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ON FINITE GYRO-RADIUS CORRECTIONS TO THE
HYDROMAGNETIC EQUATIONS FOR A VLASOV PLASMA

Alan Macmahon
.Lawrence Radiation Laboratory
University of California

Berkeley, California

October 15, 1965

ABSTRACT

A systematic procedure for expanding velocity moments of the
Vlasov equation in the mas s'—to-c_ha»-r‘ge ratio is presented and its relation
to the strong magnetic field expansion of th‘e‘Vlasov equation and to the
guiding cehter descr‘ip‘tion of the particle ,mo.tion is discu‘s.sv_ed. It is
's‘héwn that the expansion of the Vlasov ec.;uation implies a condition on
the form of the distribution function at the initial time. Scaling of these
and Maxwell's equations is studied, and both the ordering scheme: lead-
ing to ordinary hydromagnetics and the so-called "finite gyro—radius”
{¥FGR) ordering are considered.

A hydromagnetic description of a tvs./o—‘component plasma is easily
found fror’ﬁ the mémen’c equations for the separate components. For the
first of the above orderings' FGR éffects produce small corrections to
ordinary hydromagnetics which are found through first order for an
arbitrary plasma configuration. For FGR ordering, "finite gyro-radius®
‘terms, which include second-order corrections to the pressure tensor,_:

‘appear in even the lowest-order approximation to the moment equations:
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.\,‘J\.

The corresponding modified hydronﬁ'agnetic equations are derived and,
for the special case of low plasma pressure and uniform magnetic field,
previous resultsba‘re recovered. |

Because of transport along the field liﬁes; closed moment equa-
tions are not obtained in genéral-for either ordering. In dddition, for
FGR orde ring and non-uniform 'magnetic_fi_eld'_. an analogous but i.nde_
pendent.clo.,sure problem arises because of transport across the field
lines. For this reason appiicability of the hydrqmagnetic equations for
FGR ordering to finite-pressure systems is limited. Closed hydromag-
netic equationé é_'re ob‘;ained, however, for low-frequency, firiité-pres-
sure interchange modes, and these éqﬁatidns are used to find finite-
pressure modifications of the wellv known kFGR stabilization of these
modes. Closed equ.ations are also obtained for the (finite-pressure)
"firehose' instability and FGR corrections to the condiﬁon of marginal
stability are found. A hydromagnetic description of finite-pressure
"long-term!" equilibria, and "minimum-B" configurations in particular,

is also obtained.

—vi-



CHAPTER I

Introduction

In spite of interest in "finite gyro-radius'' corrections to the
~hydromagnetic equations, no complete derivation of these effects has
been given for a Vlasov plasma. In particular, the corrections to the

pressure equations of Chew, Goldberger, and Low (CGL), and second-
order corrections to the pressure tensor have not been discussed in gen-

, AT 2,3
‘eral.. Previous work has béeen either incomplete or complicated by
- the inclusion of collisions and restrictéd to a local Maxwellian velocity
distribution in lowest order (e.g: references 4 and 5). Rosenbluth and
Simon, = in work partly concurrent with ours, discuss the complete set
of moment equations describing weak instabilities of a low-pressure
plasma in a uniform magnetic field.  The present work includes an al-
ternate derivation of their basic equations and, for certain interchange
motions, an extension of these equations to include the effects of finite
plasma pressure.
- We outlinevhe're‘ a systematic. expansion of the moment equations

for a Vlasov plasma in a strong magnetic field. This expansion is the
same as the usual B = expansion of the Vlasov equation, and is equivalent

to treating the particle motion as adiabatic. The form of the expansion

-1
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depends on hqu the ’t‘ime scale; ﬂe‘lec..:t;ic‘ field, plasma pressure, and.
other quantities are assumed t'o;behay"e in the limit of small gyro-radius
and short gyrb-periovd. Ordering of the time scale of interest with respect
to ‘éhe gyro-period is of particular importénc.e because the accuracy wit
which the ‘plé'sma' acceleration 1s 'Zrequ‘i‘red,_ hence the Vimpor’cance of the
-'so.ca'l“;ed. ”finliteb'gy'ro—' re';dius‘” -effiects, _depe”n'ds ‘on.how 16'ng the motion
is.followed. ‘A careful bexax.rzxin‘;tion_ of brd:ering is ther‘efore essential if
the -expansio}n procedure»v_i'.s. to be. una'mb;lgubu’s.
QCur object is to p1(°evsenvt a sy‘Ste_r'natic ahd self-contained discus-

_‘sio_n of thé expansion of the rﬁoment ;eqﬁation‘s for 2 Vlasov plasma in

a strong magnetic field, and in this vs}_a-'y to find all .‘”ﬁ'hi’ce gyro-radius"
corrections to the 'vo;r’dinaﬂr.y hydromagﬁefcic "equations.i No 2 priori as-
sumpt.ionsva're‘rn‘ade .céneerning theé.lészma pfe-s S;J.I‘-“é or form of the dis-
tribution funcﬁon, and care;fu"l:.a'tte.ntzioh 1s paid to the ordering of the
various ifn-portant quantities. Our discus s.ior;- is more general than those
‘_that ha,vé previously ‘a,i’Péa'red5 3 smce effects of finite plasma pres-
sure and magne‘;ic fjeid gvaature are .con-s.fid‘_er'ed. We a’ppiy the expan-
sioﬁAdi're:c‘cly' t"o the exact velocity vmdmenté'bf the Viasov équation rather
than to the V‘lasqvk equatién'its"elﬁ Altho#gh f;he latter précedure is more

3,6

1 o 2,8 L . . '
usual, ~’ the former ’ = is simpler in many respects, if moment
equations are desired, because unneeded details of the velocity distri-

bution are eliminated at the outset.



Defails of the distribution fﬁnqtion, and effects such as wave-
particle resonances Whiéh depend -oﬁ these details, are lost if the dis-
tribution functién is described by a few of its velocity moments. Thus,
alth.ough res‘onance eifecfs_ may be important and may be associated wit
finite gyro-radius effects, they ére beyond the scope of a purely hydro-
magnetic approach and are not included in the present discussion. Our
interest is in extending the hydromagnetic equ;tions to include finite gyro-
radius effects; v_ve. give .eXamples (but attempt no survey) of applications

£ the equations obtaine_d.. :

One aréa of recent and current interest in which finite gyro-radius
effects are import’ant is that of ”un‘iversai” instabilities. ? These instabili-
ties are chall‘acterfized by ._long but _fihi’ce wavelengths along the magnetic
field and are most unstable when ‘chei.r tra,nsviersehwavulengths are com-
parabl’é to the g‘yro,—_'radi‘i.' Becausé, 1n the absence of collisions,. closed
moment equations are not obtained in general for plasma rmotion along the
field lines, becagse our discussion assumes small gyr‘o—bradius‘, and also
because the moment quations do not describe wave-particle resonances,
these instabiliﬁés ‘Will not.be disc‘usséd Beré, although an approximate
hydi’omagnetic description of those that do not depend on resonances is

o . :
possible.
A macrovs-copic or fluid dgsc_ription of 2 gas or plasma is possible{‘_;

only if there is a strong constraint on the motion of the particles
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that inhibits their random motion. From a formal point of view, the
problem of obtaining a fluid description of 2 gas or plasma. is that of
closing the infinite set of coupled equations obtained by taking velocity
- L ;. . R . - - .
moments of the relevant kinetic equation (e. g., the Boltzmann or
Vlasov equations).

Strong collisions provide such a constraint, maintaining the
distribution close to a local Maxwellian;: closed moment equations are
then obtained, for example, from the well-known Chapman - Enskog ex-

Lo ligizo oo L , . .
pansion of the Boltzmann equation, the expansion parameter being
the ratio of collision time or mean free path to macroscopic times or
distances. When this parameter is small a given particle makes many
collisions while traversing a macroscopic distance.

For a Vlasov plasma in a strong mégne’tic field, -gyratiOn about

the field lines replaces collisions as the dominating feature of the particle

motion; ~’ " under 'ée'r'ta.ir’l tircﬁrﬁs_t‘ances,u closed moment equations may
be obtainéd from an expa'nsioh in the ratio of gyro-period or gyro-radius
to the macroscopic time or distance’ (Lthe adiabatic parémete’r €). This
is the ’we’li k_noWn expansion of the Viasov equation in inverse powers Qf
magneti; field strength, equivalent to t"reat"ihg the p.article motion as -
adiabatic. The expansion may equally well be carried out én the exact
velocity moments of the 'Vlasov.equatio'n; this latter ﬁrocedure will be

followed in this paper.

€



The adiabatic expansion or guiding center picture provides an

asymptotic description of the particle motion valid in the limite - 0.

When this expansion is.applied to the moment equations, it is the zero-

order terms thatare of primary.interest, although higher-order cor-

rections may also be considered. The z'ero-_order_ equations require
first- or higher-order terms in the expansion of the particle motion;
they are not simply equivalent to the zero-order guiding center motion.
Their particular form depends on how the time scale, electric field,
plasma pressure and other guantities are assumed to behave in the 1imif
e > 0.

Single-fluid hydromagnetic equétions are easily obtained for a

fully ionized two-component plasma from the separate moment equa-

.
9

tions for each compdnent. 13 If the time scale of interest is not too long
(of order 6_1 ;cimes the gyro-period ‘rg), the single-fluid equations ob-
tained from the lowest-order approximation to the moment equations
are just the hydrdmagnetic ¢quations of Chew,- Gbo-ldbergervand Low.

Deviations from CGL theory arising from higher-order correc-
tions to the moment equations (corresponding to higher-order terms of
the adiabatic expansion of the particle motion) are usually referred to
as "finite gyrb-radius” (FGR) effects. These effects are the subject
of this paper.

The FGR terms of the moment equations are small because the

gyro-radius is assumed to be small in order to apply the adiabatic



expansion.. However, depending on/how the time scale is related to the
gyro-period in the limit € =~ 0, these terms will be either small correc- .
tions to CGL theory or essential modifications of that theoi‘y. If the time
scale is short (~7 /Je) FGR corrections to CGL theory are small. For
g _ '
: 2 : .
long time scales (Tg/’;' ), on the other hand, the ' FGR terms must be in-
cluded even in the lowest-order moment equat ions; CGL theofy is then
o : T 4 .. . . :
no longer applicable. This is the most interesting case, and the one
usually considered, because the finite gyro-radiusi’effects are impor-
tant even if the gyro-radius is very small. These "FGR' effects are
thus associated with the length of the time scale rather than with the
size of the gyro-radius; we suggest that they are more appropriately
“described by the term '"finite drift time!' rather than the conventional
term ''finite gyro-radius. ' In keeping with this convention, however, we
retain the designation "FGR'" for these effects.
If closed moment equations are obtained for a Vlasov plasma in
a strong magnetic field, it is because the velocity transverse to the mag-
netic field of every guiding center is close to the "E X B'" velocity. Guiding
centers initially on neighboring field lines then tend to remain on neigh-
boring field lines. Motion of the guiding centers along the field lines is
not strongly constrained by the magnetic field. Because of special sym-
. » _ .
metries, however, this parallel guiding center motion may be unimportdnt,

and closed moment equations may then be obtained.. Thus, in addition to
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those required for:.adiabatic particle motion, two independent conditions
must be satisfied if closed moment.-equations describing a Vlasov plasma

in a strong magnetic field are to be obtained: motion of the guiding

. centers along the field lines, must be unimportant, and guiding centers

initially on neighboring field-lines must remain on neighboring field -
lines. The former of these conditions is well known, -being satisfied, for
example, if the magnetic field direction is constant in space and time,

if there are no gradients in this direction, and if there is no plasma mo-

tion along the field lines. The latter condition depends on how the time

scale of interest is ordered with respect to the gyro-period. It is there-

fore related to the importance of FGR effects and is.important for the

- subject of this paper. Even if the moment equations are not closed,
‘however, they may form a useful guide to the processes that may be

expected.

Scaling of the single-particle equation of motion; the velocity
moments of the Vlasov equation, and Maxweli?s_equations is discussed

in the first chapter following this introduc.ti_on." Two orderings of the

dimensionless parameters which characterize the solutions of these

equations are of primary interest. The first, which will be referred to
as '"CGL ordering, " characterizes motion occuring on a time scale of
order T /e. If this ordering is assumed, CGL hydromagnetic theory is .

obtained from the lowest-order approximationto the moment equations;

FGR effects are then small. The second of these orderings characterizes



motions occuring on a time scale of order 7. /62 and slow enough to ap-
pear as static equilibria on the shorter time scale of. CGL ordering:
"weak! instabilitiesM are motions of this type. Because c;f' the long
time scale associated with this orderihg, "finite gyro-radius' effects
are impoz_'tant, and the CGL equations must beimodified, eveh in tl;xe
limit € = O'. The conventional designation "FGR" will be used for this
ordering.

We will apply the small € expansion directvly to the exact velocity
moments of the Vlasov equation. The expansion of the Vlasév equation
itself is more fa'miliar,_ however, and Will be us‘eful for thé vd’is-cussion of |
the moment equations. It is briefly reviewed'vin Chapter III. This review
" follows Thompson, 3 and indicates how his method must be modified if
FGR rather than CGL or’»dering is assumed. Thishmodified‘expansion
has also been discussed by Kennel_15 and,b for the speciél c'.as'e of a low-
pressure plasma in a u_n.i'fo'r'm magnetic f.ie.ld, by Rosenbluth and Simon.
We also discuss ih Chaptgr III a condition dn the form of the initial dis-
tribution function Which is. necessary for the small € expansion to apply.
This condition is illustrated in Appendix B.

In Chapter IV an expansion proceduré fo_r the exact velocity mo-
ments of the Vlasov equation is discussed’, these equations are put in a
form c‘onvenieﬁt for application of this expansion, and ‘;heir relation to
.single-;fluid hydromagnetic equations is indicated. The expansion'iis car-

ried out and the results are discussed in the remaining chapters.



First-order FGR corrections to CGL theory, obtained when CGL

ordering is assumed,, are discussed in C»ha‘_pter_V_. _’I‘hese FGR effects

~are small. The equations obtained resemble the hydrodynamics of a

non-ideal fluid. The CGL pressure equations are modified by the appear-

ance of transverse heat flows and other effects. The transverse heat

flows involve fourth moments of the zero~-order velocity distribution.

In the absence of collisions this distribution is not necessarily Maxwel-

lian, and at the initial time the fourth moments must be specified inde-

~pendently of the density and kinetic temperatures. Their time dependence

is given by relatiéns similar to the CGL pressure equatipns.

In Chapters VI through X the lowest-order apProximation to the
moment e»q‘ua‘tions: for FGR ordering is _di‘scussfed. The results of the ap-
propriate expansions 'for. the general case -are: preklskented in Chapter VI
These results are specialized to the case of a magnetic field of constant
direction and their relat_ioh to the guiding gentef description of the par-
ticle motion is discus sg:d. | |

As mentioned above, for FGR orde_ring the moment equations are
closed only under‘rather special Acircums}tances._* The most important
case for which they_are'Aclds‘edvis that of a }ow—pressure plésma in a
uniform magne“tié field. »T‘his .ca‘seAhas. been dis c_ussed Ey Rosegblxtth
and Simon, 6 who find a very simple férmulgtiq.n of the moment equation;;'éj :
from an e‘xpa}n.sivon of the Vlasov equativon. Theii‘ basic equations, and

the equivalent single-fluid hydromagnetic equations, are obtained in



Chapter VII as a special case of the results of Chapter VI. We thus pro-
vide an alternate derivation of the Rosenbluth-Simon equations which .
emphasizes their relation to equations describing more general configura-
tions.

In Chapter VIII the Rosenbluth- Simon equations (and the equivalent
single-fluid hy'dromégnetic équations) are extended to include the effects
of finite plasma pressure for certain interchange motions. It is shown
that under certain circumstances the variational methods of Rosenbluth

. . ' - ' 16
and Simon also may be extended to apply to these finite pressure modes.
Closed moment equations are not obtained for more general finite pres-
sure modes with constant magnetic_ field direction.

Another finite pressure mod_e is disc;us'sed in Chapter IX: the
"firehose!' instability’ of an Alfven wave traveling along a uniform mag-
netic field in a uniform plasma with sufficiently large pressure in the
direction of the magnetic field. Near the condition of marginal stabiiity,

F'GR ordering applies; simple closed hydroma gnetic equations which in-

clude the FGR effects are obtained for this mode, and FGR corrections

to the stability'condit_:idn are found.” Our results contradict those of

Yajima and Taniuti, who failed to include all the FGR terms and found R
the FGR effects to be strongly stabilizing. Sato, 7 in work concurrent
with ours, has obtained F_‘IGR corrections to this instability from a direct

sclution of the Vlasov equation which assumes Gaussian equilibrium
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distributions. . His results are a speci_al case .of ours, but his conclusion
that the FGR éffec’cs can ﬁot be des>cr.ibed b.y mddifieci hydromé.gnetic
eéﬁations is incorrect. We also find the p‘arti‘.c:le 'ofbits for this mode,
and discus sv ‘the relatioh .betwee‘n.'FGR n.nodiifiAca‘gior;si of these orbits aﬁd
.tile kFGR.‘termé of' tile hydr‘(.)m.agAnefic équéfioﬁs;

| In C.hapter X the equilibrium moment .equétions ai'e discussed
and, in particula:, the equations de'scribing configurations Which are in
eciuilibrium over £he long times associated with FGR ordering. This
discussion is motivated by Northroi: and Whiteman’szo discussion of
fihite-pressure "minimum B'' equilibria for whicﬁ the pfeséuré is a func-
tion of the magnetic field étrength B only.' They discus s‘ theée equilibria
frém both the CGL equatioﬁs and fr‘Om the generai theorry of adiabatic
pa;‘ticle motion, and find the same claé’s of solutiotns. by beth methods.
The CGL equations g.i\.re only ''short term" equilibriﬁm (T~ 'rg/e); they
do not differeﬁtiatel between "lqng t.‘e'.rm” equilibrium (T ~ ‘T‘g/€2> and slow,
low-frequency motion. To find these equilibria:from adiabatic theory,
however, Northrop and Whiteman used some (but not all). of the condi-
tions for '"long term'' equ.ilibrium and assumed the ‘eléctric field to van-
ish through first order. We extend thevir discus sion.vby applying the hydro-
magnetic. equations for ''long term' equilibrium to this class of configura-
tions, and in this way include the effect of first-.order electric fields.

Albegraic details of the calculatidns 'presented [’

in Chapters IV through VI are outlined in Appendix A. In App'endix B we
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discuss a. 'C’ontr»ad'icin'n, n;)téd by Northrop, 21 between. gxpressions for
the off-diagonal c:ompon-ents of the pr‘ve‘ssure' tensor found from the.small
€ expansion and r'e.suliésl which avr'ex obviousl‘y c-oi'-rec"c‘ for a éimpl’e special
case. This cvontradicti'oﬁ ari‘sgs because the speci‘al 'case- cor&sidered does
not satisnéy the initial condition found in Chapter III; It is shown by cal-
culation of the‘p.article’ orbitsv that - for this special case the pressure
fluctuates rapidly, wher-eaé, if the invitial céndifion is satisfied, it does
no£, and has the value given by the small -€ expansion. this calculation
a:lso‘ cofnpletes" Kauf’rnan,“sz- instructive (i‘iscu's.si(.)r.l. of the relation be—
tween the collisionless vi_s cosity and fhe par’t’i.‘cl.e orbits by including the
effecfs of magnetic induction. .

Some of the material of the present paper has been reported.pre—»
viously by the au,thovr-.ZIa This ma‘t‘e'rvia,ll,. 'which includes par£ of Chap.ter :
II, most of the results p’reé‘enteci in Chapters IV'vand V, and sonﬁ-e of the

results of Chapters VI and VII, is covered in greater detail here.



CHAPTER I

Ordering of the Dimensionless Parameters

2.1 Scaling of the Particle Motion

In the following sections of this paper we discuss the velocity

moments of the Vlasov equation in the limit of large niagnetic field or

small m/e, corresponding to.a'diabatic particlé motion. To make the
ordering of small qﬁantities unambiguous, and to clafiry the situations
for which "finite gyro-fadius” effects are important,' we discuss in this
section the dimensionless forms of the equations.

Since the partiéles of a Vlasov plésma move independently in tﬁe
Vlasov fields, we first ;eview the scaling of the equation of motion of a
single charged particle in given fields. 22 We consider, therefore, the
equation of motion of a particl¢ of mass m and charge e, moving in a
magnetic field § and electric field E with projections E -and E
perpendicular and parallel to B, respectively, and gravitational field g
To put this equation in dimensionless form we introdﬁ_c‘e the dimension-

less quantities

=, L = Bu/E g, gl = gleg, and vt o= /v

| — D = 1
2 };’/Bo’ £ E“-L/E.L.o’ E 0’
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where BO s E—‘-O s EHO , 8g gnd.vo are characteristic magnitudes of
B, EJ_ ) "E“H , g, and v, respectively. In addition we introduce the time

T and distance L which characterize the variation of E and B in time

and space, and scale time with respect to the variations of £ and B

seen by the moving particle.  Our dimensionless time variable is therefore

, -1 o
th o= (T +v0'/L)‘.

When written in terms of these dimensionless variables the

equation of motion may be pﬁt in the form

‘ R  dv' . cE R gL '
‘<l +_f>__”:. = v'X B' + J‘OE!+_g<__L>gz

TR )
QOT a.t . | s VOBO " L 'VZ M,,
: 0
(2. 1)
‘cE o
‘ no
4 ——— E'b
v‘OBO .\\'m .

where QO = _eBO/rnc and Ré = VO/QO are the characteristic gyro-

frequency and gyro-radius of the particles and b = B/B.

. Our basic as'sumption is that both (QOT)F- b and >Rg/L are small

: . ' ' 4, 25
so that the adiabatic-expan‘sion23 and guiding center descrip‘cion2 ;2

of the particle motion are applicable. Among other things we will be
interested in situations such as low—fréquency waves for which

-1 | | L
(QOT) < Rg/L . Our basic expansion parameter is € = RG/L . The

: 9 )
parameter L/v oF then relates (QOT) to € by the identity (QOT) ! =

»

Y
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€ (L/v,.T) .8
O .

Equation (2. 1) shows that the acceleration of the particle is of
order 6—1 . The transverse acceleration is of this order because of the
rapid gyrati'on of the particles, but, since the velocity must remain of
order vy for the expansion to apply and the gyration only slightly affects
the parallel motion, the parallel acceleration must be of non-negative

order in € . The parameters entering Eq. (2. 1) are therefore restricted

as-follows:

n | n, n a n +1

A U : 2 3 '
~oe ~ ¢ ~ ~ >
L/VOT € ~, cE O/VOBO e, gOL/vO € 7, CEKO/VOBO € , By 0.

(2 la)

The guiding center description of the particle motion represents
an asymptotic expansion of the particle motion valid in the limit € - 0 .

The value of € = mcvo/eBOL appropriate to a given physical system may

‘be decreased in a number of equivalent ways: by increasing B while

keeping the geometry (i. e., L), Vo o and m/e fix_ed; by increasing L while

and m/e unchanged; by decreasing v, or m/é without

kevepi:vng B, Y4 M

changing the other quantities; or by some combination of these operations.

‘The other dimensionless parameters may be related to € in any way

consistent with the conditions (2. la), Maxwell's equations, and the

plasma dynamics.
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In addition to these parameters, which appear explicitly in Eq.
(2.1), others are required to characterize the plasma motion; for ex-
ample Maxwell's equations introduce the pressure parameter f and the : z

relativistic parameter vo/c , consideration of a two-component plasma

introduces the ion-electron mass ratio. Other parameters, such as the

aQ

radients parallel and perpendicular to B may also be

f particular importance is the total time scale of interest, since
the accuracy with which the velocity or acceleration must be determined,
hence the importance of 'finite gyro-radius'' effects, dependson how long

theimotion is followed. The total time lapse T_,, which need not be of

0
the same order as T, will be specified by the parameter: L/vo'ro.

Our basic expansion parameter is € . For convenience we refer

to
Livt . Ljr, cE. | - Lo /e
IVoTgs BIVET. CEg o VoBor 8ol By Vg

and any other parameters of interest, as auxiliary parameters. ' The.

first three of these are the most important. The total time scale is

gpecified by I;,/vb-ro, the scale of tivmeAder'i'vative@’_by L/vo'r, while .
- cE, O/VOB is directly related to both the transverse guiding center and = -

0

transverse plasma velocities: Since the only zero-order contribution to

these velocities is the "E X B'"drift, they are of zero order only if

. —
c J_O/VQJ,O 1.



The Vlasév equation and its velocity moments Aescribe the same
physical process as the single-par.ticle.equation of motion; hence all
these equations scale with the same parameters and in a similar way.

. This scaling may be found by writing the equations in dimensionless form,
or, more simply, fi‘om a comparison of Eq. (2. 1) with its dimensional
form. From this comparison it is clear fhét the ordering of terms in

any of tr: equations may be determined by regarding v and V as inde-

-1
pendent of € and the other parameters, m/e and Q as proportional to

0" 7 SEoLn/VoBo s

€, and 0/0t, E , @nd gA as proportional to L/v T /v B and

s

gOL/vg , respectively. Thus, for example, the dimensionless form of the

transverse equation of motion for one plasma component, Eq. (4 3), is

' v/ ' )
°E0 > L =
B CFE SE T | vF e TR VR AT
Voo ™ E LA P (2. 3)
3 1 -— 1 —_ 2 11 —_
where u' = B/vo , P ~£/nomvo , and t'" = t/T.

It is evident that this equation may be obtained either by transforming to
the dimensionless variables, or directly from Eq. (4. 3) by use of the
above rules. The dimensionless forms of the other ﬁlbmen‘c equations
are similar to Eq. (2. 3) .

We elnphasizé that the ordér_ing of terms in the asymptotic expan-

sion of the particle motion (e. g. , the drift velocity) and in the éxpansior’f

of the moment equations, will depend on the particular ordering chosen



for the auxiliary parameters. Thé'appropriate ordering of terms in the -
expansions thus depends on specification of how Tor T E_LO ) EHO -0
B, L,/L, , and other parameters that may be important behave in the

limit € = 0.

2.2 CGL and FGR Ordering

The accuracy with which the velocity or acceleration is required
to obtain the displacement of the plasma to a given érder, hence the im-
portance of the so-called 'finite gyro-radius'' effects, depends on the
order of L/VOTO w.ith respect to € . Since we make the approximation of
adiabatic particle motion, which is an asymptotic description valid in
the 1imit € - 0, our primary interest is in the zero-order displacement
of the plasma. If consideration is iimited to ”éhort" times of order

-1 _ . . . - v
(e 2) , L/VOT ~ 1, only the zero-order plasma velocity will'be im- v

0
portant. In this case the lowest-order approximation to the moment equa-
tions leads to the familiar hydromagnetic theory of Chew, vGoldBerger,

: L 1 1o : i 2 ,-1 e . B
and Low, Over 'long" times of order (€ ) , however, first-order
velocities will also produce zero-order displacements and therefore must
be included even in lowest order. - These ''long' times correspond to

L/VOTO ~ e

-

The zero-order transverse plasma and guiding center velocities are
just the "E X B' drift produced by the zero-order electric field,

hence zero-order displacement of the plasma occurs during times of
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order (eQ) | qnly if CEOL /vo BO ~ 1, Similarly, time derivatives are
important on this time scale only if L/vof ~ 1 and gravitational effects
wili be negligible unless goL /vg ~1. Motion occuring during times of
order (e2) -1 , and in particular motion des.cribedvl.)y CGL hydrofnagnetics,
is thlerefore,.chalracte'rizéd: by tﬁe ”CGonrd-er.ing“

"'L/VOT ~ cE_ [/

0 Yo™0

oL B ~ g‘OL'/VO ~ 1, CEOW /VOBO~ ~e,  (2.3)

For these motions the important plasma accelerations are of order Vo /L ;
the pressure tensor and other stresses are therefore required only in
zero order.
. . 2 . -1
If the time scale is extended to be of order (e Q) ~, however,

' 22
first-order velocities and accelerations as small as € A /L also contri-

‘bute to the zero-order displacement. The CGL equations are then no

longer a consistent approximation to the moment equations, but must be
e 14 S N
modified even in lowest order. These modifications, which are usually

referred to as '"finite gyro-radius' effects, take the form of first- and

-second-order corrections to the pressure tensor, corresponding correc-"

tions to the CGL pressure equations, and suitable modifications of the

generalized Ohm's law. 13

The ordéring of T, with respect to € may be considered from the_

0
point of view of a mirror confinement system. Guiding center motion in

such a system may be characterized by the perviod of oscillation along .
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- ‘ 2
the field lines T';QN (eQ) 1, and the '"drift" time T_ ~ (€ Q) required

D

for a particle to drift a zero-order distance accross the field lines in
the absence of a strong electric field.
The CGL hydromagnetic theory describes motion occuring during

the "longitudinal't time T a strong E, being nece'ssary for non-neg-

2 2

ligible transverse motion to occur during this time. This éorresponds,
in lowest order, to regarding the gyro-period as infinitely short (~ €'r£)
and the 'drift'' time and as infinitely long (~ Tl /fe) compared .wi‘th the
time of interest.

Extension of the theory to describe motion occuring during the
drift time Tpe on the other hand, corresponds to regarding both the

gyro-period (7~ 6278 and '"longitudinal' time T (~e€T_) as infinitely

£ D

small and T 28 finite, the time of observation being increased with

T as € > 0 so that T_ remains finite with fespect to the time scale

D D

o rather than bein.g regarded as"ihfinitely iong. It rﬁight be more ép-
propriate, therefore, to refer to th¢ modifications of the lowest-order
theory (e.g., CGL theory) that must be made when the time scale is
extended to be of order T 2s "finite drift—timé“ effects, and reserve
the term "finite gyro-radius" for non-adiabatic effects, or at least for
effects. which are unimpor'tan;c» in the limit € - 0.

A further indication of the inappropriateness of the term 'finite

gyro-radius!'' in this connection is that the current which enters CGL

theory includes the effects of the first-order transverse drifts. These
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drifts would seem to be as much effects of ''finite gyro-radius' as the
first-order plasma velocity and small accelerations which become im-

portant on the longer time scale.

It is conventional, however, to describe these effects by the term

0 6,7,14

"finite gyro—‘i'ei'dius._ ! In keeping with convention we use the desig-

nation "FGR'" for these effects, but prefer tq associaté the words "finité
drift-timé” with this designation, rather than ''finite gyro-radius. "

Processes occuring during the drift time are of particular interest
if no motion occurs on the léngitﬁdinal time scale, corresponding to a
static CGL- equilibrium.. In this papef discuséibn of motion occuring
during the drift tirﬁe will be limited to this case, wﬁich includes low
frequency waves, ''weak'' instabilities, and "léng term'' equilibrium.

| 1

These motions are characterized by a time scale of order (E’ZQ)- and

velocities of order €v , and therefore by the "FGR ordering"

0

~ L/’vo’r v CEOL/VOB ~ou /v, Ve, o (2. 4)

0 0

LivgT,

It should‘be emphasized that the approprié.te ordering, as Well.as the
value of € , depends on the process ullflde? consideration, rather thaln iny
on the properties of the plasma. The -interchange mode of a plasma in a
.Weak gravitational field, v fér éxaméle, may be éhafacférized by FGR
ordering while the mag‘netoaccoustic wave propagating across the mag-

netic field will be described by CGL ordering. The apprbpriate "low B"



22

condition also depends on the motion considered.

2.3 Scaling of Maxwell's Equations

The dimensionless forms of Maxwell's equations may be written

2 ,
) V' - E' = An' v 5
€ (CEO/VOBO) (Q+Q_/wp) E n', (2. 5)
V! 1= ; 1 1 )
X E (VOBO/CEO) (L/vo'r) BM}% /ot (2. 6)
2

cE v oE!
Vi X B' = &'+ 0 L 9 : (2. 7)

A € VO 0 v.T c 8’5”

In these equations E

0 characterizes the contribution of M]Q to V- E or

VX E; An' = p /n e and j' = cj/n,ev. with p and j the charge and
- c. 0 - ~ 0 0 c e

)

current densities; and wp is the plasma frequency (ne /m_)
These equations involve two new independent dimensionless parame-

ters; the thrée‘paramers Q+Q‘/w; , B, and vo/c being related by the identity
2, _ 2 ' —
B(Q+Q_/wp) = (vgla)” . | (2. 8)

The assumption of non-relativistic motion already implies an expansion

in VO/C ; ordering of this parameter with respect to € is discussed below.
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Equation (2.5) shows that the charge separation A&n' is small
for high plasma frequency; because we assume low frequencies and
small gradients, An' will-be small except for very low densities as

shown by Eq. (2.5) and the relation (2.8). Thus

2 2
1 | .
An | € ( CEO/VOBO) (B /nomc )

| (2.9)
~ (€ /p) (B /v (By) (vy/e)

The importance of the charge separation is indicated by the mag-

nitude of the electrostatic stress. This stress is of order

2 2., . '
E ~ pVO(CE.O/VO’B

O B vt

(2.10)

2, 2 2 2
(cEO/VOBO)_ (Bo/norn+c ).

v puo

' : : 2
For CGL ordering only stresses of order NOmVO are required

in lowest order and the electrostatic stress is negligible unless

. ]35/1’101&_{_62 ~1or B~ (vo/c)‘ . .. | . .(2. 11)

This condition holds also for FGR ordevrihg,‘ even though stresses of

2 2 . . .
order € n,mv, ‘become important in lowest order, because then

CEO/VOBO ~ g,
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Thus the electrostatic stresses are negligible in lowest order,
and the approximation of quasi charge-neutrality applicable, if (vO /c) 2
~ €B or smaller. Note that (vO /c) 2 ~ ¢ is the condition that relativistic
corrections to the plasma motion be negligible in the limit e =~0.

The strength of the magnetic: field produced by a plasma current
of given order is indicated by Eq. (2.7). If B~ 1 the zero-order field
is produced by the first-order current; ‘fo¥' this reason the zero-order
plasma dyﬁamics, e.g., CGL theory, requires the first-order current.
Furthermore, for 3 ~ 1 there can be no zero—order.cgrrent if the i;)article
motion is to be adiabatic. The restriction this pl.aces on the épplicability

of our equations is discussed in Section 4. 8.

Equatién (2.7) may be written in the form

‘ : 2. :
Co cE v oE! ‘
_ B. '€ 0 0 L s
ViX Bl = fp = VY — e e ,
,Iév € ;), B VOBO c VOT oth (2.12)

T cannot be large, the displacement current is small

- Thus, since L/vo

whenever An' is.



- CHAPTER II

Expansion of the Vlasov Equation

3.1 Expansion Procedure.

Our interest in this pap.er is in the 'm_acroscopic equations ob-
tained by taking velocity moments of the Vla'lsov equatibn, and, in
particular, the small € expansion of these équations. This expansion
maly be carried out either beforé ér after taking the‘veloc'%ty moments. -

3

We will follow the latter procedure althbugh the former procedure

. ' 1, 3, 26
is more usual.

However, because the two procedures are equiva-
lent, it is useful to have the form of the expansion of the Vlasov equa-

tion in mind when the expansion of the moment equations is considered.

~ Furthermore, the Vlasov equatidn and its expansion clarify the relation

between the expansion of the moment equations and the adiabatic expan-

-sion of the particle motion.

In this section, therefore, we review briefly the small € expan-
sion of the Vlasov eQuatién following the discussion given by Thompson,
and briefly discuss the initial conditions necessary for its applicability.

The small € expansion of the Vlasdv equation,

B(r,y,t) /ot + u-VE+ (e/m)[E + (v/e) X Bl - V. £ =0, (3.1

-25-
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is carried out by transforming from the velocity variable y to the var-
iable G = v - u(r,t), where the velocity 3(}:', t) is as yet unspecified,
and by representing C. by its cylindrical components Cn (r,v,t),

NS e ~ an

C (r,v,t), and ¢(r,X,,t):

r
L e s

cos & + e_ sin ¢),

3

where the g, are the basis vectors of a local Cartesian coordinate sys-

tem with e. in the direction of the magnetic field. The vector &, may

1
be taken in the direction e . Ve , but this is not necessary.
, Wl el :

When transforméd to the variables r, C“ 5 CJ_ ,» ¢, and t, Eq. (3. 1):

takes the form
81(x, C,, C.L 0, 1) /80 = 97D, (3.2)

where Q. is the gyro-frequency eB/mc and

2
e c
3 € Sk L 0 L 3 o
= C o = - —_— V. — — ") —
D=0 A T B AR R ro
5 - uy ] s
" Cos‘b{CJ—_é;:— Co (P b)z’<éx aC '[(Da‘i)z
2 2/n i
' du
9 } { 9 2 3 .
- - emtmsmancs + + < - I, —_—
(2 ~E)3} s, ] T e G5 CL (Dbl 8x3> aC,;
I\ R
(D¥g"), + af |5t
o '3 =" AE'2|8C_
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sin ¢ s sk cos 2¢ sin 2¢
- Q(u - + (D*y’ -
c, |®lw-pg),* (D70, 2 v T2 k%
9
Ju* r— .
u 26 * (3.3)
. % . . .« o =_l-_ -
with D" = 9/t + u V + C“:l? v, ut = u +,C“}“)" I.Y 2(5233-!_49322)’
_ 1 o
and Lo = (8,8, 8585) -

The small € expansion of the Vlasov equation is based on the
. ' ' -1
form (3.2) and the assumption that £ DOf ve f,
This condition will be satisfied if all the functions entering this

equation are slowly varying in spéce and time and if u = u_ + O(€v0) .

E
These conditions reflect the equivalence of this expansion to the adiabatic

expansion of the particle motion.. The condition that f be slowly varying

in time is discussed in Section 3. 3.

The opera‘for D takes its simplest form if 15;_= Yy > and it is
convenient to choose. u, = <V“ f_(o)') /(f( 0),> . These choices are usually

made. Our discussion of the moment equations, however, corresponds

to taking u equal to the actual flow velocity of the plasma component
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(vfy/{f). For this reason we leave u unspecified in Eq. (3. 3) .
-1 . '
If Q Df ~ ef, the expansion of Eq. (3. 2) is straightforward

© y (@

The distribution function f is expanded in the form £ f .

In lowest order Eq. (3. 2) reduces to the familiar statement
af(o) /o = 0, , (3. 4)
and the first-order terms of Eq; (3. 2) are

ol o = gt O

(3. 5)
Since ¢(H) must be single valued in ¢, integration of ‘Eq. (3. 5) over all ¢
gives
.o - §d¢ ot 7 0y = o7t §d¢k.9 f<0_),_ |
or | l. - @f(b) ~ 0. | | (3. 6)

' Equation (3. 6) is the zefo-ordér Vliasov equation. It describes
the zero-order distribution vof guiding centers and is easily derived, in
fact, from the conservation of guiding centeré, the zero-order guiding
center motion, and the coﬁservation ﬁ_)f‘ the mégnetic moment :

Moo= me/ZLB . That the conservation of magnetic moment is con-
tained m Eq. (3. 6) is madg evident by tfansforming from the variable
c ()

', to pu, the coeffi'cient of 0f / 3u in the transformed equation

vanishing by use of Maxwell's induction equation, |
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- . ! . 1
Integration of Eq. (3.5) with respect to ¢ gives f( ) in the form

L’

. |
A1) Q'l,(S dcbri‘)),f(o) + (¢ C,,zx,t). (3.7)

1 | '
Thus only the ¢-dependent part of f( ) is determined by Eq. (3. 5).

(0) , (1)

This suggests that f = f + ... be divided into

'¢_-dependent and ¢-independent pérts:

£(C,,CyLéyx,t) = £,(C,,C,,6,1,8) + B(C,,Cyux, ),
with | N §'f¢d¢ -0, | o (3.8)
and AR f;i.)v +_h“), 'gféi)dcb = 0,;

Integration with re spéct to ¢ of the expanéion of Eq. (3. 2) then gives
. _ ¢ . . _
f;= ngf)fl Lagr (3.9)

wh_e're the 4>i are determined by the condition that the ¢-averages of

'f$l) vanish, and

o L o .y .
& n't - --g;g@f;d¢ = -—21“ d¢pé§_©f”d¢v. ~(3.10)
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Equation (3. 9) is a recursion relation expressing f((p ) in terms

o (i-1)

" .th
of f while Eq. (3.10) is the i = order Vlasov equation. Solution of

the Vlasov equation for h through ith order thus immediately gives f4>

through order i+ 1.

The zero-order Vlasov equation (3. 6) and the expression (3. 9)

for f;l) are quite simple. 'I‘homp’son3 discusses these equations, and

from them derives the CGL hydromagnetic equations and the contribu-

(1)

tions of f to the pressure tensor and heat flow vectors.

Except for very simple configurations, however, evaluation of

(2)

even the first-order Vlasov equation and the expression for £ is

¢

tedious. Carrying out the expansion directly on the exact moment equa-

tions is algebraically simpler in many ways because details of the distri-
bution function and the complications of the velocity transformation are
eliminated at the outset, and gives results in a form convenient for iter-

ation to higher order.

The characteristic feature of the expansion of the Vlasov equa-
tion is the separation of f into ¢~dependent and ¢-independent parts.
The manner in which this feature carries over into the small € expan-

sion of the moment equations will be discussed in Section 4. 1.

3.2 FGR Ordering and "FGR' Effects.
The above oﬁtline of the expansion procedure is ovérsimplified

in that the operator ¥ 1is itself given by an expansion in € because of



the expansions of E, B, and u. The ordering of the various terms of £

'..beco‘m‘es,v since 5') (1) h(l) ~eE
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[

depends on the ordering of the auxiliary parameters with respect to €.
Thompson3 implicitly assumes CGL ordering, anditherefore ob-
tains the CGL equations in l_owest, order. 'Fo_; FGR ordering, however,
the expansion takes on.a quite different form. This for»rn‘ is discussed in
greater detail by Kennel_15 and, ‘for the special case of a low-f plésma

in a uniform magnetic field, by Rosenbluth and Simon. 6 We illustrate

‘the form of the expansion for FGR ordering by discussing the lowest- .

order Vlasov equation for the case of straight field lines, transverse
motion, but finite f.
We consider, therefore, the operator P under the following con-

ditions: b constant in space and time, bV = 0, u, = u_,
e _ ‘-~ . ~ L ~F

f(C") = f(-C,lj, and FGR ordering. " Under these conditions f—j is of first
order. The zero-order Vlasov equation (3 6), which should read
00

=0, o C(31)

is therefore automatically satisfied. The first order Vlasov equation

2

e o1 o .
BUAY - - faep@gf 9 Mi%ae.aa
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.
wr ! -

' 0
For CGL ordering the equation for ‘f( )

has the form (3.11).
When FGR ordering is considered this equation is modified m form by
tile "EFGR'" term on the right-hand side of Eq. (3.12). This term arises
from the first-ovrder' drifts and appears in Eq (3. 12) because of the long

time scale associated with FGR ordering.

For the special case under consideration here,

p(0 - CJCOS q»,zi—z + sin 4’-33‘3 , | (3.13)

and the lowest-order Vlasov Equation (3. 12) becomes

, ' o 2
(0) _ - C, ' (1) C
v-afat +3}(31) . g0 -=(y ;Bg))%&-— = ’ELJ?', (vBx ve' ). (314

'The FGR term on the right-hand side of Eq. (3. 14) may be understood by
recalling that under the present assumptions the lowest-(i.e., first)

e L. : 2 .
order drift velocity is _)us.t up + MY Where ¥p = (C‘L /ZQ)BX VB /B

is the well-known ''gradient B' drift. 22 The FGR term of Eq. (3. 14) is
thus - Ve Vi, and the FGR modification of the zero-order Vlasov equa-

tion, in this case, is obtained simply by substituting the first-order drift

velocity g + ¥y for the zero-order drift velocity U appearing in

Eq. (3.11).
When Eq. (3.14) is written in terms of p instead of C,, the

coefficient of 9f/3u again vanishes. For the special case considered
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here the magnetic moment is therefore conserved over times of order
2, -1 : 2o e e e
(€ Q) 7, even in the presence of strong transverse magnetic field gra-
dients V, B~€B /Rg': . Equation (3.14) thus describes particles of con-
stant p which move along the field lines with the constant velocity v,
and in the transverse direction with the first-order guiding center vel-
ocit + .
YR T 3B

£ Zero—'order curvature of the.field lines produces addi-

tional first-order drifts and first-order variations of u, hence addition-

al FGR modifications of Eq. ( 3. 10).

3. 3 Initial Conditions.

The expansion of the Vlasov equation outlined abové is based on

the as sump'tii‘on that Q 1@f .\, €f. This condition requires that both f and

the fields IE and ,.li’. be slowly %rarying in space énd time, and thus that the

particle motion be adiabatic. vAdiabatic; particle mbtion 1s not sufficient,

" however, to insure that f varies sl"ox’vly in_vtime;_ ité form must be such that
it does not fluctuate rapidlyl be_ca.uvs.e of the gyration of th.e parfcicles.. We
show in this section .thatjthis convditionl'a-'constrains the form of £ at the

“initial time. This constraint is illustrated in Apéendix B. |

The constraint on £(0) follows from Eqgs. ( 3. 4)'." In particular,
for i =1 and t=0, and by use of Eq. (3.6),

£V 0) - 91§ (@ -1 %0, C(3.15)
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We note from Eq. (3. 3) that E_q. (3.15) does not involve the inital time
derivatives of h(t). Equation (3.15) therefore gives the first-order

(0)

¢o-dependence of £(0) in terms of h , E, B, 9E /8t, and 9B /8t at
the initial time.

This argument is easily carried to any ordé:. For this purpose

it is convenient to introduce the operator

o -1 0? | .1 ¢ ‘
DT = Q S‘ P - E;gdq)s‘ d¢’j> | - (3.16)
4 0 o . S
By use of this operator, Egs. (3. 9) may be written

(i-2)

and summing over all i gives the formal result -

f¢ = f(;l) = [ﬁ* + P*ﬁ* + .,..']'h. . ’ ©(3.18)

1

The time de_rivafive_s of h are easily eliminated from Egs. ( 3. 17)v
and (3.18) by use of Egs. (.3.10), but this introduces arbitrarily high
time derivatives of E and B. Equation (3.18) then gives a formal ex-

pression for f, (0) in terms of h(r, 0), E(r,t), and B(r,t).

$
The time dependence of E and B is determined by the initial

values of E, B, OE /bt, 9B /0t, and the distribution function for each

species of particle. Equation (3.18) therefore yields‘, in principle, a
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constraint on f, (0} . This constraint is much more restrictive than the

¢

requirement that the initial current be consistent with the gix)en field E( 0).
In the following chapters of this paper we consider the small-€

expansion of the exact velocity moments of the Vlasov equation, equivalenlt

to moments oﬁ the expansion outlined in this secﬂtio'n. The constraint on

f¢( 0) carries over to that expansion as a constraint on the initial values

of the moments of f, . These inomenté, however, will bé ekpressed (by

use of equations equivalent to moment:s of Eq. (3.18)) in terms of the

moments of h and the fiow velocity. The constraint on the initial values

of these moments is therefore automaticaily satisfied., The cohstraint on

v‘fd)( 0) must not bé o.verlooked,l however, When an actual distribution func-

tion corresponding to a given solution of the moment equations is desired;

this is illustrated in Appendix B.



CHAPTER IV

Expansion Procedure for the Moment Equations

4, l. &-Dependent ;;Lnd ¢o-Independent Momgnt’s.

‘In this chapter we considér application of the small .€ expansion
directiy to the exact velocity moments of the Vlasov equation describing
one .plasma component, and put these equations into a convenient form.
The relation of the;se eqﬁations to the single-fluid description o'f a two-
componént plasma is also discussed. The actual expansions are carriedv
out in the following chapters..

Expansion of the exact moment equations 1s equivalent, of course,
to the expansion of the Vlaséx} equation reviewed in the previous chapter.
The characteristic feature of that expansion is the separation of the
distribution function { into q)-depende_ht and ¢-independent parts. f¢ and
h., A straig‘htfolrward recursion equatioﬁ is obtaihed relating f¢ ih any
order to E, g, é.nd the lower order f. On the other hand, h is given
by a differential equation in the vafiables LTI and t which ihvolves
¢’ v
Velocity momehts of the expand.ed Vlasov equation will therefore

€ only throltigh the appearance of f

yield recursion equations expressing the moments Of;fq) in any order

- 36~
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in terms of ,;E;:” ,,};33: and momépts of lo_wer order, and differeﬁtial equa-
tions in I and t for the moments of h which involve € only through the
moments of £, .

¢

Since f, is defined so that its ave'ra.ge‘ov‘er ¢ vanishes, non-van-

. ishing velocity moments of f are obtained only when it is multiplied by
a ¢~dependent velocity'function. Non-vanishi,hg moments of h, oﬁ the
other hand, are obtained only when the velocity function has a non-zero
¢—average.

¢

Thus, -corresponaing to the separation of f into the parts f, and
h, the Veloci.ty momeﬁts' may be divid‘ed‘into those of the form {a(o¢)f),
where a(¢) is a velbcit.y function with a vanishing ¢-average, and
- {Bf), where B is a velocity function independent of ¢. (The brackets
( ) indicate integration \overiall velocities.) We refer to moments of the

first type as ''¢-dependent' since they depend on £,  only and correspond

| | ¢
‘to zi)?dependant velocity functions. Moments of the second ty’pe will be
called ”¢—independen‘t"..v The terms "é;depehdent” and "¢fihdependent"
descbribe the velocity function used to form the particular rﬁoment. The
moments themselves, _ of course, are not functions of ¢

When the e#act veloéity moments of the Vliasovequation are ex-
panded in €, therefore, they will separate into réé_ursion equations for

the ¢-dependent moments and differential ecjuations for the ¢-independerit '.

moments in which € does not appear explicitly.



4, 2 Velocity Moments of theV-laéov Equation.

The velocity moments of the Vlasov equation describing one

plasma component may be written

dp /8t +V - pu = 0, _ (4 1)
_1 : ' :
(du/dt) -g +p (V- P) - (e/mE, = 0, (42)
. _l » —]. A ) .
u,-up =@ p X[dy/dt-g+p V- P, (4 3)
G = dP/dt+PV-u+V:- Q+[P -Vu]® = o[Px b]®, (4 4

H=dQ/dt+QV: u+V. R+[Q: Vu]® - [p'IPV-P]S=Q[9_P><b]S, (4 5)

” .. L .
dR/dt + RV u+V. S+ [R- Vu]® - [p7Qv: P]®° = @[rRxDb]®, (4 6)
and .
' v s -1 © 18 s
v - V. . v . e p]oi=
D/ MY w t Y S IM e Vel 4 e My Ve Pl el ]
' (4. 7)
where d/dt = 9/8t tu- Vv, aﬁd the various moments of the distribution
functionfare defined as follows:
the mass and number densities p = mn = m(f);
the flow velocity = u '= p "m(vf);
the pressure teﬁsor MI:’ = m(yyf); '._-w,.ith,x Sv-y
the heat flux tensor Q = fn(vzzf); '
and the higher moments R = m{vvwvf), S = m(vidyyf),

and MN = m{v... vf) with N factors of v, Nz2
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Following the notation of the previous chapters, e and m are the charge
and mass of the particles, & and B the electric and magnetic fields, g

the gravitational acceleration, b is the unit vector in the direction B,

oo 2 - , ,
Q=eB/mc, u_ = ck X'§/B , and the subscripts + and u indicate pro-

E

' jections perpendicular and parallel to B.

The superscript s indicates that the quantity is to be symmetrized :
by adding to it all cyclic permutations of its vector factors (or tensor

indices). Thus

et

[pxp® = Pxp - pxP,

. R
Q- vul }ijk = Q0 /O, T Ry O Qg B0 /0

We‘ note that t-hi; operation produces a ‘symmetric tensor only wilen ai:plied
to a tensor which is alre_ady symmetrvic with r_éspect to all bﬁt one vector
factor or tensor index. |

The derivations of the _continuit& equation. (4.1) and of the equation
of motion, which we have written in the form (4. 2.)' and (4. 3), neéd not
be i’gviewed here. The remaining équations are not so familiar; their
derivation is outlined in Appendix A.

It -isveasily verified that these equations do in fact separaté in the

_ manner described in Section 4. 1. Recursion relations are obtained for, =

and only for, those moments which appear in the dominant terms of the

moment équations. These terms, on the left hand side of Eqg. (4. 3) and
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the right hand side of Eqgs. (4. 4) through (4. 7), are those resulting from
the gyration term of the Vlasov equation, hence involviné only ¢-depen-
dent moments.

From each of the tensor equations (4. 4) through (4. 75 we thus
obtain both recursion relations for the ¢-dependent moments and differ-
ential equations for the ¢-independent moments which appear in the ten-
sors P, Q R +++ . This separation is carried out below.»» :

The transverse velocity u, is not éimply related to ¢-dependent
and ¢~independent moments, sinpe u enters into the definition of ¢, but
u, resembles the ¢-dependent moments in being gi\.ren by the recursion
equation (4. 3).

In zero order (2 — @) we see from the moment equa.tions that
Yy T Mg and that all the ¢-dependent mqmenfs vé.nish. This cor?esponds

to the zero-order particle motio'n, and to the zero-order solution of the

Vlasov equation.

4,3 The Pressure Tensor,.
In order to 'express the tensors ~13, 9, B, «++ in terms of d-dependent

and é~independent moments, it is convenient to introduce the local, ortho-

normal, right-handed basis vectors '9'1

= b, g5 an{i &3 _We may choose

g, to be along the principal radius of curvature of B, but this is not

necessary. We will, in fact, obtain representations of the tensors in

which g5 and 3 do not appear.

-
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Components of the velocity moment tensors in the £ coordinate
system are easily expressed in terms of ¢-dependent and $~independent

. moments. The six components of P may be written:

pE P G m<"\\2f>’

'pl = (l/é)(P22+ P,;) = (m/2) 1)

P, = m(y v,cos ¢f?; o | . (4.8)
P, o= i‘n(&vb“sinépﬂ,

Py, = (m/2) -\(visin 258), |

and P = (1/2)(13'2'2-»1333) = (rr;/Z):(vf‘cos.2¢‘f>.

&

Thus P, and P, ar.et.cp-l.ndependent whl;e PIZ’ 'P13, P23, and P6 are

"¢-dependent. In terms of these components the tensor P may be written

P=plitpbb+1d, (49
where 1  is'the transverse projection operator £5%, + £3%3 =1-bband
H*P(e'e)s+.P(ee)s+P(ee)s’+'P(e' e )

- T12'F1%2 13" w1 %3 23 =23’ T Tgllome T M3ns

~represents the contribution of the ¢-dependent moments to P.
 These relations may be expressed more compactly by use of the

quantities
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I. = 2 -

and I, 5 (/2(ge it ene)) = (1/2)lee ]l (4.11)
Thus Eqgs. (4. 8) may be written

p, = B:ibb, P,y = (1/2R:L,

p, = (1/2) }3 I, P& = (1/2)};:_’:}6, (4.12)
and since

+
ProSa * Prags = (B-R),
II takes the form
,‘M .
, : <
o =1 +PI1I + P. . 4,

y

The recursion relations for the ¢-dependent‘components of P
" are obtained by using the representation (4.13) to evaluate (P Xﬂ’g) S 7

in Eq (4. 4). The results are

Py (4) ~G:1., 23 = (49 Gl
and | ' : o (4.14)
| o
(b+P), = Q bX(b-G).

Substitution of these results in';o Eq. (4.1 3) gives a representation for

I in terms of G
A w
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AV ””Y""(S: Mb«o\,
- (/4B X (2G - L1,:Q) L+ @ {px (0@}, (415)

The first of these expressions follows immediately from Eq. (4.13). The
second, which is. convenient because it does not involve ;é“-z or S5 is

easily verified by evaluation of its components. The derivations of these

results are outlined in Appendix A. -

4.4 “ The Pressure Equatiéns.
The differential e.quations for p, and p , the ¢-independent
components of the pressure tensor P, obtained by forming fhe contrac-

tions of Eq. (4. 4) with 3I, and 3bb, are
) A . Mr

dp, /dt+p V-u+V-q' + (B-Vu):I+ P:bdb/dt+b-Q:Vh = O (4. 16)

P e
and

3dp, /dt + 3,V u+ Vg + (P.Vu):bb - P:bdb/dt - b-Q:Vb = 0,

- . : (4.17)

where qj‘ and q" are the fluxes of tranéverse and parallel thermal energy

%9 :I, and %9“ 'bb.
The usual energy equation of kinetic theory is obtainved by adding
Eqgs. (4.16) and (4.17), which gives one-half the trace of Eq. (4. 4):

dK/dt + KV-u + V-q + P:Vu = 0, | (4.18)

sy
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where K =p, + %p“ = (m/Z)(.vzf) is the total thermal energy density

and,g = g“‘ + gv“ is the total heat flow vector. The first four terms in
Eq. (4. 16) and in Eq (4.17) are similar in form to this energy equation.
These terms represent the rate of increase of the thermal en‘eréy density
of a given fluid element, the rate of increase of the .volume of the fluid
element, the transport of thermavlv energy out.of the fluid element, and
the work done on the fluid eleme.nt by the fluid motion. The remaining
terms occur with opposite gigns in Eqgs. (4.16) and (4.17), and repre-
sent an exchange of energy between the transverse ana par#ilél thermal
motion. The first of these.terms arises from the rota‘;ion- of thé magnetic

field direction seen by a moving fluid element; the origin of the'second

is more difficult to visualize.

4.5 The Heat Flux Tensor.

The heat flux tensor 9\ has ten independent compbnents. It may

be expressed in terms of the quantities -

(m/2) Ggrle)

q =
L - 2
q = (m/2)<x’i f> ’ .
”“6 > , (4.19)
q = (m/2){yy, cos 2¢),
Vo= 2
and q' = (m/2){yy sin 2¢).
It is easily verified from these definitions that q':, qi, and 'qz , are
) Am ~ o~

related by the identity
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=1 qV 41 g, | | (4. 20)

v -

hence only two of these three vectors are required in representation of Q.
. A

The flows of parallel and transverse thermal energies are q"
and g, respectively . The other vectors represent more complex fluxes.

It is evident that the only ¢—’independe‘nt components of '8 are the

parallel heat flows q:‘i and qf" . 'Ihe tensor ,9 therefore has the form

~

Q = 20'(5bb) + g (bI)°+Q, (4. 21)

11 o amanl /w¢'

‘where Q represents the contribution of the ¢-dependent moments. It

¢

may be written in the form, easily verified by evaluation of the componenté,

(4.22)

The second term of this expression is actually symmetric, although this
is not self-evident, because of the idehtity Eq. (4. 20).
| By use of this representation for 9¢ Eq. (4. 5) may be inverted to

give the recursion relations for the ¢-dependent components of ,9




46

q, = (1/29)3><(§:§13), | <-4.23)
gj¥ (1/22 b % (H:1,), (a2
gi = (1/59) éx (H:I) + (2/3)1 - a%, (e
gz = v(1/69)}3‘.}><(§:}6) + (2/3)}.\(;.-2%‘ : (4. 26)
qi, = -(1/49) p-H:1 , o ” | | (4.27)
q) = (1/49) b-H:L . | | . (4.28)

These recursion relations may be substituted back into Eq. (4. 22) to give

ancb in forms analogous to the representations (4. 15) for E The resulting

expressions are too cumbersome to be very useful, however, and will
not be given here; a convenient representation of the first-order terms

of Q is given in Section 5. 3.

¢

. The '"equations of motion'" for the é-independent components of

Q, q:: and q:, are just the contractions of Eq. (4. 5) with %b]glg_ and %—LLQ:

' ' s (BV-P)°
dq), /dt + q)V-u - 3}}1' (dp/dt) + 3bbbi |V-R+ (Q-Vu) e IR
| (4. 29)
1 . . s (EV.P)S]
dqj/dt+ qT,V.E+(2q1-qj)-'d}3/dt+ 'ZI‘PE.L: V-R+ (Q-Vy) ____;___: 0
| (4..30)

These equations are not often useful because, in the absence of collisions,

closed moment equations which require the parallel heat flows are obtained
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only in spécial éases; Equilibrium configurations, however, may be
described in term‘s of'p and P, ; Egs. (4. 29) and (4. 30) then take the

form of constraints on the form of the equlllbrlum distribution function.

4,6 The Fourth Moments.

Evaluation of % requires the fourth velocity moment tensor R.
Of the fifteen independerit moments entering this tensor only three are

¢-independent:

_ 22 _ 4
R1 ...m< ) : RZ.: (m/Z)(xzuxif>, and R3 = (m/Z)(xi ).
The tensor R may be written
‘ s | sq 8
R = nggy (R,/2)[B(1)°1° + (R,/16 Z([si(si;t.g I +R,.
=2 :
=23 (4.31)

where R, represents the contribution of the twelve ¢-dependent moments.

~

Representation and evaluation of R

~ ¢

is straightforward but will not be
required here.
The ¢-independent components Ri are required, however; they

are determined by the differential equations obtained from Eq. (4. 6):

dR /dt+ Rlv u - 4bb R: bdb/dt+bb . 5% bb =0

,
- s e Am “ M e

dR,/dt + R,V u+ (I, - bb):R:bdb/dt+ 3L :S*:bb-= 0

and dR_/dt+ R V.u - 2I,:R:dbd/dt+ 31:8%:1, = 0, (4. 32)
3 3 e LR PN -~ L s AL )

with s* = v-S + [B~Vu]s - [p_l-QV-P]S

e
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The relationship between given values. of the R.1 and the form of

distribution function is most easily seen by comparing R1 and R3 to

their values for distributions of Gaussian form, and R_ to its value for

2
a distribution which separates in v, and vy . We therefore introduce
the quantities
R! = pR./3 2
1 1/ 7By
! = ’
RZ pRz/p“p , | (4. 33)
R!' = pR /4p2
3 3L

The .Ri have been defined so that for a Gaussian distribution of

v, or v R

’ ,, Rj=1lor Ry=1, respectively, while R = 1if f=£ (v )f

2 NCREFA/RE

: ' ' 27
By a simple modification of the proof of the Schwarz inequality,

it is straightforward to show that

>1/3  and Ry = 1/4, (4. 34)

the equalities corresponding to a &-function distribution of the velocity.

R! and R' are thus measures of the spread of the distributions of v

1 3 ]

and v, about their mean square values. Large values of R'1 and R'3

occur if only a small fraction of the particles make a significant contri- |
bution to the pressure, Ri and R'3 being proportional to a for a distri-

. 2
bution of the form &6 (v ) + _'o.fl(v), a << 1.



The quantity R'2 is related to the correlation between the trans-
verse and parallel thermal motions. It is evident from its definition

that R'2 Z 0, the equality correspbndin‘g toa situation in which the trans-

verse and parallel thermal motions are carried out by different groups

of particles [i. e., to a distribution of the form 6(v_ )fl(vu) + 6(‘\/,I )fz(\ﬁ_ )1

It there is no correlation between the transverse and parallel thermal
motions, f is separable in v, and v, , and R'2 = 1. As is the case
for R‘i and Ré, large values of R:Z correspond to situations in which

only a small fraction of the particles contribute to the pressure,

4,7 The Single-Fluid Equations.

Before discussing the expansién of the moment equations we
will briefly review the relation between £he equatioh of motion for each
| component of a two—é_omponent plasma and thé eq.uiva.lent single-fluid
equations‘.
The two-component plasmaAis describgd by the variables p o 8L
P P, ”31;, and'f_, where the subsc‘ripts + and - refer to ions and

w?{-’

electrons of charge and mass e and m, . The single-fluid equations

are obtained by transforming from these variables to the total density
Py =P, +p, the.charge density P = e(n+ - n )}, the mass veiocity

y = (l/pt)(p SOy + p u ), and the cu?renti = (e/c)(n+§+ -nu).
When this is done the two continuity equations yield con.serva'tion.,:

equations: for the total mass and charge,

8p /8t + V- th' =0 . and 9 /Bt +V: j =0 (4. 35)
o

The sum of the ion and electron equations of motion expresses conserva-

tion of momentum for the fluid as a whole:
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DV/Dt = -V-P + i X B+ p E + 4, 36),
p DY /Dt fFIxBre B+ (4. 36),

A~ — v

where D /Dt = 8/0t + X Vv, and

= P, + oo, (u, - V) (y,

Eo= Borey o) P e (u -V -V) 0 (437)

- -

is the total pressure referred to the_vélocity ,Y“ :
In addition to the momentum equation (4. 36), the géneralized
Ohm's law,13 obtained Ey subtracting m /m_ times the electron equation
of motion from the ion equation of motion, is requiredb. The reéulting
equation is rather comialicated in gene_rai, —but it becomes very much
simplified if either the éhargé separation or electron inertia 'is negligible.
For small charge separation an expaﬁsion rﬁay be made in
An' = P, /nb e. To lowest order in this expans'iog we set n, : n_ in the
moment equations, drop Poisson's equation for .,«@«’ neglect the displace-
ment current, and vfind. V.j = 0. In this approximation ‘the generalized

s

Ohmv"s law takes the form

My - g m* (1 fet -
E+V X B = = X B + {".‘V -———-—>
O m, +m ne e n m, m
(4. 38)
b /AN L4 m, -m_j }
+ = [ = =V |V - -_—
Dt \ ne ne an m++m_ ne s

where m™ = m, m /(m+ + m ) is the reduced mass.
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Equations (4. 36) and (4. 38) are the basié of the "'single-fluid"
.description_ of 2 quasi-neutral qu-:componént piasfna. To obtain a closed
theory the total pressure .ﬂlft' mustvbe determined. This is the object of
the expansion carried out in the fo‘llbwing:chaptez"'s of this paper.

It n_ .é.nd o rerhainv fin'i"cevixvl tﬂe_ li‘m'it‘ m_ —* o, electron inertia
is unimportanf: and the single-fluid equations-take on a simplé form inde-

pendently of the approximation of quasi -charge-neutrality. In this limit

the electron pressure may remain finite,

and , P =’P++P . ' (4. 39)

: +
b pv v.P
= Fom X = —— g | :
b = Ig 2, Dt = pt g | (4. 40)
and
0 = (DV/Dt) + o t(v.P" (e/m ) E (4. 41)
- o T Pt 2 g (e/my) By » '

These are the transverse and parallel components of Ohm's law appro-

priate to this case; they are easily transformed into the more usual

forms

E+VXB = (m, /e)[DV/Dt - g + p 'v.P.] (4. 42)
M A an + an o ’t P
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and

E+VYXB= (1aeljxs-v.P1. (443

MM A ~ =

Equation ( 4. 4_3) is also obtained from Eq (4. 38) in the limit m >0,
but it is not dependent on the approxin‘q.ation of small charge separabtion
as is Eq. (4. 38) .

One advantage of the single-fluid equations over the corresponding
two-fluid equa‘.cions is thatﬂi,' E), and P, may be eliminated fr'om the
single-fluid equations by ué'e of Maxwell's curl B equation, Poisson's

_equation, and the gen_eralized Ohm's law. This is very easiiy accomplished
if chargé separation, dis‘pla‘cement current, and electron inertia are

negligible. Then

2 » |
j X B = -VL(B.Z/Z) + B b:Vb, » (4. 44)
e _ - .
D ' -1, .2 2 -

DB/Dt + BY -V = -b-{V X [(ne) (B"Rh-Vb - V,B” - V.P )]}, (4. 45)
and

: -1 .2 2 .
Db /Dt = (B-VV)J_ + {v x[(ne) (B b-Vb - V, BY - v-p_)]}L-. (4. 46)

Because the transverse motion of every particle approaches .BE
as m > 0, neglecting. electron inertia is a good approximation if the
plasma motion is transverse to the magnetic field. Charge separation

and displacement current are unimportant unless the plasma density is

very low. ,



If there is plasma motion along the field lines, however, electron
inertia may be important, but closed moment equations are obtained only
in special cases. For the present discussion, therefore, these motions

are of limited interest.

4.8 Expansion Procedure.

The small € expansion of the momeri't equations is carried out bir :
using the -recursion relations to eliminate the ¢—depen‘dentmoments from
the differential equations for the ¢-independent ﬁoments. Thus, for ex-
ample, mli‘is found from Eqgs. (‘%. 15) fh'rlough (4.17) by using Egs. (4. 25)
.through (4.28) to elimiﬁate "ch' This pr.ocedur;a correspoﬁds to the de-
términafion of f¢ by the reeur,sion rela;tion (3. 9) when the small € expan-
'sion is appiied direc.:tly-to.th‘e Vlasov equation;

Since this procedure is carried out order by order, we expand
in € all quaptifiesappéaring in the moment équations, »Writing them in

- 2) .
the form p = p'(;) +- p(‘ ) + .

.., and rega_rdi_ng.rri/e and Q-l as propor-
tional to €. As 'dis.cussed in Chapter 11, thé’ particvula‘r form these expan-
sions will také depends on the ordering of the auxiliary.parameters with

_respectvto €. | |

To simplify notation, the ex'pansio'ns of /}avancvi B (hence also

R = , and 33) will not be carriéd out explicitly. The order to WhiC?h

17 a2
these quantities will be required in any expression will be evident by iné}géc—

tion.
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It was shown in Chapter II that the relation between the expansions
of E and B and the expansions of the moments depends primarily on
et ~m
the ordering of the pressure parameter B and the relativistic parameter

v /c with respect to €. Three cases are of interest:
o : .

[@ R \¥)

5,
g~ 1, BN§>>vg/c, - and B ~ € with

w |
ol

The apjprqximation of qqasi charge-neutrality is applicable in the first
two céseé. .It is not in the third, however, and £hat case will be considered
briefly in Section 7. 3.

Our primary interest is in the finite pressure case B~ 1. A cur-
rent of given- order then generates a magnétic field of one lower order
[ see Eq. (2. 7)] . The zero-order current must therefore vanish, and
é(O) is deterfnined by ’;];(l)v. vFor’ﬁni}te'B zero-order ;urrents produce
field gradienté of order B/R , in violation of the basicrequirerﬁents for
adiabatic particle motic.an. |

Because charge separation is negligible for this case, and the

zero-order transverse velocity of every particle is the same, j L van-
- &

(0)

ishes automatically. The requirement that j

also vanish, however,
restricts our equations to situations in which the parallel motion of the

electrons closely follows that of the ions. For these motions electron

inertia may be neglected, at least in lowést order, and the simple singl

fluid equations of the previous section ma'y be applied. Effects of finite
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electron mass are considered, for exampie, ih references 10 and 28.

Because the magnetic field does not strongly constrain the mo-
tion of the particles along the field lines, the small € expansion is not
sufficient Ito prod'ucé closed moment equations. Closed equations are
s‘ometimeé obtainé_dby ignoring the parallel 'he__at‘flows on the grounds
that very weak collisions will inhibit them b_u‘c'have. ﬁo other effects of
importance. To obtain closed equations' in the -abse.nce of collisiéns,
however,”an additioﬁal expansion is required. Usuall}.r gradients of b
and gradients along b a;e.considéred sméll compared with gradients
transverse to b. Closea equations are then obﬁained if Yy, qj, and
other pafallel transport terms are assumed proportjonal to L, /L,, and
Ly /L, is of order €. To lowest order in this additional expanvs'ion
L, =u,= q‘:l = q:; = 0. This case ié discussed for CGL 6rdéring in
Section 5. 6, and for FGR o>rdering in Section 6. 6, and Chap.ters VII and
VIII. For FGR ordering. additiénal_ closure problems arise because of
the transverse collisionless heat flows; these_,are indepehdent of, but
analogous to, those associated with parallel métioﬁ.

For the special case of an Alfven wavve travelling alo'n_g a uniform
magnetic fiéld iﬁ 2 uniform plasma, linearization of ‘.chev equations is suf—i-
ficient for closure; this property is indep'endent of the expénsion in €.
Low;frequency stability of this Alfven wave .is discﬁsse’d in Chapfer x. N

The assumption of eqﬁilibrigm, in addition to thé small € expan-

sion, is also sufficient to produce closed moment equations. Equilibria
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may be described in terms of P.L and p" , the differential equatiohs for
the ¢-independent moments (e.'g., the pressure equations) then become
constraints on the higher moments of the ¢-independent part of the distri-

bution function. The equilibrium moment equations and, in particular,

"long-term!' equilibria, are discussed in Ché,pter X. .




CHAPTER V

Finite Gyro-Radius Corrections to the CGL Eqguatiéns

5.1 The CGL Equations.

In this chapter we discuss the zero- and first-order corrections
to the moment equations as_:suming CGL ordering (i. e., we consider the
s . -1 e ' ‘

time scale of interest to be of order (&) , hence short compared to

the drift time TD"" (_EZQ) ). The zero-ovrder approximation to the mo-
ment equations, which we discuss in this séc_tion, is then the familiar
CGL hydromagnetic theory.

First-order corrections to these zer¢-§rder equations are pre- -
sented in the following sections of the chapter. 'Since these effects variish
with €, they may more appropriafely bevre'g-arded as effects of ''finite!
gyro-radius than the rnbdific;ations of the zero—qrder moment equations °
necéss}a;ry when the tir?e 'scalé is extgndéd,to be of. _order ™ These
laftér effects are discussed.in the following chapters of this paper.

’Ihe_ effecté to be discussed in;.the following sections of this chap-
ter are equivalent to the firsyt—-.ox_;de: t.e_r.ms in the expansion of the Viasov
equatior;, gnd ,a‘nalogou‘s to the first-order .terms of the. Chapman—Enskqggg}”
expansion. The equations obtained in this chapter ha\’r,e been in‘cérrectlyb

| : 7
applied to low-frequency waves characterized by FGR ordering. ’ 18

-57-
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The difference in form between the first-order equations of this chapter

and the zero-order equations obtained for FGR ordering are therefofe
of special interest. The latter ére described in Chapters VI through X.
If CGL ordering is :;13 sumed, the z.ero—order terms of the single-
: flufd equation of motion (4’. 36) afe

j_xg" : o (5.1)

Py

Dt = -V-P, +

2
where charge separation has been assumed to be small (5 > e'vo/cz) ,

Pis V, P, and B are taken to zero order, j 1is first order, and
(0) _ (0) (0).
N}‘ft - P.\_ Ji_!__}- 1?1 bb, (5.2)
+ - ' o + -
: = + ‘ = +
with 'Ei 125 B and P" p‘.‘ pu
The zero-order terms of the gehe_i-élized Ohm's law simply state
that X(O) = by or
E+VXB=0. (5.3
' _ +(0) _-(0 + - -
\ The pressure components P (0), P _( ), P (0) , and p (0) are
. . L ) HY :

determined by the zeroédrder terms of the pressﬁre equations (4.16)

and (4.17). By use of the zero-order forms of P and Q and the equality

+(0 -{(0 . : : ' '
of u (0) and u ) , the zero-order terms of the ion and electron pres-
SAA . A

b

sure equations may be added to give the CGL pressure equatlons1 »8 iﬁ

the form
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_ _ N |
DE /Dt + B (V.V.+ V_-V) = - BV- (g h/B), (5. 4)

and DR /Dt + B (3V-V - 29, -Y) =-2V-(q'b) } 2q Bp¥h. (5.5)
‘ | - I

where, in these gqga:cions only, q’t'\ _gr}d q:: are added 0V§1' ions and.
électrons.

Equations (5.1) tthugh (5. 5); together with the continuity eéqua-
tion and Maxwe:ll's .cﬁrl B and induction equations, comprise ‘the familiar
‘CGL hydrOmagneﬁc theory. These equations are ﬁot closed in general,
because of the parallel hea£ flows. |

If the terms onthe right hand sides of Eqs(5. 4) and (5. 5) vanish
. or are neglected, . th’esve' equations are easily integl;ated by.use of the
continuity equation and the zero-order induction equation in the form

(4. 45) to give the well known CGL double adiabatic conditions

D(P, /pB) /Dt = 0
| : (5.6)

and _ D(BZPH /p3) X Dt = 0.

5.2 The Pressure Tensor.

The CGL equations méy be extended to give the plasma veiocity
through first order and the current throggh second order by including the
first-order corrections to P in.thev sirigle—fluidequation of motionv and
‘the vfiz.'s;t—'ord.er terms in the .gen.eralizéd Ohm's law, |

' o) (1)

The ¢-dependent components of NF: ' (d.e., I'') are found from

the recursion formulae (4.14). By use 6f the zero-oz_‘dervforms for Ei

.}L‘d,
i




and ,% these equations give

(1) -

(5.7)
(1) -1 L op (0)
and
-1 . o :
(b-P), = @ bx[(p -p)db/dt + p b+ p (V)b |
| | (5.8)

]('0) =

+

‘Z(q‘!’\ - q5)p- Vb + vqt

The time derivative dp/dt may be eliminated from (b-P) by

use of Maxwell's induction equation in the form of Eq; (4. 46):

- ‘ ' _ : L E 0) -
(), = 2 pxl(2p, -5 pVurn, O pr2Ad, - e vl (5.9)

The terms of Eqs (5.l7) and. (5.9) proportional to Vu are the

collisionless viscosity terms. - They are well known in the isotropic case

(0)

(e.g., references 11 and 12) and have been given for an anisotropic P
by Kaufman and by Thompson.
Thompson's calculation is outlined in Chapter II. His results for

P and P are incorrect, however, because of an algebraic error; the

12 S 13
correct. expressions are easily obtained from his distribution function,

(1)

Kaufman has shown how the components of I are related to

the first-order. corrections to the particle orbits in the adiabatic approxii-

i
i

mation by studying these orbits for special cases. His calculation of Pl2
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and P13 is incomplete, howéver, because he assumes a constant mag-

netic field. This is inconsistent with a nonzero (b+Vu) and Maxwell's
induction equation. Calculation of the additional contribution to N@( )

from the particle orbits is outlined in Apperidix B.

The remaining terms of Eqs. (5.7) and (5.9) represent stresses

produced by the zero-order heat flows. Because of these stresses },IA( )
: (0 A
need not vanish even if }AJ.N( ) - 0. In Chapter IX we show that because of

these ‘terms an equilibriurri pai‘gllel heatvf.low' tends to destabilize a low
~ frequency Alfven _wéve.
. ) . ‘ _
Explicit representations for R( ) may be obtained by substituting

. these results into qus. (4.15). Thus

1V s ot -1 et v (O w2 V1S, (510
o mvé 6Y L lIMv:v e Ay .
or
o s 2oy < g lew g, - 1w P s v - 1 3enD)
s et | (5.11)

‘have been eliminated.

Equation (5. li_) is ofteh ué'eful becaﬁs"e “‘IY 'and }6-

5 3 The Heat Flux Tensor énd Fourth Moménts.'

The évaluation of ,9( 1) from the recursion fofmulae {4.23)

v ¢
through (4. 28) is outlined in Appendix A. The results are
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" = (zsz)'lb x [VR

- . + - .V
9 B XIVR, - p RV B+ (R - 3R,)BVD
L " e . n . (O) .
+ 2(2q) - q))b-Vu + 24, (Va)-pl 7, (5.12)
qi(l) (zsz)'lb X [VR3 - 4p-lp_LV-Mli’ + 43-;]”), "~ (5.13)
v(1) _ 4 (1) 6 _ .1, (1) "
»C«iu. B 2;‘\/ 1. ’ g; - 2"1‘6'31_ ? , (5.14)
_q"(l) = (29)"11 :T(p), qﬁ(l) = - (29)'11 :T(O), (5.15)
1 »v'~6 o . i Yo
where
T = (R, - R,/4)Vb + q Vu.

2

If the terms q; and g, are neglected, the transverse heat flows

given above agree with those given by Thompson, 3 who assumed that
0 :
. q.l_( ) and q[:((o)

) vanish. Thompson's flﬁxes_appear to differ from (5.12).

. 7 . . o
and (5.13) because they are referred to the zero-order velocity Up + u(u ) ,

whereas ours are referred to u: The corresponding difference in B is
(0)] 2

of order [u - u hence does not appear in Eqs‘.'( 5.7) and (5. 8).

A representation of the tensor 9( 1) is obtained by substituting
Egs. (5.12) through (5.15) into Egs. (4. 21) and (4.22). It is easily

verified that the resulting tensor may be expressed in the form -

_ W L S "t s . L S
Q= dbbb + (L) + (@) + (1/2)(gD))

| -1 s 2 " '
+(29) bl T - L) T17 + O(eT) . (5.16)
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Il? the presence of strong collisions,: the zerb—ord¢r distribution
function is cénstréined to a local Maxwellian form. The zero-order
pressure is then isotropic, and the fourth moments Ri appgaring in the
expressions for "9¢ are determined by the pressure and density:

2 2 2
R, = 3p /p, R, = p /e, and R, = 4p /p.

(0

For this case of a local Maxwellian f the sum of qiand-q“ gives the
X - o A

well-known transverse collisionless heat flow

g, = g4+ g = (5/20m)ph X V(p/n). (5.17)

L oA ~
In the absence of collisions, however, f( 0) need not be Maxwellian
and independent equations are required to determine the Ri(O) . These
equations are the zero-order terms of Egs. (4. 32):

dR,/dt + R (57 u - 4V, -u) = 8q‘“p' (V-P), + 45,V-b- V- (S D),

. - » = u .
dRz,/dtJr R,(3V-u -V, -u) 2q p (V‘ }f)u +_(S

- V-b-V. .
5, - S,)V-B-V-(5,b), (5.18)

and

d + R (Veu + 2V .q) = - V.l - ov.
R,/dt + R,(V-u zj_‘x_l)v - 2_53.”13 ;v (S,b),

where all quantities are taken to zero order and the S, are the $-inde~
: ' , _ i :

pendent components of the fifth velocity moment tensor S:

sp = m(y), S, = (maY)

1 : sy may

3
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In the absence of collisions the Si are not determined by a closed set

(0)

of the moment eqﬁations. If £ is assumed to be of anisdtropic
Gaussian form, Egs. (5.18) yield no new information, but are consistent
with the CGL p‘r.essure equations.

These equations for the R-l(o) are similar in form to the CGL
pressure equé.tions and’,. if the terms on t};éir right hand sides vanish,
they may be integrated in the same way to obtain’'adiabatic! conditions _

)

for the Ri(O . These adiabatic condlitions take the form

: 0 _
dRi( )/dt = 0, - (5.19)
where the R{ , defined by Eqs. (4. 33), are related to the form of the

- distribution function. In this special case, therefore, the form of the -
distribution is preserved by the plasma motion. In particular, f( 0)

will remain Gaussian, but not necessarily isotropic, if it has this form

initially.

5.4 The Pressure Equationsr. .

We consider now the first-order termé of the pressure equations‘
(4.16) and (4.17), and of the energy eqﬁation (4.18). Of particular |
interest is the term ”PW:V& of Eq. (4. 18) which represents the energy
transfer between the fluid and thermal motions. The correéponding term§
of Egs. (4. @6) and (4.17) give separateiy the energy transfers between 'f

the fluid motion and the transverse and parallel compbnents of the thermal

motion.
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By use of Eqgs. (4. 9), (5.9), and (5.10) we obtain

L 2
Ve = p V¥, rutp(R-V)bH2(R =R )e - T+ 0() (5200
where
-1 T
a; = 22 "b-[(b-Vw) X (Vu)-bl,
and
T = ZQ—l"‘(V)'(II -II):Vb
= qui u): Vs T Lshy tVD
-1

+ 0 ,}& {[EV}} + (VE’)E] X I(qul" - qt)hVB + Vq:] }

In zero order only the first two terms of this .expré-ssion are present;
'they'represent the ahisotropic compressional heating. The third term
arise‘s from the coxﬁ‘;‘ribution of the collisionless ,\/:iscosity to P12 and

P13‘. (Thevré is no contribution from the parts of P23 and P6 propor-'
tional to VE“ ) This term is somewhat analogous‘to ordinary‘ viscoﬁs dis-
sipation in.that it arises from the contribution of the collisionless viséosity
to P:Vu and is qua_ciratic in u. The net transfer of energy 'between the

- fluid and thermal motions thus does hot vanish in general, as‘might be
expected for a collisionless system. This collisionless energy fransfer

is not dissipational h‘owever, as it may have either sigh. .The collisionlegs’

vis cosity modifies the propagation of waves, but does not cause them to .

i

be dampegi; it may even be a mechanism for wave propagation. A specidl *

example of such a ''viscosity wave'' appears in Section 9. 2.



The term I of Eq. (5. 20) represents the eﬁérgy transfer ﬁetween
the fluid and thermal motions arisi_ng from the first-order stresses pro-
duced by the zero-order heat flows. Because zero-qraer heat flow can-
not occur in the presence of sfrong collisions, these terms have no
analogy in ordinvaryb h&drodynamic.s. |

The comi)lete equation for the totalvthez.;mal energy K through

first order is

dK /dt + KV-}}_+ RVJ_-E—%- p\\(h-VE)-E;!-V-q
: - - (5.21)
+ (p -p) al‘:‘ Tr.

it A

(1)

By use of the represehtation (5.16) for 9; , the pressure equations

(4.16) and (4.17) through first order become

«(1) (0)

om s e BT ¢ 9g e v,
o ‘ (5.22)
L. 2
= - BV-(q b/B) + T, + Ofc),
and
(71/2)d /dt% [(3/2)§. -V -yl + V. (1 0
,' pu .I.')“ ,,1,'].'. JE , ’9;1_ P” 0'1 2
| _ (5, 23)
' S N >
=-V-(¢*D) - ¢b-VB+ T - T, + O(e),

W e

where T" is defined following Eq. (5. 20},
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r, = 29 'b-{a*(b-Vp) X [(Va)-b - 2p-Vul + b- (Vu) X Vi),
s L Am ~n —— an
and
-1 ' -1 o1 (0)
o = 2 b-L(VR, - p "p, V) X (b-VE)ITT.

The énergy transfer pfoduced by the collisionless viscosity is again given

terms, which now include also the contribution of.the collision-

, 1 :
less viscosity to [f:(l)dp/dt)]( ) = E(

by the %

Y :[b(’p.'vg)],(o) . We note that
even if the contribution of these energy transfers to dK /dt vanishes be-

cause p, =P, their contr_ibutioné to dp, /dt and dp /dt separately may

not vanish, and have opposite signs. If a. is nonzero, therefore, the -

1
collisionless viscosity tends to produce anisotropy in the pressure.
The a, terms of Eqs. (5. 22) and (5. 23) represent a transfer of

energy between the parallel and transverse therma_i motions which arises
from b-Q:Vb in Egs. (4. 16) and (4. 17) . First-order effects of the

zero-order parallel heat flows are represented by I" and I .

5.5 The Single-Fluid Equations.

Except for qt and q'l'I through firsvt order and the 'SE 0) , Egs.
(4.1) through (4. 3), (5.7), (5.9), (5.12), (5.13), (5.18), (5.22),
and (5:. 23), for each .com].ponent_, ' together with Maxwell's ‘equations,
determine the transverse motion of each component tilroug.h second orde%pv

and the other quantities through first order.
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The corresponding single-fluid equations for a two-component

plasma, which determine the plasma velocity through first order and j

Ana

through order 62, are obtained by faking f’, E, and ’Ié through fir‘vst
oraer in Eq. (4. 36) and including the first-order terms of the generalized
Ohm's law (4. 43). The electrostatic f»o rce is negligible unless

B~ e vy /c) 2 and will not be considered here. These equations apply in

the limit of small electron mass but non-negligible electron pressure.

i
2

The electron thermal velocity is then large, of order (m+ /m )2 times

1
2

)

the ion thermal velocity, and the electron gyro-radius of order (m_ /m+

compared to the ion gyro-radius.

+

The transverse flow velocities v, and u , on the other hand, are

i

both of order u._ and we assume that u, and uj are also of this same

E
order. The electron collisionless viscosity terms are therefore negligiblé,

but the current produced by'the electron '_pressure gradient and the electron

heat flow is of the same order as the corresponding ion effects.

The pressure tensor appeé.ring in the equation of motion (4. 36)

is therefore

+ o} (5.24)

~ where Eil) is given by Eq. (5.10) or (5.11).. '
Equations for P, and B, are obtained by adding together the ion%‘é’“
and electron forms of the pressure equations (5. 22) and (5. 23), takihg ‘

account of the first-order difference between u, and u ,. and the terms
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of 9(1) not proportional to u .

The fourth moments enter these equations for B and P in the

1

P + . - (O) ) sk
form R.1 = Ri - (m_ /rn+)Ri .- The equations for the Ri have exactly

the same form as Eqgs. (5.18), since the ion and electron forms of these
zeré-order equations are identical.
Because the zero-order ion and electron pressures are required

separately in the first-order pressure equations, the generalized Ohm's

(1)

+ _

law, and ,EIW , the zero-order equations for either p and P or p
L A

and p”- are required in addition to the first-order equations for P_ and Pn .

The extension ofACGL‘ theory to determine the plasma velocity
through first order is thus comi)rised by the equation of motion with the
pressure tensor of Eq (5.24), the generalized Ohm's law (.'4. 43) including
firsf:—order terms, the two first-order p.ressur.e‘_equations for B and

Pl\ , two zero-order (i.e., CGL) pressure equations, and the three zero-

5
order equations for the Ri .

These equations simplify considerably if b is constant in space

and time and if the properties of the plasma are independent of position

along the field lines; they form a closed set if u, q: , and q' vanish

sk ok
0 l {

. ' + -
initially. These quantities then remain zero, and P,» P Rl , RZ’ q ,
1 ‘ L

and the Si are no longer reé:iuired.

The transverse components of the equation ‘of'motion become
o |2 .
pDV/Dt = -V (B + 3B) - A+ pg, (5. 25)

Vasnd Py
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po=oeven vl vl s e/ v (O
o~ T -~ ~ i ~8 a

v - : (5. 26)
or -

N =-(V.V)b X V(p} /29Q) + (p/292)b X v

V o+ b X (VV).V(p" 29).
- - (5.27)

The first-order pressure equation may be written

' = ) -1 . N ’ - .
DE_ /Dt + 2P, V, *V + V, - g%+ (ne) [zi.vn/n -j-vpl =0, (5.28)

——- A L

where the last term arises from the difference between ‘»}‘1 -and V, and

¢t" = (2m) 7'y x {v8] - 200 'VIE (B, - 2137 (5. 29)

is the total transverse flow of transverse thermal energy.

-(0
The CGL equation for P, ) becomes

Dp:(o) /Dt + Zp_:(O)V'AY' = Q, v g _ : (5. 30)

of,

* ' ! : 1
and the fourth moment R3 is determined by the conservation of R3_ and R3_L_ s
D(pR,/p ) /Dt = 0. g ~(5.31)

The transverse motion of the fluid is described through first order by

- Egs. (5.25) and (5. 28) through (5. 31).
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The first-order ener'gy'equatibn (5. 28)_ differs from the CGL
pressure equation because of the last two terms. The heat flow of

' 1

' Eq. (5.29) Vanishe_s if p:- - p; and R3+ = R3_ in zero order:. These
zero-order.equalities are‘pres'erv'ed by the plasm:i motion. In this case
the first-order pressure eq{ia'-tionvdiffers'from .the CGL form only by the

‘last term. If the elect’rén pressure is small, on the‘ other hand, this
latter term is negligible but‘fhe ﬁnbalanced ion heat flow causes Eq. (5. 28)
to differ from the CGL form. |

In certain cases, such as perfurbatibns of a uniform equilibria
or one-dimensional configurat_ions‘, the first-order pressure equation
reduces to the CGL form for all distribution functions, and the CGL
adiabatic condition holds throﬁgh first order. In general, however, the
adiabatic condition is modified in first order because of the first-order
corrections to the pressure equation and to the generalized Ohm's law,

. This closed set of equations diffé'rs from those obtained on the

(0)

assumption that f is an isotropic Maxwellian ? in that the scalar

pressure is replaced by F, , and that the heat flow q = of Eq. (5. 17) is
!

3 conserved. Conserva-

!
replaced by g':_ of Eq. (5. 29) with R‘3+ and R
(0)

: 1 )
tion of Ri implies that £ ‘will remain Gaussian, but not necessarily
isotropic, if it has this form initially. The two energy equations then

differ in form only by a factor 5/4 in the expressions for the heat flows.

n
£

The above equations may be used to find FGR corrections to the

frequency of a magneto-acoustic wave propagating across a uniform
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magnetic.field in a uniform plasma.. It is easily verified that the first-
order corrections vanish. For this simple case (linear perturbations of
a uniform plasma) the second-order terms of the moment equations are
easily found. These terms give a second-order correction to the fre-
.4 . o 30
-quency which does not vanish, and differs from that found by Talwar
(who included only first-order FGR terms in his equations) by a numer-

ical factor which depends on the fourth moments of the equilibrium

distribution.




CHAPTER VI

Lé\x}est-.Order Hydromagnetic Equ.a.'c»i“ovns~ for FGR Ordering

6.1 FGR Ordering.
In the remainirig chapters of this paper we discuss the lowest-
order approximation to the moment equations obtained if the time scale

2 -1

is extended to be of order T~ e Q) . This discussion will be restric-

D
ted to s;tuations in which no zero-order motion occurs on the time scale
of CGL ordering, i.e. to motioﬁ characfefized by fhe FGR ordering: of
Eq. (é. 4) .

Because such motions ére slow compé.red to the thermal and
Alfven veloéities; they will occur only under special circumstances. We

may consider, for example, the gravitational interchange instability. Or-

dinary hydromagnetic (CGL) theory gives for the frequency of this mode

[\

w = (p'g)% ~ e(gL/vg) Q | . (6. 1) |

-where p'.is the equilibriufn density gradient characterized by the scale

distance L. The stability condition is

p'g 20. . , (6. 2)

-73-
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It is evident that w is of order €2 and CGL ordering applies only

1
2

' 2
for strong gravitational accelerations, (gL/vO) ~ 1. If itis assumed

that (gL/vg) z ~ €, corresponding to a very weak gravvivtational acceler-
ation,v the interchange mode is characterized by FGR'ordering and the
results (6.1) and (6. 2) no longer apply. 14_The FGR corrections to the
weak gravitational interchange instability are well known fof low {3;6’7’ 14
‘they are discussed fof finite 11;1 Séction 8. 3.

The relation gL/vg._ ~ EZ' may therefqr'e be associated with FGR .
ordering. This is nof a necessary condition for FGR ordering to apply,
however, as a mode ‘onl’y slvightly influeﬁced by g_ravity rﬁig_ht be of low
frequency even in the‘ presence of a strong éravitational' ;field..

More generally, a necessary (but not sufficient) condition for

FGR ordering is the CGL equilibrium condition

i x B0 Ly pl® (pg)(o) = 0,
or
152 2 [
-V (P +3B) + (B +P_ -PB)b-Vb-[b-VE- (R -F)b-VBl b
+pg = 0, o - . (6.3)

‘where charge separation has been'neglectved. Unless b-VB and b.VE

are small, this condition is a strong constraint on

., § , and B. Except under rather special
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circumstances, therefore, FGR ordering will be associated with weak
parallel gradients. |

| The FGR ordering (2. 4) fhus does not.specify all important aspects
or*prbperties of slow, low-frequency motion. For the interchange mode |
it must be supplemented by the condition of weak gravity; for many waves
by the condition of long parallel wavelengths; for the Alfven mode dis-
cussed in Chapter IX by the condition. that the freqﬁency obtained from
ordinary hydro‘magnetic theory be small; and for long term equilibrium
by the cor_ldition (6. 3)itself. .

‘We will be interested in the low—frequency interchange mode, bﬁt
not in effects of strong gravitational accelerations. We therefore extend
our definition of FGR vorde.ring to include thé condit_ion’ of weak-gravity‘.
‘We do not, however, include. the c’ondition of "Weal%- parallel gradients.

Furthermore, in keeping with our requirements that the motion be slow,

it

.we assume that q: , ql
1

, Si , and higher parallel transport terms are

of first order. Our extended definition of FGR ordering is therefore

Livorg ™ L/vem By fvoBg v (gL

/vo

(&I

(6. 4)

2m 2n+l
(v
A

2m+2n+1
Y £) Mmgvy Ve

- where m,n 2 0.
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Bépaus'e the transvérse guiding center velocity is directiy deter-

.mined by the elec'fri-c_ and ndagnetic fields, the condition CEO‘L/VOBO"'E <1
<ivs sufficient to insur_e’ slow trénS’vérs¢ pla:sma motion. In the directién

of the ma.g'netic field, however, only the acce_leratibh of the,guidiﬁg centers
is de_te.rmin'ed ‘by ’;ﬂe fields. The parailel motion is therefore sensitive

to variations in the fieids, éarticuiar.ly E‘\ and EVE This is especially
true if both L, énd the timé scale a;e large, for ﬁhen'the ac.celer‘ation
- acts over é long :tiIl’ne. :Thus, if T (G?Q) -1 and 'L“ ~ Rg /EZ, even a

~parallel electric f'ieild of order 63,v Bo/c may dri:ve a first-order parallel

0

current.
. A variety of low-frequency waves exist which propagate nearly
transverse to the magnetic field. Waves of this type pfov‘idé mechanisms
L 4 N o 11 91015
for numerous instabilities which recently have been extensively studied;
' These waves, however, are beyond the st:opé of a purely hydromagnetic
. C . Y

treatmeht unless collisions are present, and they will not be discussed

here.

6.2 Tinite Drift-Time Effects.

As discussed in Chapter II, extension of the time scale from

Tﬁ = (GQ)-I to TD =T /e changes the ordering of terms in the small

€ expansion of the particle orbits and the morment equations, with the

result that the zero-order approximation to the moment equations differs?

from the CGL equations. These mod_ificationsafe important, - even in
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very small accelera-

the limit € = 0, because during the drift time ™

tions (NGZVS/L)_ and.velo_cities (’\'evo) contribute to the zerb-order
vdisplacement of the plasma. It was suggested in Section 2. 2 that these
effects be described by the"feffh "finite drift time'! rather than .the con-
" ventional term !finite gyro-radius. '’

The charge in ordering may be illustrated by the displacerﬁent
produced by the fi_rst-ofdef guiding éenter ‘drifts'_. Duriﬁg the "longitudinal"
‘time T these first-‘o‘.rd‘er velocities produce only first-order displace- |
ments of the guiding 'cente‘rs. If the fime scé.le is extendéd to.be of
order Ty ‘however, these displécemen’cs b_ecofrie of zero order. Guiding .
centeré initially on the same field 1iﬁe then end up on quite separate field
lines; this rei)resents a s.eri‘ous breakdown of: thé fluid properties of the

plasma. As a result, for a time scale of order T_ and, in particular,

D
for FGR ordering, é hydromagnetic descriptipri of even the transverse
vplasma motion is pos_sible only in special caées.

f‘or FGR ordering the plasma acceleration is order ezvg/L
(this may be seen-expl_icitlyffrom' Eq. (‘2. 3)). The lowést-orcier approxi-
'~ mations to the equaﬁons of mo’;ion ( 4. 25_ and (4. 3) for each plas%m:a
component are. therefore obtained by evaluating the terms of Eq. (4. 2)
through second ordér and‘tilose of (4. 3) through'thi‘rdﬂorder. These
equations then become

TaWag + o Mvom) - (ermiE, =0 Vi), (6.5)
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- 1 .- 4
Q -1}2 X [du( ) /At + p lV-MIf_ - g] = O(e'v

o
t

e

)
1

o (6.6)

In these equations u, appears qnly in first order,‘ ”E';I, B, f,, and p ére
required lthr'ough second c‘>rde:.c,_ and» E.L (hen‘ce‘ ;iL,)- ‘is 6btained through
third »orvder. , They: differ in forrnv from the z'_er_oéo_r.dver: equations obtained
fox; CGL ordering énly ‘by the appearance of NI;Iﬁ:(which is required through
second ordeif) .

It is Well kno@n that the guiding center-equations equivalent to

CGL theory are: |

o =1 2 « (0) 2
= q X VB + - + .
Vp T Mgt Q‘ b [(V._ /2B)VB + D Yb g] _ .~0(€ VO) , (6 7)
whére ¥p is the guiding center drift velocify_‘and

Sk (o)
D = 8/0t + (up + vy, b)Y

is the total time derivative following the guiding center motion; the equa-

tion for the parallel guiding center ,‘motibon

D (vy,) = (e/m)E, +g, - (v /2B)b.VB+ g (D'B) + O(evi/L); (6.8)

YD, E

the relation between the transverse flow velocity u(r) and the average

transverse drift velocity of guiding centers at r
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-1 2

,}&J_(E) = <,»YD'('£) >_1. + (ne) (V x,&t); + O(€ v

o (6.9)

where [\Lt(’:}:) is the total magnetic moment of particles with guiding centers
at r; and the conservation of the magnetic moment pn = my /2B. The
L 25

relation for the parallel veiocity components corresponding to (6. 9) is

e Y X )+ 0, (6.10)

0)

but this relation is not required for CGL theory because only u\(l ap-

peaz_'s in-that theory..v |
Thevfirs.t- ‘and se-cor'ld-order'terms of R appearing in Egs. (6; 5)

and '(‘6. 6) thérefore 'correépond fo the se.con.d- and fhird-order fransverse

guiding center dfift’s, vvthé 'first.- and seczond—order; correcti_‘ons ‘to the paral-

lel vguidin‘g‘ center equation (6.8), the s_écond- an@ third-ordér correc-

. tiohs.to the revlatibn (6. '%), and the first;order ter_.fns of Eqg. (6. 16) .'

The zero-order transverse drift is just u_ while first-order

E
drifts are produced by VB gnd the.zerg-order'guiding center accelera-
tion. We would expect the first modifications of the electric field drift

to be of orde; '(vo /%) ZW};, correspondihg to effects caused by variation
of K over the barticle orb-if:. For FGR é.)rdering'this terfn is éf third
order, henée the only médiﬁcation of the eléctric field drift requi‘red.
Corrections to the VB drift are also to be expécted. | | o i

The accelerétion term of Eq. (6.7) is just the drift corresponding

to the electric field equivalent to the zero-order guiding center acceleration.
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We would expect this form to remain unchanged in higher order. The
modification of this term would then consist in substituting the guiding
center acceleration through second order for the zero-order accelera-
E

tion, and in including the higher-order electric field drift. Since u.

and 98/8t are small for FGR ordering, only the curvature drift

> :
(~ v, b VB) would contribute to this latter term; the transverse acceler-
ation (9/dt +‘}'~1E . V)gE is already of s.eéond order, and the corresponding

drift is therefore unmodified.

In the equivalent moment equations (6.5) and (6. 6), all these
v complications appear 1n the ¢-dependentvc_orhpo1";entsk I of the pressure
tensor. »I;c is-thefefore not.surprising thét ,{Iﬁ( 2? is quite covrﬁplicated, .
but its*calculatioh 1s straighﬁforward and not pi“ohi.’tv)itivelyvtedious.

Fundamental difficulties arise.in the evalﬁation of i)L and p, ,
however, “be_ca.use of .'the brevakdown‘ of the fluid proﬁerties of the pla_vsma
referred to‘.above. These'diffiéUIties are analogvous to, but independent
of, thése which aris‘e in CGL theory because of transport along the field
lines. | R

T_hes_e difficultiés, and the situétions f‘or which they n%ay be avoided,
are easily under.s_,tood in terms of the first—order guiding-center drift

velocity. For FGR ordering this .velocity. For FGR drdering this veloc'i%y

is

S (D gt [(v_LZ/ZB)AVH'Bl+ (

b VD“);;R-VR]. C(6.11)
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Since X(l i g_ud'.ding cen-

Di depends on the thermal velocities vy and v

, Dn
_ters initially on the same field line may develop large. transverse separ-
ations ovér a time of order ™" Unless these sepa‘rations are actually
sméll, or unless all gradients in their direction are small, closed hydro-
magnetic equatidns are not obtained even iﬁ the absence of parallel
transport.

The most important case for which the first of these conditions
is fulfilled is a low ( plasma in a uniform magnetic field. 'I‘h.e-n
. Xl(Dli = .3:\1}(;1) and in 'many. ways th‘e piasma again behaves as a;d ideal
fluid. This case has beén discussed by Rosenbluth and Simon, 6 and is
the subject of Chapter VII.

If small pertﬁrbations of a uniform magnetic field are cons»idered,
(1)

Di ‘is of the same order as

the >guiding center separ.ation produced by v
the amplitude of the pertu_x:-bations; the 1inéa_mrized moment equations are
‘then closed with respect to transverse-fransport, even for finite B

The moment gquati.ons are also closed with resiaect to transverse .
tranéport if avll zerr6~order transvérse gradients are in the direction . |
RVR The second term of Eq. (6.11) is then orthogoﬁal to all transverse
gradients and therefore unimportant. Thi-s "ty.pe of configuratioﬁ is illus;f.
trated by the finite £ intebrchange‘ modes discussed in Chapter VIII, :and;

by the special 'long term'" equilibria discussed in Section 10. 3.
i ' =
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6.3 Pressure Equations for FGR Ordering.

The ¢-independent moments 12 and P, for each plasma com-
pOnént are determined by the pressure equations (4.'16-)' and (4.17).
The zero-order terms of these equations'have the forms (5. 4) and (5. 5).

‘These zero-order terms vanish for FGR ordering because 9/0t, u,

0) )

. | 0
q., and q"‘l are of first order; equations for pif and p‘(\ are then

1t

obtained from the first-order terms of Eqs. (4. 16) and (4.17). The first-

order"t'erms have the forms (5.22) and (5. 23) obtained for CGL order-

ing, except that for FGR ordering g( ) s ’q:(O) and q‘l‘l(o) all vanish;

~and p, and p, are taken to zero order wheréver they appear. The lowest-

order pressure equations for FGR ordering are thus |

) | (1)

‘/d1l:+1:_)L )

L

(0 , .
dp_x_ ! R EFER-T A - . 2 \ JB/B)
' (6.12)
and dp’l_(o) /dt + pu(o)(3V u - 29 ';g)'(l) + V“'_q"L(l) - o,
| | | (6.13)
e () 1{(l)g -
=-Ve(q B +q  TV-b,
where o, is defined .following Eq. (5. 23) and, for FGR ordering,
(1) -t - S | SR ) L
= X = . : - . L
q; - (29) b x[VR, - 4p pV.P+ (4R, - R)D j};} . (614
and
w(l) «1

(2Q2) "b X [VR

-1 . .
- . .= «V
27 ° BYEP* (R - )byl
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The ifnportanf terms of Eqs.A (6.12) and (6.13) are the divergences
| (0)

of the first-order transverse heat flows; these now contribute to P,

(0)

and p because of the long time scale associated with FGR ordering.

v 0 »
"Note that these terms introduce the Ri( ) into the equations for p—io)
and p\(\ o) .

" For FGR ordering similar modifications fnus_t be made to Egs.

(0)

(5.18) for the Ri , these quantities now being determined by the

first-order terms of Eqgs. (4. 32), and the first-order fifth moments

(1) 0

s (1)

The ¢-dependent components of S

(1)
b

from Eq. (4. 5). In this way the ¢-independent sixth moments enter the

(0)

i

are required to find Ri(
rmay be found from Egq. (4. 7) in the same way that ~9 is obtained
equationsvfor the .R Equati'ons for the sixth moments bring in yet
higher moments. Closed moment ec_Luations are o’b‘cained only if this

' sequence terminates.

'Ihis infinite sequence of equations represents, of course, the
breékdown of ti'le fluid properties of the plasma discussed in the previous
sectioh; it is readily ‘v‘e‘rifiéd that terminé.tion occurs for the spécial caseé
discussed in that §éction:. ‘For B = constant V,ﬂi and ng_ are indepen-
‘dent of the Ri; linearization é.bout a constant rnégnetic field p_rodﬁces
equations which depend only on the ﬁnperturbed values gf the Ri; While
if all transverse gradients are assumed to bé' in the direction :p_ Vb,

both V- q': and V- q"-‘J'_ vanish if ji” does.

!
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The equations of motion (6. 5) and (6. 6) rve_q’uire the pressure
tensor, hence p_ and P, through second order. The‘second'- and
third-order terms of the pressﬁre equations are'ther'efore required in
addition to the first-order terms just discussed. Evaluation of these
terms in general is str'aig};tforwvard, but tedious, and the resulting pres;
sure equations are quite cdmplicated. It is easy to see, however, that the |
higher-order terms introduce no new closu.re_proble-ms; if the sequence of
equations for p; and p, closes in lowest order, it closes in every order;
but in highér order involves higher velocit}f'-momenfs.

Fortuﬁately, ﬁse‘ of these complicated higher-order—éo_rrections
" to thé pressﬁre equations may be avoide‘d, because, in those cases for
which the moment equations are closed with respect to parallel transport,
the equivalent single-fluid equatidns may be form{llated without use of the
highef-order corrections tov P, vand' p”. . This formulation is ,di.scussed

in Sectio_ns (6.5) and (6.6).

6. 4 >The Second-Ordevz.' Pressure Tensor.

In contrast to P, and pl" s e.valluation‘of ,\Il through second order
céuseé no difficuity; it is onl‘y‘néces sary to evaluate ,9 iﬁ the r-ecursion
equations (4. 14) or (4. 15) through fi'r.sf order.

The tensor G may be written in the form
Paains .

V) + V[ bbb + ql(p1,)°]

= . AVAN +
G d?(}?d) /dt + PV (fd |
_ (6.186)
+ dI/dt + OV.u + [I.Vu]® + Vv.Q "
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where P + p bb. In zero order only the first four terms of this

a - p_L“*I‘l (o
(1)

expression are non-vanishing. For CGL ordering they yield the II

of Eq's."(5.8) and (5.7), (5.10), or (5.11).
| (1)

For FGR ordering these terms vanish in zero order and IL

vanishes. Then

(1) d(P,)/dt + P V.u + (P - Vu) ° +V-[q bbb + qi(k’h)s]

+ov.oft) (6.17)
_ (0 _ (0 (0) (1) (1),
wherenoxyfd—gd = p ,”I”J'+ p”‘vl?h, u=u s and9¢ is
. . (0) _ (1) (1)
given by Eq. (5.16) with u = 0. All terms of G except V-Q

¢

are thus identical in form to the zero-order terms of Eq. (6.16). Except

(1)
¢

and (5.7), (5.10) or (5.11) with &(O) qf'(o) and q"(o) repl-aced by

2
for the contribution from V-Q , therefore, ,I}w( ) is given by Eq. (5. 8)

’ \ ? : i

_their first-order values. (The form (5.9) for b1 no longer applies,

however, because first-order corrections to the generalized Chm's law

"are now required.)

(2)

We denote. this contribution to ,\IE» , of the same form as the

(1 2
”1;&( ) of Egs. (5.7) and (5.8), by }lg _)

(
¢ .
From Eq. (5. 16). we find, -as outlined in Appendix A,

and the additional terms arising

1) . 2 '
from V- Q ) by 3}(2 ) . This additional term occurs only in second order.

K
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R,\IE‘(ZZ) = - (a/Q){[(VR)S —}_,_V'«.b] [(Vo.) /a ",}?‘v”,bl
S velo® - 1Rl s e x {2Vt (619)
+ (28 - 34 (VB IV-R)Y, | .
and
12 - (e M(T)® o 11 T % b X [(T0)° - 11 ]}, (6. 20
~ 2 SN - : 1 BT e o ”“.2 lwm)] w2 L ° )
where
¢ = (1/22)(R, - R3/4),
I, = c.{Z(ﬂbw.'Vj?)(h-'VE) - 29, (b-Vh) - (V X b):-bb X Vb |
- [V:b + 2(b-Va) /a]V b},
and -

= .(4qjl‘_ - qi')B-V + Vi_qi.

2 - -

Some attempts (e. g., references 7 and 18) to extend the hydro-

magnetic equations to include the "'finite gyro.radius” effects important -

. 2
for FGR ordering have omitted E(Z ) because it was not recognized that

the collisionless viscosity terms were actually of second order in this

case. Although it is now well understood that the second-order terms ; w

(2)

are required, = we are aware of no general derivation of II

(2

Rosen- |-
bluth and Si]fnon6 find those terms of g necessary in the 'flute approxi-

mation'; their equations are reviewed in Chapter VIIL
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Because Ml’,I\(' ) is rather complicated in general, we restrict fur-
7/
ther discussion to cases for which closed moment equations are obtained.
Before discussing these cases, in Chapters VII through X, we consider

in the remainder of this chapter the single-fluid formulation of the

moment equations for FGR ordering.

6v. 5 Single-Fluid Equatiops for FGR Orderi;lg.

For ¥GR ordering the lowest-order épproximation-to the single~
fluid momentum equation is;vobtained by use of the pressure tensor through
second order in Eq. (4. 36) . The electrostatic force (and displacement

v ) > _
current) will be negligible unless B ~ ¢ 1(vO /c) ~. That case will be

considered briefly in Section 7. 2; except in that section these effects
will be ignored.

The rﬁonﬁentum equation (4. 36) is then

0) (2 3
()g()

t X

. L
= -V. + i X B + _ .
/Dt P+ XB+op + 0(e va/L), (6. 21)

and, if electron inertia is neglected, the total pressure is

(6. 22)

(1)

Only the first-order fluid velocity V'~ appears in Eq. (6. 21), whereas

j  appears through third order and p, and ,E’\ through second order.
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If electron inertia is neglected, the generalized Ohm's law is

given by Eq. (4. 42). In the present case terms of order €3VOBO /c must

be included in thi; equation, corresponding to the evaluation of B through
second order by Egs. (4. 45) and '.( 4. 46).. The fluid velocity X therefore
appears in the Ohm's law through 'ghird order, rather than only in first
order as in Eq. (6. 21). For FGR ordering, therefore, a straightforward
application of the single-fluid equations is not possible in general.

The lowest-order terms of the Chm's lawv (4. 42) may be used to

(:0)

evaluate B ; these terms are
AN )

X B(O)‘ = (ne)-1Vp-_t . , (6.23)

‘We will show in the next section that for the special case of constant

magnetic field direction the condition (6. 3), necessary for FGR ordering

(1 (2)

to apply, may be used to obtain equations in which B and B ', as

(1) (2)

well as P, and P, "', do not appear; in this way a set of simple single-
fluid equations will be obtained. Simple single-fluid equations are also

obtained for the Alfven mode discussed in Chapter IX.

6.5 Magnetic Field of Constant Direction.

All the above equations are very much simplified if b is constant
in space and time. These simplifications correspond to the vanishing of

the 'curvature't drift in Eq. (6. 11) and terms in Eq. (6. 9) arising from

variation of the planes of the particle orbits (which in general are not

transverse to JQ) .
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Furthermore, the transverse and parallel plasma motions separ-
ate if there are no gradients in the direction of the magnetic field; only

this transverse motion will be considered heré. For this - case II > and

1

H13 are not required and the transverse components of II reduce to

(2) _ (0 oy (1) 1 ok
E = (p-L‘ /282) (}y»lé '»I&I«Y)'V,Y + (;Q) ' (IY‘I“Y + lé;ﬁ).Vg (6. 24)

sk s
)

A NN IR QIR AR A T Ik KL SRS R ATS TS

where the contributions of HZ ) are represented by
* ool (0)
2 = 2 [(pVp)/e - (VR /4]} :
Note that
NSl - R - BV} (626
Mq; - p /P 3’ - P _Y\P /P . . : . )

. 2 ‘ ) ‘ o

The factor [(p_L /e) - R3/4] vanishes if the distribution of v, is Gaussian;
thus qq‘ vanishes if the distribution is Gaussian and the temperature
constant.

We may put E( ) in a more interesting form by noting that, for

the present case,

I
o]
H
o
2
c.‘
X
<

(6.27)



90

s o * (2)
The contribution of the Vp . terms of ¢ to E

A~

is therefore

22 (I I + II):{p(Vu) X b+ (u_ X b)Vpl
(2) ("*-Y*Y -6-6) [,}1( p) x b (,»p * RIVP |
(6. 28)
-1 - ' 21
= (29) (11 -I1]1:Yyu + pluu - 2L (u)].
(29 Lits = desy! P8y T PREE, T 2y
The pressure tensor thus takes the form
P - + | o .2
2= FPr PR B, - (6.29)
| where, from the form of Eq. (6. 29),
| ) 2 (0) o, (1)
= - = - %
EE [E. zp(»}.«lp) ]Mlu. + (B_ /29) (NE 26 “:‘[6";‘\() A3
- (6. 30)
+ (89)'1(1 I + 1.1 ):V(Q-IVR3)(O)

may be recognized as the pressure referred to the velocity u. rather

E
than V = u_ + u .
- m~ o ME M
In the U reference frame, therefore, the pressure tensor is

i

| : 2 . .
given by the usual scalar term (m/2){v, - ag) £)I,. the ordinary col-

. lisionless viscosity terms which, as shown by Kaufman, are related to

N

electric field gradients, and an additional second-order term depending

_on gradients '_of the magnetic field strength and the fourth moment R

2)

-
of Eqs. (6. 24) and (6. 25), we see that
0)

Returning to-the }1(

2 : ’ * :
AI}{ ) and'the contribution of Vp"( to q together represent the effects
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~of the electric field on thé particle orbits .and-the difference betwe.en the
flow velocity and électri; field drift, while the remaining tgrm of q*
arises from modifications of the particle orbité produced by magnetic
field gradients, and from stresses as sociated with the ‘s.econd de‘rivati.ves
~ of the disfribution function.

For b constant and R V = 0, the curl of the momentum equation .
(6. 21) is in the-direction le an_d of magnitude

b-v x (pDv'Y /Dy = - pev x(v.m

A~

) + b-VX (pg), (6. 31)

where Nl'vI\( 2) is giveri by Eq. (6. 24) or (6.25). Equation (6. 31) ma‘y be

regarded as one equation to determine the two components of V,_in terms

of B(O) , pl(o), and R(30).

Note that for FGR ordering all terms of this

- equation are of the same order.

(0) (0)

The quantities B ‘and p; are determined by Eq. (6. 23), in -

the form of (4. 45), and Eq. (6.12); these equations becdme

ps! % pe+ 5% v - [Befwp. (v x 1Y (632
and - ' | .
Dy /ot + 25 %, v 4 vt 20 C (6.33)

(0)

If, for the moment, we assume that R3

0 0) - , '
B( ), p_l(_ ), . and XL, Egs. (6. 31) through (6. 33), plus one more

may be evaluated in terms of ™

i
sl -
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gxpres'sion relating V, to the se quantities, will form a closed hydrorﬁag-
netic description_ of the tfa'nsVerge ‘pl.asma;r.notion.‘

Anofher equation for ,:\M/’_L isv ob‘gé.ine_d by taking the divergence of
the second-order terms of the momentum e"qu‘ation (6.21), but this equa-
tioﬁ “inv.olves the first- a.tnd' second-order cdrrectionS‘to B and B . How-
ever, if itis é,s sumevd»tha't témporal and spa’gﬂialivariations do not occur
iﬁd'epéndently, -a}vrelatibn of the d.clev'sired foz-fm‘may'b_e .obtained by usé éf

-the zero-order terms of Eq. (6. 21'.) , i.e., the condition for FGR ordering

(6. 3),
or
[pj'%— p; +‘BZ/2](9_) = const. o o (6. 34)

The desired equation for .Y¢ is obtained from Eq. {6..34), the lowest-
order ion and electron pressure equations, and Maxwell's induction
~equation, and is most easily obtained by expressing these equations in

terms of u By use of the relations

E°

and

;;v.q * (2e) 'p. (VB x VRi) (0)

ol Pl A Mp

1}
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the ion pressure equation (6. 33) and the corrésponding electron pres-

sure equation give..

(5/0t + ,}}é«ll)V)(p:_ N P:)(,m +."2‘(vp: + P;)(O)VJ-EI(;) ,
' - | (6. 35)
= 9'1}2. (VB X VR?)(O) s

where R3 is defined following Eq. (5. 24) ;- Maxwell's induction equation

is simply |

(8/8t + EI(EI_).V)B(O) + B =0, (6. 36)

Combining (6. 34) , '(6.. 35), and (6. 36) gives the desired result

| . - b-[ (VB) x VR'] } b - N
v v e 3 +p§‘.[<%9,+y-§ x_vp:’}
. + | '

w IS ~p - 2 '
s @, B(B” + 2B, )

(6.37)

Equations (6. 31), (6. 32), (6..33), (6. 37), the lowest~-order electron
pressure equation, and the continuity equation for p describe the trans-

) 4 ' ) .
verse motion of the plasma if R3 can be evaluated, or if the terms in-

*

" volving R3 vanish for some special reason.

Closed equations are obtained in t_hé cases discussed in Section
_ __(0) Lo+ ' . .
6.2: for low B, VB = 0 and R3 no longer enters the equations; this

case is discussed in the following chapter. Even for finite § only the



%94

-
equilibrium value of R3 appears in the equations if they are linearized
about anvequilibrium-for which B is constant. Closed equations are

also obtained for motion of the interchange type, even for finite B; these

interchange motions are discussed in Chapter VIIL.

A



CHAPTER VII

y The Low-Frequency Flute Approximation

7.1 'fhe_ Flute Approximation:

In this c\ilapter we discuss slow, low-freqtrlency., trénsverse mo-
tion of a2 low B plasma in a uniform magnetic field. For this case the
moment equations are cloéed; their singie’-fluid form is obtained by
setting VB eduéi to zero in the equations of Secfioh 6. 6; |

These transversve motions are of par‘ti'culax; interest in the rstudy
of stability, and esp-ecially the sfabili’ty of equilib;ium configurations thaf
dépend on only one coordinate. The assumptions of low B, uniform mag-
netic f'ieldv, transverse motion, and on.ev— dimensional equilibrium togethér
have been called fhe '”.flute approxirﬁation. B In this approximation all
effects of line curvature é,re simulated by an artifici’al gravity.

For low B the plaéﬁla current is unimportant, vand the plasma
dynamics may be formulated i.n terms of the density of each component
and Poisson's equation. Rosenbluth and Si:rnon6 have obtéined a formula-
tion of this type for the flute approximation and FGR ordering from
' rhomen‘cs of the e?cpansion of thé Vlasov equation outlined in Chaptgr IL.
Their .equations are of fe_rnarkéblj simplé form, especially when com-

7
pared to the single-fluid equations used by Roberts and Taylor = to find

-95-



96

the FGR corrections to the gravitational interchange instability. Rosenf
bluth and Simon show thét their formulation is equivalent to single-fluid
equations of the usual form, and obtain all components of the pressure
tensor required in their approximation. Conversely, the Rosenbluth-
Simon equations may be obtained from our expansvion of the moment equa-
tions; this derivation is outlined in Section 7, 3.

The single-fluid equations fovr the flute a;pi)roximation ar;d FGR
ordering are a special case of those of Section 6. 6. In the following
section of this chapter we show that they also may be put in form which
closely resembles, and-in some respects is even simpler fhan, the two-
fluid Rosenbluth-—Simon equations. Effects of charge separation are easily
included in these single-fluid equations.

The main content of reference 6 is a diSC;lSSiQn of variational
methods for determining stability from the eigenvalue equation obtained
by linearizing the basic equations for the flut¢ approximation and FGR
ordering. In Section 7. 3 this eigenvalue equation is derived from the
simple form of the si'ngle-fluid equations obtained in Section 7. 2. In
Chapter VIII a very similar eigenvalue equation is obtained for certain
finite-f inferchange modes.

The moment equations are él_osged for low ﬁ, magnetic field of
constant direction, and transve.rse plasma motion because then VB = 0

1)

~and the first-order drift velocity of Eq. (6.11) reduées'to R}(E ; thus the:
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plasma behaves in many ways as an ideal fluid. For FGR ordering, how-

1) (1)

ever, the lowest-order plasma velocity BE - 'may differ from U
Because of pressure gradients; 1;he_ FGR effects result from this differ-
‘ence.

The -conditiqh for the | VB drift to be negiigible in first order, and
that the terms‘ which Vint-rodu(‘:e R3 intc; the single-fluid equations of Sec-
tion 6. 6 be unimportaht, is just that VB be of firét—order (VB(O) = 0).

This implies that  be of order €, as may be seen from the dimension-

less form of Eq. (6. 34), which is

P 1 12 . 2 2 ,
BY B + 3V(B) = 0Ofe nomvo),- _ (7.1)

or from the dimensionless Maxwell's equation (2. 7). The 'low ' con-

ditions appropriate for the flute approximation are thus

(0)

B~ e, B = const., V X E ::V.}}*E = 0. (7.2)
The first-order terms of Eq. (7. 1) relate VB( ) to Vl:i( ) , but this re-

lation is not needed since B( ) is not required. By use of the conditions

(7.2), the Ohm's law (6.23) yields

2 ..~1 | s '
v.v = (p ) B-(VPXVPJ_). , (7.3)

: 0 4 ,
This result is also obtained by setting VB( ) equal to zero in Eq. (6. 37).



7.2 The Single-Fluid Equations.

~The single-fluid momentum equation appropriate for the flute

approximation and FGR ordering is obtained by taking B constant in the

(2) and its divergence from Eq. (6.24) or (6.25). The

(2)

evaluation of II

divergence of II

is then given, for example, by an expression of the
~ .

(2)

1 which

form (5. 26) with @ constant. Another expression for V.1

consideralbly simplifies the momentum equation, will be discussed below.

2

Evaluation of VMII,_(2 ) is straightforward for the present case.

From the definition of q following Eq. (6.25) we find

}

+ + +
b*VXq = -pVeu = -pV-V.

ad o~ L mp
By use of this result, Eq. (6. 25), and the identity, valid for arbitrary

a and q, that

A

v.[a<vq)s]':"zv-['a(vq)T] - VX (aVXxq), ‘ (7.4)

o -

where the superscript T indicates the transpose, we obtain

vonl? = 2w - v x (vxqh)]
- (zsz)r"l{vv.gj‘ - [V(fol:k)-E] X b} (7.5)

- sk +
= (29) l[vv.q - b XVI_{V"X]-
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For the flute approximation, then, the second-order terms of

the single-fluid momentum equation (6. _Zl) are

DV V.V N € pv
N - —— 1 X Vp - = -V + 0 0 (7.6)
P ot T AT T2 &7 YEL T PR | 3 L )’ S
\vhere
-1
w:p—L+%BZ+(ZQ) V-q
and

A= Vel 2oy x LV T -1 veylY.

The electrostatic force and displacement current have been ne-
glected in Eq. (7. 6). This is.a good approx}imation unless (l/ﬁ)(vO /c)2 ~ 1.
Modification of the single-fluid equations to include these effects will be
discussed below.

- Equation (7.6) is identical with _;che single-fluid equation (A. 15)
of reference 6 obtainéd ‘by Rosenbluth and Simon, except that their un-
known function 1//v is now dételrmined. Si;nce ¥ involves P, and B through
second order, and also R(‘O), it 19 cleavr that only the curl of Eq. (7. 6)
is useful. ’I'he additional equation required for V is just (7.3).

" The set of single—-fluid equa_tibns is completed by the continuity

equation

Dp(o)_/Dt + p OV-X =0 - | (7.7)
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‘and the pressure equation

+(0) Y

Dp; (0)

‘ + + 2 -1 o+ (0)-
/Dt + 21?1_ - Zp_L(p Q) E.[Vp XVp_L]( ) = 0, (7.8)

Equations (7. 35, (7.7), (7.8), and the cﬁrl of Eq. (7. 6) are the
lowest-order hydromagnetic equations appropriate to the flute approxima-
tion, FGR orderihg, and (1/B) (vO /c) 2 << .1 They a?é identical \%rith the
single-fluid equations obtvained by Rosenbluth and S';'Lmon for this case.

The FGR effects appear in the terms arising from E( 2), the non-zero
divergence of V, and the last térm of the pressure equation.

These equations ‘differ from those useci by Roberts and ’l‘aylor7
to discuss FGR modif_ications- of the g.ravitational interchange instability‘

at low B only by the term of Eq. (7.6) arising from NIE(ZZ)-

0) and VE_( O_)

For interchange
modes, however, Vp( r.emairfx pafallel, V'X vanishes, and
this additional term makes no contribution. Inétead of using a pressure
equation, Roberts and Taylor assumed the equilibrium temperature to
be cénstant and neglected peljturbéfions in the temperature. This is con-
sistent with Eq. (7.8). Roberts and Taylor alsq’ iﬁcluded the acceleration
and collisioﬁl_ess viscosity termé' in the generalized Ohm's law.- They found
that theée terms .ha& é negligible effect, in agreement with Eq. (6. 23).

" The momentum equation (7.6) may. be put iﬁ a simpler form by

writing A in the form, obtained from the expression following Eq. (7.6),

£
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+ V- {<'p+;_/29>[ (v¥)° - 1,9-¥] x b}

3>
it

+ b X {V-[(pj/ZQ)(VX)S] - V[p:_/ZQ)V'X]}

=+ p X {(vV) - V(p

~ L.

/9) + (p /22) V(Y- V)

- (V-Y)V(p /29)} - V(D /29)(V X V)bl

where use has been made of the identity (7.4). From Egs.(7.5) and (7. 9)

- we obtain-

V-A}Et = unr + Q'ﬂlﬂh- X [(VX)'V(pr/Q) _ (V/Y\)V(pi/ﬂ)] , | (7.10)
and
p[DV /Dt - g] + 2 ' x [(vy).V(Iir/Q) ‘-<V'V)'V(pj/f2>] P
o - ~ (7.11)
with

1

¥ = ¥ - (p /22)(V.X V)-b.

A~

Equation (7.11), and especially its éurl, is considerably simpler than
Eq. (7.6) with the usual expression (.5. 26) for .ZX .
For the special assumptions ofu’chev flute approximation and FGR

ordering, the transverse drift velocity of every particle is uI(E ). For
this reason the continuity and pressuré equations take their simplest
forms when expressed in terms of o rather than X By use of Eq. (7. 3),

Egs. (7.7) and (7.8) reduce to the simple forms



102

(8 /0t + u 1)

( (0) (0)
E

-V)p = (0 /ot +;3}(31)',‘7) p+ = 0. C(7.12)

Rosenbluth and Simon6 point out that the single-fluid equation of motion

(7.6) or (7.9) is also simplified by transforming from the variable X

to ¥n. This may be accomplished by use of the relation
(1) -1 |
D(u, - u.) ' /Dt = Du /Dt = - (pR) b X [(VV)-Vp - (Vp)V.V],

obtained from Egs. (6._ 27), (7.7), and (7.8), and the vector identity

u Vup = - (pQ)_l}g X [ (vu

o+ + .
Vp - cu 1. .
3, un) Ve - (Vp )Vl (7.14)

By use of these identities and the low B condition V.u_ = 0, Eq.(7.11)

‘B

becomes

Viu_ - pg - Q-lb X [ (Vu

. )-vp:”] :.-w/’. (7.15)

This equation is identical in form to the original momentum equation

2) '
(2) and not contributing

(7.11) except that the terms a;"ising from V- 1II
to V?,b, are changed in sign.‘ The? are also simplified by the condition
V.A}}E = 0. These propgfties pf tl_qe transformed equation were poinféd
out by Rosenbluth ahd Simon.

The curl of Eq. (7.15) may be written in the simple form, by use

of (7.14),
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bV X o[ Dy /Dt - gl = 0, | (7.16)

where

' : +
= + -V + - V.
D /Dt 3/t g * Ep

In the derivation of Eq. (7.16) the electrostatic force and displace-~
ment current were neglected. If g~ (vO /c) however, these effects
become important; they are then easily included in Eq. (‘7“. 16). -

The total electromagnetic force on the plasma is

jXB+pE = (V X B) X B - (9E /ot) X B/c + EV-E, (7.17)

-~ A~

the last two terms having been neglected in the above discussion. This

_ 2 2 :
force is required through order € V(Z) /L. Since

(1/e) 3E ot ~ (V-E)E ~ (¢°/8) (v /e) %,

and we assume (1/B) (vO /c)  is of order unity or smaller, only g( 0)

and 53( ) are required in these terms. In these terms, then, E may
i . ~~

e 0 - y |
be written (B( ) /c)}?~ X u](;) with. B and b constant. We then obtain
the identity |
1 2
E( )V'E(l) + (B/c)‘u(l) Vu(l)‘- V(Iy:EE) (7.18)
o~ A ME ‘ »E ~ [ealiiand




The total ele-étromagnetic stress thus takes the form

_ 2, . 2
j X B+ pE = %V[}ngig - Bl - (B/c)"(8/8t +»PI(31)'V)3E

o (7‘.19‘)7
+oogevE Ly,
anci the momentum equatioﬁ (7.16) becomes.
5 x {(p+ 855! (2/0t + R R T S I MRy
{7.20)
0] 2
_ p( )g( )} =O

Ao~

This equatior_x, together with the qoritinﬁity and pfessuré equations

(7. 12), and the conditioﬁ v HI(El) = 0, are the siﬁgle—ﬂui’d hydromag-
netic equationé for the flute approxirﬁation and'FéR ordering expressed
in ﬁ'erms of the.gui.divng éentér velpcity ,.H‘(El) . Theée equatioﬁs are con-
siderably less complicated tha.n those of Roberts and Taylor, ! but they
are also more general because the effects qf temperature variation,
charge separation, and displacement curreﬁt have been included. They
‘are c_ompletely equivalent to the two-fluid Rosenbluth-Simon eqﬁations
which are discussed in the next section. |

 Only the terms pl (8/0t + u-Vug - gl of Eq. (7. 20) would

have been cbtained if CGL ordering had been assumed and the electro-

static force and displécement current ignored. All FGR effects are
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(O)'- Vu< b . That these effects arise

| -1 +
included in the term ('Q_ l’i X _Vp‘ ) U

from the difference between the plasma and guidihg center velocities
'is'mé_de explicit by the form of this term. Electrostatic effects produce
‘the terms proportional to (B/c) . Thus, for the flute approximation,

. . ' : : 2 '
these effects simply add the magnetic mass density ((B/c) = in our units)

to the plasma inertia; this result, previousl"y obtained by Northrop, 31

holds for both FGR and CGL ordering.

7.3 The Rosenbiuth-smo;l Eqﬁétioﬁs. |

Rosenbluth amd_S_imLon6 actually use a two-fluid formulation of the
moment equations for the »f.lute‘ approximation and FGR orde‘ring which
consists -ofbequations giving the density of 5eéch‘ vcomp.one‘nvt through éeéond
-or‘der»and Poisson's 'equ‘ation for E. They obtain their equation for the
density from mofnents of the expansion of tl;xe Vlasov equation outlined
in Chapter .

Their equations for thé density may also be ébtainéd from the
continuity eqﬁatipn ‘( 4.1) by usi.ng (4. 3) to obtain u through third
ox;der. For FGR ordering and the fluté aﬁproximétion, we obtéin from

Eq. (4. 3), by.use of the expression (7.10) and the relation (7.13),

(7.21)

O)'

A L

-1 . . . ’
PY, = PYg + Q b x {wyr+ p(DEE/Dt -g)} + O(€4pv

~Substitution of this result into the continuity equation (4. 1) gives
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(8 /0t + BE-V)p + V-[Q-l;t&x (D’&E/Dt - g)]

0(ep) . (7.22)

Exéept for notation, Eq. (7. 22) is identical to Eq. (A.1l) of reference 6. .

2
This equation determines p through order € mn Equation (7. 22) and

0
th¢ second of Egs. (;7. 12) -fovrbeach plasma component, together with
Pois sbn’s vequatioh,: are the basic_équat_ions of Rosenbluth and Simon.
Th_e .FGR effects again appe'.ar in: th-e term B;-V of D/Dt.
| If FGR effécts are neglecte‘d in the equation for the electron density,

as is done by Rosenbluth and Simon, énly_the ion pfessure and ion pres-
sure equation (77 1.2) are needed. Invthi.s a.pp.roximation the Rosenbluth-
Simon Aequ’ations ar”e equivalent to the single—ﬂuid quations (7.12) and

(7. 20), but perhaps are somewhat more ’c_ornplicated.

| V'The main content 'Qf reference’ 6 is a discussion of variational
methods >fo.r_ determibnin.g“stabili‘ty fvrorn‘the eigenvalue equation that results
from linearizing the basic equations fér the flute a'pproximation and FGR
ordering.‘ In reference ‘6' this eigenvalue equation is obtained from the
two~-fluid fo.rmalisr‘n‘just describéd,. but it is stated that the same equa-
tion can be obtained from éingle—flu_id equations. of the usual form if all
proper cOntributiohs to the stress tensor are inclluded. Derivation of

the eigenvalue equation from the single-fluid equations in the form (7.12)

and (7. 20) 'Iis very simple and will be outlined here.
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Perturbations of the one-dimensional equilibrium are conveniently

: 32 :
described by the Langrangian variable €, which gives the displacement

[l

of the guiding centers from their equilibrium trajectories. Thus, through

first order in §,
—

LM = Tt (8/8t + T -V)E, | | (7.22)

r is the equilibrium value of Y- Following reference 6 we

where U
‘GM

: S iqem . . ) R . .

assume that equilibrium gquantities vary in the x-direction only, that

T, is in the y-direction, and that b is in the z-direction, and we make

B

" a Fourier transform in the variables y and t. All perturbed quantities

are then of the form a{x) exp‘ i(wt + ky), where a is proportional to &.

From Eqgs. (7.12) the perturbations of p and P - are
p=-t3  and = -7

— . ' +
where p,' and '15' are the equilibrium gradients of p and P_- The con-

dition V-u_ = 0 becomes

-

v-(a/at+}~1 -V)g.'z (0/8t +.u °V)v4g+' (Vu_):VE = 0

or

i = - [EpkE fop + g}’{]'; (7. 24)
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where
w, = w+ KT and g = 09§ /ox.

By use of these results the linearized momentum equation (7. 20)

becomes

: 1 X 1 _ ‘
V(T -Falbe - @Thk)gxgyl = 0, (7.25)
where, as in reference 6,
-2 2 2 —
T = pwl[l + B /pc + kp'/plel v (7.26)
or
(TE)' - KT - Tk, = 0. (7.27)
<! peg/is, = V- . .

'Equation. (7.27) is identical with the vRosenblutllq-Simonveigenvalube’ equa{-
tion ( 3. 12) of r.eference 6.

The equations found by Rosenbluth and Simon from an expansion
of the Vlasov equafion are thus easily obtaiﬁed from an m/e expansion
of the fémili‘ar conservation equations of mass, momentum, and energy;
The ”finife gyro-radius' terms of this expansion, expressed 1n Eqgs. (7. 6)
and (7.8), are easily found from the exact moment equationé if the special
assumptions of this section are made at the outset. This procedure pro- -

vides an alternate derivation to that of reference 6. This alternate
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derivation emphasizes the relation of the Rosenbluth-Simon equations to
equations describing more general configurations. In particular we have
shown that closed moment equations are obtained for FGR ordering and

finite B only for rather special cases.

.....
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CHAPTER VIII

Finite B Interchange Modes

8.1 Finite B Interchange. Motion.

In this chapter we obtain, by use of the lowest-order Vlasov eq{la—
tion (3.14), closed hydromagnetic equations for certain interchange
motionsu of a finite B plasma. Except for allowing for finite pressure,
we make the same assumptions as in the previous chapter; namely b

constant, no parallel gradients, transverse motion, one-dimensional

equilibrium, and FGR ordering. These assumptions are a generalization

of the low-frequency ﬂute approximation to finite B, and the equations
obtained are very similar to those of the previous chapt.er. The equa-
tions of this chapter; however, are restricted to a class of interchange
motions for which the gradient-B drift is always orthogonal to the gra—

0)

dient of £ , and the appropriate hydromagnetic equations (given in
. Section 6. 6) are closed even for finite f.
To obtain the equations for these modes we note that, by use of

the result (6. 37), the induction equation (6. 32) may be written in the

form

[a/0t + (ug +BR)-V]B(O) =0, | (8.1)

”
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where

2 - ' sk _l N
[2a(B” + 2B )] {g><VR3—+(pr”E}<VR.

I

AR

e

The zero-order fourth-moments R3 requifed iﬁ_-fhis e_qﬁa-t}on_ may be
evaluated by use of the lowest-order Vlasov.vequ‘a"_cio‘h (3.14). If functions

fo(zg, K, t) and fl(gg, M, t) are defined by the eqﬁétions

[8/ot + (u_ +

and
£(0) (%, c t) = £ (% o t) + £ _(i: p. t)' o
Priud L° O"“, :v- :1 M:: :

the Vlasov equation (3.14) may be writtven'in ﬁhe form

(g - ug) Ve + Lo/et+ (uy + up) ],fl‘ 0 (8.3)
We now assume that the gradients of B( ) an,_d,'f(. ) are parallel

at time t = O,‘ and choose fl(é_;‘ 0) :O 'Then{*s:'Ln_c;ei Eqs. (8.1) and

(8.2) are of the same form, ‘Vfopremaix__ls p'aral.l‘e‘-bl to VBV(O) throughout
the motion, Yp* Vfo = 0, and only fl.- contribute to the component of
Br parallel to Vfo.

The ion and electrbn forms of Eq. (8. 3) then admit the solution

f1 = £, = 0. These modes, for which fl‘ = 0, are characterized by
L . .

the e quativon s
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9t = ager + g mB'Y = o (8. 4)

they are thus simple interchange motions since both the guiding centers

(1)

and magnetic field may be regarded as moving with the velocity U

8.2 Hydromagnetic Equations for the Interchange Motions.
For the interchange motions discussed in the previous section

the hydromagnetic equations (6. 31), (6.32), (6.33), and (6. 37) become

h-VX{pDX/Dt%—)\—FV'H(Z) - pg}t = 0, (8. 5)
v.y't <o, (8.6)

'.and Dp(o) /Dt | DB(O)'/:}jf‘.“: Dpj(o)

/Dt = DR;/Dt = 0, (8.7)

v

where \ is given by Eq (7.9) and

o2 (2) wg")® -1 v.g'l. (8.8)

poyA S x

As is the case for low B, Eq. (8.6) takes a simpler form when
written in terms of the average drift velocity Upy - For finite B,

B . + . .
= -+ =
Mp T Up t Ugp, Uy = (p /p92B)b X VB. (8. ‘9>

To transform Eq. (8. 5) from u to" Uy note that Eqs. (7. 13) and (7. 14)

hold for the finite f interchange motions, and,from Egs. (8.6), (8. 7),

and (7.14): o e



~D g
(8.10)
1 ] 1+ 1 X
DpzDB:DpJ——DR:))“O,
with
D' = a/6t +3D-v;
and
+ ‘
-V = - X (V -VB. : .
YpVeg (p /p92B)Db (gE) B (8.11)
By use of these results Eq. (8. 5) may be written
HheV X {p[D’ + (u - u ) Viu_ + V.H(Z) - pg} = 0 (8..12)
pon : -~ D »~D 2 red ’
with
v -1 +
- - = - = X V .
e Mdp T lp @B T °P b x V(p_ /%)
Since p T 3p and u-uy = Bp for low B, when written in terms of the

average drift velocity, Eqs. (8.10) and (8.12) are of the same form, ex-
n(2) .
cept for V'Mz’ as the corresponding low B Eqgs. (7.12) and (7.16).

The finite B effects are seen to be the terms uB-V of D' and

v gl

. 'The former is just the change in B produced by the gradient-B
+ ' .=

drift. Since VB and VpL are in opposite directions (unless VPJ_ is larger

4

-than and opposite to VpJ_‘) the gradient-B drifts increase the stabilizing A

1

effect of t’he low B FGR eifects. |



By a calculation similar to the derivation of Eq. (7. 9) we find

(2 -1 b ES .
v.il? = (em) MoB)v-g" - (vq)-vaEl, (8.13)
where qa‘ , given by Eq. (6. 26), represents effects of temperature gra-

~

dients and deviations of the distribution of v_l; from Gaussian form. For
a constant-temperature Maxwellian plasma, qq‘ vanishes and the FGR
A

stabilization of the interchange mode is enhanced by finite . For more

(2)

general distributions, however, the finite B contributions from V-Ngz
do not vanish and may be either stabilizing or destabilizing.

We emphasize that the finite p equations discussed in this sec-

4
T

tion apply only to the class of interchange motions for which fl = f; = 0,

8.3 Eigenvalue Equation for Stability.
The eigenvalue equation for the finite B interchange modes cor-

responding to the low B equation (7.27) is easily found. To find the

(2)

contribution of V-gl\z

to the linearized form of Eq. (8. 13) we note that

q¢ =9q-vVv@), (8.14)

—_ * )
where q is the equilibrium value of q . From this result a straightfor-

e~ A~

ward calcu_lation leads to

vv-rr(z) = (HE”kZ/QB)[&XgX »(&}'{9

)'/ikl . '(8. 15)
y . :
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Linearization of the remaining terms of Eq. (8. 13) leads to the result

(T,E)" - KT, - Felt, = o, (8. 16)

P

where

T, = pulll + (x/pw) (B /B - (@B’ /paBed)] . (8.17)

B 1

Equations (8.16) and (8.17) are the generalization of the low B Rosen-
bluth-Simon eigenvalue equation (7.27) to the finite interch.ange modes.

The eigenvalue equation (8. 16) may be written in the form

2 . B - '
w (olgx) + w(Ozgx) + O3§X_— 0, o | (8.18)‘,
where
' ' :'.:xl‘ 2 '
0,6 = (p8) - k'pt, . (8.19)
i P 3 .
Ozﬁ = (ka§') - k7af, | (8.20)
and
o, = {[kzﬁE(a - aaE) - (q'B'/aB)]E'}
' ‘ . (8.21)
- kz[uE(.a - p uE)' - a'—ﬁl/QB - g1},
‘with
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32, 6 '
The usual sufficient conditions for stability” ~ = follow from Eq. (8.18):

- C > 0 or, more generally,

B > 4AC, (8.22)

with

_ L3 3 % 3 %
A = S‘d xnglgx, B Sd ngozgx, and C gd x&XO3§X.

These conditions are not strong enough to be very useful in general.
However, just as in the low S case of reference 6, if a = 0 the con-
dition (8. 22) becomes necessary and sufficient for stability, analvogous
to the well-known variational principle33 for static equilibria and CGL »
ordering.
For a= 0, the condition (8. 22) may be wfitten

S‘d3x{[ p(Tg) 2. “a'E'/QBkz][ (12 + 1% +F'ge?) > 0. (8.23)
This is a generalization of the low ﬁ condition (4'. 16) of reference 6.
For 1ow B the second term of the first fa,ctorl of Eq. (8. 23) vanishes,
and thus, for a = 0 and low B, the net effect of FGR corz.'ec‘.cions and
mass motion is stabilizingf For finite B this conclusion holds onl? for
unifgrm equilibrium temperature aﬁd Gaussian distrribution of b—'L'; under

(2)

more general conditions the finite § term from V- HZ may be either
N

v

stabiliz iné or destabilizing.
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For a simple example of finite § FGR effects we consider the
s o . v ‘ . . 6,7,14
gravitational interchange instability, and make the usual approximation

that £ is independent of x. The eigenvalﬁe equation (8.16) then reduces

_to

[T, - pelE, = 0, - (8. 24)

which has eigenvalues

' — V . 2 ! e, 2 ‘ .
1 kY k/B\ 46 49Bk },
w = 2{-5(9) . {5@2” Sl i (8.25)

The condition for the stability of the finite B gravitational interchange is.

thus

Tg + (M40 [B/2)'1% + (B /aB) 'R, +3E/m1 2 0, (8.26)

where

— _2 2 . '
- > A
A R3/4 P /p 2 ‘3p. /40

i

R

represents deviations of the distribution from Gaussian form. This result
may also be obtained from the condition (8. 23).
For an isothermal, Maxwellian plasrha with equal ion and electron '

temperatures, this stability condition becomes

B'g + L(x/z2) (1 +235/B°)(3)1°% = o, (8. 35)
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the increase of the stabilizing low f§ FGR effect‘ being due to the increase
in the difference between the plasma and guiding center velocities pro-
duced by the VB drift. For more general finite § equilibria the FGR
effects may be either more or less stabilizing, or even deétabilizing.

We emphasize that the discussion of finite  effects in this cha'p-
ter is limited to the special case of interchange modes for which the
functions f+ and f. defined by Egs. (8. 2) vanish. Wave-particle reson-

1 1

ances have also been neglected.



CHAPTER IX

FGR Co‘rre'ctio:n;s ~'fo the A_Fivréhose Instability

9.1 The Alfven Mode.
In this chapter we apply the equations 'céf Chapter VI to find FGR

corrections to the "Firehose' instability, the instability of an Alfven

| wave propagating along a uniform magnetic field in a uniform, finite p

plasma With suffici'ently ‘a;nisotro:p-ic pres'isure‘.

Yajima and Taﬁii;‘til8 Vha&‘e 'discﬁssed this proﬁlem by use of the
modified hydromagnetic eqﬁa_:_tions o_f.Rb]:.)erts a'.nd_:Taylor. ! They find
these FGR effects to be étabili'z_ing. ‘ ’Ihe.ir_callculation, however, omits

(1 o (2 o

the contributions of V-NQ¢ té I

portant for the interchange mode discussed by‘Roberts and Taylor, turn

These terms, which are not im-

out to be the- dominant FGR effects of the Alfven mode. When they are
included, the FGR éffect‘s'_are found to destabilize the Alfven mode for
most equilibrium distribution functi‘ons," but may have either sign depending
on the choice of the equilibrium distribution.
19 _’ . ' . ’ . . K
Sato has discussed this problem, in work concurrent with oursy

from a solution of the Vlasov eqlia;tion which} assumes the equilibrium
distributiéns to be of Gaussian form. He emphasizes the importance of

-119-
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the second—order terms, but incorfe;tly' concludes that a hydromagnetic
of all the FGR effects is not possibie.

In the following we .restric"tr the ion and electron equilibrium distri-
butions only by the conditio-ps spatial uniformity and vanishing electric
field, and by the condition that the Alfven mode be near marginal stability.

Our result, of which Sato's is a special case, exhibits the depeﬁdence of

~the FGR effects on the forms of the equilibrium distribution functions.

The Alfven Wave pr_opagatihg along a uniform rhagnetic field is
characterized; in the linear ap?;-oximation, by the fact that the plasma
motion is traﬁsverse' to the unperfﬁrbed field. This px;operty depends
only on t_he. approximation of 1iﬁeari‘ty,' and is independent of the expan-
sion in €. This may be seen from th‘e Vlasov equation in the forr_g; (3.2).

If it is assumed that there are no 'trahsverse gradients, the d-average

of this equation, with 91 =Y, TNy and _C“. = v, , is
eE e
sk - n gh M S oh
D h+ |u-D* + = +. . —_—
2P 5, f e DR e,
of
1 3 é .
- —_— . 2 - X
g 4 de (D b) S;ac,, + [9u, - wg) XB
£ g_L 0f ok (9 1)
- L= + D u) X
Pl g, R P X,
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Y,

where D = a/ot + ".’n b+V. When linearized about the equilibrium
h = E(CJ_,C“ ), fd) = 0, B = E = constant, and | E = 0,
Eq. (9. 1) becomes

D b+ (e/m)E, 8E/3C, = O, (9.2)

where h ie the perturbation of h.

Equation (9_. 25 for each component and Poissen‘s equation fpr E, describe
longitudinal electrostatic oecillations. The decoupling of these modes
frorﬁ the transverse waves for which h but not f¢.vanishes is therefore
independent of 'the expansion in €.

For these transverse modes the perturbations of all <1>—.independent

moments vanish. In particulaf
pe = F =V, =4, =B =5 =3 = §, =0, (9.3)

the moment equations are &ery mu'eh simplified, and are closed to allv
orders in €.

Fer frequencies of ordef €, € < 1, these modes are the ordi’nery
hydromagnetic Alfven waves which propagate along the magnetic field.
At higher frequencies they become cycliotron waves, and finally trans-
verse electromagnetic waves.

The CGL hydromagnetic theory gives the well-known result

o' = e = (k°/p)(B°+ B - R (9. 4)
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for the frequency of these Alfven waves. The 'firehose! (Alfven wave)

instability occurs when this frequency becomes imaginary, or when

P >B2+P. (9. 5)

It is produced by the centrifugal acceleration of the guiding centers
moving along the curved field lines. Restorinhg forces arevprovided by

the magnetic field energy and the total magnetic moment of the particles.

9.2 FGR Corrections.

The ca.lculation leading to the result (9. 4) is applicable if the
wavelength is llohg compared to the gyro—ré.dius, p.rovided that |
B +FB - FB~L the small € expanéior_x is then valid and the motion
characterized by CGL ordering.

Near the condition of mérginal stability,I however, FGR effects
become important. To_'inv_estigate these eifects we assﬁme

(8°+ B - B )/B° e, | (9. 6)

© 2
The frequency w, is then of order € €2, the motion characterized by

0
FGR ordering, and the appropriate hydromagnetic equations are those

~ of Section 6. 5. For the Alfven mode these equations are simplified by

the conditions (9.3) and (9. 6).
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Note that separation of the transverse modes and the conditions
{9.3) are independent of the forms of the. equilibrium distributions of the
pérallel ion and electron velocities. The only restrictions on these distri-
butions are that j“ vanish and, for FGR ordering to apply, that @ and
the equilibrium parallel trahsporf terms be small. We choose the coordi-
nate system so that the péralllel flow véldéit;{ vanishes.

By use 5f the conditions (9."3),‘ the linearized singlé—fluid mo-

mentum equation becomes

-EvED'Y, e

1o

2 —

pdV/8t = (B" + P - B )b-V

' 3 (1) ,.. —

where all terms are evaluated through order € vaO ~opdvViTi/et, b

and b are equilibrium and perturbed values of b, and
~ . ~

(25 - o1

(2-m°" =@ pxl(zp - p)Hpvyl
-2 + _+ -1+ + +
- @ (R, - 3R2} - p 'p (R -pl“)
(9.8)
-1 + + - -
- p (p -p)(B +p -p)lb-Vh
+(2/2)(q - q)k X (b Vh) .

it

The result (9: 8) is obtained from equations (5.8), (6.19), ana the
first-order terms of Maxwell's induction equation in the form :( 4. 45) .

For the present case this last equation is
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afl(o)/at = '_5~V§[(1) e B+ - p_):lg'Vj;(o). (9.9)

- A ! n

Equation (9. 8) is easily derived directly from the recursion formula
(4. 14) if the special assumptions of this section are made at the outset.
The first term of Eq. (9. 8) is just the usual collisionless vis-

cosity; it is the only contribution to II included in the calculation of

(2)

reference 18. The other terms arise from NI:{Z

, from the FGR term
of Eq. (9. 9), and from the equilibrium heat {lows.

0)

Note that, because of the condition (9. 6), only ﬁ( is required
in Eq.(9.7). Thus (9.7), (9.8), and (9. 9) are closed hydromagnetic
equations for the Alfven mode. If the FGR terms in Eqgs. (9.8) and (9. 9)
are dropped, these equations reduc.e to the CGL form. -

),

We now assume V and ’E\ to be proportionél to exp{iwt - ikx

1
and from Egs. (9. 7) through (9.9) obtain the dispersion equation
4 ..,02 2 2 2, 2 2
o —[Z(wo— wl) +_w2+w3]w +2(w2+w3)wqw
(9.10)
2 2 2 4
+ (wo - Wt w2w3) - ooq = 0,
where.
2 _ 4, 2 ' -1 :
w = (x/p2)[R - 3R, - p “(p - p)(2p -p)],
= (K200
wz - /P )(pl\ - pl_)’ :
5 (9.11)
w, = (k /pQ)(ZPH - P_L),
and , A
2 3 ‘
w = (2K /pR) (q - a)

i

&



represent the FGR effects. All moments in Egs. (9. 11) refer to the ion

distribution, the electron pressures having been eliminated from @,

and w, by use of the condition (9. 6) in the form

(8% + p - S RN U R

i I N

The frequenéy w

| represents the contributions from V+Q , and

from the FGR corrections to the generalized Ohm's law, to b - II ;

w, represents the FGR term of Eq.(9.9), w

5 3 the ordinary collisionless

viscosity, and coq the effect of the equilibrium heat flows. Note that

2
w w, and wq are all of order € Q; hence all terms of the dispersion

1°%° %
4

2
equation (9.10) are of order (e Q)

The four roots of Eq. (9.10) are given by -

0 = Hlw, + w) *[(a - w )2+ 4

2., 217y,
2 Y 5.7 @, O-wliwq)]}, (9.13)

these roots correspond to the two polarizations and two directions of
propagation of the waves. In the CGL limit all four frequencies have the

magnitude Iw Dege'neracy with respect to the direction of polarizatidn

ol-
‘is removed by the FGR effects because S2+ is no longer infinitely large,
and the ion gyration defines a preferred polarization. Degeneracy with

respect to the direction of propagation is removed by an anisotropic
_ I v

equilibrium heat flow.
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' : "2 2 2
An interesting special case arises when wg T Wy T wq = 0. The
frequencies (9. 13) are then w, and w - The frequency w, corresponds

to current waves produced by the FGR term of the generalized Ohm's
law; for these waves the plasma velocity vanishés,. The waves of fre-
quency o propagate because of the collisionless V"isco.sity, without
perturbations of the magnetic field. These simple waves exist for this
special case because the equilibrium distfibution is such that small
amplitude diso;tions of the:magnetic field direction produce no stresses.

The condition for stability of all four modes is
=z 0, (9.14)
~which maﬁr be compared to the»CGL result wg = 0. Yajima and '1“aniu’ti18
include only the terrp_s represented by w, and wg in their calculation;
the stability condition (9. 14) reduées to theirvresult. if the terms Ln @
and wq are omittgd and p:n set equal to %P_,_)“ ', corresponding to their
assumption of equal ion and glectron temperatures. It is evident from
(9.14) that these terms are always stabilizing.

By use of the relations (4.33) and (9.11), the stability condition
may be wz;itten

2 2 2 2
@ + (x /pQ) {lp

3 L
- (2k7/pQ) Iq:l- q'“ = 0.
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Only the first of the FGR terms in (9. 15) is present if the equilibrium
distribution fuﬂction is separable in v, and v, , and the distribution

L
. . 19 : .

of v, is Gaussian; Sato's " result corresponds to this term. The ad-
ditional FGR effects, produced by deviations of the distribution from
this simple form, are given by the remaining terms of Eq.(9.15). The
equilibrium heat flows are seen to be destabilizing. Other deviations of
the .distribution from separable, Gaussian form may be either stabilizing
or destabilizing. The relation between FGR terms of the stability con-

dition (9.15) and FGR modifications of the particle orbits will be dis-

cussed in the following section.

9.3 Particle Orbits.

The dispérsion equation (9.10) may also be obtained from the
particle orbits. ‘ This vcalculvativon illustrvates th}e‘ relation between FGRI
correc’cidns to the hydromagnetic equations and the corresponding modi-
fications of the orbits.

We assume fields of the forms

B

B{,?J'. + [ﬁexp(iwt + ikz) + ccl }
and : : (9.16)

E exp (iwt + ikz) + cc.

Ho!
I
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Solution of the equation of motion for a particle moving in these fields,
linearized in b and E, gives the velocity transverse to the unperturbed

magnetic field in the form

:S-Z . .
= V_l_'gel't-kv ele+cc, (9.17)

where

$ Lo t

2 : E Xz iwvzX b iwk -
Q ; ~ A A LN YN s
= ———— 4% b + + .
' 2 {‘79 B T o QB } (9.18)

and Z4 is the initial z~coordinate of the particle. The displacement of

the particle in the z-direction is

. !
.z. + vt c {[lwby 92+w'2b cos &
r. = - = 08 ¢
z 0 " (QZ _ ,2)2 { Q QZ
| | (9.19)
wbx 2 e ié {
+ | - 1(1+-(—D——)b sincb}e + cc,
Q QZ v

where ¢ is the azimuthal angle of the vector a exp (i) + cc with

respect to-the x-axis.
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It is easily verified that this motion may be represented as a gyra-
tion with velocity v, at frequency  in a circular orbit normal to the
vector

r 21~ Lo =
[1+ (o'/2)71b - 2i(0'/92) (b X 2)

n = z + : : (9.20)
S [1- (o722 - |

about a guiding center which moves with the velocity b + v, z. Inthe

limit 2 >, n = b and v.. = u_ + v ‘13, in agreement with the zero-

e D iy i

order guiding center velocity, and, in first order, v_ agrees with the

D
well—kﬁowh first—'or_der drifts. 22 Higher-order corrections to the particle
orbits take two fd;ms: the well-known zero- and firét-order drifts are
increased in rﬁagnitude by the resohance denominator of Eq. (9. 18), and
the normal to thé plane of gyration deviates fronﬁ it.he direction of the

' magnetic field.

Derivation of the results (9.17) through (9. 20) assumed w'_ #Q;
if ' = Q no divergence occurs, but the time depenaence of'th‘e orbit
becomes seculér.

The total current equals the sum over all particles of the guiding
center current plus the curl of the magnetic moment p = - (m\f/ 2B)n.

A~

Note that p. is parallel to b only in lowest order. The current is easily

Vaad

evaluated from Eqgs. (9. 18) and (9. 20) if resonances are ignored

(w << ) and the denominators are expanded. The resulting expression
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for the current may be combined with Maxwell's equations to obtain the
disperéion equation (9.10) .

If w~ef, so that CGL ordering applies, FGR effects are small
and are easily understood from qus. (9.18) and (9. 20). A first-order
current is produced by the first-order guiding center drifts and the
curl of the zero-order magnetic moment; this is the current of CGL
theory. There are no ﬁrst—‘order‘cor.rections té the> CGL currents, but,
beéause of the denominator in Eq. {9. 18) and the electron-ion mass dif-
ference, there is a second-order current proportional to the zero-ofder
guiding' center velocity. - Anothér contributic;n to the second-order cur-
rent arisés from the first-order difference between b and n. kTh.ese are
orthogonal to the CGL current and cause the wave to become elliptically
polérized, -but do not change its frequency; they correspond to the col;-
lisionless viscosity and first-order corrections to the generalized Ohm's
law of Section 5. 5. This polarization may be considered as a supérposi-
tion of a secondary Alfven wave on the oriéinal wave.

Third-order currents produce a frequency change of order 62&2,
correskponding to sec‘ond—ofde»r cor.rections to CGL theory. They arise .
from the effect of the fesonance denominators of Eqs.‘ (9.18) and (9. 20)?'
on the first-order CGL curren‘cs,. and from modiﬁcétioﬁs of.the CGL cur-
rents produced 'by the secondary Alfven wave. This latter effec‘.c may be‘

regarded as resulting from the elliptical polarization of the secondary
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Alfven Wave; hence as a produce of first-order effects. The currents
associated with the former effect are in the same direction as the
CGL current; they therefore enhanée both the stabilizing nature of 125
and the destabilizing nature of p” .

* If the fréquency is low {@O ’V'éZQ), so that FGR ordering applies,
'all the above effects become of the same order, but they IStill may be
separated. The polar.izvation effect is associated with FGR modificafi_ons
of thé electric field drift and magnetic moment of the ions which are of

first order for CGL ordering. They therefore appeér in the moment

equations as the collisionless viscosity (and the terms of II proportional

1,4
i

fo g ), corrections to the géneralized Ohm's law, and the contribu-
tion to E( 2) associated with the difference between £he p_la,s.m.a velocity
and the electric field drift. .Thus, frorﬁ the discu;sion of Eq. (6. 29),
both the collisionless viscosity and the terms of ~IVI\(ZZ) arising from

‘ V-.Wla, as well as the corrections to Ohm's law, are associated with the

| polarization. In the stability condition (9. 14) these effects appear as

W, Wi wq’ and the parts of w, not proportional to Rl or RZ' Only
: 5 _ _
the Rl and R2 terms of Wi from the contribution of V‘E&( 0) to II( 2)‘,

arise from the enhancement of the CGL currents produced by the resonance
denominators of Eq. (9. 18) and (9. 20).-

The stability condition (9. 15) may be written




Cwf + (%7 Hlp ¢ (3/2)5 1% + 3R, - R,
’ (9.21)

- > 3 .L- V .ﬂ

- (27 /p) |ay - q;| = 0.
In this form all polarization effects appear in the first and last FGR
terms. Thus, in the absence of anisotropic equilibrium heat flows,
these-effects are stabilizing. The remaining terms exhibit the effect

of the enhancement of the CGL currents by the resonance denominators

of Egs. (9.18) and (9. 20).




CHAPTER X

Long-Term Equilibrium

-10. 1 Eqﬁilibrium Moment Equations

s :

In this chapter we consider the moment equations that
describe configurations which remain in equilibrium over the long
times associated with FGR ordering. Since first-order velocities

become important on the longer time scale, static "ldng—term"

~equilibria exist only in special cases. We will, however, assume that

the zero-order plasma velocity and electric field vanish, corresponding
to a static equilibrium on the CGL time scale.
s . . . Moos s 1 34
Mirror confinement configurations of the "minimum-B
type, for which the pressures are a function of the magnetic field
. . : 35
strength only, are of particular interest. Taylor ~ has shown, by
use of the CGL momentum equation, that equilibria of this type exist
\ ' - 20
for low plasma pressures, and Northrop and Whiteman = have extended
the discussion to finite pressures. Both these discussions give ''short-
term!’ equilibria, ' Northrop and Whiteman, however, have found this
same class of finite- equilibria (for the special case of vanishing
electric field) by use of the general theory of adiabatic particle motion

and some (but not all) of the conditions for long—térrri equilibrium.

-133-
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In the following we‘indicate‘how_this theory is related to. the hyd::o—
magnetic description of long-term equilibria of the Taylor-Whiteman
type, and e#‘cend the discussion to inéiude the effecfs of first-order
electric fields.

The equilibrium moment equatio_ns; and their CGL form
for the static case, will be reviewéd in ’cheb r'em'ainder of this section;
extension to the longer time scale is discussed in Section 10. 2, and
thé special ''long-term minimum-B" equilibria, are considered in
Section 10, 3.

The fundémenta_l equilibrium equation is thé condition of

momentum balance

PV VY =-V" P 4

v v j ><. B. _ (10. 1)
For equilibrium on the CGL tir;de scale, only the zero-order terms -
‘of this condition are required; in order to distinguis.h 5etween motion
characterized by FGR ofdering and "long-term' equilibrium, however,
the first- and second-order terms.m‘lus‘c also be considered,‘ The ¢-
dependent components of P that then appear maybe expressed in
terms of ¢-independent moment by the revcursion relation (4. 15)..

The éondition (10. 1) provides a relation bétween some of .

the ¢-independent moments of the distribution functions and the magnetic

field. Additional constraints are provided by the equilibrium forms of
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the !"equations of motion' (4. 1), (4. 16),(4. 17), (4. 29), (4. 30), (4. 32),
. for the $-independent moments. n P, D> q;‘,‘ q':, Ri’ etc.
If the zero.-—order. velocity vanishes,corresponding to a

static CGL equilibrium, the zero-order terms of these equations

are
- (8v/8y = VB ”R"P-_)P.'Vl'i'g(l)xﬁzo' (10. 2)
- (ay/at)'“ = b+ VR -(p -B)b. VB/B =0, (10. 3)
Cep/ot = V- () = 0, | ' (10. 4)
_p2 9 /ot = b~ V(q’:/BZ)v = 0, | | _ (10. 5)
- (1/2B) 9p ‘/Bt - b V(q‘:‘/B) + (q*"('/BZ) b- VB = 0, (10. 6)-
- 28q/8 = b VR - (R - 133.2).(13' VB)/B = 0," - (10.7)
- aq{!/at = b VR, - (R, - R3/4)(R- VB)/B = 0, (10. 8)
- B'laRI/ét = b--V(S,/B) + (%Z/BZ)R: VB = 07' (10, 9)~
' -VB_laRZ/'@t = b V(SZ/B) + [(s2 - S;)/BZ]'R- VB = 0, (loO. 10)»
and -.4(1/2B)8R3/8t = b V(s3)BZ) = 0, A : (10.1_1)-

where all quantities except ] are of zero order. Equations (lIO. 2)
X P . _

and (10.-3) are the transverse and parallel components of (10, 1);
Eqgs. (10, 5), (10.6), and (10.9) through (10. 11) are the equilibrium

forms of (5. 4), (5.5), and (5. 18)_; and Egs. (10.7) and (10. 8) are
obtained from (4. 29) and (4. 30) by use of the result (A. 33), The
condition (10. 3) has been used to simplify Eqs. (10.7) through (10. 11).

Equations (10, 4) thri_)ugh (10. 11) for each componven’c,‘) plus (10. 3) and
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the parallel component of the generalized Ohm's law (which -determines

N@),_.are' moment of the zero-order Vlasov equation (3. 11)... These

equations'.determine those ¢-independent moments that-involve v,

) in terms of the magne't'ic field,

and R2

: EY i
(such as v, B 9, 9> Rli’

the éppropria’ce boundary conditions, and those that do not involve v, .

The condition (10. 2) and transverse components of the generalized

(1)

Ohm's law are moments of the recursion equation (3. 9) for fd) .

The zero-order équations (10. 1) through (10. 11) do not
distinguish between HMlong-term' equilibrium and motion characterized

by FGR ordering; the higher-order terms required to make this

distinction are discussed in the following section. -

10. 2 "Long-Term" Equilibfium

"In order to describe 'long-term' equilibrium (v ~ Tc/e )
’ . o

all terms of the momentum balance condition (10. 1) must be evaluated
thro.ugh second order. Since we assume that the zero-order plasma

velocity vanishes, this equation becomes

O

AN

-VV(I)' = .V. P
o - A
+ o0t pvismy, | (10. 12)

= BRI +P bb. H(l)‘ is given by Egs. (5. 8) and (5|; 7) or

where P
A £ N o~ an o~

d
(5. 11), and vanishge\s unless there is zero-order heat flow aiong the

(2)

field lines; I is discussed in Chapter VI. The solutions of Eq. (10. 12)
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are only slightiy different ffom those of (10.1). These differences may,
however, distinguish between stable and weakly unstable configurations,
as well as between lqng-term equilibrium and slow, low frequency mo-
tion.

First—ordei corrections to:Eq's. .( 10. 4) :throu'gh (10.11) and to
the equafions for thé higher moments must also be coﬁsidered. The
fifst—ordei- t’e_r.ms of the cq'ntinuity equation (4.;1') are, for ea;h plasma:

component,

0 (1), o (0), (1) L (1) (L),
V- (p o ) = Vel (,wE +A1-lp 7 I »w\) - .O’
where
= Q)_lbrXV
B = (P TR X
By use of the equilibrium condition VJ_.-,_(BRE) = 0, this equatioh may
be written
ufz) [BV(p/B) - P:&Z'Vb] + MV(uf\l)/B = 1//1, (10.13)

where

R I S R Pt Oy S SR

represents "EFGR'" effects. The first-order terms of the pressure equa-*‘”:

tions (6.12) and. (6. 13) give the rel_atidns
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) 2 2
iV 18%(p /8% - pp-vel - pbevalt + 8% v(at/BY) v,
(10. 14)
‘and-
}&1(31) .[BV(p”/B) - '3pl| R.VR] + p,‘lR'vufnl) + B}il'v(q'z;/B)(l) = w3,
" ©(10.15)
where
-1 . -1 -
v, = (p@) (p - 2p,)b-(B-VBXVp ) -V [Q B X(VR, - 4b-T)] -
and'

v, = (pg)“lp b. (R.VBXVPL) + v.{sz'lbx[-VR2+ (Rl'- 3R,)b-Vbl} + a

1 2’

with a, defined following Eq. (5. 23).

The equations for the higher-order ¢-independent moments give relations
of a similar form.
The forms of the zero-order equations (10. 4) fhroﬁgh (10.11),

and 'equations for the higher velocity moments as well, are thus modified

(1)

in first-order by terms proportional to Up

(which would have appeared
in zero order if a zero-ofder electric field has been-éllowed), and by

the "FGR" tefrns wi . These rnodification.s represent the effects of the
firs‘t-or.d..er transverse cirifts. The modified équations determine first-
order corrections to moments that involve v, ; they are discussed in
more de‘ca':il in th.evfollowing section for the ;special case of mirror con-

finement and, in particular, '"minimum-B' configurations of the Taylor-

Whiteman type.
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10.3 "Mihimum—B” Configurations.

We now apply the equations outlined in the previous sections to

mirror confinement systems, and, in particular, to configurations of the

20,35

3

Taylor-Whiteman "minimum-B'' type; in this way we extend the

"short term!' hydromagnetic equilibria of Taylor and Whiteman to times
| -2 _ |
of order € times the gyro-period.
For mirror confinement systems the plasma density vanishes
except over a finite portion of each field line; Egs. (10.4) through (10. 6},
(10.9) through (10.11), and the zero-order equations for the higher

¢-independent moments which are even in vy, may be integrated along the

!

field lines to show that u q ql(l{ , si’ and higher moments odd in v,
it

vanish in zero order. Thus the zero-order distributions are even in vy
a result that may also be obtained from the zero-order Vlasov equation

(3.11). For mirror confinement systems, then, both the assumption that

V(o 0)

i vanishes, necessary for adia-

vanishes and the condition that j|(|
batic expansion to é.pply,, are automatically satisfied.

Equations (10.3), (10.7), (10.8), and those for the higher mo-
0)

ments odd in vy , together with the boundary conditions, determine P, s

(0) (0)

Rl » R , and the other ¢-independent moments involving second and

2
(0)  (0) L(0)

higher even powers of v 1n terms of the moments p s P ,

3

i *“ 3

etc. which do not involve v, .
For 'long-term' equilibrium Eqs. (10.13), (10.14), (10.15),

and the first-order terms of the equations for the higher ¢-independent
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moments must also be considered. When in‘tégrate‘d along the field lines

Eqs. (10.13), (10.14), and (10.15) yield
S‘ dsuél)-[BV(”p/-B) - pb-Vb] = 5 dswl, (10. 16)
L o A Y

5 asui!) [8%(p, /8% - p
e

and

g dsu(l)-[BV(p /B) - 3p b-Vp] = g dsv,, (10.18)
L " B

where S ds indicates the integral along those poftions of the field lines
L : ' : ~
that lie within the plasma volume, and the mirror boundary conditions

have been used. The equilibrium equations for the higher ¢-independent

1)

moments give conditions on u
~K

of a'similar form. The "FGR' terms
wi of these equations do not \Iranish,‘ in general. Except in special cases,
1)

E does not vanish for 'long-term'' equilibrium. Once the -

thereforé, u
boundary conditions are specified and ,}%1](31) is determined, the first-

order velécity momel;lts involving y,. rhay be found by integrating Egs.
(10. 13) , (10.14), (10>. 15), -+ along a field line from the boundary to a
poiﬁt in the plasma. | | |

These first-order conditions have a simple physical interpreta-

tion: the FCGR terms of Eqs. (10.13), (10.14), (10.15),--- represent



the first-order tr_answarse gradient-B and curvature drifts. The con-
ditions (10.16), (10.17),(10.18), - - simply insure that there be no '
accumulation of guiding centérs on any field line. Unless S dsy, = 0,
. | (1) Lo

these conditions require a nonzero ,\}3 . The parallel transport terms
are then deternmined so that the distribution a'long the field lines of
guiding centers, thermal energy, etc. r;mai-n coﬂstant.

The equilibrium condition considered by Northrop and Whiteman
in their discussion of the particlé motion is equivalent to Egs. (10. 16},
(10.17)--- . They aésume that the magnetic field is self-consistent.

(1) . 0, they obtain only equilibria for which

Since they assume E
'5 ds 1!/1 = 0. We show in the following that the Taylor-Whiteman con-
L :
figurations are of this type, and consider the effect of first-order
electric fields.
We first briefly review some properties of the low-p equilibria _

- 35 Y . 20
found by Taylor and extended to finite- by Northrop and Whiteman.
They assume that the plasma is confined in a finite volume by the mirror
effect, and that the pressure components P, and B, are functions of

the magnetic field strength B only. Then the CGL equilibrium condition

may be written

VX (vB) = 0, o (10.19).

where
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and, if it is assumed that b-VB = -BV-b # 0, Eq.(10.4) implies
B/ e P) =0 10. 20)
[ B A no _L) - ? (10. )

where the prime indicates differentiation with re spect to B. Whiteman
obtained the simple form (10.19) by showing that, for these equilibria,
the first-order parallel current vanishes. Thus

ﬂm

] = [(vxB).D :[wagyyW)zo, (10.21)

This property, which depends on the boundary conditions appropriate
for mirror cohﬁnement, is easily recovered from (10.19). Another
important property of these equilibria, which follows from Eq. (10.19)

and the identity

~~

is that the vectors V B and EVb are colinear.

We consider now the 'long-term'" extension of these Taylor-

Whiteman equilibria. Their characteristic feature is that P and F, are

assumed to be functions of B only. The 'long-term' equilibrium equa-

tions, however, require higher velocity moments in addition to P and

P ; we assume that all ¢-independent moments are functions of B only.

This assufnption agrees with the distribution for the P(B) equilibria
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found by Northrop and Whiteman from the general theory of adiabatic
particle motion. With this assumption, the result (10.21), and the
colinearity of V. B and b-Vb, the FGR térms ?//i of Egs.(10.13) through

(10.18) all vanish, since they are all of the form

Jod L

v-[a(B)b XV B] = 0.

This. is aléo true of the FGR terms of the equations for the higher ¢-inde-
pendent moments. These equilibria have this simplifying property because
the first-order gradient-B and curvature drifts are everywheré orthogonal
to the gradient of the zero-order distribution functions (the finite-ﬁ inter-
change modes discussed in Chapter VIII have this same property).
Because of this result the conditions (10.16) through (10. 18) are
satisfied if g(_l_l) vanishes. Since E,(‘l) vanishes if the ion and elect.ron
pressures and densities arev.equal (see Eq. (10. 22) below), 'long-term!"
Taylor-Whiteman equilibria exi;t for which the electric field vanishes
through first order; these equilibria _corr.es_pond to those foﬁnd by
Northrop and Whiteman.
‘ 1)

vanishes, Eqs. (10.16), (10.17), and (10.18)

Note that if ;ng_

reduce to their zero~order forma (10.4), (10.5), and (10.6). For this
case, in fact, the forms of Egs. (10.4) through (10.11), and those for
the higheré’moments as well, are all unchanged in first order. The dist#i-

bution functions are therefore even in v, in first order, as well as in

zero order. -



The condition that E( 1)
A

vanish is an unnecessary limitation of
the theory. The parallel electric field is determined by the parallel

component of the generalized Ohm's law

(1) _ -1 '
EH = (n_e) (V-E’A) -E, (10. 22)
where
- - + - 0
P, - (e - 9L + (p - p”):tgb]( )

| 1
and the equilibrium condition (10.3) has been used. Thus E‘(\ ) vanishes
only if the ion and electron pressures are everywhere equal.
If it is assumed that all ¢-independent moments are functions of

B only, Eq. (10.22) yields

Eﬁl) = -b-V® (B), | (10. 23)

where

. B o -
® (B) = '5 aB(n_e) lp" - p7 - BN - p -+ )]
B

1 11 : 4 A I A
min

The total electrostatic potential thus has the form

where <I>2 is constant along every field line.
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This potential yields

b (10. 25)

o=

u
o~

= (cI_:’l(B)/BZ)P_' X VB + (1/B)H'>< wpz.,

’ 1
The first term of u )

B arising from &

l(B), is orthogonal to

V, B, hence does not enter the constraints (10.16), (10.17), (10.18), .-
Thus for any NIEA there is always an electric field which satisfies the

condition (10. 22) and leaves the Taylor-Whiteman equilibria essentially

unaltered.

The potential &. must satisfy the constraints (10.16), (10.17),

2.

(10.18),:++ . (In the quasi-neutral approximation Poisson's equation

" need not be considered.) It is not obvious whether solutions to these

conditions exist although it is easily verified that, except for very special

circumstances, b X V&, is not everywhere orthogonal to V, B. Thus a

2

potential &, if it exists, would cause convection in the direction of V. B

>
and the first-order distributions would no ¥onger be even in v .

To summarize the results of this section, we have shown ffom
‘the extended-equilibrium hydromagnetic equations that the Taylor-White-
man equilibria are essentially unaltered by the electric field produced by '
unequal ion and electron pressures, lanci‘ that for. these configurations the .

first-order distribution functions are even in v, unless a nonzero poten-

~EE

tial @2 exists. The second-order corrections to Eq. (10.19) may be

found by straightforward calculation from the results of Section 6. 4. These

corrections would be of importance only for a very detailed stability analysis.
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APPENDIX A

Algebraic Details

A.l Velocity Moments of the Vlasov-Equation. |

In this appendix we outline the tensor manipulations used to ob-
tain the results presented in Sections IV thfough VI, beginning with the
derivation of the moment equations (4. 4) through (4. 7) from the Vlasov
equa;tion (3.1).

Multiplication of ;che first term of Eq. (3. 1) by the mass m and

N factors of v =v ~-u (N 2 2), and integration over v g'ives

o 9 n o%
[P — = - + — e e -+ —
(mX X o¢) 5t {my v ) {(m 5t Y .‘»jf) {mv 5 vf)
: ou
* + (myy £) (A1)
oM [Su }s
. Ny '
Cat ot »N=-1| ,
| . . th
where M., = (my- .. vf), with N factors of v, N =1, is the N order -

velocity moment tensor and s indicates the symmetrizing operation in-
troduced in Section 4.1 and discussed in Section A. 3 below. Similarly,

we obtain from the second term of Eq. (3.1)

-147-
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S
+ . = -V -+ %
{(m(v v) (u + v) Vi) u MN [MN—lg VE]
(A.2)
. S
. + V-u + .
+ VoMo MV (M- Tl

Finally, the remaining term of the Vlasov equation gives

~ hA
= - (e/m)(:§+ng)(m[Vv(g-‘--g)]ﬂ -l V- (v X D) (ve--v)]E)
= s s
= - l(e/m)(E+uxB)M, 17 - @lMo % 1l (A.3)
Combining terms yields"
d'MN S
+ Veu + V- + .V
T T MNTE YV Myt Myl |

(A. 4)

.+._1‘{M {E-—e-( + XB)}'—Q(M X b)
PidN-11dt " m u X B = (M XD).

Hol

Equation (4. 7) is obtained by use of Egs. (4. 2) and (4. 3) in the form

' SRS N
du/dt - (e/m){E + u X B] = - p V-P
A P A AP laaad
to simplify the last term of the left-hand side of Eq. (A.4). Eguations
(4.4), (4.5), and (4.6) are obtained from (4.7) for n equals 2, 3,

and 4, respectively.



149

A.2 Tensor Notation.

Use of direct products of vectors and tensors is very convenient
for our discussion. We adopt the convention that a dot or cross product
between two tensors (or a vector and a tensor) operates on the vector

factors adjacent to it. Thus, J.f'\],.i 212, .EN an /5{ 2.2, 23

with 2. and %; arbitrary :VCCtOl‘S, the N+ M - 2 rank tensors

!

— !
R-Ro= (agrag)lay an.) (2, 2y
and
! - 1 . 1 . ' '
R R = (a,,-2,)(a, 21 (3, 2 -

If there is more than one dot between two tensors, the scalar
products are between successive pairs of vector factors, working out

from the center. For example, the N + M - 2S rank tensor

R XR' = (a
Ve

3

H

Yo
-4

being of rank N+ M - 1.
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The gradient operator behaves in the same way as a vector as
far as its vector properties are concerned. The differentiation acts on

all factors to its right, up to the first parenthesis.

A.3 The Symmetry Operation [ ] °.

Because the velocity moment tensors ,\I\ALIN are completely sym-
metric, most of the tensor .expressions of intere‘st‘ to .us are also com-
pletely symmé‘cric, or at least symmetric with respect to all but one
vector factor. Expressioné of this form may be symmetrized by sum-
ming over all cyclic permutations of their véctbr factors,* this operation
being indicated by the superscript s. |

When manipulating expressions of this form care must be taken
N

to include all terms. Thus, if b and u are arbitrary vectors and T
o~ el : . N

an arbitrary symmetric tensor of rank N (N=z 1),

+ [T 8

S s
(eI e = wlpTd” = Tyt Dee T,

A M'W\N

_ (A. 5)

Note that [ME')\:J'.;N] s, "and also [MIBXN] S -'u, are sums of N + 1 terms, those

of the latter expression being (u- b) :{N and the N terms of [(u- TN)b] S,

Care must be exercised when applying the gradient operator to

these symmetrized expressions. For example,

. T 1 = . + .V + . S—vl- . S_ .
v [}3,» 4 (V-b) T b EN [l'iv ENI I[NIN Vl?] (A.6)
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The dot product in this expression is between V and the left-hand vector

factor of each of the N+ 1 terms of (bTN) Sﬁ the first two terms arising

from thatA term of (EEN> ® for which this factor is b.

An expression which is unsymmetric with respect to more than
one vector may be syrﬁmetrized b;y;'repe‘a‘ted applicati-on of the operation
s. This has been doﬁe in the represe.ntation-(él. 31) for R, which is

discussed below.

A.4 The Tensors "EY and-gé.

It is convenient to introduce the tensors

= -+ . = -
A7 g% T 2% A5 T 8282 - 2383
| (A.7)
= + d 1 = - e,e. .
dy T oSa8s T 8% A LT 2085 7 238

The tensor I is just the transverse projection operator. The rotation

operator *"Ix is related to the cross product by

A

a-}.:.-'l ‘a2 = b Xa and  ac:I = b-(a X c). (A.8)

X X

The operators N;g (£ =1, v, 56, x) have the properties:

i 5*.1 = 0, N ' ‘ ' L
de e ST E o

_ SR (A.9)
I =1 .:I = I :I_ =-1 :1- =-2; |



152

I = I .1 = -1-1I =1;
. (A.10)
I, = ; I_-1I = I .1 =1 ;
AE—L "‘“g /Eg ~0 -~y -~y ~8 o
I .I = bXI =-I-I = -1 Xb=-1_,
Y TR Ay XY Yy o 0
T = X ): - . = - I X = + . ( :
”16 Sy 2 '£6 }x ’;‘5 -8 :R ~I«y’ (A.11)
X = X = .
X = (I X . = « I -
As (B 2) (N5 b)-a i,z
v (A.12)
I -(bXa) = (I Xb)-a = +I -a.

- These rather trivial identities simplify the caléulatiohs considerably.

For example

(I q) :I = q-(I-1) = = (Lq):I .
. »yﬂ Ny .9: /w»ym\{. -g._\. még )
Iq):I =.q-(L-I) = q-I = b X
(m‘Y%) ~d fi (-6 my) ' E ~X }3 ,g.’
_ (A.13)
and '
1.q):1 = q-(I -1) = - = - pbX
(I a) ,E\, q- (1 ) a-x LXxgq

Because of the orthogonality relations (A. 9) it is clear that the
transverse part of any second-rank tensor (i.e., the 22, 23, 32, and 33
components) may be written as a unique linear combination of ‘che‘MIAg .

This representation is discussed in the following section.
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’ - A5 Rep.resentation of P, Q, _and}i.'

Because of the orthogonality relations (A. 9) an arbitrary second-

rank tensor T can be wvritte'n in the form

T = T,I . +TI +T1 + T1
A ) Ars bl

+ b(b-T) + (T-b) b+ T,bb,
(

A Yy &=8 >'d L L f
A. 14)
where T, = 3T Iy and T, = T:ibh
S AN A AW

By symmétrizing this expression we obtain,
S
) : T+ {blb-(T)°L} + 2T, bb(A. 15)

which reduces to the form (4. 9) and (4. 13) for a s?mmetric tensor P.
To show that Eqg. (4. 21) is a representation'of ,9 consistent with

the definitions (4. 19), and that the symmetry io.f ,9~ implies the condition

(4. 20), we note that the defini.tionsv (47‘1 9) are recove.;ed _‘frovrn (4. 22) by

%

forming the contractions of this expression from the left with 'bp, I

I , and I_. Since the expression (4. 22) is clearly symmetric with respect

5

to its first two factors, the necessary and sufficient condition that it be

completely symmetric is just

C(I.a" +~I,Yqz+'}q ):I =0,

Lan ST

or

‘:A}?ﬁX(‘qL—M}-qY-I‘qu) = 0, (A.16)
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This last. condition is identical with (4. 20). We conclude, therefore, that
this condition and the représentafion (4. 22) follow from‘;c.he; symmetry of
WQ and the definitions (47 19). These conclusions may also be verified by
direct evaluation of the components of the various expressions.

We outline now the d'erivati.on of the represeﬁtation (4. 31) for the
q)-indepen.dent part of the fourth velo;i’cy moment tensor R. This tenéor

may be written

>PV

2= z Rpijk (£n8185%
(h, i, ], k)

where the sum is carried out over the fifteen distinct sets (h, i, j, k),
1 =h,i,j,k £ 3; and the superscript p indicates a _sunﬁ over all distinct
tati f the vectors e ,e.,e., and e, .
permutations o t e vector th gi S‘J an gk
We require a reﬁre sentation for only the @—independent part of R.
It is easily verified that theré_ are ¢-independent contributions only to the

(1111), (1122), (1133), (2222), (2233), and (3333) terms of (A.17).

The corresponding valp.es ‘of Rhijk are
— 4
Rignn = &y = <m"uf>3
R}.}.ZZ - Rll}33‘— <mvu V_L_ (?os ¢’> _'—. RZ - (m/Z)(v“ lz'—Lf>_T
R...: = (1/4)R, = (m/8)(v)
T 2233 3 ‘ ‘ ) ’
and



i
|
I
|
1
|
|
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. Equation (A.17) thus takes the form

R - R, = Rbbbh + R,[bb1 1"

¢ ! (A.18)

| | P
+ 3 + )
(R3_/4)[’(~‘?29292§2 23238385) * (£,8,2585)7)

That this expression is equivalent to the representation (4. 31) may be

seen by use of the identities

s

2leeeel? = [e(eece)’] , i#j,
and
. s
12e.e.e.e = [e(eee)”]
~1viviTl ol S e s §

These identities follow from the definitions of the operations p and s.

(1)

A. 6 Evaluation of I .

By use of the identities (A.11l) we find from the representation
(A.15)

= I - + - X . .
Poxal® = Py - L s lpee x2S (a20)

The recursion relations (4. 14) and (4. 15) follow immediately from
Eq. (4. 4) by use of this result and the orthogonality relations (A. 9).
The second form of Eq. (4. 15) is obtained by the use of Egs. (A.10) and

(A.15), which give
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The first-order terms of Il are obtained by substituting MGL( )

)

' 0
into Eq. (4. 14) or (4.15). Because }1(0) and MQ(; vanish,
= 16 4 . WL . L
G = Ol (p, - p )db/dt+p (b-Vu) +p (Y u)-b+2(a’-q)b Vh+ vail}
+p (Y w-11° - 19 -u}+ @ lup® - 1,v -2

+ [dp, /dt + p(2V-u + V- p) + 29-(d'B) - 24. V- bl bb

+

@]

+
<]
g
N
o
4

2
[ap /dt + p (V-u ¢ /BY]I. (A. 22)

When substituted into (4. 14) or (4. 15) the first three terms of this ex-
pression give ,g,\( ) immediately. The last two terms give the CGL pres-

sure  equations (5.4) and (5. 5.) .

"A.7 Ewvaluation of ’gc(bl) .

: . . 4 . )
The recursion equations for qu’ ;9] qY, and g are found by
- AN .

A AN

use of the representaticnv (4. 22) to obtain, from Egq. (4. 5),

' 5 .
[0 %2l = 2lbpglx 21° - 20(BL) " + 2q)(xLp)°
L 1S Y 18 ' 8 s :
+ Lhgr el # L1 (ay ¥ w17+ [1ta ) x 217 (A 23)
= S-Z--l&J~
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By contraction with }3@, lavlw, and P*IS this result immediately yields the

recursion equations (4. 23), (4. 27), and (4. 28) for qf_’, qy, and q? .

A

Contraction of Eq. (A. 23) with I, gives the equation (4. 24) for q::

L oY x )
XHELXJBJrZ&\, (g X b) + 21 (f}

jo’

(2/2b X H:I = L

|
[N
on

X [4_qi- 21 -qY¥ - 21 -q6] X b = q*.

My R fw‘6 o~

To obtain the recursion equations (4. 25) and (4. 26) for qll_ and q6 we
~ P
note that’ |
I [QXD]S:—ZI-q'L+4q Xb-2q6
Y o~ -~ ~5. L - L’
_ _ (A, 25)
-I:[QXb]S:ZI ‘-q{+4q6><b+ Zq\{.
The solutions of these equations for qYA_ and qi_ are just Eqs. (4. 25) and
(4. 26).
To find Q( L) we note that
. Zor S
ao dq" db. S  dq* db 8

(2-vw)® = 2q"[bb(b-vw)1® + ¢ ln(v.w ], (A 26)
v~ ~~ 1w - LA an
and
(EV-P)° = p (1V'2)° + p (BRV-P)°,

where all quantities are taken to zero order.
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From this result and the expression for v.RY derived Below we obtain

oot - ’ l | - 0
H = {bb[V,R, - p 'p (V-P) + (R - 3R,)b-Vh

. - S
+ 29 (prvw, + v w-pl° + 2(a) - of)ap/ad)
. ' -1 ‘ , ‘ ' -
+ {103V R, - p B (V-P) + (R, - Ry/4)b-Vb + q'dp/dt]}
e s L S14q°
+ LR, - R/(LR) + q(w 1), (A.27)

where terms proportional to bbb and (bl ) ® have been 'drépped since

they do not contribute to Q,. (These terms give the zero-order terms
of the ”eCiuations of motion' (4. 29) and (4. 30), for 'q*l‘\ and q‘[" .) The

(1)

results (5.12) throxigh (5.15) for the co‘m\ponents of Q follow im-
mediately from this expression and the recursion relations (4. 23)

through (4. 28).

A.8 Evaluation of V- 3( 0) .

Calculation of the divergence of the ¢-independent part of R

from the representation (4.31) requires evaluation of the expressions

It is easily verified that

<
=

le(e.1)®] -VR., = 2[(e.l)%. .VR, + (e.eV.R)"],
Ll S SNt ] LR T S | j i _

1
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hence
S
(b1 )1 VR, = 2[ (bl )°b-VR, + (bRV,R,)°],
e J ' J - J
and.
le(e1)%] VR, = 4(IV.R)® (A. 29
-, ’V‘e"l SIM-L J B o~y ‘ /)
i=2,3
By use ofv(A. 6) and the identity
§q 5 s 45
la(be) ] = [(ab) ¢l ,

valid for arbitrary vectors a, b, and c, ‘the second term of the ex-

pression (A. 28) becomes

s1° _ 1 _ s
v [ngi(«?i;‘_) ] = 2{(,?1};_{_) v e + [-I~;.(~ql VMehl)] + Z[el(gi. V&L)]
+[e(ve)s]s+(eeVI)s} (A.éO)
i +~i mimi L ’
with
..VI_L = - (VB)R-P%W

i

For i=1, Eq.(A.30) reduces to

vo[b(pr )1 = 2{[(p1)° - 3pbbIV-b + [I (k0]
s s
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To evaluate the sum of (A. 30) for i = 2,3, note that

3
Vee, = Z(e Ve ) e, = - (b-Vb)-e, = ;(e Ve )-e.,
~ »W\J g IW\J AN Aaa AMl :—-—‘/ M’\:] /\MJ M1 o
i=1 : j=2,3
and
Ve = -(V + :
T2y T B et (Ve L

By use of these results

Ve leg (el ] = all(p-vo+pv-2)I1 - [b(VR13}., (A32

RS L

o1

i=2, 3

Combin‘ing Eqgs. (4.31), (A.28), (A'.‘.3l'), and (A.32) yields, finally

v- - = . + - VY.
(R - Ry = [B:VR) + (R - 3R,)V-blbbb

- .
+[_E-VR2v+ (R, - R;/4)V-bl{bI,]".
+ (R, - 3RZ)[Mbp(]9-Vb)]s + [bov, R ]

o ~ L TN2
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.\\‘

‘ 2
A.9 Evaluation E(Z ).

The expressions (6.19) and (6.20) for NIE; .) are found by

- setting MC;: equal to /9; ) in the recursion formulae (4. 14) and (4.15).

From Eq. (5.16) v |

1) | | 1l
v. ( - 1 "
-2, (v-g)pp + 1bq, "V2 *+ 4, VD
L. "o s L
+ bh-Vg * db V:?] + (V’fjﬁis.
- 1vgh - kv - b - gee Tl
* -V.Eé"l
'.w‘here.
9¢1 = a[fld
with
o = (20 N(R R./4)
oo e 2~ 73
and

x = bxvp® -1v5l.

By straightforward calculation we find

(p- (v, 1 = al(v-x), -

”"(1)1 A . A /‘1'?“'.




r 2’8
. . B
LT < (V §3¢1) Al =110 %1
= 'Z[V-v’lé‘-l- ”E'-Vc./alx-";i-' (x Vb)s :

+ 20y X [V (B-VR) - (V. R)-VRI®

e

10V, (V) - (Y b) VBl

= 2a[(b-W)b X (b.vH)]°.

A

Equation (6. 19) follows immediately from Eqs. (4.14), (A.34), and
(A.35). Equation (6. 20) is obtained from Egs: (4.15), (A.34), and
(A.36) by use of the result

b X (x-Vb)©



APPENDIX B

Northrop's Paradox

4F1;_om Eq. (5.9) the contibution of the collisionless viscosity -
.to Pl3 is:

P = seTl R - RIBW, F R (e, Twp) O .1

Ye. at time

For the special case B = constant, F, = 0, and Ii'? u(xl 2,

t =0, X being the cojdi‘din’até in the direction[}g,_ Eq. (B.1) reduces to
(1) -1 o o L
P, (0) =27 P ou/éx #0. (B.2)

A simple distribution function consistent with the above configuration is

[eo]

£(0) = ng(vz_)élf(v“), with g v, gdv,_= L (B. 3)

o IS
0
This distribution yields

PlS(O)

It
(@}
—
3]
W
<

. ' T . 21
There is thus a contradiction, pointed out by Northrop, between the .
result (B. 4) obtained from the simple distribution (B. 3), and also obtain-
ed by Kaufman from an-examination of the particle orbits, and the result

(B. 1) obtained from the. adiabatic expansion of the moment equations or

o163~
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Vlasov equation.

This contradiction is resolved by the discussion of initial conditions
given in Section 3. 3. The initial condition (3. 15), when applied to the pre-
sent example, gives L E - - -

(0)

9f . . 8u . 0Of
Haxl 8.C_L

.Cw

fcp. Q . | T+ oC (B. 5)

i

This condition is obviously not satisfied by the $-independent distribution
Afunction (B. 3); the small € expansion and t_h(_e result (B. 2) therefore do
not apply for this choice of £(0).

The non-z‘ei-_o f, of Eq. (B. 5) is required to obtain a slowly varying

¢
f because of the dlo&'_/‘dt associated with a non-zero (]9_." V,\}::» )_\_ by Maxwell's
induction e.qua',t'ién._: This vafia_.’cioﬁ IOf B amounts to a rci.tatﬁ._ori of the i’nag- |
netic _field direcfcion at an an'gular frequency of ordef €. After a time of -
order Q-l- ,' the.refore, ‘thel par_ficles .de‘séribed by the distribution (B. 3)

will have velocities in the direction h(t) of order ev These small paral—

0"
lel velocities, togethef with the velocity of g}'rration,‘ produce a Pl3 which
fluétuates at the gyro-frequency ana-'therefore is not given by Eaq. (B. 2).

The discrepancy be‘&veen Eq. (B. .2) or (B. 1) v‘and Kaufman's _resuit is
also due to the time variation of /13“, Kaufman ignores the .induction effect
- and assumé_s a magnetic field constant in space and time. -

- In the following we find P _{t) from the particle orbits obtained in a

13
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rotating mag’netic field. Equation (B. 5) will be recovered from the condi-

tion that P1 3(‘c) be .slowly varying. In addition to illustrating the relation

betWeen the initial condition on f, (0) and the particle motion, this calcu-

¢ .
lation will complete Kaufman's discussion of the ‘co'lli_sionle‘ss viscosity by
extending his derivation tb_include the effect of induction.

We consider a uniform plasma in a uh_:lform rotating magnetic field.

The initial direction of the magnetivc field is Q(O) = 21 {(0) . The vectors

25 (0) .define a ﬁxed_ C‘vartesi:an' coordinate sy,s’tem; in the _f;allowi_ng the spa_
tial COoirdinates‘ ﬁci re.fer to this ﬁxed éyst_erﬁ. 'Vec;t_or and ’cebnsor compq;
nents, .hoW_evei-, will vbe refe;‘red to the 'basié .v‘.ectors _si(t) Which rotate
bwi’c.h the magné’cic’fielé.:‘.We ‘as_s.um'e_' -th-ét N_E .varies only_in the direction R

Its initial value is then /\FR(O) =-Bwx 133 (where w is the magnitude of

’d’}gﬁ/ dt); hence to lowest order the piasrria flows ifx_itially in the direction

0) with the velocity u(x D= Fex

Kaufman's calculation of Pli’» assumed that b - VM}E,z was small

and neglected the time variation of Nti . ‘Inlowest order the contributions

of ,13. \7}5 and d,]’g/dt to P will be additive; Kaufman's calculation, there-

13

fore, may be Corhpleted by neglecting the electric field gnd considering
the particle motion in th¢ rotating rﬁagnetic figld. For this calculatioﬁ_the
plasma‘may be considered to be initially at rest.

For wt « l the e.quation of mofion of. a particle moving in the ro-

tating magnetic field is’
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e

v = QvX e
[annd ~»~ A~

@l. (@

Through first order in wt and «/Q the general solution of this equation

for v may be written
il .

vy = ¢, - (c;/sz)c,_"[sin (q'; - Qt) - sind] ,
v‘v2v=_ é\_cos(é-ﬁt),.' _ (B. 7)
Vo = (w/Q).ch-i-_c_,_Asin'(éi) - Qt) ,

where the velocity components are referred to the rotating axes e. (%),
i

and the parameters c, , ¢, , and & specify the initial 'velocity.

i

This solution 'showé that the particles spiral arouﬁd the r.otating
field lines, drift in 'th'e'd’i"rec'tio‘n g, with the db/dt drift velocity, and
"la-l.so"bs'c_villate \.Nithvfrevque_ncy e .a.bot‘J.t their mean velocity along the field
lines. More cdrhplicated orbi‘té wouid bé found if E were included in .the
L | 22

" calculation; then there would be a steady acceleration along B.
. AN

' ‘The average velocity at time t is given by
oy = (aPer@yie, o, ey
e L. | clvic, t), .
where -

c = c, cosde
o e ™

, (0) + ¢, sing e, (0) +’c-‘~\.gl ) ,

and F(c) describes the initial distribution function. By use of Eqgs.

(B. 7} and (B. 8) the condition that (X(O)> equals zero implies that
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oy
0

() = {c cosd) = {c sing) = 0, (

and that (v(t)) remains zero.

: - ' 2
Let the contribution of db/dt to P13 (t) be Pl3<J) (Kaufman

(1)

denotes the contributions of 0Ju and

(2)

l./ axaa?vvnd‘auz‘/caxl by P13

, respectively.) Then, by use of Eq. (B. 9)

—

()

S
I

m <Vl (‘F)V3(t)> _

il

(@/2) [p, (©) - p (0]

. 2 2 ’
+m{c, c, sind + (W/Q) ¢ sin ¢ ) cosQt (B. 10)

2 .
m {c, ¢, cosd + (w/22)c sin.2¢) sin 0t

+

(w/ZQ)mL(cE cos2b) cos20t - (CJZ_ sin 2¢) sin 2Qt

The first term of this expression equals the last term of (B. 1). The re-

, oscillates rapidly about this

maining terms show that in general Pl
. . )

value. If the initial distribution function is of the form (B. 3), Eq. (B. 10)

reduces to

9(133) = -(o/Q)p_(0) [1 + cosat] . - (B. 11)

The failure of (B. 1) and'(B. 2) to apply in this case is reflected by the

rapid oscillation of Pg? .
P is to be slowly varying, the initial distribution function

13

must be such that the coefficients of the oscillating terms of Eq. (B. 10)
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vanish, at least through first order in «/ Q. A simple way of satisfying

these conditicns is to assume

cy T 8 - (w/Q)c, sin ¢ , : (B. 12)

Whefe‘ s is évari‘able U.ncorrevlated with ¢ . Itis évident that Eq. (B. 12)
and (B. 9) are sufficient to cause the oscillating terms of (B. 1.0) tb vanish.
‘From Eqs.r (B.7) a.na (B. 12) it is seen that some of the particles must be
moving initially along the magnetic field and that oscillations of v, are
in phase with those of Vg
T,hrough first order in /2, F(g) may be expressed in terms

of an arbitrary function -H(c,_ , s) by the relation

~

H{ic , c,

= It

1

F(CJ_ s+ Sy :dP) ‘+ (w/Q) c, sin (_‘P]

= H{c, , c.) + (0/9)c, sind 9H/dc,

u

Thus the é-dependent part of ‘;he initiai distribution F(c) is derivable
from the ¢-independent part when rapid fluctuafions are absent, in
aéreemen‘c with the general result dériyed in Sect.ion 3.3.

Equation (B. 13) méy be com?ared‘with Eq. (B. 5) , obtained di-
rectly frém the results of Sc-’:-ction 3.3. The variable qc,:; in Eq. (B.13) dif-
fers from the C of (B. 5) only by the c_lrift ;\felocity' (w/ Q) Cn§3 ; the

é-dependence of the distribution is independent of this change in variables,

and the dp&nckpenden’c part is changed only in first order. Equation (B. 13)
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thus agrees with the first term of Eq. (B. 5) . The second term of Eqg. (B. 5)
would have been obtained if the effects of the electric field had been in-

cluded in the calculation.
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