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Abstract

Humans, as a cooperative species, need to coordinate in order
to achieve goals that are beyond the ability of one individual.
Modeling the emergence of coordination can provide ways to
understand how successful joint action is established. In this
paper, we investigate the problem of two agents coordinating
to move an object to one agent’s target location through com-
plementary action. We formalize the problem using a decision-
theoretic framework called Decentralized Partially Observable
Markov Decision Processes (Dec-POMDPs). We utilize multi-
agent Q-learning as a heuristic to obtain reasonable solutions to
our problem and investigate how different agent architectures,
which represent hypotheses about agent abilities and internal
representations, affect the convergence of the learning process.
Our results show, in this problem, that agents using external
signals or internal representations will not only eventually per-
form better than those that are coordinating in physical space
alone but also outperform agents that have independent knowl-
edge of the goal. We then employ information theoretic mea-
sures to quantify the restructuring of information flow over the
learning process. We find that the external environment state
varies in its informativeness about agents’ actions depending
on the agents’ architecture. Finally, we discuss how these re-
sults, and the modeling technique in general, can address ques-
tions regarding the origins of communication.

Keywords: Dec-POMDPs; multi-agent Q-learning; Behav-
ioral Info-Dynamics; mutual information

Introduction
The moment we move from a study of individual cognition
to a detailed analysis of the social realm, we have commit-
ted ourselves to the investigation of a different type of sys-
tem. There is no centralized controller; this system is inher-
ently decentralized. The questions we ask, however, may be
similar. Just as we wish to study how a individual decision
maker adapts its behavior in a task environment, we can in-
vestigate the ways in which multiple, possibly non-identical,
decision makers reorganize their internal world and their ex-
ternal interactions to form a new functional system that solves
a problem which cannot be addressed by one individual alone
(Hutchins, 1995).

One important problem that cooperative agents face is how
to coordinate their movements to arrive at a goal known
only to one of the agents. This problem was addressed
in Hazlehurst and Hutchins (1998), where the authors con-
structed an algorithm that allowed for a set of agents to con-
verge on similar form-meaning mappings which also related
to their movements within a given environment. This setup,
like many modeling studies that focus on issues of hidden
goals of other agents, has a strong predilection towards imita-

tive learning. Not all learning and reorganization in a multi-
agent system is imitative, however, and another focus of mod-
eling should be on complementary action learning (Hutchins
& Johnson, 2009). It has been shown elsewhere that agents
can learn to coordinate in complementary ways without shar-
ing information about each other (Sen, Sekaran, Hale, et al.,
1994), but this presumes an environment where there is only
one destination and both agents know its identity. By com-
bining aspects from these two studies, we can investigate sce-
narios in which agents must collaboratively, through comple-
mentary action, arrive at a goal location known to only one
agent.

While it is typically intractable to find the optimal solution
to many multi-agent coordination problems, these problems
are particularly important because their inherent challenges
highlight several important features of social interaction and
group dynamics that need to be studied:

1. Non-stationary World: Agents are constantly adapting to
the statistics of their environment, including other agents.
Since other agents do not have a fixed method of interact-
ing with the world a priori, the world is inherently non-
stationary (Buşoniu, Babuška, & Schutter, 2008).

2. Non-independent Sampling: An agent’s own actions af-
fect its incoming sensory information and this in turn
affects the regularities it can extract from the world
(Lungarella & Sporns, 2005). Motor activity and sensory
information obtained from the environment are interdepen-
dent; the way we move in the world shapes our understand-
ing of it and these patterns of data have structure.

3. Distribution of Knowledge: Not all agents in the world
have access to the same information or capabilities. The
social realm is comprised of more than just a set of identi-
cal individual problem solvers (Hutchins, 1995).

Another prominent research direction in studying multi-
agent systems is determining “(h)ow to develop... problem
solving protocols (information flow) that enable agents to
share results and knowledge in a timely, effective manner”
(Sen, 1997). It is important to understand how a group of in-
dividual agents reorganizes in functional ways that alter the
flow of information; we need to understand “what informa-
tion goes where and in what form” (Hutchins, 1995) and how
these pathways change. This situation is complicated by the
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fact that researchers in Cognitive Science hold different as-
sumptions about the internal organization and external be-
havior of agents, which specifies the model elements, and
this constrains the possible ways to reconfigure information
flow. This situation can be rectified, however, by utilizing a
common formalism for comparing and contrasting the conse-
quences of different sets of assumptions.

In this paper, we utilize a formal framework, Decentral-
ized Partially Observable Markov Decision Processes (Dec-
POMDPs), to place our problem of interest into a larger set
of multi-agent coordination problems in order to investigate
coordination problems when agents have access to different
amounts of information (Karnowski, accepted). We then dis-
cuss how several assumptions about agent architecture map
into specific changes in the problem structure, demonstrat-
ing how we can vary our hypotheses by altering the compo-
nents of the Dec-POMDP. Through the use of multi-agent Q-
learning, we can demonstrate the speed with which agents
reorganize themselves into stable patterns of behavior that al-
low them to coordinate their actions and achieve a joint goal.
This reorganization brings differences in performance, how-
ever, based on the assumptions made about agent capabilities.
We utilize mutual information to measure the changes in sta-
tistical dependencies among streams of information and to
show how agents’ behaviors respond to environmental regu-
larities. We conclude by discussing how one problem formu-
lation may provide insights into the study of the evolution of
communication and future directions in this area.

Methods
Decentralized Partially Observable Markov
Decision Processes (Dec-POMDPs)
Dec-POMDPs (D. Bernstein, Zilberstein, & Immerman,
2000) are a way to formalize multi-agent coordination prob-
lems. They provide a common structure that aids in the dis-
cussion of related problems and the development of solution
techniques. While there exist other frameworks that tackle
problems of agent coordination and problem solving (Dec-
POMDP-COM, MTDP, and COM-MTDP with perfect re-
call), many of them have been shown to be formally equiva-
lent (Seuken & Zilberstein, 2008). The reason for the variety
is that the frameworks emphasize different features. For in-
stance, while Dec-POMDPs and Dec-POMDP-COMs (Dec-
POMDPs with communication) (Goldman, Allen, & Zilber-
stein, 2007) are formally equivalent, the former tends to fo-
cus on bodily coordination in physical space and the latter
with problems that also involve symbolic coordination. In ad-
dition to communication, frameworks often contain assump-
tions about the representational capacities of their agents, pro-
viding agents with, for example, the ability to model the goals
or actions of other agents (Claus & Boutilier, 1998). Provid-
ing a language for researchers in Cognitive Science to sys-
tematize problems in cooperative multi-agent interactions and
make explicit their assumptions about individual architecture
will allow for a thorough comparison of current models and

the exploration of regions between models with different as-
sumptions.

Formally, a Dec-POMDP can be defined by a tuple
〈{Ag},S,{A},P,{Ω},O,R〉, where {Ag}= {1,2, . . . ,n} is the
set of agents, S is the possible states of the world, {A} =
{A1} × {A2} × . . .× {An} is the set of joint actions (with
a = (a1,a2, . . . ,an) being a joint action and action ai is the ac-
tion of agent i), P is the transition function (with P(s′|s,a) be-
ing the transition to state s’ given current state s and joint ac-
tion a), {Ω} is the set of possible observations, O is the matrix
that defines the probability of seeing observation o given state
s, and R = R(s,a,s′) is the reward for taking the joint action
a in state s and transitioning to state s’. The goal of solving
a Dec-POMDP is to find a joint policy π = {π1,π2, . . . ,πn}
(where each πi is a local policy of one agent that maps an ob-
servation of a state to an action, i.e. πi : S→ Ai) such that the
group minimizes some cost function over time (similarly, it
can maximize a reward function).

Multi-agent Q-learning
Dec-POMDPs are a useful abstraction which allows for a
common language when speaking about coordination prob-
lems. These problems, are typically difficult to solve
(D. Bernstein et al., 2000), but solution algorithms are a cur-
rent research trend (Spaan & Oliehoek, 2008). Another way
to address these problems is to use on-line adaptive heuristic
algorithms that provide good approximate solutions, such as
Q-learning (CJC, 1989), as they stochastically approximate
off-line learning of optimal policies. In this paper, we use the
Q-learning algorithm in a multi-agent context (Buşoniu et al.,
2008). Within each agent, state-action pairs are strengthened
depending on the outcome of the chosen action. For instance,
if an agent transitions to state s′ after performing action a
while in state s, an agent will receive a reinforcement R and
update the value of that state-action pair (s,a):

Q(s,a)← (1−α)Q(s,a)+α(R+ γmaxa′∈AQ(s′,a′)) (1)

Other parameters relate to the learning algorithm itself. The
learning rate, α, determines the degree to which the current
state is updated given new experience, and the discount factor,
γ, specifies how influential future states and actions are to the
current state. In this experiment, actions were chosen in a
greedy manner.

Behavioral Info-Dynamics
Consider an isolated animal collective X consisting of n freely
moving animals. Temporal data is collected on each animal’s
behavior generating a unique time series. Given a collec-
tion of sensorimotor time series data from a set of animals,
we can measure statistical dependencies during different be-
havioral patterns. Tononi, Sporns, and Edelman (1994) (and
later Tononi, Edelman, and Sporns (1998)) introduced a set
of appropriately defined information-theoretic measures to
capture the statistical properties of a system with n compo-
nents. While their methods were originally designed to study
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neural systems, more recent work has adapted these mea-
sures to study sensorimotor coordination in embodied agents
by collecting sensor and motor time series data (Lungarella,
Pegors, Bulwinkle, & Sporns, 2005). We utilize a Python
implementation of these measures (available at https://
github.com/OpenCV-at-DCog-HCI/BID) to further extend
these measures to study the behavior of a system of agents. In
this paper, we focus only on the mutual information between
pairs of time series. Depending on their interaction with the
world, solitary agents and collections of agents exploit dif-
ferent statistical dependencies among streams of information.
We can show these changes by measuring mutual information
(Sporns, Karnowski, & Lungarella, 2006; Di Prodi, Porr, &
Wörgötter, 2010).

Entropy defines the uncertainty inherent in a time series, or
the average amount of information present. For instance, if
knowing the state of the system at a given point in time will
give you a lot of information about the time series as a whole,
then this will contribute to a lower entropy. This could happen
if that state is highly unlikely, and thus is more informative. If
every state, however, is equally likely, then knowing the state
at one point in time gives no information about the time series
as a whole and entropy is maximal.

H(X) =−
n

∑
j=1

p(x j)log(p(x j)) (2)

Mutual information measures the dependence between two
distributions (and in our case, time series). It is defined as the
Kullback-Leibler distance (DKL) between the joint distribu-
tion p(X1,X2) and the independent distribution p(X1)p(X2).
Mutual information is also defined as the sum of the entropies
of the individual parts with the joint entropy subtracted out.

MI(X1,X2) = DKL[p(X1,X2)||p(X1)p(X2)] =

H(X1)+H(X2)−H(X1,X2) (3)

Any dependence between the two time series will increase the
mutual information between them. For instance, if the state
of one agent provides a lot of information about the state of
another agent, this will result in higher mutual information.
If the agents are completely independent, then this predictive
power is lost, and mutual information will be zero.

Problem and Experimental setup
To explore how two agents could coordinate via complemen-
tary actions to arrive at a hidden goal, we created an exten-
sion of the ‘block pushing problem’ (Matarić, 1996; Sen et
al., 1994) where two agents are tasked to move from a start
location to the goal, which is one of two possible locations,
and follow as closely as possible a path P between the two. At
every timestep, Agent i uses a force ~Fi, where 0≤ |~Fi| ≤ Fmax
on the block at an angle θi, where 0 < θi < π, which results
in the block being offset by |~Fi|cos(θ) in the x direction and
|~Fi|sin(θ) in the y direction. The new position of the block
is calculated by vector addition of the displacement created

by the two agents. The new coordinates are then assigned
to the correct discrete bin. The location of the block is used
as feedback for the agents, depending on which scenario is
being considered.

In our problem, {Ag} is a set of two agents, S is the x-
coordinate in a 20x20 grid world, the actions are a vector-
addition of individual agent actions that combine force and
angle (0.2≤ |~Fi| ≤ 2.0) in 0.2 increments and 15≤ θi ≤ 165
in 15 degree increments), P is deterministic (the probabili-
ties of moving to the next state given a joint action is 1 and
the rest are zero), the set of observations is always the cur-
rent x-coordinate in the grid world but more information is
added depending on the scenario (for the agent with the goal,
the current goal is also added to the observation), Ω is deter-
ministic (the probabilities of an agent perceiving a particular
observation given a state is 1 and the rest are zero), and the
feedback depends on the scenario.

The first goal of our study was to establish a baseline. We
implemented the scenario as found in (Sen et al., 1994):

0. Agent 2 also knows goal (Full Information): Both agents
receive an observation of their x-coordinate and the goal.
Their feedback is a function of their distance from the goal
path P.

Even though there are two possible paths, there is only one
goal for each trial, and therefore our agents acted in simi-
lar manner and replicated the results obtained by Sen et al.
(1994). We then set out to construct a situation where there
is a disparity in the amount of information accessible to each
agent. In our ‘base case’, we consider the impact of remov-
ing information about the goal from Agent 2 and only allow-
ing Agent 1 to have this knowledge. From here, our mod-
els were motivated by research agendas within Cognitive Sci-
ence. Given different assumptions of agent architecture, we
alter the Dec-POMDP in specific ways:

1. Agent 1 knows the goal but Agent 2 does not (‘Base
Case’): Agent 1 remains identical to previous results, but
the observation Agent 2 receives does not contain informa-
tion about the goal. The feedback for Agent 2 is a function
of the distance from the closest path (i.e. when there is no
information about the goal, the closest path is the best)

2. Agent 2 tracks probability of goal (‘Theory of Mind’):
Giving an agent the ability to represent the goal of another
agent and make inferences about that goal given data is
one way to conceptualize Theory of Mind. In this situa-
tion, Agent 2 begins a trial with the prior belief that either
goal is the possible target. At each time step, the state of
the world is a sample with which Agent 2 updates its belief
of the current goal via Bayes rule. The probability of this
sample is the probability that the x-coordinate is sampled
from a Gaussian distribution with the x-coordinate of the
goal being the mean and a standard deviation of 2.5 (Alter-
ing this distribution is future work). The probability space
was discretized into 10 bins. The feedback for Agent 2 is
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an weighted average (given current belief) of the feedback
for both paths.

3. Agent 1 can make sounds (’Communication’): Agent 1
produces either a 0 or 1 which becomes part of the state
which Agent 2 will experience on the next time step. The
feedback for Agent 2 is a function of the closest path.

4. Agent 1 can make sounds and Agent 2 tracks probabil-
ity of goal (‘Theory of Mind’ and ‘Communication’):
This is a combination of the previous two alterations. The
feedback for Agent 2 is the weighted average of the feed-
back for both paths.

The feedback in each of these cases is determined by
a function of the distance from the desired path, f (δx) =
K ∗ a−δx, similar to the original setup in Sen et al. (1994).
This provides a high value for being on the path and an ex-
ponentially decreasing value further away from the desired
path. Starting out the learning process with high values for
state-action pairs and providing feedback after every trial was
another feature in Sen et al. (1994) that allowed the agents to
explore the available actions (alternatively, one could set the
values in the beginning to be zero, but receiving feedback af-
ter just one trial would bias the agent to take the same path
every trial). Also, any updates to state-action pairs could not
be larger than the original high value (in our case, this was set
to 100).

At the beginning of every trial, the two agents start at
(x,y) = (10,0) and the goal is randomly chosen from two
options: (3,20) or (17,20). They make individual actions
which combine into a joint action as outlined above. If the
agents move the object outside of the 20x20 grid world, then
the trial ends. Similarly, if the agents arrive at the goal state,
the trials ceases. In the rare chance that agents would take
more than 100 timesteps, the trial would also stop (forcing
the angles to not allow agents to travel parallel to the x-axis
helps alleviate this problem). An additional feature incorpo-
rated into the world dynamics was an automatic movement
forward if the agents did not move forward enough on a trial.
This was added to ensure agents did not remain still and al-
lowed for better convergence.

Results
In our experiments, agents always began with equally valu-
able state-action pairs and this caused their actions to be se-
lected randomly. Over many trials, as agents adjust the values
of different actions within each state, their behaviors begin to
become patterned. Practices reduce the entropy of the shared
environment, which leads to better policies and to a decrease
in the average distance from the goal path. One would sus-
pect, however, that performance would be best when there
is complete information for both agents and that scenarios
in which one agent has partial and incomplete information,
the resulting joint actions would lead to poorer performance.
This is not what we find, as shown in Figure 1. Having the
ability to produce and utilize sounds allows agents, over time,

to perform better than those with complete information. Hav-
ing the ability to represent and make inferences about the
goals of another agent provides even more improvement in
joint coordination.

Figure 1: The average distance of the actual path from the
goal path given different agent assumptions (α = 0.01,γ =
0.9). Each experiment had 5000 trials and the data has been
averaged over 100 experiments. Other learning rates (α ∈
{0.1,0.2,0.3}) resulted in the similar patterns of performance
with different rates of convergence.

We can determine how the two agents functionally reor-
ganized themselves based on the levels of statistical depen-
dence between different data streams. Mutual information
provides a way to measure how predictable one data stream
is from another. As we can see in Figure 2, both the sce-
nario in which Agent 1 and Agent 2 have full knowledge of
the goal and the ‘base case’, where Agent 2 does not know
the goal, there is an increase in the mutual information be-
tween the x-coordinate and the angle of Agent 2 but this mu-
tual informativeness plateaus. In the scenarios where there is
Theory of Mind, Agent 2 is receiving a wealth of information
about the goal through its current location but not necessarily
needing to rely on any connection between its angle action
choices and its location, which would have forced it to be
more precise in its actions. In the scenarios with sound, there
is a lot of extra structure in the shared environment that be-
comes highly predictive of the x-coordinate and therefore in
the actions of Agent 2, including the angle. Another situa-
tion was created in which Agent 1 produced a sound but the
state also included another random noise (to take away the
special nature of the sound but not its ability to be manipu-
lated). While the graph does not show the full increase of MI,
other simulations showed this had the same trend as the case
with communication, just over a longer period of time. This
makes sense if agents were learning to utilize structure, but
randomness was slowing this process down.

We did not find that the forces with which agents pushed
the box had any predictive power for other data streams.
When there was an increase in mutual information, it ap-
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Figure 2: The mutual information between the x-coordinate
and the angle of Agent 2.

peared to be due to the high predictability of angle and x-
coordinate. As the world dynamics forced agents ahead one
step if they did not apply enough force, it may have been the
case that this affected the importance of force as a predictive
element. This is probably not the case, however, as the agents
in our model (and those in Sen et al. (1994)) only observe
the x-coordinates, which would in turn dampen some of the
informativeness of force in agent action choices.

Discussion
In this paper, we have discussed the benefits of utilizing a
common theoretical framework for addressing cooperative
multi-agent problems in Cognitive Science and demonstrated
how changes to framework elements can encapsulate various
hypotheses about agent actions and internal representational
capacities. We have designed a new multi-agent problem,
focusing on understanding the acquisition of complementary
actions in a goal-directed task where there is an information
disparity. We used Q-learning, an algorithm commonly used
in modeling single agent decision making, in a multi-agent
setting to investigate how agent hypotheses affect the conver-
gence of the learning process. And finally, we used mutual
information to quantify how informative one data stream, the

x-coordinate, is about another data stream, the angle chosen
by Agent 2 and charted the changes in this informativeness
over time.

The results for this particular problem formulation provide
a partial ranking of models based on performance. There
are, however, a couple of caveats. First, while our simu-
lated agents chose their actions in a greedy manner, differ-
ent results might be obtained through other action selection
methods, such as using a Boltzmann action selection mecha-
nism. Second, Dec-POMDPs are typically used when there is
some uncertainty in state transitions (due to modeling motor
noise) or observations (due to sensory noise or partial view
of the world). While this problem does not utilize this fea-
ture, future work manipulating these parameters may change
the success of models with different assumptions about agent
architecture.

This work highlights several of the open problems in the
study of the emergence of communication, as it simulta-
neously investigates the origin of signaling channels, the
sources of representation in signals, and the roles of social in-
teraction in learned communication systems (Lyon, Nehaniv,
& Cangelosi, 2006).

Future work related to this particular example will strive to
explore how agents could learn to discover that one informa-
tion stream is informative about another, a hallmark of com-
munication. As a starting point, for instance, we are particu-
larly interested in the case where the agents have an ability to
put structure into the shared environment through sounds. In
this case, it could be that the agent with the goal is able to cre-
ate noises, which allows the second agent to adjust its policy
given this external structure. This in turn forces more regular
behavior to which the speaking agent can then adjust. Orig-
inally, the noise was not functionally related to the current
state; in the beginning, sounds just happened. As engagement
proceeds, that noise ends up carrying information, and at that
moment, the sounds would become a signaling channel.

This process, however, hasn’t held any commitments to
the content of that signaling channel. It may turn out that
the speaking agent, through features of the algorithm, con-
verges on highly rewarding action-sound pairings and the sec-
ond agent only need adjust its behavior accordingly. In either
case, we suspect that putting structure out into the world may
create stable regularities with which agents could take advan-
tage and eventually internalize (Vygotsky, 1978). Agent in-
teractions themselves would be the determining factor behind
the sources of representations in the signals they employ. In
problems similar to ours, it is often the case that multi-agent
Q-learning fails, precisely because neither agent experiences
a stationary environment (Claus & Boutilier, 1998). Placing
stationary-creating behavior at the center of new algorithms
is also possible future work.

Here we have shown that we can operationalize several
assumptions in Cognitive Science and discover what struc-
ture and organization emerge from these hypotheses. In the
present examples, however, agents are endowed with cer-
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tain abilities a priori. We would really like to explore the
conditions under which language-like abilities and Theory
of Mind-like processes could emerge from ongoing interac-
tions between autonomous agents. Additional future work
will look at the space between these hypotheses and how var-
ious learning algorithms could take agents from a lack of abil-
ities to a state where additional mental abilities have emerged
through agent interactions.
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