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1. Introduction
Since the mid-twentieth century, the frequency and duration of hot days have increased globally due to anthro-
pogenic climate change (Hoegh-Guldberg et  al.,  2018). Global temperature is very likely to increase up to 
1.5°C–1.6°C during 2021–2040, 1.6°C–2.4°C during 2041–2060, and 1.4°C–4.4°C during 2081–2100, relative 

Abstract Climate change is known to increase the frequency and intensity of hot days (daily maximum 
temperature ≥30°C), both globally and locally. Exposure to extreme heat is associated with numerous 
adverse human health outcomes. This study estimated the burden of heat-related illness (HRI) attributable to 
anthropogenic climate change in North Carolina physiographic divisions (Coastal and Piedmont) during the 
summer months from 2011 to 2016. Additionally, assuming intermediate and high greenhouse gas emission 
scenarios, future HRI morbidity burden attributable to climate change was estimated. The association between 
daily maximum temperature and the rate of HRI was evaluated using the Generalized Additive Model. The rate 
of HRI assuming natural simulations (i.e., absence of greenhouse gas emissions) and future greenhouse gas 
emission scenarios were predicted to estimate the HRI attributable to climate change. Over 4 years (2011, 2012, 
2014, and 2015), we observed a significant decrease in the rate of HRI assuming natural simulations compared 
to the observed. About 3 out of 20 HRI visits are attributable to anthropogenic climate change in Coastal 
(13.40% [IQR: −34.90,95.52]) and Piedmont (16.39% [IQR: −35.18,148.26]) regions. During the future 
periods, the median rate of HRI was significantly higher (78.65%: Coastal and 65.85%: Piedmont), assuming 
a higher emission scenario than the intermediate emission scenario. We observed significant associations 
between anthropogenic climate change and adverse human health outcomes. Our findings indicate the need 
for evidence-based public health interventions to protect human health from climate-related exposures, like 
extreme heat, while minimizing greenhouse gas emissions.

Plain Language Summary We conducted this study to understand how current and future changes 
in temperature caused by human-caused climate change impacts human health. To complete this work, we 
developed a statistical model to estimate the heat-related emergency room visits for two regions of North 
Carolina. We applied this statistical model to changes in temperature that have occurred during the last century 
that are attributed to human-caused changes in greenhouse gases. We also used this model to look at future 
changes in temperature over the next century based on different greenhouse gas emission scenarios. Using the 
statistical model that we trained using the actual observations during 2011–2016, we estimated the HRI risk 
attributable to climate change during 2011, 2012, 2014, 2015, and for the future. Our results suggest that about 
3 out of 20 heat-related emergency room visits during 2011–2016 were attributable to human-caused climate 
change. In addition, the rate of heat-related emergency room visits with a higher greenhouse gas emission 
scenario in the future was significantly greater. Our results show that human-caused climate change is currently 
impacting heat-related hospitalizations, and these impacts are projected to continue in the future.
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Key Points:
•  Quantified the association between 

daily maximum temperature and 
heat-related illness (HRI) emergency 
room visits

•  During 2011–2016, 15% of the 
HRI emergency room visits in 
North Carolina were attributable to 
anthropogenic climate change

•  HRI emergencies are projected to 
increase by 32% during 2036–2065 
and 79% during 2070–2099, assuming 
RCP8.5 emissions compared to 
RCP4.5

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
J. Puvvula and J. E. Bell,
jagadeesh.puvvula@unmc.edu;
jesse.bell@unmc.edu

Citation:
Puvvula, J., Abadi, A. M., Conlon, K. 
C., Rennie, J. J., Herring, S. C., Thie, L., 
et al. (2022). Estimating the burden of 
heat-related illness morbidity attributable 
to anthropogenic climate change in North 
Carolina. GeoHealth, 6, e2022GH000636. 
https://doi.org/10.1029/2022GH000636

Received 4 APR 2022
Accepted 1 SEP 2022

Author Contributions:
Conceptualization: Jagadeesh Puvvula, 
Azar M. Abadi, Kathryn C. Conlon, Jared 
J. Rennie, Stephanie C. Herring, Rebecca 
Owen, Jesse E. Bell
Data curation: Jagadeesh Puvvula, Azar 
M. Abadi, Jared J. Rennie
Formal analysis: Jagadeesh Puvvula
Funding acquisition: Jesse E. Bell
Methodology: Jagadeesh Puvvula, 
Kathryn C. Conlon, Jesse E. Bell
Project Administration: Jesse E. Bell

10.1029/2022GH000636
RESEARCH ARTICLE

1 of 12

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-4927-3507
https://orcid.org/0000-0002-4638-7234
https://orcid.org/0000-0003-4634-3327
https://doi.org/10.1029/2022GH000636
https://doi.org/10.1029/2022GH000636
https://doi.org/10.1029/2022GH000636
https://doi.org/10.1029/2022GH000636


GeoHealth

PUVVULA ET AL.

10.1029/2022GH000636

2 of 12

to 1850–1900 (IPCC, 2021). These increases in temperature since the mid-twentieth century are primarily the 
result of anthropogenic greenhouse gas emissions (IPCC, 2021). Mora, et al. (2017) estimate that roughly 30% 
of the current global population is exposed to extreme heat conditions; this number is expected to increase to 
50%–75% by 2100 (Mora et al., 2017).

Exposure to extreme heat leads to heat-related morbidity and mortality. Extreme heat outcomes can be character-
ized as direct (e.g., heat-related illness [HRI]), or indirect (e.g., exacerbation of cardiovascular, respiratory, renal, 
endocrine, and mental health conditions) (Bell et al., 2018; Ebi, Capon, et al., 2021; Sarofim et al., 2016). Failure 
to acclimatize during extreme heat conditions can result in HRI ranging from muscle cramps, heat exhaustion, 
and heat stroke (Danzl, 2018). HRI, if untreated, can lead to life-threatening conditions (LoVecchio, 2016; Nemer 
& Juarez, 2019). In the United States (US), heat-related fatalities are more common than deaths due to other natu-
ral disasters (NOAA, 2019). In the US, there are an average of 702 heat-related deaths per year (Vaidyanathan 
et al., 2020). There is a potential imbalance between heat-related mortality and morbidity, posing an exponen-
tially higher number of heat-related emergencies. For example, during a 4-day heat wave event in North Carolina, 
there were 556 HRI emergencies compared to 1 heat-related death (NC-DHHS, 2016). The magnitude of the HRI 
emergencies compared to mortality demonstrate the need to focus on morbidity compared to mortality.

The role of climate change has been associated with the increasing trend of heat-related mortality and morbidity 
(Bell et al., 2018; Christidis et al., 2019; Ebi, Vanos, et al., 2021). Evidence-based climate detection and attri-
bution play a key role in characterizing the changes in natural climate variability that are attributable to human 
activities (Ebi et al., 2017, 2020). There is strong evidence supporting the association between future climate 
change and mortality (Conlon et al., 2016; Gosling et al., 2017; Guo et al., 2018; Lay et al., 2018). At the same 
time, attribution of human health risk to anthropogenic climate change is limited to considering mortality as a 
health outcome (Mitchell et al., 2016; Vicedo-Cabrera et al., 2021).

It is common for attribution analyses to investigate heat-related mortality, providing insight into the magnitude 
of extreme heat events on the most serious health outcomes. Based on the contrast between the frequency of 
heat-related mortality and morbidity in North Carolina, we hypothesized that using heat-related mortality would 
be an underestimate to quantify human health risks associated with climate change. We investigate heat-related 
morbidity to better understand the scope of human health burden associated with climate change. This study 
estimated the HRI attributable to anthropogenic climate change. Additionally, future HRI burden attributable 
to climate change was estimated using the climate projections driven by representative concentration pathways 
(RCPs). The RCPs are greenhouse gas concentration trajectories adopted by the IPCC that are used for climate 
modeling (IPCC, 2014). Future climate change is typically represented using four RCP scenarios, RCP2.6 is a 
stringent mitigation scenario, RCP4.5 and RCP6.0 are intermediate scenarios, and RCP8.5 is a scenario with very 
high greenhouse gas emissions (IPCC, 2014). This study includes two of the four RCP scenarios, comparing the 
intermediate emission scenario (RCP4.5) and higher emission scenario (RCP8.5).

This study is structured into three sections. In the first section, we aim to evaluate the association between heat 
metrics and HRI morbidity to estimate the HRI morbidity attributable to climate change. In the second section, 
we estimated the HRI attributable to the current (2011, 2012, 2014, and 2015) levels of anthropogenic climate 
change. The third section includes estimating the HRI associated with future climate change under two green-
house gas emission scenarios (RCPs).

2. Materials and Methods
This study includes three analytic components: (a) Modeling and optimization of an epidemiologic model to 
estimate the rate of HRI emergency department visits, (b) Estimating the HRI burden attributable to current 
anthropogenic climate change, and (c) Quantifying the HRI burden associated with future climate change.

2.1. Study Area

North Carolina has three physiographic regions with distinct climatological profiles: Coastal, Piedmont, and 
Mountain regions. The Coastal region includes 41 counties, Piedmont consists of 34 counties, and the Mountain 
contains 25 counties. Due to distinct weather conditions experienced by the population living in these physiographic 
regions, most of the heat-related research has been conducted using these sub-divisions (NC-DHHS, 2015). The 
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study period includes summer months (1 May to 30 September) over 5 years from 2011 to 2016. Data for 2013 
were unavailable and is excluded from the analysis.

2.2. HRI Morbidity Data

The HRI data were obtained from the North Carolina Department of Health and Human Services (NC DHHS) that 
has partnered with 124 hospitals to collect statewide emergency department (ED) visit data to provide real-time, 
electronic public health surveillance, which is stored in the North Carolina Disease Tracking and Epidemiologic 
Collection Tool (NC DETECT, 2021). Heat-related illnesses were identified using ICD-9 CM codes with E992/
E900.0/E900.0/E900; ICD-10 CM codes within T67/X30/X32; and various keywords from the chief complaint 
and triage notes (Harduar Morano & Waller, 2017; NC-DETECT, n.d). We obtained daily aggregated counts of 
HRI ED visits. Days with fewer than five HRI cases were suppressed to maintain the confidentiality of patient 
identifiable information.

Decennial census population data at the county level from 2010 were aggregated to the three regions in North 
Carolina. Equation 1 was used to estimate the rate of HRI morbidity per study region.

HRImorbidity rate =
Count HRI emergency department visits

population at risk
∗ 100, 000 (1)

2.3. Observed Meteorological Data

Daily temperature data (mean (tmean), minimum (tmin), and maximum (tmax)) from the Global Historical Climatol-
ogy Network-Daily (GHCN-D) database were extracted and aggregated by region. The GHCN-D data set contains 
daily temperature measurements based on approximately five stations per region (Houston et al., 2012; NOAA, 
n.d). Daily temperature measurements were homogenized to account for instrumentation and processing station 
observations (Rennie et al., 2019). Dew point data was obtained from the Parameter-elevation Regressions on 
Independent Slopes Model (PRISM) data set (Model, 2019). The relative humidity (RH), maximum apparent 
temperature (MAT), US NWS/Steadman's heat index (NWS_HI & Steadmans_HI), humidex, thermal discom-
fort index (TDI), and Excess Heat Factor (EHF) were computed by study region (Anderson et al., 2013; Baccini 
et al., 2008; Castelhano; & Laboclima, 2017; Langlois et al., 2013; PRISM, n.d).

2.4. Natural Simulations

The natural simulations are an estimate of daily maximum temperature (tmax-NS) in the absence of human-caused 
greenhouse gas emissions. The natural simulations are based on the greenhouse gas emissions similar to the prein-
dustrial period (1980s) and not adjusted for stratospheric aerosol burden, solar luminosity (Stone et al., 2019). 
The daily maximum temperature observations assuming the absence of human-caused greenhouse gas emis-
sions (similar to preindustrial period) were obtained from the data set developed by the Climate of the twentieth 
Century Plus Detection and Attribution (C20C + D&A) Project (C20C + D&A, n.d, Stone et al., 2019). The 
C20C + D&A project is built on an ensemble of multiple dynamic models based on the atmosphere-land system. 
Due to lack of data, we excluded the year 2013 and 2016 in the analysis. We extracted daily maximum tempera-
tures during the summer seasons of 2011, 2012, 2014, and 2015.

2.5. Climate Projections

Localized and bias-corrected climate projections were obtained from the Localized Constructed Analogs (LOCA) 
database (LOCA, n.d; Pierce et al., 2014). The LOCA data set is statistically downscaled from the Climate Model 
Intercomparison Project 5 (CMIP5) and corrected for bias using constructed analogs (Pierce et al., 2014). The 
current study is based on study regions, amounting to more coarse geographies. The use of LOCA data with 
1/16° resolution allowed us to assign localized temperature projections to finer geographies. We focused on the 
Community Climate System Model version-4.0 (CCSM4) and Geophysical Fluid Dynamics Laboratory (GFDL) 
model outputs as these models were outperformed compared to other climate models in the Southeastern United 
States (Zhang et al., 2013).
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The climate projection data set contains maximum temperature aggregated for three time periods: (a) Base-
line (2011–2016), (b) Mid-century (2036–2065), and (c) Late century (2070–2099). The maximum temperature 
(tmax-FS) was estimated for each period assuming intermediate (RCP4.5) and high-emission (RCP8.5) scenarios.

2.6. Analysis

The analytic data set contains the rate of HRI, tmean, tmin, tmax, RH, MAT, NWS_HI, Steadman_HI, humidex, 
TDI, and EHF at a daily scale (S 1). Additionally, we created a nominal variable to describe 7 days of the week 
(DOW), a binary variable to identify weekend or weekday (Wday), as well as a nominal variable representing 
month and year.

2.6.1. Evaluating the Relationship Between Heat Metrics and HRI Morbidity

Spearman correlations were run to determine temperature metrics to include in further analysis. Five of 10 vari-
ables (tmax, tmean, NWS_HI, Steadmans_HI, and MAT) had a correlation coefficient greater than 55% and these 
metrics were considered for evaluating association with HRI (S 2). The exploratory analysis suggested a nonlin-
ear relationship between the rate of HRI and heat metrics. The nonlinear relationship between the HRI rate and 
heat metrics was evaluated using the Generalized Additive Model (GAM)—“mgcv” package version 1.8–34 
(Wood,  2021) and distributed lag nonlinear model (DLNM) approach (the “dlnm” R package version 2.4.5, 
Gasparrini et al., 2021).

GAM is a semi-parametric framework to address the nonlinearity using smoothing splines (Dominici & 
Peng, 2008). Smoothing term was considered for the heat metric using cubic regression bases, with up to 5 knots 
(Wood, 2017b). The number of smoothing parameters for heat metrics was estimation using Generalized Cross 
Validation (GCV) method (Wood, 2017b). The associations were evaluated assuming gamma distribution and log 
link (Wood, 2017a). Additionally, we included day of week, month, and year, as covariates to adjust for potential 
temporal autocorrelation. To identify a heat metric as a predictor in our nested model with a smaller residual 
sum of square, we compared the Akaike Information Criterion (AIC) and R-squared values. The statistical model 
using tmax outperformed to estimate the rate of HRI compared to other heat metrics (Equation 2).

log(𝔼𝔼[HRImorbidity]) =

𝑛𝑛
∑

𝑗𝑗=1

𝑏𝑏𝑗𝑗 (𝑡𝑡max) 𝛽𝛽𝑗𝑗 + wDay +Month + Year + 𝜀𝜀 (2)

The distributive effect of heat metrics on HRI was estimated using DLNM (Gasparrini,  2011). The DLNM 
follows an interrupted time series approach, where daily HRI ED visits were assumed to follow the Poisson 
distribution and were fit using the GAM, controlling for seasonal effect. We smoothed the heat metric exposure 
variable using cubic splines with 5 knots at equally spaced heat metric values. Using the “crossbasis” function, 
we create a basis matrix between the heat metric and 5 lag days to model the association in each dimension. The 
association between heat metrics and HRI was evaluated for up to 5 lag days. DLNM was implemented using 
the “gam” function, with daily HRI count as the outcome and the heat metric cross-basis matrix. The DLNM 
approach was implemented using “dlnm” package version 2.4.5, and dependencies using “spline,” “mgcv” pack-
ages (Gasparrini et al., 2021).

We then estimated the relative risk to daily maximum temperature by 0–5 lag days using the “crosspred” function. 
The risk estimates for daily maximum temperature were predicted using the 70th percentile value (32°C) as a 
reference.

2.6.2. Attributing the Burden of HRI Morbidity to Current Anthropogenic Climate Change

The statistical model was trained by physiographic regions (Equation 2.) using tmax, time series variables to esti-
mate the rate of HRI. The model performance metrics were optimum while using three cubic regression splines 
for tmax for the Coastal region and four for Piedmont. The daily rate of HRI was estimated corresponding to the 
daily tmax-NS values. The percentage difference between the observed and estimated HRI rates assuming natural 
simulation was considered as the burden of HRI attributable to climate change. The mean difference between 
the daily rate of HRI between observed and natural simulation was tested using paired t-test. Additionally, the 
frequency of hot days between natural simulations and actual observations was compared using the chi-square 
test. The percent of HRI attributable to anthropogenic climate change is expressed as median percent per year and 
interquartile range (IQR).
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2.6.3. Projecting HRI Under Future Climate Change Scenarios

Using tmax as a predictor, we trained a statistical model (Equation  3.) by 
physiographic regions to estimate the rate of HRI. Future HRI was esti-
mated over three different 30-year periods (baseline, mid-century, and late 
century), focusing on RCP4.5 and RCP8.5 scenarios. The difference between 
HRI across two emission scenarios was evaluated using paired t-test and the 
differences between HRI across the three time periods were assessed using 
Analysis of variance.

Log(𝔼𝔼[HRImorbidity]) =

𝑛𝑛
∑

𝑗𝑗=1

𝑏𝑏𝑗𝑗 (𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚) 𝛽𝛽𝑗𝑗 + 𝜀𝜀 (3)

3. Results
During the study period, 28.81% (219) of Coastal and 28.94% (220) of Piedmont regional observations were 
suppressed. The suppressed data were imputed with the median value (3) of the suppressed range. The Mountain 
region was excluded from the study due to poor data quality (50.13% [381] suppressed).

The mean HRI rate was 54.52 per 100,000 and 34.27 in the Coastal and Piedmont regions, respectively. The 
annual HRI rate was consistently higher in the Coastal region than in Piedmont. In both study regions, the rate 
of HRI was higher (Coastal: 40.94% higher; Piedmont: 28.47% higher) during the summer of 2015, compared to 
the study period (Table 1). The increase in the rate of HRI in 2015 could be due to a 14-day heat event with tmax 
exceeding 32°C, from 13 June to 27 June 2015.

3.1. Association Between Daily Maximum Temperature and HRI

The nonlinear association between HRI and tmax was established using the GAM (S 3-A). From the model diag-
nostics, we observed that about 80% of the deviance in HRI could be explained by Equation 2 (S 3-B). Due to a 
higher number of observations with tmax between 26.7°C and 35°C, there is a narrow residual confidence interval 
that reflects lower prediction uncertainty.

The results from the DLNM suggest that the relative risk of HRI significantly increased with tmax of more than 
35°C. The HRI relative risk was higher during the day of exposure than the following days (S 4). When the tmax 
was recorded as 35°C, the HRI relative risk declined from about 2 to 1.2 from the day of exposure to the following 
day, potentially indicating a harvesting—or displacement—effect. It showed non-significant results during lag 
2–5 days in the Coastal and Piedmont regions (S 5). The results from the DLNM suggest a negligible distributive 
effect of daily maximum temperature exposure on HRI morbidity.

As the HRI risk was higher during the day of exposure than in the latent period, further analysis is based on 
the same-day exposure-outcome relationship. As the primary goal of the current work was to build a prediction 
model rather effect estimation, the GAM (Equations 2 and 3) was used to estimate the rate of HRI.

3.2. Burden of HRI Attributable to Anthropogenic Climate Change

Over the 4 years studied (2011, 2012, 2014, and 2015), the frequency of hot days was about 30% higher in both 
the Coastal and Piedmont regions, among the actual observations than natural simulations (p-value < 0.001) 
(Figure 1). We observed a significant reduction in the daily mean rate of HRI morbidity in the Coastal (estimated 
assuming natural simulation: 0.32 per 100,000, observed: 0.40 per 100,000; p-value  <  0.001) and Piedmont 
(estimated assuming natural simulation: 0.19 per 100,000, observed: 0.24 per 100,000; p-value < 0.001) assum-
ing natural scenario than actual observations. In the Coastal region, 13.40% (IQR: −34.90,95.52) of the HRI 
morbidity is attributable to anthropogenic climate change and 16.39% (IQR: −35.18,148.26) in the Piedmont 
region (Figure 2). Based on our attribution analysis, about 83 HRI ED visits per summer season (152 days) in the 
Coastal region and 85 in Piedmont could be attributed to anthropogenic climate change.

  2011 2012 2014 2015 2016 Study period

Coastal 57.71 50.05 35.46 82.59 72.96 54.52

Piedmont 39.12 33.66 19.00 45.69 45.22 34.27

Note. The population at risk was estimated using 2010 decennial population 
estimates per physiographic region in North Carolina.

Table 1 
Rate of HRI Morbidity per 100,000 Persons
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3.3. Burden of HRI Morbidity in Context of Future Climate Change

Aggregate tmax values for the baseline, mid-century, and late-century were estimated assuming intermediate emis-
sion (RCP4.5) and higher emission (RCP8.5) scenarios using the CCSM4 and GFDL-ESM2M model outputs. In 
both the Coastal and Piedmont regions, we observed a significant increase in the median HRI.

In the Coastal region, during the mid-century, we observed up to 31.45% increase in the median HRI assum-
ing a higher emission scenario compared to intermediate (p-value < 0.001). In the late century, the median 
HRI increased up to 78.65%, assuming higher emission scenario, compared to the intermediate scenario 
(p-value  <  0.001). Additionally, assuming the intermediate emission scenario, the median HRI increased 
up to 53.01% during the mid-century and up to 67.98% in late century, compared to the baseline period 
(p-value < 0.001). Similarly, assuming a higher emission scenario, the median HRI increased up to 68.77% 
during the mid-century and up to 116.31% in the late century, compared to the baseline (p-value  <  0.001) 
(Figure 3).

In the Piedmont region, during the mid-century, the median HRI increased up to 24.17% assuming higher emis-
sion, compared to intermediate (p-value < 0.001). In the late century, the median HRI increased up to 65.85% 
assuming higher emissions, compared to intermediate emission scenario (p-value < 0.001). Additionally, assum-
ing intermediate emissions, the median HRI increased up to 55.89% during the mid-century and up to 75.59% 
in late century, compared to the baseline (p-value < 0.001). Assuming higher emission scenario, the median 
HRI increased up to 77.28% during mid-century and up to 110.35% in late century, compared to the base line 
(p-value < 0.001).

Figure 1. Comparison of the daily maximum temperature (actual observations vs. natural scenario). Observed data were 
obtained from the GHCN-D database. Simulated daily temperature data assuming without anthropogenic climate change 
(natural simulation) were obtained from the Climate of the twentieth Century Plus Detection and Attribution (C20C+D&A) 
Project.
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4. Discussion
To our knowledge, this is the first study to identify a significant increase in HRI associated with current and future 
anthropogenic climate change. We identified that anthropogenic climate change attributed to higher frequency of 
hot days in North Carolina over a 4-year period from 2011 to 2016. During the 4-year study period, our findings 
suggest about 3 out of 20 HRI emergency department visits in North Carolina were attributable to anthropogenic 
climate change. In addition, future projections of climate change showed a continued increase in HRI over the 
next century.

Our findings are similar to other studies that have found an increase in heat-related mortality attributable to 
anthropogenic climate change. However, this is the first study to focus on morbidity. Unlike studies focused on 
mortality, morbidity better captures the total human health burden associated with climate change. Other studies 
focused on health outcomes associated with climate-related events show that mortality often underestimates the 
total impacts on health and the associated healthcare costs. Based on our results in two regions in North Caro-
lina, we estimate that 13.4% and 16.4% of HRI emergency room visits from 2011 to 2016 occurred because of 
anthropogenic climate change. The HRI attributable to anthropogenic climate change could be translated to an 
average of up to 85 HRI emergency department visits per physiographic region per summer season. Similarly, 
Vicedo-Cabrera et al. (2021) reported an average of about 23 heat-related deaths per year in 6 major cities in 
North Carolina attributable to anthropogenic climate change (Vicedo-Cabrera et al., 2021). Our results suggest 
that heat-related morbidity is 3.69 times higher than the heat-related mortality rate reported by Vicedo-Cabrera 
et al. (2021). The higher number of HRI could be due to the difference in the total number of cities included in 
our study (all the area covered under Coastal and Piedmont regions) compared to Vicedo-Cabrera et al., 2021, 
which included 6 major cities in North Carolina. It is also natural that morbidity should be higher than estimates 
of mortality, as not every heat-related illness results in a death. In North Carolina, the annual mean heat-related 

Figure 2. Heat-related illness (HRI) morbidity attributable to anthropogenic climate change. Box plots are color coded by 
summer months and grouped by year. The boxplots show the median and interquartile range (25%–75% range), outliers were 
represented using gray dots. The proportion of the box plot above the horizontal dashed line represent percent increase in HRI 
morbidity attributable to climate change.
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mortality rate is about 200 times less than the rate of heat-related ED visits (0.11 [1997–2001] vs. 22.2 
[2007–2012]) per 100,000 persons) (Mirabelli & Richardson, 2005; Sugg et al., 2016). Additionally, the natural 
simulation data used in this study is from the C20C + D&A project (Stone et al., 2019), whereas their simulation 
runs were obtained from the Detection and Attribution Model Intercomparison Project (DAMIP). The natural 
simulations from C20C + D&A were based dynamical ocean model (ocean surface and sea ice conditions), and 
are hypothesized to have minimal bias than the simulations from DAMIP that are based on prescribed sea surface 
conditions (Stone et al., 2019). The use of exposure data in our study from the C20C + D&A project versus 
DAMIP data being used by Vicedo-Cabrera et al., 2021, could introduce heterogeneity in ambient heat exposure 
assessment. We observed a significant decline in the frequency of hot days assuming natural simulations than 
the actual observations, similar to Mitchell et al.  (2016) and Vicedo-Cabrera et al.  (2021). The HRI rate was 
significantly higher during the actual observations than in natural simulations. Further studies need to explore the 
current attributable impacts on morbidity associated anthropogenic climate change.

Along with the current climate risk attribution, we estimated the HRI associated with the future climate change. 
This study discussed the burden of HRI associated with climate change by comparing the HRI rate assuming 
intermediate and high emission scenarios. We observed a significant increase (up to 78.65% in Coastal and 
65.85% in Piedmont regions) in HRI assuming a higher emission scenario (RCP8.5) compared to the interme-
diate emission scenario (RCP4.5). Additionally, the median rate of HRI significantly increased during the mid 
(up to 68.77% in Coastal and 77.28% in Piedmont) and late century (up to 116.31% in Coastal and 110.35% 
in Piedmont) compared to the baseline during both the emission scenarios. Similar results were reported by 
Lay et al. (2018), who estimated an increase in HRI emergencies by 32% in 2050 and 79% in 2090, assuming 
RCP8.5 compared to the RCP4.5 scenario. Kingsley et al. (2016) reported a 20% increase in HRI in Rhode Island 
assuming the RCP8.5 scenario and attributable to climate change. Our results (up to 31.45% increase in HRI 
during mid-century and 78.65% in the late century) are similar to the HRI changes reported by Lay et al. (2018) 

Figure 3. Estimated heat-related illness (HRI) morbidity rate in context of climate change. The box plots are color coded by time-period and grouped by climate 
scenario/climate model. The box plot shows median and interquartile range (25%–75%), with outliers using gray dots. CCSM4—Community Climate System Model 
(version. 4) and GFDL—Geophysical Fluid Dynamics Laboratory.
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and Kingsley et al. (2016). The heterogeneity in the findings from our study compared to the literature could be 
explained by the climate variability, human vulnerability to natural hazards across geographies (Ebi et al., 2018). 
The findings from the fourth national climate assessment suggest that the population living the Southeastern 
United States are exposed to extreme temperatures than the other parts of the US (Carter et al., 2018). Similarly, 
variability in vulnerability characteristics across geographies that interact with natural hazards such as extreme 
heat, could result in differential exposure-response associations by geographic areas (Berke et al., 2015; Cutter & 
Finch, 2008). Transitioning to the presentation of the HRI burden associated with anthropogenic climate change, 
we discussed our findings using the percent increase in HRI morbidity. Lay et al. (2018) estimated the attributa-
ble cost of heat on morbidity by exploring employer-based health insurance claims database of people under the 
age of 65. Discussing HRI in terms of cost often provides compelling insights that would effectively advocate 
policy change but were associated with limitations. The health data being used by Lay et al. (2018) excluded the 
most vulnerable population groups, such as the unemployed and elderly. In comparison, our study did not restrict 
vulnerable population groups from North Carolina.

The evidence-based findings from our study discussing HRI attributable to climate change play a key role in 
public health education and preparedness that are relevant to extreme temperature exposure. Translating our 
results into public health action by developing community scale risk mitigation plans could substantially mini-
mize the HRI risk. In addition, this study could support actuaries as a framework to assess the human health 
risks associated with extreme events driven by climate change. Unlike the existing literature, our methodology 
contextualized both the current and future HRI morbidity attributable to climate change. Our comprehensive 
methodologic approach in quantifying HRI morbidity associated with climate change using the acute (GAM) 
and distributive (DLNM) associations, would allow direct comparison of effect estimates from two statistical 
approaches that are commonly practiced in climate attribution studies. Additionally, population vulnerabilities 
such as age, gender, comorbidities, household type, income, nature of the employment, and daily activity, are 
known to interact or mediate with temperature exposure in exacerbating HRI risk (Ebi, Vanos, et  al.,  2021). 
Along with population vulnerabilities, community build characteristics could mediate the HRI risk associated 
with climate change. Certain phenomenon such as the urban heat island and heat dome effect, were identified 
to be driving factors associated with extreme heat exposure disparities by geography (Henderson et al., 2022; 
Tuholske et al., 2021). These phenomena are typically driven by neighborhood characteristics such as land use 
and land cover (Fard et al., 2021). Further studies discussing human health risks attributable to the current and 
future climate change, by considering population vulnerabilities and neighborhood characteristics could address 
these gaps in the research. As we observed strong correlation with daily maximum temperature, compared to the 
heat metrics based on temperature and humidity during the study period, the statistical model based on temper-
ature was trained to predict HRI morbidity attributable to current and future climate change. According to the 
2017 National Climate Assessment, there is a minimal change in total annual summer precipitation associated 
with climate change in the Southeastern region, compared to the other regions in the US (Easterling et al., 2017). 
However, the future changes in precipitation trends could influence the HRI morbidity estimates. In this paper, 
we did not discuss relative humidity due to the large uncertainties that make future estimates less reliable (Flato 
et al., 2013; Risi et al., 2012).

In this study, the future projections of HRI were estimated using static population (2010 decennial census). The 
objective of this study is to estimate the percent change in HRI over time, rather than presenting an absolute 
count of future HRI ED visits. Few studies adjusted for future population growth (Lay et al., 2018; Martinez 
et al., 2016) to describe the results based on absolute counts to estimate the cost associated with hospitalizations 
and ED visits. Estimation of the future population growth would be essential to translate estimated number of 
HRI morbidity or mortality from the current period to project future HRI. In this study, we discussed the human 
health burden associated with future climate change using the percent change in the rate of HRI, which do not 
require population growth estimation. Due to data limitations, we did not calculate the excess number of morbid-
ities associated with future climate change, which is essential for the cost estimation. Additionally, changes in 
population characteristics across North Carolina physiographic divisions could influence our study results.

5. Conclusions
This work adds strong evidence quantifying the human health risk associated with current and future climate 
change in the Southeastern United States. This study estimated about 3 out of 20 emergency room visits associated 
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with HRI in North Carolina during the study period is attributable to anthropogenic climate change. Additionally, 
a substantial increase in HRI assumed a high emission scenario compared to an intermediate emission scenario. 
Our findings suggest that anthropogenic climate change is already having a significant effect on human health 
and will continue to have impacts in the future. Our findings suggest that adaptation interventions, along with 
greenhouse gas mitigation, are needed to reduce the health impacts of climate change. As current climate change 
is already causing increases in hospitalization, public health interventions should be implemented now to reduce 
the current and future health burden. By using best knowledge and practices, the health impacts associated with 
climate change can be addressed.
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