dk,i‖2|Fk] = E[‖Ak,i‖2|Fk] + τ2
kE[‖ek+1

i ‖2|Fk] + E[‖êk+1
i (wk+1

i+1 − w
k
i+1)‖2|Fk]

≤ τ2
kE[‖ek+1

i ‖2|Fk] +
(

4L2
fi

+ E[‖êk+1
i ‖2|Fk]

)
E[‖wk+1

i+1 − w
k
i+1‖2|Fk], (2.61)

where the second inequality follows from (2.52). Hence, noting the result from Proposition 2.2.1.a),

wkT+1 = xk, and under Assumption 3, we have

E[‖Dk,T ‖2|Fk] ≤ τ2
k

[
σ2
GT

+
(
4L2

fT
+ %2

JT

)( T∏
i=1

σ2
Ji

)
β−2

]
.

Using (2.59) with i = T , the above inequality, and Lemma 2.1.8 with the choice of τ0 = 1, we have

E[‖fT (xk)− wkT ‖2|Fk] ≤ 2

[
σ2
GT

+
(
4L2

fT
+ %2

JT

)( T∏
i=1

σ2
Ji

)
β−2

]
. (2.62)

Moreover, under Assumption 3 and Lemma 2.2.1.b), we have

E[‖wk+1
i+1 − w

k
i ‖2|Fk] ≤ τ2

kE
[
2‖fi(wki+1)− wki ‖2 + ‖ek+1

i ‖2 +
2

τ2
k

‖Jk+1
i ‖2‖wk+1

i+1 − w
k
i+1‖2

∣∣∣Fk

]
,

(2.63)
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implying that

E[‖wk+1
T − wkT ‖2|Fk] ≤ τ2

k

[
5σ2

GT
+ 2(8L2

fT
+ 2%2

JT
+ σ2

JT
)

(
T∏
i=1

σ2
Ji

)
β−2

]
. (2.64)

This completes the proof of eq. (2.55) when i = T . We now use backward induction to complete

the proof. By the above result, the base case of i = T holds. Assume that E[‖wk+1
i+1 −wki+1‖2|Fk] ≤

c̃i+1τ
2
k for some 1 ≤ i < T . Hence, by eq. (2.60) and under Assumption 3, we have

E[‖Dk,i‖2|Fk] ≤ τ2
k [σ2

Gi + (4L2
fi

+ %2
Ji)c̃i+1],

which together with Lemma 2.1.8, imply that

E[‖fi(wki+1)− wki ‖2|Fk] ≤ 2[σ2
Gi + (4L2

fi
+ %2

Ji)c̃i+1].

Thus, by eq. (2.63), we obtain

E[‖wk+1
i − wki ‖2|Fk] ≤ τ2

k [5σ2
Gi + 2(4L2

fi
+ %2

Ji + 2σ2
Ji)c̃i+1],

where after using Lemma 2.2.3, c̃i for 1 ≤ i ≤ T − 2, is as defined in the statement of Lemma 2.2.4.

Hence, we obtain the claim in eq. (2.55) by induction.

We now start proving eq. (2.56). We start with i = T . By equation eq. (2.58), Lemma 2.2.2

and setting δ = τk we get

‖fT (xk+1)− wk+1
T ‖4 ≤ (1− τ2

k )3(1− τk)‖fT (xk)− wkT ‖4 +
(1 + τk)

3

τ3
k

‖Dk,T ‖4

≤ (1− τk)‖fT (xk)− wkT ‖4 +
8

τ3
k

‖Dk,T ‖4.
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Now, by eq. (2.60), we have

‖Dk,i‖4 = ‖Ak,i‖4 + τ4
k‖ek+1

i ‖4 + ‖êk+1
i (wk+1

i+1 − w
k
i+1)‖4 + 4r′2k,i + 2τ2

k‖ek+1
i ‖2‖êk+1

i (wk+1
i+1 − w

k
i+1)‖2

+ 2‖Ak,i‖2
(
τ2
k‖ek+1

i ‖2 + ‖êk+1
i (wk+1

i+1 − w
k
i+1)‖2

)
+ 4r′k,i

(
‖Ak,i‖2 + τ2

k‖ek+1
i ‖2 + ‖êk+1

i (wk+1
i+1 − w

k
i+1)‖2

)
,

r′2k,i ≤ 2‖Ak,i‖2
(
τ2
k‖ek+1

i ‖2 + ‖êk+1
i (wk+1

i+1 − w
k
i+1)‖2 + 2τk〈ek+1

i , êk+1
i (wk+1

i+1 − w
k
i+1)〉

)
+ 2τ2

k‖ek+1
i ‖2‖êk+1

i (wk+1
i+1 − w

k
i+1)‖2.

implying that

‖Dk,i‖4 ≤ ‖Ak,i‖4 + τ4
k‖ek+1

i ‖4 + ‖êk+1
i (wk+1

i+1 − w
k
i+1)‖4 + 4τ2

k‖ek+1
i ‖2‖êk+1

i (wk+1
i+1 − w

k
i+1)‖2

+ 4‖Ak,i‖2
(
τ2
k‖ek+1

i ‖2 + ‖êk+1
i (wk+1

i+1 − w
k
i+1)‖2

)
+ 4r′′k,i, (2.65)

r′′k,i = r′k,i

(
‖Ak,i‖2 + τ2

k‖ek+1
i ‖2 + ‖êk+1

i (wk+1
i+1 − w

k
i+1)‖2

)
+ τk‖Ak,i‖2〈ek+1

i , êk+1
i (wk+1

i+1 − w
k
i+1)〉.

By definition of dk and Assumption 3, we obtain ‖Ak,T ‖ ≤ 2LfT τk‖dk‖. By this inequality and by

applying Lemma 2.2.2 with δ = 1, we have

‖Dk,T ‖4 ≤ 8
[
‖Ak,T ‖4 + τ4

k‖ek+1
T + êk+1

T dk‖4
]

≤ 8τ4
k [16L4

fT
‖dk‖4 + ‖ek+1

T + êk+1
T dk‖4]

≤ 64τ4
k [2L4

fT
‖dk‖4 + ‖ek+1

T ‖4 + ‖dk‖4‖êk+1
T ‖4].

By Assumption 3 and Proposition 2.2.1, we have

E[‖Dk,T ‖4|Fk] ≤ 64τ4
k [2L4

fT
σd + κ4

GT
+ κ4

JT
σd].

Hence, by Lemma 2.1.8, we obtain

E[‖fT (xk)− wkT ‖4|Fk] ≤ 83[2L4
fT
σd + κ4

GT
+ κ4

JT
σd].
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Now, by Assumption 3 and Lemma 2.2.1, we

E[‖wk+1
T − wkT ‖4|Fk] ≤ τ4

k [3072{2L4
fT
σd + κ4

GT
+ κ4

JT
σd}+ 40σdσ

4
JT

+ 35 · κ4
GT

].

This completes the proof of eq. (2.56) when i = T . We now use induction to complete the proof.

By the above result, the base case of i = T holds. Assume that E[‖wk+1
i+1 − wki+1‖4|Fk] ≤ ci+1τ

4
k ,

for some 1 ≤ i < T . Then, note that by using eq. (2.58), we have

‖fi(wk+1
i+1 )− wk+1

i ‖4 ≤ (1− τk)‖fi(wki+1)− wki ‖4 +

(
1 + τk
τk

)3

‖Dk,i‖4.

Since fi is Lipschitz under Assumption 3, ‖Ak,i‖ ≤ 2Lfi‖w
k+1
i+1 − wki+1‖. Using this fact and

Lemma 2.2.2 with δ = 1, in eq. (2.65), we obtain

E[‖Dk,i‖4|Fk] ≤ 64τ4
k [2L4

fi
ci+1 + κ4

Gi + κ4
Jici+1].

Using the above inequality, Lemma 2.1.8, and our setting τ0 = 1, we obtain

E[‖fi(wki+1)− wki ‖4|Fk] ≤ 83[2L4
fi
ci+1 + κ4

Gi + κ4
Jici+1].

By Assumption 3 and Lemma 2.2.1, we obtain

E[‖wk+1
i − wki ‖4|Fk] ≤ τ4

k [3072[2L4
fi
ci+1 + κ4

Gi + κ4
Jici+1] + κ4

Gi + 4κ4
Jici+1],

where after using Lemma 2.2.3, ci for 1 ≤ i ≤ T − 2, is as defined in the statement of Lemma 2.2.4.

Hence, we obtain the claim in eq. (2.56) by induction.

The next result is the counterpart of Lemma 2.1.7 for Algorithm 2.

Lemma 2.2.5. Recall the definition of the merit function in eq. (2.15). Define wk := (wk1 , . . . , w
k
T )

for k ≥ 0. Let {xk, zk, uk, wk1 , . . . , wkT }k≥0 be the sequence generated by Algorithm 2. Suppose for

1 ≤ i ≤ T , we have

max
2≤j≤T

C2
j ≤

(βk − λ)

T
(γib− λ) (2.66)
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where Cj ’s are defined in Lemma 2.1.4. Then, under Assumption 1 and Assumption 3, we have

λ
N−1∑
k=0

τk

[
‖dk‖2 +

T−1∑
i=1

‖fi(wki+1)− wki ‖2 + ‖fT (xk)− wkT ‖2
]
≤W (x0, z0, w0) +

N−1∑
k=0

R̂k+1, (2.67)

where, for any k ≥ 0,

R̂k+1 :=

(
T∑
i=1

γir̂
k+1
i

)
+
τ2
k

2

[
(L∇F + L∇η + 2CTLfT )‖dk‖2

]
+ τk〈dk,∆k〉+

L∇η
2
‖zk+1 − zk‖2,

r̂k+1
i =

L2
∇fi

4τk
‖wk+1

i+1 − w
k
i+1‖4 + ‖êk+1

i ‖2‖wk+1
i+1 − w

k
i+1‖2 + τ2

k‖ek+1
i ‖2 + ṙk+1

i ,

and ∆k and ṙk+1
i are, respectively, defined in (2.19) and (2.51). Furthermore, notice that eq. (2.66)

is satisfied, when we pick

γi = 1, λ = 1/2, βk ≡ β ≥
1

2
+ 2T max

2≤j≤T
C2
j . (2.68)

Proof. Noting Lemma 2.2.1 and definition of r̂k+1
i , we have

‖fi(wk+1
i+1 )− wk+1

i ‖2 − ‖fi(wki+1)− wki ‖2 ≤ −τk‖fi(wki+1)− wki ‖2 + r̂k+1
i ,

‖fT (xk+1)− wk+1
T ‖2 − ‖fT (xk)− wkT ‖2 ≤ −τk‖fT (xk)− wkT ‖2 + r̂k+1

T .

Combining the above inequalities with (2.21), (2.23), and noting definition of the merit function in

(2.15), we obtain
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W (xk+1, zk+1, wk+1)−W (xk, zk, wk)

≤− βkτk‖dk‖2 +
T−1∑
j=2

τkCj‖dk‖‖fj(wkj+1)− wkj ‖+ τkCT ‖dk‖‖fT (xk)− wkT ‖

+

T−1∑
i=1

−γiτk‖fi(wki+1)− wki ‖2 − γT τk‖fT (xk)− wkT ‖2 +Rk+1

≤− βkτk‖dk‖2 +

T−1∑
j=1

τk

√(
βk − λ
T

)
(γj − λ)‖dk‖‖fj(wkj+1)− wkj ‖

+τk

√(
βk − λ
T

)
(γT − λ)‖dk‖‖fT (xk)− wkT ‖

+

T−1∑
i=1

−γiτk‖fi(wki+1)− wki ‖2 − γT τk‖fT (xk)− wkT ‖2 +Rk+1

≤− λτk[‖dk‖2 +
T−1∑
i=1

‖fj(wkj+1)− wkj ‖2 + ‖fT (xk)− wkT ‖2] +Rk+1,

where the second to the last inequality follows by condition eq. (2.66) and last follows by Young’s

inequality. Thus, by summing up the above inequalities and re-arranging the terms, we obtain

(2.67). also It is easy to see that eq. (2.66) holds, by picking the parameters as in eq. (2.68).

In the next result, we show the error terms in the right hand side of (2.67) is bounded in the

order of
∑N

k=1 τ
2
k in expectation.

Proposition 2.2.1. Suppose βk = β > 0 for all k and τ0 = 1. We then have

β4E[‖dk‖4|Fk] ≤ E[‖zk‖4|Fk] ≤
T∏
i=1

κ4
Ji := β4σd ∀k ≥ 1,

E[R̂k+1|Fk] ≤ σ̂2τ2
k ,
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where

σ̂2 :=
T−1∑
i=1

γi

(
L2
∇fici+1

4
+ %2

Ji c̃i+1 + σ2
Gi

)
+
γTL

2
∇fT σd

4
+ 2L∇η

(
T∏
i=1

σ2
Ji

)

+
1

2

[
2γTσ

2
JT

+
1

β2
k

(
T∏
i=1

σ2
Ji

){
2γT%

2
JT

+ L∇F + L∇η + 2CTLfT
}]

. (2.69)

Proof. Noting the convexity of ‖ · ‖4, the first inequality follows similarly to that of Proposi-

tion 2.1.1 and hence we omit the details. Noting E[∆k|Fk] = 0, definition of Rk+1, E[ṙk+1
i |Fk] = 0

for 1 ≤ i ≤ T , Lemma 2.2.5, Lemma 2.2.4 and Assumption 3, we obtain σ2 as in eq. (2.69).

We remark that the ci+1 in the right hand side of (2.69) indeed appears as τkci+1 and so τk

reduces the affect of larger constants in the definition of ci+1. However, for simplicity we just

removed the τk in the definition of σ̂2. We are now ready to state the convergence rates via the

following theorem.

Theorem 2.2.6. Suppose that {xk, zk}k≥0 are generated by Algorithm 2, and Assumption 1

and Assumption 3 hold. Also assume the parameters satisfy eq. (2.68) and the step sizes {τk}

satisfy (2.36).

(a) The results in parts a) and b) of eq. (2.37) still hold by replacing σ2 by σ̂2.

b) If the stepsizes are set to (2.41), the results of part c) of eq. (2.37) also hold with replacing

σ2 by σ̂2.

Proof. The proof follows from the same arguments in the proof of eq. (2.37) by noticing (2.67),

and Proposition 2.2.1, hence, we skip the details.

Remark 2.2.1. Note that Algorithm 2 does not use a mini-batch of samples in any iteration.

Thus, (2.43) (in which σ2 is replaced by σ̂2) implies that the total sample complexity of Algorithm 2

for finding an ε-stationary point of eq. (1.5), is bounded by O(cTT 6/ε4) which is better in the order

of magnitude than the complexity bound of Algorithm 1. Furthermore, this bound matches the

complexity bound obtained in [63] for the two-level composite problem which in turn is in the same

order for single-level smooth stochastic optimization.
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2.3. Concluding remarks

In this project, we proposed two algorithms, with level-independent convergence rates, for sto-

chastic multi-level composition optimization problems under the availability of a certain stochastic

first-order oracle. We show that under a bounded second moment assumption on the outputs of the

stochastic oracle, our first proposed algorithm, by using a mini-batch of samples in each iteration,

achieves a sample complexity of O(1/ε6) for finding an ε-stationary point of the multi-level compos-

ite problem. By modifying this algorithm and making a bounded fourth moment assumption, we

show that we can improve the sample complexity to O(1/ε4) which seems to be unimprovable even

for single-level stochastic optimization problems, without further assumptions [9, 43]. For future

work, it is interesting to establish CLT and normal approximation results for the online algorithms

we presented in this work for stochastic multi-level composition optimization problems, similar to

the results in [6, 39, 103, 108, 130] for the standard stochastic gradient algorithm when T = 1.
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CHAPTER 3

Stochastic Zeroth-order Functional Constrained Optimization

Notations: Let 0 denote the vector of elements 0 and [m] := {1, . . . ,m}. Let f(x) :=

[f1(x), . . . , fm(x)]T ; then, the constraints in (1.7) be expressed as f(x) 6 0. We use ξ := [ξ1, · · · , ξm]

to denote the random vectors in the constraints. Furthermore, ‖·‖ denotes a general norm and ‖·‖∗

denotes its dual norm defined as ‖z‖∗ := sup{zTx : ‖x‖ ≤ 1}. Furthermore, [x]+ := max{x, 0}

for any x ∈ R. For any vector x ∈ Rk, we define [x]+ as element-wise application of the operator

[·]+.

3.1. Preliminaries

We first describe the precise assumptions to be made on the stochastic zeroth-order oracle in

this work.

Assumption 4. Let ‖ · ‖ be a norm on Rn. For i ∈ {0, . . . ,m} and for any x ∈ Rn, the zeroth-

order oracle outputs an estimator Fi(x, ξi) of fi(x) such that E[Fi(x, ξi)] = fi(x), E[Fi(x, ξi)
2] ≤ σ2

fi
,

E[∇Fi(x, ξi)] = ∇fi(x), E[‖∇Fi(x, ξi)−∇fi(x)‖2∗] 6 σ2
i , where ‖ · ‖∗ denotes the dual norm.

The assumption above assumes that we have accesses to a stochastic zeroth-order oracle which

provides unbiased function evaluations with bounded variance. It is worth noting that in the

above assumption, we do not necessarily assume the noise ξi is additive. Furthermore, we allow

for different noise models for the objective function and the m constraint functions, which is a

significantly general model compared to several existing works [40]. Our gradient estimator is then

constructed by leveraging the Gaussian smoothing technique [98, 99]. For νi ∈ (0,∞) we introduce

the smoothed function fi,νi(x) = Eui [fi(x+νiui)] where ui ∼ N(0, In) and independent across i. We

can estimate the gradient of this smoothed function using function evaluations of fi. Specifically,
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we define the stochastic zeroth-order gradient of fi,νi(x) as

Gi,νi(x, ξi, ui) =
Fi(x+ νiui, ξi)− Fi(x, ξi)

νi
ui, (3.1)

which is an unbiased estimator of ∇fi,νi(x), i.e., we have Eu,ξi [Gi,νi(x, ξi, u)] = ∇fi,νi(x). However,

it is well-known that Gi,νi(x, ξi, ui) is a biased estimator of ∇fi(x). An interpretation of the

gradient estimator in (3.1) as a consequence of Gaussian Stein’s identity, popular in the statistics

literature [122], was provided in [20].

The gradient estimator in (3.1) is referred to as the two-point estimator in the literature. The

reason is that, for a given random vector ξi, it is assumed that the stochastic function in (3.1)

could be evaluated at two points, F (x + νiui, ξi) and F (x, ξi). Such an assumption is satisfied

in several statistics, machine learning and simulation based optimization and sampling problems;

see for example [2, 41, 46, 62, 94, 99, 120]. Yet another estimator in the literature is the one-

point estimator, which assumes that for each ξi, we observe only one noisy function evaluation

F (x+ νiui, ξi). It is well-known that the one-point setting is more challenging than the two-point

setting [114]. From a theoretical point of view, the use of two-point evaluation based gradient

estimator is primarily motivated by the sub-optimality (in terms of oracle complexity) of one-point

feedback based stochastic zeroth-order optimization methods either in terms of the approximation

accuracy or dimension dependency. For the rest of this work, we focus on the two-point setting and

leave the question of obtaining results in the one-point setting as future work. We now describe

our assumptions on the objective and constraint functions.

Assumption 5. Function Fi has Lipschitz continuous gradient with constant Li, almost surely

for any ξi, i.e., ‖∇Fi(y, ξi)−∇Fi(x, ξi)‖∗ 6 Li‖y− x‖, which consequently implies that |Fi(y, ξi)−

Fi(x, ξi)− 〈∇Fi(x, ξi), y − x〉| 6 Li
2 ‖y − x‖

2 for i ∈ {0, 1, . . . ,m}.

Assumption 6. Function Fi is Lipschitz continuous with constant Mi, almost surely for any

ξi, i.e., |Fi(y, ξi)− Fi(x, ξi)| ≤Mi‖y − x‖, for i ∈ {0, 1, . . . ,m}.

The above smoothness assumptions are standard in the literature on stochastic zeroth-order

optimization and are made in several works [20, 62, 99] for obtaining oracle complexity results.

It is easy to see that Assumption 5 implies that for i ∈ {0, . . . ,m}, fi has Lipschitz continuous
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gradient with constant Li since ‖∇fi(y) − ∇fi(x)‖∗ 6 E[‖∇F (y, ξ) − ∇F (x, ξ)‖∗] 6 Li‖y − x‖,

due to Jensen’s inequality for the dual norm. By similar reasoning and Assumption 6, we also see

that fi is Lipschitz continuous with constant Mi. Due to Assumptions 5 and 6, we also have the

following:

‖f(x1)− f(x2)‖2 6Mf‖x1 − x2‖,

‖f(x1)− f(x2)−∇f(x2)T (x1 − x2)‖2 6
Lf
2
‖x1 − x2‖2,

‖∇f(x2)T (x1 − x2)‖2 6Mf‖x1 − x2‖,

(3.2)

for all x1, x2 ∈ Rn, where ∇f(·) := [∇f1(·), . . . ,∇fm(·)] ∈ Rn×m and constants Mf and Lf are

defined as

Mf :=
√∑m

i=1M
2
i and Lf :=

√∑m
i=1 L

2
i . (3.3)

We now state the definition of the prox-function and the prox-operator. The class of algorithms

based on prox-operators are called as proximal algorithms. Such algorithms have turned out to be

particularly useful for efficiently solving various machine learning problems in the recent past. We

refer the interested reader to [21, 101] for more details.

Definition 3.1.1. Let ω : X → R be continuously differentiable, Lω-Lipschitz gradient smooth,

and 1-strongly convex with respect to ‖ · ‖ function. We define the prox-function associated with

ω(·), ∀x, y ∈ Rn, as

W (y, x) := ω(y)− ω(x)− 〈∇ω(x), y − x〉. (3.4)

Based on the smoothness and strong convexity of ω(x), we have the following relation, ∀x, y ∈ Rn:

W (y, x) 6
Lω
2
‖x− y‖2 6 LωW (x, y). (3.5)

For any v ∈ Rn, we define the following prox-operator

prox(v, x̃, η) := arg min
x∈X

{〈v, x〉+ ηW (x, x̃)}. (3.6)
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The function W is also called as Bregman divergence in the literature. A canonical example of

W is that of the Euclidean distance function ‖x − y‖2 which is useful when X = Rn. We will see

in Section 3.2.1 that our algorithm is based on the above prox-operator.

Finally, we have the following results which will prove to be useful for subsequent calculations.

Let u := [u1, · · · , um] and DX := supx,y
√
W (x, y) be the diameter of the set X. We start with the

following well-known result on the stochastic zeroth-order gradient estimator in (3.1).

Theorem 3.1.1 ([99]). For a Gaussian random vector u ∼ N(0, In) we have

E[‖u‖k] 6 (n+ k)k/2 (3.7)

for any k > 2. Moreover, the following statements hold for any function ψ whose gradient is

Lipschitz continuous with constant L

a) The gradient of ψν(x) := Eu[ψ(x + νu)] is Lipschitz continuous with constant Lν such that

Lν 6 L.

b) For any x ∈ Rn, we have

|ψν(x)− ψ(x)| 6 ν2

2
Ln, (3.8)

‖∇ψν(x)−∇ψ(x)‖ 6 ν

2
L(n+ 3)3/2. (3.9)

c) For any x ∈ Rn, we have

1

ν2
Eu[{ψ(x+ νu)− ψ(x)}2‖u‖2] 6

ν2

2
L2(n+ 6)3 + 2(n+ 4)‖∇ψ(x)‖2. (3.10)

Lemma 3.1.2. Let ν := [ν1, · · · , νm], Fν(x, ξ, u) := [F1(x+ ν1u1, ξ1), . . . , Fm(x+ νmum, ξm)]T and

fν(x) := [f1,ν1(x), . . . , fm,νm(x)]T . Under Assumption 6, we have

Eu,ξ[‖Fν(x, ξ, u)− fν(x)‖2] 6 σ2
f,ν , (3.11)

where σ2
f,ν := (

∑m
i=1 4(n+ 2)M2

i ν
2
i + L2

i ν
4
i n

2) + 2σ2
f , where σ2

f =
∑m

i=1 σ
2
fi

.

Proof of Lemma 3.1.2. Note that

‖Fν(x, ξ, u)− fν(x)‖2 =
∑m

i=1(fi,νi(x)− Fi(x+ νiu, ξ))
2.
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By Young’s inequality, we have

|Fi(x+ νiu, ξ)− fi,νi(x)|2 = |[Fi(x+ νiu, ξ)− Fi(x, ξ)] + [Fi(x, ξ)− fi(x)] + [fi(x)− fi,νi(x)]|2

6 4|Fi(x+ νiu, ξ)− Fi(x, ξ)|2 + 4|fi(x)− fi,νi(x)|2 + 2|Fi(x, ξ)− fi(x)|2

6 4M2
i ν

2
i ‖u‖2 + 4

(
ν2
i

2
Lin

)2

+ 2|Fi(x, ξ)− fi(x)|2.

Now, by Assumption 6 and Theorem 3.1.1, we have

E|fi,νi(x)− Fi(x+ νiu, ξ)|2 ≤ 4M2
i ν

2
i (n+ 2) + 2σ2

f,i + L2
i ν

4
i n

2.

Consequently, we obtain

E‖Fν(x, ξ, u)− fν(x)‖2 6 (
∑m

i=1 4M2
i ν

2
i (n+ 2) + L2

i ν
4
i n

2) + 2σ2
f =: σ2

f,ν .

Lemma 3.1.3. Under Assumptions 4 and 5, we have

Eu,ξ[‖Gi,νi(x, ξ, u)−∇fi,νi(x)‖2] 6 σ2
i,νi (3.12)

where σ2
i,νi

:= ν2
i L

2
i (n+ 6)3 + 10(n+ 4)[σ2

i + B̃2
i ], with B̃i := νi

2 Li(n+ 3)3/2 + LiDX +Mi.

Proof of Lemma 3.1.3. First note that by Theorem 3.1.1, we have

1

ν2
i

Eu[{Fi(x+ νiu, ξ)− Fi(x, ξ)}2‖u‖2] 6
ν2
i

2
L2
i (n+ 6)3 + 2(n+ 4)‖∇Fi(x, ξ)‖2

6
ν2
i

2
L2
i (n+ 6)3 + 4(n+ 4)[‖∇Fi(x, ξ)−∇fi(x)‖2

+ ‖∇fi(x)‖2]. (3.13)

Next note that

‖∇fi,νi(x)‖ 6 ‖∇fi,νi(x)−∇fi(x)‖+ ‖∇fi(x)‖

6
νi
2
Li(n+ 3)3/2 + LiDX + ‖∇fi(x∗)‖

6
νi
2
Li(n+ 3)3/2 + LiDX +Mi =: B̃i,
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where Mi is from Assumption 6. Taking the expectation with respect to ξ on both sides of (3.13),

we have

E[||Gi,νi(x, ξ, u)‖2] 6
ν2
i

2
L2
i (n+ 6)3 + 4(n+ 4)[σ2

i + B̃2
i ].

From the above inequalities, using Assumptions 5 and 6, Theorem 3.1.1, and Young’s inequality,

we have

E[‖Gi,νi(x, ξ, u)−∇fi,νi(x)‖2] 6 2E[‖Gi,νi(x, ξ, u)‖2] + 2‖∇fi,νi(x)‖2

6 ν2
i L

2
i (n+ 6)3 + 8(n+ 4)[σ2

i + B̃2
i ] + 2B̃2

i

6 ν2
i L

2
i (n+ 6)3 + 10(n+ 4)[σ2

i + B̃2
i ],

which completes the proof.

3.2. Stochastic Zeroth-order Constraint Extrapolation Method

In this section, we present our algorithm for solving the stochastic zeroth-order functional

constrained optimization problem (1.7). In order to extend the method in [25] to the zeroth-

order setting, we make several modifications to their framework that we illustrate below, and use

the Gaussian smoothing based gradient estimates to handle the unavailability of gradients. The

main challenge to overcome for our theoretical analysis is setting the choice of tuning parameters to

mitigate the bias present in the stochastic zeroth-order stochastic gradient estimates. We emphasize

that this becomes a non-trivial problem due to the fact that both the objective and the constraint

functions are only accessible through noisy function evaluations.

3.2.1. Algorithmic Methodology. The constraint extrapolation framework of [25] is a novel

primal-dual method that proceeds by (i) considering the Lagrangian formulation of (1.7), (ii) con-

structing linear approximations for the constraint functions, and (iii) constructing an extrapolation

operation which enables acceleration. Such an approach has the advantage that: (i) it does not

require the projection of Lagrangian multipliers onto a possibly unknown bounded set (which is

required by several other primal-dual methods), (ii) it is a single-loop algorithm with a built-in
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acceleration step. [25] showed that such an approach helps achieve better rate of convergence than

existing methods for solving (1.7) in the stochastic first-order setting.

The Lagrangian of (1.7) is given by

min
x∈X

max
y>0
{L(x, y) := f0(x) +

∑m
i=1 yifi(x)}. (3.14)

In other words, (x∗, y∗) is a saddle point of the Lagrange function L(x, y) such that

L(x∗, y) 6 L(x∗, y∗) 6 L(x, y∗), (3.15)

for all x ∈ X, y > 0, whenever the optimal dual, y∗, exists. Throughout this work, we assume

the existence of y∗ satisfying (3.15). In order to handle the zeroth-order setting, we also define

Lagrangian with the smoothed functions as

Lν(x, y) := f0,ν0(x) +
∑m

i=1 yifi,νi(x). (3.16)

Now, we describe the linearization in the context of the iterates directly as it will be easier to

understand in the stochastic setting that we are in. Let x(t) be the sequence of the algorithm (to

be discussed later). The linearization of f(·) at the point x(t), with respect to the point x(t−1), is

given by

`f (x(t)) := fν(x(t−1)) +∇fν(x(t−1))T (x(t) − x(t−1)),

where similar to ∇f , we define ∇fν(x(t−1)) := [∇f1,ν1(x(t−1)), . . . ,∇fm,νm(x(t−1))]. For the im-

plementation, we use the version of linearization with the Gaussian smoothing based stochastic

zeroth-order gradients. In particular, we define

`F (x(t)) := Fν(x(t−1), ξ̄(t−1), ū(t−1))

+Gν(x(t−1), ξ
(t−1)

, u(t−1))T (x(t) − x(t−1)),

where Gν(x(t−1), ξ
(t−1)

, u(t−1)) ∈ Rn×m is given by

[G1,ν1(x(t−1), ξ
(t−1)
1 , u

(t−1)
1 ), . . . , Gm,νm(x(t−1), ξ

(t−1)
m , u(t−1)

m )].

52



Algorithm 3 Stochastic Zeroth-Order Constraint Extrapolation Method (SZO-ConEx)

Input: ν > 0, (x(0), y(0)), {γt, τt, ηt, θt}t>0, T .

1: Set (x(−1), y(−1))← (x(0), y(0)),

Fν(x(−1), ξ
(−1)

, u(−1))← Fν(x(0), ξ
(0)
, u(0)),

`F (x(−1))← `F (x(0)).
2: for t = 0, . . . , T − 1 do
3: s(t) ← (1 + θt)`F (x(t))− θt`F (x(t−1)).

4: y(t+1) ← [y(t) + 1
τt
s(t)]+.

5: x(t+1) ← prox

(
G0,ν0(x(t), ξ

(t)
0 , u

(t)
0 )

+
∑m

i=1Gi,νi(x
(t), ξ

(t)
i , u

(t)
i )y

(t+1)
i , x(t), ηt

)
.

6: return x̄T = (
∑T−1

t=0 γt)
−1
∑T−1

t=0 γtx
(t+1).

Here, by ξ
(t−1)

, u(t−1) we mean an independent (of ξ(t−1), u(t−1), respectively) realization of random

objects ξ, u, respectively.

Based on this, the overall procedure, termed as SZO-ConEx is provided in Algorithm 3. Step

3, which is based on the linearization discussed above, forms the main methodological innovation

over existing primal-dual method. Step 4 and Step 5 respectively correspond to the gradient ascent

step and the proximal gradient descent step to solve the saddle point problem in the Lagrangian

formulation. At a high-level, the algorithm could be interpreted as using the constraint extrapola-

tion method of [25] for solving (3.16), as the gradients used in Algorithm 3 are essentially unbiased

estimators of the smoothed functions fν,i (for i = 0, . . . ,m). However, as the smoothing parameters

νi (for i = 0, . . . ,m) tend to zero, Lν(x, y) converges to L(x, y) defined in (3.14). On the other

hand, the parameters νi are in the denominator of the stochastic zeroth-order gradient estimators

(see (3.1)). Hence, we cannot let them tend to zero at any arbitrary rate. Picking the νi to bal-

ance this tension forms the crux of our analysis. This also makes our analysis significantly more

challenging and different from the stochastic first-order analysis of [25].

3.2.2. Convex Setting. We now provide our theoretical results for the case when the func-

tions fi, for i = 0, . . . ,m, are convex. We start by describing the measure of optimality we consider,

for solving (1.7).
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Definition 3.2.1. A point x̄ is an ε-approximately optimal solution in expectation, for (1.7),

if it satisfies E[f0(x̄) − f∗0 ] 6 ε and E[‖[f(x̄)]+‖2] 6 ε, where f∗0 is the optimal value of (1.7) and

the expectation is with respect to the randomness arising due to ξi and ui across all iterations.

The first part of the above definition corresponds to the standard optimality condition for the

convex problem. The next part corresponds to constraint violation. Our main result is described

in Theorem 3.2.8. We define MX := supx∈X ‖x‖. Furthermore, we define σν := [σ1,ν1 , · · · , σm,νm ],

where σi,νi , for i = 0, . . . ,m are as defined in Lemma 3.1.3, σX,f := (σ2
f,ν + D2

X‖σν‖22)1/2 (where

σ2
f,ν is as defined in Lemma 3.1.2).

Next, in order to obtain the oracle complexity of Algorithm 3, we define a primal-dual gap

function for the equivalent saddle point problem (3.14). In particular, given a pair of feasible

solution z = (x, y) and z̄ = (x̄, ȳ) of (3.14), we define the primal-dual gap function Q(z, z̄) as

Q(z, z) := L(x, ȳ)− L(x̄, y). (3.17)

For the remainder of the project, we denote Qν(z, z̄) = Lν(x, ȳ) − Lν(x̄, y). Now we establish the

error between these two functions.

Lemma 3.2.1. Under Assumptions 4, 5 and 6, we have

|Q(z, z̄)−Qν(z, z̄)| 6 ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2, (3.18)

where MX = supx∈X ‖x‖.

Proof. First, we claim that the following is true:

‖f(x)− fν(x)‖ =
n

2
(
∑m

i=1 ν
4
i L

2
i )

1/2. (3.19)
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To see that, note that since the components fi of f have continuous Lipschitz gradient and using

Theorem 3.1.1, we have

‖f(x)− fν(x)‖ = (
∑m

i=1(fi(x)− fi,νi(x))2)1/2

6

(
m∑
i=1

(
ν2
i Lin

2

)2
)1/2

=

(
m∑
i=1

ν4
i

4
L2
in

2

)1/2

=
n

2
(
∑m

i=1 ν
4
i L

2
i )

1/2.

Utilizing this relation, using Theorem 3.1.1 and Cauchy-Schwartz inequality, we have

|Q(z, z̄)−Qv(z, z̄)| = |L(x, ȳ)− L(x̄, y)− Lν(x, ȳ) + Lν(x̄, y)|

= |f0(x) + ȳT f(x)− f0(x̄)− yT f(x̄)− f0,ν0(x)− ȳT fν(x) + f0,ν0(x̄) + yT fν(x̄)|

6 |f0(x)− f0,ν0(x)|+ |f0(x̄)− f0,ν0(x̄)|+ |ȳT [f(x)− fν(x)]|+ |yT [f(x̄)− fν(x̄)]|

6 |f0(x)− f0,ν0(x)|+ |f0(x̄)− f0,ν0(x̄)|+ ‖ȳ‖‖f(x)− fν(x)‖+ ‖y‖‖f(x̄)− fν(x̄)‖

6 |f0(x)− f0,ν0(x)|+ |f0(x̄)− f0,ν0(x̄)|+MX [‖f(x)− fν(x)‖+ ‖f(x̄)− fν(x̄)‖]

6 ν2
0L0n+MX [n(

∑m
i=1 ν

4
i L

2
i )

1/2].

This concludes the proof.

We also state the following results from [25], which is require in the proofs later.

Lemma 3.2.2 ([25]). Assume that g : S → R satisfies

g(y) > g(x) + 〈g′(x), y − x〉+ µW (y, x), ∀x, y ∈ S (3.20)

for some µ > 0, where S is convex set in Rn. If x̄ = arg minx∈S{g(x) + W (x, x̃)}, then g(x̄) +

W (x̄, x̃) + (µ+ 1)W (x, x̄) 6 g(x) +W (x, x̃), ∀x ∈ S.
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Lemma 3.2.3 ([25]). Let ρ0, . . . , ρj be a sequence of elements in Rn and let S be a convex set in

Rn. Define the sequence vt, t = 0, 1, . . . , as follows: v0 ∈ S and

vt+1 = arg min
x∈S

〈ρt, x〉+
1

2
‖x− vt‖22.

Then for any x ∈ S and t > 0, the following inequalities hold

〈ρt, vt − x〉 6
1

2
‖x− vt‖22 −

1

2
‖x− vt+1‖22 +

1

2
‖ρt‖22, (3.21)

∑j
t=0〈ρt, vt − x〉 6

1

2
‖x− v0‖22 +

1

2

j∑
t=0

‖ρt‖22. (3.22)

Lemma 3.2.4. Let {at}t>0 be a nonnegative sequence, m1,m2 > 0 be constants such that a0 6 m1

and the following relation holds for all t > 1:

at 6 m1 +m2
∑t−1

k=0 ak.

Then we have at 6 m1(1 +m2)t.

Proof. We prove this lemma by induction. When t = 0, we have a0 ≤ m1 by hypothesis.

Assume for all t ≥ 0, at ≤ m1(1 + m2)t. By induction hypothesis on ak for all k ∈ {0, . . . , t} and

hypothesis, we have

at+1 6 m1 +m2
∑t

k=0 ak

6 m1 +m2
∑t

k=0m1(1 +m2)k

6 m1

[
1 +m2

∑t
k=0(1 +m2)k

]
6 m1

[
1 +m2

(1 +m2)t+1 − 1

m2

]
= m1(1 +m2)t+1.

Hence, we conclude the proof.

Lemma 3.2.5. Suppose Assumptions 4, 5 and 6 are satisfied. Let B > 0 be a constant and assume

that {γt, ηt, τt, θt} is a non-negative sequence satisfying

γtθt = γt−1, γtτt 6 γt−1τt−1, τtηt 6 γt−1ηt−1, (3.23)
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and

(2Mf )2 θt
θt−1

6
τt(ηt−2 − L0 −BLf )

12
, θt(Mf )2 6

τt(ηt−1 − L0 −BLf )

12
,

(2Mf )2 1

θT−1
6
τT−1(ηT−2 − L0 −BLf )

12
, M2

f 6
τT−1(ηT−1 − L0 −BLf )

12
, (3.24)

where Mf , Lf are defined in (3.3). Then, for all T > 1 and z ∈ {(x, y) : x ∈ X, y > 0}, we have

T−1∑
t=0

γtQν(z(t+1), z) +

T−1∑
t=0

γt[〈δGt , x(t) − x〉 − 〈δFt+1, y
(t+1) − y〉]

6 γ0η0W (x, x(0))− γT−1ηT−1W (x, x(T )) +
γ0τ0

2
‖y − y(0)‖22 −

γT−1τT−1

12
‖y − y(T )‖22

+
∑T−1

t=0
2γt

ηt−L0−BLf

[
‖δGt ‖2∗ +

(
LfDX

2 [‖y‖2 −B]+

)2
]

+
∑T−1

t=1
3γtθ2t
2τt
‖qt − q̄t‖22 +

3γT−1

2τT−1
‖qT − q̄T ‖22. (3.25)

Here qt := `F (x(t)) − `F (x(t−1)), q̄t := `f (x(t)) − `f (x(t−1)), δFt := `F (x(t)) − `f (x(t)) and δGt :=

G0,ν0(x(t), ξ
(t)
i , u

(t)
i ) +

∑
i∈[m]Gi,νi(x

(t), ξ
(t)
i , u

(t)
i )y

(t+1)
i − f ′0,ν0(x(t))−

∑m
i=1 f

′
i,νi

(x(t))y
(t+1)
i .

Proof. Note that y(t+1) = arg miny>0〈−s(t), y〉+ τt
2 ‖y−y

(t)‖22. Hence, using Lemma 3.2.2 with

y 7→ 〈−s(t), y〉 and µ = 0, we have for all y > 0,

−〈s(t), y(t+1) − y〉 6 τt
2

[‖y − y(t)‖22 − ‖y(t+1) − y(t)‖22 − ‖y − y(t+1)‖22]. (3.26)

Let us denote vt := f ′0,ν0(x(t)) +
∑

i∈[m] f
′
i,νi

(x(t))y
(t+1)
i

and Vt := G0,ν0(x(t), ξ
(t)
i , u

(t)
i ) +

∑
i∈[m]Gi,νi(x

(t), ξ
(t)
i , u

(t)
i )y

(t+1)
i .

Then using Lemma 3.2.2 with x 7→ 〈Vt, x〉 and the optimality of x(t+1), we have for all x ∈ X,

〈Vt, x(t+1) − x〉 6 ηt[W (x, x(t))−W (x(t+1), x(t))]− ηtW (x, x(t+1)). (3.27)
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Due to the convexity of f0,ν0 and fi,νi , and since f0, fi are Lipschitz, and by the definition of `f ,

and the fact that y(t+1) > 0, we have

〈vt, x(t+1) − x〉 = 〈f ′0,ν0(x(t)) +
∑

i∈[m] f
′
i,νi

(x(t))y
(t+1)
i , x(t+1) − x〉

= 〈f ′0,ν0(x(t)), x(t+1) − x(t) + x(t) − x〉+ 〈f ′ν(x(t))y(t+1), x(t+1) − x(t) + x(t) − x〉

> f0,ν0(x(t))− f0,ν0(x) + f0,ν0(x(t+1))− f0,ν0(x(t))− L0

2
‖x(t+1) − x(t)‖2

+ 〈y(t+1), `f (x(t+1))− fν(x(t))〉+ 〈y(t+1), fν(x(t))− fν(x)〉

= f0,ν0(x(t+1))− f0,ν0(x) + 〈`f (x(t+1))− fν(x), y(t+1)〉 − L0

2
‖x(t+1) − x(t)‖2︸ ︷︷ ︸

Ot+1

. (3.28)

Combining (3.27), (3.28), noting that δGt = Vt − vt, we have

f0,ν0(x(t+1))− f0,ν0(x) + 〈`f (x(t+1))− fν(x), y(t+1)〉+ 〈δGt , x(t+1) − x〉

6 ηtW (x, x(t))− ηtW (x(t+1), x(t))− ηtW (x, x(t+1)) +Ot+1. (3.29)

Noting the definition of Qν(·, ·) (see (3.17)) and, adding (3.26) and (3.29), we obtain

Qν(z(t+1), z)− 〈fν(x(t+1)), y〉+ 〈`f (x(t+1)), y(t+1)〉 − 〈s(t), y(t+1) − y〉+ 〈δGt , x(t+1) − x〉

6
τt
2

[‖y − y(t)‖22 − ‖y(t+1) − y(t)‖22 − ‖y − y(t+1)‖22]

+ ηtW (x, x(t))− ηtW (x(t+1), x(t))− ηtW (x, x(t+1)) +Ot+1. (3.30)

Note that we also have fi,νi(x
(t+1))− `fi(x(t+1)) 6 Li

2 ‖x
(t+1)−x(t)‖2. Then, using Cauchy-Schwarz

inequality and noting definitions of Lf , we have

〈y, fν(x(t+1))− `f (x(t+1))〉 6 ‖y‖2
Lf
2
‖x(t+1) − x(t)‖2

Ct+1

.
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Noting the above relation and definitions of qt and δFt+1, we have

〈`f (x(t+1)), y(t+1)〉 − 〈fν(x(t+1)), y〉 − 〈s(t), y(t+1) − y〉

>〈`f (x(t+1)), y(t+1)〉 − 〈`f (x(t+1)), y〉 − 〈s(t), y(t+1) − y〉 − ‖y‖2Ct+1

=〈`f (x(t+1))− s(t), y(t+1) − y〉 − ‖y‖2Ct+1

=〈`f (x(t+1))− `F (x(t))− θtqt, y(t+1) − y〉 − ‖y‖2Ct+1

=〈qt+1, y
(t+1) − y〉 − θt〈qt, y(t) − y〉 − θt〈qt, y(t+1) − y(t)〉 − 〈δFt+1, y

(t+1) − y〉 − ‖y‖2Ct+1. (3.31)

Let B > 0 be a constant. Then

‖y‖2Ct+1 =
Lf
2

(‖y‖2 −B)‖x(t+1) − x(t)‖2 +
BLf

2
‖x(t+1) − x(t)‖2

6
Lf
2

[‖y‖2 −B]+‖x(t+1) − x(t)‖2 +
BLf

2
‖x(t+1) − x(t)‖2

6
BLf

2
‖x(t+1) − x(t)‖2 +

LfDX

2
[‖y‖2 −B]+‖x(t+1) − x(t)‖. (3.32)

By (3.30), (3.31), and (3.32), noting the definition of Ot+1 and using the relation 1
2‖a− b‖

2 6

W (a, b), we have

Qν(z(t+1), z) + 〈qt+1, y
(t+1) − y〉 − θt〈qt, y(t) − y〉+ 〈δGt , x(t) − x〉 − 〈δFt+1, y

(t+1) − y〉

6θt〈qt, y(t+1) − y(t)〉 − 〈δGt , x(t+1) − x(t)〉

+ηtW (x, x(t))− ηtW (x, x(t+1)) +
τt
2

[‖y − y(t)‖22 − ‖y(t+1) − y(t)‖22 − ‖y − y(t+1)‖22]

−(ηt − L0 −BLf )W (x(t+1), x(t)) +
LfDX

2
[‖y‖2 −B]+‖x(t+1) − x(t)‖. (3.33)
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Multiplying (3.33) by γt, summing them up from t = 0 to T − 1 with T > 1, we obtain

∑T−1
t=0 γtQν(z(t+1), z) +

∑T−1
t=0 [γt〈qt+1, y

(t+1) − y〉 − γtθt〈qt, y(t) − y〉]

+
∑T−1

t=0 γt[〈δGt , x(t) − x〉 − 〈δFt+1, y
(t+1) − y〉]

6
∑T−1

t=0 [γtθt〈qt − q̄t, y(t+1) − y(t)〉+ γtθt〈q̄t, y(t+1) − y(t)〉+ 〈γtδGt , x(t) − x(t+1)〉]

+
∑T−1

t=0

[γtτt
2 ‖y − y

(t)‖22 −
γtτt

2 ‖y − y
(t+1)‖22

]
−
∑T−1

t=0
γtτt

2 ‖y
(t+1) − y(t)‖22

+
∑T−1

t=0 [γtηtW (x, x(t))− γtηtW (x, x(t+1))]

−
T−1∑
t=0

γt(ηt − L0 −BLf )W (x(t+1), x(t))− γt
(
LfDX

2
[‖y‖2 −B]+

)
H(y,B)

‖x(t+1) − x(t)‖

 , (3.34)

where H(y,B) :=
LfDX

2 [‖y‖2−B]+. Now we focus our attention to handle the inner product terms

of (3.34). Noting the definition of q̄t, we have

‖q̄t‖2 = ‖`f (x(t))− `f (x(t−1))‖2

= ‖fν(x(t−1)) + f ′ν(x(t−1))T (x(t) − x(t−1))− fν(x(t−2))− f ′ν(x(t−2))T (x(t−1) − x(t−2))‖2

6 ‖fν(x(t−1))− fν(x(t−2))‖2 + ‖f ′ν(x(t−1))T (x(t) − x(t−1))‖2 + ‖f ′ν(x(t−2))T (x(t−1) − x(t−2))‖2

6 2Mf‖x(t−1) − x(t−2)‖+Mf‖x(t) − x(t−1)‖, (3.35)

where we used the fact that ‖fν(x) − fν(y)‖ 6 Mf‖x − y‖ and ‖[f ′ν(x)]T (y − x)‖2 6 Mf‖y − x‖,

which follows from an analogue for (3.2) and Theorem 3.1.1. Using the above relation for ‖q̄t‖2, we
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now obtain

γtθt〈q̄t, y(t+1) − y(t)〉 − γtτt
3
‖y(t+1) − y(t)‖22

−
γt−2(ηt−2 − L0 −BLf )

4
W (x(t−1), x(t−2))−

γt−1(ηt−1 − L0 −BLf )

4
W (x(t), x(t−1))

6γtθt‖q̄t‖2‖y(t+1) − y(t)‖2 −
γtτt
3
‖y(t+1) − y(t)‖22

−
γt−2(ηt−2 − L0 −BLf )

4
W (x(t−1), x(t−2))−

γt−1(ηt−1 − L0 −BLf )

4
W (x(t), x(t−1))

62Mfγtθt‖x(t−1) − x(t−2)‖‖y(t+1) − y(t)‖2 −
γtτt
6
‖y(t+1) − y(t)‖22

−
γt−2(ηt−2 − L0 −BLf )

4
W (x(t−1), x(t−2)) +Mfγtθt‖x(t) − x(t−1)‖‖y(t+1) − y(t)‖2

− γtτt
6
‖y(t+1) − y(t)‖22 −

γt−1(ηt−1 − L0 −BLf )

4
W (x(t), x(t−1))

6 0, (3.36)

where the last inequality follows by applying the relation W (x, y) > 1
2‖x− y‖, Young’s inequality

(2ab 6 a2 + b2) applied twice, once with

a =
(γtτt

6

)1/2
‖y(t+1) − y(t)‖, b =

(
γt−2(ηt−2 − L0 −BLf )

8

)1/2

‖x(t−1) − x(t−2)‖,

and second time with

a =
(γtτt

6

)1/2
‖y(t+1) − y(t)‖, b =

(
γt−1(ηt−1 − L0 −BLf )

8

)1/2

‖x(t) − x(t−1)‖,

and the fact that

2Mfγtθt 6

{
γtγt−2τt(ηt−2 − L0 −BLf )

12

}1/2

⇔ (2Mf )2 θt
θt−1

6
τt(ηt−2 − L0 −BLf )

12
,

M2
f γ

2
t θ

2
t 6

γtγt−1τt(ηt−1 − L0 −BLf )

12
⇔ M2

f θt 6
τt(ηt−1 − L0 −BLf )

12
,
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where the equivalences follow due to (3.23). Using Young’s inequality, Cauchy-Schwarz inequality

and the relation uT v 6 ‖u‖‖v‖∗, we have

γtθt〈qt − q̄t, y(t+1) − y(t)〉 − γtτt
6
‖y(t+1) − y(t)‖22 6

3γtθ
2
t

2τt
‖qt − q̄t‖22,

〈γtδGt , x(t) − x(t+1)〉 −
γt(ηt − L0 −BLf )

4
W (x(t+1), x(t)) 6

2γt
ηt − L0 −BLf

‖δGt ‖2∗, (3.37)

(3.38)

Using (3.36) and (3.37) for t = 0, . . . , T − 1 inside (3.34) and noting (3.23), we have

T−1∑
t=0

γtQν(z(t+1), z) + γT−1〈qT , y(T ) − y〉+
T−1∑
t=0

γt[〈δGt , x(t) − x〉 − 〈δFt+1, y
(t+1) − y〉]

6γ0η0W (x, x(0))− γT−1ηT−1W (x, x(T )) +
γ0τ0

2
‖y − y(0)‖22 −

γT−1τT−1

2
‖y − y(T )‖22

+

T−1∑
t=0

[
3γtθ

2
t

2τt
‖qt − q̄t‖22 +

2γt
ηt − L0 −BLf

‖δGt ‖2∗ +
2γt

ηt − L0 −BLf
H(y,B)2

]

−
γT−2(ηT−2 − L0 −BLf )

4
W (x(T−1), x(T−2))−

γT−1(ηT−1 − L0 −BLf )

2
W (x(T ), x(T−1)),

(3.39)

where in the left hand side of the above relation, we used the fact that q0 = `F (x(0))−`F (x(−1)) = 0.

Similarly, we see that q̄0 = 0. Hence, we can ignore ‖q0 − q̄0‖22 term in the right hand side of the

above relation, after which we obtain

− γT−1〈q̄T , y(T ) − y〉 − γT−1τT−1

3
‖y − y(T )‖22

−
γT−2(ηT−2 − L0 −BLf )

4
W (x(T−1), x(T−2))−

γT−1(ηT−1 − L0 −BLf )

2
W (x(T ), x(T−1))

6 MfγT−1‖x(T ) − x(T−1)‖‖y(T ) − y‖2 −
γT−1τT−1

12
‖y − y(T )‖22

−
γT−1(ηT−1 − L0 −BLf )

2
W (x(T ), x(T−1)) + 2MfγT−1‖x(T−1) − x(T−2)‖‖y(T ) − y‖2

− γT−1τT−1

6
‖y − y(T )‖22 −

γT−2(ηT−2 − L0 −BLf )

4
W (x(T−1), x(T−2))− γT−1τT−1

12
‖y(T ) − y‖22

6 − γT−1τT−1

12
‖y(T ) − y‖22, (3.40)
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where the last relation follows from (3.24), Young’s inequality and the fact that

2MfγT−1 6

{
γT−2γT−1τT−1(ηT−2 − L0 −BLf )

12

}1/2

⇔
(2Mf )2

θT−1
6
τT−1(ηT−2 − L0 −BLf )

12

MfγT−1 6

{
γ2
T−1τT−1(ηT−1 − L0 −BLf )

12

}1/2

⇔ M2
f 6

τT−1(ηT−1 − L0 −BLf )

12
.

Moreover, again using Young’s inequality and Cauchy-Schwarz inequality, we have

−γT−1〈qT − q̄T , y(T ) − y〉 − γT−1τT−1

6
‖y − y(T )‖22 6

3γT−1

2τT−1
‖qT − q̄T ‖22. (3.41)

Using (3.40) and (3.41) in relation (3.39), noting that q0 − q̄0 = 0 and replacing the definition of

H(y,B), we obtain (3.25), which completes the proof.

Lemma 3.2.6. Suppose all conditions required for Lemma 3.2.5 hold. Then, for all T > 1, we

have

E[f0(x̄T )− f0(x∗)] 6
1

ΓT

[
γ0η0W (x∗, x(0)) +

γ0η0

2
‖y(0)‖22 +

∑T−1
t=0

2γt
ηt−L0−BLf E[‖δGt ‖2∗]

+
(∑T−1

t=1
12γtθ2t
τt

+
12γT−1

τT−1

)
(σ2
f,ν +D2

X‖σν‖22)

]
+ [ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2], (3.42)

E[‖[f(x̄T )]+‖2] 6
1

ΓT

[
γ0τ0‖y(0)‖22 + 3(‖y∗‖2 + 1)2γ0τ0 + γ0η0W (x∗, x(0))

+
∑T−1

t=0
2γt

ηt−L0−BLf

{
E[‖δGt ‖2∗] +

(
LfDX

2 [‖y∗‖2 + 1−B]+

)2
}

(3.43)

+
(∑T−1

t=1
12γtθ2t
τt

+
∑T−1

t=0
γt
τt

+
12γT−1

τT−1

)
(σ2
f,ν +D2

X‖σν‖22)

]
(3.44)

+ [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2],

where ΓT :=
∑T−1

t=0 γt and σν = (σ1,ν1 , . . . , σm,νm) with σi,νi as defined in (3.12).

Proof. First, observe that y(t+1) is a constant conditioned on random variable

ξ[t−1], u[t−1], ξ̄[t−1], ū[t−1]. In particular,

E[〈δGt , x(t) − x〉] = E〈E|ξ[t−1],u[t−1],ξ̄[t−1],ū[t−1]
[δGt ], x(t) − x〉 = 0 (3.45)
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for any non-random x. This follows due to the following relation

E|ξ[t−1],u[t−1],ξ̄[t−1],ū[t−1]
[δGt ]

= E|ξ[t−1],u[t−1],ξ̄[t−1],ū[t−1]
[G0,ν0(x(t), ξ

(t)
0 , u

(t)
0 )− f ′0,ν0(x(t))]

+
∑m

i=1 y
(t+1)
i E|ξ[t−1],u[t−1],ξ̄[t−1],ū[t−1]

[Gi,νi(x
(t), ξ

(t)
i , u

(t)
i )− f ′i,νi(x

(t))]

= 0.

Similarly, we have

E[〈δFt+1, y
(t+1) − y〉] = E[〈E|ξ[t],u[t],ξ̄[t−1],ū[t−1]

[δFt+1], y(t+1) − y〉] = 0, (3.46)

for any non-random y. Here, we note that

E|ξ[t],u[t],ξ̄[t−1],ū[t−1]
[δFt+1] = E|ξ[t],u[t],ξ̄[t−1],ū[t−1]

[Fν(x(t), ξ̄(t), u(t))]− fν(x(t))

+ (E|ξ[t],u[t],ξ̄[t−1],ū[t−1]
[Gν(x(t), ξ̄(t), ū(t))]− f ′ν(x(t)))T (x(t+1) − x(t)) = 0,

(3.47)

where the first term in RHS is 0 due to Eξ,uFν(x, ξ, u) = fν(x), the second term is 0 due to the

Eξ,uGν(x, ξ, u) = f ′ν(x) and the common fact for both the terms that x(t), x(t+1) are constants for

given ξ[t], u[t], ξ̄[t−1], ū[t−1]. We now note that

E[‖δFt ‖22] 6 2E[‖Fν(x(t−1), ξ̄(t−1), ū(t−1))− fν(x(t−1))‖22]

+ 2E[‖[Gν(x(t−1), ξ̄(t−1), ū(t−1))− f ′ν(x(t−1))]T (x(t) − x(t−1))‖22]

6 2σ2
f,ν + 2E

[
m∑
i=1

{
(Gi,νi(x

(t−1), ξ̄
(t−1)
i , ū

(t−1)
i )− f ′i,νi(x

(t−1)))T (x(t) − x(t−1))
}2
]

6 2σ2
f,ν + 2E

[
m∑
i=1

‖Gi,νi(x(t−1), ξ̄
(t−1)
i , ū

(t−1)
i )− f ′i,νi(x

(t−1))‖2∗‖x(t) − x(t−1)‖2
]

6 2σ2
f,ν + 2D2

X‖σν‖22. (3.48)
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Then, in view of above relation and definitions of qt, q̄t, we have

E[‖qt − q̄t‖22] = E[‖`F (x(t))− `f (x(t))− `F (x(t−1)) + `f (x(t−1))‖22]

6 2E[‖δFt ‖22] + 2E[‖δFt−1‖22] 6 8(σ2
f,ν +D2

X‖σν‖22). (3.49)

Taking the expectation on both sides of (3.25) and using relation (3.45), (3.46) and (3.49), we have

for all non-random z ∈ {(x, y) : x ∈ X, y > 0},

E
[∑T−1

t=0 γtQν(z(t+1), z)
]

6γ0η0W (x, x(0))− γT−1ηT−1E[W (x, x(T ))] +
γ0τ0

2
‖y − y(0)‖22

+
∑T−1

t=0
2γt

ηt−L0−BLf

[
E[‖δGt ‖2∗] +

(
LfDX

2 [‖y‖2 −B]+

)2
]

+
(∑T−1

t=1
12γtθ2t
τt

+
12γT−1

τT−1

)
(σ2
f,ν +D2

X‖σν‖22) (3.50)

where we dropped ‖y − y(T )‖22. By Lemma 3.2.1, we have

Q(z(t+1), z)− [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2] 6 Qν(z(t+1), z).

Using this relation, multiplying both sides by γt, summing from t = 0, . . . , T − 1, and taking

expectation on both sides, we have

E
[∑T−1

t=0 γtQ(z(t+1), z)
]
− [ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]ΓT 6 E
[∑T−1

t=0 γtQν(z(t+1), z)
]
. (3.51)

Using this relation, the convexity of f0(·) and f(·), and noting the definition of ΓT , we have for all

non-random y > 0 and x ∈ X,

ΓTE[f0(x̄T ) + 〈y, f(x̄T )〉 − f0(x)− 〈ȳT , f(x)〉]− [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2]ΓT

6 E
[∑T−1

t=0 γtQ(z(t+1), z)
]
− [ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]ΓT

6 E
[∑T−1

t=0 γtQν(z(t+1), z)
]
. (3.52)
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Combining (3.50), (3.51) and (3.52), then choosing x = x∗, y = 0 (which are non-random) through-

out the combined relation, observing that [0−B]+ = 0 for any B > 0, we have

ΓTE[f0(x̄T )− f0(x∗)− 〈ȳT , f(x∗)〉]− [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2]ΓT

6 E
[∑T−1

t=0 γtQν(z(t+1), (x∗,0))
]

6 γ0η0W (x∗, x(0))− γT−1ηT−1E[W (x∗, x(T ))] +
γ0τ0

2
‖y(0)‖22 +

∑T−1
t=0

2γt
ηt−L0−BLf E[‖δGt ‖2∗]

+
(∑T−1

t=1
12γtθ2t
τt

+
12γT−1

τT−1

)
(σ2
f,ν +D2

X‖σν‖22). (3.53)

Ignoring the E[W (x∗, x(T ))] term and noting that f(x∗) 6 0 and ȳT > 0 implies 〈ȳT , f(x∗)〉 6 0,

we have (3.42).

Now, we focus our attention to the infeasibility bound. First, we define R := ‖y∗‖2 + 1.

Second, define an auxilliary sequence {yvt } in the following way: yv0 = y(0) and for all t > 0, define

yvt+1 := arg min
y∈B2+(R)

1

τt−1
〈δFt , y〉+

1

2
‖y − yvt ‖22,

where we recall that B2
+(R) = {x ∈ Rn : ‖x‖2 6 R, x > 0}. Then in view of Lemma 3.2.3, in

particular relation (3.21), for all y ∈ B2
+(R) we have

1

τt
〈δFt+1, y

v
t+1 − y〉 6

1

2
‖y − yvt+1‖22 −

1

2
‖y − yvt+2‖22 +

1

2τ2
t

‖δFt+1‖22. (3.54)

Multiplying (3.54) by γtτt, taking a sum from t = 0 to T − 1 and noting the second relation in

(3.23), we obtain

∑T−1
t=0 γt〈δFt+1, y

v
t+1 − y〉 6

γ0τ0
2 ‖y − y

v
1‖22 +

∑T−1
t=0

γt
2τt
‖δFt+1‖22, (3.55)
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for all y ∈ B2
+(R). Summing (3.55) and (3.25), we obtain

∑T−1
t=0 γtQν(z(t+1), z) +

∑T−1
t=0 γt[〈δGt , x(t) − x〉 − 〈δFt+1, y

(t+1) − yvt+1〉]

6
γ0τ0

2
[‖y − y(0)‖22 + ‖y − yv1‖22] + γ0η0W (x, x(0))

+
∑T−1

t=1
3γtθ2t
2τt
‖qt − q̄t‖22 +

3γT−1

2τT−1
‖qT − q̄T ‖22

+
∑T−1

t=0

[
2γt

ηt−L0−BLf

{
‖δGt ‖2∗ +

(
LfDX

2 [‖y‖2 −B]+

)2
}

+ γt
2τt
‖δFt+1‖22

]
, (3.56)

for all z ∈ {(x, y) : x ∈ X, y ∈ B2
+(R)}. Note that given ξ[t], u[t] and ξ̄[t−1], ū[t−1], we have

y(t+1), yvt+1, x
(t+1), x(t) are constants. Hence, we have

E[〈δFt+1, y
(t+1) − yvt+1〉] = E[〈E|ξ[t],u[t],ξ̄[t−1],ū[t−1]

[δFt+1], y(t+1) − yvt+1〉] = 0, (3.57)

where second equality follows from (3.47). Choosing z = ẑ := (x∗, ŷ) in (3.56) where ŷ := (‖y∗‖2 +

1)[f(x̄T )]+‖[f(x̄T )]+‖−1
2 ∈ B2

+(R), taking expectation on both sides and noting (3.57), (3.48),

(3.49), first relation in (3.45), we have

E
[∑T−1

t=0 γtQν(z(t+1), ẑ)
]
6
γ0τ0

2
E[‖ŷ − y(0)‖22 + ‖ŷ − yv1‖22] + γ0η0W (x∗, x(0))

+
∑T−1

t=0
2γt

ηt−L0−BLf

{
E[‖δGt ‖2∗] +

(
LfDX

2 [‖y∗‖2 + 1−B]+

)2
}

+
(∑T−1

t=1
12γtθ2t
τt

+
∑T−1

t=0
γt
τt

+
12γT−1

τT−1

)
(σ2
f,ν +D2

X‖σν‖22). (3.58)

By Lemma 3.2.1, we then have Q(z(t+1), ẑ)− [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2] 6 Qν(z(t+1), ẑ). Multi-

plying both sides by γt, summing from t = 0 to T −1, taking expectation of both sides and dividing

by ΓT , we have

1

ΓT
E
[∑T−1

t=0 γtQ(z(t+1), ẑ)
]
− [ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2] 6 1
ΓT

E
[∑T−1

t=0 γtQν(z(t+1), ẑ)
]
.

(3.59)

Noting the convexity of Q in the first argument, we obtain

E[Q(z̄T , ẑ)] 6
1

ΓT
E
[∑T−1

t=0 γtQ(z(t+1), ẑ)
]
. (3.60)

67



Now observe that we have L(x̄T , y
∗) − L(x∗, y∗) > 0 which implies that f0(x̄T ) + 〈y∗, f(x̄T )〉 −

f0(x∗) > 0, which follows from complementary slackness. In view of the relation

〈y∗, f(x̄T )〉 6 〈y∗, [f(x̄T )]+〉 6 ‖y∗‖2‖[f(x̄T )]+‖2,

the above inequality implies that

f0(x̄T ) + ‖y∗‖2‖[f(x̄T )]+‖2 − f0(x∗) > 0. (3.61)

Moreover, we have that

Q(z̄T , ẑ) = L(x̄T , ŷ)− L(x∗, ȳT )

> L(x̄T , ŷ)− L(x∗, y∗)

= f0(x̄T ) + (‖y∗‖2 + 1)‖[f(x̄T )]+‖2 − f0(x∗),

which along with (3.61) implies that

Q(z̄T , ẑ) > ‖[f(x̄T )]+‖2.

The above relation, (3.58), (3.59) and (3.60) together yield

E[‖[f(x̄T )]+‖2] 6
1

ΓT

[
γ0τ0

2
E[‖ŷ − y(0)‖22 + ‖ŷ − yv1‖22] + γ0η0W (x∗, x(0))

+
∑T−1

t=0
2γt

ηt−L0−BLf

{
E[‖δGt ‖2∗] +

(
LfDX

2 [‖y∗‖2 + 1−B]+

)2
}

+
(∑T−1

t=1
12γtθ2t
τt

+
∑T−1

t=0
γt
τt

+
12γT−1

τT−1

)
(σ2
f,ν +D2

X‖σν‖22)

]
+ [ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2].

Noting the bound ‖ŷ− yv1‖ 6 2R and ‖ŷ− y(0)‖22 6 2‖y(0)‖22 + 2‖ŷ‖22 6 2‖y(0)‖22 + 2R2 in the above

relation and recalling that R = ‖y∗‖2 + 1, we obtain (3.43). Hence, we conclude the proof.

Lemma 3.2.7. Assume that {γt, τt, ηt} satisfy

96‖σν‖22
τt(ηt − L0 −BLf )

< 1, (3.62)
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for all t 6 T − 1 and constants R1 and R2 satisfying the following conditions exist:

R1 >

(
1− 96‖σν‖22

τt(ηt − L0 −BLf )

)−1 [
2σ2

0,ν0 +
48‖σν‖22
γtτt

{
γ0η0W (x∗, x(0)) +

γ0τ0

2
‖y∗ − y(0)‖22

+
γtτt
12
‖y∗‖22 +

∑t
i=0

2γi
ηi−L0−BLf

(
LfDX

2 [‖y∗‖2 −B]+

)2

+
(∑t

i=1
12γiθ

2
i

τi
+ 12γt

τt

)
(σ2
f,ν +D2

X‖σν‖22) + [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2]Γt+1

}]
(3.63)

for all t 6 T − 1 and

R2 >

(
1− 96‖σν‖22

τt(ηt − L0 −BLf )

)−1
96‖σν‖22γi

γtτt(ηi − L0 −BLf )
(3.64)

for all t 6 T − 1 and i 6 t− 1. Then, we have

E[‖δGt ‖2∗] 6 R1(1 +R2)t, (3.65)

for all t 6 T − 1. In particular, if ‖σν‖2 = 0, then we can set R1 = 2σ2
0,ν0

and R2 = 0 implying

E[‖δGt ‖2∗] 6 2σ2
0,ν0

.

Proof. First note that by Lemma 3.2.1, we have

Q(z(i+1), z)− [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2] 6 Qν(z(i+1), z).

Multiplying the above by γi and summing up i = 0 to t, we have

∑t
i=0 γiQ(z(i+1), z)− [ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]Γt+1 6
∑t

i=0 γiQν(z(i+1), z).

Replacing T for t+ 1(> 1) in (3.25), we have

∑t
i=0 γiQν(z(i+1), z) +

∑t
i=0 γi[〈δGi , x(i) − x〉 − 〈δFi+1, y

(i+1) − y〉]

6 γ0η0W (x, x(0))− γtηtW (x, x(t+1)) +
γ0τ0

2
‖y − y(0)‖22 −

γtτt
12
‖y − y(t+1)‖22

+
∑t

i=0
2γi

ηi−L0−BLf

[
‖δGi ‖2∗ +

(
LfDX

2 [‖y‖2 −B]+

)2
]

+
∑t

i=1
3γiθ

2
i

2τi
‖qi − q̄i‖22 + 3γt

2τt
‖qt+1 − q̄t+1‖22. (3.66)
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Observe that Q(z(i+1), z∗) > 0 for i = 0, . . . , t by our saddle point assumption where z∗ = (x∗, y∗).

Choosing z = z∗ (both non-random) in the above relations, taking expectation, using (3.45) with

x = x∗ and (3.46) with y = y∗, disregarding the term −γtηtE[W (x∗, x(t+1))] and noting (3.49), we

have

− [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2]Γt+1 + γtτt
12 E‖y∗ − y(t+1)‖22

6 γ0η0W (x∗, x(0)) +
γ0τ0

2
‖y∗ − y(0)‖2

+
∑t

i=0
2γi

ηi−L0−BLf

[
E[‖δGi ‖2∗] +

(
LfDX

2 [‖y∗‖2 −B]+

)2
]

+
(∑t

i=1
12γiθ

2
i

τi
+ 12γt

τt

)
(σ2
f,ν +D2

X‖σν‖22). (3.67)

Now, let us define δGt,i := Gi,νi(x
(t), ξ

(t)
i , u

(t)
i ) − f ′i,νi(x

(t)) for i = 0, . . . ,m. As a consequence, we

have δGt = δGt,0 +
∑m

i=1 y
(t+1)
i δGt,i. Then, we have

E[‖δGt ‖2∗] = E[‖δGt,0 +
∑m

i=1 y
(t+1)
i δGt,i‖2∗]

(i)

6 2E[‖δGt,0‖2∗] + 2E[‖
∑m

i=1 y
(t+1)
i δGt,i‖2∗]

6 2E[‖δGt,0‖2∗] + 2E[(
∑m

i=1 ‖y
(t+1)
i δGt,i‖)2]

(ii)

6 2[σ2
0,ν0 + E[‖y(t+1)‖22(

∑m
i=1 ‖δGt,i‖2∗)]]

(iii)

6 2[σ2
0,ν0 + E[‖y(t+1)‖22(

∑m
i=1 E|ξ[t−1],u[t−1],ξ̄[t−1],ū[t−1]

[‖δGt,i‖2∗])]]

(iv)

6 2[σ2
0,ν0 + E[‖y(t+1)‖22

∑m
i=1 σ

2
i,νi

]]

= 2(σ2
0,ν0 + ‖σν‖22E‖y(t+1)‖22)

6 2σ2
0,ν0 + 4‖σν‖22(‖y∗‖22 + E[‖y(t+1) − y∗‖22]). (3.68)

Here, relation (i) follows due to the fact that ‖a + b‖2∗ 6 (‖a‖∗ + ‖b‖∗)2 6 2‖a‖2∗ + 2‖b‖2∗, relation

(ii) follows due to Cauchy-Schwarz inequality, relation (iii) follows due to the fact that y(t+1) is a

constant conditioned on random variables ξ[t−1], u[t−1], ξ̄[t−1], ū[t−1] and relation (iv) follows from

the fact that x(t) is a constant conditioned on random variables ξ[t−1], u[t−1], ξ̄[t−1], ū[t−1].
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Adding γtτt
12 ‖y

∗‖2∗ to both sides of (3.67), then multiplying it by
48‖σν‖22
γtτt

and observing (3.68),

we have

E[‖δGt ‖2∗] 6 2σ2
0,ν0 +

48‖σν‖22
γtτt

{
γ0η0W (x∗, x(0)) +

γ0τ0

2
‖y∗ − y(0)‖22 +

γtτt
12
‖y∗‖22

+
∑t

i=0
2γi

ηi−L0−BLf

(
LfDX

2 [‖y∗‖2 −B]+

)2

+
(∑t

i=1
12γiθ

2
i

τi
+ 12γt

τt

)
(σ2
f,ν +D2

X‖σν‖22) + [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2]Γt+1

}
+
∑t

i=0
96‖σν‖22γi

γtτt(ηi−L0−BLf )E[‖δGi ‖2∗].

In view of (3.62), we have that the coefficient of the δGt term on the right hand side of the above

relation is strictly less than 1. Moving the δGt term to the left hand side and noting the conditions

imposed on constants R1, R2, we have

E[‖δGt ‖2∗] 6 R1 +R2
∑t−1

i=0 E[‖δGi ‖2∗],

for all t 6 T − 1. Using Lemma 3.2.4 for the above relation, we have (3.65). Hence we conclude

the proof.

Theorem 3.2.8. Suppose the functions fi, for i = 0, . . . ,m, are convex and satisfy Assump-

tions 4, 6 and 5. Let B > 1 be a given constant and define H∗ := (LfDX [‖y∗‖2 + 1−B]+)/2. Set

y(0) = 0 and {γt, θt, ηt, τt} in Algorithm 3 according to the following: γt = 1, ηt = L0 +BLf + η,

and θt = 1, τt = τ , where

η := max

{√
2T [H2

∗ + σ2
0,ν0

+ 48B2‖σν‖22]

DX
,

6Bmax{2Mf , 4‖σν‖2}
DX

}
,

τ := max

{√
96TσX,f
B

,
2DX max{2Mf , 4‖σν‖2}

B

}
.
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Then, we have

E[f0(x̄T )− f0(x∗)] 6
(L0 +BLf )D2

X + max{12Mf , 24‖σν‖2}BDX

T

+
1√
T


√

2ζ2DX√
H2
∗ + σ2

0,ν0
+ 48B2‖σν‖22

+

√
3BσX,f√

2


+

1√
T

√
2(H2

∗ + σ2
0,ν0

+ 48B2‖σν‖22)DX

+ [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2], (3.69)

and

E[‖[f(x̄T )]+‖2] 6 +
1√
T

{[
12
√

6(‖y∗‖2 + 1)2

B
+

13B

4
√

6

]
σX,f

+
√

2DX

[√
H2
∗ + σ2

0,ν0
+ 48B2‖σν‖22

+
ζ2 +H2

∗√
H2
∗ + σ2

0,ν0
+ 48B2‖σν‖22

]}

+ [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2] +

(L0 +BLf )D2
X + max{12Mf , 24‖σν‖2}DX

(
B + (‖y∗‖2+1)2

B

)
T

, (3.70)

where ζ := 2e{σ2
0,ν0

+ ‖σν‖22(14‖y∗‖22 + 75B2) + 2
√

3‖σν‖2(2BH∗ +Bσ0,ν0 +
√

48B2‖σν‖2)

+
√

6D−1
X ‖σν‖2B[ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]
√
T}1/2.

Hence, by choosing,

ν0 6 min

{
1√

2L0n
√
T
,

2

(n+ 3)3/2
,

1

Li(n+ 6)3/2

}
, (3.71)

νi 6 min

{
2

(n+ 3)3/2
,

1

2Mi

√
(n+ 2)m

, (3.72)

1√
Lin
√
m
,

1√
2LinMX

√
Tm

,
1

Li(n+ 6)3/2
√
m

}
, (3.73)
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for i ∈ [m], the number of calls to the stochastic zeroth-order oracle required by Algorithm 3 to

find an ε-approximately optimal solution of (1.7) is of the order

O
(

(m+ 1)n

ε2

)
.

We are now ready to prove Theorem 3.2.8.

Proof of Theorem 3.2.8. It is easy to verify that {γt, θt, ηt, τt} set according to Theo-

rem 3.2.8 satisfies (3.23). Note that (3.24) is satisfied if M2 6 τt(ηt−2−L0−BLf )
12 where M := 2Mf .

This follows due to the fact that {ηt} is a non-decreasing sequence and θt = 1 for all t > 0. Then

we have

τt(ηt−2 − L0 −BLf )

12
>

6MB

DX

2MDX

B
× 1

12
=M2.

Also, since (ηt − L0 −BLf ) > 24B‖σν‖2
DX

and τt >
8DX‖σν‖2

B , we have

τt(ηt − L0 −BLf ) > 192‖σν‖22

for all t > 0. In view of the above relation, we have

96‖σν‖22
τt(ηt − L0 −BLf )

6
1

2
, (3.74)

hence (3.62) is satisfied. We also need to show the existence of R1 and R2 satisfying (3.63) and

(3.64), respectively. Using the fact that γt, ηt and τt are constants for all t > 0, τη > 96TσX,f‖σν‖2
DX

and noting (3.74), we obtain(
1− 96‖σν‖22

τt(ηt − L0 −BLf )

)−1
96‖σν‖22γi

γtτt(ηi − L0 −BLf )
6 2

96‖σν‖22
τη

6 2
‖σν‖2DX

TσX,f
6

2

T
,

where in the last relation, we used the fact that σX,f > DX‖σν‖2. In view of the above relation

and (3.64), we can set

R2 :=
2

T
. (3.75)

73



Noting (3.63) along with the fact that H∗ >
LfDX [‖y∗‖2−B]+

2 , setting y(0) = 0, using (3.74), (3.62),

γtτt = τ >
√

96TσX,f
B ,

∑t
i=0

γi
ηi−L0−BLf = t+1

η 6
√
TDX√

2[H2
∗+σ

2
0,ν0

+48B2‖σν‖22]
, and

∑t
i=1

γiθ
2
i

τi
+ γt

τt
= t+1

τ 6

T
τ for all t 6 T − 1, we can see that the RHS of (3.63) is at most

2

[
2σ2

0,ν0 + 48‖σν‖22
{

7

12
‖y∗‖22 +

η

τ
D2
X +

√
2TDXH2

∗√
H2
∗ + σ2

0,ν0
+ 48B2‖σν‖22

B√
96TσX,f

+ 12σ2
X,f

T

τ2

+
B[ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]
√
T

4
√

6σX,f

}]
6 2

[
2σ2

0,ν0 + 48‖σν‖22
{

7

12
‖y∗‖22 +

η

τ
D2
X +

DXBH∗√
48σX,f

+ 12Tσ2
X,f

B2

96Tσ2
X,f

+
B[ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]
√
T

4
√

6σX,f

}]

6 2

[
2σ2

0,ν0 + 48‖σν‖22
{

7

12
‖y∗‖22 +

DX

σX,f

B
√

[H2
∗ + σ2

0,ν0
+ 48B2‖σν‖22]

48
+
BH∗√

48


+

6 max{M, 4‖σν‖2}BDX

2 max{M, 4‖σν‖2}
B

DX
+
B2

8
+
B[ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]
√
T

4
√

6σX,f

}]
6 2

[
2σ2

0,ν0 + 28‖σν‖22‖y∗‖22 + 150B2‖σν‖22 +
√

48‖σν‖2[2BH∗ + (Bσ0,ν0 +
√

48B2‖σν‖2)]

+ 2
√

6D−1
X ‖σν‖2B[ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]
√
T

]
=: R1 (3.76)

where in the last inequality, we used the fact that ‖σν‖2DXσX,f
6 1. Note that the last term in the

above sequence of relations is a constant satisfying the requirement in (3.63). Hence, we can set

R1 := 2

[
2σ2

0,ν + 28‖σν‖22‖y∗‖22 + 150B2‖σν‖22 +
√

48‖σν‖2[2BH∗ + (Bσ0,ν +
√

48B2‖σν‖2)]

+2
√

6D−1
X ‖σν‖2B[ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2]
√
T

]
.

(3.77)
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Then using Lemma 3.2.7 and noting (3.75), we have for all t 6 T − 1

E[‖δGt ‖2∗] 6


4σ2

0,ν0
if ‖σν‖2 = 0;

R1

(
1 + 2

T

)T−1
6 R1e

2 otherwise.

Noting the above relation, (3.77) and the definition of ζ, we have

E[‖δGt ‖2∗] 6 ζ2, ∀t 6 T − 1. (3.78)

Hence, according to (3.42) with y(0) = 0 and using (3.78), we have

E[f0(x̄T )− f0(x∗)] 6
1

T

[
(η + L0 +BLf )W (x∗, x(0)) +

2Tζ2

η
+ 12σ2

X,f

T

τ

]
+ [ν2

0L0n+MXn(
∑m

i=1 ν
4
i L

2
i )

1/2].

Using the bound W (x∗, x(0)) 6 D2
X , we obtain (3.69). From (3.43) and (3.78), we have for T > 1

E‖[f(x̄T )]+‖2 6
1

T

[
3(‖y∗‖2 + 1)2τ + (η + L0 +BLf )W (x∗, x(0)) +

2(ζ2 +H2
∗)T

η
+

13σ2
X,fT

τ

]

+ [ν2
0L0n+MXn(

∑m
i=1 ν

4
i L

2
i )

1/2].

Using bounds W (x∗, x(0)) 6 D2
X , we obtain (3.70). Define

σ̄f
2 := 2(1 + σ2

f ), (3.79)

σ̄2
0 := 1 + 10(n+ 4)[σ2

0 + [L0(1 +DX) +M0]2], (3.80)

σ̄i
2 :=

1

m
+ 10(n+ 4)[σ2

i + [Li(1 +DX) +Mi]
2] for i ∈ {1, . . . ,m}, (3.81)

σ̄2 = 1 + 10(n+ 4)[‖σ‖22 + 2L2
f (1 +DX)2 + 2M2

f ], (3.82)

σX,f = (2(1 + σ2
f ) +D2

X σ̄
2)1/2, (3.83)

ζ := 2e
{
σ̄0

2 + σ2(14‖y∗‖22 + 75B2) + 2
√

3σ(2BH∗ +Bσ̄0 +
√

48B2σ) +
√

6D−1
X σB

}1/2
.

(3.84)
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By choice of ν0, νi for i ∈ [m], definition of σ2
f,ν , B̃i, σ

2
i,νi

, and σν , we have

σ2
f,ν 6 2 + 2σ2

f =: σ2
f ,

ν2
0L0n+MXn

(∑m
i=1 ν

4
i L

2
i

)1/2
6

1√
T
,

B̃i 6 Li(1 +DX) +Mi,

σ2
0,ν0 6 1 + 10(n+ 4)[σ2

0 + [L0(1 +DX) +M0]2],

σ2
i,νi 6

1

m
+ 10(n+ 4)[σ2

i + [Li(1 +DX) +Mi]
2] =: σ2

i for i ∈ [m],

‖σν‖22 6 1 + 10(n+ 4)[‖σ‖22 + 2L2
f (1 +DX)2 + 2M2

f ] =: σ2.

Using these relations, we see that σX,f 6 σX,f and ζ 6 ζ. Hence, we have

E[f0(x̄T )− f0(x∗)] 6
(L0 +BLf )D2

X + max{6M, 24σ}BDX

T

+
1√
T

{ √
2DXζ2√

H2
∗ + σ2

0 + 48B2‖σ‖22
+

√
3BσX,f√

2

}

+
1√
T

[√
2(H2

∗ + σ̄2
0 + 48B2σ2)DX + 1

]
(3.85)

and

E[‖[f(x̄T )]+‖2] 6
(L0 +BLf )D2

X + max(6M, 24σ)DX

(
B + (‖y∗‖2+1)2

B

)
T

1√
T

{[
12
√

6(‖y∗‖2 + 1)2

B
+

13B

4
√

6

]
σX,f

}

+
1√
T

{
√

2DX

[√
H2
∗ + σ2

0 + 48B2σ2 +
ζ

2
+H2

∗√
H2
∗ + σ2

0 + 48B2‖σ‖22

]}

+
1√
T
. (3.86)
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As a consequence, to obtain an (ε, ε)-optimal solution with Algorithm 1, we need the number of

iterations to be

T := max

{
25

ε2
,
5(L0 +BLf )D2

X + 5 max(6M, 24σ)DX

(
B + (‖y∗‖2+1)2

B

)
ε

,

σ2
X,f

ε2

[
60
√

6(‖y∗‖2 + 1)2

B
+

65B

4
√

6

]2

,

50

ε2

[
DX

√
H2
∗ + σ̄2

0 + 48B2σ2 +
DX(ζ2 +H2

∗)√
H2
∗ + σ2

0 + 48B2‖σ‖22

]2}
. (3.87)

Now, by the choice of νo and νi in (3.72) and (3.73) respectively, we see that the oracle complexity

is given by O((m+ 1)n)/ε2).

Remark 3.2.1. Although the parameter settings of Theorem 3.2.8 and the right hand side

of (3.69) and (3.70) appear complicated to parse, the important take away message is that the

right hand side of (3.69) and (3.70) are of the order O(1/
√
T ) which leads to the oracle complexity

described above. Furthermore, the order of ε in the oracle complexity is of the same order as that

in [25] for the stochastic first-order setting. The presence of (m + 1)n in the oracle complexity

is due to the fact that we are required to estimate m + 1 gradient vectors, each of dimension n.

This also illustrates that the oracle complexity in the zeroth-order setting is linear in the number of

constraints m, for a fixed dimensionality n. The dimension dependency is unavoidable even in the

unconstrained setting, as showed via lower bounds in [46, 74].

3.3. Meta-Algorithm for Nonconvex Setting

We now consider the case when objective function f0, and the constraint functions f1, . . . , fm

are nonconvex. In this case, [25], proposed a two-step meta-algorithm: (i) construct a sequence of

convex relaxations for the nonconvex problem, and (ii) leverage the algorithm developed for the

convex setting. Given our Algorithm 3, we leverage this framework to solve (1.7) in the nonconvex

setting. Before proceeding, we need a notion of optimality for the nonconvex setting, which we

discuss below.

We first define the exact Karush-Kuhn-Tucker (KKT) condition for (1.7) as follows. For a

convex set X, we denote interior as intX, the normal cone at x ∈ X as NX(x), and its dual cone
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as N∗X(x). Let ⊕ denote the Minkowski sum of two sets. We refer to the distance between two sets

A,B ⊂ Rn as d(A,B) := infa∈A,b∈B ‖a− b‖.

Definition 3.3.1. We say that x∗ ∈ X is a critical KKT point of (1.7) if fi(x
∗) 6 0 and

∃y∗ := [y∗1, . . . , y
∗
m]T > 0 such that

y∗i fi(x
∗) = 0, i ∈ [m],

d(∇f0(x∗) +
∑m

i=1 y
∗
i∇fi(x∗)⊕NX(x∗),0) = 0.

The parameters {y∗i }i∈[m] are called Lagrange multipliers. For brevity, we use the notation y∗

and [y∗1, . . . , y
∗
m]T interchangeably. With this definition, we also have the following approximate

KKT condition which is the standard approximate optimality condition for solving (1.7) in the

nonconvex setting.

Definition 3.3.2. We say that a point x̂ ∈ X is an (ε, δ)-KKT point in expectation for (1.7)

if there exists (x̄, ȳ) such that f(x̄) 6 0, ȳ > 0 and

E[
∑m

i=1 |ȳifi(x̄)|] 6 ε,

E[(d(∇f0(x̄) +
∑m

i=1 ȳi∇fi(x̄)⊕NX(x̄),0))2] 6 ε,

E[‖x̄− x̂‖2] 6 δ.

Proposition 3.3.1. Consider solving (1.7) with both the objective and the constraint function

being nonconvex and satisfying Assumptions 4, 6 and 5. Then, by running Algorithm 4 with K =

O(1/ε), we obtain (ε, 2ε/2µ0c1)-KKT point. Hence, the total number of calls to the stochastic

zeroth-order oracle is given by

O
(

(m+ 1)n

ε3

)
.

Proof of Proposition 3.3.1. The claim follows immediately by Theorem 3.2.8 and Corol-

lary 3.19 from [25].

To the best of our knowledge, we are not aware of a non-asymptotic result on the oracle com-

plexity of stochastic zeroth-order optimization with stochastic zeroth-order functional constraints,

in both the convex and nonconvex settings.

78



Algorithm 4 Meta-Algorithm for Nonconvex Setting

Input: Input x0

1: for k = 1, . . . ,K do

2: Set:

f0(x;xk−1) := f0(x) + 2µ0W (x, xk−1),

fi(x;xk−1) := fi(x) + 2µiW (x, xk−1), i ∈ [m].

3: Obtain an ε-approximately optimal solution to the

problem:

arg min
x∈X

f0(x;xk−1) (3.88)

s.t. fi(x;xk−1) 6 0, i ∈ [m]. (3.89)

by using SZO-ConEx in Algorithm 3. Denote it by xk, for k = 1, . . . ,K.

4: Randomly choose k̂ ∈ {1, . . . ,K}

5: return xk̂.

3.4. Conclusion

In this project, we proposed and analyzed stochastic zeroth-order optimization algorithms for

nonlinear optimization problems with functional constraints. We consider the case when both the

objective function and the constraint functions are observed only via noisy function queries. Our

algorithm is based on leveraging the constraint extrapolation technique proposed by [25] and the

Gaussian smoothing technique. We characterize the oracle complexity of the proposed algorithm

in both the convex and nonconvex setting. We also apply our methodology for the problem of

hyperparameter tuning for the HMC algorithm and demonstrate its superior performance. For

future work, we plan to develop parallel versions of our algorithm for the case when the objective

functions and the constraint functions are available only locally in different machines. It is also

interesting to develop lower bounds on the oracle complexity of stochastic zeroth-order optimization

algorithms in the constrained setting. Finally, it is of great interest to find other applications of the
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proposed methodology in statistical machine learning, robotics, and other scientific and engineering

fields.
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