
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Interplay of symmetry breaking and topological order

Permalink
https://escholarship.org/uc/item/8bg9w195

Author
Wang, Yanqi

Publication Date
2023
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bg9w195
https://escholarship.org
http://www.cdlib.org/


Interplay of symmetry breaking and topological order

by

Yanqi Wang

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Joel E. Moore, Chair
Professor Michael P. Zaletel

Professor Lin Lin

Summer 2023



Interplay of symmetry breaking and topological order

Copyright 2023
by

Yanqi Wang



1

Abstract

Interplay of symmetry breaking and topological order

by

Yanqi Wang

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Joel E. Moore, Chair

The two most prevalent classes of ordered states in quantum materials are those arising from
spontaneous symmetry breaking (SSB) and from topological order. However, a systematic
study for their coexistence in interacting systems is still lacking. In this thesis, we will
investigate how the topological configuration in order parameter spaces from SSB interplays
with the symmetry protected/enriched topological orders in two spatial dimensions. We
start from a phenomenological model of the domain wall structure in chiral spin liquids
with domains of opposite chiralities. Based on a standard model, we obtain a spatially
varying, self-consistent mean-field solution for the spinons that describes both the gapless
edge modes and the change of chirality at the domain wall. We derive the non-universal
properties, such as the velocity of the topologically protected domain wall edge states and
its modification to domain wall tension. Then we discuss the interplay between topological
orders from a more formal point of view. We consider two-dimensional topologically ordered
systems with coexisting long-range orders, where the only gapless excitations in the spectrum
are Goldstone modes of spontaneously broken continuous symmetries. We show that the
universal properties of point defects and textures are determined by the remnant symmetry
enriched topological order in the symmetry-breaking ground state with non-fluctuating order
parameters, and provide a classification for their properties using algebraic topology. We
further investigate the quantum dynamics that can happen at the domain wall of topological
orders, where particle-hole scattering leads to linear-in-temperature resistivity of edge modes.
Finally, we introduce an effective edge network theory to characterize the boundary topology
of coupled edge states generated from various types of topological insulators.
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Chapter 1

Introduction

Perhaps the two most prevalent classes of ordered states in quantum materials are those
arising from spontaneous symmetry breaking and from topological order. The nature of
boundaries in these two kinds of ordered states is generally quite different: most, but not all,
topological states have protected gapless excitations at their boundaries, while symmetry-
breaking states need not. The focus of this thesis is on the nature of the interplayer between
symmetry breaking and topological order.

In this chapter, we will give a brief introduction on the fundamental concepts of symmetry
breaking physics and topological phases of matter. In Sec. [1.1], we briefly introduce the
concept of symmetry breaking, which gives birth to the topological defects and topological
textures. We also introduce the natural mathematical language of topological defects and
textures, which is the homotopy theory. We introduce the concept of topological order in
Sec. [1.2], as well as the symmetry enriched topological (SET) orders and symmetry protected
topological (SPT) orders. In Sec. [1.3], we give an example for invertible topological order,
the Chern insulator. We further introduce for group cohomology, which is the mathematical
tools for SET/SPT in Sec. [1.4]. Finally, in Sec. [1.5] we give the outline for the rest of this
thesis.

1.1 Symmetry breaking, topological defects/textures

and homotopy theory

One of the most successful theories in condensed matter physics is the Landau’s theory of
phases and phase transitions [148, 72, 146, 147]: phases are distinguished by their symme-
tries, and phase transitions are described by symmetry breaking. An ordered phase with
broken symmetry is identified through the formation of off-diagonal long-range order and is
characterized by a local order parameter.

Topological defects and textures are presented in an ordered phase as a consequence of
the nontrivial topology of the order parameter space [178]. We define the classical topology
to be the topological configuration in order parameter space. Depending on whether the
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order parameter has singularity or not, the classical topological configuration can be divided
into two classes. The topological defects are configuration which has singularity in order
parameter spaces. On the other hand, the topological textures, does not have singularity.
This classical topology can lead to very rich physics. For example, the topological defects
have their own dynamics and may also lead to phase transitions at finite temperatures [20,
21, 138]. Topological defects and textures also commonly appear in soft matter physics [130,
256] and ultracold atom physics [156, 235].

d = 1 d = 2 d = 3
π0 point defect line defect surface defect
π1 texture point defect line defect
π2 texture point defect
π3 texture

Table 1.1: Homotopy group for topological defect/texture in d = 1, 2, 3 dimension.

In this section, first we briefly review the homotopy theory of topological defects and
textures in the order parameters [178, 264]. Mathematically, the long-range order of spon-
taneous symmetry breaking is described by a local order parameter

O(r⃗) ∈ M = G/H, (1.1)

i.e. the order parameter is valued on the (left) coset space of G modulo H, where the full
symmetry G of the Hamiltonian is spontaneously broken down to a subgroup H in a ground
state with a fixed order parameter configuration. In particular, the remnant symmetry H is
the subgroup of G which keeps the order parameter {Ô(r⃗)} invariant:

H ≡ {h ∈ G|hÔ(r⃗)h−1 = Ô(ĥr⃗)}. (1.2)

Given the order parameter manifold M = G/H, in d spatial dimensions, one can consider
an order parameter configuration with point (line, surface etc.) defects, where the order
parameter O(r⃗) is a smooth function of spatial coordinate r⃗ except for singularities on
isolated points (lines, surfaces etc.). Most generally, a (d−D− 1)-dimensional defect (i.e. a
defect of codimension D + 1) is described by a continuous map:

r⃗ ∈ SD → O(r⃗) ∈ M = G/H (1.3)

of order parameters on a submanifold enclosing the defect. The inequivalent classes of
(d−D − 1)-dimensional defects in d spatial dimensions is hence classified by the homotopy
group πD(G/H) [178] for d ≥ D + 1. Below we list a few defects in low dimensions:

(i) 0-dimensional point defects are classified by πd−1(G/H) for d ≥ 1;
(ii) 1-dimensional line defects are classified by πd−2(G/H) for d ≥ 2;
(iii) 2-dimensional defects are classified by πd−3(G/H) for d ≥ 3.
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In addition to defect configurations where the order parameter O(r⃗) becomes singular
somewhere in space, homotopy theory also classifies textures of the order parameter con-
figurations which are smooth everywhere. They are classified by the following continuous
map:

r⃗ ∈ Sd → O(r⃗) ∈ M = G/H (1.4)

where we compactify the d-dimensional real space to Sd. As a result, topologically inequiv-
alent textures in d dimensions are classified by the homotopy group πd(G/H). Similarly
one can also consider spacetime textures, classified by homotopy group πd+1(G/H) where
the (d+ 1)-dimensional spacetime is compactified to Sd+1. Homotopy group for topological
defect/texture in d = 1, 2, 3 dimension can be found in Table. 1.1.

In this work, we shall restrict ourselves to two spatial dimensions (d = 2), where different
types of topological defects and textures are classified by the following homotopy groups:

(i) Domain walls with codimension 1, where order parameters are smooth everywhere
except for along a line, are classified by π0(G/H);

(ii) Point defects (i.e. vortices) with codimension 2, where order parameters are smooth
everywhere except for one point, are classified by π1(G/H);

(iii) Textures where order parameters are smooth everywhere, are classified by π2(G/H).
A well-known example is a skyrmion in a 2 + 1D O(3) nonlinear sigma model (NLSM), as
will be discussed in detail later.

The main goal of this work is to establish a connection between topological defects and
textures of the symmetry-breaking order parameters, and the underlying topological ground
states. The main mathematical tool that reveals this connection is the long exact sequence
of homotopy groups [178]:

· · · −→ πn(H) −→ πn(G) −→ πn(G/H) −→ πn−1(H) −→ πn−1(G) −→ · · · . (1.5)

Here, “exact” means that for each term G in the sequence N
p−−→ G

q−→ Q, the kernel of
the outgoing map q, ker(q) = {m ∈ G|q(m) = 0} is equal to the image of the incoming
map p, im(p) = f(N): im(p) = ker(q). We noticed that the general idea of mapping
topological defects and textures to symmetry defects through “connecting homomorphism”
πk(G/H) → πk−1(H) have been pointed out in Refs. [198, 58].

1.2 Topological order

Since the discover of the quantum Hall effects in the 1980s [132, 255, 151], the notion of
phases of matter have been extended beyond Landau’s theory. Let us focus on gapped
phases of matter, which, by definition, are phases with gapped excitations that are robust
against local perturbations without closing the gap. In absence of symmetry, these different
phases are determined by the long-range entanglement structure of the ground state wave
functions [275], with the trivial one being an “atomic insulator” whose ground state shares
the same phase as a collection of isolated atoms. A topological order, on the other hand,
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(line defect)
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Figure 1.1: Illustration for examples of topological defects (domain wall and vortex) and
topological textures (skyrmion).

has a nontrivial entanglement structure in their wave function, which manifest itself, e.g.
through ground state degeneracy when placed on a topologically nontrivial manifold [270].
Here, while the word “topological” in topological order still refers to the robustness of the
low energy excitations against local perturbations without closing the gap, this feature is a
direct consequence of the long-range entanglement of the wave function [275]. In presence of
symmetry, either a topologically trivial state or a topologically ordered state may be further
separated into different phases. The result is either a symmetry protected topological (SPT)
phase [83, 41, 39, 40, 42, 45, 44, 43, 197, 170, 274, 154, 277] or a symmetry enriched
topological (SET) phase [59, 179, 169, 245, 14], and in both cases different gapped ground
states are characterized by certain topological invariants. As the quantum state counterpart
of the order parameter in a broken phase in Landau’s theory, the topological invariants
reflect the robustness of the state under small perturbations and are a manifestation of the
quantum topology that arises from many-body quantum entanglement in the wave function.

1.3 Chern insulator

The Hall effect is the production of a voltage difference (Hall voltage) across an electric
conductor, transverse to an electric current in the conductor and to an applied magnetic
field to the current. The integer quantum Hall effect is a quantum mechanical version of the
Hall effect, observed in 2d electron system subjected to low temperature and strong magnetic
field, in which the Hall conductance σxy undergoes quantum Hall transitions to take on the
quantized values [5].

A Chern insulator, also called quantum anomalous Hall effect (QAHE), can be viewed as
integer quantum Hall effect without external magnetic field. A Chern insulator is normally
regarded as an invertible topological order1. One central feature for the topological phases
of matter is the topological invariants, which reflect the robustness of the state under small

1Topological orders with no topological excitations are called invertible topological orders. The Chern
insulator and the quantum anomalous Hall state are just different names for the same fermionic invertible
topological order with integer chiral central charge c. For every invertible topological order C, there exists
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Figure 1.2: Relation between intrinsic topological order, symmetry-H protected topological
order, and symmetry-H enriched topological order.

perturbation. For Chern insulator, the topological invariant is called Chern number, which is
directly associated with the quantization of Hall conductance σxy and the number of gapless
edge modes of the system.

In this section, following Ref. [81, 105, 37], we give a brief introduction on Chern in-
sulators. We first give a definition of Chern number of a two spatial dimensional two level
system with periodic boundary condition in Sec. [1.3.1]. Then we consider the Chern number
for a continuous 2D massive Dirac fermion in Sec. [1.3.2]. We briefly introduce the symme-
tries analysis for Chern insualtor in Sec. [1.3.4]. We discuss the edge states and bulk edge
correspondence in Sec. [1.3.5].

1.3.1 Chern number for a two bands model in 2D periodic
system

Consider a two bands model captured by the following Hamiltonian,

H(k) = h(k) · σ. (1.6)

Here σ = (σx, σy, σz) are Pauli matrices, and h(k) is a three component vector defined as
h(k) ≡ (hx(k), hy(k), hz(k)) which is a function of momentum in two spatial dimension

another topological order D as its inverse, such that stacking C and D on top of each other gives us a gpped
state that has no topological order, i.e., belongs to the phase of product states [275].



CHAPTER 1. INTRODUCTION 6

k = (kx, ky). In the presence of periodic boundary condition, the momentum k lives on the
2D Brillouin Zone. The two-level system Eq. [1.6] has two eigenstates. The eigenstates and
eigenvalues are given by:

H |u+⟩ = h0 |u+⟩ , H |u−⟩ = h0 |u−⟩ , (1.7)

where h0 is defined as:

h0(k) =
√
h2x(k) + h2y(k) + h2z(k). (1.8)

One can define the Berry connection in momentum space as:

A±
l (k) = i ⟨u±| ∂kl |u±⟩ , (1.9)

and so as the Berry curvature:

F±(k) = ∇⃗ × A⃗±(k). (1.10)

Below we provide an elegant way to write out Berry curvature Eq. [1.10] explicitly [37].
First, we note that the Berry connections in momentum space can be written in terms of
the derivative of hα, where α = x, y, z:

A±
l (k) = i ⟨u±| ∂kl |u±⟩ =

∂hα
∂kl

[i ⟨u±| ∂hα |u±⟩], (1.11)

where we have used the Einstein notation that repeated greek indices stands for summation.
We can further define the Berry connection in hα space as: Ã±

α (h) = i ⟨u±| ∂hα |u±⟩, such
that A±

l (k) = (∂hα/∂kl)Ã±
α (h). We further have the z-component of Berry curvature given

by:

F±
z (k) =

∂A±
y

∂kx
− ∂A±

x

∂ky
=

∂

∂kx

(
∂hβ
∂ky

Ã±
β

)
− ∂

∂ky

(
∂hα
∂kx

Ã±
α

)
=
∂hα
∂kx

∂hβ
∂ky

(
∂Ã±

β

∂hα
− ∂Ã±

α

∂hβ

)
=
∂hα
∂kx

∂hβ
∂ky

ϵαβγf
±
γ ,

(1.12)

where fγ
± = ∓hγ/2h30. Then we have the simpler form of the z-component of Berry curvature

reads:

F±
z (k) = ∓ 1

2h30(k)
h(k) ·

(
∂h(k)

∂kx
× ∂h(k)

∂ky

)
. (1.13)

The Chern number for the upper and lower subband is defined as:

C± =
1

2π

ˆ
[d2k]F±

z (k). (1.14)

One can rewrite Eq. [1.14] in the following way:

C± = ∓ 1

4π

ˆ
1

h20(k)

h(k)

h0(k)︸ ︷︷ ︸
ĥ(k)

·
[(

∂h(k)

∂kx
dkx

)
×
(
∂h(k)

∂ky
dky

)]
︸ ︷︷ ︸

d2S

. (1.15)
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In the integrand, the term ĥ(k) denotes the unit vector along the radius direction, and the
ĥ(k) · d2S is the area on the h- surface. After being divided by h20(k), it becomes the solid
angle dΩ extended by the area. This solid angle dΩ is equal to the area of ĥ(k)·d2S projected
on a two sphere S2 with unit radius. The k- vector lives on the torus of 2D Brillouin zone,
k ∈ T 2. The function h(k) defines a continuous map from a torus T 2 of Brillouin Zone to
a closed surface in h-space, the later of which can be further mapped to a two sphere S2

mentioned before. The Chern number actually compute how much solid angle is sweeped
by h(k) when k run through the torus of Brillouin Zone. This mapping from the torus T 2

to the two-sphere S2 is captued by the second homotopy group π2(T
2) = Z. Thus when the

integral of Eq. [1.15] is performed through the whole Brillouin Zone, the Chern number must
be a quantized integer. Furthermore, from linear response or semi-classical equation [81, 24],
the conductivity σxy is associated with the Chern number of the filled band. If Eq. [1.6] is
gapped, then the σxy reads:

σxy =
e2

h
C−. (1.16)

1.3.2 Chern number for massive Dirac fermion in 2D continuous
system

A massive Dirac fermion in two spatial dimension is given by taking hx(k) = kx, hy(k) = ky,
and hz(k) = m in Eq. [1.6]. Substitute this into Eq. [1.13], we have the Berry curvature for
the lower subband of massive Dirac fermion reads [105]:

F−
z (k) =

m

2(k2x + k2y +m2)3/2
. (1.17)

By pulgging this into the Eq. [1.14], one can have:

C− =

ˆ
[d2k]F−

z (k) =

ˆ ∞

0

dkk
1

2

m

(k2 +m2)3/2
=

sign(m)

2
. (1.18)

The Chern number calculated here is non-quantized. This is because the Dirac fermion we
discussed here is a continuum model where the integral over all momenta extends over the
whole R2 instead of a torus T 2 in Sec. [1.3.1], and therefore no reason to expect the Chern
number to be quantized. In fact, as we will see in the next section, the Dirac Hamiltonian
can arise from the low-energy expansion around high-symmetry points in the Brillouin Zone
of certain lattice model. For the full lattice, the k → ∞ integral would be regularized due to
the Brillouin Zone boundary, and the whole system would has a quanzied Hall conductvitiy.
However, the region close to the “Dirac-pint” contributes ±1/2 to the Chern number.

This result from Eq. [1.18] can be further generalized as following [105]:

H(k) =
2∑
i,j

Bijkiσj +mσz, (1.19)
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we have the conductvity reads:

C− =
1

2
sign(m)sign(detB). (1.20)

A gap closure process (i.e. m change sign) will lead to the change of Chern number for the
Dirac fermion by 1.

1.3.3 Chern insulator and quantum anomalous Hall effect

The topological future of Chern insulator can be intrinsically imbedded in the Berry curva-
ture of the Bloch band. In this section, we introduce one of the simplest two-dimensional
lattice model proposed by Qi, Wu and Zhang (QWZ model) [201, 105]. The Hamiltonian
for the QWZ model is given by the following:

HQWZ =
(
c†k,A c†k,B

)
H0(kx, ky)

(
ck,A
ck,B

)
(1.21)

where the Bloch Hamiltonian is a function of Bloch momentum (kx, ky) and c†k,A(B) stands

for the creation operator for a Bloch electron at momentum k at sublattice A(B):

H0(kx, ky) = sin(kx)σx + sin(ky)σy + [2 −m− cos(kx) − cos(ky)]σz. (1.22)

The Chern number for the lower subband of Eq. [1.22] can be understood by the follow-
ing [37, 81, 105]:

• −∞ < m < 0: Eq. [1.13] reaches to the atomic insulator limit that all the eigenstates
are localized on single site. The system should have no Hall conductance such that
σxy = 0 and C− = 0. This can be verified by direct substitute this into Eq. [1.14].

• 0 < m < 2: there is a gap closure process happend at k = 0 at m = 0 when m goes from
−∞. One can expand the Hamiltonian around kx = ky = 0 as H0 = kxσx+kyσy−mσz.
Therefore, the change of Chern number as ∆C− = 1

2
sign(−m)|m>0− 1

2
sign(−m)|m<0 =

−1. As the Chern number for m < 0 is 0, we conclude that the Chern number for
0 < m < 2 as C− = −1.

• 2 < m < 4: at m = 2 the gap close at (π, 0) and (0, π), and we can expand the
Hamiltonian around these points: H(π,0) = kxσx − kyσy + (2 − m)σz and H(0,π) =
−kxσx + kyσy + (2 −m)σz. From this we can get the change in Chern number: C− =
−2×[1

2
sign(2−m)|m>2− 1

2
sign(2−m)|m<2] = 2. Since the Chern number for 0 < m < 2

is −1, we conclude the Chern number for 2 < m < 4 as C− = +1.

• 4 < m < +∞: at m = 4, the gap-closing happens at (π, π), around which we have:
H(π,π) = −kxσx − kyσy + (4 −m)σz. We have the change of Chern number as ∆C− =
1
2
sign(4−m)|m>4 − 1

2
(4−m)|m<4 = −1. Since the Chern number for 2 < m < 4 is +1,

we conclude the Chern number at m > 4 is 0. This is in accordance with the fact that
when m→ +∞ the system goes to the trvial atomic insulator limit.
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Phase diagram for Chern number of Chern insulator as a parameter ofm is shown in Fig. [1.3].

!2 40
% = +1% = −1% = 0 % = 0

Figure 1.3: Phase diagram for Chern number of Chern insulator as a parameter of m.

1.3.4 Symmetries and classification, ten fold way

Below we listed three non-spaital symmetries: time-reversal, particle-hole and chiral symme-
tries, as well as how they act in momentum space of the single particle Bloch Hamiltonian
H(k) [49, 81]:

1. Time reversal symmetry T is an anti-unitary symmetry which commutes with Bloch
Hamiltonian:

TH(k)T−1 = H(−k), T = UTK, T 2 = ±1, (1.23)

where K is the operator for complex conjugation and UT is a unitary matrix.

2. Particle-hole symmetry C is an anti-unitary symmetry which anti-commutes with Bloch
Hamiltonian:

CH(k)C−1 = −H(−k), C = UCK, C2 = ±1, (1.24)

where K is the operator for complex conjugation and UC is a unitary matrix.

3. Chiral symmetry S is a unitary symmetry which anti-commutes with Bloch Hamilto-
nian:

SH(k)S−1 = −H(k), S = US, S2 = 1, (1.25)

where US is a unitary matrix.

All of the different possible combinations of the presence or absence of these symmetries
leads us to 10 different possibilities, as given in Table. [1.2]. Each row in Table. [1.2] tells
how different insulators with the same symmetry are classified by topological invariants.
Gapped phases that can be smoothly connected to each other via tunning the parameter
are in the same topological phase. One can check the Chern insulator given by QWZ model
Eq. [1.21] does not have any of aforementioned three symmetries, thus it falls into A-class.
In 2-spatial dimension, the A class has a Z classification, in accordance to the integer value
of Chern number in Chern insulators.
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Symmetry Dimension
AZ T 2 C2 S2 0 1 2 3 4 5 6 7 8
A 0 0 0 Z 0 Z 0 Z 0 Z 0 Z

AIII 0 0 1 0 Z 0 Z 0 Z 0 Z 0
AI 1 0 0 Z 0 0 0 Z 0 Z2 Z2 Z

BDI 1 1 1 Z2 Z 0 0 0 Z 0 Z2 Z2

D 0 1 0 Z2 Z2 Z 0 0 0 Z 0 Z2

DIII −1 1 1 0 Z2 Z2 Z 0 0 0 Z 0
AII −1 0 0 Z 0 Z2 Z2 Z 0 0 0 Z
CII −1 −1 1 0 Z 0 Z2 Z2 Z 0 0 0
C 0 −1 0 0 0 Z 0 Z2 Z2 Z 0 0
CI 1 −1 1 0 0 0 Z 0 Z2 Z2 Z 0

Table 1.2: Periodic table of topological insulators and superconductors. The leftmost col-
umn (A,AIII,...,CI) denotes the ten symmetry classes of fermionic Hamiltonian, which are
characterized by the presence or absence of time reversal (T ), particle-hole (C), and chiral
(S) symmetries of different types denoted by ±1. This table is taken from Ref. [49, 174].

1.3.5 Bulk edge correspondence and edge states

A central feature of topological insulators (TI) is the bulk-edge correspondence: a d-dimensional
TI with given symmetries has a bulk energy gap but symmetry protected gapless d − 1 di-
mensional boundary excitations. Heuristically, to go from the phase with one topological
index to another phase with different topological index, the spatially dependent energy gap
needs to close near the interface in otder to make the topology to change.

Let’s take the QWZ model as an simple example [37, 201]. For simplicity, expanding the
Hamiltonian around (0, 0) gives the following low energy Hamiltonian for a spatial varying
massive Dirac fermion:

HD = ℏvFkxσx + ℏvFkyσy +m(x)σz. (1.26)

Note that we have restore the dimension in the above Hamiltonian. The term vF is the fermi
velocity, and ℏ is the Planckian constant. The mass term m(x) now has the dimension of
energy. We further assume that mass term m(x) take the following profile x goes from −∞
to +∞:

m(x)

{
> 0 for x > 0,

< 0 for x < 0,
(1.27)

The exact profile of m(x) does not matter, as long as it is monotonic and smooth compared
to the electron wavelength. Further, we keep translational invariant along y-direction. This
describes a 1D boundary along the y-axis. This set up is shown in Fig. [1.4].

Transforming Hamiltonian Eq. [1.26] into real space:

HD(x, y) = −iℏvF∂xσx − iℏvF∂yσy +m(x)σz, (1.28)
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Figure 1.4: Boundary of a Chern insulator and the corresponding edge state.

we now would like to solve the differential equation:

H(x, y)ϕ(x, y) = Eϕ(x, y). (1.29)

To do so, we first factorize the ansatz of wave function as:

ϕ(x, y) = ϕ1(x)ϕ2(y). (1.30)

Since the y-direction is translationally invariant, we can take the ansatz as a plane wave
ϕ2(y) = eikyy. Therefore, the equation for ϕ1(x) = (f(x), g(x))T reads:(

m(x) −iℏvF
(

∂
∂x

+ ky
)

−iℏvF
(

∂
∂x

− ky
)

−m(x)

)(
f(x)
g(x)

)
= E(ky)

(
f(x)
g(x)

)
. (1.31)

Eliminating g(x) from the coupled equations, one can get:

−(ℏvF )2
(
∂2

∂x2
− k2y

)
f(x) = (E2 −m2)f(x). (1.32)

We have assumed that m(x) varies slowly so that ∂m(x)/∂x can be neglected. One can find
that the Eq. [1.32] has the following normalizable solution:

f(x) = e
− 1

ℏvF

´ x
0 dx′m(x′)

, E(ky) = ℏvFky. (1.33)

Thus we find a solution of the system with the wave function

ϕ1(x) = e
− 1

ℏvF

´ x
0 dx′m(x′)

(
1
i

)
, (1.34)
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which is localized near the x = 0. One can show that the localization length is inversely
propotional to the bulk gap of the Chern isnualtor. This is the so called edge states, whose
dispersion is E(ky) = ℏvFky. This edge mode travels ballistically upwards on x = 0 in
Fig. [1.4] at the group velocity vF . It provides the non-zero Hall conductivity of the system.

On the other hand, if

m(x)

{
> 0 for x < 0,

< 0 for x > 0,
(1.35)

then we have the normalizable solution for:

ϕ1(x) = e
1

ℏvF

´ x
0 dx′m(x′)

(
1
−i

)
, (1.36)

is a localized eigenstate with E(ky) = −ℏvFky. Physically, this means that if the mass profile
changes from positive to negative when x goes from −∞ to ∞, the edge mode at x = 0 will
move in the opposite direction (downward in Fig. [1.4]).

1.4 Introduction to group cohomology

In this section, we give a short introduction to group cohomology [179], which will be fre-
quently used in the part for SPT and SET.

1.4.1 Cochain, cocycle and coboundary

The input data for group cohomology is a group G (Abelian or non-Abelian) and an Abelian
group A equipped with an action of G: G×A → A, g× a 7→ g.a. Equivalently, the G action
on A defines a map ρ : G → Aut(A) from G to the automorphism group of A. Consider
n-argument functions ω(g1, g2, · · · , gn) ∈ A that maps an n tuple of group elements in G to
the Abelian group A

ω : G×G× · · · ×G︸ ︷︷ ︸
n times

→ A. (1.37)

Such a group function is called an n-cochain. The set of all n-cochains, which we denote by
Cn(G,A), forms an Abelian group under group multiplication in A

(ω1 · ω2)(g1, · · · , gn)=ω1(g1, · · · , gn) · ω2(g1, · · · , gn). (1.38)

here we define the identity n-cochain to be the trivial group function whose value is always
the identity in A. One can define a map ∂ : Cn(G,A) → Cn+1(G,A), ω 7→ ∂ω by

∂ω(g1, · · · , gn+1)=

[g1 . ω(g2, · · · , gn+1)] · ω(−1)n+1

(g1, · · · , gn)

×
∏

ω(−1)i(g1, · · · , gi−1, gi · gi+1, gi+2, · · · , gn+1),

(1.39)
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where the symbol g1 . ω(g2, · · · , gn+1) denotes the action of the group element g1 on the
function ω, inherited from the action of G on A.

One can check that (1) ∂2ω := ∂(∂ω) = I, where I denotes the identity (n+ 2)-cochain,
(2) for two n-cochains, ω1, ω2, ∂(ω1 · ω2) = (∂ω1) · (∂ω2).

An n-cochain ω(g1, · · · , gn) is called an n-cocycle if and only if it is mapped to the trivial
elemenet under the map ∂, i.e. ∂ω = I. The set of all n-cocycles, denoted by Zn(G,A) is a
subgroup of Cn(G,A).

Since ∂2 maps every cochain to the trivial one, any (n−1)-cochain c(g1, · · · , gn−1), defines
an n-cocycle ∂c. If an n-cocycle b can be represented as b = ∂c for some c ∈ Cn−1(G,A), b
is called an n-coboundary. The set of all n-coboundaries is a subgroup of Zn(G,A), which
we denote by Bn(G,A). Two n-cocycles ω1, ω2 are equivalent (denoted by ω1 ∼ ω2) if and
only if they differ by an n-coboundary: ω1 = ω2 · b, where b ∈ Bn(G,A).

The nth cohomology group of a group G with coefficients in A, Hn(G,A), is formed by
the equivalence classes in Zn(G,A) (i.e. up to Bn(G,A)). More precisely, we have:

Hn
ρ (G,A) =

Zn(G,A)

Bn(G,A)
. (1.40)

Here the subscript ρ in the cohomology group is a reminder of the group action ρ : G →
Aut(A).

For concreteness, we give the expression for the first and second group cohomology:

H1
ρ(G,A) =

Z1(G,A)

B1(G,A)
=

{d : G→ A|d(id) = 0, d(gh) = g.d(h) + d(g) ∀g, h ∈ G}
{d0 : G→ A|d0(g) = g.a− a for some a ∈ A} . (1.41)

H2
ρ(G,A) =

Z2(G,A)

B2(G,A)

=
{ω : G×G→A|ω(1, g1)=ω(g1, 1)=0, ω(g1, g2)+ω(g1g2, g3)=g1.ω(g2, g3)+ω(g1, g2g3),∀g1, g2, g3∈G}

{ω : G×G→A|ω(g1, g2)=g1.d(g2)−d(g1g2)+d(g1) for some d : G→ A with d(1) = 0} .

(1.42)
We note that the Abelian group A can be either finite (such as Z2), discrete infinite (such

as Z) or continuous (such as U(1)). The group G can also in principle be finite, discrete or
continuous (the continuous case may be treated with additional caution), and in this work
we will mostly work with a discrete group G.

Finially, note that one can directly search for all the solutions to Eqs. (1.41) and (1.42) by
implementing them in a computer program, and this is the method we used for computing
the cohomology of dihedral and quaternion groups. This method is quite elementary, brutal
force in nature, but works well for any finite group G with small order and finite Abelian
group A, and can provides the most complete data.
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1.4.2 Künneth Formula

When the group G acts trivially on the coefficient A, a useful decomposition formula for
Hn(G,A) exists for those G that have a direct product form G = G1 × G2, namely the
Künneth formula:

Hn(G,A) =
n∑

k=0

Hn(G1,Hn−k(G2,A)), (1.43)

this says that the nth cohomology group of G can be obtained from the cohomology groups of
G1 and G2 in lower degree, but in a “nested” fashion. Note that here we allow the coefficient
A to be either U(1), which appears in the classification of bosonic SPT (in d = n− 1 spatial
dimensions), or a finite Abelian group, which appears in symmetry fractionalization of SET
(n = 2).

In the case of SPT phases with a U(1) coefficient, this formula implies that SPT phases
with G symmetry in d spatial dimension can be constructed from SPT phases with G1

symmetry and G2 symmetry in lower dimensions. Specifically, the k = 0 term in the formula
reads:

H0(G1,Hd+1(G2, U(1))) = Hd+1(G2, U(1)), (1.44)

physically, this means that some SPT phases with symmetry G in d dimension are identified
with SPT phases with a subgroup symmetry G2 in d dimension. The k = n term admits a
similar meaning for the subgroup G1.

In the special case of A = Z2, the summands in the Künneth formula can be further
decomposed into tensor product of groups, and we have [207]:

Hn
id(G1 ×G2,Z2) =

⊕
p+q=n

(
Hp

id(G1,Z2) ⊗Hq
id(G2,Z2)

)
. (1.45)

1.5 Outline of the thesis and previous publications

Portion of the content presented in this thesis is adapted from previously published works
by the author of this dissertation. The rest of this thesis is organized as following:

• In Chapter 2, we start from a phenomenological model of interplay between topology
orders and symmetry breaking. We study the domain wall structure in chiral spin
liquids with domains of opposite chiralities. Based on a standard model, we obtain
a spatially varying, self-consistent mean-field solution for the spinons that describes
both the gapless edge modes and the change of chirality at the domain wall. We
further derive the non-universal properties, such as the velocity of the topologically
protected domain wall edge states and its modification to domain wall tension. Our
approach provides the first systematic study of the interplay between topological order
and symmetry-breaking physics, and can be applied to many other systems. This part
is based on arXiv:2208.14056 (Ref. [265]), and is done in collaboration with Chunxiao
Liu and Joel E. Moore.
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• In Chapter 3, we make the attempt to study the interplay between topological orders
from a more formal point of view. We consider two-dimensional topologically ordered
systems with coexisting long-range orders, where the only gapless excitations in the
spectrum are Goldstone modes of spontaneously broken continuous symmetries. We
show that the universal properties of point defects and textures are determined by the
remnant symmetry enriched topological order in the symmetry-breaking ground state
with non-fluctuating order parameters, and provide a classification for their properties
using algebraic topology. Our work serves as a first step towards a complete classifica-
tion and characterization of quantum phases with both long-range classical orders and
topological orders. This part is based on arXiv:2211.13207 (Ref. [264]), and is done in
collaboration with Chunxiao Liu and Yuan-Ming Lu.

• In Chapter 4, we propose a mechanism and an explicit model to realize the linear-in-
temperature resistivity that is the hallmark of bad metals, then verify the behavior with
advanced DMRG-type simulations. Our work gives a means to test the existence of
limits on how rapidly currents can be dissipated. What is more, this type of quantum
dynamics can happen at the domain wall of topological orders, where particle-hole
scattering leads to linear-in-temperature resistivity of edge modes. This part is based
on Phys. Rev. B 107, L100301 (Ref. [267]), and is done in collaboration with Roman
Rausch, Christoph Karrasch, and Joel E. Moore.

• In Chapter 5, we introduce an effective edge network theory to characterize the bound-
ary topology of coupled edge states generated from various types of topological insula-
tors. Two examples studied are a two-dimensional second-order topological insulator
and three-dimensional topological fullerenes, which involve multi-leg junctions. As a
consequence of bulk-edge correspondence, these edge networks can faithfully predict
properties such as the energy and fractional charge related to the bound states (edge
solitons) in the aforementioned systems, including several aspects that were previously
complicated or obscure. This part is based on Phys. Rev. B 99, 155102 (Ref. [266]),
and is done in collaboration with Joel E. Moore.
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Chapter 2

Structure of domain walls in chiral
spin liquids

A chiral spin liquid (CSL) is a long-range-entangled spin liquid ground state, which, despite
the absence of conventional magnetic order, spontaneously breaks time-reversal symmetry
and develops a chiral order [273, 64, 271, 115, 116, 9, 16, 170, 94, 93, 76, 92, 28, 282, 77, 99,
98, 189, 46, 219]. The prototypical example is the Kalmeyer–Laughlin (KL) CSL [115, 116]:
as a spin system analog of the ν= 1/2 bosonic fractional quantum Hall state [270], it hosts
both spin-1/2 anyonic quasiparticles (spinons) in the bulk [86] and chiral gapless modes on
the edge [268]. The universal bulk physics of the KL CSL is captured by the Chern–Simons
(CS) effective theory. Many model systems are found to support such a state [250, 191,
73, 79]; some of them are explicitly time-reversal invariant [241, 296, 302, 50, 38, 250, 191,
73, 79] and host degenerate chiral ground states and possibly domains of either chiralities;
variation in domain size between samples could explain the variable thermal conductivities
reported in some spin liquid candidates [241].

While the CS theory contains the full topological data of the bulk, it does not capture the
symmetry-breaking properties of a CSL, nor some of the non-universal but experimentally
important features of the system. For one thing, the CS theory provides little information
about the details of the quasiparticle energetic structure. It is well known that the CS term
is not gauge invariant in a system with boundary, and a gapless edge mode must exist at the
boundary to restore the gauge invariance [34, 36, 176]. The velocity of such an edge mode
enters the CS term as an effective parameter [278, 164, 163, 152, 118], which, in a quantum
Hall fluid, would be determined externally by the electric and magnetic fields at the edge. In
a CSL, however, there is no established way to determine the edge current velocity in terms
of the fundamental data of the CSL.

A more interesting, yet less explored, scenario occurs when a CSL contains multiple do-
mains. In this case, an interface of two domains with opposite chiralities hosts gapless mode
with a total chiral current carrying spin S = 2 [271, 273, 64]. The chiral order parameter
across the interface is determined self-consistently to minimize the total energy of the mul-
tiple domain system, and its spatial profile reveals many system-dependent properties of
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CSLs. Previously, the self-consistent mean-field theory has been widely applied to the study
of homogeneous quantum spin liquid systems [271, 269]. The solution, called a mean-field
ansatz, provides a convenient description for the bulk spinons in a quantum spin liquid state.
It is thus desirable to develop a microscopic theory to capture both bulk and domain wall
physics of CSLs, and the self-consistent mean-field theory, building on its previous successes,
can be adapted to provide valuable insight into this problem.

In this chpater, we study the domain wall structure in CSLs with domains of opposite
chiralities. Based on a standard model [271], we obtain a spatially varying, self-consistent
mean-field solution for the spinons that describes both the gapless edge modes and the
change of chirality at the domain wall. We complement the numerics by an effective field
theory analysis for the mean-field bond amplitude fluctuations, and analytically solve the
domain wall profile within the conventional Ising domain wall theory. By modeling the low
energy theory for spinons as Dirac fermions with spatially varying mass term, the velocity
of the topologically protected domain wall edge states can be accessed through the Jackiw-
Rebbi mechanism. We further find that, while the conventional Ising (i.e., ϕ4) theory shows
approximate agreement with the numerics in terms of the domain wall profile, the gapless
modes at the edge should in principle contribute an extra, non-analytic, |ϕ3| term to the
theory, and indeed such a term appears in derivatives of the bulk energy.

2.1 Chiral spin liquid and parton construction

Consider a spin-1/2 model defined on a square lattice, as shown in Fig. [2.1]:

H =
∑
ij

JijSi · Sj , (2.1)

with antiferromagnetic nearest-neighbor and next-nearest-neighbor coupling J1 > J2 >
0 [271, 273, 64]. This is one of the canonical models for CSLs and we review the par-
ton self-consistent mean-field treatment here, although naturally a mean-field theory will
not predict the energetics of the ground state reliably.

We will use the mean-field approximation to understand its physical properties: let Si =
⟨Si⟩ + δSi, and we obtain the following mean-field Hamiltonian:

Hmean =
∑
⟨ij⟩

Jij(⟨Si⟩ · Sj + Si · ⟨Sj⟩ − ⟨Si⟩⟨Sj⟩). (2.2)

We introduce the fermionic parton operators fiα, α = 1, 2, defined by

Si = f †
iασαβfiβ/2, (2.3)

with σ denotes the three-component vector of Pauli matrices. Physically, these operators
describe the spin-1/2 charge-neutral spinon excitations in the CSL phase. Substitute Si =
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Figure 2.1: Gauge-field conventions for a chiral spin state on a frustrated square lattice
J1 − J2 model [273, 64]. The nearest neighbors are labeled by S1 = −S3 = (a0, 0), S2 =
−S4 = (0, a0), and the nearest neighbors are labeled by R1 = −R3 = (a0, a0), R2 =
−R4 = (−a0, a0), with a0 the distance between two nearest sites. The black arrows on the
links represent a phase of π/2. Since charge for each electron is −e with e > 0, the Pieles

substitution reads: tij → tije
+i qℏ

´ j
i A·dl = tije

−i eℏ
´ j
i A·dl. Thus along the black arrows we get

an additional factor −i compared with the hopping in the absence of flux. Introduction of
flux breaks the time reversal symmetry for ground state effectively. For each unit cell, there
are two sites: A,B.

f †
iασαβfiβ/2 into Eq. (2.1), we arrive at:

H =
∑
⟨ij⟩

JijSi · Sj =
∑
⟨ij⟩

Jij
4
f †
iασαβfiβf

†
jα′σα′β′fjβ′

=
∑
⟨ij⟩

−Jij
2
f †
iαfjαf

†
jβfiβ +

∑
⟨ij⟩

Jij

(
1

2
ni −

1

4
ninj

)
.

(2.4)

Here, we have used σαβ ·σα′β′ = 2δαβ′δα′β − δαβδα′β′ and ni is the number of fermions at site
i. The second term in the second line of Eq. (2.4) is a constant and will be dropped in the
following discussions. Notice that the Hilbert space of Eq. (2.4) with four states per site is
larger than Eq. (2.1), which has two states per site. The equivalence between Eq. (2.4) and
Eq. (2.1) is valid only in the subspace where there is exactly one fermion per site. Therefore,
to use Eq. (2.4) to describe the spin state, we need to impose the constraint:

f †
iαfiα = f †

i1fi1 + f †
i2fi2 = 1, fiαfiβϵαβ = fi1fi2 + fi2fi1 = 0. (2.5)

A mean-field ground state at zeroth-order is obtained by making the following two ap-
proximations, we first replace Eq. (2.5) by its ground-state average:

⟨f †
iαfiα⟩ = 1. (2.6)
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such a constraint can be enforced by including a site-dependent and time independent La-
grangian multiplier a0(i)(f

†
iαfiα − 1) in the Hamiltonian. Second, we replace the operator

f †
iαfjα by its ground state expectation value ηij , again ignoring their fluctuations. In this

way, we obtain the zeroth-order mean-field Hamiltonian:

Hmean =
∑
⟨ij⟩

−1

2
Jij

[
(f †

iαfjαηji + h.c.) − |ηij|2
]

+
∑
i

a0(i)(f
†
iαfiα − 1). (2.7)

The ηij in Eq. (2.7) must satisfy the self-consistency condition:

ηij = ⟨f †
iαfjα⟩, (2.8)

and the site-dependent chemical potential a0(i) is chosen such that the Eq. (2.6) is satisfied
by the mean-field ground state. We call the pattern of ηij the mean-field ansatz. Then we
conduct the iterative process shown in Fig. [2.2].

Initial trial 
ansatz 

{"!"# , $## % }
{"!"$%&, $#$%& % }

converge? 

Diagonalize 
Hamiltonian: 
''()*$

Generating new 
trial ansatz "!"$%& =

⟨*!+,*"+⟩$

Tune $#$%& % such that:
⟨*!+,*"+⟩$%&= 1 for ''()*$%& End

Yes

No

Figure 2.2: The iterative self-consistent procedure. The convergence condition in the last
step is set to

∑
ij |ηn+1

ij − ηnij| < δ and
∑

i |an+1
0 (i) − an0 (i)| < δ, while δ is a positive number

which decides the accuracy.

2.2 Homogeneous self-consistent ansatz for chiral spin

liquid

2.2.1 Mean field Hamiltonian in momentum space

From Sec. [2.1], we know that for the spin-1/2 J1 − J2 model defined on the square lattice
(see in Fig. [2.1]), the mean-field Hamiltonian based on Eq. (2.7) is given by [273, 64]:

H = H1 +H2, (2.9)
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with the nearest neighbor terms,

H1 =−
∑
i,σ

{[Jx
1 η

1
ba(r

a
i )Ĉ†

a,σ(ra
i )Ĉb,σ(ra

i + S1) + Jy
1 η

2
aa(r

a
i )Ĉ†

a,σ(ra
i )Ĉa,σ(ra

i + S2) + H.c.]

+
Jx
1

2
|η1ba(ra

i )|2 +
Jy
1

2
|η2aa(ra

i )|2}

−
∑
i,σ

{[Jx
1 η

1
ab(r

b
i )Ĉ

†
b,σ(rb

i )Ĉa,σ(rb
i + S1) + Jy

1 η
2
bb(r

b
i )Ĉ

†
b,σ(rb

i )Ĉb,σ(rb
i + S2) + H.c.]

+
Jx
1

2
|η1ab(rb

i )|2 +
Jy
1

2
|η2bb(rb

i )|2},
(2.10)

and the second nearest neighbor terms,

H2 =−
∑
i,σ

{[J+
2 η

3
ba(r

a
i )Ĉ†

a,σ(ra
i )Ĉb,σ(ra

i + R1) + J−
2 η

4
ba(r

a
i )Ĉ†

a,σ(ra
i )Ĉb,σ(ra

i + R4) + H.c.]

+
J+
2

2
|η3ba(ra

i )|2 +
J−
2

2
|η4ba(ra

i )|2}

−
∑
i,σ

{[J+
2 η

3
ab(r

b
i )Ĉ

†
b,σ(rb

i )Ĉa,σ(rb
i + R1) + J−

2 η
4
ab(r

b
i )Ĉ

†
b,σ(rb

i )Ĉa,σ(rb
i + R4) + H.c.]

+
J+
2

2
|η3ab(rb

i )|2 +
J−
2

2
|η4ab(rb

i )|2}.
(2.11)

For simplicity, we will drop the constant terms temporarily and only add them back in
the free energy Eq. (2.28). In the homogeneous limit, the following ansatz represents a chiral
spin liquid phase:

η1ba(r
a
i )≡η1ba =+iρ̄ax, η1ab(r

b
i )≡η1ab =+iρ̄bx, η2aa(r

a
i )≡η2aa =−iρ̄ay, η2bb(r

a
i )≡η2bb =+iρ̄by,

η3ba(r
a
i )≡η3ba =+iλ̄a+, η3ab(r

b
i )≡η3ab =−iλ̄b+, η4ba(r

a
i )≡η4ba =+iλ̄a−, η4ab(r

b
i )≡η4ab =−iλ̄b−.

(2.12)
We introduce the the Fourier transformation,

Ĉa(rj) =
1√
N

∑
k

e+ik·rj Ĉa(k), Ĉb(rj) =
1√
N

∑
k

e+ik·rj Ĉb(k), (2.13)

upon dropping the constant terms, we shall have Eq. (2.9) transformed into momentum
space:

H =
∑
σ,k

(
Ĉ†

a,σ(k) Ĉ†
b,σ(k)

)
(h1 + h2)

(
Ĉa,σ(k)

Ĉb,σ(k)

)
(2.14)
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with the kernel:

h1 = − Jx
1 (−ρ̄ax + ρ̄bx) cos(k · S1)σy + Jx

1 (ρ̄ax + ρ̄bx) sin(k · S1)σx

− Jy
1 (+ρ̄ay − ρ̄by) sin(k · S2)σ0 − Jy

1 (ρ̄ay + ρ̄by) sin(k · S2)σz

h2 = + [J+
2 (λ̄a+ + λ̄b+) cos(k ·R1) + J−

2 (λ̄a− + λ̄b−) cos(k ·R4)]σy

+ [J+
2 (λ̄a+ − λ̄b+) sin(k ·R1) + J−

2 (λ̄a− − λ̄b−) sin(k ·R4)]σx.

(2.15)

We can further take the limit for each unit cell the parameters take the same value or a and
b:

ρ̄ax = ρ̄bx = ρ̄0x, ρ̄ay = ρ̄by = ρ̄0y, J+
2 = J−

2 λ̄a+ = λ̄b+ = λ̄0+, λ̄a− = λ̄b− = λ̄0−. (2.16)

The Bloch Hamiltonian can be further simplified as:

h0 =2Jx
1 ρ̄

0
x sin(k · S1)σx + [2J+

2 λ̄
0
+ cos(k ·R1) + 2J−

2 λ̄
0
− cos(k ·R4)]σy − 2Jy

1 ρ̄
0
y sin(k · S2)σz

=2Jx
1 ρ̄

0
x sin(kxa0)σx + 2[J+

2 λ̄
0
+ + J−

2 λ̄
0
−] cos kxa0 cos kya0σy

− 2[J+
2 λ̄

0
+ − J−

2 λ̄
0
−] sin kxa0 sin kya0σy − 2Jy

1 ρ̄
0
y sin(kya0)σz.

(2.17)
In the limit J+

2 = J−
2 = J2 such that λ0+ = λ0− = λ0, with the constants added back, we

arrive at:

h0(kx, ky) = J1|ρ̄x|2 + J1|ρ̄y|2 + 2J2|λ̄|2 + hx(kx, ky)σx + hy(kx, ky)σy + hz(kx, ky)σz, (2.18)

with:
hx(kx, ky) = +2J1ρx sin(kxa0)

hy(kx, ky) = +4J2λ cos(kxa0) cos(kya0)

hz(kx, ky) = −2J1ρy sin(kya0),

(2.19)

which gives the gap at (kx, ky) = (0, 0):

∆ = 2 × 4J2λ̄
0 = 8J2λ̄

0. (2.20)

2.2.2 Self-consistent solution via iterative procedure

For a two level system (whose energy is normalized to 1):

HA = sin θ cosϕσx + sin θ sinϕσy + cos θσz, (2.21)

we shall have the eigenstates:

ϵ = −1, ψ− =

sin

(
θ
2

)
e−iϕ

− cos

(
θ
2

)
,

 , ϵ = +1, ψ+ =

cos

(
θ
2

)
e−iϕ,

sin

(
θ
2

)
 . (2.22)
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Compared with Eq. (2.18), we can define

d̂x(kx, ky) = sin θ cosϕ =
hx(kx, ky)√

h2x(kx, ky) + h2y(kx, ky) + h2z(kx, ky)

= +
2Jx

1 ρ̄
0
x sin(kxa0)√

[2Jx
1 ρ̄

0
x sin(kxa0)]2 + [4J2λ0 cos(kxa0) cos(kya0)]2 + [2Jy

1 ρ̄
0
y sin(kya0)]2

,

d̂y(kx, ky) = sin θ sinϕ =
hy(kx, ky)√

h2x(kx, ky) + h2y(kx, ky) + h2z(kx, ky)

= +
4J2λ

0 cos(kxa0) cos(kya0)√
[2Jx

1 ρ̄
0
x sin(kxa0)]2 + [4J2λ0 cos(kxa0) cos(kya0)]2 + [2Jy

1 ρ̄
0
y sin(kya0)]2

,

d̂z(kx, ky) = cos θ =
hz(kx, ky)√

h2x(kx, ky) + h2y(kx, ky) + h2z(kx, ky)

= − 2Jy
1 ρ̄

0
y sin(kya0)√

[2Jx
1 ρ̄

0
x sin(kxa0)]2 + [4J2λ0 cos(kxa0) cos(kya0)]2 + [2Jy

1 ρ̄
0
y sin(kya0)]2

.

(2.23)
Then we shall have the self consistency equations for the lower subband,

iρ̄ax = iρ̄0x ≡ η1ba =
∑
σ

¨
[dk]e−ikxa0

[
− cos

(
θ

2

)]∗[
sin

(
θ

2

)
e−iϕ

]
=

¨
[dk]

i2Jx
1 ρ̄

0
x sin2(kxa0)√

h2x(kx, ky) + h2y(kx, ky) + h2z(kx, ky)
,

(2.24)

where we define: ¨
[dk] =

ˆ +π

−π

dky
2π

ˆ +π/2

−π/2

dkx
π
. (2.25)

Similarly, for the η2aa and η3ba, we arrive at the self-consistency equations:

−iρ̄ay ≡ η2aa =

¨
[dk]

−i2Jy
1 ρ̄

0
y sin2(kya0)√

h2x(kx, ky) + h2y(kx, ky) + h2z(kx, ky)
,

+iλ̄0 ≡ η3ba =

¨
[dk]

i4J2λ
0 cos2(kxa0) cos2(kya0)√

h2x(kx, ky) + h2y(kx, ky) + h2z(kx, ky)
.

(2.26)
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To solve above self-consistency equation, we use the following recursion relations:

ρ̄0x,n+1 =

¨
[dk]

Jx
1 ρ̄

0
x,n sin2(kxa0)√

[Jx
1 ρ̄

0
x,n sin(kxa0)]2 + [2J2λ0n cos(kxa0) cos(kya0)]2 + [Jy

1 ρ̄
0
y,n sin(kya0)]2

,

ρ̄0y,n+1 =

¨
[dk]

2Jy
1 ρ̄

0
y,n sin2(kya0)√

[2Jx
1 ρ̄

0
x,n sin(kxa0)]2 + [4J2λ0n cos(kxa0) cos(kya0)]2 + [2Jy

1 ρ̄
0
y,n sin(kya0)]2

,

λ̄0n+1 =

¨
[dk]

4J2λ
0
n cos2(kxa0) cos2(kya0)√

[2Jx
1 ρ̄

0
x,n sin(kxa0)]2 + [4J2λ0n cos(kxa0) cos(kya0)]2 + [2Jy

1 ρ̄
0
y,n sin(kya0)]2

,

(2.27)
and one can run the iterations for a number of times until reaching convergence as n → ∞
based on the procedure shown in Fig. [2.2].

2.2.3 Self-consistent solution via minimizing mean-field energy

The free energy per unit cell per spin reads:

Fσ(ρ0x, ρ
0
y, λ

0) = Jx
1 |ρ0x|2 + Jy

1 |ρ0y|2 + 2J2|λ0|2

−
¨

[dk]
√

[2Jx
1 ρ̄

0
x sin(kxa0)]2+[4J2λ0 cos(kxa0) cos(kya0)]2+[2Jy

1 ρ̄
0
y sin(kya0)]2,

(2.28)

variational equations:
δF

δρ0x
= 0,

δF

δρ0y
= 0,

δF

δλ0
= 0, (2.29)

will give the same relation as given in the self-consistency equations Eq. (2.24) and Eq. (2.26).
The energy profile and the solutions are illustrated in Fig. 2.3(b).

2.2.4 Chern number and chirality

We first look for a self-consistent homogeneous solution {ρx(i), ρy(i), λ(i)} ≡ (ρx, ρy, λ)
by solving the self-consistency condition Eq. (2.27) in an iterative manner [94]. When
J2 > 0.46J1, we find eight solutions (±ρ̄x,±ρ̄y,±λ̄) with ρ̄x = ρ̄y and λ̄ > 0, ensuring
the Hamiltonian is gapped. The solutions can be grouped by their chirality χ=±χ0, where
χ0 = |ρ̄xρ̄yλ̄|. The corresponding Bloch Hamiltonian reads (we set lattice constant a0 = 1)

h0(k)=J1|ρx|2 + J1|ρy|2 + 2J2|λ|2 + d(k) · σ,
d(k)=2(J1ρx sin kx, 2J2λ cos kx cos ky,−J1ρy sin ky).

(2.30)

The order parameter for time-reversal symmetry breaking is the spin chirality operator,
defined as

χ(i)≡2S(ra
i ) · (S(rb

i)×S(ra
i + êy))=ρx(i)ρy(i)λ(i). (2.31)
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Figure 2.3: (a) Parton mean-field hoppings (+i along the arrow), with blue (red) circle
stands for the a (b) sublattice. (b) Density-contour plot for the Eq. (2.28) in the parameter
space, where ϵ(ρ, λ) = F (ρ, ρ, λ)/J1. The orange (blue) dots stand for the solution with
positive (negative) chirality. (c) The two-domain setup. The system is finite along x direction
but periodic along y direction, which can be viewed as a quasi-1D ribbon. The blue (orange)
part to the left (right) of x1 (x2) are the chiral spin states with negative (positive) chirality,
held fixed during the numerical iteration, while the region between x1 and x2 are subjected to
the iteration. (d) The energy ϵ(λ) and its third derivative ϵ(3)(λ) along 5 → 4 → 7 → 1 → 6
in (b). (e) A converged solution for the domain wall structure. Note that the local mass
mz(x), gap ∆(x), and chirality χ(x) are all proportional to λ(x). (f) Partition for the ribbon
mentioned in (c).

The Chern number of the lower band C=−sgn(ρxρyλ) is associated with χ(i) of the original
spin model [24], which we shows as following.

For a two-band system, the Chern number associated with the lower subband of Eq. (2.21)
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is defined as [24]

C =
1

2π

ˆ
[dkxdky]Fxy, Fµν =

1

2
ϵαβγ d̂α(k)∂kµ d̂β(k)∂kν d̂γ(k), (2.32)

from which we have

Fxy = − 8J2
1J2λρxρy[cos2(ky) sin2(kx) + cos2(kx) cos2(ky) + cos2(kx) sin2(ky)]

{[2Jx
1 ρ̄x sin(kxa0)]2 + [4J2λ cos(kxa0) cos(kya0)]2 + [2Jy

1 ρ̄y sin(kya0)]2}3/2
. (2.33)

After some calculations, we further arrive at the Chern number:

C = −Sign(ρxρyλ), (2.34)

where Sign denotes for sign function. This can be associated to the form of chirality operator
in terms of mean field ansatz, as given in Eq. (2.31).

2.3 Self-consistent solution for an inhomogeneous

chiral spin liquid with domain wall

One central approach in this work is a self-consistent mean-field ansatz for a CSL system with
both positive and negative chirality domains. For such a spatially inhomogeneous ansatz,
the iteration method is particularly efficient compared to the energy minimization approach
and hence will be our main tool in the analysis below. For simplicity, we consider a two-
domain setup as illustrated in Fig. 2.3(c): the system is finite along x direction and periodic
along y direction, with a negative (positive) chirality −χ0 (+χ0) CSL domain existing on
the left (right). While the chirality is nearly uniform far away from the interface, a profile
develops near the interface, leading to a finite domain wall whose width will be determined
self-consistently and interatively.

2.3.1 Self consistent calculations for a 1D ribbon

If we apply the open boundary condition along x direction but keep infinite boundary con-
dition along y direction for Eq. (2.9), we shall get a configuration of ribbon, which is the
setup for Fig. 1c of the main text. We define the following partial Fourier transformation:

Ĉα,σ(xαi , y
α
j ) =

1√
Ny

∑
ky

e+ikyyαj Ĉα,σ(xi, ky). (2.35)
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Plugging back to Eq. (2.9), we arrive at the partial Fourier transformation for H1:

H1 =−
∑
n,ky ,σ

Jx
1 [η1ba(2n−1) |Ψa,σ(2n−1, ky)⟩ ⟨Ψb,σ(2n, ky)|

+η1ab(2n) |Ψb,σ(2n, ky)⟩ ⟨Ψa,σ(2n+1, ky)|+H.c.]

−
∑
n,ky ,σ

Jy
1 [η2aa(2n−1)e+ikya0 |Ψa,σ(2n−1, ky)⟩ ⟨Ψa,σ(2n−1, ky)|

+η2bb(2n)e+ikya0 |Ψb,σ(2n, ky)⟩ ⟨Ψb,σ(2n, ky)|+H.c.].

(2.36)

Thus the self-consistency equation for the ribbon reads (the occ means the summation runs
through all the occupied bands)

η1ba(r
a
i )=η1ba(x

a
i )=η1ba(2n− 1)=⟨Ĉ†

b,σ(ra
i + S1)Ĉa,σ(ra

i )⟩

=
1

Ny

∑
k1y ,k

2
y ,j,σ

⟨Ĉ†
b,σ(xai + a0, k

1
y)e−ik1yy

a
j Ĉa,σ(xai , k

2
y)e+ik2yy

a
j ⟩

=
1

Ny

∑
ky

∑
σ

⟨Ĉ†
b,σ(xai + a0, ky)Ĉa,σ(xai , ky)⟩

=
1

Ny

∑
σ,ky∈[−π,+π)

∑
ζ∈occ

Ψ∗,ζ
b,σ(2n, ky)Ψ

ζ
a,σ(2n− 1, ky)

η1ab(r
b
i )=

1

Ny

∑
ky

∑
σ

⟨Ĉ†
a,σ(xbi + a0, ky)Ĉb,σ(xbi , ky)⟩

=
1

Ny

∑
σ,ky∈[−π,+π)

∑
ζ∈occ

Ψ∗,ζ
a,σ(2n+ 1, ky)Ψ

ζ
b,σ(2n, ky)

η2aa(r
a
i )=

1

Ny

∑
ky

∑
σ

⟨e−ikya0Ĉ†
a,σ(xai , ky)Ĉa,σ(xai , ky)⟩

=
1

Ny

∑
σ,ky∈[−π,+π)

∑
ζ∈occ

e−ikya0Ψ∗,ζ
a,σ(2n− 1, ky)Ψ

ζ
a,σ(2n− 1, ky)

η2bb(r
b
i )=

1

Ny

∑
ky

∑
σ

⟨e−ikya0Ĉ†
b,σ(xbi , ky)Ĉb,σ(xbi , ky)⟩

=
1

Ny

∑
ζ∈occ

∑
σ,ky∈[−π,+π)

e−ikya0Ψ∗,ζ
b,σ(2n, ky)Ψ̂

ζ
b,σ(2n, ky).

(2.37)
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Similarly, the next-nearest neighbor coupling can also be partially transformed into Fourier
space

H2 = −
∑
i,ky ,σ

[J+
2 η

3
ba(x

a
i )e

+ikya0 |Ψa,σ(2n− 1, ky)⟩ ⟨Ψb,σ(2n, ky)| + H.c.]

−
∑
i,ky ,σ

[J+
2 η

3
ab(x

b
i)e

+ikya0 |Ψb,σ(2n, ky)⟩ ⟨Ψa,σ(2n+ 1, ky)| + H.c.]

−
∑
i,ky ,σ

[J−
2 η

4
ba(x

a
i )e

−ikya0 |Ψa,σ⟩ (2n− 1, ky) ⟨Ψb,σ(2n, ky)| + H.c.]

−
∑
i,ky ,σ

[J−
2 η

4
ab(x

b
i)e

−ikya0 |Ψb,σ(2n, ky)⟩ ⟨Ψa,σ(2n+ 1, ky)| + H.c.],

(2.38)

and we have the following self-consistent equations:

η3ba(r
a
i )=η3ba(x

a
i )=η3ba(2n− 1)=⟨Ĉ†

b,σ(ra
i + R1)Ĉa,σ(ra

i )⟩

=
1

Ny

∑
k1y ,k

2
y ,j,σ

⟨Ĉ†
b,σ(xai + a0, k

1
y)e−ik1y(y

a
j +a0)Ĉa,σ(xai , k

2
y)e+ik2yy

a
j ⟩

=
1

Ny

∑
ky

∑
σ

⟨e−ikya0Ĉ†
b,σ(xai + a0, ky)Ĉa,σ(xai , ky)⟩

=
1

Ny

∑
σ,ky∈[−π,+π)

∑
ζ∈occ

e−ikya0Ψ∗,ζ
b,σ(2n, ky)Ψ

ζ
a,σ(2n− 1, ky)

η3ab(r
b
i )=

1

Ny

∑
ky

∑
σ

⟨e−ikya0Ĉ†
a,σ(xbi + a0, ky)Ĉb,σ(xbi , ky)⟩

=
1

Ny

∑
σ,ky∈[−π,π)

∑
ζ∈occ

e−ikya0Ψ∗,ζ
a,σ(2n+ 1, ky)Ψ

ζ
b,σ(2n, ky)

η4ba(r
a
i )=

1

Ny

∑
ky

∑
σ

⟨e+ikya0Ĉ†
b,σ(xai + a0, ky)Ĉa,σ(xai , ky)⟩

=
1

Ny

∑
ky

∑
σ,ky∈[−π,π)

∑
ζ∈occ

e+ikya0Ψ∗,ζ
b,σ(2n, ky)Ψ

ζ
a,σ(2n− 1, ky)

η4ab(r
b
i )=

1

Ny

∑
ky

∑
σ

⟨e+ikya0Ĉ†
a,σ(xbi + a0, ky)Ĉb,σ(xbi , ky)⟩

=
1

Ny

∑
ky

∑
σ,ky∈[−π,π)

∑
ζ∈occ

e+ikya0Ψ∗,ζ
a,σ(2n+ 1, ky)Ψ

ζ
b,σ(2n, ky).

(2.39)

The central approach in this work is a self-consistent mean-field ansatz for a CSL system
with both positive and negative chirality domains. For such a spatially inhomogeneous
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ansatz, the iteration method is particularly efficient compared to the energy minimization
approach and hence will be our main tool in the analysis below. We attempt a self-consistent
mean-field description of a multi-domain CSL. For simplicity, we consider a two-domain
setup as illustrated in Fig. 2.3(c): the system is finite along x direction and periodic along
y direction, with a negative (positive) chirality −χ0 (+χ0) CSL domain existing on the left
(right). While the chirality is nearly uniform far away from the interface, a profile develops
near the interface, leading to a finite domain wall whose width will be determined self-
consistently in the following procedure: (1) choose one of the ansatze of the homogeneous
system with negative (positive) chirality obtained above, η−,a

ij (η+,b
ij ), and assign it to the

region x < x1 on the far left (x > x2 on the far right) in Fig. 2.3(c); (2) choose a set of
mean-field bonds arbitrarily and assign it to the middle region x1 < x < x2; (3) repeat the
iteration process only for the bonds between x1 and x2, with the far left x < x1 and far right
x2 < x bonds held fixed; (4) a solution is obtained when the bonds converge. If multiple
solutions exist, then the one with the lowest energy at half-filling will be chosen.

2.3.2 Numerical results

Given a set of (J1, J2), we perform the self-consistent calculation for a system with 50 unit
cells (L= 100 sites) along the x-direction with sufficiently dense ky points to conduct the
numerical ky integral. For J2 ≥ 0.46J1, we find a converging solution of the following form:
ρ̄x and ρ̄y remain constant in the entire system, while λ(x) in the domain wall region extends
between −λ̄ (the value on the far left) and λ̄ (the value on the far right). This solution is
shown in Fig. 2.4. One can fit the λ(x) profile and hence the chirality profile very well with
a tanh function

χ(x) = χ0 tanh[(x− x0)/(
√

2ξ)], (2.40)

here x0 defines the domain wall location. Changing the domain wall location does not affect
the shape of the domain wall or the total energy of the system, hence we will manually set
x0 = L/2.

It is interesting to study the domain wall width ξ as a function of the exchange parameters
(J1, J2). We find that ξ is directly proportional to the inverse of the bulk gap (far away from
the domain wall), which in turn is a function of J2/J1. In the limit where the bulk gap
∆ = 8J2λ̄ vanishes (corresponding to J2 ≈ 0.46J1), the domain wall width diverges, as
shown in Fig. 2.4(d).

2.4 Amplitude fluctuation

The bulk of a CSL contains both spinon excitations and gauge fluctuations – both are
gapped, due to finite spinon mass and a nonzero spinon Chern number. A third type, the
amplitude fluctuations of the spinon hoppings, are often not discussed, as they are irrelevant
to the description of a homogeneous CSL and are suppressed in the usual large-N treatment.
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Figure 2.4: (a-c) Domain wall configurations, with the gray line standing for the initially
proposed chirality profile and the red dots the final chirality profile of the converged solution.
The left blue (right orange) part are the chiral spin states fixed to the ground state value
(ρ̄x, ρ̄y,−λ̄) ((ρ̄x, ρ̄y,+λ̄)) during the iteration. (a) J2/J1 = 0.53, with the symmetric sharp
initial condition for chirality. (b) J2/J1 = 0.53 with the random initial condition for chirality.
(c) J2/J1 = 0.70, with symmetric sharp initial condition for chirality. (d) The bulk gap ∆ for
homogeneous limit and the inverse correlation length ξ−1 with respect to J2/J1, from which
we obtain J1a0/ξ = 0.77∆. The values J2/J1, ∆/J1, a0/ξ and ℏvedge/J1a0 have a one-to-one
correspondence with each other.

Nevertheless, the amplitude fluctuations can provide important information for a spatially
varying CSL state.

To understand the amplitude fluctuation, we want to introduce the dynamical field:

H0 ∼
∑
k

ψ†
k[(u0x + ûx)kxa0σx + (u0y + ûy)kya0σy + (u0z + m̂z)σz]ψk, (2.41)

which means we assume that the flux pattern in the chiral spin liquid phase we considered is
fixed (i.e. no phase fluctuation for the gauge fields), while the amplitude for the mean-field
bonds (i.e., the value of ρx, ρy, λ±) can fluctuate. The fluctuations of the mean-field bonds
are captured by the newly introduced classical field ûx, ûy and ûz, which are related to the
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fluctuations of the original bond amplitude by:

ûx = 2Jx
1 ρ̂x, ûy = −2Jy

1 ρ̂y, m̂z = 2(J+
2 λ̂+ + J−

2 λ̂−). (2.42)

The total action then reads (with ∂τ the derivative with respect to imaginary time):

Ss =

ˆ
dτd2xψ̄s

(
∂τ + u0xτ

xkxa0 + u0yτ
ykya0 + u0zτ

z + ûxkxa0τ
x + ûykya0τ

y + m̂zτ
z
)
ψs.

(2.43)
Upon doing the transformation,

ψs → e−iπ
4
τzψ, ψ̄s → iψ̄e−iπ

4
τz . (2.44)

We shall then arrive at:

Ss =

ˆ
dτd2xψ̄(τ z∂τ + u0xa0∂xτ

x + u0ya0∂yτ
y + u0zτ0 + ûxkxa0iτ

x + ûykya0iτ
y + m̂zτ0︸ ︷︷ ︸

perturbation

)ψ

(2.45)
We can treat the last part as a perturbation. Then we shall have the form:

Seff = − ln det[τ z∂τ + u0xa0∂xτ
x + u0ya0∂yτ

y + u0zτ0 + ûxkxa0iτ
x + ûykya0iτ

y + m̂zτ0]

= −Tr ln[τ z∂τ + u0xa0∂xτ
x + u0ya0∂yτ

y + u0zτ0 + ûxkxa0iτ
x + ûykya0iτ

y + m̂zτ0]

= −Tr ln[G−1 + V ] = −Tr lnG−1 − Tr ln[1 +GV ]

= const − Tr[GV ] +
1

2
Tr[GVGV)] + · · ·

(2.46)

(u0x, u
0
y, u

0
z) = (2J1ρ̄x, 2J1ρ̄y, 4J2λ̄). As we have set ρ̄x = ρ̄y, from which we shall have u0x = u0y,

and can further define: m0
z = u0z/u

0
x = 2J1λ̄/J1ρ̄x, k0 = ℏω/u0xa0. Thus the propagator is

defined as:

G(k) =
iu0xkxa0τx + iu0ykya0τy + iℏωτz + u0zτ0

(ℏω)2 + (u0xkxa0)
2 + (u0ykya0)

2 + (u0z)
2

=
1

u0x

ik̃xτx + ik̃yτy + ik̃0τz +m0
zτ0

k̃2x + k̃2y + k̃20 + (m0
z)

2
, (2.47)

where the dimensionless momentum are defined as (k̃x, k̃y, k̃0) = (kxa0, kya0, k0a0). Similarly,
the vertex is defined as:

V = Vx + Vy + Vz = ûxk̃xiτ
x + ûyk̃yiτ

y + m̂zτ0, Vx = ûxk̃xiτ
x, Vy = ûyk̃yiτ

y, Vz = m̂zτ0.
(2.48)

The leading order term vanishes, and we would love to see the dynamical field from:

1

2
Tr[GVGV ]

=
1

2
Tr ln[G(p̃x, p̃y,m

0
z)(ûxp̃xiτ

x + ûyp̃yiτ
y + m̂zτ0)G(k̃x, k̃y,m

0
z)(ûxk̃xiτ

x + ûyk̃yiτ
y + m̂zτ0)].

(2.49)
Below we will use the dimensionless momentum and drop the tilde on momentum.
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2.5 The effective action
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Figure 2.5: Feynman diagrams for evaluation of Seff given in Eq. (2.50), with (a) for a term
in SA

eff , (b) for a term in SB
eff , and (c) for a term in SC

eff .

One can integrate out the fermions to get the effective field theory for ûx, ûy, and m̂z (or

equivalently, the ρ̂x, ρ̂y and λ̂). After the lengthy calculation in Section [2.10], we arrive at
the following effective action:

Seff = SA
eff + SB

eff + SC
eff (2.50)

with the term associated with two velocity vertices:

SA
eff ≡

∑
µ,ν=x,y

1

2

ˆ
d3k

(2π)3
ΠA

µν(k)ûµ(+k)û−ν(k), (2.51)

and two mass vertices:

SB
eff ≡ 1

2

ˆ
d3k

(2π)3
ΠB

zz(k)m̂z(+k)m̂z(−k), (2.52)

and one velocity vertex and one mass vertex:

SC
eff ≡

∑
µ,ν=x,y

1

2

ˆ
d3k

(2π3)
[ΠC

zν(k)m̂z(+k)ûν(−k) + ΠC
µz(k)ûµ(+k)m̂z(−k)]. (2.53)

We could write the effective action in a simpler way:

Seff ≃ ℏ
2(u0x)2

ˆ
d3k

(2π)3
(
ûx(+k) ûy(+k) m̂z(+k)

)
S

 ûx(−k)
ûy(−k)
m̂z(−k)

 (2.54)

The matrix element of S reads (note that we have defined m = |m0
z|):

Sxx =
2m3

3π
+

m

12π
(k2 − k2x), Sxy =

m3

6π
+

m

24π
(k2 − k2x − k2y), Sxz =

m3

2π
+

m

24π
(k2 − k2x),

Syx =
m3

6π
+

m

24π
(k2 − k2x − k2y), Syy =

2m3

3π
+

m

12π
(k2 − k2y), Syz =

m2

2π
+

m

24π
(k2 − k2y),

Szx =
m3

2π
+

m

24π
(k2 − k2x), Szy =

m3

2π
+

m

24π
(k2 − k2y), Szz =

7m3

8π
+

3k2m

32π
.

(2.55)
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such that we have:
S = M0(m

0
z) + Tk(m0

z), (2.56)

with mass M0(m
0
z) and stiffness Tk(m0

z) reads:

M0(m
0
z) =

m3

24π

16 4 12
4 16 12
12 12 21

 ,

Tk(m0
z) =

m

24π

 2(k2 − k2x) (k2 − k2x − k2y) (k2 − k2x)
(k2 − k2x − k2y) 2(k2 − k2y) (k2 − k2y)

(k2 − k2x) (k2 − k2y) 9
4
k2

 .

(2.57)

From the effective action, we can get the free energy for one valley (0, 0):

F (m0
z) =

1

2u0x

ˆ
d2k

(2π)2
(
ûx(+k) ûy(+k) m̂z(+k)

)
F(m0

z)

 ûx(−k)
ûy(−k)
m̂z(−k)

 . (2.58)

where:
F(m0

z) = M0(m
0
z) + Tk(m0

z). (2.59)

This gives a Ginzburg–Landau theory for the three-component vector field. By using the
fact that k2 = k2x + k2y, we have:

Tk(m0
z) =

m

24π

2k2y 0 k2y
0 2k2x k2x
k2y k2x

9
4
(k2x + k2y)

 (2.60)

Another valley (0, π) corresponds to F(−m0
z), such that we have:

F̃(m0
z) = F(m0

z) + F(−m0
z)

= M0(m
0
z) + Tk(m0

z) + M(−m0
z) + Tk(−m0

z) = 2M0(m) + 2Tk(m) = 2F(m0
z).
(2.61)

2.5.1 Domain wall structure

As we have discussed above, the deviation (ûx, ûy, m̂z) from the self-consistent ansatz in
the homogeneous limit (u0x, u

0
y, u

0
z) = (2J1ρ̄x,−2J1ρ̄y, 4J2λ̄) captures the amplitude fluc-

tuations around the energy minima. Treating the deviation as a three-component field
Ψ = (ûx, ûy, m̂z)

T, and assuming ρ̄0 = ρ̄x = ρ̄y, we arrive at:

Seff ≃ ℏ
2(u0x)2

ˆ
[d3k̃]Ψ†[M0 + Tk̃]Ψ, (2.62)

with the mass matrix M0 and the stiffness matrix Tk̃. We define the dimensionless parameter
m= |u0z/u0x|= |2J2λ̄/J1ρ̄0|. The energy at zero temperature of the field is derived by dropping
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the frequency dependence. Assuming translation symmetry along the y direction as shown
in Fig. 4.1(c), we set ky =0 in order to minimize the energy. This leads to,

Tk =
m

24π

0 0 0
0 2k2x k2x
0 k2x

9
4
k2x

 (2.63)

We further integrate over y direction, and then we shall have the total free energy:

FT = F (m0
z) + F (−m0

z)

≃ m

u0x

ˆ
dk

2π
[2uy(+k)uy(−k) + uy(+k)mz(−k) +mz(+k)uy(−k) +

9

4
mz(+k)mz(−k)]

+
m

u0x

ˆ
dk

2π
m2[16ux(+k)ux(−k) + 4ux(+k)uy(−k) + 12ux(+k)mz(−k)]

+
m

u0x

ˆ
dk

2π
m2[4uy(+k)ux(−k) + 16uy(+k)uy(−k) + 12uy(+k)mz(−k)]

+
m

u0x

ˆ
dk

2π
m2[12mz(+k)ux(−k) + 12mz(+k)uy(−k) + 21mz(+k)mz(−k)],

(2.64)
from which, we shall further have in the real space:

FT =

ˆ
[d2x]FT ≃ m

u0xa0

ˆ
[dx][2(∂xuy)

2 + (∂xuy)(∂xmz) + (∂xmz)(∂xuy) +
9

4
(∂xmz)

2]

+
m

u0xa0

ˆ
[dx]m2[16u2y + 12uymz + 12mzuy + 21m2

z]

+
m

u0xa0

ˆ
[dx]m2[16u2x + 4uxuy + 12uxmz + 4uyux + 12mzux].

(2.65)
Since M0 and Tk̃ are positive definite, any non-zero fluctuations would increase the energy.

Recall that our inhomogenous ansatz for the two-domain CSL system has constant
nearest-neighbor hopping ρ̄x,y, and the change of chirality is entirely due to the spatial
variation of the next-nearest neighbor λ. Motivated by this fact, we focus our attention on
the fluctuation of m̂z, keeping ûx = ûy = 0. This reduces our effective theory to that of a
single scalar field m̂z. To restore the energy for a domain wall configuration in the full order
parameter space, we plug back (ux, uy,mz) = (u0x, u

0
y, u

0
z + m̂z), with each (ux, uy,mz) a pa-

rameter point (ρx, ρy, λ)=(ux/2J1,−uy/2J1,mz/4J2) in Fig. 4.1(b). In the following, we go
beyond the quadratic theory of Eq. (2.62) and examine higher order fluctuations of m̂z. We
hope that these higher order fluctuations can provide information for not only fluctuations
around local minima, but also tunneling between different minima.
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2.6 Conventional Ginzburg Landau theory for domain

wall

2.6.1 Free energy for fluctuations and full Ginzburg Landau
theory

Consider the following free energy functional in d-dimensions, where the ϕ(x) is the full field
for certain order parameter:

F [ϕ] =

ˆ
[ddx]

[
K[∇ϕ(x)]2 +

M
2
ϕ2(x) +

U

4
ϕ4(x)

]
, (2.66)

we shall then get the equation of motion which reads:

0 =
δF

δϕ
= −K∇2ϕ+ Mϕ+ Uϕ3, (2.67)

which gives a solution for M < 0 and U > 0,

ϕ0(x) ≡ ±
√

−M
U

= ±ϕ0, (2.68)

as the local minimal for effective potential:

Veff =
M
2
ϕ2(x) +

U

4
ϕ4(x). (2.69)

Note that, if we already know the position, we could also uniquely determine the interaction
strength:

U = −M
ϕ2
0

. (2.70)

Now we introduce the fluctuations δϕ close to ±ϕ0

ϕ(x) = ±ϕ0 + δϕ, (2.71)

then we can write down

F [ϕ]=

ˆ
[ddx]

[
K[∇δϕ(x)]2 +

M
2

[±ϕ0 + δϕ(x)]2 +
U

4
[±ϕ0 + δϕ(x)]4

]
≈
ˆ

[ddx]

[
K[∇δϕ(x)]2 +

M
2

[ϕ2
0 ± 2ϕ0δϕ(x) + (δϕ(x))2]

+
U

4
[ϕ4

0 ± 4ϕ3
0δϕ(x) + 6ϕ2

0(δϕ(x))2 ± 4ϕ0(δϕ0(x))3 + (δϕ(x))4]

]
=

ˆ
[ddx]

{
K[∇δϕ(x)]2 +

M
2
ϕ2
0 +

U

4
ϕ4
0

+

[M
2

+
6U

4
ϕ2
0

]
(δϕ(x))2 ± Uϕ0(δϕ0(x))3 +

U

4
(δϕ(x))4

}
,

(2.72)
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by dropping the constant term and the odd term, and introducing

Meff =
M
2

+
6U

4
ϕ2
0 =

M
2

− 3U

2

M
u

= −M, (2.73)

we have the effective field theory for fluctuations solely:

F [δϕ] =

ˆ
[ddx]

[
K[∇δϕ(x)]2 + Meff [δϕ(x)]2 +

U

4
[δϕ(x)]4

]
, Meff = −M, U = −M

ϕ2
0

.

(2.74)
this is the energy for fluctuations just like the one we derived from Eq. (2.65), and we can
also get the full field theory from the coefficient we derived from the effective field theory.

2.6.2 Generic domain wall

Consider the following free energy functional:

F [ϕ] =

ˆ
[ddx][K(∇ϕ(x))2 +

M
2
ϕ2(x) +

U

4
ϕ4(x)]. (2.75)

We shall then get the equation of motion which reads:

0 =
δF

δϕ
= −K∇2ϕ+ Mϕ+ Uϕ3. (2.76)

Here K is the stiffness with respect to the spatial variation of ϕ, and one can define a length
scale ξ =

√
K/|M| as the coherence length. Rescaling the free energy with respect to

ϕ(x) ≡
√
|M|/UΦ, and one can obtain:

F [Φ] =

ˆ
[ddx]

[
K

|M|
U

(∇Φ)2 +
M
2

|M|
U

Φ2 +
U

4

M2

U2
Φ4

]
=

ˆ
[ddx]

M2

U

[
K

|M|(∇Φ)2 +
sgn(M)

2
Φ2 +

1

4
Φ4

]
.

(2.77)

Then we get the new EOM:

−ξ2∇2Φ + sgn(M)Φ + Φ3 = 0. (2.78)

Consider the case of a domain M < 0, we assume that all spatial variation occurs in the
x-direction, and we set Φ(x = x0) = 0 and Φ(x = ∞) = 1, we then arrive at:

−ξ2Φ′′(x) − Φ + Φ3 = 0, (2.79)

which may be written as:

ξ2
d2Φ

dx2
=

∂

∂Φ

[
1

4
(1 − Φ2)2

]
. (2.80)
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Multiplying the above equation by Φ′(x) and integrating once, we have:

ξ2
(
dΦ

dx

)2

=
1

2
(1 − Φ2)2 + C, (2.81)

where C is a constant, which is fixed by setting Φ(x → ∞) = +1, which says Φ′(∞) = 0,
hence C = 0. Integrating once more, we shall have:

Φ(x) = tanh

(
x− x0√

2ξ

)
, (2.82)

and x0 is determined by the zero points of the system. The width of the domain wall is ξ.
In terms of the original field, that is:

ϕ(x) =

√
|M|
K

Φ =

√
−M
K

tanh

(
x− x0√

2ξ

)
, ξ =

√
K

|M| =

√
−K

M . (2.83)

The term K = 0 corresponds to the sharp domain wall.

2.6.3 Analysis of the domain wall
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Figure 2.6: (a) The relations for EY (η) (blue), EZ(η) (yellow), and m(η), with η = J2/J1
tell the ratio between the nearest neighbor and second nearest neighbor coupling. The
domain wall energy is calculated with respect to homogenous limit (without domain wall)
(b) Contour plot of free energy F (ρ0x = ρ0y, λ

0) for small η = J2/J1 = 0.6, in which we can
see the domain wall has the tendency to go from the red point with positive chirality to the
white point with opposite λ along the arrow. (c) Contour plot of free energy F (ρ0x = ρ0y, λ

0)
for large η = J2/J1 = 1.8 (which may not be realistic), which it tends to form the velocity
domain wall.

The FT [ux, uy,mz] is positive definite, means all kinds for the fluctuations should increase
the energy compared with the homogeneous solution. For a given value of J1, J2, the mean-
field ansatz corresponds to eight points in Hilbert space, each four belonging to one chirality,
and we would like to pick the path that connecting two points with opposite chirality with
minimal energy cost.

As these are all fluctuations, we can have by forcing via the boundary condition
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1. ux cannot change sign by these dynamics

2. uy can change sign via nonzero (∂xuy)
2, we can force mz = ux = 0, this leads to

effective energy for fluctuation fields, i.e., Eq. (2.74):

FT ≃ m

24πu0xa0

ˆ
[dx]FY (x) =

m

24πu0xa0

ˆ
[dx][2a20(∂xuy)

2 − 16m2u2y +
Uy

4
u4y],

(2.84)
by using the relation mentioned in Sec. [2.6.1], and defining the full field ũy = u0y + uy,
we arrive at the full Ginzburg–Landau theory, i.e., Eq. (2.66)

FT ≃ m

24πu0xa0

ˆ
[dx]FY (x) =

m

24πu0xa0

ˆ
[dx][2a20(∂xũy)

2 − 16m2ũ2y +
Uy

4
ũ4y],

(2.85)
comparing with Eq. (2.66), one can read off the coefficients as:

K = 2a20,
M
2

= −16m2, Uy = −M
ϕ2
0

=
32m2

(u0y)
2
. (2.86)

From Sec. [2.6.2], we know that such a theory can hold a domain wall if one can impose
the twisted boundary condition for ũy, with the correlation length ξ

ξb =

√
−K

M =

√
a20

16m2
=

a0
4|m| . (2.87)

This leads to the configuration:

ũy = u0y tanh[(x− x0)/
√

2ξb], u0y = 1. (2.88)

With the domain wall energy reads:

EY ≃ m

24πu0xa0

ˆ
[dx][2[∂xũy(x)]2 − 16m2[ũy(x)]2 +

2

4
ũy(x)4 −FY (∞)]

∝ 1

π

ˆ
[dx]{m3sech4[2

√
2mx]}

(2.89)

As the fluctuations ux = mz = 0, such that the full field ũx and m̃z is spatial indepen-
dent, we can further derive the configuration for chirality χ(x):

χ(x) = ũx(x)ũy(x)m̃z(x) = u0xu
0
ym

0
z tanh[(x− x0)/

√
2ξb] = χ0 tanh[(x− x0)/

√
2ξb],
(2.90)

where χ0 is the chirality for homogeneous case. By slightly modifying Sec. [2.8.2]
(expanding Bloch Hamiltonian around (0, π/2)), we have the edge dispersion reads:

Eedge(ky) = ±vedgeky, vedge = 4J2λa0/ℏ. (2.91)
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3. mz can change sign via the dynamic of non-zero (∂xmz)
2, we can force ux = uy = 0,

this leads to the effective energy for fluctuation fields, i.e., Eq. (2.74)

FT ≃ m

24πu0xa0

ˆ
[dx]FZ(x) =

m

24πu0xa0

ˆ
[dx][

9

4
a20(∂xmz)

2 − 21m2m2
z +

Uz

4
m4

z],

(2.92)
by using the relation mentioned in Sec. [2.6.1], and defining the full field m̃z = m0

z+mz,
we arrive at the full Ginzburg Landau theory, i.e. Eq. (2.66):

FT ≃ m

24πu0xa0

ˆ
[d2x]FZ(x) =

m

24πu0xa0

ˆ
[dx][

9

4
a20(∂xm̃z)

2 − 21m2m̃2
z +

Uz

4
m̃4

z],

(2.93)
comparing with Eq. (2.66), one can read the coefficient as:

K =
9

4
a20,

M
2

= −21m2, Uz = −M
ϕ2
0

=
42m2

(m0
z)

2
, (2.94)

From Sec. [2.6.2], we know that such a theory can hold a domain wall if one can impose
the twisted boundary condition for m̃z, with the correlation length ξz

ξz =

√
−K

M =
3a0

2|m|
√

42
, m̃z = m0

z tanh[(x− x0)/
√

2ξz], m0
z = ±m. (2.95)

With the domain wall energy reads:

EZ ≃ m

24πu0xa0

ˆ
[dx][

9

4
a20(∂xm̃z)

2 − 21m2m̃2
z +

Uz

4
m̃4

z −FZ(∞)]

∝ 1

πu0xa0

ˆ
[dx]

[
21m5

16
sech4

(
2

√
7

3
mx

)]
,

(2.96)

and the chirality also have the profile

χ(x) = ũx(x)ũy(x)m̃z(x) = u0xu
0
ym

0
z tanh[(x− x0)/

√
2ξz] = χ0 tanh[(x− x0)/

√
2ξz].
(2.97)

According to Jackiw’s theory Eq. (2.122), we have the edge dispersion for this type of
domain wall as:

Eedge(ky) = ±vedgeky, vedge = 2J1ρ̄ya0/ℏ. (2.98)

Now we would like to compare the free energy for velocity domain wall Eq. (2.89) and
lambda domain wall Eq. [2.101], as shown in Fig.[2.6.(a)]. For small η = J2/J1 (which is
the physical case as the next-nearest neighbor coupling is weaker than the nearest neighbor
coupling), the system will favor the lambda domain wall. This is consistent with the energy
plot of Fig. 2.6.(b,c), where the transition will happen along the smoother approach, though
the phase transition point may be different based on numerics.
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2.6.4 Domain wall tension for the Ginzburg Landau ϕ4 theory

The domain wall energy can be written in terms of dimensionless local gap m̃(x) = m(x)/J1
as

F =

ˆ
[dx]F [x] ∼ m0J1

24πa0

ˆ
[dx]

[
K(∂xm)2 − r

2
m2 +

U

4
m4

]
, (2.99)

where m0 = 2J2λ̄/J1ρ̄0 is the dimensionless mass deep in the bulk, which is proportional to
the bulk gap in the homogeneous limit. For J2 < J1, in general 0 < m0 < 1.

According to the effective field theory mentioned in our previous note, K = K̃0l
2
0, with

K̃0 is a pure number, while r ∝ m2
0, and Um2

0 = r. We have the following solution for
equation of motions for the boundary condition mentioned in Fig. [2.3.(b)]:

m̃(x) = m0 tanh[(x− x0)/(
√

2ξ)], ξ =

√
K

r
=

l0
m0

, (2.100)

where l0 is a length scale close to the lattice constant.
The domain wall tension (domain wall energy measured from the homogenous results)

reads:

E =
m0J1
24π

ˆ
[dx][K(∂xm)2 − r

2
m+

U

4
m4 −F(∞)]

=
m5

0J1K̃0

96π

ˆ
[dx]

[
sech4

(
x− x0√

2ξ

)]
∝ m5

0J1 ≪ J1 ∼ J2,

(2.101)

where we have used fact 0 < m0 < 1 such that m5
0 ≪ 1, while J1 and J2 are to the same

order.

2.7 Singular Ginzburg-Landau |ϕ|3 theory

We point out that the gapless edge modes on the domain wall can introduce additional terms
to the Ginzburg–Landau free energy. Specifically, in our case a |m3

z| term appears. To see
this, let’s consider the most generic Ginzburg-Landau theory:

F ≃ m

u0xa0

ˆ
[dx]

[
K(∂xm)2 + V (m)

]
, (2.102)

where V (m) is w-shaped with two local minimal, and does not have to be a traditional ϕ4

theory.

2.7.1 Energy for a homogenous slab and approximation based on
Dirac-fermion’s spectrum

Since we know the domain wall solution is ρ(x) = ρ̄x, ρ(y) = ρ̄y and λ(x) = λ̄ tanhx/(
√

2ξ),
we could take the approximation that the spectrum is that of a massive Dirac fermion, such



CHAPTER 2. STRUCTURE OF DOMAIN WALLS IN CHIRAL SPIN LIQUIDS 40

that we can formulate the energy in terms of the local mass m as (we would like to see the
scaling so we drop all the coefficient with dimension such as vF ):

V (m) ∼ m2 −
ˆ
BZ

[d2k]
√
k2 +m2 ∼ m2 −

ˆ k0

0

dkk
√
k2 +m2 ∼ m2 +

1

3
|m|3 − 1

3
(k20 +m2)3/2,

(2.103)
where k0 is the cutoff from the BZ. Note the presence of a |m|3 term, which is the unique
signature from the spectrum of Dirac fermions in 2D, and would be singular at the gapless
point m = 0.

!!!" !# !$ 	!!%"	!!%#

Figure 2.7: Partition of chiral spin liquid with spatial varying mass. We assume that the
mass is uniform in each block mi, with m1 ≡ −m0 = −4J2λ̄ and mN = +m0 = +4J2λ̄.

2.7.2 Singular Ginzburg-Landau theory for domain walls

We know the domain wall can be captured by the chirality profile χ(x) = ρx(x)ρy(x)λ(x) =
ρ̄xρ̄yλ(x). The local mass m(x) is proportional to λ(x) as m(x) = 4J2λ(x). So long as the
domain varies slow enough, we can divide it into individual slabs, as shown in Fig. [2.7]. One
can view the mass as homogenous for i-th slab as mi, and the energy for i-th slab can be
captured by Eq. (2.103). Thus the potential energy for the domain wall is:

V (m) =
∑
i

V (mi) ∼
∑
i

[
m2

i +
1

3
|mi|3−

1

3
(k20+m2

i )
3/2

]
∼
ˆ

[dx]

[
− r

2
m2+

S

3
|m|3

]
, (2.104)

add back the stiffness term, we have the singular Ginzburg Landau theory:

F ≃ m

u0xa0

ˆ
dx

[
K(∂xm)2 + V (m)

]
=

m

u0xa0

ˆ
dx

[
K(∂xm)2 − r

2
m2 +

S

3
|m|3

]
. (2.105)

One can plot Eq. (5.30) with ρx and ρy fixed to the homogenous mean field value ρ̄x
and ρy, as the V (λ) shown in Fig. [2.8.(a)]. There are two local minimals in V (λ), and
the domain wall captures the tunneling from one local minimal to the other minimal with
opposite chirality. The V (λ) here may be viewed as the potential function V (m) in the
Ginzburg-Landau theory for m in Eq. (2.102). The discontinuity of the third order derivative
for V (m) shows the existence of |λ|3 (|m|3) in the expansion of V (λ) (V (m)).
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Figure 2.8: (a) V (λ) = V (ρ̄x, ρ̄y, λ) of Eq. (5.30) with ρx and ρy fixed to their homogenous
value ρ̄x and ρ̄y respectively, while λ is varying. The horizontal axis is λ for (a-d). Figure
(b-d) are the first, second, and third order differentiate of V (λ). Clearly, the discontinuity

in (d) for the d3V (λ)
dλ3 at λ = 0 implies the existence of |λ3|.

2.7.3 Modification to domain wall profile

Consider the following generic Ginzburg-Landau theory for order parameter ϕ:

F [ϕ] ≃ m

u0xa0

ˆ
dx

[
K(∂xϕ)2 + V (ϕ)

]
, (2.106)

where V (ϕ) is an even function with two local minima with a shape of w like Fig. [2.8.(a)]
(but not necessary to be a ϕ4 theory). The equation of motion then reads:

−K∂2xϕ+
dV (ϕ)

dϕ
= 0. (2.107)

Since:

ϕ′′ =
dϕ′

dx
=
dϕ′

dϕ

dϕ

dx
=
dϕ′

dϕ
ϕ′ =

1

2

d[(ϕ′)2]

dϕ
, (2.108)

then we shall have:
K

2

d(ϕ′)2

dϕ
=
dV (ϕ)

dϕ
(2.109)

integrating from both sides we have:

K

2
(ϕ′)2 = V [ϕ] + Const. (2.110)

We assume that when x → ∞, ϕ(x) → ϕm (the local minimal for V (ϕ) deep in the bulk)
and ϕ′(x) = 0, thus we have

dϕ

dx
= ±

√
2

K
[V (ϕ) − V (ϕm)] (2.111)

from which we can solve:

x− x0 = ±
ˆ Φ

0

dϕ√
2
K

[V (ϕ) − V (ϕm)]
(2.112)
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the right hand side counts for the time of a classical particle moving in some strange potential
field. The profile may no longer have a closed-form analytic solution like tanh as in the ϕ4

theory, and we have the decay half-width:

d =

ˆ ϕm/2

0

dϕ√
2
K

[V (ϕ) − V (ϕm)]
=

√
K

r

ˆ ϕm/2

0

dϕ√
2[V (ϕ) − V (ϕm)]/r

= ηξ, (2.113)

where ϕm is the value of order parameter that deep in the bulk (i.e., x → ±∞). Then we
shall have d1 = η1ξ and d2 = η2ξ denotes the width of the domain wall. They have the same
order ξ (inverse proportional to bulk gap), but the exact value of η1 and η2 may be different,
as we will find in the following case.

Consider two different way to formulate the potential V (ϕ), where mass r for them are
from integrate out the spinons in our old note which should be identical:

V1(ϕ) = −r
2
ϕ2 +

S

3
|ϕ|3 +

U1ϕ
4

4
,

V2(ϕ) = −r
2
ϕ2 +

U2

4
ϕ4.

(2.114)

The local minimal for V1(ϕ) and V2(ϕ) are set at same value ϕm, such that:

∂V1(ϕ)

∂ϕ

∣∣∣∣
ϕm

=
∂V2(ϕ)

∂ϕ

∣∣∣∣
ϕm

= 0,
∂2V1(ϕ)

∂ϕ2

∣∣∣∣
ϕm

> 0,
∂2V2(ϕ)

∂ϕ2

∣∣∣∣
ϕm

> 0, (2.115)

solving above leads to the following requirement S, U1, U2:

U2 =
S2 + 2rU1 + S

√
S2 + 4rU1

2r
. (2.116)

With Eq. [2.116], we will have V1(ϕ) and V2(ϕ) has the same value of local minimal. Now
we substitute Eq. (2.114) into Eq. (2.112), and conduct the integral numerically, as shown
in Fig. (2.9). From which we find that a positive |ϕ3| will make the domain wall wider than
the ϕ4 theory.

2.8 Edge states for chiral spin liquids

2.8.1 Low energy theory for the bulk

We can expand the Hamiltonian around the point (kx, ky) ∼ (0, 0), then we shall have:

H0 ∼
∑
k

ψ̃†
k[2Jx

1 ρ̄
0
xa0kxσx + 2(J+

2 λ̄
0
+ + J−

2 λ̄
0
−)σy − 2Jy

1 ρ̄
0
ya0kyσz]ψ̃k (2.117)
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Figure 2.9: Profile of ϕ from integrating Eq. [2.112] for two potentials given in Eq. [2.114].
With the data listed in the bottom right of each plot, V1(ϕ) and V2(ϕ) would have same
value of local minimal ϕm as long as the constraint Eq. [2.116] is satisfied. The blue curve
is the solution from integraing V1(ϕ), and the orange curve is from integrating V2(ϕ). For
S = 0, U1 = U2, we have two profile coincides with each other, as shown in (c). For S > 0,
we have wider domain wall as the |ϕ3| is introduced, see in (b). In general, the large |S| is,
the greater the modification to the domain wall width will be. When S < 0, we have the
domain wall with |ϕ3| become sharper compared with the ϕ4 theory, as shown in (d).

one can further set ψ̃k = σxψk to rotate the above to a more convenient way

H0 ∼
∑
k

ψ†
k[ℏvxkxσx + ℏvykyσy + m̃σz]ψk, (2.118)

with:
ℏvx = 2Jx

1 ρ̄
0
xa0, ℏvy = −2Jy

1 ρ̄
0
ya0, m̃ = 2(J+

2 λ̄
0
+ + J−

2 λ̄
0
−). (2.119)

2.8.2 Edge velocity from Jackiw-Rebbi mechanism and QAHE

The Jackiw-Rebbi mechanism [110, 24] for QAHE tells that, for a low energy effective theory:

H =

ˆ
dxdky{ψ†

ky
(x)[ℏvxkxσx + ℏvykyσy + m̃(x)σz]ψky(x)}, (2.120)

where m̃(x) change sign at x = 0, say m̃(x) = m̃0 tanh[(x − x0)/(
√

2ξ)] for instance, then
the edge states on x = x0 will have the following dispersion:

Eedge(ky) = −vedgeky, vedge = |vy|, (2.121)

for the low energy theory of chiral spin liquid Eq. (2.117), we shall have:

vedge = |2Jy
1 ρ̄

0
ya0|. (2.122)

Note that the domain wall hosts four S = 1/2 spinon edge modes, and the full edge theory is
described by four copies of Eq. (2.120), as shown in Fig. 2.10(b). By applying the non-double
occupancy condition one recovers the physical S=1 excitation from the two S=1/2 spinon
edge modes from each domain [167, 143], and the edge excitation has total spin S = 2.
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Figure 2.10: (a) Feynman diagram for spinon-amplitude fluctuation at one-loop level. (b)
Spinon energy spectrum corresponding to Fig. 2.4(a). Note that there are in total four
linear dispersions in the plot. The two linear dispersions marked by red (each has double
degeneracy) correspond to the four spinon edge modes right at the domain wall. The blue
(orange) dotted lines correspond to the edge modes on the boundary on the far left (far
right).

2.8.3 Edge spinon confinement

We follow Refs. [167, 143] to get the effective field theory from our mean field chiral spin
liquids. The two flavors of fermions, {f±}, fill the lowest bands with Chern number C± = 1.
Conserved fermion currents Jµ

m can be expressed in terms of dynamical U(1) gauge field amµ
as Jµ

m = ϵµνλ∂νa
m
λ /(2π), where the summation over repeated µ, ν, λ is assumed. The fermion

band structure in this CSL is described by the following two copies of U(1) Chern Simons
theory:

Lf =
ϵµνλ

4π

( ∑
m=±

Cma
m
µ ∂νa

m
λ

)
+
ϵµνλ

2π
ASz

µ ∂ν

[
1

2
(a+λ − a−λ )

]
=
ϵµνλ

4π
CIJaIµ∂νaJλ +

ϵµνλ

2π
tIA

Sz

µ ∂νaIλ,

(2.123)

where ASz

µ is the gauge potential that couples to the Sz spin density and current, I, J = 1, 2
and:

C =

(
1 0
0 1

)
, t =

(
+1/2
−1/2

)
. (2.124)

The local no-double occupancy constraint:

⟨f †
iαfiα⟩ = 1, (2.125)

can be written in a covariant form:

ϵµνλ

2π

∑
m

∂amλ =
∑
m=±

Jµ
m = J̄µ ≡ ϵµνλ

2π
∂ν āλ, (2.126)
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where āµ is a nondynamical (constant) background field, whose density J̄0 = (∂xāy−∂yāx)/2π
is the right hand side of Eq. (2.125). The constriant can be implemented by introducing an
extra U(1) gauge field bµ as a Lagrangian multiplier:

Lcon =
ϵµνλ

2π
bµ∂ν

(
a+λ + a−λ − āλ

)
=
ϵµνλ

2π
bµ∂ν

(∑
I

aIλ − āλ
)
. (2.127)

After integrating out the gauge field bµ and a2µ (or a−µ in the original language), we can
obtain the low-energy theory of the CSL:

LCS = Lf + Lcon =
ϵµνλ

4π
Kaµ∂νaλ +

ϵµνλ

2π
qASz

µ ∂νaλ, (2.128)

with aµ for a+µ or a1µ. The 1 × 1 K matrix and q-vector are:

K = 2, q = 1. (2.129)

The CSL has spin quantum Hall conductance in unit of 1/2π:

σS
xy = qTK−1q = 1/2, (2.130)

in accordance with the bulk spinon transport.
The corresponding edge theory can be derived from bulk-edge correspondence. The

effective edge theory can be written as:

Ledge =
1

4π
K∂tϕ∂xϕ− V (∂xϕ)2 +

1

2π
qASz

0 (∂xϕ− ∂tϕ). (2.131)

The K-matrix and q vector are defined in Eq. (2.129). The V is the edge velocity, as K
is positive, the edge state is chiral and stable. The Sz density on the edge is given by the
defined bosons as:

Sz(x) ≃ q
∂xϕ(x)

2π
, (2.132)

as q = 1 it indeed carries Sz quantum number +1. The edge boson fields satisfy the Kac-
Moody algebra:

[ϕ(x), ∂xϕ(y)] = i2π(K−1)δ(x− y) = iπδ(x− y), (2.133)

or [ϕ(x), ϕ(y)] = i(π/2)sign(x− y), which is indeed a U(1)2 theory.

2.9 Discussion and outlook

We studied the domain wall for ν = 1/2 Kalmeyer-Laughlin chrial spin liquid with opposite
chiralities. Starting from a spatially varying, self-consistent mean-field ansatz for spinons, we
mapped out the spatial profile of the domain wall in terms of the spin chirality. We further
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proposed an effective Ginzburg–Landau field theory for mean-field bond amplitude fluctu-
ations which qualitatively produces the change of chirality across the domains, from which
we derived the non-topological properties of the multi-domain system, such as the domain
wall tension and edge velocity. We argue that the gapless modes at the edge contribute an
extra, non-analytic, |ϕ3| term to the domain wall theory. As shown in Fig. 2.4(d), in our toy
model, the non-universal features, such as the bulk spinon gap ∆, domain wall width ξ and
edge spinon velocity vedge, are all determined by the fundamental exchange parameters J1
and J2. While there is no direct way of measuring the exchange strength, other quantities,
such as the spinon gap, can be directly read out from e.g. neutron scattering experiments.
The experimental determination of any quantities above would provide information about
the others.

Note that, although our work focused on a simple J1 − J2 model for CSL on a square
lattice, the self-consistent mean-field numerics and Ginzburg–Landau analysis can be carried
out in many other contexts, such as other lattices. It is also possible to extend the Ginzburg–
Landau analysis to a larger space of magnetic order parameters, as was recently considered
in [103]. Our approach could be applied to the features of other multi-domain systems with
coexisting conventional order and topological order, such as Pfaffian–anti-Pfaffian-domains
in the ν = 5/2 fractional quantum Hall system [295, 300, 51, 52] and spontaneous time-
reversal symmetry breaking domains in fractional topological insulators [190, 139, 225, 251].
Another example would be the excitonic condensed phase of quantum Hall insulators [112],
where the order parameter for exciton condensation may have a similar profile as that of the
spin chirality in chiral spin liquids.

2.10 Appendix: Detailed field theory calculations

2.10.1 Useful Dictionary

Before conducting the calculations for the loop diagram, we acknowledge the following useful
formulas for traces of Pauli matrices [257, 203]:

Trτaτ b = 2δab, Trτaτ bτ c = 2iϵabc, Tr(τaτ bτ cτ d) = 2(δabδcd + δadδbc − δacδbd). (2.134)
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and for Feynman integrals:

ˆ
d2ωl

(2π)2ω
1

(l2 +M2 + 2l · p)A =
Γ(A− ω)

(4π)ωΓ(A)

1

(M2 − p2)A−ω
,

ˆ
d2ωl

(2π)2ω
lµ

(l2 +M2 + 2l · p)A = − Γ(A− ω)

(4π)ωΓ(A)

pµ
(M2 − p2)A−ω

,

ˆ
d2ωl

(2π)2ω
lµlν

(l2 +M2 + 2l · p)A =
1

(4π)ωΓ(A)
×

[
pµpν

Γ(A− ω)

(M2 − p2)A−ω
+

1

2
δµν

Γ(A− 1 − ω)

(M2 − p2)A−1−ω

]
,

ˆ
d2ωl

(2π)2ω
lµlνlρlσ

(l2 +M2 + 2l · p)A =
1

(4π)ωΓ[A]

[
pµpνpρpσ

Γ(A− ω)

(M2 − p2)A−ω

+
1

2
[δµνpρpσ + δνσpµpρ + δρσpµpν + δµρpνpσ + δνρpµpσ + δµσpρpν ]

Γ(A− 1 − ω)

(M2 − p2)A−1−ω

+
1

4
[δµνδρσ + δνρδµσ = δµρδνσ]

Γ(A− 2 − ω)

(M2 − p2)A−2−ω

]
.

(2.135)

2.10.2 Two û vertices (Diagrams like Fig. [2.5.(a)])

The effective action reads:

SA
eff ≡ 1

2

ˆ
d3k

(2π)3
ΠA

µν(k)ûµ(+k)û−ν(k). (2.136)

With the corresponding polarization function Π1
µν(k), and two û vertices reads: (qµ+kµ/2)τµ,

and (qν − kν/2)τ ν (note that the repeated indices µ, ν does not stands for summation, it’s
just means that the Pauli matrix is bond to the corresponding momentum, say kxτx and
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kyτy)

ΠA
µν(k)=−

ˆ
d3q

(2π)3
Tr

[
m0

z + i(qa + ka/2)τa

(m0
z)

2 + (q + k/2)2
τµ
m0

z + i(qb − kb/2)τ b

(m0
z)

2 + (q − k/2)2
τ ν
]
(qµ + kµ/2)(qν − kν/2)

=−
ˆ

d3q

(2π)3
Tr

[
[m0

z + i(qa + ka/2)τa]τµ[m0
z + i(qb − kb/2)τ b]τ ν

[(m0
z)

2 + (q + k/2)2][(m0
z)

2 + (q − k/2)2]

]
(qµ + kµ/2)(qν − kν/2)

=−
ˆ

d3q

(2π)3

ˆ 1

0

[dx]
Γ(1 + 1)

Γ(1)Γ(1)
Tr

[
[m0

z + i(qa + ka/2)τa]τµ[m0
z + i(qb − kb/2)τ b]τ ν

{[(q + k/2)2 + (m0
z)

2](1 − x) + [(q − k/2)2 + (m0
z)

2]x}2
]

× (qµ + kµ/2)(qν − kν/2)

=−
ˆ

d3q

(2π)3

ˆ 1

0

[dx]Tr

[
[m0

z + i(qa + ka/2)τa]τµ[m0
z + i(qb − kb/2)τ b]τ ν

{q2 + 2q · [1/2 − x]k + (m0
z)

2 + k2/4}2
]

× (qµ + kµ/2)(qν − kν/2)

=−
ˆ

d3q

(2π)3

ˆ 1

0

[dx]Tr

[
[m0

z + i(qa + ka/2)τa]τµ[m0
z + i(qb − kb/2)τ b]τ ν

[(q + (1/2 − x)k)2 + x(1 − x)k2 + (m0
z)

2]2

]
× (qµ + kµ/2)(qν − kν/2)

(2.137)
We can further define:

q̃ = q + (1/2 − x)k, q̃ + xk = q + k/2, q̃ − k + xk = q − k/2. (2.138)

Then we arrive at:

ΠA
µν(k) = −

ˆ 1

0

[dx]

ˆ
d3q̃

(2π)3
Tr

[
[m0

z + i(q̃a + xka)τ
a]τµ[m0

z + i(q̃b − kb + xkb)τ
b]τ ν

[q̃2 + x(1 − x)k2 + (m0
z)

2]2

]
× (q̃µ + xkµ)(q̃ν − kν + xkν)

= −
ˆ 1

0

[dx]

ˆ
d3q

(2π)3
Tr

[
[m0

z + i(qa + xka)τ
a]τµ[m0

z + i(qb − kb + xkb)τ
b]τ ν

[q2 + x(1 − x)k2 + (m0
z)

2]2

]
× (qµ + xkµ)(qν − kν + xkν)

(2.139)
Note that

Tr{[m0
z + i(qa + xka)τ

a]τµ[m0
z + i(qb − kb + xkb)τ

b]τ ν}
=2[(m0

z)
2 + q2 + x(1 − x)k2]δµν + 4[kµkν − k2δµν ](x− x2)

−4qµqν + (2 − 4x)(kµqν + kνqµ) − 2m0
zϵ

µνλkλ,

(2.140)
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with these, we shall have the response function divided into the following parts:

ΠA
µν(k) = ΠA,1

µν (k) + ΠA,2
µν (k) + ΠA,3

µν (k) + ΠA,4
µν (k) + ΠA,5

µν (k)

ΠA,1
µν (k) = −

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
2δµν(qµ + xkµ)(qν − kν + xkν)

[(m0
z)

2 + q2 + x(1 − x)k2]

ΠA,2
µν (k) = −

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−4qµqν(qµ + xkµ)(qν − kν + xkν)

[(m0
z)

2 + q2 + x(1 − x)k2]2

ΠA,3
µν (k) = −

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
4[kµkν − k2δµν ](qµ + xkµ)(qν − kν + xkν)(x− x2)

[(m0
z)

2 + q2 + x(1 − x)k2]2

ΠA,4
µν (k) = −

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
(2 − 4x)(kµqν + kνqµ)(qµ + xkµ)(qν − kν + xkν)

[(m0
z)

2 + q2 + x(1 − x)k2]2

ΠA,5
µν (k) = −

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2mϵµνλkλ(qµ + xkµ)(qν − kν + xkν)

[(m0
z)

2 + q2 + x(1 − x)k2]2

(2.141)

The numerators that are odd in q will vanish. So let us look into the numerator term by
term: (again, the repeat indices for µ and ν does not stands for summation)

N [ΠA,1
µν (k)] = −2δµν(qµ + xkµ)(qν + xkν − kν)

= −2δµν(qµqν + xkµqν + xqµkν + x2kµkν − qµkν − xkµkν)

N [ΠA,2
µν (k)] = 4qµqν(qµ + xkµ)(qν + xkν − kν)

= 4qµqν(qµqν + xkµqν + xqµkν + x2kµkν − qµkν − xkµkν)

N [ΠA,3
µν (k)] = −4[kµkν − k2δµν ](x− x2)(qµ + xkµ)(qν + xkν − kν)

= −4(x− x2)[kµkν − k2δµν ](qµqν + xkµqν + xqµkν + x2kµkν − qµkν − xkµkν),
(2.142)

and so as the other two terms:

N [ΠA,4
µν (k)] = −(2 − 4x)[kµqν + kνqµ](qµqν + xkµqν + xqµkν + x2kµkν − qµkν − xkµkν)

= − (2 − 4x)[kµqνqµqν + xkµqνkµqν + xkµqνqµkν + x2kµqνkµkν − kµqνqµkν − xkµqνkµkν ]

+ − (2 − 4x)[kνqµqµqν + xkνqµkµqν + xkνqµqµkν + x2kνqµkµkν − kνqµqµkν − xkνqµkµkν ]

N [ΠA,5
µν (k)] = 2mz

0ϵ
µνλkλ(qµ + xkµ)(qν + xkν − kν)

=2mz
0ϵ

µνλkλ(qµqν + xkµqν + xqµkν + x2kµkν − qµkν − xkµkν)
(2.143)

They can be further simplified as:

Ne[Π
A,1
µν (k)] = −2δµν [(x2 − x)kµkν + qµqν ]

Ne[Π
A,2
µν (k)] = 4[qµqµq

νqν + (x2 − x)qµqνkµkν ]

Ne[Π
A,3
µν (k)] = −4(x− x2)[kµkν − k2δµν ][qµqν + (x2 − x)kµkν ]

Ne[Π
A,4
µν (k)] = −(2 − 4x)[xqνqνk

µkµ + (x− 1)qνqµk
µkν + xqµqνk

νkµ + (x− 1)qµqµk
νkν ]

Ne[Π
A,5
µν (k)] = 2mz

0ϵ
µνλkλ[qµqν + (x2 − x)kµkν ]

(2.144)
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With the above, we shall have by defining m = |mz
0|:

ΠA,1
µν (k) =

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2δµν [(x2 − x)kµkν + qµqν ]

[q2 + (m0
z)

2 + x(1 − x)k2]

=

ˆ 1

0

[dx]
Γ(1 − 3/2)

(4π)3/2Γ(1)

−2δµν(x2 − x)kµkν
[(m0

z)
2 + x(1 − x)k2]1−3/2

+

ˆ 1

0

[dx]
−2δµν

(4π)3/2Γ(1)

δµν
2

Γ(1 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]−3/2

=
δµν

2π

ˆ 1

0

[dx]
(x2 − x)kµkν

[(m0
z)

2 + x(1 − x)k2]−1/2
+

(δµν)2

6π

ˆ 1

0

[dx]
1

[(m0
z)

2 + x(1 − x)k2]−3/2

= −δ
µνkµkν

2π

[
(−6k3m− 8km3 + (−3k4 − 8k2m2 + 16m4)arccot[2m/k])

64k3

]
+

(δµν)2

6π

[
(6k3m+ 40km3 + 3(k2 + 4m2)2arccot[2m/k])

64k

]
≈ −δ

µνkµkν
2π

[
− m

6
− k2

60m
+

k4

1120m3
+ O(k6)

]
+

(δµν)2

6π

[
m3 +

mk2

4
+

k4

80m
+ O(k6)

]
(2.145)
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and:

ΠA,2
µν (k) =

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
4[qµqµq

νqν + (x2 − x)qµqνkµkν ]

[q2 + (m0
z)

2 + x(1 − x)k2]2

=

ˆ 1

0

[dx]
4

(4π)3/2Γ(2)

1

4
[δµµδνν + δµνδνµ + δµνδµν ]

Γ(2 − 2 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−2−3/2

+

ˆ 1

0

4(x2 − x)kµkν
(4π)3/2Γ(2)

δµν
2

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

=
1

6π
[1 + 2(δµν)2]

ˆ 1

0

[dx]
1

[(m0
z)

2 + x(1 − x)k2]−3/2

− kµkνδµν
2π

ˆ 1

0

[dx]
(x2 − x)

[(m0
z)

2 + x(1 − x)k2]−1/2

=
1

6π
[1 + 2(δµν)2]

[
(6k3m+ 40km3 + 3(k2 + 4m2)2arccot[2m/k])

64k

]
+
kµkνδµν

2π

[
(−6k3m− 8km3 + (−3k4 − 8k2m2 + 16m4)arccot[2m/k])

64k3

]
≈ [1 + 2(δµν)2]

6π

[
m3 +

mk2

4
+

k4

80m
+ O(k6)

]
+
kµkνδµν

2π

[
− m

6
− k2

60m
+

k4

1120m3
+ O(k6)

]
(2.146)
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and:

ΠA,3
µν (k) =

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−4(x− x2)[kµkν − k2δµν ][qµqν + (x2 − x)kµkν ]

[q2 + (m0
z)

2 + x(1 − x)k2]2

= −
ˆ 1

0

[dx]4(x− x2)[kµkν − k2δµν ]
1

(4π)3/2Γ(2)

1

2
δµν

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

+

ˆ 1

0

[dx]4(x2 − x)2[kµkν − k2δµν ]
Γ(2 − 3/2)

(4π)3/2Γ(2)

kµkν
[(m0

z)
2 + x(1 − x)k2]2−3/2

= −δµν [kµkν − k2δµν ]

2π

ˆ 1

0

[dx]
(x2 − x)

[(m0
z)

2 + x(1 − x)k2]−1/2

+
[kµkν − k2δµν ]

2π

ˆ 1

0

[dx]
(x2 − x)2

[(m0
z)

2 + x(1 − x)k2]1/2

= −δµν [kµkν − k2δµν ]

2π

[−6k3m− 8k2m3 + (−3k4 − 8k2m2 + 16m4)arccot[2m/k]

64k3

]
+

[kµkν − k2δµν ]

2π
kµkν

[
6km(k2 − 4m2) + (4k4 − 8k2m2 + 48m4)acrcot[2m/k]

64k5

]
= −δµν(kµkν − k2δµν)

2π

[
− m

6
− k2

60m
+

k4

1120m3
+ O(k6)

]
+

[kµkν − k2δµν ]kµkν
2π

[
1

30m
− k2

280m3
+

k4

1680m5
+ O[k6]

]
(2.147)
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and:

ΠA,4
µν (k)=

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
×

× −(2 − 4x)[xqνqνk
µkµ + (x− 1)qνqµk

µkν + xqµqνk
νkµ + (x− 1)qµqµk

νkν ]

[q2 + (m0
z)

2 + x(1 − x)k2]2

=

ˆ 1

0

[dx]
(4x− 2)xkµkµ

(4π)3/2Γ(2)

δνν

2

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

+

ˆ 1

0

[dx]
(4x− 2)(x− 1)kµkν

(4π)3/2Γ(2)

1

2
δµν

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

+

ˆ 1

0

[dx]
(4x− 2)xkνkν

(4π)3/2Γ(2)

δµµ

2

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

+

ˆ 1

0

[dx]
(4x− 2)(x− 1)kνkµ

(4π)3/2Γ(2)

1

2
δνµ

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

= −
ˆ 1

0

[dx]
(2x− 1)x

4π

kµkµδ
νν + kνkνδ

µµ

[(m0
z)

2 + x(1 − x)k2]−1/2

−
ˆ 1

0

[dx]
(2x− 1)(x− 1)

4π

kµkνδ
νµ + kνkµδ

µν

[(m0
z)

2 + x(1 − x)k2]−1/2

= − kµkµδ
νν + kνkνδ

µµ

4π

ˆ 1

0

[dx]
(2x− 1)x

[(m0
z)

2 + x(1 − x)k2]−1/2

− kµkνδ
νµ + kνkµδ

µν

4π

ˆ 1

0

[dx]
(2x− 1)(x− 1)

[(m0
z)

2 + x(1 − x)k2]−1/2

= −
[
kµkµδ

νν + kνkνδ
µµ

4π
+
kµkνδ

νµ + kνkµδ
µν

4π

][
(2k3m− 8km3 + (k2 + 4m2)2arccot(2m/k))

32k3

]
=−

[
kµkµδ

νν + kνkνδ
µµ

4π
+
kµkνδ

νµ + kνkµδ
µν

4π

][
m

6
+

k2

120m
− k4

3360m3
+ O[k6]

]
(2.148)
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and:

ΠA,5
µν (k) =

ˆ 1

0

[dx]

ˆ
d3q

(2π)2
2m0

zϵ
µνλkλ[qµqν + (x2 − x)kµkν ]

[q2 + (m0
z)

2 + x(1 − x)k2]2

=

ˆ 1

0

[dx]
2m0

zϵ
µνλkλ

(4π)3/2Γ(2)

1

2
δµν

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

+
Γ(2 − 3/2)

(4π)3/2Γ(2)

ˆ 1

0

[dx]
(x2 − x)2m0

zϵ
µνλkµkνkλ

[(m0
z)

2 + x(1 − x)k2]2−3/2

= −δµνm
0
zϵ

µνλkλ
4π

ˆ 1

0

[dx]
1

[(m0
z)

2 + x(1 − x)k2]−1/2

+
m0

zϵ
µνλkµkνkλ

4π

ˆ 1

0

[dx]
(x2 − x)

[(m0
z)

2 + x(1 − x)k2]1/2

= −δµνm
z
0ϵ

µνλkλ
4π

[
m

2
+
i(k2 + 4m2)(ln(−ik + 2m) − ln(ik + 2m))

8k

]
+
m0

zϵ
µνλkµkνkλ

4π

[
− 2km+ (k2 − 4m2)arctan[k/2m]

4k3

]
≈ −δµνm

0
zϵ

µνλkλ
4π

[
m+

k2

12m
− k4

240m3
+ O[k6]

]
+
m0

zϵ
µνλkµkνkλ

4π

[
− 1

6m
+

k2

10m3
− 3k4

1120m5
+ O[k6]

]

(2.149)

2.10.2.1 Second order to k

Up to second order of k, we shall have

ΠA,1
µν (k) ≈ m3

6π
(δµν)2 +

m

12π
δµνkµkν +

m

24π
(δµν)2k2

ΠA,2
µν (k) ≈ m3

6π
[1 + 2(δµν)2] +

m

24π
[1 + 2(δµν)2]k2 − m

12π
δµνkµkν

ΠA,3
µν (k) ≈ m

12π
δµν(kµkν − k2δµν)

ΠA,4
µν (k) ≈ − m

24π
[k2µ + k2ν + 2kµkνδ

µν ]

ΠA,5
µν (k) ≈ 0

(2.150)

which gives:

ΠA
µν(k) =

∑
i

ΠA,i
µν (k) =

m3

6π
[1 + 3(δµν)2] +

m

24π
[1 + (δµν)2]k2 − m

24π
(k2µ + k2ν) (2.151)
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and:

ΠA
xx(k) =

2m3

3π
+

m

12π
(k2 − k2x)

ΠA
xy(k) =

m3

6π
+

m

24π
(k2 − k2x − k2y)

ΠA
yx(k) =

m3

6π
+

m

24π
(k2 − k2y − k2x)

ΠA
yy(k) =

2m3

3π
+

m

12π
(k2 − k2x)

(2.152)

2.10.3 Two m̂z vertices (Diagrams like Fig. [2.5].(b))

The effective action reads:

SB
eff ≡ 1

2

ˆ
d3k

(2π)3
ΠB

zz(k)m̂z(+k)m̂z(−k), (2.153)

with the term:

ΠB
zz(k) =

ˆ
d3q

(2π)3
Tr

[
m0

z + i(qa + ka/2)τa

(m0
z)

2 + (q + k/2)2
m0

zτ0
m0

z + i(qb − kb/2)τ b

(m0
z)

2 + (q − k/2)2
m0

zτ0

]
= (m0

z)
2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
Γ(1 + 1)

Γ(1)Γ(1)
Tr

[
[m0

z + i(qa + ka/2)τa][m0
z + i(qb − kb/2)τ b)]

{[(m0
z)

2 + (q + k/2)2](1 − x) + [(m0
z)

2 + (q − k/2)2]x}2
]

= (m0
z)

2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
Tr

[
[m0

z + i(qa + ka/2)τa][m0
z + i(qb − kb/2)τ b)]

{q2 + 2q · [1/2 − x]k + (m0
z)

2 + k2/4}2
]

(2.154)
We can further define:

q̃ = q + (1/2 − x)k, q̃ + xk = q + k/2, q̃ − k + xk = q − k/2 (2.155)
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Then we arrive at:

ΠB
zz(k) = (m0

z)
2

ˆ 1

0

[dx]

ˆ
d3q̃

(2π)3
Tr

[
[m0

z + i(q̃a + xka)τ
a][m0

z + i(q̃b − kb + xkb)τ
b]

[q̃2 + x(1 − x)k2 + (m0
z)

2]2

]
= (m0

z)
2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
(m0

z)
2 − 2(qa + xka)(qb + xkb − kb)δ

ab

[q2 + x(1 − x)k2 + (m0
z)

2]2

= (m0
z)

2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
(m0

z)
2 − 2(q + xk)(q + xk − k)

[q2 + x(1 − x)k2 + (m0
z)

2]2

= (m0
z)

2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
(m0

z)
2 − 2q2 − 2(xk)2 − 4qxk + 2(q + xk)k

[q2 + x(1 − x)k2 + (m0
z)

2]2

= (m0
z)

2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
(m0

z)
2 − 2q2 + 2(x− x2)k2

[q2 + x(1 − x)k2 + (m0
z)

2]2

= (m0
z)

2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
3(m0

z)
2 + 4(x− x2)k2 − 2(q2 + x(1 − x)k2 + (m0

z)
2)

[q2 + x(1 − x)k2 + (m0
z)

2]2

= (m0
z)

2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3

[
3(m0

z)
2 + 4(x− x2)k2

[q2 + x(1 − x)k2 + (m0
z)

2]2
− 2

[q2 + x(1 − x)k2 + (m0
z)

2]

]
(2.156)

With each term reads:

ΠB,1
zz (k) = (m0

z)
2

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
3(m0

z)
2 + 4(x− x2)k2

[q2 + x(1 − x)k2 + (m0
z)

2]2

= (m0
z)

2

ˆ 1

0

[dx]
Γ(2 − 3/2)

(4π)3/2Γ(2)

3(m0
z)

2 + 4(x− x2)k2

[(m0
z)

2 + x(1 − x)k2]2−3/2

=
(m0

z)
2

8π

ˆ 1

0

[dx]
3(m0

z)
2 + 4(x− x2)k2

[(m0
z)

2 + x(1 − x)k2]1/2

=
(m0

z)
2

8π

ˆ 1

0

[dx]

[
2m+

(
k +

2m2

k
arctan[k/2m]

)]
≈ m2

8π

[
3m+

5k2

12m
− 7k4

240m3
+ O[k6]

]
(2.157)
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and:

ΠB,2
zz (k) = (m0

z)
2

ˆ 1

0

ˆ
d3q

(2π)3
−2

[q2 + x(1 − x)k2 + (m0
z)

2]

= (m0
z)

2

ˆ 1

0

[dx]
(−2)Γ(1 − 3/2)

(4π)3/2Γ(1)

1

[(m0
z)

2 + x(1 − x)k2]1−3/2

=
(m0

z)
2

2π

ˆ 1

0

[dx]
1

[(m0
z)

2 + x(1 − x)k2]−1/2

=
(m0

z)
2

2π

[
m

2
+
i(k2 + 4m2)

8k
ln

(−ik + 2m

+ik + 2m

)]
=
m2

2π

[
m+

k2

12m
− k4

240m3
+ O[k6]

]
(2.158)

With above, we have:

ΠB
zz(k) ≈ m2

8π

[
3m+

5k2

12m
− 7k4

240m3
+ O[k6]

]
+
m2

2π

[
m+

k2

12m
− k4

240m3
+ O[k6]

]
(2.159)

to the second order of k, would be:

ΠB
zz(k) ≈ 7m3

8π
+

3m

32π
k2 (2.160)

2.10.4 One û vertex and one m̂z vertex (Diagrams like
Fig. [2.5].(c))

SC
eff ≡ 1

2

ˆ
d3k

(2π3)
[ΠC

zν(k)m̂z(+k)ûν(−k) + ΠC
µz(k)ûµ(+k)m̂z(−k)] (2.161)

with the function:

ΠC
zν(k) =

ˆ
d3q

(2π)3
Tr

[
m0

z + i(qa + ka/2)τa

(m0
z)

2 + (q + k/2)2
m0

zτ0
m0

z + i(qb − kb/2)τ b

(m0
z)

2 + (q − k/2)2
τ ν
]
i(qν − kν/2)

ΠC
µz(k) =

ˆ
d3q

(2π)3
Tr

[
m0

z + i(qa + ka/2)τa

(m0
z)

2 + (q + k/2)2
τµ
m0

z + i(qb − kb/2)τ b

(m0
z)

2 + (q − k/2)2
m0

zτ0

]
i(qµ + kµ/2)

(2.162)
We shall get them one by one:

ΠC
zν(k) = m0

z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
Γ(1 + 1)

Γ(1)Γ(1)
Tr

[
[m0

z + i(qa + ka/2)τa][m0
z + i(qb − kb/2)τ b]τ ν

{[(m0
z)

2 + (q + k/2)2](1 − x) + [(m0
z)

2 + (q − k/2)2]x}2
]

× i(qν − kν/2)

= m0
z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
Tr

[
[m0

z + i(qa + ka/2)τa][m0
z + i(qb − kb/2)τ b]τ ν

[(q + (1/2 − x)k)2 + x(1 − x)k2 + (m0
z)

2]2

]
i(qν − kν/2)

= m0
z

ˆ 1

0

[dx]

ˆ
d3q̃

(2π)3
Tr

[
[m0

z + i(q̃a + xka)τ
a][m0

z + i(q̃b − kb + xkb)τ
b]τ ν

[q̃2 + x(1 − x)k2 + (m0
z)

2]2

]
i(q̃ν − kν + xkν)

(2.163)
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The trace in the numerator reads:

Tr{[m0
z + i(qa + xka)τ

a][m0
z + i(qb + xkb − kb)τ

b]τ ν}
=Tr{[(m0

z)
2 + im0

z(qa + xka)τ
a + im0

z(qb + xkb − kb)τ
b − (qa + xka)(qb + xkb − kb)τ

aτ b]τ ν}
=im0

z(qa + xka)(2δ
aν) + im0

z(qb + xkb − kb)(2δ
bν) − (qa + xka)(qb + xkb − kb)(2iϵ

abν)

=im0
z(2)(2qν + 2xkν − kν) + qakb(2iϵ

abν)
(2.164)

and the total numerator reads:

N [ΠC
zν(k)] = −(m0

z)
2(2)(2qν + 2xkν − kν)(qν + xkν − kν) −m0

zqakb(qν + xkν − kν)(2ϵabν)

Ne[Π
C
zν(k)] = −2(m0

z)
2[2q2ν + (2x− 1)(x− 1)k2ν ] − 2m0

zqaqνkbϵ
abν

(2.165)
Such that, we shall see (the term we dropped in the second line is qxqy will vanish as it’s
odd to qx or qy separately)

ΠC
zν(k) = m0

z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2m0

z[2q
2
ν + (2x− 1)(x− 1)k2ν ] − 2qaqνkbϵ

abν

[q2 + x(1 − x)k2 + (m0
z)

2]2

= m0
z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2m0

z[2q
2
ν + (2x− 1)(x− 1)k2ν ]

[q2 + x(1 − x)k2 + (m0
z)

2]2

(2.166)

We shall have:

ΠC,1
zν (k) = m0

z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−4m0

zq
2
ν

[q2 + x(1 − x)k2 + (m0
z)

2]2

= m0
z

ˆ 1

0

[dx](−4m0
z)

1

(4π)3/2Γ(2)

1

2
δνν

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

=
(m0

z)
2δνν

2π

ˆ 1

0

[dx]
1

[(m0
z)

2 + x(1 − x)k2]−1/2

=
(m0

z)
2δνν

2π

[
m

2
+

i(k2 + 4m2) ln

(
−ik+2m
+ik+2m

)
8k

]
≈ m2δνν

2π

[
m+

k2

12m
− k4

240m3
+ O(k6)

]

(2.167)
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and:

ΠC,2
zν (k) = m0

z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2m0

z(2x− 1)(x− 1)k2ν
[q2 + x(1 − x)k2 + (m0

z)
2]2

= (−2m0
z)m

0
zk

2
ν

ˆ 1

0

[dx](2x− 1)(x− 1)
Γ(2 − 3/2)

(4π)3/2Γ(2)

1

[(m0
z)

2 + x(1 − x)k2]2−3/2

= −k
2
ν(m0

z)
2

4π

ˆ 1

0

[dx]
(2x− 1)(x− 1)

[(m0
z)

2 + x(1 − x)k2]1/2

= −k
2
ν(m0

z)
2

4π

[
(−2km+ (k2 + 4m2)arccot[2m/k])

2k3

]
= −k

2
νm

2

4π

[
1

6m
− k2

120m4
+

k4

1120m5
+ O[k6]

]
(2.168)

Thus we have:

ΠC
zν(k) =

m2

2π

[
m+

k2

12m
− k4

240m3
+O(k6)

]
− k2νm

2

4π

[
1

6m
− k2

120m4
+

k4

1120m5
+O[k6]

]
, (2.169)

and to the second order of k:

ΠC
zν(k) ≈ m3

2π
+

m

24π
(k2 − k2ν) (2.170)

Similarly, we shall have:

ΠC
µz(k) =

ˆ
d3q

(2π)3
Tr

[
[m0

z + i(qa + ka/2)τa]τµ[m0
z + i(qb − kb/2)τ b]

[(m0
z)

2 + (q + k/2)2][(m0
z)

2 + (q − k/2)2]
m0

zτ0

]
i(qµ + kµ/2)

= m0
z

ˆ
d3q

(2π)3

ˆ 1

0

[dx]
Γ(1 + 1)

Γ(1)Γ(1)
Tr

[
[m0

z + i(qa + ka/2)τa]τµ[m0
z + i(qb − kb/2)τ b]

{[(m0
z)

2 + (q + k/2)2](1 − x) + [(m0
z)

2 + (q − k/2)2]x}2
]

× i(qµ + kµ/2)

= m0
z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
Tr

[
[m0

z + i(qa + ka/2)τa]τµ[m0
z + i(qb − kb/2)τ b]

[(q + (1/2 − x)k)2 + x(1 − x)k2 + (m0
z)

2]2

]
i(qµ + kµ/2)

= m0
z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
Tr

[
[m0

z + i(q̃a + xka)τ
a]τµ[m0

z + i(q̃b − kb + xkb)]

[q̃2 + x(1 − x)k2 + (m0
z)

2]2

]
i(q̃µ + xkµ)

(2.171)
The trace in the numerator reads:

Tr{[m0
z + i(qa + xka)τ

a]τµ[m0
z + i(qb + xkb − kb)τ

b]}
=Tr{[m0

zτ
µ + i(qa + xka)τ

aτµ][m0
z + i(qb + xkb − kb)τ

b]}
=Tr[(m0

z)
2τµ+im0

z(qa + xka)τ
aτµ+im0

z(qb+xkb−kb)τµτ b−(qa+xka)(qb+xkb−kb)τaτµτ b]
=im0

z(qa + xka)(2δ
aµ) + im0

z(qb + xkb − kb)(2δ
µb) − (qa + xka)(qb + xkb − kb)(2iϵ

aµb)

=im0
z(2)(2qµ + 2xkµ − kµ) + qakb(2iϵ

aµb),
(2.172)
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and the total numerator reads:

N [ΠC
µz(k)] = −2(m0

z)
2(2qµ + 2xkµ − kµ)(qµ + xkµ) −m0

zqakb(qµ + xkµ)(2ϵaµb)

Ne[Π
C
µz(k)] = −2(m0

z)
2[2q2µ + (2x− 1)xk2µ] − 2m0

zqaqµkbϵ
aµb

(2.173)

We obtain:

ΠC
µz(k) = m0

z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2m0

z[2q
2
µ + (2x− 1)xk2µ] − 2qaqµkbϵ

aµb

[q2 + x(1 − x)k2 + (m0
z)

2]2

= m0
z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2m0

z[2q
2
µ + (2x− 1)xk2µ]

[q2 + x(1 − x)k2 + (m0
z)

2]2

(2.174)

We then have:

ΠC,1
µz (k) = m0

z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−4m0

zq
2
µ

[q2 + x(1 − x)k2 + (m0
z)

2]2

= m0
z

ˆ 1

0

[dx](−4m0
z)

1

(4π)3/2Γ(2)

1

2
δµµ

Γ(2 − 1 − 3/2)

[(m0
z)

2 + x(1 − x)k2]2−1−3/2

=
(m0

z)
2δµµ

2π

ˆ 1

0

[dx]
1

[(m0
z)

2 + x(1 − x)k2]−1/2

=
(m0

z)
2δµµ

2π

[
m

2
+

i(k2 + 4m2) ln

(
−ik+2m
+ik+2m

)
8k

]
≈ m2δµµ

2π

[
m+

k2

12m
− k4

240m3
+ O(k6)

]

(2.175)

and:

ΠC,2
µz (k) = m0

z

ˆ 1

0

[dx]

ˆ
d3q

(2π)3
−2m0

z(2x− 1)(x− 1)k2µ
[q2 + x(1 − x)k2 + (m0

z)
2]2

= m0
z(−2m0

z)k
2
µ

ˆ 1

0

[dx](2x− 1)(x− 1)
Γ(2 − 3/2)

(4π)3/2Γ(2)

1

[(m0
z)

2 + x(1 − x)k2]2−3/2

= −k
2
µ(m0

z)
2

4π

ˆ 1

0

[dx]
(2x− 1)(x− 1)

[(m0
z)

2 + x(1 − x)k2]1/2

= −k
2
µ(m0

z)
2

4π

[
(−2km+ (k2 + 4m2)arccot[2m/k])

2k3

]
≈ −k

2
µm

2

4π

[
1

6m
− k2

120m4
+

k4

1120m5
+ O[k6]

]
(2.176)

We shall have:

ΠC
µz(k) =

m2

2π

[
m+

k2

12m
− k4

240m3
+O[k6]

]
− k2µm

2

4π

[
1

6m
− k2

120m4
+

k4

1120m5
+O[k6]

]
(2.177)
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and to the second order of k, that is:

ΠC
µz(k) =

m2

2π
+

m

24π
(k2 − k2µ) (2.178)
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Chapter 3

Topological defects and textures in
two-dimensional quantum orders

In this chapter, we consider two-dimensional (2d) quantum many-body systems with long-
range orders, where the only gapless excitations in the spectrum are Goldstone modes of
spontaneously broken continuous symmetries. To understand the interplay between classical
long-range order of local order parameters and quantum order of long-range entanglement in
the ground states, we study the topological point defects and textures of order parameters
in such systems. We show that the universal properties of point defects and textures are
determined by the remnant symmetry enriched topological order in the symmetry-breaking
ground states with a non-fluctuating order parameter, and provide a classification for their
properties based on the inflation-restriction exact sequence. We highlight a few phenomena
revealed by our theory framework. First, in the absence of intrinsic topological orders,
we show a connection between the symmetry properties of point defects and textures to
deconfined quantum criticality. Second, when the symmetry-breaking ground state have
intrinsic topological orders, we show that the point defects can permute different anyons when
braided around. They can also obey projective fusion rules in the sense that multiple vortices
can fuse into an Abelian anyon, a phenomena for which we coin “defect fractionalization”.
Finally, we provide a formula to compute the fractional statistics and fractional quantum
numbers carried by textures (skyrmions) in Abelian topological orders.

3.1 Introduction

One of the most successful theories in condensed matter physics is the Landau’s theory of
phases and phase transitions [148, 72, 146, 147]: phases are distinguished by their symme-
tries, and phase transitions are described by symmetry breaking. An ordered phase with
broken symmetry is identified through the formation of off-diagonal long-range order and is
characterized by a local order parameter. While the spontaneous breaking of a continuous
symmetry leads to Goldstone modes [188, 74] which are gapless excitations in the system,
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a class of gapped topological excitations – defects and textures – may also be present in an
ordered phase as a consequence of the nontrivial topology of the order parameter space [178].
This classical topology can lead to very rich physics. For example, the topological defects
have their own dynamics and may also lead to phase transitions at finite temperatures [20,
21, 138]. Topological defects and textures also commonly appear in soft matter physics [130,
256] and ultracold atom physics [156, 235].

Since the discover of the quantum Hall effects in the 1980s [132, 255, 151], the notion
of phases of matter have been extended beyond Landau’s theory. Let us focus on gapped
phases of matter, which, by definition, are phases with gapped excitations that are robust
against local perturbations without closing the gap. In absence of symmetry, these different
phases are determined by the long-range entanglement structure of the ground state wave
functions [275], with the trivial one being an “atomic insulator” whose ground state shares
the same phase as a collection of isolated atoms. A topological order, on the other hand,
has a nontrivial entanglement structure in their wave function, which manifest itself, e.g.
through ground state degeneracy when placed on a topologically nontrivial manifold [270].
Here, while the word “topological” in topological order still refers to the robustness of the
low energy excitations against local perturbations without closing the gap, this feature is a
direct consequence of the long-range entanglement of the wave function [275]. In presence of
symmetry, either a topologically trivial state or a topologically ordered state may be further
separated into different phases. The result is either a symmetry protected topological (SPT)
phase [83, 41, 39, 40, 42, 45, 44, 43, 197, 170, 274, 154, 277] or a symmetry enriched
topological (SET) phase [59, 179, 169, 245, 14], and in both cases different gapped ground
states are characterized by certain topological invariants. As the quantum state counterpart
of the order parameter in a broken phase in Landau’s theory, the topological invariants
reflect the robustness of the state under small perturbations and are a manifestation of the
quantum topology that arises from many-body quantum entanglement in the wave function.

So far, most studies on topological phases – SPT and SET – preserve all symmetries
of the system, in contrast to the Landau paradigm where spontaneously broken symmetries
give rise to long-range orders. In other words, topological (SPT and SET) phases are usually
discussed in a context that excludes long-range orders from spontaneous symmetry break-
ing. In nature, nevertheless, the coexistence of long-range order in a topological phase is not
a rare phenomenon: nematic quantum Hall states in higher Landau levels [63], topological
superconductors that spontaneously break charge conservation [162], and magnetic fragmen-
tation for spin ice [195], to name a few. On the theoretical side, while most previous works
studied examples with an emphasis on non-interacting fermion systems [232, 261, 109, 205,
298, 204, 248, 11, 10, 12, 8, 265], a general theory for interacting topological phases with
coexisting long-range orders is still lacking [58].

This motivates us to establish a theoretical framework for topological phases in the
presence of long-range orders [58], which is the main focus of the present work. We consider
the “gapped” topological phases, where the Goldstone modes that arise from spontaneous
breaking of continuous symmetries are the only gapless excitations in the system. Our
approach is to study the universal properties of topological defects and textures of the
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spontaneously broken symmetries, as a first step towards a classification of topological phases
in presence of long-range orders.

One theme of the present work is to establish a concrete connection between classical
topology and quantum topology. We will be mainly focusing on topological point defects and
smooth textures (i.e. skyrmions) in two-spatial dimensions and their interplay with an SPT
or an SET phase. More precisely, when the full symmetry group G spontaneously breaks
down to a subgroup H, we consider a symmetry-breaking ground state where the order
parameters are not fluctuating and fixed in a classical minimum of the free energy. Since the
only gapless excitations in our systems are the Goldstone modes, these symmetry-breaking
states must be the ground state of a gapped Hamiltonian that preserves H. In two spatial
dimensions, they are either H-SPT phases in the absence of intrinsic topological orders,
or more generally H-SET phases. We intend to understand how these H-SPT or H-SET
ground states (“quantum topology”) affect universal properties of topological defects and
textures of the order parameters (“classical topology”) in the associated long-range order.

It turns out the crucial connection between classical and quantum topology can be es-
tablished generally by a map (a “connecting homomorphism” [58]) from topological defects
and textures of the order parameters to (extrinsic) symmetry defects [154, 14, 245, 246] in
an H-SPT or H-SET phase. We use this map, and the classification of H-SPT and H-SET
phases, to obtain a classification and characterization of the universal properties belonging
to topological defects and textures in a long-range ordered quantum system.

We first consider the (conceptually simpler) situation in the absence of intrinsic topo-
logical orders, where each ground state with fixed non-fluctuating order parameters is an
H-SPT phase. We identify two phenomena out of interplay between classical topology and
quantum topology: owing to the H-SPT ground state of the long-range order, the point
defects of order parameters can carry a projective representation of the remnant symmetry
H, while topological textures of the order parameters (i.e. skyrmions) can carry a nontrivial
quantum number of the remnant symmetry H. This provides a new angle into a large family
of Landau-forbidden quantum phase transitions: i.e. the deconfined quantum critical points
(DQCPs) [221, 222, 262, 165].

Next we consider a more general situation, where each ground state with non-fluctuating
order parameters is an H-SET phase with bulk anyon excitations [59, 14, 245, 179, 169].
First, we reveal two exotic phenomena associated with point defects: (1) different types of
anyons can be permuted after they are braided around a point defect, (2) multiple point
defects, when combined together to form a trivial point defect, can instead fuse into an
Abelian anyon, a phenomenon for which we coin the term “defect fractionalization”. Then,
in the case of smooth textures of order parameters, i.e. skyrmions in 2d, we develop a general
field theory that couples a topological ordered system to a ferromagnetic order parameter
via a topological term in the Lagrangian. Applying this to Abelian topological orders, we
obtain the formula for the fractional statistics and fractional quantum numbers of skyrmions
in the system.

Another interest of this work comes from the technical side. It has been known for long
(and fairly familiar among condensed matter physicists) that classical topological defects
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are mathematically described by homotopy groups in algebraic topology [91, 207]. This
mathematical object is rather intuitive as it admits a real space picture: it models the
topological defects as maps from real space (or spacetime) to the space of parameters (such
as the order parameter space which is of interest to this work) and classifies them up to
continuous deformation. On the other hand, the theory of symmetry defects and symmetry
fractionalization are rather new in condensed matter physics [276, 154, 59, 245, 14], and the
main mathematical tool employed are various homology (and cohomology) theories. While
homology theory also stems from homotopy theory in algebraic topology, it has developed
into an independent subject, whose application in physics is far more rich and profound.
Even from this technical point of view, it would be a great pleasure – and would bring
great mathematical insight to the physical problem under consideration – to see how these
mathematical objects can be united in the treatment of classical topology and quantum
topology.

This chapter is organized as follows. In Sec. 3.3, we describe a theoretical framework,
which crucially connects the point defects and textures of the order parameters of the broken
symmetries to the symmetry defects of the preserved symmetries. This connection allows
us to classify and characterize the universal properties of point defects and textures using
the topological properties of the ground states. In Sec. 3.4, we continue our theoretical
framework by exploring the connection between classical topology and quantum topology,
where we provide more mathematical details on group cohomology classification for point
defects and textures in SPT and SET phases. The key word there are the so-called “inflation
map” that appears in a five-term exact sequence for group cohomology, whose physical
meaning will be investigated in great detail. Next we apply this framework to demonstrate
universal properties of point defects and textures in 2d quantum orders. In Sec. 3.5, we
focus on the simplest cases in the absence of intrinsic topological orders, where all ground
states with a fixed order parameter configuration are SPT phases. We show that the exotic
phenomena of DQCP can be captured in a concise manner within our framework. Next, we
proceed with general cases where the ground states are SET phases with intrinsic topological
order. In Sec. 3.6, we classify topological properties of point defects, highlighting two distinct
phenomena: non-Abelian point defects that permute anyons when braided around, and a
new phenomenon for which we coin “defect fractionalization” where multiple point defects
fuse into Abelian anyons. In Sec. 3.7, we study topological textures (i.e. skyrmions) in
2d SET phases, in particular, we compute the fractional statistics and quantum numbers
of skyrmions. Finally we summarizes our main results and look into future directions in
Sec. 3.8.

3.2 Note on notations

Many Abelian groups are defined in this work. When an Abelian group represents (the fusion
of) Abelian anyons we will often denote by blackboard bold symbol, e.g. Z2. Quite often we
use subscript to detail the anyon types, e.g. Ze

2 denotes the (fusion) group of the trivial anyon
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Figure 3.1: (a) Similar to symmetry defects, the topological defects in topological order may
also braid the anyons. (b) Defect fractionalization: topological defects in symmetry enriched
topological order can fuse to additional anyons.

1 and the ”electric” particle e. We also denote the homotopy group and the cohomology group
blackboard bold symbol. On the other hand, when an Abelian group appears as a group of
symmetry operations we will often denote with the usual symbol, e.g. Z2 and Z4. Sometimes
a group is indicated by its generators, for example, for the Abelian group generated by the
two-fold element h all the following notations are equivalent: Z2 = Zh

2 = {1, h} = ⟨h⟩.
Several types of products appear in this work. Since quite often we are dealing with finite

Abelian groups, we do not distinguish direct product and direct sum, for example, Z2 × Z2

and Z2 ⊕Z2, and Z2
2 all mean the same object. Note these are different from tensor product

of groups. As an example, we have Z2 ⊗ Z2 = Z2 ̸= Z2
2.

For the group cohomology H∗(G,A), G can either act trivially or nontrivially on the
coefficient A. Quite often when the action is nontrivial it is specified explicitly in some way
(either stated in words or using symbols): for example in H2

h(D2 = Zg
2 ×Zh

2 ,A = Ze
2×Zm

2 ) =
Z2 the Abelian group Zh

2 generated by an order-two element h acts nontrivially on the anyons
A, and we remind this action by the subscript h in the notation Hn

h. As another example,
in the five-term exact sequence, all the cohomology groups with possible nontrivial actions
(ρ : H → Aut(A)), ρ̃ : π1(G/H) → Aut(A))) are manifest by the subscripts, whereas the
term H1(π1(G),A) without subscript (or with the subscript “id”) means π1(G) acts trivially
on A.

3.3 General framework

We consider the ground state of a 2d quantum many-body system, which exhibits a long-
range order associated with spontaneous symmetry breaking. To be precise, the symmetry
group G of the Hamiltonian spontaneously breaks down to a subgroup H that is preserved
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in an ordered ground state. Moreover, we assume that the possible Goldstone modes, from
spontaneously broken continuous symmetries, are the only gapless excitations in the bulk
of the system. In other words, the ground state with a fixed nonzero order parameter
O(r⃗) = ⟨Ô(r⃗)⟩ ≠ 0, is a gapped symmetric phase that preserves the remnant symmetry H. In
the rest part of the paper, for simplicity, we assume the classical gapless Goldstone modes do
not affect the topological data of the remnant gapped quantum phases that we are interested
in. In two spatial dimensions, this means the ground state is an H-symmetry enriched
topological order. The question we are answering is, what are the universal properties
of topological defects and textures in the order parameters therein, when the symmetry-
breaking ground state is a topological state enriched by the remnant symmetry H?

To address this question, we need to consider topological defects and textures as exci-
tations in a symmetry-breaking ground state. They turn out to be connected to a special
type of excitations known as extrinsic symmetry defects (or twist defects) in symmetry en-
riched topological (SET) phases. This correspondence allows us classify universal properties
of topological defects and textures in ordered media with a nontrivial ground state topology.
The key mathematical tool to establish this connection is the long exact sequence of homo-
topy groups for topological defects and textures. In this section, we outline this connection
between classical topology of the order parameters and quantum topology of the entan-
gled ground states, and then utilize this connection to classify point defects and textures in
following sections.

3.3.1 Domain walls
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Figure 3.2: The equivalence between a domain wall between two phases CH and C ′
gHg−1 ,

and the boundary of a 2d phase (Eq. (3.2)).

In 2d, a gapped phase that preserves remnant symmetry H is generally an H-SET phase,
whose anyon excitations are described by a unitary modular tensor category C [127, 14, 245].
We use CH to label such an H-SET phase. The domain wall in two spatial dimension is a
line defect characterized by π0(G/H). In a gapped system whose symmetry group G of the
Hamiltonian is spontaneously broken, a generic domain wall D(g,H) is labeled by a remnant
subgroup H < G and a group element g /∈ H, such that it separates a left domain that
preserves symmetry subgroup H, and a right domain that preserves subgroup gHg−1, as
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shown in Fig. 3.2. We can label the H-SET phase on the left domain as CH , and the
(gHg−1)-SET phase on the right domain would be

UgCHU−1
g ≃ C ′

gHg−1 (3.1)

where we use Ug to label the action of broken symmetry element g on the H-SET phase on
the left domain. Note that the right domain and the left domain may not share the same
topological order C, e.g. in the case of a time reversal domain wall with g = T , the left
and right domains have opposite chiralities and hence C ′ = C̄, where C̄ is defined as the time
reversal counterpart of topological order C. In this setup, using the folding trick, it is clear
that the domain wall D(g,H) between left domain CH and right domain C ′

gHg−1 can be mapped
to the boundary of a 2d topological phase:

(C ⊠ C̄ ′)Hg ≡ CH ⊠ C̄ ′
gHg−1 (3.2)

where we denote the remnant unbroken symmetry of the domain wall configuration as

Hg ≡ H ∩ (gHg−1) = {h ∈ H|g−1hg ∈ H} (3.3)

Therefore the universal properties of domain walls D(g,H) is captured by boundary excitations
of a 2d topological phase described by (3.2), as illustrated in Fig. 3.2.

The physics of boundary excitations in a 2d topological order is in fact a subject ex-
tensively studied in the literature [129, 30, 107, 144, 100, 29, 145, 136, 135]. In light of
the above physical picture that maps a domain wall to a boundary, we will not attempt to
classify topological properties of domain walls in SET phases in this manuscript. From now
on we shall discuss only the point defects and textures in two spatial dimensions.

3.3.2 Point defects

In two spatial dimensions, point defects are classified by the fundamental group π1(G/H).
Two representative examples of point defects in 2d are the following:

(1) In a system of interacting spinless bosons whose ground state is an m-boson con-
densate, the boson number conservation symmetry G = U(1) is spontaneously broken down
to a H = Zn subgroup. The vortices of such an m-boson condensate are classified by
π1(G/H) = π1(U(1)) = Z. In particular, the fundamental vortex with unit winding number
ν = 1 is equivalent to a 2π/m flux by a gauge transformation.

(2) For interacting ions that form a crystalline lattice in two dimensions, the continuous
translation symmetry G = R2 is spontaneously broken down to a discrete subgroup H = Z2.
The associated point defects, i.e. dislocations, are classified by π1(G/H) = Z2, characterized

by a Burgers vector b⃗ = b1a⃗1 + b2a⃗2, where (b1, b2) ∈ Z2 and a⃗1,2 are the two primitive
lattice vectors. Physically, we can consider a close loop on a translation-invariant lattice.
If a particle follows exactly the same path of the loop, which now encloses a dislocation,
the particle will not return to the starting point after finishing the path. Instead, the final
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position differs from the initial position by the Burgers vector b⃗ of the dislocation enclosed
by the path.

Both examples belong to the general case where a connected topological (continuous)
group G is broken down to a discrete subgroup H. We assume H to be a normal subgroup
of G (i.e. H ◁G), so that the whole point defect configuration of order parameters preserves
symmetry H. Applying the long exact sequence Eq. (1.5) to the n = 1 case, we obtain the
following short exact sequence:

· · · −→ π1(H) = 0
f−−→ π1(G)

i−→ π1(G/H)
p−−→ π0(H) = H

g−−→ π0(G) = 0 −→ · · · (3.4)

where p is known as the connecting homomorphism between the topological point defects
and symmetry defect. The group π1(G) and π1(G/H) are illustrated in Fig. 3.3.

This short exact sequence of groups can be understood as follows: using the exactness
of the sequence, it is clear that i is an injective map, hence π1(G) is a normal subgroup
of π1(G/H). The connecting homomorphism p is a surjective map so H is isomorphic to
the quotient group π1(G/H)/π1(G). Such a short exact sequence defines a group extension
problem, and here we say that π1(G/H) is a group extension of the group π1(G) by H.

!
!/#

(a) (b)

Figure 3.3: Illustration of the fundamental group π1 of the group manifold. (a) π1(G)
captures the winding in G-space. (b) π1(G/H) captures the winding in G/H space. Note
that the open line in (a) may be considered as closed loop in (b) as those points are identified
in G/H space.

Physically, the surjective map g in the short exact sequence (3.4) connects topological
point defects classified by π1(G/H), to symmetry defects associated with elements of the
remnant symmetry group H in the symmetry-breaking ground state, which is generally an H-
SET phase. Note that the classification and characterization of H-SET phases [14, 245, 246]
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is in fact built upon an algebraic theory of h-defects for h ∈ H, which has been extensively
studied previously. The above group extension allows us to map each point defect classified
by π1(G/H) to an h-defect associated with the group element h ∈ H, therefore allowing us
to characterize the topological properties of point defects. In the two examples mentioned
above: (1) Since π1(G = U(1)) ̸= 0, a vorticity-ν vortex in an m-boson condensate is mapped
to a 2πν/m flux of the remnant Zm symmetry, and hence the map p is surjective but not
injective. (2) Since π1(G = Rd) = 0, the dislocations are in one to one correspondence with
translation symmetry defects, and hence the map p is bijective.

Below we shall apply this idea to two different families of symmetry-breaking phases:
(i) When a symmetry-breaking ground state has no intrinsic topological order, it is de-

scribed by an H-SPT phase. The point defects can carry linear or projective representations
of the remnant symmetry H, a phenomenon closely related to deconfined quantum critical
points (DQCP). We discuss point defects of this family in Sec. 3.5.

(ii) When there are intrinsic topological orders in a symmetry-breaking ground state, it
is generally an H-SET phase. In this case, the point defects can be non-Abelian defects
that permute anyons, or they can exhibit exotic fusion rules. We classify and discuss point
defects of this family in Sec. 3.6.

3.3.3 Textures

The most familiar example of a topological texture in two spatial dimension is a skyrmion.
When a ferromagnetic order breaks the G = SO(3) spin rotational symmetry to a uniaxial
spin rotation subgroup H = U(1), the order parameter manifold is a 2-sphere M = G/H =
S2 with nontrivial textures classified by π2(S

2) = Z. In fact, most familiar realizations of
topological textures in 2d are essentially classified by π2(S

2) = Z, and we shall focus on
skyrmions as 2d textures in the manuscript.

In the case of skyrmions, the long exact sequence (1.5) reduces to the short exact sequence

· · · −→ π2(SO(3))=0 −→ π2(S
2)=Z i−→ π1(U(1))=Z

−→ π1(SO(3))=Z2
p−−→ π1(S

2)=0 −→ · · ·
(3.5)

This short exact sequence indicates that the connecting homomorphism i is an injective map
from skyrmions labeled by π2(S

2) = Z to fluxes labeled by π1(U(1)) = Z. More precisely, the
group of U(1) fluxes π1(U(1)) = Z is a central extension of the skyrmion group π2(S

2) = Z,
with the center being the group of point defects π1(SO(3)) = π1(SU(2)/Z2) = Z2

1.
Physically, it is known that the Z2 point defect is nothing but a 2π vortex for the SO(3)

spins [122, 56]. In other words, the spin of a particle is rotated around one (any) axis by

1Note that, here we have used the fact π1(SU(m)/Zm) = Zm from the following four-term exact sequence

π1(SU(m)) = 0
f1−−→ π1(SU(m)/Zm)

f2−−→ π0(Zm) = Zm
f3−−→ π0(SU(m)) = 0,

Using the exactness of the terms, one can show that f2 is an isomorphism map, therefore π1(SU(m)/Zm) ∼=
Zm.



CHAPTER 3. TOPOLOGICAL DEFECTS AND TEXTURES IN
TWO-DIMENSIONAL QUANTUM ORDERS 71

2π after circling around the nontrivial point defect in π1(SO(3)) = Z2. Eq. (3.5) defines
a map from the element a ∈ π2(S

2) to b ∈ π1(U(1)) and then to the trivial element in
π1(SO(3)) = Z2. Since the non-trivial element for that Z2 point defect is a 2π vortex for
spins, the trivial element of Z2 should correspond to a 4π vortex. Therefore, in Eq. (3.5), a
skyrmion with winding number ν ∈ Z is mapped to a 4πν flux of the U(1) spin rotations,
i.e., 2ν ∈ π1(U(1)) = Z [80, 58].

The map in Eq. (3.5) points to the nature of skyrmions in a ferromagnetic topological
order where SO(3) spin rotational symmetry is spontaneously broken down to a U(1) sub-
group, as the topological properties of each ν = 1 skyrmion can be extracted from those of
4πν flux/defect of the unbroken U(1) symmetry. We shall follow this approach to identify
the fractional stastistics of skyrmions in Sec. 3.7.

3.4 Group cohomology for point defects and textures

3.4.1 Group cohomology for symmetry defects: a brief review

Following Ref. [14, 47, 1, 263], below we give a definition for symmetry defects in both SPT
and SET orders. When the physical system has a symmetry H with a given symmetry action
ρ on the quasi-particles, one can consider modifying the system by introducing a point-like
defect τh associated with a group element h ∈ H. When a quasi-particle is braided around
an h-symmetry defect τh, it is acted upon by the corresponding symmetry action ρh. Since
H is a global symmetry, the point-like defects τh are not finite-energy excitations and must
be extrinsically imposed by threading the symmetry flux of h.

As group cohomology is a crucial mathematical object for this work, we have given a
self-contained introduction to it from the mathematical side in Chapter. [1]. More detailed
characterization and intuition for it from the physics side will be given here and in later
sections.

3.4.1.1 Symmetry protected topological (SPT) phases

We start by recalling the definition and classification of bosonic SPT phases. An H-SPT
phase is a short-range entangled phase, which, in the presence of symmetry H, cannot be
continuously connected to a trivial product state without closing the energy gap. In a system
of interacting bosons in d spatial dimensions, different H-SPT phases are classified by the
(d + 1)-th group cohomology Hd+1(H,U(1)) [44]. The cohomology group Hd+1(H,U(1)) is
an Abelian group, whose identity element labels the topologically trivial phase (a featureless
product state), and the addition of group elements is implemented by stacking different SPT
phases.

When symmetry G is spontaneously broken down to H in a given ground state, a long-
range ordered ground state with fixed order parameters is an H-preserving short-range en-
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tangled phase2 which are H-SPT phases classified by the group cohomology H3(H,U(1))[44].
We consider a 2d SPT phase protected by a symmetry group H = B × K, which is a

direct product of two groups B and K. The Künneth formula indicates that the classification
of H-SPT phases can be written as a direct product [44]:

Hd+1(B×K,U(1)) =
d+1∏
i=0

Hi
(
B,Hd+1−i(K,U(1))

)
(3.6)

In the d = 2 case which is the interest of this manuscript, we have

H3(B×K,U(1)) = H3(B,U(1)) ×H2(B,H1(K,U(1)))

×H1(B,H2(K,U(1))) ×H3(K,U(1))

where each term has its own physical meaning. Clearly the first term H3(B,U(1)) classifies
the SPT phases protected only by the subgroup B, while the last term H3(K,U(1)) classifies
SPT phases protected only by the subgroup K.

In this work, we are particularly interested in the mixed anomaly of symmetry B and K,
which assigns quantum numbers or projective representations of subgroup K to B symmetry
defects. The mixed anomaly is captured by the 2nd and 3rd terms in the Künneth expansion
(3.7), as suggested by the “decorated domain wall” picture of the SPT phases [43].

(i) The 2nd term H1(B,H2(K,U(1))) assigns a projective representation [ω] ∈ H2(K,U(1))
to any symmetry defect αg associated with g ∈ B. As discussed in Sec. 3.3.2, in the exact
sequence (3.4), the connecting homomorphism p maps a symmetry breaking point defect (i.e.
vortex) of order parameters classified by π1(G/H) to a symmetry defect labeled by elements
of H = B × K. If the associated symmetry defect corresponds to an element g ∈ B, this
suggests that the point defect of order parameters can carry a projective representation of
K. This map will be discussed in detail in Sec. 3.4.3.

(ii) For topological textures of the order parameters in d = 2, we shall focus on the case
of skyrmions, where the remnant symmetry is H = U(1) × K with B = U(1). In other
words, we consider the full symmetry G = SO(3) ×K is broken down to H = U(1) ×K in
the collinear long-range order. In this case, we utilize an important result from the theory
of cohomology: for any finite Abelian group M on which U(1) and Z both act trivially3,

H2(U(1),M) ∼= M ∼= H1(Z,M). (3.7)

2We use the definition of Ref. [44] for short-range entangled phase, which is different from Kitaev’s
definition [127]. Therefore we do not consider invertible phases such as topological superconductor in class
D [128], and E8 states of d = 2 interacting bosons [127, 170].

3Here it is important to specify that by H2(U(1),M) we are computing the Borel cohomology, which is
the standard cohomology for bosonic SPT [44]. The calculation uses the relation between Borel cohomology
and simplicial cohomology H2(U(1),M) = H2(BU(1),M) = H2(CP∞,M) and the procedure of regarding
H2(CP∞,M) as the limiting case of H2(CPn,M) ∼= M for n → ∞ following Ref. [44]. On the other hand,
the part H1(Z,M) ∼= M can be obtained in either standard group cohomology or Borel cohomology.
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Mathematically, both cohomology groups classify different linear representations {Rν ∈
M |ν ∈ Z} of the integer (Z) group formed by the 2πν, ν ∈ Z fluxes of the remnant U(1)
symmetry with coefficients R(ν) ∈M .

As a result, with B = U(1), we can rewrite the 3rd term in Künneth expansion (3.7) as

H2
(
U(1),H1(K,U(1))

)
= H1

(
Z,H1(K,U(1))

)
(3.8)

Physically, this can be interpreted as assigning quantum numbers (or charges) of symmetry
group K, i.e. linear representation H1(K,U(1)), to the integer fluxes of the unbroken U(1)
subgroup.

As discussed in Sec. 3.3.3, the connecting homomorphism i in (3.5) maps the skyrmions
labeled by νs ∈ π2(G/H) = Z to integer fluxes labeled by νf ∈ π1(U(1)) = Z. As a result, we
can use the SPT classification H2

(
U(1),H1(K,U(1))

)
for each symmetry-breaking ground

state to determine the K symmetry quantum numbers assigned to each skyrmion. This map
will be discussed in detail in Sec. 3.4.4.

3.4.1.2 Symmetry enriched topological (SET) order

Consider a topological order described by a unitary modular tensor category C, enriched by
symmetry H that is a discrete group. Since the topological order preserves the unbroken
symmetry H, an SET phase can arise which in addition to the topological order displays
the phenomenon of fractionalization of symmetry [59, 245, 14]. Here we briefly review the
physical picture of symmetry fractionalization and the classification of SET.

For each group element h ∈ H, one can associate an extrinsic defect/flux τh [245, 14] in
the H-symmetry enriched topological order. A symmetry defect can be further labeled by an
anyon a ∈ C of the topological order, with the identity symmetry defect (i.e. the symmetry
defect associated with the identity element of the group) identified with the anyon a itself.
The symmetry defects in this sense are generalized anyons and can have nontrivial fusion and
braiding rules. In particular, anyons may be permuted when braided around a symmetry
defect τh. This braiding is one way of detecting the symmetry action ρ : H → Aut(C),
where Aut(C) denotes the automorphism group of the anyons. The first group cohomology
group, H1

ρ(H,A), defines a (possibly crossed, when ρ nontrivial) homomorphism [ω] where
ω : H → A describes an anyon labeling of symmetry defects that is consistent with the
symmetry action on the anyons, ρ. Two anyon-labeling homomorphisms ω′, ω′′ belong to
the same class [ω] if they differ only by an anyon permutation described by ρ. Physically,
H1

ρ(H,A) points to the ambiguity that an Abelian anyon ah ∈ A can always be attached to
a symmetry defect τh to form a new symmetry defect τ ′h corresponding to the same group
element h ∈ H.

The additional data to specify an SET phase is symmetry fractionalization (whose phys-
ical meaning will now be specified), classified by the second group cohomology H2

ρ(H,A).
Here ρ denotes the symmetry action on the anyons as introduced above, and A ⊂ C is the
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set of Abelian anyons viewed as an Abelian group under fusion [245, 14]4. The elements
[ω] ∈ H2

ρ(H,A) are cocycle elements ω under the equivalence relation of anyon labeling. The
cocycle elements ω(g, h) ∈ A takes as an input two group elements g, h ∈ H and returns
an anyon. Physically, the cocycle, roughly speaking, describes the outcome of fusing three
defects τg, τh, and τ(gh)−1 : the result is a trivial defect associated to the identity element
of H as required by the “conservation law”of the symmetry H, and the only possible out-
come is an Abelian anyon. The symmetry fractionalization data precisely refer to the anyon
outcomes after fusion. Crucially, it is inappropriate to think of the outcome anyon as fixed
since different anyons may be identified under the equivalence relation; rather symmetry
fractionalization refers to the inequivalent ways of assigning defect fusion rules up to anyon
relabeling.

To summarize, an H-SET phase is classified by symmetry action ρ on the anyon contents,
and the associated (symmetry) defect “fusion rule”, which encode symmetry fractionalization
data classified by H2

ρ(H,A). The defect fusion rule H2
ρ(H,A) is defined up to the a relabeling

of symmetry defects by Abelian anyons, specified by H1
ρ(H,A). As we show below, all

these data have correspondence in a phase with coexisting symmetry breaking defect and
topological order.

3.4.2 The inflation-restriction exact sequence

In this subsection we introduce the main mathematical tool we will be relying on in the
physical interpretation of group cohomology, the inflation-restriction exact sequence.

Recall that the input data for group cohomology Hn
ρ (G,M) is a group G and an Abelian

group M equipped with a G-action ρ : G → Aut(M), g 7→ ρ(g) (we use ρ(g) and ρg inter-
changeably). For convenience, we denote the G-action on M by the symbol “.”, that is, for
g ∈ G and a ∈ M , we define ρ(g)(a) ≡ g.a. Suppose N is a normal subgroup of G, and
Q := G/N the associated quotient group. Formally, we say that G is an extension of the
group Q by N that fits into the short exact sequence

0 // N
i //

ρN ((

G
p //

ρ

$$

Q = G/N

��

// 0

Aut(M)

(3.9)

Note that here the action ρN : N → Aut(M) is inherited from the action ρ. There is also an
action ρQ : Q → Aut(MN), here MN denotes the subgroup of M that are stabilized under
the action of N : MN = {a ∈M |n.a = a ∀n ∈ N}.

Given these data, a five-term exact sequence exists [207]

0 →H1(Q,MN) → H1(G,M)
res−→ H1(N,M)Q

d2−→ H2(Q,MN)
inf−→ H2(G,M), (3.10)

4Note that in the case of SPT discussed in Sec. 3.4.1.1, the action of the symmetry H on the U(1)
coefficient is uniquely determined by the symmetry H itself. Thus here and after we only specify the action
of the group cohomology for SET.



CHAPTER 3. TOPOLOGICAL DEFECTS AND TEXTURES IN
TWO-DIMENSIONAL QUANTUM ORDERS 75

this is the inflation-restriction exact sequence. Here H1(N,M)Q denotes the subgroup of
H1(N,M) that are stabilized under the action of Q in the following sense: for [ω] ∈ H1(N,M)
represented by the cocycle ω,

[ω] ∈ H1(N,A)Q ⇐⇒ q.(ω(q−1nq)) = ω(n), (3.11)

for any q ∈ Q and n ∈ N . The maps “res”, “d2” and “inf” are called the restriction, the
transgression (or the differential), and the inflation maps, respectively, and can be defined
explicitly.

In the following, we will apply the five-term exact sequence to various short exact se-
quences of homotopy groups. These homotopy groups describe either point defects or tex-
tures in the broken symmetry phase, and the broken symmetry phase is either an SPT or
an SET. Below we discuss each cases separately.

3.4.3 Group cohomology for point defects

3.4.3.1 Point defects in SPT

Consider a symmetry breaking from G = A×K to H = B×K, where A is a continuous group
and B a discrete group. A symmetry-breaking ground state with a fixed order parameter is
an H-SPT, and we focus on the mixed anomaly described by the H1(B,H2(K,U(1))) term
in the Künneth formula (3.7).

In this case, the topological point defects of the order parameter ϕ(r⃗) ∈ G/H is classified
by the fundamental group π1(G/H) = π1(A/B) which fits into the short exact sequence
(3.4). Recall from the Künneth decomposition (3.7) that the term H1(B,H2(K,U(1)))
assigns projective representations in M := H2(K,U(1)) to the symmetry defects of B. Note
that here we consider the case of B consisting of only unitary symmetry, therefore B acts
trivially on M . By (3.9), now the point defects labeled by π1(A) and π1(A/B) all act trivially
on M .

Then, applying the five-term exact sequence (3.10) gives

0 → H1(B,H2(K,U(1)))
d1−→ H1(π1(A/B),H2(K,U(1)))

res−→ H1(π1(A),H2(K,U(1)))

d2−→ H2(B,H2(K,U(1)))
inf−→ H2(π1(A/B),H2(K,U(1))).

(3.12)

The term H1(B,H2(K,U(1))) is exactly the term in the Künneth decomposition (3.7)
discussed above, which gives classification for H-SPT phases with the mixed anomaly. The
image of injective map d1 in H1(π1(A/B),H2(K,U(1))) classifies the K projective represen-
tation carried by point defects in π1(A/B).

Since H2(B,H2(K,U(1))) is one piece out of the Künneth decomposition for H4(B ×
K,U(1)), it physically corresponds to an anomalous symmetry implementation of group
H = B ×K on the surface of a three-dimensional H-SPT phase. It can only happen on the
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two-dimensional surface of a three-dimensionalH-SPT phase, but not in any two-dimensional
lattice models with onsite symmetry actions. Therefore the image of the restriction map is
the same as the kernel of the transgression map d2 in the exact sequence (3.12).

More physics of the point defects in H-SPT phases will be discussed in Sec. 3.5.2.

3.4.3.2 Point defects in SET

We consider a continuous symmetry G spontaneously broken down to a discrete subgroup H,
where each symmetry-breaking ground state is an H-SET phase, whose intrinsic topological
order is specified by the anyons C.

Recall from previous discussions that SET is equipped with a symmetry action on the
anyons, ρ : H → Aut(C) [14, 245]. Suppose that the system started with a larger (contin-
uous) symmetry G that spontaneously broke down to a discrete symmetry group H. The
topological point defects of the order parameter is again classified by π1(G/H) that fits into
the short exact sequence (3.4). Then, one can pull back the symmetry H-action ρ to obtain
actions of the topological point defects on the anyons:

π1(G) i //

˜̃ρ **

π1(G/H)
p //

ρ̃

&&

H

ρ

��
Aut(C).

(3.13)

Applying the five-term exact sequence (3.10) to Eq. (3.13) gives

0 → H1
ρ(H,A) → H1

ρ̃(π1(G/H),A)
res−→ H1(π1(G),A)H

d2−→ H2
ρ(H,A)

inf−→ H2
ρ̃(π1(G/H),A),

(3.14)

where the second group cohomology H2
ρ(H,A) classifies the symmetry fractionalization in

an H-SET phase [14]. Since the second cohomology group classifies defect fusion rules
with anyon as outcome, Eqs. (3.14) is a physical statement that the symmetry fraction-
alization class of symmetry defects may induce a nontrivial fusion rule of the topological
point defects. We coin the term “defect fractionalization” for this phenomenon, in refer-
ence to the terminology “symmetry fractionalization” for symmetry defects [59, 14, 245].
While different symmetry fractionalization classes of the H-SET phases are classified by
H2

ρ(H,A), different defect fractionalization classes are classified by the image of the map
inf : H2

ρ(H,A) → H2
ρ̃(π1(G/H),A), as describe by the above sequence (3.14).

We will discuss more about point defects in H-SET phases in Sec. 3.6.

3.4.4 Group cohomology for textures

3.4.4.1 Textures in SPT

Consider the symmetry breaking from G = SO(3)×K to H = U(1)×K. In the absence of
intrinsic topological orders, a symmetry-breaking ground state with fixed order parameters
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is an H-SPT phase. Here we focus on those H-SPT phases described by the mixed anomaly
H2(B = U(1),H1(K,U(1))) in the Künneth decompostion (3.7). Due to relation (3.8), the
mixed anomaly is also captured by H1(Z,H2(K,U(1))).

The topological textures of the order parameter are skyrmions classified by π2(SO(3)/U(1)).
The point defects associated with SO(3) and U(1) are classified by π1(SO(3)) and π1(U(1)),
respectively. Together they fit into the short exact sequence (3.5). Both defects can carry
quantum number of the symmetry K, which is classified by the linear representations in
M := H1(K,U(1)), which we assume to be a finite Abelian group. Note that π1(U(1)) = Z,
π1(SO(3)) = Z2 and π2(SO(3)/U(1)) = π2(S

2) = Z all act trivially on M . Applying the
inflation-restriction exact sequence (3.10) to short exact sequence (3.5) gives

0 →H1(π1(SO(3)),M) = {m ∈M |m ·m = 1M ∈M}
→ H1(π1(U(1)),M) = M
res−→ H1(π2(S

2),M) = M

d2−→ H2(π1(SO(3)),M)
inf=0−−−→ H2(π1(U(1)),M) = 0.

(3.15)

Physically, as discussed in Sec. 3.3.3, a point defect of an SO(3) breaking noncollinear
magnetic order classified by π1(SO(3)) = Z, is equivalent to a 2π flux of any U(1) subgroup of
SO(3). A skyrmion with topological charge ν ∈ π1(S

2) = Z, is therefore equivalent to a 4πν
flux of the remnant U(1) symmetry. Note that a 2π flux is nothing but the symmetry defect
of the remnant U(1) symmetry, which can carry a linear representation (i.e. charges) of the
unbroken subgroup K due to the mixed anomaly (3.8) in the H-SPT phase. The restriction
map (“res”) in exact sequence above (3.15) physically states the following: if theK-symmetry
charge (or mathematically a linear representation of K) [R] ∈M = H1(K,U(1)) is assigned
to each 2π flux, the K-symmetry charge carried by a fundamental (ν = 1) skyrmion is given
by that of a 4π flux: [R⊗R] ∈M .

The above sequence shows that, if M does not contain an order-2 element, then {m ∈
M |m · m = 1M ∈ M} = ∅ and hence the restriction map (“res”) is injective: i.e. the
quantum number of the symmetry K carried by the skyrmions is fully determined by that
carried by the U(1) vortices. More interestingly, if M contains an order-2 element, then
the restriction map is the “multiply by 2” map, while d2 is the mod 2 map. In this case,
skyrmion symmetry quantum number is twice that of the U(1) flux. If we further allow
the process of completely breaking the SO(3) symmetry down and then restoring the U(1)
subgroup, a skyrmion may carry any quantum numbers allowed on a U(1) flux, due to a
possible projective representation carried by the SO(3) defect via the transgression map d2.

We will discuss in more details the physics of topological textures in H-SPT phases in
Sec. 3.5.3.

3.4.4.2 Textures in SET

Here we consider the spontaneous symmetry breaking (SSB) from G = SO(3) to H =
U(1), resulting in an H-SET phase in each symmetry-breaking ground state with fixed
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order parameters. More generally, we could consider an extra symmetry group K that
survives the SSB as in the SPT case discussed above. The K-symmetry charges (i.e. linear
representations) carried by skyrmions can be determined in parallel to the H-SPT case.
Here we will not discuss this aspect, but focus on the fractional statistics of skyrmions in
the H = U(1)-SET phase, with G = SO(3) and H = U(1).

Note that due to the relation (3.7) we have

H2(U(1),A) = H1(π1(U(1)) = Z,A) (3.16)

where A is the set of all Abelian anyons, and Z = π1(U(1)) labels the integer flux quanta of
the remnant U(1) symmetry. Since distinct U(1)-SET phases are classified by H2(U(1),A) [14,
245], the above identity (3.16) implies that U(1)-SETs are fully characterized by the Abelian
anyon a ∈ A assigned to each 2π flux (or “fluxon”[168]) in the SET phase. Based on discus-
sions in Sec. 3.3.3, a skyrmion with a topological charge ν ∈ Z = π2(S

2) is equivalent to a
4πν flux of the remnant H = U(1) symmetry, and we can assign Abelian anyon a2ν to such
a skyrmion accordingly.

Mathematically, we apply the five-term exact sequence (3.10) to the short exact sequence
(3.5) to obtain

0 →H1
ρ(Z2,A) → H1

ρ̃(Z,A)
res−→ H1(π2(S

2),A)
d2−→ H2

ρ(π1(SO(3)),A)
inf−→ H2

ρ̃(Z,A) = 0.
(3.17)

The fractional statistics carried by a skyrmion of topological charge ν ∈ Z is determined
by the image of the restriction map (“res”) in the exact sequence above. Physically, since
[R] ∈ H1(Z,A) assigns an Abelian anyon a ∈ A to each 2π flux, its image in the restriction
map R̃ ∈ H1(π2(S

2),A) implies that Abelian anyon a2ν is assigned to each skyrmion of
topological charge ν. This will determine the fractional statistics of a skyrmion.

We will discuss the physics of topological textures in H-SET phases in more detail in
Sec. 3.7.

3.5 Defects and textures in the absence of intrinsic

topological orders

3.5.1 From SPT physics of ordered ground states to deconfined
quantum critical points

In this section, we first discuss the simpler cases where every long-range ordered ground state
with fixed order parameters exhibits no intrinsic topological order. In other words, when
symmetry G is spontaneously broken down to H in a given ground state, a long-range ordered
ground state with fixed order parameters (not a cat state!) is a H-preserving short-range
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entangled phase5. In two spatial dimensions, they belong to the H-symmetry protected
topological (H-SPT) phases classified by group cohomology H3(H,U(1)) [44]. What are
the physical consequences if each symmetry-breaking ground state is a nontrivial H-SPT?
As will become clear soon, this SPT physics is closely related to the physics of deconfined
quantum critical points (DQCP) [221, 222, 262].

An H-SPT phase is a short-range entangled phase, which, in the presence of symmetry H,
cannot be continuously connected to a trivial product state without closing the energy gap.
In a system of interacting bosons in two spatial dimensions, different H-SPT phases are clas-
sified by the 3rd group cohomology H3(H,U(1)) [44]. The cohomology group H3(H,U(1))
is an Abelian group, whose identity element labels the topologically trivial phase of product
states, and the addition of group elements is implemented by stacking different SPT phases.

A deconfined quantum critical point (DQCP) describes the continuous phase transition
between two different long-range orders, who are not related to each other by Landau-
Ginzburg-Wilson paradigm of spontaneous symmetry breaking [221, 222, 262]. More pre-
cisely, the remnant symmetry groups H1, H2 ≤ G of the two long-range ordered phases do
not have a subgroup relation: in other words, H1 is not a subgroup of H2 and vice versa.
Therefore, a DQCP is clearly beyond the Landau-Ginzburg-Wilson paradigm and provides
new mechanism to understand direct quantum phase transitions between different long-range
orders.

For example, DQCP is believed to describe the direct transition between a Neel order
and a valance bond solid (VBS) on a square lattice [222, 221]. While the Neel order spon-
taneously breaks the time reversal and spin rotational symmetries, it preserves the 4-fold
rotation symmetry C4 around each lattice site. On the other hand, the columnar VBS phase
spontaneously breaks C4, but preserves both time reversal and spin rotational symmetries.
Therefore a direct continuous phase transition between these two long-range orders are in-
compatible with the Landau-Ginzburg-Wilson paradigm. There are two alternative and
complementary physical pictures to understand this DQCP.

(i) The first point of view starts with the following property of the VBS phase: each vortex
of the VBS order parameter carries a spin-1/2 [155], which forms a projective representation
[ω] ∈ H2

(
SO(3) × ZT

2 , U(1)
)

of the SO(3) spin rotation and time reversal (T ) symmetries.
Therefore, condensing the VBS vortex will necessarily breaks both time reversal and spin
rotational symmetries, while restoring the crystalline C4 symmetry. This leads to a direct
transition from the columnar VBS to the Neel order via a DQCP.

(ii) The other viewpoint starts from the Neel order side, where each fundamental skyrmion
(with unit topological charge ν = 1 ∈ π2(S

2) = Z) of the Neel order parameter carries a
unit C4 angular momentum [85]. As a result, condensing the skyrmion will necessarily
breaks the C4 crystalline rotation symmetry, while restoring time reversal and spin rotational
symmetries. This corresponds to a direct transition from the Neel order to the columnar

5We use the definition of Ref. [44] for short-range entangled phase, different from Kitaev’s definition [127].
Therefore we do not consider invertible phases such as topological superconductor in class D [128], or E8

states of d = 2 interacting bosons [127, 170].
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VBS phase via the DQCP [221, 222].
To unify the above two pictures (i) and (ii), and to treat VBS and Neel order parameters

on an equal footing, one can introduce a 5-component order parameter n⃗ = (n1, · · · , n5),
where the first 3 components (n1, n2, n3) represent the Neel vector, while (n4, n5) serves as
the columnar VBS order parameter [155, 243, 220]. The interplay of the VBS and Neel
order parameters, i.e. the spin-1/2 VBS vortex and the C4 angular momentum of a Neel
skyrmion, is captured by a (2+1)-dimensional Wess-Zumino-Witten (WZW) term [280, 284]
of the 5-component order parameter n⃗ [3, 243, 220, 262]:

SWZW =
2πϵabcde

Area(S4)

ˆ 1

0

dud3q⃗ na∂xn
b∂yn

c∂tn
d∂un

e (3.18)

where we use q⃗ = (x, y, t) ∈ S3 to parametrize the spacetime manifold S3, and u is introduced
to parametrize a smooth interpolation (extension) between n⃗(q⃗, u = 0) = (0, 0, 0, 0, 1) and
n⃗(q⃗, u = 1) = n⃗(q⃗). While the physical system only has a microscopic symmetry of G =
C4 × SO(3), an enlarged SO(5) symmetry that rotates the 5 components of n⃗ was argued
to emerge at the DQCP described by a NLSM with the above WZW term [220, 265].

The aforementioned two pictures for the Neel-VBS transition are both captured by the
above WZW term. On the VBS side, a classical vortex configuration for VBS order pa-
rameters (n4, n5) reduces the topological term (3.18) to an O(3) NLSM with a WZW term,
physically corresponding to a spin-1/2 at the vortex core [3]. On the Neel side, a classi-
cal skyrmion configuration of Neel order parameters (n1, n2, n3) reduces (3.18) to a U(1)
rotor action of VBS order parameters (n1, n2), which carries a unit angular momentum of
crystalline rotation C4.

In this work, we want to point out a connection between the two physical pictures of
DQCP, and the SPT physics of the symmetry-breaking ground states. More precisely, in
a long-range order which spontaneously breaks symmetry G down to a subgroup H, if a
symmetry-breaking ground state belongs to certain H-SPT phases, the condensation of
topological point defects or textures of the order parameters will lead to a direct transition
described by a DQCP. The other side of the direct transition must spontaneously breaks H:
it is generally a long-range order with remnant symmetry H ′, which is neither a subgroup
nor a supergroup of H. This observation can be summarized in two classes:

(i) If a symmetry-breaking ground state belongs to certain H-SPT phases, to be elab-
orated in Sec. 3.5.2, a point defect (i.e. vortex) of the order parameter Ô(r⃗) ∈ G/H can
carry a projective representation [ω] ∈ H2(H,U(1)) of the remnant symmetry H. This is a
generalization of viewpoint (i) for Neel-VBS transition from the VBS side. Condensing the
point defects (vortices) will spontaneously breaks (a part of) symmetry H across the DQCP.

(ii) If a symmetry breaking ground state belongs to certain H-SPT phases, to be elabo-
rated in Sec. 3.5.3, a topological texture (i.e. a skyrmion) of the order parameter can carry a
charge (or a linear representation [ω] ∈ H1(H,U(1))) of the remnant symmetry H. This is a
generalization of viewpoint (ii) for the Neel-VBS transition from the Neel side. Condensing
the skyrmions will spontaneously break the remnant symmetry H across the DQCP.
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This general connection allows us to determine whether a given long-range order is in
proximity to a DQCP in the phase (parameter) space, and to systematically construct exam-
ples of DQCPs based on the H-SPT classification for the symmetry-breaking ground states.
For the rest of this section, we shall discuss the two classes in detail: (i) point defects carrying
a projective representation of H, in Sec. 3.5.2; (ii) skyrmions carrying a linear representation
(i.e. quantum numbers) of H, in Sec. 3.5.3. We will use the mathematical classification based
on group cohomology in Sec. 3.4, and its related “decorated domain wall” picture [43], to
elucidate the aforementioned connection between SPT phases in symmetry-breaking ground
states and the DQCP.

3.5.2 Point defects

Without loss of generality, let’s consider the following situation:

G = A×K, H = B ×K, H ◁ G. (3.19)

where × is the direct product of two groups, and we assume that H is a discrete normal
subgroup of a continuous group G. In other words, the subgroup symmetry A is broken
down to B ◁ A while the subgroup symmetry K is preserved in the long-range order.

The question we plan to address is the following: does a point defect in π1(G/H =
A/B) carry a projective representation of the remnant symmetry H? As discussed in
Sec. 3.4.3.1, given the mixed SPT anomaly in H1(B,H2(K,U(1))) in a symmetry-breaking
ground state with fixed order parameters, due to exact sequence (3.12), the projective
representation carried by point defects is classified by the image of injective map d1 in
H1(π1(A/B),H2(K,U(1))). This gives the following criterion for point defect bound states:

(i) When a full symmetry G = A × K is spontaneously broken down to a subgroup
H = B × K, if a symmetry-breaking ground state is an H-SPT with a mixed anomaly
described by [R] ∈ H1(B,H2(K,U(1))), the projective representation of subgroup K carried
by the point defect in π1(G/H) is specified by the image [R̃] ∈ H1(π1(G/H),H2(K,U(1))) of
map d1 in exact sequence (3.12).

Physically, a point defect of the order parameters can be mapped to a symmetry defect
by the connecting homomorphism p in exact sequence (3.4). The mixed anomaly [R] ∈
H1(B,H2(K,U(1))) assigns a projective representation H2(K,U(1)) to each symmetry defect
b ∈ B. This in turn determines the projective representation assigned to a point defect in
π1(G/H). We note that similar physics has been discussed recently in the name of “gapless
SPT” phases [215, 252, 157].

Below we discuss one example of such nature, where each fundamental vortex with a unit
winding number carries a spin-1/2 in the pair superfluid phase.

3.5.2.1 Symmetry protected pair superfluid with spin-1/2 vortices

We consider a bosonic system on a two-dimensional lattice, which consists of hard-core bosons
{bi} and a single spin-1/2 d.o.f. s⃗i per unit site. The full symmetry of the Hamiltonian is G =
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U(1) × SO(3), which is spontaneously broken down to H = Z2 × SO(3) in a pair superfluid
phase. In the notation the general discussions above, we have A = U(1), K = B = Z2 and
K = SO(3)6. Each hard-core boson bi carries a unit charge but no spin (or spin-0), while
each s⃗i carries no charge but transforms as a spin-1/2 projective representation of SO(3)
symmetry. The filling number for bosons is ρ̄ = 2 per unit cell.

In the long-range order, we consider a pair superfluid phase where two bosons form a
condensate with ⟨(bi)2⟩ ≠ 0 but ⟨bi⟩ = 0. To achieve the desired SPT properties, we further
require the system to preserve the following magnetic translation symmetry:

T1T2T
−1
1 T−1

2 = (−1)
∑

i b
†
i bi (3.20)

where T1,2 are magnetic translations along the two primitive vectors a⃗1,2. In other words,
the bosons experience a π flux in each unit cell when traveling around the lattice. A pair of
bosons, carrying charge 2, only experiences 2π flux per unit cell and can condense without
breaking the translation symmetry T1,2, driving the system into a translation invariant pair
superfluid phase. Note that there is a π flux and a single spin-1/2 in each unit cell. Due
to the Lieb-Schultz-Mattis theorem for SPT phases [166, 290], in the presence of the mag-
netic translation symmetry, any short-range entangled ground state preserving the magnetic
translation and H = Z2 × SO(3) symmetry must be a H-SPT phase, exactly described by
a mixed anomaly [R] ∈ H1(Z2,H2(SO(3), U(1))) < H3(H,U(1)). Physically, in a ground
state of the pair superfluid phase, each symmetry defect of the remnant Z2 (i.e. a π flux)
carries a projective representation of the remnant SO(3) symmetry (i.e. a spin-1/2).

On the other hand, the point defect of the order parameter ⟨(bi)2⟩ are vortices in the
pair superfluid, labeled by an integer-valued vorticity ν ∈ Z. In particular, each vorticity-1
vortex corresponds to a π flux, and hence carries a spin-1/2, exactly captured by the mixed
anomaly [R̃] ∈ H1(Z,H2(SO(3), U(1))), the image of map d1 in exact sequence (3.12). As
a result, condensing the elementary (ν = ±1) vortices will drive the system into a mag-
netic order that spontaneously breaks K = SO(3) symmetry, via a DQCP. The Neel vector
(n1, n2, n3) and the superfluid order parameters ⟨(bi)2⟩ ∼ n4 + in5 are described by a NLsM
with an O(5) WZW term.

3.5.3 Textures

We consider the symmetry group G = SO(3) × K to be spontaneously broken down to a
subgroup H = U(1)Sz × K, where K is a subgroup of onsite unitary symmetries. In the
absence of intrinsic topological orders, the symmetry breaking phase can be an H-SPT phase
in two spatial dimensions, classified by H3(H,U(1)). As discussed in Sec. 3.3.3, a skyrmion
of topological charge ν ∈ Z is equivalent to a 4πν flux of the remnant U(1) symmetry.

6One can also replace K = SO(3) symmetry by a discrete time reversal symmetry K = ZT
2 .
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To understand the universal properties of skyrmions in the H-SPT phases, again we use
the Künneth decomposition in (3.7):

H3(H,U(1)) = H3(U(1)Sz , U(1)) ×H2(U(1)Sz ,H1(K,U(1)))

×H1(U(1)Sz ,H2(K,U(1))) ×H3(K,U(1)).
(3.21)

Note that two of the four terms indicates different topological properties of the flux of
the unbroken U(1)Sz symmetry, and hence of the skyrmions. The first term labels the
U(1)Sz quantum number Sz = q ∈ H3(U(1)Sz , U(1)) ∼= H1(U(1)Sz , U(1)) = Z carried by
each U(1)Sz flux quantum. The third term H1(U(1),H2(K,U(1))) in (3.21) vanishes when
H2(K,U(1)) is any finite Abelian group. Finally, the fourth term labels the K-SPT phases
that do not require the protection of the U(1)Sz symmetry.

Due to the relation (3.8), the 2nd term is equivalent to H1(Z,M) with M ≡ H1(K,U(1)),
and hence can be understood as the linear representation (i.e. the charge) of the unbroken
subgroup K carried by each flux quantum (or 2π flux) of the U(1)Sz symmetry. Now that
each ν = 1 skyrmion can be viewed as a 4π flux, it carries the linear representation [R⊗R] ∈
M of unbroken subgroup K. Condensing skyrmions with nontrivial K-symmetry charges
will inevitably break the K symmetry while restoring the SO(3) spin rotational symmetry,
through a DQCP.

As we are interested in the interplay between the two subgroups U(1)Sz and K of the
remnant symmetry H = U(1) ×K, we will be focusing on the second term in the Künneth
decomposition (3.21). According to the discussions in Sec. 3.4.4.1, the following statement
describes the symmetry quantum numbers of topological textures:

(ii) When a full symmetry group G = SO(3) × K is spontaneously broken down to a
subgroup H = U(1) × K, if a symmetry-breaking ground state is an H-SPT described by
[R] ∈ H1(Z,M) ≡ H2(U(1),M) with M = H1(K,U(1)), the quantum number (or linear
representation) of unbroken subgroup K assigned to each skyrmion is specified by the image
[R̃] ∈ H1(π2(S

2),M) of the restriction map (“res”) in the exact sequence (3.15).
Below we discuss two familiar examples of this type in more details.

3.5.3.1 Charge-2e skyrmions in quantum spin Hall insulators

The first example we consider is a fermion system with charge conservation K = U(1)c
and spin rotational symmetry, hence a full symmetry group of G = SO(3) × U(1)c. A
time-reversal-invariant collinear order parameter can spontaneously breaks the symmetry G
down to a H = U(1)s×U(1)c subgroup, where U(1)s is the subgroup of U(1) spin rotational
symmetry along e.g. z-axis:

f↑
e iθSz

tot−−−−→ e− iθ/2f↑, f↓
e iθSz

tot−−−−→ e iθ/2f↓ (3.22)

We are interested in the case where each symmetry-breaking ground state is a quantum
spin Hall (QSH) insulator [117, 22, 137], with a pair of helical edge states protected by the
remnant symmetry H.
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It is well known that such a QSH insulator exhibits a mixed anomaly between the U(1)c
and U(1)s subgroups, captured by group cohomology

H2(U(1)s,M) = H1(Z,M) ⊂ H3(H,U(1)) (3.23)

where M ≡ H1(U(1)c, U(1)) labels U(1)c quantum numbers i.e. electric charges. Specifically,
the quantized spin Hall conductance σc,s

xy = e/2π [23] indicates that each 2π flux of spin
symmetry U(1)s would carry a unit electric charge. As a result, each skyrmion of topological
charge ν ∈ Z = π2(S

2), equivalent to a 4πν flux of spin rotational symmetry U(1)s, carries
an electron charge of 2νe.

In particular, an elementary ν = 1 skyrmion carries charge 2e, as pointed out in Ref. [80].
Condensing these elementary skyrmions hence induce a superconducting state that sponta-
neously breaks the U(1)c symmetry, which was recently proposed to be one mechanism for
superconductivity in magic-angle twisted bilayer graphene [125].

3.5.3.2 Neel order in a spin-1/2 model on the square lattice

Next we discuss a familiar example related to the DQCP, i.e. the Neel order in a spin-1/2
system on the square lattice. Before studying the full space group symmetry, let us first
consider a simplified situation where we ignore the translations and mirror reflection: we
only take into account the onsite SO(3) spin rotational symmetry and the site-centered 4-
fold crystalline rotation symmetry K = C4. In a collinear Neel order, the full symmetry
G = SO(3)×C4 is spontaneously broken down to the remnant symmetry H = U(1)Sz ×C4.
In the latter H-preserving Neel ordered phase, there is a quantized topological term of
the Wen-Zee type [272, 87], which corresponds to an element in the cohomology class
H2(U(1)Sz ,H1(K,U(1))) ⊂ H3(H,U(1)) and characterizes the mixed anomaly between C4

rotation and U(1)Sz spin rotational symmetries. Physically, this cohomology class and asso-
ciated Wen-Zee term in the continuum field theory implies that each U(1)Sz flux quantum
(i.e. 2π flux) carries a C4 eigenvalue of i (i.e. a unit angular momentum). As a result,
each skyrmion (equivalent to 2π flux of U(1)Sz for a spin-1/2 system, see Sec. 3.7.3) also
carries a C4 eigenvalue of i [85], and condensing the skyrmions (which restores the SO(3)
spin rotational symmetry) will necessarily break C4 crystalline rotational symmetry, as is
the case of the valence bond solids on the square lattice [85, 222].

Next, we include the translations and consider the full space group symmetry of the
square lattice. The full symmetry for the paramagnetic phase is G = p4m × SO(3) × ZT

2 ,
where T is the time reversal operation and p4m is the wallpaper group that describes the
symmetry of the square lattice, generated by translations T1, T2, site-centered rotation C4,
and reflection M (with respect to a site-crossing mirror plane). After the transition to
Neel order, G is broken down to H = U(1)Sz ⋊ pp4m, where pp4m is the magnetic space

group for the Neel order [160], generated by magnetic translations T̃x,y = T · Tx,y and point
group symmetries C4 and M . Note that spin rotation U(1)Sz and the magnetic space group
do not commute with each other, hence the semidirect product. Due to this semidirect
product structure, the Künneth decomposition (3.21) can no longer be used to calcualte
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the cohomology. Nevertheless one can show through a spectral sequence calculation that
H3(H,U(1)) contains a summand

H2(pp4m,H1(U(1)Sz , U(1))) ⊂ H3(H,U(1)). (3.24)

One can further show that H2(pp4m,H1(U(1)Sz , U(1))) = H1(pp4m,U(1)) = Z2
2, where the

two Z2 summands label the eigenvalues of C4 and M , respectively. Compared to the case of
K = C4 where the eigenvalues of C4 are {±1,±i}, now considering the full magnetic space
group pp4m reduces the eigenvalues of C4 to {1, i} due to the magnetic translations (the
C4 eigenvalues ±1 are identified and so are the eigenvalues ±i). We see that the analysis
in the case K = C4 above still holds. This means that, taking into account the full lattice
symmetry, condensing the skyrmions (hence restoring the SO(3) internal symmetry) will
indeed break the C4 rotation symmetry spontaneously. Note that a similar analysis has been
carried out in Refs. [180, 291].

3.6 Point defects in symmetry enriched topological

orders

When the ground state is a SPT phase protected by the unbroken symmetry H, we have
shown previously that point defects (or vortices) of the symmetry-breaking order parameters
can carry a projective representation of the unbroken symmetry. Below we discuss the
more general situation, i.e. two-dimensional intrinsic topological orders with spontaneously
broken symmetries, where each symmetry-breaking ground state is a H-symmetry enriched
topological (H-SET) phase. As discussed previously in Sec. 3.4.3, due to the short exact
sequence (3.4) that maps a topological point defect (an element of π1(G/H)) to a symmetry
defect (an element of H), one can derive universal properties of point defects from those of
symmetry defects, which were extensively studied in the context of SET phases [59, 245, 14].
We found that when topological orders coexist with spontaneous symmetry breaking, due to
the presence of anyons which obey fractional statistics, two classes of new phenomena can
occur:

(1) Point defects can permute anyons in the topological order when braided around.
In other words, after traveling around a point defect, one anyon of a certain type can be
transmuted into an anyon of a different type. In these cases, the point defect (vortex) is
mapped into a non-Abelian symmetry defect (or twist defect) [13, 11, 10, 14, 245, 249, 246].

(2) Multiple point defects can fuse into Abelian anyons, which we coin “defect fraction-
alization” for reasons that we describe below in details.

3.6.1 Defect fractionalization phenomenon

Importantly, the topological point defects may obey a nontrivial fusion rule: upon annihi-
lating with each other, these topological defects may leave behind Abelian anyons, similar
to the symmetry defects in SET phase.
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We have named this phenomenon defect fractionalization in Sec. 3.4.3.2. Here we stress
that the understanding of defect fractionalization parallels that of symmetry fractionaliza-
tion [59, 14]: for SSB G→ H, different defect fractionalization classes in the broken symme-
try phase should correspond to equivalence classes [ω] ∈ H2

ρ̃(π1(G/H),A), meaning that for
g, h ∈ π1(G/H), the group element ω(g, h) in H2

ρ̃(π1(G/H),A) denotes the residual anyons
after fusing the defects g, h and (gh)−1.

In the simplest case of π1(G) = 0, we have π1(G/H) ∼= H from (3.4), namely there is a
one-to-one correspondence between the topological point defects (or vortices) of the order pa-
rameter ϕ(r⃗) ∈ π1(G/H) and the (extrinsic) symmetry defects τh, h ∈ H. In this case p is an
isomorphism, hence ρ̃ = ρ. As a result, there is a one-to-one correspondence between defect
fractionalization described by H2

ρ̃(π1(G/H),A), and symmetry fractionalization described
by H2

ρ(H,A), i.e. p∗ ≡ inf is a bijective map in exact sequence (3.14). One such example is
lattice dislocations, where G = R×R and H = Z2, where dislocations with a Burgers vector
b⃗ = b1a⃗1 + b2a⃗2 corresponds to symmetry defect of translation operation T b1

1 T
b2
2 , where a⃗1,2

are the two primitive translation vectors of the two-dimensional lattice. In Sec. 3.6.4.4, we
compute and explicitly demonstrate the nontrivial fusion rules of dislocations in the toric
code.

3.6.2 Defect fractionalization vs symmetry fractionalization

It is tempting to conclude that defect fractionalization in the general case of π1(G) ̸= 0
is classified by H2

ρ̃(π1(G/H),A). However, as we shall show in explicit model calculations,
H2

ρ̃(π1(G/H),A) contains elements that are redundant, and the physical ones are classified
by the subgroup which is the image of the inflation map p∗ = inf in the exact sequence (3.14)

im(p∗) ⊂ H2
ρ̃(π1(G/H),A), (3.25)

namely, the classes of symmetry fractionalization that survives the inflation map. When
π1(G) = 0 is trivial, the inflation map becomes an isomorphism, and correctly reproduces
the classification mentioned above.

We claim in the above that in the general case when π1(G) ̸= 0, the classification for defect
fractionalization is fully determined by specifying the inflation map p∗. The inflation map
p∗ sends the cohomology of the quotient group (in our case, H = π1(G/H)/π1(G)) to that
of the group extension (in our case, π1(G/H)). Physically, it simply sends any symmetry
fractionalization class [ω] – cocycle elements ω(h1, h2) = a, a ∈ A, h1, h2 ∈ H – to defect
fractionalization class [p∗(ω)] by sending symmetry h ∈ H to any defect ϕ(r⃗) ∈ π1(G/H)
that maps to h under p. Here, however, what is nontrivial is that such a class [ω] may be
trivialized under the map p∗: the defect fusion rule inherited from ω can be continuously
deformed to the one that fuses to no anyons. This happens whenever the the map p∗ has a
nontrivial kernel – that is, ker(p∗) := {[ω]|p∗([ω]) = 0} ≠ ∅.

At this point, the exact sequence (3.14) is introduced as a mathematical computational
tool, whose physical meaning is yet to be specified. We now try to understand the physical
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meaning of each piece and the exactness among them. To achieve this, recall from Sec. 3.4.1.2
that elements of H1

ρ(H,A) describes the “anyon-labeling rule” for the extrinsic symmetry
defects τh, h ∈ H. The topological defects ϕ(r⃗) ∈ π1(G/H) inherits a similar defect “anyon-
labeling rule” consistent with their actions on the anyons, classified by H1

ρ̃(π1(G/H),A).
Such a heritage is easy to understand since the symmetry H is intact after the SSB G→ H.
However, one can imagine the alternative, indirect, physical process in which the symmetry
G is completely broken down (to {1}), and then restored to H. We will call this the indirect
SSB process G → {1} → H from now on (note here the arrows are written in a physical
sense, not in a mathematical sense). In this scenario, the relevant defect “anyon-labeing
rule” is that for the topological defects ψ(r⃗) ∈ π1(G), classified by H1(π1(G),A), but when
restoring H, only those “anyon-labeling rules” for π1(G) that are invariant under the action
of H makes sense after H is restored. Here the invariance is defined in the sense of Eq. (3.11).
Intuitively, both the defect g ∈ π1(G) and the anyon a ∈ A may transform nontrivially under
H, but the defect–anyon composite must transform covariantly under H, implying that the
“anyon-labeling rules” for π1(G) is invariant under H.

Together with the physical meaning of H2
ρ(H,A) and H2

ρ̃(π1(G/H),A) as symmetry frac-
tionalization and defect fractionalization, respectively, that have been introduced before, we
are now in a position to understand the exactness of the sequence (3.14). As mentioned
before, to know im(p∗) it suffices to known ker(p∗). The exactness ker(p∗) = im(d2) states
that, after the indirect SSB process G → {1} → H, for any resulting defect (now object in
π1(G/H)), the only possible “defect fusion rule” compatible with its “anyon-labeling rule”
is the trivial one. The exactness at H1(π1(G),A)H states that, if a “defect fusion rule” can
be realized in both the direct SSB process G → H and the indirect process G → {1} → H,
the only possible “defect fusion rule” compatible with its “anyon-labeling rule” is the trivial
one. The exactness at H1

ρ̃(π1(G/H),A) states that, the topological defect “anyon-labeling
rule” that originates from a symmetry defect “anyon-labeling rule” cannot be realized at the
end of the indirect SSB process G → {1} → H. Finally, the exactness at H1

ρ(H,A) states
that every symmetry defect “anyon-labeling rule” can be realized in the topological defects
of π1(G/H).

We note that the five-term exact sequence (3.14) is a corollary of spectral sequences. We
will be using spectral sequences in the calculation of cohomology groups (especially those
with nontrivial action on the anyons). We present one quite useful statement about this
map:

Theorem 1 Given Eq. (3.14). If π1(G/H) is of a semi-direct product form π1(G/H) ∼=
π1(G)⋊H, then d2 = 0, hence p∗ is injective. Consequently, the symmetry fractionalization
classes are in one-to-one correspondence with the defect fractionalization classes.

This statement is powerful in that it works regardless of the action ρ (trivial or nontrivial
alike).

In Table. 3.1 we give examples of the Z2 topological order (toric code) enriched by
two different symmetries: (1) G = U(1), H = Z2, and (2) G = SO(3) and H = D2 =
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No. G H H-Action H1
ρ(H,A) → H1

ρ̃(π1(G/H),A) → H1
id(π1(G),A)H → H2

ρ(H,A) → H2
ρ̃(π1(G/H),A)

1 U(1) Z2 Trivial Ze
2 × Zm

2

∼=−→ Ze
2 × Zm

2
0−→ Ze

2 × Zm
2

∼=−→ Ze
2 × Zm

2 → 0

2 U(1) Z2 Nontrivial 0 → Ze
2 × Zm

2 /Zε
2

∼=−→ Zε
2 → 0 → 0

3 SO(3) D2 Trivial (Z2
2)

e × (Z2
2)

m
∼=−→ (Z2

2)
e × (Z2

2)
m 0−→ Ze

2 × Zm
2

inj.−→ (Z3
2)

e × (Z3
2)

m surj.−−→ (Z2
2)

e × (Z2
2)

m

4 SO(3) D2 Nontrivial Zε
2

∼=−→ Zε
2

0−→ Zε
2

∼=−→ Zε
2

0−→ Zε
2

Table 3.1: Defect fractionalization classes from Eq. (3.10), for the toric code with coexisting
long-range orders, where the fully symmetry G is spontaneously broken down to a subgroup
H. Different H symmetry actions on the anyons are also considered.

{1, X, Y, Z}, with A = Ze
2 × Zm

2 . For each example we consider the cases of trivial and
nontrivial H-actions. All these examples lie outside the application of Theorem 17

3.6.3 Two examples

Below we will use two primary examples to demonstrate the aforementioned properties of
point defects in SET phases: i.e. (1) Point defects can permute different anyons when braided
around. (2) Point defects can fuse into Abelian anyons, coined defect fractionalization. The
two representative examples we consider are

(i) Toric codes with a coexisting pair superfluid order, where the G = U(1) symmetry is
spontaneously broken down to a H = Z2 subgroup. In this example, the point defects are
vortices classified by fundamental group π1(G/H) = Z, labeled by integer-valued vorticity
ν ∈ Z. A microscopic model of such will be constructed in Sec. 3.6.4.1.

(ii) Toric codes with a coexisting biaxial nematic order, where the spin rotational sym-
metry SO(3) is spontaneously broken down to a H = D2 ≃ Z2

2 subgroup. In this example,
the point defects are classified by a non-Abelian fundamental group π1(G/H) ≃ Q8, the
quarternion group [178]. Two microscopic models of such will be constructed later: for
anyon-permuting vortices in Sec. 3.6.4.2, and for defect fractionalization in Sec. 3.6.4.3.

3.6.3.1 Non-Abelian point defects that permute anyons

The simplest case of such nature is example (1), i.e. toric code with the pair superfluid order,
where G = U(1) spin rotational symmetry is broken down to an H = Z2 Ising symmetry.
The resulting symmetry enriched topological phases can be obtained by gauging the fermion
parity in fermionic non-chiral topological superconductors with an Ising symmetry [199,
82]. In this case, there is an m ∈ Z8 classification, where each Ising symmetry defect can
permute e and m anyons in the toric code for m = 1 mod 2, while while the Ising symmetry
fractionalization happens for m = 2 mod 4. Now that any ν = odd vortex is mapped into
the Ising symmetry defect by (3.4), we conclude that each ν = odd vortex can permute e

7G = N ⋊ Q if and only if the short exact sequence 0 → N → G
p−→ Q → 0 splits, i.e. there is a

homomorphism j : Q → G s.t. the composed map p ◦ j is the identity map on Q. This is not the case for

either 0 → Z
2−→ Z → Z2 → 0 or 0 → D2 → Q8 → Z2. In fact, Q8 does not admit a semi-direct product

structure.
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and m anyons, if the pair superfluid ground state is a Z2-SET phase with m = 1 mod 2. As
shown in Table 3.1.2, in this case with a nontrivial H-action on anyons, both the symmetry
fractionalization class and the defect fractionalization class are trivial. A microscopic model
of this example is constructed in Sec. 3.6.4.1.

Next we consider example (2), i.e. a biaxial nematic toric code phase with G = SO(3)
and H = D2 = {1, X, Y, Z} ∼= Z2

2 . The associated homotopy groups are π1(G) ∼= Z2 and
π1(G/H) ∼= Q8; the latter is the non-Abelian quarternion group. The H-action can be
nontrivial in a H-enriched toric code: e.g. the generator X in H = ZX

2 × ZY
2 permutes

the e and m particles while Y does not. This is the only nontrivial H-action possible up
to isomorphism. This also means that the last group element, Z = XY , permutes e and m
particles as well. We construct a microscopic lattice model for this phase in Sec. 3.6.4.2.

The five-term exact sequence (3.14) for this case is given in Table. 3.1.4. Interestingly, we
find that in this case the defect fractionalization is not inherited from the symmetry defect
(see the last map in Table. 3.1.3, which is a zero map). Thus according to our classification,
although the symmetry defect fractionalization class is nontrivial, H2

ρ(H,A) = Zϵ
2 in this

case, there is no nontrivial fractionalization for the topological point defect.

3.6.3.2 Nontrivial fusion rules of fractionalized defects

Previously we have shown that a nontrivial H-action on anyons leads to a trivial defect
fractionalization class in both examples. In fact, in a toric code with a pair superfluid
order, when the H-action is trivial, even with a nontrivial symmetry fractionalization class
H2

id(H = Z2,A) = Ze
2×Zm

2 , the defect fractionalization class is still trivial, as shown in Table
3.1.1.

As we show below, example (2), i.e. the toric code with a biaxial nematic order, can
realize a nontrivial defect fractionalization class if the H-action is trivial on anyons. Again
consider the case G = SO(3) and H = D2

∼= Z2
2 , this time with trivial H-action ρ = id on

the anyons. The five-term exact sequence is given in Table 3.1, where the surjective map
on the right allows us to extend the sequence to a six-term exact sequence by appending
“→ 0” to the right-hand side. We see that defect fractionalizations are fully determined
by symmetry fractionalizations. This is the only case with a nontrivial topological defect
fractionalization among those considered in Eq. (3.1). Only a subgroup (Z2

2)
e ⊂ H2(D2,Ze

2)
survives the inflation map p∗. Denote the three nontrivial cocycles of this (Z2

2)
e as ω1,2,3.

They can be distinguished by the following values

ω1(X,X) = 1, ω1(Y, Y ) = 1, ω1(XY,XY ) = e,

ω2(X,X) = 1, ω2(Y, Y ) = e, ω2(XY,XY ) = 1,

ω3(X,X) = e, ω3(Y, Y ) = 1, ω3(XY,XY ) = 1.

(3.26)

the cocycle [ω4] ∈ H2(D2,Ze
2) with ω4(X,X) = ω4(Y, Y ) = ω4(XY,XY ) = e does not survive

the p∗ map and becomes a coboundary in H2(π1(G/H) =Q8,Ze
2). The other half with the

coefficient Zm
2 can be analyzed in a similar manner.

A microscopic model of this case is constructed in Sec. 3.6.4.3.
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3.6.4 Lattice models
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Figure 3.4: Illustration for lattice model on square lattice. Each orange kite stands for a
unit cell, the blue circle stands for a Majorana, and the red square stands for a complex
fermion. (a) A toric code with pair superfluid order, featuring anyon-permuting vortices.
(b) A toric code with biaxial nematic order.

Our general construction of lattice models has the following form:

Ĥ = ĤTO + ĤSSB + Ĥint, (3.27)

where ĤTO is a Hamiltonian for the symmetry enriched topological order, ĤSSB is a Hamil-
tonian for the (classical) long-range order associated with spontaneous symmetry breaking,
and Ĥint describes the coupling between the topological order and the order parameters of
the long-range order.

3.6.4.1 Pair superfluids with anyon-permuting vortices

We first construct a model for the toric code enriched by a H = Z2 symmetry, which is
spontaneously broken down from a G = U(1) group. The model (3.27) consists of three
parts: the ĤTO is responsible for the Z2 topological order in the toric code. ĤSSB is an XY
model describing a superfluid that spontaneously breaks G = U(1) symmetry. Meanwhile
Ĥint describes the interaction/coupling between the superfluid and the topological order.

Built on the square lattice, the Hilbert space of the model consists of a 23 = 8 dimensional
qudit (or 3 qubits) on each site, and an extra spin-1 on each site. The site qudit can
be represented by a pair of spin-1/2 complex fermions f↑,↓ and four Majorana fermions
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{χl|1 ≤ l ≤ 4} (see Fig. 3.4(a)), satisfying the following constraint of an even fermion parity
on each site i in the lattice Λ (see Fig. 3.4(a)):

(−1)f
†
↑f↑+f†

↓f↓χ1χ2χ3χ4 = 1, ∀ i ∈ Λ. (3.28)

Similar to the Kitaev honeycomb model, this can be viewed as a Z2 gauge constraint (Gauss’s
law) on each vertex/site. In terms of these fermions, ĤTO writes

ĤTO =
∑
⟨i,j⟩

iχi,l(ij)χj,l(ji)

∑
σ=↑,↓

tσf
†
i,σfj,σ−

∑
i,σ

µσf
†
i,σfi,σ − Em

∑
⟨i,j,k,p⟩

P̂⟨i,j,k,p⟩. (3.29)

We define P̂⟨i,j,k,p⟩ as the Z2 flux on each square plaquette with vertices i, j, k, p: P̂⟨i,j,k,p⟩ ≡
χi,l(ij)χj,l(ji)χj,l(jk)χk,l(kj)χk,l(kp)χp,l(pk)χp,l(pi)χi,l(ip), where the Majorana label l(i, j) on NN
link ⟨i, j⟩ is defined as: l(i, i + x̂) = 1, l(i, i − x̂) = 3, l(i, i + ŷ) = 2, l(i, i − ŷ) = 4. If
Em ≫ |tσ|, |µσ|, the plaquette term P̂⟨ijkp⟩ favors zero flux in each square plaquette in the
ground state, rather than the π flux state favored in the fermion hopping model at half
filling [158].

The Hamiltonian for the spin-1’s S⃗i takes the form of the Bose Hubbard model [297]:

ĤSSB =−
∑
⟨i,j⟩

[tS+
i S

−
j + tp(S

+
i )2(S−

j )2 + h.c.]−µ
∑
i

Sz
i . (3.30)

Quantum Monte Carlo simulations revealed that it favors a pair superfluid ground state with
an order parameter ⟨(S+

i )2⟩ ≠ 0 in a finite parameter range, e.g. for tp/t ≥ gc when µ = 0
(gc ≈ 2.5 on the triangular lattice) [297].

Finally the coupling term between the Z2 gauge theory and the link spins have the
following form:

Ĥint = −
∑
⟨i,j⟩

iχi,l(ij)χj,l(ji)

(
S+
i S

+
j ∆↑e

i arg(j−i)fi,↑fj,↑ + ∆↓e
− i arg(j−i)fi,↓fj,↓ + h.c.

)
− ∆0

∑
i

(S−
i f

†
i,↑fj,↓ + h.c.).

(3.31)

Clearly the full Hamiltonian (3.27) preserves a G = U(1)Sz spin rotational symmetry: S+
i →

e iθS+
i , fi,↑ → e− iθfi,↑, fi,↓ → fi,↓, χi,l → χi,l. In the pair superfluid phase with ⟨(S+

i )2⟩ ≠ 0,
the G = U(1)Sz spin rotational symmetry is broken down to a H = Z2 subgroup generated by
S+
i → −S+

i , fi,↑ → −fi,↑. Note that the parity ZF
2 of spin-1/2 fermions is always preserved:

(−1)F̂ ≡ (−1)
∑

i f
†
i,↑fi,↑+f†

i,↓fi,↓ (3.32)

In the pair superfluid phase with ⟨S+
i S

+
j ⟩ ̸= 0 and ⟨S+

i ⟩ = 0, the f †
↑ fermions enter a

p + ip topological superconducting phase, while the f↓ fermions form a p − ip topological
superconductor. A fundamental ν = 1 vortex of the pair superfluid will translate into a
vorticity-1 vortex in the p+ ip superconductor of f↑’s, hence trapping a single Majorana zero
mode at the vortex core. Therefore an odd-vorticity vortex of the pair superfluid permutes
e and m sectors in the Z2 toric code.
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3.6.4.2 Biaxial nematics with anyon-permuting vortices

Another Hamiltonian of the form (3.27) can also give rise to a biaxial nematic phase with Z2

toric code topological order, which spontaneously breaks the SO(3) spin rotational symmetry
down to a D2 = (Z2)

2 subgroup. Similarly we build our Hilbert space out of fermionic
partons: four complex fermions of one s (fs) and three p (fx,y,z) orbitals, and four Majoranas
{χi|1 ≤ i ≤ 4}. The Majoranas and fs fermions are spinless, while fx,y,z form a vector (spin-
1) representation of the G = SO(3) spin rotational symmetry. Again there is a Z2 gauge
constraint for fermion parity on each site of the square lattice (see Fig. 3.4(b)):

(−1)f
†
s fs+

∑
a=x,y,z f

†
afaχ1χ2χ3χ4 = 1, ∀ i ∈ Λ. (3.33)

The topologically ordered Hamiltonian writes

ĤTO = −Em

∑
⟨i,j,k,p⟩

P̂⟨i,j,k,p⟩ −
∑
i

(µsf
†
i,sfi,s + µp

∑
a=x,y,z

f †
i,afi,a)+∑

⟨i,j⟩

iχi,l(i,j)χj,l(j,i)

[
∆se

− i arg(j−i)fi,sfj,s−tsf †
i,sfj,s+

∑
a=x,y,z

(∆pe
i arg(j−i)fi,afj,a−tpf †

i,afj,a) + h.c.
]

(3.34)
It preserves SO(3) symmetry with a ground state with zero flux in each square plaquette,

where the fs fermions form a p− ip superconductor and each flavor of fx,y,z fermions forms
a p+ ip superconductor.

In addition to the 25 = 32-dimensional qudit described by partons, the physical Hilbert
space contains another spin-1 S⃗i on each site. The nematic order parameter is given by the
following 3 × 3 matrix

Qa,b = ⟨Sa
i S

b
i ⟩, a, b = x, y, z. (3.35)

The topological order couples with the spin-1’s in the following way:

Ĥint = −J
∑
i,a,b

f †
i,afi,bS

a
i S

b
i (3.36)

Once the spin-1 Hamiltonian ĤSSB[S⃗i] [55, 25, 233] favors a biaxial nematic ground state
with

Q̂ =

q2 − q1/2
−q2 − q1/2

q1

 (3.37)

the G = SO(3) spin rotational symmetry is spontaneously broken down to a H = D2 group,
generated by π rotation along the x̂ and ŷ axis.

In the limit of q1 = 0 and J |q2| ≫ |tp|, |µp|, the fx and fy fermions are driven into a
strong-pairing atomic superconductor, giving rise to a Z2 toric code ground state, with a
p + ip superconductor of fz’s and a p − ip superconductor of fs’s. Since fz is odd under
a π rotation along either x or y axis, both the ± iσx and ± iσy vortices can trap a single
Majorana zero mode of fz and hence permute e and m anyons.
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We note that the SO(3) symmetric phase with Qa,b ≡ 0 in this example is an Abelian
Z2 topological order with the following K matrix [278]: K = 4. It describes the ν = 2 state
in Kitaev’s 16-fold way [127], where each elementary anyon of statistical angle Θ = i carries
spin-1/2 (hence a “spinon”), and each fermion {fa|a = s, x, y, z} is a bound state of two
such spinons.

3.6.4.3 Biaxial nematics with defect fractionalization

As discussed previously, when the point defects (or vortices) do not permute anyons in
a biaxial nematic order with H = D2 symmetry that is broken down from G = SO(3),
they can exhibit defect fractionalization phenomenon captured by the group cohomology
H2(π1(G/H) = Q8,A). A model for this phenomenon in the Z2 topological order (toric
code) can be constructed in a similar way as the biaxial nematic order with anyon-permuting
vortices in the previous section.

Again we consider an s orbital (fs) and three p orbitals (fx,y,z) of complex fermions (see
Fig. 3.4(b)), coupled to a Z2 gauge field implemented by spinless Majorana fermions. The
p orbitals fx,y,z transform as a spin-1 representation of the G = SO(3) symmetry. Now we
require fx and fy fermions to each form a p + ip superconductor, while fz and fs fermions
each forms a p − ip superconductor. In this case, since fx,y fermions are both odd under
the Z ≡ e iπS

z
spin rotation, the ± iσz vortices will each trap a e iπS

z
symmetry defect. In

such a D2 symmetry enriched topological order, the symmetry fractionalization class [82]
[ω] ∈ H2(D2,A) is characterized by

ω(X,X) = ω(Y, Y ) = 1, ω(Z,Z) = ϵ. (3.38)

where X = e iπS
x
, Y = e iπS

y
, Z = e iπS

z
are π rotations along x, y, z axis. As a result, the

associated fractionalization class [Ω] ∈ H2(Q8,A) for the vortices is characterized by

Ω(iσz, iσz)

Ω(iσx, iσx)
=
ω(Z,Z)

ω(X,X)
=1,

Ω(iσz, iσz)

Ω(iσy, iσy)
=
ω(Z,Z)

ω(Y, Y )
=ϵ. (3.39)

Physically this means fusing two iσx vortices differ from fusing two iσy vortices by a fermion
ϵ in the toric code.

One can also arrange fy,z fermions each in a p+ ip superconductor and fx,s fermions each
in a p− ip superconductor, to achieve

ω(Z,Z) = ω(Y, Y ) = 1, ω(X,X) = ϵ. (3.40)

or arrange fx,z fermions each in a p + ip superconductor and fy,s fermions each in a p− ip
superconductor, to achieve

ω(Z,Z) = ω(X,X) = 1, ω(Y, Y ) = ϵ. (3.41)
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Figure 3.5: (a) Illustration of the model Hamiltonian Eq. (3.42) without any defects. (b) A
single dislocation, with the blue arrow denote the Burger vector. (c) A pair of dislocations
A and A′. (d) Moving the dislocation A rightward for one unit cell.

3.6.4.4 Fusion rules of dislocations in the toric code

The defect fractionalization is captured by H2(π1(G/H),A), as we discussed in Sec. 3.6.1.
Consider the fusion of dislocations with trivial action in toric code. Here we choose G =
R × R and H = Z × Z, such that π1(G/H) = Z × Z captures the dislocation defects
in two spatial dimension. The toric code topological order has (Abelian) anyon content
A = Ze

2×Zm
2 . Since the symmetry fractionalization is of a product form H2

id(π1(G/H),Ze
2×

Zm
2 ) = H2

id(π1(G/H),Ze
2) × H2

id(π1(G/H),Zm
2 ), without loss of generality below we only

consider the magnetic anyon sector which has non-trivial defect fractionalization labeled by
H2

id(π1(G/H),Zm
2 ) = H2

id(Z2,Zm
2 ) = Z2. In the following, we will show such a non-trivial

defect fractionalization via fusing four dislocations in a lattice model.
The Hamiltonian for toric code on a square lattice is given by:

ĤTC = −∆m

∑
p

Ap − ∆e

∑
v

Bv, (3.42)
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Figure 3.6: Fusion of four dislocation defects. (a) Fundamental operations for defect
movements. (b) Toric code with eight dislocation defects. The shaded part is the area that
we are interested in. (c) Right move the dislocation A for one lattice constants. (d) Left
move dislocation B for three lattice constants. (e) Move dislocation D upwards for three
lattice constants. (f) Move dislocation C downward for two lattice constants. (g) Connect
two bonds, see Fig. 3.7(b) (h) Add one bond, see Fig. 3.7(c)

where Ap =
∏

l∈p Zl for the product of all bonds associated to plaquette p and Bv =
∏

l∈vXl

for the product of all bonds associated to vertex v. Here X = σx, Z = σz are Pauli matrices.
The symmetry operator for translation of one unit cell along x (y) direction is defined as
Tx (Ty). The symmetry fractionalization of translation symmetries H = ZTx × ZTy can be

understood as follows [59]. Consider an eigenstate |ψ⟩ of ĤTC, where a single e particle
is created on top of the ground state (assuming the other e particle is at infinity), if it
carries the trivial element of the projective representation (i.e., the linear representation) of
H2

id(Z2,Zm
2 ), we have T−1

x ◦T−1
y ◦Tx ◦Ty |ψ⟩ = + |ψ⟩. This is e.g. the case when ∆m > 0 [59].

On the other hand, if it carries the non-trivial projective representation of the H2
id(Z2,Zm

2 ),
we have T−1

x ◦T−1
y ◦Tx ◦Ty |ψ⟩ = − |ψ⟩. The fact T−1

x ◦T−1
y ◦Tx ◦Ty |ψ⟩ = − |ψ⟩ means that

each plaquette has an m flux, or equivalently traps one m particle. This is the case when
∆m < 0. Generally, the translation symmetry fractionalization class is given by

ω(Tx, Ty)

ω(Ty, Tx)
= a ∈ A (3.43)

where a = 1,m in the two scenarios with different sign of ∆m (both with ∆e > 0) as
discussed above. As discussed in Sec. 3.6.1, if π1(G) = 0 as in this case, due to short exact
sequence (3.4), there is a one-to-one correspondence between symmetry defects as elements
of H and point defects as elements of π1(G/H) ≃ H. Therefore, the above cohomology
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data of symmetry defects directly translate into cohomology data of point defects of order
parameters:

ω(τx̂, τŷ)ω(τ−x̂, τ−ŷ) = a ∈ A (3.44)

where we use τ⃗b to label the dislocation (i.e. the point defect of translation symmetries) with

Burgers vector b⃗. Physically, it means the four dislocations must fuse into an Abelian anyon
a:

ωx̂ × ωŷ × ω−x̂ × ω−ŷ = a ∈ A (3.45)

where a can be considered as the “background anyon” in each unit cell in a translational-
invariant topological order[48]. Below, we demonstrate the fusion rule (3.45) for four dislo-
cations, by an explicitly calculation of the anyon a in the toric code on the square lattice.

We consider four pairs of dislocations (A,A′), (B,B′), (C,C ′), (D,D′), as shown in Fig. 3.6(b).
As mentioned earlier, here we focus on distinguishing a = 1 vs. a = m (captured by
H2(H,Zm

2 ) = Z2), which can be detected by a Wilson loop of e type. Such a Wilson loop
(red lines) Wp =

∏
σz in Fig. 3.6(b) probes the parity of the number of m particles within it.

A similar calculation for the m-type Wilson loop can fully determine the background anyon
a in fusion rule (3.45).

Our strategy is to use finite step local unitary operations to move the four inner dis-
locations A,B,C,D into the Wilson loop, so that the Wilson loop Wp in Fig. 3.6(b) can
detect their fusion outcome a = 1 vs. a = m. To do so, we first define the following unitary
operations for Z components:

UT+
x

(v)Zv,v−êyU
−1

T+
x

(v) = Zv−êx−êy ,vZv−êy ,v−êx−êy , (3.46a)

UT−
x

(v)Zv,v+êyU
−1

T−
x

(v) = Zv,v+êx+êyZv+êy ,v+êx+êy , (3.46b)

UT+
y

(v)Zv,v−êxU
−1

T+
y

(v) = Zv,v−êx−êyZv−êx,v−êx−êy , (3.46c)

UT−
y

(v)Zv,v+êxU
−1

T−
y

(v) = Zv,v+êx+êyZv+êx,v+êx+êy , (3.46d)

where v labels the vertex, and êx (êy) stands for unit vector along the x̂ (ŷ) direction.
The symmetry operations have been shown in Fig. 3.7(a). Note that these operations can be
written in terms of two-qubit unitary gates. For example, the UT+

x
(v) operation in Eq. (3.46a)

is nothing but the two-qubit swap gate:

UT+
x

(v)=U−1

T+
x

(v)=
1 + Zv,v−êx

2
+

1 − Zv,v−êx

2
Xv,v+êy . (3.47)

For the vertex v = 1, UT+
x

(v) moves the dislocation A in Fig. 3.5(c) rightward by one lattice
constant x̂, and arrives at the Fig. 3.5(d).
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Similarly, for the X components, we have:

UT+
x

(v)Xv,v−êyU
−1

T+
x

(v) = Xv,v−êx−êyXv,v−êy , (3.48a)

UT−
x

(v)Xv,v+êyU
−1

T−
x

(v) = Xv,v+êx+êyXv,v+êy , (3.48b)

UT+
y

(v)Xv,v−êxU
−1

T+
y

(v) = Xv,v−êx−êyXv,v−êx , (3.48c)

UT−
y

(v)Xv,v+êxU
−1

T−
y

(v) = Xv,v+êx+êyXv,v+êx . (3.48d)

Now, let us consider the following symmetry actions for the lattice defined in Fig. 3.6(b):
Step 1, move the dislocation A to the right, as shown in Fig. 3.6(c). The correspond-
ing symmetry action reads: U1 = UT+

x
(v1). Step 2, move the dislocation B to the left,

as shown in Fig. 3.6(d). The corresponding symmetry action will be applying UT−
x

three
times: U2 = UT−

x
(v4)UT−

x
(v3)UT−

x
(v2). Step 3, move the dislocation D upwards, as shown in

Fig. 3.6(e). The corresponding symmetry action will be acting UT+
y

for three times: U3 =

UT+
y

(v7)UT+
y

(v6)UT+
y

(v5). Step 4, move the dislocation C downwards, as shown in Fig. 3.6(f).

The corresponding symmetry action will be acting UT−
y

twice: U4 = UT−
y

(v9)UT−
y

(v8). The

Hamiltonian for Fig. 3.6(b) and Fig. 3.6(f) are actually related by finite step unitary opera-
tions U = U4U3U2U1.

We note that not all plaquettes within the Wilson loop in Fig. 3.6(f) are squares. We have
shown the part associated with non-square plaquettes and non-cross vertex in Fig. 3.7(a).
The Hamiltonian for Fig. 3.7(a) reads:

H ′
a = − Zl1Zl2Zl3Zl11Zl12Zl9Zl10 − Zl5Zl6Zl7Zl12Zl11

−Xl3Xl4Xl5Xl11 − ∆11,12Xl11Xl12 −Xl12Xl7Xl8Xl9

−Xl2Xl13Xl3 −Xl9Xl14Xl10 .

(3.49)

To fuse all the defects, we have to introduce two additional local operations. First, we
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Figure 3.7: Merging line l11 and l12 in (a) to one line l15 (orange) in (b) and adding a line
l16 (blue) in (c).

need to merge line l11 and l12 to get the orange line l15, as shown in Fig. 3.7(b). This can
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be done by taking the coupling constant ∆11,12 of XllX12 term to infinity, then redefining
X15 ≡ X11 = X12 and Z15 = Z11Z12 in the strong coupling limit. The Hamiltonian for
Fig. 3.7(b):

H ′
b = lim

∆11,12→∞
H ′

a = − Zl1Zl2Zl3Zl15Zl9Zl10 − Zl5Zl6Zl7Zl15

−Xl3Xl4Xl5Xl15 −Xl15Xl7Xl8Xl9 −Xl2Xl13Xl3 −Xl9Xl14Xl10 .
(3.50)

The second step is to add the blue line l16 in Fig. 3.7(c). The Hamiltonian for Fig. 3.7(c)
reads:

H ′
c = − Zl1Zl2Zl16Zl10 − Zl3Zl15Zl9Zl16 − Zl5Zl6Zl7Zl15

−Xl3Xl4Xl5Xl15 −Xl15Xl7Xl8Xl9 −Xl2Xl13Xl3Xl16 −Xl9Xl14Xl10Xl16 .
(3.51)

One way to justify adding qubit l16 in the last step is to see that in the h16 → ∞ limit of a
large Zeeman term −h16X16, the low-energy effective Hamiltonian of H ′

c above reduces back
to H ′

b.
Note that in all steps discussed above, the gap of the full Hamiltonian never closes. More

precisely, we have constructed a smooth path of gapped Hamiltonians which connects the
initial Hamiltonian Ĥ0 in Fig. 3.6(b), and the final Hamiltonian H ′

c in Fig. 3.6(h). In other
words, the movement of the 4 dislocations into Wilson loop Wp are implemented by a local
unitary quantum circuit of finite depth [41].

However, after moving the 4 dislocations into the Wilson loop Wp, one finds that the
number of the plaquettes inside the Wilson loop changed from 9 to 10. In the case of a
nontrivial translation fractionalization class, with a = m in (3.43) and realized by ∆m < 0,
there is one m particle per unit cell (or plaquette), Therefore after moving the 4 dislocations
into the Wilson loop, the Wilson loop now encloses one extra m particle. This means the
fusion outcome of the 4 dislocations is nothing but an a = m anyon. On the other hand, if
the translation symmetry fractionalization class is trivial with a = 1 in (3.43), e.g. realized
in the original toric code with ∆e,m > 0, the background anyon per unit cell (or plaquette)
is trivial. Therefore moving the 4 dislocations into the Wilson loop does not bring in extra
anyons inside the Wilson loop. As a result, the fusion outcome of the 4 dislocations in
(3.45) is also trivial, with a = 1. Therefore, we have proved in the context of the toric code
model that the fusion rule of the dislocations in Eq. (3.45) is determined by the translation
fractionalization class (3.43).
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3.7 Skyrmions in symmetry enriched topological

orders

3.7.1 Field theory of the skyrmions in two-dimensional
topological orders

After discussing the point defects in topological orders with coexisting symmetry breaking,
in this section we discuss smooth textures of symmetry-breaking order parameters in a
topological order. We shall restrict ourselves to skyrmions, e.g. in a ferromagnet where
SO(3) spin rotation symmetry is spontaneously broken down to a U(1)Sz subgroup. We
shall discuss in detail the universal physical properties of skyrmions following the group
cohomology results in Sec. 3.4.4.2.

Consider a skyrmion in ferromagnetic topological orders, where G = SO(3) spin rota-
tional symmetry is spontaneously broken down to a H = U(1)Sz subgroup. As discussed
in Sec. 3.4.4.2, due to the short exact sequence (3.17), a skyrmion of topological charge
ν ∈ Z = π2(G/H) is equivalent to 4πν flux of the remnant U(1)Sz symmetry. Therefore,
we can write down a field theory for the ferromagnetic topological order. Note that the
skyrmion 3-current [88, 64, 283] should be treated in the same way as the 4π flux 3-current:

Jµ
skyrmion ≡ 1

8π
ϵµνλn⃗ · (∂νn⃗× ∂λn⃗) ≃ ϵµνλ

∂νAλ

4π
(3.52)

where unit vector n⃗ is the ferromagnetic order parameter, and Aµ is the vector potential
for the conserved U(1)Sz symmetry. Now that the ferromagnetic topological order has a
conserved spin Sz associated with the remnant U(1)Sz symmetry, we can rewrite its conserved
Sz current using a dual gauge field aµ such that

jµSz =
ϵµνλ

2π
∂νaλ (3.53)

Since the spin current couples with external vector potential Aµ minimally, the full La-
grangian density of the ferromagnetic topological order can be written as follows:

L[n⃗, aµ] = LT.O.[aµ] − ϵµνλ

2π
Aµ∂νaλ − 2aµJ

µ
skyrmion + · · ·

= LT.O.[aµ] − ϵµνλ

2π
Aµ∂νaλ −

ϵµνλ

4π
aµ
[
n⃗ · (∂νn⃗× ∂λn⃗)

]
+ · · ·

where LT.O.[aµ] describes the intrinsic topological order using the dual gauge field. Integrat-
ing out the dual gauge field aµ can yield an effective action Lrmeff [n⃗] for the ferromagnetic
order parameter n⃗. In particular, as we will show below, for a generic topological order, this
can induce a Hopf term for the ferromagnetic vector n⃗, giving rise to fractional statistics of
the skyrmions [3, 232].
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Finally we point out a universal relation connecting the statistical angle (or topological
spin) and U(1)Sz quantum number8 of a skyrmion. The skyrmion as a spatial texture of
order parameter n⃗(x, y, t) is classified by the second homotopy group π2(G/H = S2) = Z. A
standard realization of a single skyrmion of topological charge ν ∈ Z, of size R and located
at the origin, has the following form:

n⃗(r⃗, t)=
(

sin f(r) cos(νϕ), sin f(r) sin(νϕ), cos f(r)
)
. (3.54)

where we introduced the polar coordinate r⃗ = (x, y) = r(cosϕ, sinϕ) and a smooth function
f(r) satisfying f(0) = 0 and f(r ≥ R) = π. Clearly such a skyrmion texture is invariant
under a combined spatial rotation (around origin) by angle θ and spin rotation (along ẑ
axis) by angle νθ. Therefore, the statistical angle Θν ∈ U(1) of a charge-ν skyrmion must
be related to its U(1)Sz quantum number Qν in the following manner:

Θν = e2πν iQν . (3.55)

3.7.2 Abelian topological orders

To explicitly write down the field theory (3.54) and to obtain universal properties of skyrmions,
in this section we focus on the case of an Abelian topological order, which are classified and
described by Abelian Chern-Simons theory with a K matrix[278].

Suppose the underlying system has an Abelian topological order, characterized by the
matrix K and a spin vector q associated with the remnant U(1)Sz symmetry. In particular,
the dual gauge field for the conserved U(1)Sz 3-current is written as

aµ =
∑
I

qIa
I
µ (3.56)

From (3.54), the Lagrangian density for the system reads:

L=
1

4π
ϵµνλKIJa

I
µ∂νa

J
λ−qIa

I
µ

ϵµνλ

2π
∂νAλ−2qIa

I
µJ

µ
skyrmion, (3.57)

where the extra 2 in the coefficient of last term denotes the 4π flux carried by each skyrmion
instead of ordinary 2π, as we have discussed in Sec. 3.4.4.2.

Integrating out aIµ, we obtain the spin Hall conductance associated with Aµ-field [278]:

σSz
xy = qTK−1q. (3.58)

8Strictly speaking, since the U(1)Sz symmetry is broken by the skyrmion configuration, the U(1)Sz

quantum number Q is not well defined. More precisely, different local perturbations can change this quantum
number by an integer. However, the fractional part of Q is a universal number, and it shows up in the
universal relation (3.55).
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Meanwhile, a skyrmion with topological charge ν ∈ Z corresponds to an Abelian anyon
labeled by the vector lν = 2νq. The U(1)Sz (spin) quantum number carried by a texture of
winding number ν reads:

Qν = lTK−1q = 2νqTK−1q mod 1, (3.59)

and its self-statistics (unit of aIµ flux) reads:

Θν = e iπl
TK−1l = e4π iν2qTK−1q (3.60)

Indeed they obey the universal relation (3.55).

3.7.3 Half-integer spins with SU(2) symmetry

Lastly we clarify one subtle difference between G = SO(3) in systems with integer spins, as
discussed previously, and G = SU(2) in systems with half-integer spins.

For a bosonic or fermionic system with half-integer spins, the full symmetry group is
G = SU(2) rather than the previously discussed SO(3) case. Since π1(SU(2)) = 0, now the
skyrmions as elements of π2(SU(2)/U(1)) = Z and fluxes as elements of π1(U(1)) = Z have
a one-to-one correspondence realized by bijective map f below:

π2(SU(2)) = 0 → π2(S
2)

f−→ π1(U(1)) → π1(SU(2)) = 0. (3.61)

More precisely, a skyrmion of winding number ν is now mapped to a 2πν flux (i.e. ν
flux quanta) of the unbroken H = U(1)Sz subgroup. The effective theory for an Abelian
topological order with an odd K matrix reads:

L=
1

4π
ϵµνλKIJa

I
µ∂νa

J
λ−qIa

I
µ

ϵµνλ

2π
∂νAλ−qIa

I
µJ

µ
skyrmion. (3.62)

Similar to the case for integer spins, a skyrmion of topological charge ν, now labeled by
vector lν = νq, carries U(1)Sz quantum number Qν = νqTK−1q mod 1 and self statistical
angle Θν = e iπν

2qTK−1q.
For example, in the quantum Hall ferromagnet in the lowest Landau level [232] with

K = 1, q = 1, a ν = 1 skyrmion becomes a fermion with Θν=1 = −1 [3]. An alternative
way to understand this problem is to gauge the fermion parity symmetry ZF

2 to map it to
a bosonic topological order with G = SO(3), H = U(1) as discussed previously. In this
case, the quantum Hall ferromagnet in the lowest Landau level [232] corresponds to a U(1)4
Chern-Simons theory with K = 4, q = 1 after gauging the fermion parity, where a ν = 1
skyrmion is again a fermion with Θν=1 = −1.
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3.8 Discussion and outlook

In summary, we described a theoretical framework which classifies point defects and textures
in two dimensional quantum phases, where the full symmetry G is spontaneously broken
down to a subgroup H of remnant symmetries, so that each symmetry breaking ground
state with a fixed (non-fluctuating) order parameter is an H-symmetry enriched topological
(H-SET) state. Using the long exact sequence of homotopy groups that maps the point
defects and textures of order parameters to symmetry defects in the H-SET phase (see
Sec. 3.3), we obtain a group cohomology classification for the point defects and textures
(see Sec. 3.4), which is induced from the group cohomology classification of H-SET phases
(including the H-SPT phases as a special case).

Using this general framework and the group cohomology classification, we address their
physical consequences focusing on three aspects. In Sec. 3.5, we studied point defects and
textures of order parameters in H-SPT phases, and reveal their connection to deconfined
quantum critical points (DQCPs). In Sec. 3.6, we studied point defects of order parameters
in H-SET phases, showing that they can (1) permute anyons when braided around, and (2)
fuse into Abelian anyons, a phenomenon we coined “defect fractionalization”. In Sec. 3.7
we studied textures of order parameters in H-SET phases, establishing their field theory
descriptions and the fractional statistics obeyed by the skyrmions.

This work aims to understand the interplay between classical long-range orders of local
order parameters, and quantum orders of long-range entanglement in the ground state [275].
It serves as a first step towards a complete classification and characterization of quantum
phases with both classical and quantum orders. While we focused on point defects and
textures in two-dimensional bosonic systems in this work, three natural extensions are: (i)
to understand domain walls of discrete symmetry breakings; (ii) to study fermionic systems
with long-range orders; and (iii) to go beyond two spatial dimensions. For example, in
three dimensions, the coexistence of long-range orders and quantum spin liquids (known as
“magnetic moment fragmentation”) has been proposed in quantum spin ice compounds [214,
31].

In our study of the symmetry breaking in SET phases in Sec. 3.6, we focused on examples
of Abelian topological orders, where we used an underlying toric code topological order
throughout the analysis. This choice is made for simplicity and for the purpose of explicit
lattice model construction in Sec. 3.6.4. We believe the toric code suffices for illustrating
the general principle that we laid out using an algebraic means. It is interesting to identify
a non-Abelian system which harbors the nontrivial point defects and textures discussed in
our formalism.

As discussed in Sec. 3.3.2-3.3.3, in this work, we focused on the case where the long exact
sequence (1.5) of homotopy groups cuts off into short exact sequences: (3.4) for point defects
and (3.5) for textures (skyrmions) in two spatial dimensions. The consequent short exact
sequence allowed us to obtain a compact classification for universal properties of point defects
and textures based on group cohomology in Sec. 3.4. While many physical systems fall into
this case, in a most generic situation, both nontrivial topological point defects and textures
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exist, with possible nontrivial interplay between them [133]. To establish a mathematical
classification for the generic case goes beyond the current work, and we leave it for future
developments.

Now that we have studied point defects and smooth textures of order parameters as-
sociated with SSB from G to H, condensing such point defects (i.e. vortices) or textures
(skyrmions) is expected to restore the broken symmetries. However, as we have shown in
this work, point defects can carry a projective representation of the remnant symmetry H,
and textures can carry fractional statistics and fractional quantum numbers. As a result, the
defect/texture condensation transition may spontaneously break other symmetries and/or
alter the topological order in the ground state. This will lead to a family of quantum phase
transitions beyond the Landau paradigm [222, 134, 29]. For example, condensing a skyrmion
obeying bosonic self statistics but nontrivial mutual statistics with other anyons can restore
SO(3) symmetry, leading to a paramagnetic ground state with a different topological order
than the ferromagnetic phase. We leave these novel phase transitions as future projects.

Finally, note that in two spatial dimensions, point defects of the order parameters in our
framework can be mapped to a one-parameter family of gapped H-SET Hamiltonians, while
a smooth texture of order parameters in our framework can be mapped to a two-parameter
family of gapped H-SET Hamiltonians [127]. Therefore, our classification of point defects
and textures in H-SET phases also serves as a first step towards the classification and
construction of adiabatic pumping cycles in SET phases [120, 2, 279]. We also leave these
developments to future works.
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Chapter 4

Minimal one-dimensional model of
bad metal behavior from fast
particle-hole scattering

A strongly interacting plasma of linearly dispersing electron and hole excitations in two
spatial dimensions (2D), also known as a Dirac fluid, can be captured by relativistic hy-
drodynamics and shares many universal features with other quantum critical systems. We
propose a one-dimensional (1D) model to capture key aspects of the 2D Dirac fluid while
including lattice effects and being amenable to non-perturbative computation. When inter-
actions are added to the Dirac-like 1D dispersion without opening a gap, we show that this
kind of irrelevant interaction is able to preserve Fermi-liquid-like quasi-particle features while
relaxing a zero-momentum charge current via collisions between particle-hole excitations,
leading to resistivity that is linear in temperature via a mechanism previously discussed for
large-diameter metallic carbon nanotubes. We further provide a microscopic lattice model
and obtain numerical results via density-matrix renormalization group (DMRG) simulations,
which support the above physical picture. The limits on such fast relaxation at strong cou-
pling are of considerable interest because of the ubiquity of bad metals in experiments. What
is more, this type of quantum dynamics can happen at the boundary of quantum spin Hall
insulator, where particle-hole scattering leads to linear-in-temperature resistivity of edge
modes.

4.1 Introduction

A strongly interacting plasma of linearly dispersing electron and hole excitations in two di-
mension, also known as a Dirac fluid, shares many universal features with other quantum
critical systems. With particle-hole symmetry preserved, under external electric field, there
exists a “zero momentum mode” in the Dirac fluid which carries a non-vanishing charge
current [89, 186, 185]: electrons and holes move symmetrically in opposite directions. Pro-
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tected by conservation of momentum, in a continuous translationally invariant system, such
a charge current could only be relaxed via scattering within the quasi-particles in the current.
The most studied example of this kind of Dirac fluid is the electron-hole plasma in high mo-
bility graphene at the charge neutrality point, which is believed to have Planckian-bounded
dissipation [89, 186, 185, 171, 173, 196, 238, 239, 172, 69, 65, 140].

Here Planckian dissipation refers to a relaxation or scattering time τp ∼ ℏ/kBT set only
by temperature and the Planck constant [294, 293]. There is considerable experimental
evidence for the importance of such relaxation rates as an upper bound in a broad range of
“bad metals” [192, 32, 258], most famously in the linear-in-temperature resistivity of some
cuprate superconductors at optimal doping, in contrast to the standard form ρ = ρ0+AT 2 of
Fermi liquids. (Note that there can be mechanisms of dissipation that involve the Planckian
time scale but do not lead to changes in resistivity, for example in translation-invariant
systems where current is conserved by the dissipation process.) The general mechanism of
Planckian dissipation remains contested. As nothing in the Dirac fluid picture is manifestly
specific to two dimensions, one could ask whether similar features could be obtained in
one spatial dimension, where metallic transport is well known to have unique features [26].
Because more non-perturbative calculations are available in one dimension both theoretically
and numerically, constructing a one-dimensional Dirac fluid and increasing interactions to
strong coupling is a test of one origin of Planckian dissipation.

Conceptually, if one were to take a sheet of graphene and wrap it into a metallic armchair
nanotube, one might expect some signs of 2D Dirac fluid transport along the tube axis to
be preserved. Indeed, Balents and Fisher argued that interactions in a sufficiently large
nanotube, while expected ultimately to open a gap, might show a linear-in-T resistivity over
a range of temperatures, based on particle-hole scattering as a perturbation.[7] (Since there
are different terminologies appearing in the literature, note that particle-hole scattering can
also be viewed as a kind of two-particle Umklapp scattering but with no loss of momentum, as
explained below Figure 1.). Our goal here is to find a single-chain model with no observable
gap, use a kinetic theory approach to determine its resistivity beyond perturbation theory,
and then verify the bad metal regime by taking advantage of the remarkable progress in
dynamical matrix product state calculations.

Of course, metals in one dimension are generally more sensitive to electron-electron in-
teractions than in higher dimensions, resulting in a Luttinger liquid rather than the Fermi
liquid familiar from higher dimensions. Since the Luttinger liquid also starts from a Fermi
surface with isolated points, and its existence is by now well established, the existence of
alternative Dirac-fluid physics in one dimension must depend on the details of a microscopic
model. The past few years have seen a renaissance in the dynamics of one-dimensional
models, including, even without disorder and the possibility of localization, a new kind of
hydrodynamics in integrable models resulting from the inhibition of relaxation from extra
conservation laws [26]. Planckian dissipation is expected to appear in the opposite limit,
where relaxation is happening as rapidly as possible.

The goal of this work is to understand whether one-dimensional Dirac fluids can be
engineered in realistic lattice models, how they relate to known physics such as the Luttinger
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liquid, and whether they can show the fast relaxation that underlies Planckian behavior.
Throughout we use the word “fast” to indicate that the scattering process induces the
equilibrium found from kinetic theory before any higher-order interaction effect opens a gap;
it is difficult to rule out either analytically or numerically the emergence of a tiny energy
gap, which will affect dynamics only at the longest time scales and lowest temperatures.

In the remainder of this introduction, we review when effective hydrodynamic descrip-
tions appear in metallic materials and some existing mechanisms or examples of Planckian
dissipation. Real solids have at most discrete translational symmetries, which can be bro-
ken down by impurities. Under some conditions, the momentum relaxation processes like
Umklapp and impurity scattering possess a characteristic time scale τr, which may be much
larger in a clean material at low temperature than the Planckian time τp. Then a local
equilibrium can be reached via collisions between excitations without relaxation of momen-
tum; a well-studied example motivating our study is with particle-hole symmetry [54, 211,
210]. If the conservation laws of the system such as energy, charge and momentum deter-
mine the relevant degrees of freedom beyond a certain time scale, one expects approximate
phenomenological relativistic hydrodynamic equations to capture the coarse-grained prop-
erties [146, 114, 172, 57] up to the momentum relaxation scale, and hydrodynamical effects
will influence the measured conductivity.

A major experimental motivation for such models comes from the normal state of cuprate
superconductors, and we summarize some of that very briefly. While the origin of linear-
in-temperature resistivity in the normal state of high Tc superconductors at optimal doping
remains an open question [242, 294, 293, 32, 258], hydrodynamic studies for various kinds of
quantum critical fluids suggest one kind of answer[140, 186, 185, 32, 294, 69, 187, 236, 293]:
a quantum critical electron fluid with maximal Planckian dissipation is one theoretical route
to linear-T resistivity, even if the nature of a quantum critical point near optimal doping
is difficult to probe because of the intervening superconductivity. The theoretical study of
fast relaxation in higher dimensions was reinvigorated by the introduction of the Sachdev-Ye-
Kitaev model, an analytically tractable nonlocal model of randomly interacting fermions [212]
with some unusual features such as ground-state entropy and all-to-all interactions that make
its connection to materials somewhat opaque.

The Dirac fluid introduced above is a different route to linear-T resistivity that is thought
to be relevant to studies of transport in clean graphene samples near half-filling [53]. We can
ask which quantum liquids in one dimension, where additional non-perturbative methods are
available, can possess similar transport properties to charge-neutral graphene, and what the
leading corrections to this behavior are in realistic systems. It is well known that ballistic
transport (i.e., free motion of carriers without scattering) in one dimension has quantized
conductance at zero temperature. Some special systems in one dimension, the integrable
systems mentioned above, possess an extensive set of conservation laws that protect the
current from relaxing [159, 95, 244, 71], which often, though not always, leads to ballistic
transport up to high temperature [26].

Previous models have been studied to explore whether it is possible to relax the current in
an impurity-free, non-integrable 1D system at finite temperature, but these generally have
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parametrically slower relaxation than required for linear-in-T resistivity. One example is
to sit slightly away from half-filling, with the band curvature considered and three-particle
scattering processes introduced, which gives a quasi-particle decay rate scaling with the
eighth power of the energy [213, 177]. Another example is to add staggered magnetic field at
half-filling, to break the integrability of the 1D XXZ model, which turns out to give a power-
law DC conductivity with respect to temperature depending on the Luttinger parameter [104,
33]. These encourage us to look elsewhere for a 1D model which can support Planckian
dissipation and linear-T resistivity, in analogy with the Dirac fluid.

Our route is to use a scattering process in 1D, which can be thought of as either particle-
hole scattering or fast Umklapp-like scattering (FUS), to approach limits on the relaxation of
current in one dimension in an impurity-free system. We start from a one-dimensional Dirac-
like continuous model, where the Fermi level lies at the Dirac node (charge neutrality). The
scattering will take two electrons from one linearly dispersing chiral branch to the opposite
one, with no net momentum transferred. This is different from the conventional Umklapp
scattering in an ordinary 1D metal, where the two chiral branches are separated in momentum
space at different Fermi points kL and kR, such that the scattering process will possess a large
momentum transfer 2|kL − kR| ∼ 2π. From the bosonization of the low energy Hamiltonian,
we find that the FUS terms are irrelevant and that the Fermi liquid quasi-particle picture
survives. The scattering can thus predominantly contribute to the current relaxation while
adding only a small modification to the energy spectrum. Our focus will be on realizing this
mechanism while avoiding gap-opening instabilities such as dimerization and also Luttinger
liquid behavior from forward scattering.

This scattering is thus an “extrinsic” mechanism [58] in the sense that the fixed point
is still a Fermi liquid, but the scattering can still be strong enough to give linear-in-T
resistivity. With the quasi-particle picture preserved, combined with conservation of energy,
momentum, and charge, we can then use a kinetic theory approach to calculate the DC
conductivity. At the perturbative level, the collisionless limit (non-interacting case) gives
a quantized conductance identical to that of ballistic transport with two chiral conducting
channels. In the presence of collisions, the conservation laws and particle-hole symmetry put
a strong constraint on scattering processes. By using a standard variational method, we find
that the conductivity is broadened to a Lorentzian by the FUS at finite temperature, and
obtain a linear-T resistivity in the DC limit.

In order to check that this physics can be realized in a solid, we then introduce a mi-
croscopic lattice model that manifests the aforementioned scattering process and transform
it into a spin model via a Jordan-Wigner transformation. We use time-dependent density-
matrix renormalization-group (DMRG) simulations [281, 260, 259, 218] to compute the cur-
rent relaxation at finite temperature. Our results are consistent with the predictions of the
field theory. Having a concrete model of linear-T resistivity, in a numerically tractable system
with local couplings and interactions, opens the door for future studies of the strong-coupling
stability and generality of this kind of transport.

The remainder of this chapter is organized as follows. In Sec. [4.2], we give the low-energy
model for a 1D Dirac-like fermionic band structure with the FUS. We show that the particle-
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hole scattering/FUS terms are irrelevant and will not modify the band structure to the
leading order, thus could preserve the Fermi liquid and the quasi-particle picture. In Sec. [4.3]
we use the kinetic equations to study the transport properties for a fermionic model with
Dirac-like dispersion, which coincides with the well known results for 1D two-channel ballistic
transport. We further calculate the conductivity in the presence of scattering, and show the
broadening from collision of quasi-particles in finite temperature. In the low frequency limit,
the resistivity linearly dependends on temperature. We provide a lattice realization for
aforementioned low energy model in Sec. [4.4]. By using the Jordan-Wigner transformation,
we transform the lattice model to a spin model, and confirm the predictions of the field
theory numerically via density matrix renormalization-group (DMRG) simulations.

4.2 Low energy model and scattering process

The low-energy theory of a non-interacting 1D metal can be obtained by linearizing the
spectrum near the Fermi level. When the Fermi points for the left- and right-moving linear
branches coincide with each other, we arrive at a Dirac-like crossing, as shown in Fig. [4.1.(a)].
The linearized free Hamiltonian around the Fermi point, H0, can be written in a chiral basis
as

H0 = vF

ˆ
dk

2π
k[ψ†

R(k)ψR(k) − ψ†
L(k)ψL(k)] (4.1)

where ψR(k) and ψL(k) stand for the annihilation operators for right- and left-moving chiral
fermion modes at one-dimensional momentum k, respectively, and vF is the Fermi velocity
near the Fermi level. Note that, the linear dispersion with an X-type Dirac crossing can be
viewed as the edge states of a quantum spin Hall insulator in the absence of interaction [137].
The above chiral basis can be transformed into the energy basis [65, 210], where γ+(k) and
γ−(k) annihilate an electron with energy above and below the Dirac node, respectively:(

γ+(k)
γ−(k)

)
=

1

2

(
1 + ϑ(k) 1 − ϑ(k)
1 − ϑ(k) 1 + ϑ(k)

)(
ψR(k)
ψL(k)

)
, (4.2)

where ϑ(x) = 1 for x > 0 and ϑ(x) = −1 for x < 0. Note that the density of states vanishes
at the Dirac node, so hereafter we can neglect the singularity at k = 0 itself. With this, the
free Hamiltonian is transformed into the following form:

H0 = vF

ˆ
dk

2π
|k|[γ†+(k)γ+(k) − γ†−(k)γ−(k)]. (4.3)

Both chiral basis and energy basis are plotted in Fig.[4.1.(b)].
Now we study the full Hamiltonian H with an interaction Hint turned on:

H = H0 +Hint. (4.4)

We would like the interaction to introduce the following fast Umklapp-like scattering (FUS)
among the chiral fermions:
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Hint =

ˆ
dk1
2π

dk2
2π

dq

2π
V (q)[ψ†

R(k1 + q)ψ†
R(k2 − q)ψL(k2)ψL(k1)

+ψ†
L(k1 + q)ψ†

L(k2 − q)ψR(k2)ψR(k1)].

(4.5)

This process takes two electrons on the same branch to the opposite branch, as shown in
Fig. [4.1.(c)]. Unlike the conventional Umklapp scattering for a 1-component model (see in
Fig. [4.1.(d)]), the FUS defined here does not carry large momentum transfer, as the left-
and right-moving branches’ Fermi points coincide at the Dirac node. One can alternately
view one of the processes as the scattering of a hole rather than an electron. Then the basic
idea is that, in a particle-hole symmetric system like a Dirac point, a current of oppositely
directed particles and holes can have zero total momentum, allowing the current to relax
through momentum-conserving collisions. This may also be viewed as a intrinsic current
relaxation mechanism for the edge of a clean quantum spin Hall insulator [137].

The interaction Eq. [4.5] can also be written in the energy basis:

Hint =
∑

λ1λ2λ3λ4

ˆ
dk1
2π

dk2
2π

dq

2π
Tλ1λ2λ3λ4(k1, k2, q)γ

†
λ4

(k1 + q)γ†λ3
(k2 − q)γλ2(k2)γλ1(k1), (4.6)

where the λ1,...,4 in the summation take the value of ± and the structure factor

Tλ1λ2λ3λ4(k1, k2, q) = T 2
λ1λ2λ3λ4

+ T 3
λ1λ2λ3λ4

, (4.7)

where: T 2
λ1λ2λ3λ4

= V (q)[λ1ϑ(k1) − λ4ϑ(k1 + q)][λ2ϑ(k2) − λ3ϑ(k2 − q)]/16 and T 3
λ1λ2λ3λ4

=
V (q)[1−λ1λ3ϑ(k21+qk1)][1−λ2λ3ϑ(k22−qk2)]/16 are the matrices which indicate the scattering
amplitudes among electrons with positive and negative energy.

The standard bosonized Hamiltonian for Eq. [4.4] reads [71, 288, 285]:

HB =

ˆ
[dx]

{
v

2

[
(∂xϕ)2

K
+K(∂xθ)

2

]
− V cos[

√
16πϕ(x)]

2(πa0)2

}
, (4.8)

where ϕ(x) = ϕR(x) + ϕL(x) and θ(x) = ϕR(x) − ϕL(x) are linear combinations of the
bosonic fields ϕR,L(x), and a0 stands for a short-range cut-off, say the lattice constant. As
there is no forward scattering in Eq. [4.5], such that the interacting strength for forward
scattering Vfw = 0. Thus for our model Eq. [4.4], we have the renormalized Fermi velocity
v =

√
v2F − V 2

fw = vF , and the Luttinger parameter K =
√

(vF − Vfw)/(vF + Vfw) = 1.
The renormalization group analysis [71, 285] shows that the last term in Eq. [4.8] (FUS) is
irrelevant when K > 1/2, providing our system is still gapless in the weak interacting limit
and can be captured by Fermi liquid theory with well-defined quasi particles. One can then
use the kinetic theory to describe the 1D transport of the system. Note that, for the particle
density ρ(x) = ψ†

R(x)ψR(x) +ψ†
L(x)ψL(x), the continuity equation ∂tρ(x) + ∂xj(x) = 0 gives

the U(1) current density j(x) = vF [ψ†
R(x)ψR(x) − ψ†

L(x)ψL(x)]. Assume the charge carried
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by each particle (hole) is +Q (−Q), the total charge current J reads [65, 210]:

J = vFQ
∑
r=R,L

ˆ
dk

2π
rψ†

r(k)ψr(k) (4.9a)

= vFQ
∑
λ=±

ˆ
dk

2π

λk

|k|γ
†
λ(k)γλ(k). (4.9b)

Note that in Eq.[4.9a], we have r = 1 for right movers (R) and r = −1 for left movers (L).
Similarly, the total momentum reads:

P =
∑
r=R,L

ˆ
dk

2π
kψ†

r(k)ψr(k) =
∑
λ

ˆ
dk

2π
kγ†λ(k)γλ(k). (4.10)

4.3 Transport via kinetic theory

In this section, we evaluate the transport via kinetic theory of the quasiparticles [210, 4, 65].
In Sec. [4.3.1], we first describe the generation of zero momentum mode in a collisionless
particle-hole symmetric system in the presence of external electrical field. As a check, we
calculate the conductivity for the non-interacting model Eq. [4.1], and show that it is identical
to the well-known results of ballistic two-channel 1D transport. In Sec. [4.3.2], we show
that the zero momentum mode can be relaxed by the momentum-conserving particle-hole
scattering processes. We further calculate the broadening of conductivity due to the FUS,
and obtain the Planckian linear-in-temperature resistivity.

4.3.1 Collisionless transport

We can use the standard equation of motion analysis to write down the collisionless transport
equations for the excitations. We define the distribution functions under the energy basis
γ± at time t:

fλ(k, t) = ⟨γ†λ(k, t)γλ(k, t)⟩. (4.11)

In the equilibrium, without external perturbation, these are related to the Fermi distribution
function f 0(p) = 1/(e(p−µ)/kBT + 1), with µ the chemical potential, thus

f±(k, t) = f 0(±ϵk) =
1

e(±ϵk−µ)/kBT + 1
. (4.12)

In the absence of interactions, we have linear dispersion ϵλ(k) = λϵk = λvF |k| from Eq. [4.3],
with λ = ±1 for the excitations with positive and negative energy, respectively. Here and
later, for simplicity we set ℏ = kB = 1, and will only reinsert them back when needed. To
the zeroth order, in the presence of an external electric field E(t), in the collisionless limit
the dynamics is captured by the following simple kinetic equation:[

∂

∂t
+QE(t)

∂

∂k

]
fλ(k, t) = 0. (4.13)
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We seek to solve the above kinetic equation within the standard approximation of linear
response. First, we parametrize the change in fλ from its equilibrium value by using the
following ansatz [65, 4]:

fλ(k, ω) = 2πδ(ω)f 0(λϵk) +Q
kE(ω)

|k| f 0(λϵk)[1 − f 0(λϵk)]gλ(ϵk, ω), (4.14)

with gλ(ϵk, ω) a function to be determined. Note that, we have Fourier transformed time t
to the frequency domain ω, and replaced fλ(k, t) with fλ(k, ω). When µ = 0, the system
is at particle-hole symmetric point, and an applied electric field E(ω) generates deviations
in the distribution functions for particles and holes with opposite signs. This is due to the
fact that the driving term Eq. [4.13] is odd under λ→ −λ, thus the deviation also has to be
asymmetric in λ:

gλ(ϵk, ω) = λg(k, ω). (4.15)

In coordinate space, there will be newly generated holes (particles) moving align (anti-align)
with the external electric field. This can be viewed as the generation of particle-hole pairs.
For the states within the orange and purple square shown in the Fig. [4.2.(a)], at the same
k point, the particle and hole has opposite momentum, and each particle-hole pair has zero
total momentum defined by Eq. [4.10] in the presence of particle-hole symmetry. On the
other hand, since the particles and holes carry opposite charge, if they move in the opposite
directions, the total current given by Eq. [4.9] is non-zero.

Substituting Eq. [4.14] into Eq. [4.13], one could derive a solution for g:

gλ(ϵk, ω) =
λvF/T

−iω + η
, (4.16)

with η is a positive infinitesimal. One can further insert this into the expression of current
operator Eq. [4.9b] to get the conductivity:

σ(ω) =
⟨J⟩
E(ω)

= QvF
∑
λ

ˆ
dk

2π

λk

|k|

{
Q
k

|k|f
0(λϵk)[1 − f 0(λϵk)]gλ(ϵk, ω)

}
=

2Q2v2F/T

(−iω + η)

ˆ +∞

−∞

dk

2π

k2

|k|2
[
− T

∂f 0(ϵk)

∂(ϵk)

]
≈ 2Q2

h

ℏvF
−iℏω + η

→ lim
ω→0

σ(ω) =
2Q2

ℏ
vF δ(ω).

(4.17)
In the first line, we have used the fact that contribution from the unperturbed distribution
function (integral related to the first term in Eq. [4.14]) should vanish. Note that we have
restored ℏ and kB in the last line from dimensional analysis, in the second line. We also have
used the relation that f 0(p)[1 − f 0(p)] = −T∂pf 0(p) is an even function of p, and the extra
factor of 2 comes from the summation of particle and hole channels. This is consistent with
the bosonization results for clean system in 1D [71]. As the vF/ω has the unit of length, this
in accordance with the fact that the conductivity in 1D is roughly the conductance times
the length. In the low frequency limit, the above result is reduced to the Drude peak, which
is the signal for ballistic transport [71, 229].
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4.3.2 Collision terms in kinetic equation

In this section, we will show the zero momentum mode can be relaxed by the internal
collisions among excitations even without disorder and the possibility of localization. With
the interaction in Eq. [4.5] or Eq. [4.6], the corresponding collision terms can be derived by
a simple application of Fermi’s golden rule. From the bosonization results for continuous
model showed in Sec. [4.2], one can safely assume that turning on the interaction will neither
open a gap, nor have an immediate modification of single-particle spectrum of Eq. [4.3], such
that ϵλ(k) = λvF |k|, with λ = ± for two flavors of quasiparticles: the positive energy ones
with the distribution function f+(k, t), and the negative energy ones with the distribution
function f−(k, t). However, when it turns to a lattice model, it will be crucial that we take
steps to ensure that the interaction does not contain additional terms that might open a
gap. We have implicitly assumed that there are no additional conservation laws, as would
happen in the special case of integrable models.

From the above, we arrive at the quantum Boltzmann equation with collisions [65, 4,
210]: [

∂

∂t
+QE(t)

∂

∂k

]
fλ(k, t) = −2π

vF

ˆ
dk1
2π

dq

2π
R. (4.18)

The integrand R = R1+R2, capturing the scattering among excitations, can be divided into
two parts. The first part is the scattering among different flavors of excitations (particle-hole
to particle-hole) R1 = δ[(|k| − |k1|) − (|k + q| − |k1 − q)]R1(k, k1, q){fλ(k, t)f−λ(k1, t)[1 −
fλ(k + q, t)][1 − f−λ(k1 − q, t)] − [1 − fλ(k, t)][1 − f−λ(k1, t)]fλ(k + q, t)f−λ(k1 − q, t)]}, with
scattering amplitude R1(k, k1, q) = 4|T+−−+(k, k1, q) − T+−+−(k, k1,−k − q + k1)|2. The
second part captures the scattering among same flavor of excitations (particles to particles
or holes to holes), R2 = δ[(|k| + |k1|) − (|k + q| + |k1 − q)|]R2(k, k1, q){fλ(k, t)fλ(k1, t)[1 −
fλ(k + q, t)][1 − fλ(k1 − q, t)] − [1 − fλ(k, t)][1 − fλ(k1, t)]fλ(k + q, t)fλ(k1 − q, t)]}, with
R2(k, k1, q) = 2|T++++(k, k1, q) − T++++(k, k1, k1 − k − q)|2. Note that we only have two
integrals and one delta function on the right hand side of Eq. [4.18], as the conservation of
energy and conservation of momentum have the same requirement for linear dispersion in
one dimension.

As the interaction is invariant under λ → −λ, the Eq. [4.15] still holds. With this,
we substitute the ansatz Eq. [4.14] into the Eq. [4.18]. As in previous work [65, 4], the
solution of gλ(ϵk, ω) = λg(k, ω) is the stationary point of the following function Q[g], (i.e.
δQ[g]/δ[g] = 0). For simplicity, one can define k̃ = vFk/T . Such that the Q[g] can be written
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as:

Q[g] =
πT 2

4v3F

ˆ
dk̃

2π

dk̃1
2π

dq̃

2π

δ(|k̃| − |k̃1| − |k̃ + q̃| + |k̃1 − q̃|)R1(k̃, k̃1, q̃)

(e−|k̃| + 1)(e|k̃1| + 1)(e|k̃+q̃| + 1)(e−|k̃1−q̃| + 1)

× [ϑ(k̃)g(k̃, ω) − ϑ(k̃1)g(k̃1, ω) − ϑ(k̃ + q̃)g(|k̃ + q̃|, ω) + ϑ(k̃1 − q̃)g(|k̃1 − q̃|, ω)]2

+
πT 2

4v3F

ˆ
dk̃

2π

dk̃1
2π

dq̃

2π

δ(|k̃| + |k̃1| − |k̃ + q̃| − |k̃1 − q̃|)R2(k̃, k̃1, q̃)

(e−|k̃| + 1)(e−|k̃1| + 1)(e|k̃+q̃| + 1)(e+|k̃1−q̃| + 1)

× [ϑ(k̃)g(k̃, ω) + ϑ(k̃1)g(k̃1, ω) − ϑ(k̃ + q̃)g(|k̃ + q̃|, ω) − ϑ(k̃1 − q̃)g(|k̃1 − q̃|, ω)]2

+
T

vF

ˆ
dk̃

2π

g(k̃, ω)[−iωg(k̃, ω)/2 − vF/T ]

(e|k̃| + 1)(e−|k̃| + 1)
.

(4.19)
We seek to understand the integrals in Q[g]. First, in the non-interacting limit R1(k̃, k̃1, q̃) =
R2(k̃, k̃1, q̃) = 0, we note that both the first and the second integral in Eq. [4.19] vanishes.
The stationary relation δQ[g]/δg = 0 gives the same solution gλ(ϵk, ω) as in Eq. [4.16], in
accordance with our results for collisionless limit discussed in Sec. [4.3.1]. To relax the
current, the collisions (interactions) should be introduced, and the summation of integrals
associated with R1(k̃, k̃1, q̃) and R2(k̃, k̃1, q̃) in Eq. [4.19] should be non-zero. By dimension
analysis, we have [65] g(k, ω) ≈ vF

T 2C(ω) with C(ω) a dimensionless function. With this,
we can pull the g(k, ω) ≈ vFC[ω]/T 2 functions out from the square brackets, leaving the
summation of ϑ functions inside. The conservation of energy (delta function in the integrand)
and the structure of the perturbed distribution function (square of the summation of sign
functions) put an important constraint on the integral. For the inter-flavor scattering, the

integrand δ(|k̃| − |k̃1| − |k̃+ q̃|+ |k̃1− q̃|)×
[
ϑ(k̃)−ϑ(k̃1)−ϑ(k̃+ q̃) +ϑ(k̃1− q̃)

]2
only allows

a specific type of non-vanishing solution: initial-particle hole pairs moving in the opposite
direction (k̃ = −k̃1) and then bouncing back with respect to each other (k̃ > 0, k̃1 < 0,
k̃ + q̃ < 0, k̃1 − q̃ > 0, or k̃ < 0, k̃1 > 0, k̃ + q̃ > 0, k̃1 − q̃ < 0). Similarly, for the intra-flavor

scattering, the integrand δ(|k̃|+ |k̃1|−|k̃+ q̃|−|k̃1− q̃|)×
[
ϑ(k̃)+ϑ(k̃1)−ϑ(k̃+ q̃)−ϑ(k̃1− q̃)

]2
does not have a non-vanishing solution; this is in accordance with the fact that the 1D chiral
fluid can not be relaxed in the absence of impurities. With everything mentioned above, we
can simplify Eq. [4.19] to:

Q[C(ω)] =

ˆ
dk̃

2π

C(ω)[−iω(vF/T
2)C(ω)/2 − vF/T ]/T

(e|k̃| + 1)(e−|k̃| + 1)

+

ˆ
dk̃

2π

dq̃

2π

2R1(k̃,−k̃, q̃)C2(ω)/(vFT
2)

(e−|k̃| + 1)(e|k̃| + 1)(e|k̃+q̃| + 1)(e−|k̃+q̃| + 1)
.

(4.20)

For a given interaction V (q), one can determine the value of R1(k̃,−k̃1, q̃) based on Eq. [4.6]
and Eq. [4.18]. After further performing the integral numerically, the function Q[g] has the
following structure:

Q[C(ω)] ≃ vF
2T 2

[
κC2(ω) − i

ω

T
C2(ω) − 2C(ω)

]
, (4.21)
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where the κ is the numerical result from the the integral associated with R1(k̃,−k̃1, q̃)in
Eq. [4.20], depending on the explicit structure of V (q):

κ =

ˆ
dk̃

2π

dq̃

2π

4R1(k̃,−k̃, q̃)/v2F
(e−|k̃| + 1)(e|k̃| + 1)(e|k̃+q̃| + 1)(e−|k̃+q̃| + 1)

. (4.22)

The integrand in Eq. [4.22] is non-negative everywhere. In fact, for usual V (q) andR1(k̃,−k̃, q̃),
the integrand is mostly positive on the 2D plane. As a result, the κ, as well as the correction
to conductivity due to particle-hole scattering, should be non-zero. From this we can solve
the δQ[g]/δg = δQ[C(ω)]/δC(ω) = 0 as:

C(ω) =
1

κ− i(ω/T )
, gλ(k, ω) =

λvF
T 2

1

κ− i(ω/T )
. (4.23)

Take the Eq. [4.23] back into the Eq. [4.14], we shall get the ansatz in the presence of collision.
Substitute the ansatz with collision considered to the current J defined in Eq. [4.9b], by
performing similar calculations as Eq. [4.17] in Sec. [4.3.1], we obtain the conductivity in the
presence of interactions:

σ(ω) =
⟨J⟩
E(ω)

≈ 2Q2

h

ℏvF
−iℏω + κkBT

. (4.24)

Note that we have restored ℏ and kB from dimensional analysis. Compared with the low
frequency diverging result for the collisionless limit in Eq. [4.17], the conductivity with
collisions has some broadening at finite temperature. The conductivity Eq. [4.24] shows
that the zero momentum mode can be relaxed solely by the momentum conserved internal
scattering process among excitaions, i.e., the FUS. This physical picture is further plotted
in Fig. [4.2.(b-c)]. Take the inverse of Eq. [4.24], the resistivity in the DC limit shows the
linear-T dependence, i.e., the Planckian dissipation:

ρ(ω → 0) ∼ πκkB
Q2vF

T = AT, (4.25)

with the coefficient A = πκkB/Q
2vF . A one-dimensional Dirac system whose linear disper-

sion survives the interaction can be captured by a single model-dependent parameter, the
Fermi velocity vF . Combined with the temperature T , the only time scale in the continuous
limit is the Planckian time τp = ℏ/kBT . Such a time scale gives the scattering rate for
particle-hole excitations in an impurity-free Dirac system, and sets up an upper bound for
the resistivity at finite temperature ρ = AT . The coefficient is A ∝ κ ∝ R1/v

2
F ∝ |V (q)/vF |2,

which shows that the resistivity is also positively related to the interaction strength in the
perturbative region, in accordance with the previous results in wrapping graphene sheet to
large-diameter metallic carbon nanotubes [7].
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4.4 Lattice model and DMRG simulations

We have shown that a 1D Dirac system with FUS supports linear T -dependent resistivity
in Sec. [4.3]. Here, we propose a fermionic lattice model in Sec. [4.4.1], which possesses a
low-energy Hamiltonian Eq. [4.4]. We use the Jordan-Wigner transformation to map the
fermionic model to a spin model, and then use the density-matrix renormalization group
(DMRG) to numerically confirm its gaplessness, at least to leading order in the interaction,
and linear resistivity over a range of temperatures in Sec. [4.4.2]. Of course it is difficult
to rule out the emergence of a tiny gap by numerical methods, but such a gap would not
modify the linear-in-T resistivity except at temperatures comparable to the gap.

4.4.1 Lattice model

We start by considering the following fermionic model defined on the lattice:

H̃ = H̃0 + H̃2 + H̃3

H̃0 = +t
∑
i

[−iξa†ibi + iξb†iai − ib†iai+1 + ia†i+1bi]

H̃2 =
V2
4

∑
i

[
(a†ibi − b†iai)(a

†
i+1bi+1 − b†i+1ai+1) + (b†iai+1 − a†i+1bi)(b

†
i+1ai+2 − a†i+2bi+1)

]
H̃3 =

V3
4

∑
i

[
(a†iai − b†ibi)(a

†
i+1ai+1 − b†i+1bi+1) + (b†ibi − a†i+1ai+1)(b

†
i+1bi+1 − a†i+2ai+2)

]
.

(4.26)
Here, the H̃0 stands for the free Hamiltonian and H̃2 + H̃3 is the interaction. The form
of the interaction is obtained by seeking to construct a Hamiltonian which has FUS as its
naive continuum limit, then symmetrizing the Hamiltonian, i.e., ensuring that it does not
include a relevant, gap-opening dimerization at least at leading order. The a†i and b†i denote
the creation operators for two distinct degrees of freedom at the same point in i-th unit-
cell. When ξ = 1, the Bloch Hamiltonian for H̃0 can be linearized around k = 0, and has
the Dirac-like structure as given in Eq. [4.1]. The interaction can also be transformed into
momentum space. When V2 = V3, to the leading order the interaction will only contain the
FUS given in Eq. [4.5].

The model Eq. [4.26] can also be transformed into a spin model in a finite length lattice
with open boundary condition. Upon using the Jordan-Wigner transformation [6]: S+

i,a =

a†ie
iπ

∑
k<i(a

†
kak+b†kbk), S+

i,b = b†ie
iπ

∑
k<i(a

†
kak+b†kbk)+a†iai , Sz

i,a = a†iai − 1/2 and Sz
i,b = b†ibi − 1/2,

we arrive at the following transformation dictionary: a†ibi − b†iai = S+
i,aS

−
i,b −S−

i,aS
+
i,b, b

†
iai+1 −

a†i+1bi = S+
i,bS

−
i+1,a − S−

i,bS
+
i+1,a. Substituting the above into Eq. [4.26], we obtain the spin

model:
HS = HS

0 +HS
2 +HS

3 , (4.27)



CHAPTER 4. MINIMAL ONE-DIMENSIONAL MODEL OF BAD METAL BEHAVIOR
FROM FAST PARTICLE-HOLE SCATTERING 116

where each term is given by:

HS
0 = −

N∑
i=1

[
itξ

(
S+
i,aS

−
i,b − S−

i,aS
+
i,b

)
+ it

(
S+
i,bS

−
i+1,a − S−

i,bS
+
i+1,a

)]
(4.28a)

HS
2 =

V2
4

∑
i

[
(S+

i,aS
−
i,b − S−

i,aS
+
i,b)(S

+
i+1,aS

−
i+1,b − S−

i+1,aS
+
i+1,b)

+ (S+
i,bS

−
i+1,a − S−

i,bS
+
i+1,a)(S

+
i+1,bS

−
i+2,a − S−

i+1,bS
+
i+2,a)

]
(4.28b)

HS
3 =

V3
4

∑
i

[
(Sz

i,a − Sz
i,b)(S

z
i+1,a − Sz

i+1,b) + (Sz
i+1,a − Sz

i,b)(S
z
i+2,a − Sz

i+1,b)

]
. (4.28c)

We would like to evaluate the gap and see the relaxation of current for V2 = V3 = V ,
with ξ = 1. We further provide the charge current density operator:

ji+1 = (+tQ)[b†iai+1 + a†i+1bi] = (+tQ)[S
+(b)
i S

−(a)
i+1 + S

(−)b
i S

+(a)
i+1 ], (4.29)

which with density-density interactions satisfies the standard continuity equation for the
local charge density for each unit cell ρn = Q(a†nan + b†nbn):

∂ρi(t)

∂t
+ (ji+1 − ji) = 0. (4.30)

Two aspects of this current operator may deserve a brief remark. The current operator will
be slightly modified if we wish to have a local continuity equation for every site, rather than
every unit cell, as might be appropriate if the a and b sites are in different spatial locations,
but this does not significantly affect the long-wavelength currents relevant for transport, as
we have verified numerically in test cases 1. Second, with the symmetrized interaction we
have chosen on the lattice, which is not a pure density-density interaction but rather only
part of one, the total charge is clearly still conserved. However, the equation of continuity
is modified by some terms beyond the leading order that we are interested in 2. The DC
charge conductivities may be found via the Kubo formula:

σ = lim
tM→∞

lim
N→∞

1

NT
Re

ˆ tM

0

dt⟨J(t)J(0)⟩, (4.31)

where the total charge current for a system with N unit cells at time t is J(t) =
∑N

i=1 ji(t) [33,
141, 142, 175, 119].

1In fact, we can simply define a system with no-internal spatial structure of each unit cell, and view the
a†i (b†i ) as pseudo spin c†↑,i (c

†
↓,i) sits right on the center of i-th unit cell. In the latter case, we only have one

site per unit cell, and the operator ρn = Q(a†nan + b†nbn) = Q(c†↑,nc↑,n + c†↓,nc↓,n) precisely gives the U(1)
charge density on each site, as well as the corresponding unit cell.

2In the lattice, the full current density that satisfies the continuity equation with local charge density
ρj = a†jaj + b†jbj would be: jj = j0j + j′j , with j0j = tQ(b†j−1aj + a†jbj−1) is what we defined above, the

higher order additional four-fermion terms j′j = (iV2Q)(b†j−2aj−1b
†
j−1aj−a†j−1bj−2a

†
jbj−1−a†j−1bj−2b

†
j−1aj+

b†j−2aj−1a
†
jbj−1)/4 + (iV2Q)(b†j−1ajb

†
jaj+1 − a†jbj−1a

†
j+1bj + a†jbj−1b

†
jaj+1 − b†j−1aja

†
j+1bj)/4 comes from the

interaction V2 which is not in the form of product of density.
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4.4.2 t-DMRG results

At first, we confirm that the lattice model Eq. [4.5] is gapless using the density matrix renor-
malization group [281], which expresses the the wavefunction as a variational matrix-product
state [218]. The Hamiltonian contains fairly complicated three-site interaction terms, mak-
ing it more complicated than typical tight-binding chains. By employing a general technique
to represent the Hamiltonian as a matrix-product operator (MPO) [106], we find that it can
be achieved with an MPO size of 10 × 10. In the spin language, the model possesses a U(1)
symmetry corresponding to the conservation of the total magnetization M =

∑
i⟨Sz

i ⟩ (equiv-
alent to the particle number in the fermionic language), which is exploited in the DMRG
algorithm.

The ground state is found in the M = 0 sector (or half filling). We can look at the
neutral gap ∆0 = E1(M = 0) − E0(M = 0), as well as at the gaps in various magnetization
sectors: ∆M0 = E0(M = M0) − E0(M = 0) (M0 > 0), which corresponds to the flipping
of M0 spins (or to the removal of M0 particles in the fermionic language). Using DMRG,
we compute these gaps for system sizes up to L = 400. Fig. [4.3] shows a typical result for
V = V2 = V3 = 0.4. We find that all gaps scale linearly with 1/L, making an extrapolation
for L→ ∞ very easy. The extrapolated values are very small (of the order of 10−4 − 10−3),
consistent with the expectation that the system remains gapless for finite V .

We also calculate a full phase diagram in the V2−V3 plane, shown in Fig. 4.4. This gives
us an indication of how V2 and V3 may be chosen while keeping the system gapless.

To evaluate the conductivity, we proceed using standard techniques [62, 121, 15]: Finite
temperatures are implemented by going from a pure state to the density operator. We enlarge
the local Hilbert space to include an auxiliary part, which is traced out when performing
expectation values. The state at β = 1/T = 0 is exactly initialized on a finite chain with
L = 96 and then propagated to the desired β. After that, the state is perturbed by applying
the current operator and propagated in real time up, which yields the current correlation
function ⟨J(t)J⟩/L. We have chosen the system size large enough as not to allow the current
to reach the finite system boundaries at the end of the simulation. Since the Hamiltonian
contains more than nearest-neighbor interactions, we cannot use a standard time-evolving
block decimation algorithm but instead employ the time-dependent variational principle
(TDVP) [84]. We use a two-site TDVP algorithm and variationally compress the MPS at
each time step.

During the time propagation, the entanglement entropy grows, and we dynamically in-
crease the bond dimension χ of the MPS representation by keeping the truncation error fixed;
we have varied this control parameter in order to ensure that our results are converged). The
imaginary time evolution is stopped once χ = 800, which allows us to reach temperatures
of 1/T = 16. In order to reach lower T , we continue the cooling using a constant χ, and we
have verified that this second truncation parameter does not influence the results (while the
truncation error is not fixed during the cooling beyond 1/T = 16, this regime is not key to
our message, and the results should only be viewed as providing additional support). The
ensuing real time evolution is stopped once χ = 1600 is reached, since any further propaga-
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tion becomes prohibitively slow. We employ further standard optimizations that allow us to
maximize the use of numerical resources [123]: (i) Counterpropagating the auxiliary space
limits the growth of entanglement; (ii) Splitting up the propagation into a forward and a
backward one increases the achievable tmax. In the forward propagation, we can (iii) exploit
the approximate translational invariance in the middle of the chain (reducing the pertur-
bation to the local term Eq. [4.29]), as well as (iv) the spinflip symmetry of the current
operator.

For small V = V2 = V3, the entanglement buildup is relatively small, but we are also
very close to the integrable point V = 0, resulting in very long relaxation times; and vice
versa for large V . Faced with these trade-offs, we find that we need to go to V = 3 to be
able to evaluate the current correlations. The results are shown in Fig. 4.5. It turns out
that we still cannot reach time scales which are long enough to quantitatively compute the
integral in Eq. (4.31), we observe that below T = 1/8 ∼ 1/10, the different curves essentially
collapse onto one curve for the times we are able to access. Assuming that this collapse will
continue to hold for the inaccessible times as well, this means that the integral over ⟨J(t)J⟩/L
becomes independent of T in this regime. Due to the prefactor of 1/T in Eq. (4.31), this
points towards a resistivity which is indeed proportional to T in the low-temperature regime.

4.5 Discussion and outlook

While the possibility of metals with linear-in-T resistivity has been an actively discussed
topic for many years, there are relatively few concrete models verified to possess this property,
especially if one requires the interactions to be local and non-random. The main results here
start from developing a low-energy model for a 1D Dirac fermionic system in which particle-
hole Umklapp-like scattering is the dominant process. By using the standard bosonization
theory, we showed that this interaction is irrelevant and will not modify the band structure to
the leading order. We used kinetic equations to study the transport properties for a fermionic
model with Dirac-like dispersion, which coincides with the well-known results for 1D two-
channel ballistic transport. We further calculated the conductivity in the presence of the
scattering, and show the broadening from collision of quasi-particles in finite temperature.

In the low frequency limit, the resistivity linearly depends on temperature, the feature
known as Planckian dissipation. We further provided a lattice realization with the Dirac
model as its low-energy limit. By using the Jordan-Wigner transformation, we transformed
the lattice model to a spin model. We were able to solve it for system sizes up to L = 400 in
the static case and up to L = 96 in the dynamic case with finite temperature, by using the
density-matrix renormalization group (DMRG). The results of the simulations are consistent
with the predictions of the field theory. The scaling regime in this Dirac-like 1D fermionic
model could be relevant in single-walled carbon nanotubes or cold atomic systems [7, 292],
providing a route if the interactions are strong to the experimental observation of Planckian
dissipation in 1D systems. The FUS may also be viewed as a intrinsic current relaxation
mechanism for the edge of a clean quantum spin Hall insulator [137].
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Verifying transport similar to that proposed for the 2D Dirac liquid in a 1D model
provides an alternative point of view on the origin of bad metallic behavior, distinct from
scenarios involving quantum criticality. While one could view the Fermi gas as a point in
the phase diagram, rather than a phase as in higher dimensions, observables generally evolve
continuously into the Luttinger liquid, unlike moving from a quantum critical point into
a neighboring phase. Observing the dominance of Umklapp-like scattering in this model
complements other possibilities for transport theory in one dimension dominated by other
irrelevant operators [206].

One direction for future work comes from isolating the relaxation time from other pieces
of the conductivity to see whether there is a crossover with temperature in the source of
the linear-in-temperature behavior. This would allow comparison to such a crossover in
conductivity of doped Hubbard models observed in recent work using quantum Monte Carlo
continued to real time.[101] This would also allow direct comparison of the current relaxation
time at strong interactions to the Planckian scale ℏ/kBT . Of course underlying physics in
that study is almost certainly different, and our model is less directly relevant to the linear
resistivity of high-Tc superconductors.

Although we have focused in this work on the case where the system remaining gapless
after turning on the interaction, one can generalize our treatment for the collision-dominated
regime to gapped phases so long as the Landau Fermi-liquid quasi-particle description is
still valid. The seemingly complicated model Eq. [4.26] provides a route to realizing the
conjectured Planckian upper bound to the resistivity for a class of interacting semimetals
in 1D. More generally, the analytical and numerical methods available to explore transport
in low spatial dimensions make it feasible to search for evidence of other physics originally
proposed for higher dimensions, as we have done here for the Dirac fluid.
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Figure 4.1: Fermionic spectrum linearization and scattering processes based on it. (a) A 1D
non-interacting metallic band can be linearized close to the Fermi level EF within the energy
cutoff vFΛ. (b) The linearized spectrum can be described by the chiral basis, with the red
modes moving to the right with velocity +vF and blue modes moving to the left with velocity
−vF in real space. The 1D-Dirac crossing can be viewed as the edge states of a quantum
spin Hall insulator [137]. The linearized spectrum can also be written in the energy basis,
where states are labeled by positive (orange) and negative (purple) energies. The velocities
for different quasi-particles are also shown in the figure. (c) Illustration for particle-hole
scattering or fast Umklapp-like scattering (FUS). Two right movers with momentum k1 and
k2 are scattered to the left moving branch with momentum k1 + q and k2 − q. Note that
the total momentum is conserved in this process. (d) Conventional Umklapp scattering in
1D metal for two right movers (k1, k2) scattering into two left movers (k3, k4). Note that for
conventional Umklapp scattering, the Fermi points for the right and left movers are different
(say at ±π/2.). The momentum is conserved only up to a reciprocal vector G = 2π, i.e.,
there is a large momentum transfer in the scattering process.
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Figure 4.2: Generation and relaxation of charge current in a particle-hole symmetric system.
Note that, the linear dispersion with an X-type Dirac crossing can be viewed as the edge
states of a quantum spin Hall insulator [137]. (a) Generation of the zero momentum mode
under external electric field. The net charge current for the states in the plot is J = 4QvF .
(b) Collision between the particle and hole via the interaction (waved line) based on the
initial state shown in (a). (c) Final state after scattering process in (b), which has zero
momentum and zero charge current.
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Figure 4.3: Excitation gaps in various sectors of the total magnetization M of model Eq. [4.5]
for V2 = V3 = 0.4 as a function of the inverse chain length 1/L, calculated using DMRG
with open boundary conditions.
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Chapter 5

Edge networks induced by bulk
topology

In this chapter, we introduce an effective edge network theory to characterize the bound-
ary topology of coupled edge states generated from various types of topological insulators.
Two examples studied are a two-dimensional second-order topological insulator and three-
dimensional topological fullerenes, which involve multi-leg junctions. As a consequence of
bulk-edge correspondence, these edge networks can faithfully predict properties such as the
energy and fractional charge related to the bound states (edge solitons) in the aforementioned
systems, including several aspects that were previously complicated or obscure.

5.1 Introduction

A central feature of topological insulators (TI) is the bulk-edge correspondence: a d-dimensional
TI with given symmetries has a bulk energy gap but symmetry protected gapless d−1 dimen-
sional boundary excitations [117, 68, 181, 67, 202, 90, 182]. Recent studies on higher-order
TIs generalized this bulk-edge correspondence. An n-th order TI has protected gapless modes
of co-dimension n [18, 17, 149, 60, 216, 234, 126, 124, 61, 230, 70, 254]. A two-dimensional
(2d) second order topological insulator (2d SOTI), for instance, is an insulator with gapped
edge but gapless corners [18, 17, 149, 60], i.e., there are localized in-gap states at corners
under open boundary conditions. The higher order TIs can be derived from gapping out
boundary Hamiltonian [149, 126, 124, 61]. More specifically, to obtain a 2d SOTI, one can
gap out a single helical edge state [18, 17, 149], or alternately a pair of coupled counter-
propagating helical edge states [149, 301, 289]. The point of this paper is to develop an
effective theory to describe coupled edge states more generally and their dependence on the
topology of the system boundary, which allows a description of the domain-wall states that
remain at the intersection of edges for various types of edge junctions.

Meanwhile, one can think of the connected problem of higher order TIs. If we put
an ordinary 2d TI on a closed surface of some 3d manifold, is it possible to have gapped
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2d faces and 1d edges, but gapless 0d corner modes? Topological fullerenes [208] are an
example of this kind of system. They are polyhedral surfaces wrapped by the Haldane
honeycomb lattice model [85], leaving wedge disclination defects at the vertices [209, 208].
While these fullerenes do not currently exist in nature, very recent experiments indicate
that twisted bilayer graphene at small twist angle supports a network of domain walls with
threefold junctions (“Y-junctions”) [102, 286, 240]. These domain walls [113] are not strictly
topologically protected but conductance is expected to be high at the length scales of this
network. If the planar system has non-vanishing Chern number, these topological fullerenes
have gapped bulk and hinge states (here a “hinge state” is localized at the intersection of
two 2d surfaces), but characteristic corner-localized in-gap states. These corner states can be
related to the existence of nontrivial defect states bound to isolated wedge disclinations [247,
78, 19]. The connection between the fullerene problem and the 2d SOTI can be viewed as
follows: the classification of 2d SOTI is derived from that of TIs in 1d, which is identical to
the classification of co-dimension 2 topological defects [248, 49, 149, 231]. This implies that
the topological fullerenes and certain classes of 2d SOTI should be describable in the same
framework. The emergence of states bound to defects (such as disclination or dislocation) has
previously been explained in several cases by edge soliton theory, i.e., the effective theory for
a pair of coupled counter-propagating helical edge states [153, 200, 204, 209, 131]. Although
this theory is able to predict the fractional charge bound to the (edge) soliton [237, 75,
111] in those examples, one needs to extend the approach in order to incorporate crystalline
symmetries in more complicated systems and obtain faithful bound state energies. (Note that
in a system of noninteracting fermions, fractional charge should be thought of as an offset
or displacement of the charge density, rather than as a property of elementary excitations.)

In this article, we propose a generic edge network theory to capture the boundary topology
of coupled edge states. As a consequence of the bulk-edge correspondence, the edge states
carry the necessary information of their topological insulator parents. By assigning proper
boundary conditions on edge states at their vertices, the edge networks correctly predict
the existence of bound states (edge solitons) and other information. We further considered
edge states living on the hinges of varies 3d manifolds, where the edge states are generated
from topological insulators attached on corresponding surfaces. Such edge networks can
faithfully predict the energy and fractional charge of bound states located at the vertices,
going beyond previous edge soliton theories. These edge networks are shown here to capture
the key properties of topological fullerenes as well as some 2d SOTIs, and it is hoped that
they will be useful for other problems as well.

The rest of the chapter is organized as follows: In Sec. 5.2, we briefly review basic
facts and notation for an edge network made from multiple pairs of coupled helical edge
states. In Sec. 5.3, we discuss the minimal edge network constrained to lie on a closed
1d loop, and show the existence of bound state with fractional charge in the presence of
certain symmetries. Based on this we further propose a 2d SOTI that can be easily realized
with atoms in an optical lattice. In Sec. 5.4, we consider edge networks with a multi-leg
vertex. We first derive the bound state energy and charge for a Y-junction via a scattering
matrix approach in Sec. 5.4.1. Then, in Sec. 5.4.2, we apply the results in Sec. 5.4.1 to the



CHAPTER 5. EDGE NETWORKS INDUCED BY BULK TOPOLOGY 125

tetrahedral topological fullerene as an example. Starting from edge networks, we connect
the tetrahedral topological fullerene to the 2d SOTI we proposed. We summarize the main
results in Sec. 5.5 with an eye toward future developments and applications of this picture.

5.2 Description of edge network

We start with several pairs of coupled helical edge states, e.g., living on the hinges of the 3d
manifold shown in Fig.[5.1.(a)]. The network is described by the effective Hamiltonian:

Hedge =
∑
i

ˆ
dxiΨ

†(xi)(−ivi∂xi
σz + Mi(θi))Ψ(xi). (5.1)

Here, i labels the hinges, and xi is the coordinate set along a specific hinge. The two
component wave-function Ψ(xi) = (ψα(xi), ψβ(xi))

T denotes a pair of coupled counter-
propagating helical edge states living on i-th hinge, and varies smoothly on the scale of
the lattice constant. The magnitude of edge velocity v is set identical for all edge states,
and their directions should be compatible with the positive direction of xi. The mass term
Mi(θi) = m cos θiσx + m sin θiσy describes the coupling on hinge xi, where σx,y,z are Pauli
matrixes. Without loss of generality, we assume that m ≥ 0 and 0 ≤ θi ≤ 2π. If m = 0,
the helical edge states are decoupled and their energy spectrum is gapless. A non-zero mass
term can locally gap out a pair of edge states, which is the situation that we are interested
in.

To the Hamiltonian we need to add proper boundary conditions for these edge states
at vertices where two or more edges come together. The boundary condition describe the
scattering process at the junction. By doing so we can solve Eq.[5.1] and predict the existence
of localized edge solitons that lie in the (bulk and edge) gaps, as well as their properties.

Before discussing edge network on specific configuration, we point out that the Hamil-
tonian Eq.[5.1] may be generalized into the case of Helical Luttinger liquid [285, 288, 96,
71]:

H̃edge =
∑
i

(H i
0 +H i

int). (5.2)

The noninteracting Hamiltonian H i
0 on each hinge can be divided into two parts: the lin-

earized free Dirac field H i
0,1 and their coupling (H i

0,2) with two real-valued classical scalar
field λ1,2(xi) [35]:

H i
0,1 = −v

ˆ
dxi(ψ

†
α,ii∂xi

ψα,i − ψ†
β,ii∂xi

ψβ,i),

H i
0,2 =

ˆ
dxi(λ1,iψ

†
α,iψβ,i + iλ2,iψ

†
β,iψα,i + H.c.).

(5.3)

Here ψα(β),i (λ1(2),i) is short for ψα(β)(xi) (λ1,2(xi)). Compared with Mi(θi) in Hamiltonian
Eq.[5.1], we find that λ1,i = m cos θi and λ2,i = m sin θi. For helical Luttinger liquid, we only
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need to consider the forward scattering H i
int,2 and chiral interaction H i

int,4 [285, 288, 96, 71]:

H i
int,2 = g2,i

ˆ
dxi(ψ

†
α,iψα,iψ

†
β,iψβ,i),

H i
int,4 =

g4,i
2

ˆ
dxi(ψ

†
α,iψα,iψ

†
α,iψα,i + ψ†

β,iψβ,iψ
†
β,iψβ,i),

(5.4)

where g2,i and g4,i are interacting constants. One can conduct the standard bosonization
procedure for Hamiltonian Eq.[5.2] by defining bosonic field ∂xi

φ̃i = −π[ρα(xi) +ρβ(xi)] and
∂xi
θ̃i = π[ρα(xi) − ρβ(xi)], where ρα(β)(xi) stands for the density for counter-propagating

edge states, i.e. ρα(β)(xi) = ψ†
α(β),iψα(β),i. The θ̃i here should be distinguished from θi in

effective mass M. The Bosonized Hamiltonian for each hinge, H i
B = H i

B,0 +H i
B,1 reads:

H i
B,0 =

1

2π

ˆ
dxi[uK(∂xi

θ̃i)
2 +

u

K
(∂xφ̃i)

2],

H i
B,1 =

1

2πa

ˆ
dxim cos(φ̃i − θi).

(5.5)

Here, u ≡ v
√

(1 + g4/2)2 − (g2/2)2 is the velocity, K =
√

(1 + g4/2 − g2/2)/(1 + g4/2 + g2/2)
is the Luttinger parameter, and a is the lattice constant whose inverse stands for the mo-
mentum cut off of vacuum [71, 35, 224]. The Hamiltonian H i

B is also interacting, and the
interaction H i

B,1 can be minimized by set φ̃(xi) = θ(xi)+π. Referring to the bonsonized con-
served current jµi = ϵµν∂νφ̃(xi)/2π ≈ ϵµν∂νθ(xi)/2π, for the simplest two terminal junction
with two legs x1,2 (see in Fig.[5.1.(b)]), the topological charge Q̂ is given by [35, 66]:

Q̂ ≡
ˆ
dxjµ(x) ∝ ϵ01

2π
[θ(x2 = +∞) − θ(x1 = −∞)]. (5.6)

A mass kink of Mi(θi) implies nonzero topological charge Q̂, see in Fig.[5.1.(b)]. This is in
accordance with the soliton charge Ns derived from non-interacting Fermionic theory [237,
75, 111], see also Eq.[5.7] in later on Sec. 5.3. For simplicity, in the rest of our article we
will focus on the non-interacting model Eq.[5.1]. It is reasonable to believe that the value of
soliton charge remains unchanged when turning on interaction because it can be calculated
from properties away from the junction. However, the response of bound state energy with
respect to external flux may be modified by interaction, and may need a deeper description,
e.g., by boundary conformal field theory [193, 97].

5.3 Edge states on closed 1d loop

We first consider the minimal example of an edge network, a pair of helical edge states living
on the boundary of a closed 1d loop, as shown in Fig.[5.1.(c)]. The point is to determine
how symmetries fix the free coefficients introduced in the previous discussion. The basis is
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chosen as Ψ(xi) = (ψα(xi), ψβ(xi))
T , where ψα(xi) (ψβ(xi)) denotes the chiral edge states

propagating in the clockwise (anti-clockwise) direction. We set four coordinates xi=1,2,3,4 ≥ 0,
and define x5 = x1. The coupling for edge states on each leg is given by an effective mass
Mi(θi), where we have set v = m = 1 for simplicity. We use a set of trial wave functions

Φ(xi)o(e) = 1√
No(e)

exp(−|(xi − x
o(e)
i ) sinφ|)χ(xi)o(e) to look for bound states localized the

origin (o) and end (e) of i-th edge, with χ(xi)o(e) = (a
o(e)
i , b

o(e)
i )T . Here ao(e), bo(e), φ and

normalization constant 1/
√
N± are coefficients to be determined.

Substituting the trial wave function Φ(xi)o(e) into Eq.[5.1] for each individual edge, we
find modes localized at two ends of i-th edge. For the states at the origin of i-th edge, we
have the wave function χ(xi)o = eiδ

o
i (ei(φ−θi), 1)T with energy ϵoi = cosφ. For the states at the

end, we have χ(xi)e = eiδ
e
i (e−i(φ+θi), 1)T with energy ϵei = cosφ. Here, δo,ei are overall phase

factors. The wave-function we solved previously should satisfy the boundary condition at
the corner, i.e., Φ(xi+1 → xoi+1)o = Φ(xi → xei )e and ϵoi+1 = ϵei . If θi = θi+1, the only allowed
solution is φ = 0, which means that the localization length ξ = 1/| sinφ| → ∞ and no bound
state exists. If θi ̸= θi+1, we have a mass kink at the intersection of i-th and i + 1-th edge.
The solution corresponds to an un-paired edge soliton [153] localized at the intersection,
with energy and fractional fermion number [237, 75, 111] given by:

φ = |θi+1 − θi|/2, E = sgn(θi+1 − θi) cosφ, Ns = −φ
π
. (5.7)

Since we measure the charge with respect to the vacuum, there is a minus sign for the soliton
charge Ns. Eq.[5.7] predicts the existence of a domain wall state for any two adjoint edges.
More specifically, the edge soliton derived from the aforementioned effective theory can be
used to explain fractional charge in varies systems, such as the bound states induced by
magnetic domain wall in the quantum spin hall effect [200], or the localized state bound to
2d disclination (dislocation) defect in topological insulators [209, 204].

The minimal edge network can explain the corner states in at least some kinds of 2d
SOTI. The 2d SOTIs have gapped bulk and edges, but gapless corners. They can be derived
from gapping out topological edge states. Heuristically, one potential way to get a 2d SOTI
is by stacking 1d TIs, making the 0d boundaries of these 1d TIs form another set of 1d
TIs in the perpendicular direction. This is one way to obtain the quadrupole insulator [18,
17]. Alternatively, one can couple a pair of (or more) counter-propagating helical edge states
living on the boundary of 2d TI and gap them out. Here we will use the latter picture
extensively. Crystalline symmetries [183, 226, 228, 227] with unitary symmetry operator U ,
such as reflection [149], inversion[124] and rotation symmetry [234, 61, 126], can constrain
the distribution of effective mass term Mi(θi) on the boundary. On the edges compatible
with crystalline symmetry, [Mi(θi), U ] = 0. If two adjoint edges are related by crystalline
symmetry with operator U , then U †Mi(θi)U = Mi+1(θi+1). If Mi(θi) ̸= Mi+1(θi+1), a
domain wall state emerges at the intersection of two adjoining edges, as demonstrated before.

Distinct from corner-localized zero modes in a 2d second-order topological superconduc-
tor [149, 301], we find that, in the absence of particle-hole symmetry and chiral symme-
try [149, 226, 150, 253], one can have corner states with non-zero energy. The system we
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Figure 5.1: (a) An edge network living on the hinges of a tetrahedron. (b) A mass kink and
corresponding soliton in two terminal junction. (c) The minimal edge network. A pair of
coupled counter-propagating helical edge states are represented by the blue and red arrows,
which can be generated from two Chern insulators with opposite Chern number (see the blue
and red hemisphere). The four axes x1,2,3,4 are set along the loop in anti clockwise direction,
with origins at A,B,C,D, respectively. For simplicity we only plot x1. The red and blue
dashed lines stand for two reflection-symmetric axes.

consider has two reflection-symmetric axes, as shown in Fig.[5.1.(c)]. The reflection operator
for the red axis is Ub = σx, while the reflection operator for the blue axis is Ur = σy. Edge
AB(x1) and CD(x3) are reflection symmetric edges for Ub, thus the only symmetry-allowed
mass term is ±σx. Similarly edge AD(x4) and BC(x2) are reflection symmetric edges for Ur,
thus the only symmetry-allowed mass term is ±σy. In summary, the effective mass terms on
four edges x1,2,3,4 are:

M1(0) = +σx, M2(
π

2
) = +σy,

M3(π) = −σx, M4(
3π

2
) = −σy.

(5.8)

Referring to Eq.[5.7], we find φ = π/4, E = cosφ = 1/
√

2, and Ns = −1/4 for each corner,
corresponding to four edge solitons on the loop.

SOTIs have been claimed to be appear in various systems [223, 194, 108], including
bismuth [217]. Based on recent progress of two-dimensional spin-orbit coupling in cold atom
system [161, 287], we provide a feasible experimental proposal of 2d SOTI with edge mass
distribution as Eq.[5.8]. By stacking two Chern insulator layers with opposite Chern numbers
(which can be easily realized in experiments by adding a magnetic field with gradient), the
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2d tight-binding Hamiltonian for our model is:

H =−
∑
⟨̄i,⃗j⟩s

tα(ĉ†
i⃗↑sĉ⃗j↑s − ĉ†

i⃗↓sĉ⃗j↓s) +
∑
⟨⃗i⟩s

ms
z(n̂⃗i↑s − n̂⃗i↓s)

+
∑
⟨⃗i⟩

(+λ1ĉ
†
i⃗,↑,+ĉ⃗i,↓,− + λ1ĉ

†
i⃗,↓,+c⃗i,↑,− + H.c.) +

∑
⟨⃗i⟩

(−λ2ĉ†i⃗,↑,+ĉ⃗i,↓,− + λ2ĉ
†
i⃗,↓,+c⃗i,↑,− + H.c.)

+
[∑
⟨jx⟩s

(
itso(ĉ

†
jx↑ĉjx+1↓ − ĉ†jx↑ĉjx−1↓) + H.c.

)]
+
[∑
⟨jy⟩s

tso(ĉ
†
jy↑ĉjy+1↓ − ĉ†jy↑ĉjy−1↓) + H.c.

]
.

Here, s = ± stands for layer index. The positive tα=x,y and tso denotes, respectively, the
inner-layer spin conserved and spin-flip hopping. The ms

z represents an effective Zeeman
term, with m+

z = mz and m−
z = −mz, which can be realized by a magnetic field with

gradient. The spin-flip hopping tso and λ1,2 comes from the spin-orbit coupling induced by
effective inner-layer and inter-layer Raman coupling, respectively. Transforming H into the
momentum space yields H =

∑
k,σ,σ′ ĉ

†
k,σHσ,σ′(k)ĉk,σ′ , with

H(k) =2tso sin (kx)τ1 + 2tso sin (ky)τ2 + (mz − 2tx cos kx − 2ty cos ky)τ3σ3 + λ1τ1σ1 + λ2τ2σ2,
(5.9)

where τ and σ are Pauli matrices in spin space and layer space, respectively. If λ1 = λ2 = λ =
0, the Hamiltonian Eq.[5.9] has particle-hole symmetry P = τ1σ3K, time-reversal symmetry
T = τ2σ2K, and chiral symmetry S = τ3σ1, where K stands for complex conjugate. With
|mz| < 2tx+2ty, the system can be viewed as a robust index spin hall effect [299]. Aside from
aforementioned non-spatial symmetries, one can also define the spatial symmetry operator
ÛηT ηP . Here ηT ,P = +(−) denotes, respectively, that Û commutes (anti-commutes) with time
reversal or particle-hole symmetry operator. When λ1 ̸= 0, but λ2 = 0, Eq.[5.9] respects two
reflection symmetries Û++

x = τ2σ2, Û
+−
y = τ1σ1. The bulk can be viewed as a topological

crystalline insulator in two copies of BDIÛ
++
x class, each of them has a Z classification [183,

226, 49]. Locally breaking the reflection symmetry on reflection symmetric edge can gap out
the helical edge states by a unique mass term, which is odd under reflection and leads to
the presence of corner localized zero modes [70]. We further confirm the presence of zero
modes both numerically and analytically in appendix. Thus when λ2 = 0, Eq.[5.9] stands
for a 2d SOTI with an extrinsic Z2 and intrinsic Z classification [70, 254]. In realistic cold
atom experiments, the detection of the fractional charge at the corner can be conducted by
conventional single site resolution. By turning on an s-wave onsite interaction for atoms [161],
this model becomes a 2d second order topological superfluid.

A small but non-zero λ2 breaks the chiral and particle hole symmetry, and gaps out the
helical edge states from the original index spin hall effect. In this case Eq.[5.9] is no-longer
a well defined 2d SOTI. For simplicity we assume that λ1 = λ2 = λ in following text. By
projecting the low energy Hamiltonian of Eq.[5.9] into the helical edge states derived from
λ = 0, one can get the effective edge Hamiltonian identical to Eq.[5.8], leading to the similar
set of gapped edges and gapless corners.
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Figure 5.2: Numerical results from model Hamiltonian Eq.[5.9] with two different boundary
conditions (marked by green solid lines). (a.1,2) are wave function density for the occupied
in gap state, each square stands for one unit cell. The red and blue dashed lines stand for
two reflection symmetric axes. (b.1,2) are the energy spectrum close to Fermi surface for the
corresponding boundary condition in (a). The squares stand for the corner modes, and the
red (blue) stands for the occupied (unoccupied) states at half-filling. The calculations are
done with tx = ty = t0, tso = 0.8t0, M = 0.90t0 and λ1,2 = 0.3t0 for 30 × 30 lattice.

We further confirm the analytic results by numerically diagonalizing the Hamiltonian
Eq.[5.9] for two different boundary conditions, as shown in Fig.[5.2.(a)]. We find four corner
modes with non-zero energy for both patterns. Fig.[5.2.(b)] shows the energy spectrum close
to the Fermi surface. The inter-layer coupling λ opens a gap Egap ≈ 2λ at the boundary, and
we can see clearly four corner-localized in gap states. At half-filling, one out of four in-gap
states is filled, which compensates the −1/4 defect charge at each corner.
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5.4 Edge states in multi-leg junction

We now turn to study edge networks with multiple pairs of edge states coming together at
a vertex (or equivalently a junction). Fig.[5.3.(a)] shows a Y-junction with six edge states
living on three legs. For each semi-infinite axis xi(i = 1, 2, 3), we use the ψα(xi) and ψβ(xi)
to denote the outgoing and incoming chiral edge states for the i-th leg, respectively. Instead
of matching wave functions by hand as in the previous minimal 1D edge network, here, we
introduce a more generic scattering matrix approach: injecting a mode along a specified leg
will lead to reflection and transmission after scattering at the junction, and the poles of
scattering matrix implies the existence of bound states. We make the following assumptions
to capture the scattering process: (1) Away from the junction, each chiral edge state should
be identical to that of an isolated Chern insulator layer, at most up to a global phase
factor; (2) During the scattering process, the edge states from the same Chern insulator
layer should maintain their amplitude, but could capture a phase shift. The value of the
phase shift depends on the details of scattering, but will be constrained by symmetries in
specific examples.

5.4.1 Scattering theory for Y-junction

For an isolated junction, the incoming and outgoing scattering modes can be described
by combining incoming and outgoing chiral edge states. Different from localized state,
for scattering state with momentum k, we denote η = v/m and set kη = sinhφ > 0.

Then for xi > 0, under the basis
(
ψα(xi), ψβ(xi)

)T
, for each individual leg, from Eq.[5.1]

we can derive normalized wave function of incoming and outgoing modes as: ψT
in(xi) =

(e−φ−iθi , 1)T/
√

1 + e−2φ, ψT
out(xi) = (eφ−iθi , 1)T/

√
1 + e+2φ, with the corresponding energy

E/m = + coshφ. If we inject a mode along negative x1 direction, the wave function on leg
x1 is given by Ψ1(x1) = e−ikx1ψin(x1) + r1e

ikx1ψout(x1). Meanwhile, the wave function on
leg x2 is given by Ψ2(x2) = t12e

ikx2ψout(x2), and Ψ3(x3) = t13e
ikx3ψout(x3) for wave function

on leg x3. We have used r1 for reflection coefficient on leg x1, and t12 (t13) for transmission
coefficient for the scattering from x1 to x2 (x3). With this we can expand the wave function
around the intersection as:

Ψ1(0) =
( e−φ−iθ1

√
1 + e−2φ

+ r1
eφ−iθ1

√
1 + e2φ

)
ψα(x1 = 0) +

( 1√
1 + e−2φ

+
r1√

1 + e2φ

)
ψβ(x1 = 0),

Ψ2(0) = t12
eφ−iθ2

√
1 + e2φ

ψα(x2 = 0) + t12
1√

1 + e2φ
ψβ(x2 = 0),

Ψ3(0) = t13
eφ−iθ3

√
1 + e2φ

ψα(x3 = 0) + t13
1√

1 + e2φ
ψβ(x3 = 0).

(5.10)
In Fig.[5.3.(a)], the edge states in same color are from the same Chern insulator layer.

Due to the continuity of edge state wave function for each individual layer, we have ψα(x1 →
0+) = ψβ(x3 → 0+), ψβ(x1 → 0+) = ψα(x2 → 0+), and ψβ(x2 → 0+) = ψα(x3 → 0+).



CHAPTER 5. EDGE NETWORKS INDUCED BY BULK TOPOLOGY 132

During the scattering process they can capture an additional phase factor eiαi , which depends
on the details of the scattering process. This leads to:

e−φ−iθ1

√
1 + e−2φ

+ r1
eφ−iθ1

√
1 + e2φ

= t13
1√

1 + e2φ
eiα1 ,

t12
eφ−iθ2

√
1 + e2φ

=
( 1√

1 + e−2φ
+ r1

1√
1 + e2φ

)
eiα2 ,

t13
eφ−iθ3

√
1 + e2φ

= t12
1√

1 + e2φ
eiα3 .

(5.11)

With this we can solve r1, t12 and t13 in the term of φ, αi, and θi. By injecting modes along
the negative directions of rest two legs (see in Appendix), we can derive whole coefficients
for the scattering matrix S:

S =
1

e3φ − eiΛ

 r̃1 t̃12 t̃13
t̃21 r̃2 t̃23
t̃31 t̃32 r̃3

 , Λ =
∑
i

(θi + αi). (5.12)

For arbitrary scattering process, Ψout = SΨin, where ΨT
in(out) =

(
ψ(x1), ψ(x2), ψ(x3)

)
out(in)

.

The pole of the scattering matrix, e3φ−eiΛ = 0, implies the existence of bound state localized
at the junction. Note that, in the presence of edge soliton, each of these semi-infinite legs
contributes a fractional charge −θi/2π. With these we find:

E

m
= coshφ = cos

(
Λ + 2nπ

3

)
, n ∈ Z, Ns = −

∑
i θi

2π
. (5.13)

As we mentioned before, Λ =
∑

i(θi + αi), which depends on the details of scattering. The
energy-phase relation Eq.[5.13] for 3-leg Y-junction can be easily generalized to l-leg junction:

E

m
= coshφ = cos

(
Λ

l

)
, Ns = −

∑
i θi

2π
, (5.14)

where we have let 2nπ be absorbed into Λ for latter convenience.

5.4.2 Application to topological fullerenes

The multi-leg edge junction can be used to describe the bound state in an isolated wedge
disclination [209, 208, 247, 78, 19], which is the building block of topological fullerenes [209,
208]. More specifically, the Y-junction edge network mentioned above can be used to analyze
one vertex of tetrahedral topological fullerenes (as shown in Fig.[5.1.(a)]), which is a wedge
disclination defect with Frank index f = 3 (or 180◦ Frank angle). The Frank index f here
stands for the number of 60◦ Chern insulator layers taken away from the complete Haldane
lattice. In order to build the edge network for such a disclination, let us first consider three
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Figure 5.3: (a) Edge network for a vertex with three legs (Y-junction). The center of the
junction is marked by the green disk. Three coordinates, x1,2,3 start from the center and
point outward. The solid and dashed arrows in blue, red and gray stands for three pairs of
coupled helical edge states. Edge states in the same color are from the same Chern insulator
layer. (b) Edge states for two isolated 60◦ Chern insulator slices. The blue (red) ± stands for
the relevant phase factor of edge states measured from ψα(β), with two individual reference
points (marked by stars). (c) Edge states for an individual 120◦ Chern insulator slice. (d) A
vertex of the type appearing in tetrahedron topological fullerenes and relevant edge states.
The ± stands for the relevant phase factor of edge states measured from edge states ψ1 whose
reference point is marked by black star.

60◦ semi-infinite triangular layers (A,B,C) of Haldane honeycomb lattice coming together,
as shown in Fig.[5.3.(d)]. Each layer is coupled with its two neighbors across the seams. The
tight-binding Hamiltonian for such a disclination is given by [85, 209, 208]:

H = −t0
∑
⟨i,j⟩

(c†icj + H.c.) − t1
∑
⟨⟨i,j⟩⟩

(e−iϕijc†icj + H.c.). (5.15)

Here, c†i (ci) is creation (annihilation) operator for spinless fermion on i-th site. The t0 and
t1 denotes, respectively, the nearest-neighbor hopping and next-nearest-neighbor hopping
amplitudes. The eiϕij provides an additional phase factor for next-nearest-neighbor hopping.
Within the topological region, each individual layer can provide chiral edge states surround-
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ing the bulk. The local Chern vector[27] for each layer points outside the plane of the paper,
which ensures six edge states propagating according to the pattern in the figure.

These six edge states are not independent. The blue (red, gray) edge states 1, 2 (3, 4;
5, 6) come from the same triangular layer, and they are connected by ψ2j(xj → 0+) =
ψ2j−1(xj+2 → 0+). If an edge state is coupled with its time-reversal counterpart across the
seam, we say this seam does not have phase mismatch. The total wave function on a lattice
site across the seam is given by φedge,α(xi) = eikEaψα(xi) and φedge,β(xi) = e−ikEaψβ(xi),
respectively, where kE denotes the edge momentum and a stands for the lattice constant.
The ψα,β(xi) here should be understood as the edge states on corresponding sub lattice. The
effective coupling between two states is

´
dτλφ∗

edge,α(xi)φedge,β(xi), with λ stands for the bond
across the seam. The integral is done within a unit cell. For an isolated disclination, the total
phase mismatch

∑
i θi for all legs (seams) is fixed in the absence of external flux. Due to the

quantization of charge pumping, to the lowest order the function
∑

i αi should be linear to∑
i θi, i.e.

∑
i αi = A

∑
i θi +B. The coefficients A,B are related to the parameters from the

tight-binding model, such as the effective radius ρ and the Haldane gap m = 3
√

3t1[209]. By
comparing with the results from exact diagonalizing the tight-binding Hamiltonian Eq.[5.15]
(see in Appendix), we find that, for Haldane gap m ≈ t0 = 1,

φ =
2
∑

iθi − π/2

3
, E = cosφ, Ns = −

∑
i θi

2π
. (5.16)

Similarly, for the vertex of an octahedral topological fullerene, the number of legs is l =
6 − 2 = 4, and we further have φ = 2

∑
i θi/4, E = cosφ, and Ns = −∑

i θi/2π (with
1 ≤ i ≤ 4). For the vertex of an icosahedral topological fullerene, the number of legs is
l = 6−1 = 5, and we further have φ = (2

∑
i θi +π/2)/5, E = cosφ, Ns = −∑

i θi/2π (with
1 ≤ i ≤ 5).

We now turn to determine the value of θi for each leg[209], especially for the cases
with external flux. Let us first consider the process of combining two smaller 60◦-layers in
Fig.[5.3.(b)] to a larger 120◦-layer in Fig.[5.3.(c)]. The two smaller layers are cut from the
same Haldane honeycomb lattice model, and they are next to each other in the original
lattice. With the open boundary condition, both of them can hold chiral edge states, which
are denoted by red and blue arrows in Fig.[5.3.(b)]. We can set a simultaneous coordinate
for both layers across the seam, thus the total wave function on a lattice site on the blue
(red) edge is φedge,α(ξ) = e−ikEξψα(ξ) (φedge,β = eikEξψβ(ξ)). In the presence of inversion
symmetry, kEa = π for Haldane honeycomb lattice model [209]. Thus the base functions
eikEξ oscillates with a period of two sites. In order to glue two layers back to a larger
layer without phase mismatch across the seam, the amplitudes should be in the pattern in
Fig.[5.3.(b)]. However, as shown in Fig.[5.3.(c)], the edge states has an additional phase
shift when bypassing the corner. This leads to iψα = −ψβ or ψα = iψβ. Thus we have that
the proper phase difference across the seam should be ±i, which is the case for no phase
mismatch. To avoid any ambiguity induced by the gauge chosen for wave functions, we
define the effective mass term Mi(θi) on each leg with respect to the scenario without phase
mismatch. Thus if there is no phase mismatch on a certain leg, then Mi(θi = 0) = mσx.
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Figure 5.4: (a) Edge network and relevant coordinates for tetrahedral topological fullerene.
The blue line shows the traversal along the hinges. (b) Mass distribution of edge network for
tetrahedral topological fullerene. Cutting the Tetrahedron along the blue line in (a) leads to
two parallelograms in (b), which helps to map the tetrahedral topological fullerenes to a 2d
SOTI (Eq.[5.9]).

Note that, for a wedge disclination with Frank index f = 3 in Fig.[5.3.(d)], if we glue AB
and BC across the seam as shown in Fig.[5.3.(b)], the system can be viewed as a Haldane
honeycomb lattice on the half plane. The gluing process means that we have chosen to
measure the relevant phase factor of edge states on all layers from ψ1 with a fixed reference
point. Thus the coupling across the seams AB and BC should not have a phase mismatch,
thus M1(0) = M2(0) = mσx. However, the lower boundaries of A and C has phase mismatch
and M3(π/2) = mσy [209]. Finally, referring to Eq.[5.16], we have φ = π/6, E = cosπ/6
and Ns = −1/4 for the vertex of Tetrahedral topological fullerene. Eq.[5.16] also stands in
the presence of external flux. Adding an external flux Φ opposite to local Chern vector at
the center of junction is equivalent to change the coupling pattern with additional phase
factor eiΦ for the bond across the Dirac string [209, 208]. For simplicity we can put the
Dirac string along x3, thus θ3 = ϕ + π/2 and Eq.[5.16] can be written as φ = 2Φ/3 + π/6.
More specifically, if Φ = π/2, we have

∑
i θi = π and φ = π/2. Thus the external flux

Φ = π/2 moves the bound state energy to E = cosφ = 0, as well as the fractional charge
to Ns = −∑

i θi/2 = −1/2. This is consisted with the analysis from symmetry: an external
flux with Φ = π/2 can restore the particle hole symmetry of the system [208]. Thus the
bound state energy should be 0 and the fractional charge should be −1/2. Similar results
apply for vertices of octahedral and icosahedral topological fullerenes (see in Appendix), and
are in accordance with numerical results [209, 208].

The corner states in topological fullerenes can be further explained by the edge net-
works with a group of multi-leg junctions. In Fig.[5.4.(a)] we plot the edge network for the
tetrahedral topological fullerene, with M1(0) = mσx, M2(π/2) = mσy, M3(π) = −mσy,
M4(3π/2) = −mσx, and M5(0) = M6(0) = mσx. However, Eq.[5.16] is derived for an iso-
lated vertex with all coordinates point outward, which is slightly different from the settings
in Fig.[5.4.(a)]. Note that, for a pair of helical edge states living on a i-th hinge with effective
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mass Mi(θi), changing the direction of coordinates is equivalent to changing the mass term
to M̃i

(
(−θi) mod 2π

)
. Thus for each individual vertex, we can first flip the coordinates to

the pattern in Fig.[5.3.(a)], by then using Eq.[5.16] we find four corner localized states with
E = cosπ/6 and Ns = −1/4.

5.5 Disucssion and outlook

We have constructed a generic edge network theory and shown its ability to capture the
boundary topology of coupled edge states with different geometric constraints. We first
discussed the minimal edge network on a closed 1d loop, and demonstrated that crystalline
symmetry can produce spatial-dependent mass term, leading to the domain wall states at the
intersection of adjoint edges. After discussing a model 2d second-order TI, we constructed
edge networks for multi-leg junctions, which can faithfully reflect the properties of bound
states in disclination defects. The edge network can include polyhedral hinges, which al-
lows determination of the corner states in topological fullerenes. These results can help to
understand the origin of topologically generated localized states in a variety of situations.

We can view the similarities between the 2D second-order TI and the 3D topological
fullerine as reflecting the fact that the classification of 2d SOTI is derived from that of TIs
in 1d, which is the same as classification of co-dimension 2 topological defects [248, 49,
149], including point defects in surfaces. In this sense, the 2d SOTI we proposed is in the
same topological class as a corresponding system with wedge disclination defects. Based on
effective edge theory, we can map the topological fullerenes to the 2d SOTI Eq.[5.9] derived
from gapping out helical edge states in Sec. 5.3. For any polyhedron, one can traverse all
the vertices along hinges without repeats. The traversal forms a closed 1d loop (see the
blue thick arrows in Fig.[5.4.(a)]). We can cut the polyhedron into two congruent Chern
insulator layers along the traversal, as shown in Fig.[5.4.(b)]. The two Chern insulator layers
can be viewed as a “twisted” index spin hall effect. The edges on the closed 1d loop are
gapped out by the gluing process, and the effective mass changes after bypassing each corner
due to crystalline symmetries, leading to an edge soliton with fractional charge located at
the corner. This is identical to the generation of fractional charge in our 2d SOTI model.
Similarly, we can also map the octahedral and icosahedral topological fullerenes to (less
natural) 2d SOTIs. However, it is still an open questions that whether we can connect all
topological phases that exhibit quantized corner charge to certain higher order topological
phases [70].

More generally, the networks of edges discussed here could be generalized to incorpo-
rate proximity-induced superconductivity or Luttinger liquid corrections, or conceivably to
include additional localized degrees of freedom such as boundary Majorana states or spins
as in previous studies of the Kondo effect in Y-junctions [193]. In the cases discussed here,
there are enough symmetries or other physical constraints to determine the key properties of
the localized states in an edge network quite directly, while in other situations the properties
such as fractional offset charges might be actively tuned by symmetry-breaking perturba-
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tions. Planar networks of helical edges and three-leg junctions have recently been discovered
in bilayer graphene at small twist angles, which suggests that the study of edge networks is
likely to become increasingly relevant to experiment.

5.6 Appendix

5.6.1 Edge network for two-terminal junction

In this section, we look into the scattering theory of the simplest two-terminal junction. In
order to keep in accordance with the scattering theory in Sec. 5.4.1, we set the positive
direction of the two legs being opposite to each other and pointing outside the junction.
This switches the θ1 to −θ1 compared with the notation in Sec. 5.3.

Figure 5.5: 1D Scattering process. (a) Edge network for two terminal junction. (b) The
scattering process for two terminal junction with a wave inject along negative x1 direction.

We construct the conventional scattering theory as following: suppose we have a wave
injected along the negative x1 direction. The wave function on leg x1 is given by Ψ1 =
e−ikx1ψ1,in+reikx1ψ1,out. Meanwhile, the wave function on leg x2 is given by Ψ2 = teikx2ψ2,out.
Here r and t stand for the reflection and transmission coefficients, respectively. Different
from a localized state, for a scattering state with momentum k, we denote η = v/m and set

kη = sinhφ > 0. Then for xi > 0, using the basis
(
ψα(xi), ψβ(xi)

)T
, for each individual leg,

from Eq.[5.1] we can derive a normalized wave function of incoming and outgoing modes as:
ψT
in(xi) = (e−φ−iθi , 1)T/

√
1 + e−2φ, ψT

out(xi) = (eφ−iθi , 1)T/
√

1 + e+2φ, with corresponding
energy E/m = + coshφ. We can expand the wave function around the junction by the
combination of incoming and outgoing edge states:

Ψ1(0) =

(
e−φ−iθ1

√
1 + e−2φ

+ r
eφ−iθ1

√
1 + e2φ

)
ψα(x1 = 0) +

(
1√

1 + e−2φ
+

r√
1 + e2φ

)
ψβ(x1 = 0),

Ψ2(0) = t
eφ−iθ2

√
1 + e2φ

ψα(x2 = 0) + t
1√

1 + e2φ
ψβ(x2 = 0).

(5.17)
As shown in Fig.[5.5], ψα(x1) = ψβ(x2) and ψβ(x1) = ψα(x2) since they are from the same
Chern insulator. For the SOTI Eq.[5.9], the wave function should be continuous at the
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junction: 
e−φ−iθ1

√
1 + e−2φ

+ r
eφ−iθ1

√
1 + e2φ

= t
1√

1 + e2φ
,

1√
1 + e−2φ

+ r
1√

1 + e2φ
= t

eφ−iθ2

√
1 + e2φ

.

(5.18)

By solving this we derive: 

r = r′ = eφ
ei(θ1+θ2) − 1

e2φ − ei(θ1+θ2)
,

t = eiθ2
e2φ − 1

e2φ − ei(θ1+θ2)
,

t′ = eiθ1
e2φ − 1

e2φ − ei(θ1+θ2)
.

(5.19)

The reflection and transmission coefficients r and t satisfy conservation of probability current:

|r|2 + |t|2 =
e2φ(2 − 2 cos(θ1 + θ2)) + e4φ + 1 − 2e2φ

e4φ + 1 − 2e2φ cos(θ1 + θ2)
= 1. (5.20)

Finally we have the scattering matrix for two terminal junction as:

S =

(
t r
r′ t′

)
=

1

e2φ − ei(θ1+θ2)

(
t̃ r̃
r̃′ t̃′

)
. (5.21)

One can easily check that the scattering matrix is unitary S†S = 1. The coefficients of
scattering matrix, see in Eq.[5.19] has simultaneous poles:

eiθ1+iθ2 − e2φ = 0, 2φ = i(θ1 + θ2 + 2nπ), n ∈ Z, (5.22)

which stands for bound states localized at the junction with energy and fractional charge as:

E = coshφ = cos

(
φ

2

)
, Ns = −|θ2 + θ1|

2π
. (5.23)

Remember that θ1 here is equal to −θ1 in Sec. 5.3 due to the flipping of x1-leg’s direction,
the above results is in accordance with Eq.[5.7]. We further define η as:

η =
r

t
=

(eiθ1 − e−iθ2)

(eφ − e−φ)
. (5.24)

The argument and the absolute value of η are:

arg(η) = arctan

(
sin θ1 + sin θ2
cos θ1 − cos θ2

)
=
π

2
− θ1 − θ2

2
, (5.25)

|η|2 =
2 − 2 cos θ1 cos θ2 + 2 sin θ1 sin θ2

e2φ + e−2φ − 2
=

sin2( θ1+θ2
2

)

sinh2 φ
. (5.26)

Thus the bound state energy can also be parametrized by reflection and transmission coef-
ficents as:

E2 = cosh2 φ =
|t|2
|r|2 sin2(

θ1 + θ2
2

) + 1. (5.27)
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5.6.2 Edge networks for a Y-junction

In this section, we provide more details about the edge network description of a three-leg
junction (“Y-junction”).

5.6.2.1 Bound states from matching wave function

Different from the scattering matrix approach in Sec. 5.4.1, here we get the same results by
matching the trial wave function and validate that the poles of scattering states do correspond
to localized states. We can derive the trial wave function by using the similar method in
Sec. 5.3. Substitute the trial wave function χ(xi) in to Eq.[5.1] for each leg independently,
we find the modes localized at two ends of i-th edge, with χ(xi) = eiδi(ei(φ−θi), 1)T for energy
ϵoi = cosφ. This gives the relation between ai and bi on the same leg. More specifically: for
the leg 1, we have χ(x1) = eiδ1(ei(φ−θ1), 1)T , with the basis Ψ(x1) = (ψ2(x1), ψ3(x1))

T ; for
the leg 2, we have χ(x2) = eiδ2(ei(φ−θ2), 1)T , with the basis Ψ(x2) = (ψ4(x2), ψ5(x2))

T ; for
the leg 3, we have χ(x3) = eiδ3(ei(φ−θ3), 1)T , with the basis Ψ(x3) = (ψ6(x3), ψ1(x3))

T .
Due to the continuity of the bound state wave function, the boundary conditions are:

eiδ3eiα1ψ1(x3 → 0+) = eiδ1ei(φ−θ1)ψ2(x1 → 0+),

eiδ1eiα2ψ3(x1 → 0+) = eiδ2ei(φ−θ2)ψ4(x2 → 0+),

eiδ2eiα3ψ5(x2 → 0+) = eiδ3ei(φ−θ3)ψ6(x3 → 0+),

, (5.28)

where αi=1,2,3 are phase factors acquired across the junction as mentioned in main text. We
also have ψ1(x3 → 0+) = ψ2(x1 → 0+), ψ3(x1 → 0+) = ψ4(x2 → 0+), ψ5(x2 → 0+) =
ψ6(x3 → 0+) since they are the edge states from the same Chern insulator layer. With these
we have:

ei(α1+α2+α3) = ei(3φ−θ1−θ2−θ3), (5.29)

which is equivalent to

3φ =
∑
i

(θi + αi) + 2nπ, n ∈ Z,

E

m
= cosφ, Ns = −

∑
i θi

2π
.

(5.30)

This is in accordance with Eq.[5.13] in main text. Thus the poles of the scattering matrix
do correspond to the localized states at the junction. Similar results also apply for a vertex
of octahedral or icosahedral topological fullerenes, as shown in Sec. 5.4.1.

5.6.2.2 Y-junction scattering matrix

In this section we provide more details about how to derive the full scattering matrix
Eq.[5.12] in Sec. 5.4.1. Similarly to the two terminal junction, for the scattering states
of Y-junction, we denote η = v/m. We set kη = sinhφ > 0. Then for xi > 0, under the

basis
(
ψα(xi), ψβ(xi)

)T
, for each individual leg, from Eq.[5.1] we can derive normalized wave
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function of incoming and outgoing modes as: ψT
in(xi) = (e−φ−iθi , 1)T/

√
1 + e−2φ, ψT

out(xi) =
(eφ−iθi , 1)T/

√
1 + e+2φ, with corresponding energy E/m = + coshφ. As mentioned in main

text, we first inject the mode along negative x1 direction. The wave function on leg x1 is
given by Ψ1 = e−ikx1ψ1,in + reikx1ψ1,out. Meanwhile, the wave function on leg x2 is given by
Ψ2 = t12e

ikx2ψ2,out, and the wave function on leg x3 is given by Ψ3 = t13e
ikx3ψ3,out. We can

expand the wave function around the intersection as:

Ψ1(0) =

(
e−φ−iθ1

√
1 + e−2φ

+ r
eφ−iθ1

√
1 + e2φ

)
ψα(x1 = 0) +

(
1√

1 + e−2φ
+

r√
1 + e2φ

)
ψβ(x1 = 0),

Ψ2(0) = t12
eφ−iθ2

√
1 + e2φ

ψα(x2 = 0) + t12
1√

1 + e2φ
ψβ(x2 = 0),

Ψ3(0) = t13
eφ−iθ3

√
1 + e2φ

ψα(x3 = 0) + t13
1√

1 + e2φ
ψβ(x3 = 0).

(5.31)
Note that due to the continuity of edge state wave function for each individual layer, we have
ψα(x1 → 0+) = ψβ(x3 → 0+), ψβ(x1 → 0+) = ψα(x2 → 0+), and ψβ(x2 → 0+) = ψα(x3 →
0+). Following the assumption we made in Sec. 5.4, during the scattering process, the
amplitude of the chiral edge states from same triangular Chern insulator is conserved, but
they may acquire an additional phase factor αi when by passing the junction. By matching
the coeffients of ψα(β),i we have:

e−φ−iθ1

√
1 + e−2φ

+ r
eφ−iθ1

√
1 + e2φ

= t13
1√

1 + e2φ
eiα1 ,

t12
eφ−iθ2

√
1 + e2φ

=

(
1√

1 + e−2φ
+ r

1√
1 + e2φ

)
eiα2 ,

t13
eφ−iθ3

√
1 + e2φ

= t12
1√

1 + e2φ
eiα3 .

(5.32)

From the above equation we derive that:

r1 =
eφ(ei

∑
i(θi+αi) − eφ)

e3φ − ei
∑

i(αi+θi)
,

t12 =
ei(α2+θ2)eφ(e2φ − 1)

e3φ − ei
∑

i(αi+θi)
,

t13 =
ei(α2+θ2+α3+θ3)(e2φ − 1)

e3φ − ei
∑

i(αi+θi)
.

(5.33)

One can check that the scattering is unitary:

|r|2 + |t12|2 + |t13|2 = 1. (5.34)

To derive the full scattering matrix, we can further inject the mode along negative x2
(x3) direction. By following the similar procedure for injecting along negative x1 direction,
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we have: 

r2 =
eφ(ei

∑
i(θi+αi) − eφ)

e3φ − ei
∑

i(αi+θi)
,

t23 =
ei(α3+θ3)eφ(e2φ − 1)

e3φ − ei
∑

i(αi+θi)
,

t21 =
ei(α1+θ1+α3+θ3)(e2φ − 1)

e3φ − ei
∑

i(αi+θi)
.

(5.35)



r3 =
eφ(ei

∑
i(θi+αi) − eφ)

e3φ − ei
∑

i(αi+θi)
,

t31 =
ei(α1+θ1)eφ(e2φ − 1)

e3φ − ei
∑

i(αi+θi)
,

t32 =
ei(α1+θ1+α2+θ2)(e2φ − 1)

e3φ − ei
∑

i(αi+θi)
.

(5.36)

Finally, we derive scattering matrix as:

S =

 r1 t12 t13
t21 r2 t23
t31 t32 r3

 =
1

e3φ − eiΛ

 r̃1 t̃12 t̃13
t̃21 r̃2 t̃23
t̃31 t̃32 r̃3

 , (5.37)

where kv/m = sinhφ, Λ =
∑

i(θi +αi). The poles of S denotes the existence of bound state
with energy:

E

m
= coshφ = cos

(
Λ + 2nπ

3

)
, n ∈ Z, (5.38)

which is the Eq.[5.13] in main text. It is easy to check that the Scattering matrix here is
unitary, i.e., S†S = 1. Eq.[5.13] can be generalized to l-leg junction: E/m = coshφ =
cos[(Λ + 2nπ)/l], n ∈ Z, Ns = −∑

i θi/2π. For latter convenience we let 2nπ be absorbed
into

∑
i αi.

5.6.2.3 Comparison with numerical results from exact diagonalization of
tight-binding Hamiltonian

The bound-state energy Eq.[5.14] is depending on Λ =
∑

i(θi + αi). As we showed in main
text,

∑
i αi = A

∑
i θi +B, substitute these into Eq.[5.14] we have:

E

m
= cos

[
(1 + A)

∑
i θi +B

6 − f

]
, (5.39)

where l = f − 6 is the number of legs for a disclination with Frank index f . In order to
figure out the value of A,B and derive the full response function as Eq.[5.16], in principle
we need two data points (the bound state energy at two different flux value Φ) from the
exact diagonalizing tight-binding Hamiltonian Eq.[5.9]. In fact, we do take two data points
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Figure 5.6: Bound state energy with external flux. The dots are from exactly diagonalizing
the Haldane model Eq.[5.15]. The solid lines are fittings from exact diagonalization, which
take the form of energy-phase (flux) relation Eq.[5.40]. (a) Disclination with Frank index
f = 1. (b) Disclination with Frank index f = 2. (c) Disclination with Frank index f = 3.
We also plot (a-c) in the same frame, as shown in (d). In (a-d), the red, green, black, and
blue lines or dots denote, respectively, t1 = 0.2t0 (m = 1.04t0), t1 = 0.15t0 (m = 0.78t0),
t1 = 0.10t0 (m = 0.52t0), and t1 = 0.07t0 (m = 0.36t0). Here, t0 stands for nearest neighbor
hopping, t1 stands for next-nearest neighbor hopping with ϕij = π/2., and m = 3

√
3t1 stands

for Haldane mass, as shown in the main text. The equations on the left bottom side are the
fitting of the numerical results from exact diagonalization. The calculation is done for 800
unit cells within each 60◦ slice.

directly for m ≈ t0 and get Eq.[5.16] in the main text. However, note that for Frank index
f = 3 (f = 1), although the response of bound state energy with respect to external flux
for different m are different, adding an external flux Φ = −π/2 (Φ = +π/2) can restore
the particle hole symmetry, and move the bound state energy to zero. Thus we can define
Φ0 = |B/(1 + A)| = (

∑
i θi) mod π, which is fixed for given f . Note that

∑
i θi is the total

phase mismatch at the junction. With these Eq.[5.39] can be reduced to:

E

m
= sin

[
(1 + A)π(Φ/π ± Φ0/π)

6 − f

]
. (5.40)
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The plus or minus sign here depends on whether the local Chern vector is align with or
opposite to the direction of external flux. Now we only need one date point (for example,
the energy of bound state in the absence of external flux) from exact diagonalization to get
the value A in Eq.[5.40] and reproduce Eq.[5.16] directly. For m = 3

√
3t1 ≈ t0 = 1, we derive

A first and Eq.[5.40] is then simplified as:

ETetrahedron(Φ) = cos

(
2Φ

3
+
π

6

)
,

EOctahedron(Φ) = cos

(
2Φ

4
+
π

2

)
,

EIcosahedron(Φ) = cos

(
2Φ

5
+

7π

10

)
,

(5.41)

which is Eq.[5.16] in the presence of external flux Φ.
We further compare the results from Eq.[5.16] with full numerical results derived from

exactly diagonalizing the tight-binding Hamiltonian Eq.[5.15], as shown in Fig.[5.6]. We plot
the bound state energy with external flux (Φ) under different Haldane mass m = 3

√
3t1 and

different Frank index f . The direct fittings of numerical results do take the form of Eq.[5.40],
as shown in the left-bottom of each sub-figure.

5.6.2.4 Comparison to numerical results from continuous model

Figure 5.7: (a) Bound state energy with external flux. The dots are numerical results for
solving Eq.[5.42]. The blue dots are for one vertex of tetrahedral topological fullerenes
(disclination with Frank index f = 3). The green dots are for one vertex of octahedral
topological fullerenes (disclination with Frank index f = 2). The black dots are for one
vertex of icosahedral topological fullerenes (disclination with Frank index f = 1). The red
lines are relevant results from Eq.[5.30]. (b-c) The wave function density for mid gap state
in (b) Quadrupole insulator, and (c) 2d SOTI from Eq.[5.9] proposed in main text. The
red and blue dashed lines stand for the reflection symmetric axes for x− and y− directions,
respectively. The green solid lines stand for the boundary.
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The bound state energy with respect to external flux from continuous model for conical
singularities [209] is given by: √

m− E

m+ E
=
Kν−1/2(κρ)

Kν+1/2(κρ)
(5.42)

where

κ =
√
m2 − E2, ν =

j − Φ
2π

+ f
4

1 − f
6

. (5.43)

Here m is the Haldane mass, ρ stands for the radius of the hole in disclination, E is the
bound state energy, j is half integer, f is Frank index and stands for the number of π/3
wedges removed, Φ denotes the external flux, and K(κρ) is modified Bessel functions of the
second kind. We have set the positive direction of external flux opposite to local Chern
vector. In practice, in order to derive full energy-flux relation for given m, one may need
(at least) one data point (bound state energy at given Φ) from exact diagonalizing Eq.[5.9]
to get the value of effective radius ρ. After that we can derive the bound state energy with
external flux from (numerically) solving Eq.[5.42].

We have shown that our analytic results in Eq.[5.40] fit quite well with the numerical
results from diagonalizing tight-binding model in previous subsection. Our method also give
the proper results from solving Eq.[5.42] directly, as shown in Fig.[5.7.(a)]. From here we
know that, the phase shift

∑
i αi should be a function of Haldane mass m and effective radius

ρ.

5.6.3 Boundary Hamiltonian for arbitrary edge

In this section we derive the effective edge Hamiltonian for an arbitrary edge. Note that the
in gap state wave function distribution for our Tetrahedral type TI (Eq.[5.9]) is different from
that of Quadrupole insulator, see in Fig.[5.7.(b,c)]. We further show that our Tetrahedral
type 2d SOTI can hold fractional charge at the corner of rectangular boundaries, regardless
of the orientation of the rectangle.

The Bloch Hamiltonian for our Tetrahedral type TI is Eq.[5.9], as shown in main text.
In the absence of inter-layer coupling, i.e. λ = 0, the system can be viewed as index spin
hall effect:

H(k⃗)QSH =2tso sin (kx)τ1 + 2tso sin (ky)τ2

+(mz − 2tx cos kx − 2ty cos ky)τ3σ3,
(5.44)

which also respects C4 symmetry with U4 = eiπ/4τz . Around (kx = 0, ky = 0), the low energy
version for Hamiltonian Eq.[5.44] is given by:

h(k⃗) = 2tsokxτ1 + 2tsokyτ2 + (m̃z + txk
2
x + tyk

2
y)τ3σ3, (5.45)

where m̃z = mz − 2tx − 2ty. For simplicity we assume tx = ty = t0.



CHAPTER 5. EDGE NETWORKS INDUCED BY BULK TOPOLOGY 145

Figure 5.8: (a) Edge along ê2 = cos θêx + sin θêy direction (marked by dashed line). (b,c)
Corner charge (in gap state wave function density) in the presence of different boundary
conditions. The dashed blue and red lines stand for two reflection symmetric axes, the
green solid line denotes the boundary of tetrahedral type TI. The corner localized charge is
marked by red circles. (b) Boundary configuration respects original reflection symmetry. (c)
Boundary configuration does not respect original reflection symmetry.

In order to figure out the edge states at the cut along e⃗2 = cos θêx + sin θêy direction (see
in Fig.[5.8].(a)), we define a new set of basis in both spatial and momentum spaces:{

x = x1 sin θ + x2 cos θ,

y = −x1 cos θ + x2 sin θ,

{
kx = k1 sin θ + k2 cos θ,

ky = −k1 cos θ + k2 sin θ.
(5.46)

Substituting Eq.[5.46] into Eq.[5.45], the Low energy Hamiltonian can be written in the form
of k1,2:

h(k⃗) =2tso(k1 sin θ + k2 cos θ)τ1 + (m̃z + t0k
2
1 + t0k

2
2)τ3σ3

+2tso(−k1 cos θ + k2 sin θ)τ2.
(5.47)

Consider the model Hamiltonian Eq.[5.47] defined on the half-space x1 > 0 in the x1 − x2
plane. We replace k1 → −i∂x1 , k2 → 0, and neglect the higher order terms in Eq.[5.47]:

h̃(x1) = (−i∂x12tso sin θ)σ1 + (i∂x12tso cos θ)σ2 + m̃zσ3τ3. (5.48)

By using the ansatz ψ0 = eηx1ϕ, we can find a pair of counter-propagating edge states:
Ψ↑ =

e−2tsox1/m̃z√
N↑

(e−iθ/2, eiθ/2, 0, 0)T ,

Ψ↓ =
e−2tsox1/m̃z√

N↓
(0, 0,−e−iθ/2, eiθ/2)T ,

(5.49)

where N↑(↓) is the normalization constant. This procedure [202] leads to a 2 × 2 effective

Hamiltonian defined by Hα,β
edge(k2) = ⟨Ψα|h(k⃗) |Ψβ⟩, to the leading order in k2, we arrive at

the effective Hamiltonian for helical edge states:

h0edge = 2tsok2σz. (5.50)
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Similarly, the inter-layer coupling λ1τ1σ1 (or λ2τ2σ2), under the basis Ψα,β, gives birth to an
additional term −λ1 sin θσy (or −λ2 cos θσx). In summary, under the basis Ψα,β, the total
effective edge Hamiltonian is given by:

hedge = 2tsok2σz − λ2 cos θσx − λ1 sin θσy. (5.51)

By following the method introduced in [301], one can verify that Eq.[5.51] is capable to
describe not only an individual edge but also the closed loop formed by edges. As we have
mentioned in main text, if λ2 = 0 but λ1 ̸= 0, the Eq.[5.9] describes a 2D SOTI in BDI class.
The effective edge Hamiltonian Eq.[5.51] is reduced to:

hedge = 2tsok2σz − λ1 sin θσy. (5.52)

For each edge, one can assign a set of coordinates whose edge points along ê2 direction as
in Fig.[5.8.(a)]. The coordinates for the left-upper edge (θ1 = +π/2) and right-upper edge
(θ2 = −π/2) are shown in Fig.[5.9.(a)]. The effective mass term changes from M(θ1) =
−λ1 to M(θ1) = +λ1, leading to a zero mode (Fig.[5.9.(a)]) localized at the intersection
(Fig.[5.9.(b)]).

Figure 5.9: Numerical results from model Hamiltonian Eq.[5.9] which is in 2D SOTI region.
(a) Wave function density for the occupied in gap state, each square stands for one unit cell.
(b) The energy spectrum close to Fermi surface for the corresponding boundary condition
in (a). The calculations are done with tx = ty = t0, tso = 0.8t0, M = 0.90t0, and λ1 = 0.3t0,
λ2 = 0 for 30 × 30 lattice.

If λ1 = λ2 = λ, the above low energy Hamiltonian Eq.[5.51] is reduced to:

hedge = 2tsok2σz − λ cos θσx − λ sin θσy, (5.53)
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and we can define the effective mass term as:

Mi = −λ(cos θiσx + sin θiσy)

= −λ(cos θiêx + sin θiêy) · (σxêx + σyêy + σz êz)

= −λe⃗i · σ⃗.
(5.54)

This related the effective mass term of i-th edge to its orientation êi = cos θie⃗x + sin θie⃗y.
According to our previous results, the kink of effective mass term at the corner can give
birth to corner localized charge. The value of the charge (edge soliton) Ns is:

Ns = −θ2 − θ1
2

= −δθ
2
. (5.55)

For any rectangular boundary, δθ = π/2 since two adjoint edges are perpendicular to each
other. Thus the corner localized fractional charge should be −1/4e, regardless the orientation
of rectangle. We have confirmed this by exact diagonalizing the tight-binding Hamiltonian,
as shown in Fig.[5.8.(b,c)]. This result can be generalized to the corner state with arbitrary
fractional charge by tuning the angle θ between two adjoint edges.

5.6.4 2d SOTI and zero mode

As we have mentioned in main text, if λ2 = 0 but λ1 ̸= 0, the Eq.[5.9] describes a 2D SOTI
in BDI class with two additional symmetries U++

x and U+−
y . The low energy Hamiltonian

Eq.[5.45] can be written as: hlow = kxγ1 + kyγ2 +mγ0, where γ1 = τ1σ0, γ2 = τ2σ0, m = m̃z

and γ0 = τ3σ3. For BDI class we can build the real Clifford algebras [183, 184]: Cl3,3 =
{iγ1, iγ2, iT P ,P , iP , γ0} whose generators are anti-commuting with each other. Similar to
previous works [183], one can define an additional symmetry operator Mx = iγxU

++
x , where

M2
x = +1 and Mx anticommutes with all operators in the bracket. The extension problem of

Clifford algebras, Cl3,3 = {iγ1, iγ2, iT P ,P , iP , γ0} → Cl3,4 = {iγ1, iγ2, iT P ,P , iP , γ0,Mx},
whose classifying space is R0, gives a classification π0(R0) = Z. One can further add an
additional symmetry operator My = iT PγyU+−

y , where M2
y = 1 and My commutes with

every generator in Cl3,4. Thus My can block diagonalize the bulk into two copies of BDI +
U++
x , each of which has a Z classification. On the other hand, one reflection symmetric

edge automatically breaks the other reflection symmetry since the edge is a 1d system. For
example, the x− reflection symmetric edge automatically breaks the y− reflection symmetry,
which reduce the classification to one copy of BDI + U++

x (Z). This leads to gapless edge
states on Ux symmetric edges. By further locally breaking Ux for x-reflection symmetric
edge, the edge states is gapped out by a unique mass term which is odd under Ux and
guarantees the presence of zero mode. Thus the corresponding 2d SOTI has an intrinsic Z
classification.

5.6.5 Fractional charge for edge soliton

In the absence of particle hole symmetry, the domain wall state for a SSH chain can hold
bound state with non-zero energy and fractional charge aside from −1/2e [111, 75]. In this
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section, we summarized and slightly modified their previous works [111] and derive the similar
results for edge solitons. This is in accordance with the results Eq.[5.6] from bosonization in
Sec. 5.2.

Suppose we have a one-dimensional Dirac Hamiltonian in the external field φ:

Ĥ(φ) = −i∂xσz + ϵσx + φ(x)σy. (5.56)

For simplicity we assume that ϵ > 0. Up to a global normalization constant and a unitary
transformation this Hamiltonian can be connected to Hamiltonian Eq.[5.53]. In the absence
of ϵσx, the Hamiltonian respects the charge conjugation symmetry and can hold zero mode
when φ(x) has a kink. The presence of ϵσx breaks the charge conjugation symmetry of the
system. We will see later on that this Hamiltonian can hold bound state with nonzero energy
and fractional charge.

In the vacuum where the system does not hold a soliton, φ = φ0 = const. We denote
φ0 = µ for simplicity. In the presence of a soliton, φ(x) = φs(x), and in principle the φs(x)
should have a kink. In order to compute the charge, we need to derive the eigenstates of
this two situation. The Schrodinger equation for these two scenarios can be written as:

Ĥ(φ0)ψ
0
E = E0ψ0

E, Ĥ(φs)ψ
s
E = Esψs

E, (5.57)

where ψ0
E stands for the normal state without solitons, ψs

E stand for the situation in the
presence of soliton.

The charge density at level E is ρE(x) = ψ†
E(x)×ψE(x), and the physical charge density

is got by integrating ρE over all negative E, since the negative energy levels are filled in the
half-filling:

ρ(x) =

ˆ 0

−∞
dEρE(x). (5.58)

Finally the soliton charge is obtained by integrating the charge density in the soliton field
over all x, but to avoid an infinity, we must subtract a similar integral of the charge density
when no soliton is present:

Q =

ˆ
dx(ρs(x) − ρ0(x)). (5.59)

We can calculate the exact value of Q even if we do not know the exact form of φ(x). All we
need to know about φs is that it interpolates between opposite “vacuum” values as x passes
from −∞ to +∞:

φs(+∞) = |φ0| = µ, φs(−∞) = −|φ0| = −µ. (5.60)

We now study the eigenstates of Eq.[5.57]. The vacuum problem is trivial: the wave functions
are plane waves ∝ eikx and the spectrum is continuous E0 = ±(k2 + µ2 + ϵ2)1/2.

In the presence of soliton, we first assume that the wave-function of the eigenstate is
(u, v)T . Thus we have: (

−i∂x −iφ(x) + ϵ
iφ(x) + ϵ i∂x

)(
u
v

)
= E

(
u
v

)
, (5.61)
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which can be simplified as: {
− i∂xu+ (−iφ(x) + ϵ)v = Eu,

(iφ(x) + ϵ)u+ i∂xv = Ev.
(5.62)

In order to solve these two equations, we first add up two equations:

−i∂x(u− v) + iφ(x)(u− v) + ϵ(u+ v) = E(u+ v), (5.63)

and then subtract the second equation from the first one, such that we have:

−i∂x(u+ v) − iφ(x)(u+ v) − ϵ(u− v) = E(u− v). (5.64)

We define the new parameters:

U =
u+ v√

2
, V =

u− v√
2
, (5.65)

then we can rewrite the result as:{
(−i∂x + iφ(x))V = (E − ϵ)U,

(−i∂x − iφ(x))U = (E + ϵ)V.
(5.66)

From the second line of Eq.[5.66] we know that

V =
−i(∂x + φ(x))

E + ϵ
U. (5.67)

Substitute this into the first line of Eq.[5.66], we have:

−(∂2x − φ2(x) + ∂xφ(x))U = (E2 − ϵ2)U. (5.68)

From Eq.[5.66] and Eq.[5.68] we can figure out a possible solution:

U = exp[−
ˆ x

dx′φx(x′)], V = 0, (5.69)

corresponds to the energy E = ϵ. Note that the U is localized at the kink x = 0 due to the
form of φs(x).

To calculate the particle density, we still need to know the eigenstate for all negative
energy solutions. We assume that U ∝ eikx and φ ≈ ±µ at large x limit, thus we have the
normalized factor:

1 = |uk|2 + |vk|2 = |Uk|2 + |Vk|2 = U2 2E

E + ϵ
, (5.70)

from which we can figure out the normalized wave function for the negative energy:

U =

√
E + ϵ

2E
Uk, V = − i√

2E(E + ϵ)
(∂x + φ(x))Uk. (5.71)
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This gives the wave function in originally basis:

ψk =

(
uk
vk

)
, (5.72)

where 
uk =

1√
2

(√
E + ϵ

2E
− i√

2E(E + ϵ)
(∂x + φ(x))

)
Uk,

vk =
1√
2

(√
E + ϵ

2E
+

i√
2E(E + ϵ)

(∂x + φ(x))

)
Uk.

(5.73)

The wave function ψk satisfies:

Ĥ(φ)ψk = Eψk, E = −
√
k2 + µ2 + ϵ2. (5.74)

The Charge-density at negative E is given by:

ρk(x) = |uk|2 + |vk|2
= [(E + ϵ/2E)]|Uk|2 + [2E(E + ϵ)]−1|(∂x + φ)Uk(x)|2
= |Uk(x)|2 + [4E(E + ϵ)]−1∂2x|Uk(x)|2
+ [2E(E + ϵ)]−1∂x[|Uk(x)|2φ(x)]

(5.75)

where the validity of second line comes from Eq.[5.68].
The soliton charge is the integral over all x and k above evaluated with φ = φs, minus a

similar integral in the vacuum; but in the vacuum, |Uk|2 ≡ φ(x) = µ, such that the last two
term in Eq.[5.75] vanished. Thus we have the soliton charge:

Ns =

ˆ
dx

ˆ +∞

−∞

dk

2π
[|U s

k(x)|2−|U0
k (x)|2]+

ˆ ∞

−∞

dk

2π

1

4E(E + ϵ)
[∂x|U s

k(x)|2+2|U s
k(x)|2φs(x)]|x=+∞

x=−∞.

(5.76)
The double integral can be evaluated by completeness: The U0

k represent all the Schrodinger
modes in the vacuum, while the U s

k are one short of being complete in the soliton sector,
since the normalized bound state is not among them. Hence the first term contributes −1
to Q. To evaluate the second term in Eq.[5.76], let us consider the wave function in the
presence of a soliton when x = ±∞. These may be given in terms of transmission (T ) and
reflection coefficients (R):

U s
k(+∞) = Teikx, U s

k(−∞) = eikx +Re−ikx. (5.77)

Thus, upon dropping oscillatory terms, we are left with the soliton charge:

Ns = −1 +

ˆ +∞

−∞

dk

2π

µ

2E(E + ϵ)
[|T |2 + (|R|2 + 1)], (5.78)
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where the plus sign between the contributions at x = +∞ and at x = −∞ arises because of
sign reversal in φs(x). Unitarity, |T |2 + |R|2 = 1, permits a final evaluation:

Ns = − 1

π
arctan

(
µ

ϵ

)
. (5.79)

Note that, if we denote ϵ = m cos θ and φs(±∞) = ±µ = m sin(∓θ), Eq.[5.79] is reduced to:

Ns = − 1

π
arctan(tan θ) = −θ − (−θ)

2π
, (5.80)

which is in accordance with Eq.[5.6] derived from bosonization of the helical Luttinger liquid.
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spin liquids on the kagome lattice”. In: Phys. Rev. B 92.12 (2015), p. 125122. doi:
10.1103/PhysRevB.92.125122.

[283] Frank Wilczek and A. Zee. “Linking Numbers, Spin, and Statistics of Solitons”. In:
Phys. Rev. Lett. 51.25 (1983), pp. 2250–2252. doi: 10.1103/PhysRevLett.51.2250.

[284] Edward Witten. “Global aspects of current algebra”. In: Nuclear Physics B 223.2
(1983), pp. 422–432. doi: https://doi.org/10.1016/0550-3213(83)90063-9.

[285] Congjun Wu, B. Andrei Bernevig, and Shou-Cheng Zhang. “Helical Liquid and the
Edge of Quantum Spin Hall Systems”. In: Phys. Rev. Lett. 96.10 (2006), p. 106401.
doi: 10.1103/PhysRevLett.96.106401.

[286] Xiao-Chuan Wu, Chap-Ming Jian, and Cenke Xu. “Coupled Wire description of the
Correlated Physics in Twisted Bilayer Graphene”. In: arXiv:1811.08442 (2018).

[287] Zhan Wu et al. “Realization of two-dimensional spin-orbit coupling for Bose-Einstein
condensates”. In: Science 354.6308 (2016), pp. 83–88. doi: 10 . 1126 / science .

aaf6689. eprint: http://science.sciencemag.org/content/354/6308/83.full.
pdf.

https://doi.org/10.1103/PhysRevD.88.045013
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1103/PhysRevB.65.165113
https://doi.org/10.1103/PhysRevB.89.035147
https://doi.org/10.1080/00018739500101566
https://doi.org/10.1080/00018739500101566
https://doi.org/https://doi.org/10.1016/0550-3213(74)90355-1
https://doi.org/https://doi.org/10.1016/0550-3213(74)90355-1
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.92.125122
https://doi.org/10.1103/PhysRevLett.51.2250
https://doi.org/https://doi.org/10.1016/0550-3213(83)90063-9
https://doi.org/10.1103/PhysRevLett.96.106401
https://doi.org/10.1126/science.aaf6689
https://doi.org/10.1126/science.aaf6689
http://science.sciencemag.org/content/354/6308/83.full.pdf
http://science.sciencemag.org/content/354/6308/83.full.pdf


BIBLIOGRAPHY 173

[288] Cenke Xu and J. E. Moore. “Stability of the quantum spin Hall effect: Effects of
interactions, disorder, and Z2 topology”. In: Phys. Rev. B 73.4 (2006), p. 045322.
doi: 10.1103/PhysRevB.73.045322.

[289] Zhongbo Yan, Fei Song, and Zhong Wang. “Majorana Corner Modes in a High-
Temperature Platform”. In: Phys. Rev. Lett. 121.9 (2018), p. 096803. doi: 10.1103/
PhysRevLett.121.096803.

[290] Xu Yang et al. “Dyonic Lieb-Schultz-Mattis theorem and symmetry protected topo-
logical phases in decorated dimer models”. In: Phys. Rev. B 98.12 (2018), p. 125120.
doi: 10.1103/PhysRevB.98.125120.

[291] Weicheng Ye et al. “Topological characterization of Lieb-Schultz-Mattis constraints
and applications to symmetry-enriched quantum criticality”. In: SciPost Phys. 13
(2022), p. 066. doi: 10.21468/SciPostPhys.13.3.066.

[292] Hideo Yoshioka and Arkadi A. Odintsov. “Electronic Properties of Armchair Carbon
Nanotubes: Bosonization Approach”. In: Phys. Rev. Lett. 82.2 (1999), pp. 374–377.
doi: 10.1103/PhysRevLett.82.374.

[293] Jan Zaanen. “Planckian dissipation, minimal viscosity and the transport in cuprate
strange metals”. In: SciPost Phys. 6.5 (2019), p. 61. doi: 10.21468/SciPostPhys.
6.5.061.

[294] Jan Zaanen. “Why the temperature is high”. In: Nature 430.6999 (2004), pp. 512–513.
doi: 10.1038/430512a.

[295] Michael P. Zaletel, Roger S. K. Mong, and Frank Pollmann. “Topological Character-
ization of Fractional Quantum Hall Ground States from Microscopic Hamiltonians”.
In: Phys. Rev. Lett. 110.23 (2013), p. 236801. doi: 10.1103/PhysRevLett.110.

236801.

[296] Qiu Zhang and Tao Li. “Bosonic resonating valence bond theory of the possible chiral
spin-liquid state in the triangular-lattice Hubbard model”. In: Phys. Rev. B 104.7
(2021), p. 075103. doi: 10.1103/PhysRevB.104.075103.

[297] Wanzhou Zhang, Ruoxi Yin, and Yancheng Wang. “Pair supersolid with atom-pair
hopping on the state-dependent triangular lattice”. In: Phys. Rev. B 88.17 (2013),
p. 174515. doi: 10.1103/PhysRevB.88.174515.

[298] Yi Zhang, Ying Ran, and Ashvin Vishwanath. “Topological insulators in three dimen-
sions from spontaneous symmetry breaking”. In: Phys. Rev. B 79.24 (2009), p. 245331.
doi: 10.1103/PhysRevB.79.245331.

[299] Bin Zhou et al. “Finite Size Effects on Helical Edge States in a Quantum Spin-Hall
System”. In: Phys. Rev. Lett. 101.24 (2008), p. 246807. doi: 10.1103/PhysRevLett.
101.246807.

https://doi.org/10.1103/PhysRevB.73.045322
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevLett.121.096803
https://doi.org/10.1103/PhysRevB.98.125120
https://doi.org/10.21468/SciPostPhys.13.3.066
https://doi.org/10.1103/PhysRevLett.82.374
https://doi.org/10.21468/SciPostPhys.6.5.061
https://doi.org/10.21468/SciPostPhys.6.5.061
https://doi.org/10.1038/430512a
https://doi.org/10.1103/PhysRevLett.110.236801
https://doi.org/10.1103/PhysRevLett.110.236801
https://doi.org/10.1103/PhysRevB.104.075103
https://doi.org/10.1103/PhysRevB.88.174515
https://doi.org/10.1103/PhysRevB.79.245331
https://doi.org/10.1103/PhysRevLett.101.246807
https://doi.org/10.1103/PhysRevLett.101.246807


BIBLIOGRAPHY 174

[300] W. Zhu, D. N. Sheng, and Kun Yang. “Topological Interface between Pfaffian and
Anti-Pfaffian Order in ν = 5/2 Quantum Hall Effect”. In: Phys. Rev. Lett. 125.14
(2020), p. 146802. doi: 10.1103/PhysRevLett.125.146802.

[301] Xiaoyu Zhu. “Tunable Majorana corner states in a two-dimensional second-order
topological superconductor induced by magnetic fields”. In: Phys. Rev. B 97.20 (2018),
p. 205134. doi: 10.1103/PhysRevB.97.205134.

[302] Zheng Zhu, D. N. Sheng, and Ashvin Vishwanath. “Doped Mott insulators in the
triangular-lattice Hubbard model”. In: Phys. Rev. B 105.20 (2022), p. 205110. doi:
10.1103/PhysRevB.105.205110.

https://doi.org/10.1103/PhysRevLett.125.146802
https://doi.org/10.1103/PhysRevB.97.205134
https://doi.org/10.1103/PhysRevB.105.205110

	Contents
	List of Figures
	List of Tables
	Introduction
	Symmetry breaking, topological defects/textures and homotopy theory
	Topological order
	Chern insulator
	Introduction to group cohomology
	Outline of the thesis and previous publications

	Structure of domain walls in chiral spin liquids
	Chiral spin liquid and parton construction
	Homogeneous self-consistent ansatz for chiral spin liquid
	Self-consistent solution for an inhomogeneous chiral spin liquid with domain wall
	Amplitude fluctuation
	The effective action
	Conventional Ginzburg Landau theory for domain wall
	Singular Ginzburg-Landau ||3 theory
	Edge states for chiral spin liquids
	Discussion and outlook
	Appendix: Detailed field theory calculations

	Topological defects and textures in two-dimensional quantum orders
	Introduction
	Note on notations
	General framework
	Group cohomology for point defects and textures
	Defects and textures in the absence of intrinsic topological orders
	Point defects in symmetry enriched topological orders
	Skyrmions in symmetry enriched topological orders
	Discussion and outlook

	Minimal one-dimensional model of bad metal behavior from fast particle-hole scattering
	Introduction
	Low energy model and scattering process
	Transport via kinetic theory
	Lattice model and DMRG simulations
	Discussion and outlook

	Edge networks induced by bulk topology
	Introduction
	Description of edge network
	Edge states on closed 1d loop
	Edge states in multi-leg junction
	Disucssion and outlook
	Appendix

	Bibliography



