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ABSTRACT

Stable∞-Categories and Their Homotopy Categories

Vaibhav Sutrave

An abstract homotopy theory is a situation in which one has a category

with a class of “weak equivalences” that one would like to invert. One re-

cent description of a homotopy theory is as an “∞-category,” which is like a

category with extra structure that is made to contain homotopical data. Ev-

ery∞-category can be flattened into an ordinary category called its “homotopy

category,” in a way that inverts the weak equivalences.

Among homotopy theories, there are certain ones that are called stable ho-

motopy theories. Accordingly, there is a notion of stable ∞-categories which

formalizes them. The homotopy category of a stable ∞-category has a canoni-

cal structure of a triangulated category.

A triangulated category is a category which is equipped with some struc-

ture that serves as a “weak” or homotopical version of an exact sequence. The

theory of stable ∞-categories has some advantages over that of triangulated

categories, since∞-categories retain some homotopical information that is lost

in the passage to the homotopy category.

This thesis attempts to do two things: (1) to lay out a self-contained ex-

position of the theory of ∞-categories, and (2) to describe the relationships

between stable∞-categories and the triangulated structure on their homotopy

categories.

v



1 Introduction

When are two things “the same”? In ordinary category theory we may say that

two things are the same if they are isomorphic: that there exist invertible maps

between them. It often happens that we are studying a category in which there

are objects we want to consider the same but do not have invertible morphisms

between them.

• In topology we want to identify spaces that are equivalent up to contin-

uous deformation. This continuous deformation is known as homotopy

equivalence. For example, any disk Dn can be continuously deformed to

a point. So we want to identify Dn ∼ ∗ as being somehow “the same”.

But they are not homeomorphic (isomorphic in the category of topologi-

cal spaces); the map Dn→ ∗ does not admit an inverse in the usual sense.

The image of any map ∗ → Dn is a point, so Dn→ ∗→ Dn sends the disk

to a single point in the disk. What is true is that Dn→ ∗ admits an inverse

up to homotopy. That is, there is a map ∗ → Dn and a homotopy h be-

tween the map Dn→ ∗→ Dn and the identity idDn . We can think of this

homotopy as a map between maps, and denote it with a thickened arrow:

∗

Dn Dn
id

h

We want to construct a new category of spaces in which spaces that are

equivalent up to homotopy become categorically isomorphic. We call

such a category the homotopy category, and describe it by a functor. In
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this case:

Top→ hoTop,

where hoTop is the homotopy category of spaces. This functor should be

such that X ∼ Y (are homotopically equivalent) in Top implies that their

images [X] � [Y ] (are isomorphic) in hoTop.

• Analagously, when studying chain complexes Ch(R) over a commutative

ring R, we want to identify chain complexes that have the same homol-

ogy. So we would want to identify chain complexes that are homotopy

equivalent, or those that are quasi-isomorphic.

This leads one to form a “homotopy category” K(R) by inverting homo-

topy equivalences of chain complexes, and a “derived category” D(R) by

inverting quasi-isomorphisms.

Daniel Quillen abstracted from these examples the idea of an abstract ho-

motopy theory, which he formalized with the notion of a “model category”.

The study of these abstract homotopy theories he called “Homotopical Alge-

bra” [Qui67]. The name is intentionally reminiscent of homological algebra,

which sits within homotopical algebra as the homotopy theory of chain com-

plexes over a commutative ring.

There are other ways to formalize and describe homotopy theories. William

Dwyer and Daniel Kan [DK80c; DK80b; DK80a] describe homotopy theories

as “simplicial localizations”, describing a process of forming out of a category

with weak equivalences a new type of category which encodes homotopical

information by morphisms of higher dimension. This is done by consider-

ing a more elaborate type of category which instead of having hom-sets has

2



hom-simplicial sets.

More recently, homotopy theories have been formalized in terms of ∞-

categories. These are like categories with higher morphisms which encode

homotopical information. There are many ways to define these, but we will

mostly use a model known as quasi-categories. These were first described by

Michael Boardman and Rainer Vogt in their book “Homotopy Invariant Al-

gebraic Structures on Topological Spaces” [BV73], in which they called them

“weak Kan complexes”. This was expanded upon by André Joyal [Joy02; Joy08]

who called them quasi-categories, and then Jacob Lurie [Lur08; Lur] who called

them∞-categories.

Among homotopy theories, there are certain ones that are stable. The pro-

totypical example of this is the stable homotopy category of spectra. There

is a corresponding notion of a stable∞-category that model stable homotopy

theories.

Stability manifests algebraically (historically in the context of homological

algebra and algebraic geometry) in the form of a triangulated category. This is a

category with a “weak” type of exact sequences, called distinguished triangles.

For example, in the stable homotopy category, taking pieces of fiber or cofiber

sequences (which are like homotopical exact sequences) forms distinguished

triangles.

In studying a homotopy theory, one wants to form a homotopy category,

in which the equivalences are formally inverted. Modelling by an ∞-category,

one can construct a homotopy category by “flattening out” the homotopical

information.

If the ∞-category is stable, its homotopy category has a canonical triangu-

lated structure. Many of the ideas, constructions, and results from the theory

3



of triangulated categories have analogues in the context of stable∞-categories.

This thesis is organized as follows:

• Section 2: We lay out the theory of∞-categories, and see how it general-

izes ordinary category theory.

• Section 3: We deal with stability. We describe the theory of stable ∞-

categories, and relate them to the theory of triangulated categories.

• There is an appendix for Quillen’s theory of model categories, which were

one of the first ways to describe homotopy theories, and are useful in

describing the homotopy theory of∞-categories.

NOTES ON NOTATION

• We cite often from the books “Higher Topos Theory” [Lur08] and “Higher

Algebra” [Lur17], and the website “Kerodon” [Lur]. For easy reference, we

use the shorthands [HTT, −], [HA, −], and [K, −] respectively when citing

from these.

For example [K, 1.3.0.1] refers to Definition 1.3.0.1 in [Lur].

• Internal references will be enclosed in ordinary parentheses (−).

For example, (3.1.10) refers to Definition 3.1.10.

• Some people say 0 is not natural, but it seems pretty natural to this au-

thor. To us, natural numbers N will always include 0.

• We use Top to denote the category of continuous maps between “com-

pactly generated weakly Hausdorff spaces” [Mac78, §VII.8].

• The convention for varying squiggly types of “equality”:

4



– (=): equality, eg. when describing a set explicitly.

– (�): isomorphism in an ordinary category. This will basically only

ever be used to denote an isomorphism of sets or groups.

– (≃): equivalence, which is the homotopical version of isomorphism.

Equivalence comes with a direction, so “X ≃ Y ” should really be

understood to be a suppressed version of either “X
∼−→ Y ” or “X

∼←−

Y ”.

– (≈): homeomorphism (an isomorphism in Top).

– (∼): an equivalence relation, usually homotopy.

• Plain capital letters (C,D,T ,M, . . . ) will denote ordinary categories, ∞-

categories, simplicial sets, objects of a category, or functors. Script letters

(C,D, . . . ) will essentially always denote∞-categories.

• The singleton set will be denoted as {∗}. The point in the category of

topological spaces will be written as either ∗ or pt.

• Objects of an ordinary category will be written as ob(C). The collection of

all morphisms in a category will be written Hom(C) :=
⋃
x,y∈C HomC(x,y).

• We will use the terms “morphism” and “map” interchangeably.

• Given a category C with objects x and y, we may shorten the hom-set

HomC(x,y) to C(x,y).

5



2 ∞-Categories

The real fun begins when one actually starts to use
∞-category theory, at which point the world becomes a
magical place: one’s power to make new definitions is
limited only by one’s imagination, and one’s ability to
prove new theorems is limited only by the clarity of
one’s understanding (at least as far as the purely
formal aspects are concerned). The many fussy details
that arise when one attempts to use point-set
techniques to work homotopy-coherently simply melt
away: they were in fact irrelevant all along to the true
and underlying mathematics, and their disappearance
into the ambient machinery brings with it a harmony
that is only possible when intuition and language are
once again aligned. Thus, paradoxically, by discarding
such emotional crutches as underlying sets and strict
composition and by embracing the apparent chaos and
uncontrol of homotopy-coherence, we acquire a
measure of power of which previous generations of
mathematicians could barely have dreamed.

Aaron Mazel-Gee
“The Zen of∞-Categories” [Maz]

2.1 Simplicial sets, Kan complexes, quasi-categories

Definition 2.1.1. [the simplex category ∆]

The simplex category ∆ consists of the following:

• (objects): For each n ∈ N, there is an object [n] ∈ ∆ given by the linearly

ordered set [n] {0,1,2, . . . ,n}.

• (morphisms): A morphism f : [n]→ [m] is an order-preserving function.

Remark 2.1.2. Intepreting posets as categories with morphisms given by ≤ lets

us see ∆ ⊆ Cat as a full subcategory.

Definition 2.1.3. [simplicial sets]
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A simplicial set is a functor X : ∆op → Set. In other words, a presheaf on

∆.

Remark 2.1.4. For i = 0,1, . . . ,n, there are morphisms in ∆ called coface and

codegeneracy maps respectively:

δi : [n]→ [n+ 1], x 7→


x x < i

x+ 1 x ≥ i.

σi : [n]→ [n− 1], x 7→


x x ≤ i

x − 1 x > i,

So δi skips i, and σi maps to i twice.

0 . . . i − 1 i . . . n

δi : 0 . . . i − 1 i i + 1 . . . n+ 1

0 . . . i i + 1 i + 2 . . . n

σi : 0 . . . i i + 1 . . . n− 1

These satisfy certain identities [Cis19, Prop. 1.2.3], which spell out how

these coface and codegeneracies compose with each other. And it turns out

that these are the only ones that matter:

Lemma 2.1.5. Any morphism [n]→ [m] in ∆ has a unique representation as a

7



composite of δ’s and σ ’s. So any simplicial set X is determined by the images

di := X(δi) : Xn→ Xn−1

si := X(σi) : Xn→ Xn+1,

which we call face and degeneracy maps respectively. So we can think of a

simplicial set as consisting of a collection of sets {Xn}n∈N along with face and

degeneracy maps.

For more details, see [GJ09, § 1.1], [Mac78, § 7.5].

Remark 2.1.6. A morphism of simplicial sets, or a simplicial map, is a natural

transformation of functors ∆op → Set. The category of simplicial sets is the

functor category sSet := Fun(∆op,Set).

Notation 2.1.7. • We sometimes write “sset” as short for simplicial set.

• LetX be a simplicial set. We will call elements ofX0 “points” or “vertices”

of X, and call elements of X1 “edges” of X. For any n ∈N, elements of Xn

will be called “n-simplices” of X.

Example 2.1.8. [the standard n-simplex ∆n]

The standard n-simplex is the simplicial set formed by Yoneda embedding

∆n := Hom∆(−, [n]) ∈ sSet.

Remark 2.1.9. Pick an X ∈ sSet. Yoneda’s lemma says that for every n ∈N there

is a bijection

Xn �HomsSet(∆
n,X).

8



That is an n-simplex x ∈ Xn corresponds to a simplicial map x : ∆n → X. In

particular, an i-simplex of ∆n corresponds to a simplicial map ∆i → ∆n.

Since any presheaf is a colimit of representables, anyX ∈ sSet can be written

as X = colim∆n→X∆
n. In particular, ∆n = colim∆i→∆n∆

i .

Example 2.1.10. [sub-simplices]

Any subset I = {i0, i1, . . . , ik} ⊆ [n] determines a simplicial set

∆I := Hom∆(−, I) ∈ sSet,

which is isomorphic to ∆k via the isomorphism I � [k]. The inclusion I ↪→ [n]

defines a monomorphism ∆I ↪→ ∆n.

In particular, for i = 0, . . . ,n, the ith face of ∆n is the subsimplex

di(∆
n) = ∆

{
0,...,̂i,...,n

}
� ∆n−1

⊆ ∆n

(where î means we are omitting i).

The ith degeneracy si forms an (n+ 1)-simplex:

si(∆
n) = ∆{0,...,i,i,...,n}

� ∆n+1

with an inclusion ∆n ⊆ ∆n+1.

Remark 2.1.11. Let X be a simplicial set.

We call a simplex x ∈ Xn degenerate if it can be written as si(y) for some

9



y ∈ Xn−1. For any x ∈ Xn, we can find a minimum i such that x : ∆n→ X factors

as
∆n X

∆i

x

We call such an i the dimension of the simplex x.

Even such an innocuous simplicial set as ∆0 has infinitely many degenerate

simplices:

∆{0,0} � ∆1

∆{0,0,0} � ∆2

...

To facilitate working with simplicial sets, we will often focus our attention

on the nondegenerate simplices. A simplicial set X with no non-degenerate

simplices above dimension n is called n-coskeletal. For example each ∆n is

n-coskeletal.

We will often draw 0-simplices/vertices as points, 1-simplices/edges as ar-

rows, and 2-simplices/faces as thick arrows. We may label a subsimplex by the

vertices spanning it, eg.

[i0, . . . , ik] : ∆{i0,...,ik} ↪→ ∆n.

10



For example, nondegenerate simplices of ∆2 can be labelled:

(∆2)0 =
{
∆{0},∆{1},∆{2}

}
= {0,1,2}

(∆2)1 =
{
∆{0,1},∆{0,2},∆{1,2}

}
= {[01], [02], [12]}

(∆2)2 =
{
∆{0,1,2}

}
= {[012]}

and we can draw a picture of ∆2 as a triangle-shaped diagram:

1

0 2
[02]

[01] [12]
[012]

with the assumption that all the degenerate simplices are hidden.

The standard 3-simplex ∆3 can be drawn as a tetrahedron-shaped diagram

with four faces (∆3)2 = {[012], [013], [023], [123]} and a single 3-simplex [0123]

we can draw as a thickened arrow⇛ forming the inside:

1

2

0 3

⇛
[0123]

We can isolate a sub-sset skn(X) ⊆ X called the n-skeleton of X, whose non-

degenerate simplices are those of X of dimension n and less.

11



For any n, we can truncate X to an n-coskeletal sset tr≤n(X), whose nonde-

generate simplices are those of X in degrees i ≤ n.

Example 2.1.12. [products of simplicial sets]

Products of simplicial sets are defined levelwise. That is, given simplicial

sets X and Y , the product X ×Y is defined with n-simplices:

(X ×Y )n := Xn ×Yn,

and face and degeneracy maps formed by face and degeneracies of X and Y in

the obvious way:

si := (sXi , s
Y
i ),

di := (dXi ,d
Y
i ).

Using the notation of (2.1.11), we will denote an n-simplex of X × Y by a

pair: α = (αX ,αY ) ∈ (X ×Y )n.

Note that an n-simplex in X × Y may be nondegenerate even when both of

its components are degenerate in X and Y .

Example 2.1.13. For example, consider the product ∆1 × ∆1 [Fri21, Ex. 5.4].

Drawing out all non-degenerate simplices forms a “square”:

([0], [0]) ([1], [0])

([0], [1]) ([1], [1])

([01],[00])

([01],[11])

([00],[01]) ([11],[01])([01],[01])

([001],[011])

([011],[001])

12



This has a number of non-degenerate simplices arising from degenerate sim-

plices of each ∆1 factor. Four out of the five edges (namely the horizontal and

vertical maps) arise from degenerate simplices of the form [00] and [11]. And

there are non-degenerate 2-cells appearing, although ∆1 has no non-degenerate

2-cells itself.

Example 2.1.14. [constant simplicial sets]

Given a set S, the constant simplicial set S• ∈ sSet is the simplicial set with

Sn := S for all n, and face/degeneracy maps all given by idS .

Example 2.1.15. [singular complexes]

Let X be a topological space.

The singular complex Sing(X) is a simplicial set defined by:

Sing(X)n := HomTop(|∆n|,X)

where |∆n| is the standard topological n-simplex

|∆n| =

(x0, . . . ,xn) ∈Rn+1 :
∑
i

xi = 1,xi ≥ 0

 ,
eg. |∆0| is a point, |∆1| is a line segment, |∆2| is a triangular face, |∆3| is a solid

tetrahedron, and so on. With appropriate boundary maps (alternating sums of

faces) Sing(X) forms a chain complex, whose homology is the singular homol-

ogy of the space X.

Face and degeneracy maps of Sing(X) are induced by topological face and

degeneracy maps that are defined as one would expect: face maps of a topo-

logical simplex pick out literal geometric faces, and degeneracy maps realize a

topological simplex as a face of a higher-dimensional topological simplex. This

13



construction forms a functor Sing : sSet→ Top.

For gory details and wonderful pictures see [Fri21].

Remark 2.1.16. The functor Sing : Top→ sSet admits a left adjoint

| − | : sSet→ Top,

called the geometric realization functor, which takes ∆n 7→ |∆n|. An arbitrary

sset X can be written as a colimit

X = colim∆n→X∆
n,

so the geometric realization |X | is a space formed by gluing |∆n|’s appropriately:

|X | = colim∆n→X |∆n|.

Each topological n-simplex is homeomorphic to an n-disk: |∆n| ≈ Dn, and the

face/degeneracy maps give instructions on gluing these together along their

boundaries, so |X | can be thought of as a CW-complex.

Example 2.1.17. [boundaries, horns, spines]

Pick a ∆n ∈ sSet.

• There is a subcomplex ∂∆n ⊆ ∆n called the boundary , made up of the

faces of ∆n:

∂∆n :=
⋃

i=0,1,...,n

di(∆
n).

ie. it has all the nondegenerate simplices of ∆n except for the single one

in the highest dimension [0,1, . . . ,n] ∈ (∆n)n. In terms of geometric real-

ization, this corresponds to throwing away the interior of a topological

14



simplex. That is, this is the same as taking the topological boundary:

∂top|∆n| = |∂sset∆n|.

• For each i = 0,1, . . . ,n, we can throw out the ith face in addition to the

interior to form the ith horn

Λn
i :=

⋃
j,i

dj(∆
n).

The geometric realization of a horn is homeomorphic to a disk |Λn
i | ≈

Dn−1, and one can choose a homeomorphism |∆n| ≈ Dn so that the inclu-

sion |Λn
i | ↪→ |∆

n| is the inclusion of a hemisphere into an n-disk.

In particular the horns Λn
0 and Λn

n are called the left and right horns of

∆n respectively, or collectively outer horns. The horns Λn
i for 0 < i < n are

called inner horns.

• One can throw out everything but the edges of the form (i→ i+1) to form

the spine

sp(∆n) :=
⋃

i=0,...,n−1

{i→ i + 1} .

We can illustrate the example of these constructions in the case of ∆2:

∆2 : 1

0 2

∂∆2 : 1 Λ2
0 : 1 sp(∆2) : 1

0 2 0 2 0 2

⇓
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Example 2.1.18. [the nerve of a category]

Any category C can be realized as a simplicial set called NC, the nerve of

C, whose n-simplices are

NCn := Fun([n],C),

ie. strings of n composable morphisms in C. An n-simplex α ∈NCn is a string

α = (c1
f1−−→ c2

f2−−→ . . .
fn−−→ cn).

Images of an n-simplex α := (c0
f1−−→ c1→ . . .

fn−−→ cn) ∈NCn under the face and

degeneracy maps si and di are given by:

si(α) = (c0→ . . . ci
id−−→ ci → ·· · → cn)

di(α) =


(c0→ ·· · → ci−1

fi+1fi−−−−→ ci+1→ ·· · → cn) i , 0,n

(c1→ ·· · → cn) i = 0

(c0→ ·· · → cn−1) i = n.

Sanity check 2.1.19. The nerve of [m] ∈ ∆ considered as a poset category looks

like:

N ([m])n = Fun([n], [m])

= (∆m)n

with face and degeneracy maps given by pulling back along the cosimplicial

maps σi and δi .

This forms an isomorphism of simplicial sets N ([m]) ≃ ∆m.
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Since higher simplices in the nerve of a category are precisely the encoding

of composable maps, a functor F : C → D forms a map of simplicial sets NF :

NC→ND given by

(c0
f1−−→ . . .

fn−−→ cn) 7→ (F(c1)
F(f1)
−−−−→ . . .

F(fn)
−−−−→ F(cn)).

A composition of functors C
F−→D

G−→ E induces a composite of simplicial maps

NC
NF−−−→ ND

NG−−−→ NE, which agrees with N (G ◦ F) since G(F(f )) = G ◦ F(f ) for

any f ∈Hom(C). That is to say the nerve forms a functor N : Cat→ sSet.

Proposition 2.1.20. [K, 1.2.2.1] The nerve functor N : Cat→ sSet is fully faith-

ful.

2.1.1 Kan complexes

Definition 2.1.21. [Kan complexes]

A Kan complex K is a simplicial set with the following “horn-filling prop-

erty”: for any i = 0,1, . . . ,n, a horn Λn
i →K extends to a simplex ∆n→K:

Λn
i K

∆n

Kan complexes along with simplicial maps form a subcategory Kan ⊆ sSet.

Example 2.1.22. Let X be a space. The singular complex Sing(X) is a Kan com-

plex.

Proof. By the adjunction (| − | ⊣ Sing) (2.1.16) a horn-filling problem Λn
i →

17



Sing(X) corresponds to a diagram in Top:

|Λn
i | ≈D

n−1 X

|∆n| ≈Dn

f

i f ◦r

where i is the inclusion of a hemisphere into a disk. We can retract a disk to a

hemipshere; ie. there is a map r :Dn→Dn−1 with r◦i = idDn−1 . The composition

f ◦ r : ∆n→ X gives us a map ∆n→ Sing(X). This makes the diagram commute

since f ◦ r ◦ i = f .

Proposition 2.1.23. [Joy02, Cor. 1.4]

A category X is a groupoid (every morphism is invertible) iff its nerve NX

is a Kan complex.

Proof. ⇒: Let X be a groupoid, and say we had a lifting problem:

Λn
i NX

∆n

A horn Λn
i →NX is by definition a map

Λn
i =

⋃
j,i

dj(∆
n)→NX,

ie. a collection of maps dj(∆n)→ NX. Each dj(∆n) is an (n− 1)-simplex, which

we can represent by a string of (n− 1) morphisms in X:

x0 . . . xj−1 xj+1 . . . xn

fj+1fj
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so Λn
i picks out (n−1) strings of morphisms inX, each of the form above, except

for the one of the form:

x0 . . . xi−1 xi+1 . . . xn

We want to build from this an honest simplex ∆n→NX; ie. a string [n]→ X.

(i , 0,1): Take the faces dn(∆n) and d0(∆n):

dn(∆n) : x0 x1 . . . xn−1

d0(∆n) : x1 . . . xn−1 xn

Postcompose dn(∆n) by the map xn−1→ xn to get the desired string.

(i = 0,1): When i = 0 (the case i = 1 is basically the same), consider the faces

d1(∆n) : x0 x2 . . . xn−1 xn

dn(∆n) : x0 x1 . . . xn−1

f2f1
f3 fn

f1 f2 fn−1

We can construct a horn filler [n] → X by composing the string dn(∆n) =

(x0→ ·· · → xn−1) with the map fn : xn−1→ xn.

⇐: If X is a category whose nerve is a Kan complex, given a morphism

f : x→ y in X, we can fill in horns Λ2
0 and Λ2

2 in NX of the form:

Λ2
0 : y Λ2

2 : x

x x y y

f

id id

f
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which correspond to finding left and right inverses of f .

Remark 2.1.24. Any topological space is weakly homotopic to a CW-complex

(this is called cellular or CW approximation). This can be thought of as a cofi-

brant replacement in TopQuillen (4.0.14). Similarly, any simplicial set is weakly

equivalent to a Kan complex. Similarly, this can be thought of as a fibrant re-

placement in sSetQuillen [K, 3.1.7.2, 3.3.6].

We can make this connection between Kan complexes and CW-complexes

tighter by a theorem of Milnor [Mil57], which shows that the homotopy theory

of Kan complexes is equivalent to the homotopy theory of CW-complexes [K,

3.5.0.1]. We can see this from the fact that (| − | ⊣ Sing) (2.1.16) forms a Quillen

equivalence (4.1.5)

sSetQuillen⇄ TopQuillen

2.1.2 Quasi-categories/∞-categories

In the proof of (2.1.23) we saw a hint that outer horns (Λn
0 or Λn

n) are related to

inverting morphisms. On the other hand, inner horns (Λn
i for 0 < i < n) relate

to composing morphisms. For example, Λ2
1 → NC in the nerve of a category

corresponds to a pair of composable morphisms (•→ •→ •) in C, and filling in

to a 2-simplex ∆2→ NC corresponds to finding a composite map. Composing

morphisms is an important part of the structure/definition of a category, but

not every category is a groupoid, so it would make sense that a definition of∞-

categories should include inner horn fillers but not necessarily left/right horn

fillers.

Indeed, a weakening of the horn-filling condition gives us our weak Kan

complexes or quasi-categories.

20



Definition 2.1.25. [quasi-categories]

A quasi-category X is a simplicial set satisfying the horn-filling condition

for inner horns. That is we can extend horn inclusions Λn
i → X for 0 < i < n to

an n-simplex in X:
Λn
i X

∆n

Remark 2.1.26. Quasi-categories form a full subcategory qCat ⊆ sSet. We will

use the terms “quasi-category” and “∞-category” interchangeably.

Example 2.1.27. The nerve of an ordinary category is an∞-category. We showed

this as part of the proof of (2.1.23).

Remark 2.1.28. [HTT, 1.1.2.2]

A simplicial set X is equivalent to the nerve of an ordinary category iff horn

fillers are unique.

Remark 2.1.29. [Lan21, Prop. 1.2.17, 1.3.23] An ∞-category satisfies a lifting

property for spines 2.1.17. That is, given a spine sp(∆n)→ C in an∞-category,

we can fill it in to a simplex:

sp(∆n) C

∆n

A simplicial set satisfying this “spine lifting property” is called a “composer”.

Intuitively this says that given a string • → • → ·· · → • in an ∞-category,

we can fill it into an honest simplex. Filling in spines is the higher-categorical

way of composing morphisms. So it makes sense that any ∞-category should

have this property. But not all composers are∞-categories.

21



Definition 2.1.30. [equivalences]

Let X ∈ sSet. An edge f ∈ X1 is called an equivalence (sometimes “iso-

morphism”) if there exists an inverse: an edge f −1 ∈ X1 forming 2-simplices

∆2⇒ X:
y x

x x y y

f f −1

idx

ff −1

idy

Remark 2.1.31. An equivalence is the homotopical/higher-categorical version

of an isomorphism in ordinary category theory. One can see that if f is an

equivalence, that f −1 is not a strict inverse of f , but an inverse up to homotopy.

If an edge f ∈ C of a simplicial set is an equivalence, then the corresponding

morphism [f ] ∈ hC in the homotopy category is an isomorphism in the ordinary

sense. This follows from the definition (2.1.30), since the 2-simplices appearing

exhibit the map [f −1] as an inverse in the ordinary sense of [f ] in hC.

For this reason, some authors may refer to equivalences as isomorphisms in

an∞-category.

Remark 2.1.32. It’s immediate from the definition that every Kan complex is

an ∞-category. In fact, as we saw in the proof of (2.1.23), a Kan complex is an

∞-category in which all edges are invertible; ie. an (∞,0)-category. An (∞,0)-

category is also called an ∞-groupoid , in analogy with ordinary groupoids.

Alternately, an∞-groupoid can be defined as a quasi-category X for which

any edge f ∈ X1 is an equivalence. Since any path f : x⇝ y in a topological

space X can be reversed, this defines an inverse to the corresponding edge f ∈

Sing(X)1. That is, the singular complex of a space is an∞-groupoid.

Grothendieck’s homotopy hypothesis [Gro21] says that Kan complexes are

precisely the same as∞-groupoids. See [Lan21, Lem. 1.2.29, Cor. 2.1.12].
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Theorem 2.1.33. [Lan21, Rk. 2.1.9][Joy02, Thm. 1.3]

[Joyal’s special horn theorem]

Let C be an∞-category.

A special horn is an outer horn Λn
0→ C (2.1.17) in which the first edge ϕ:

∆{0,1}

Λn
0 C

ϕ

is an equivalence (2.1.30). Dually, one can consider an outer horn Λn
n → C in

which the final edge ∆{n−1,n}→ C is an equivalence.

A lifting problem of the form:

Λn
0 C

∆n

has a solution iff Λn
0→ C is a special horn. (Dually a horn Λn

n→ C can be lifted

to a simplex iff it is a special horn.)

Remark 2.1.34. Joyal’s theorem makes precise the relationship between invert-

ible maps and outer horns, that we saw a hint of in the discussion about Kan

complexes and∞-groupoids.

Remark 2.1.35. [fundamental∞-groupoid]

Let X be a topological space. Let I = [0,1] ∈ Top denote the unit interval.

The fundamental∞-groupoid π∞X of X is a simplicial set, with simplices
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defined:

(π∞X)0 := {points x ∈ X} = Top(∗,X)

(π∞X)1 := {paths in X} = Top(I,X)

(π∞X)2 := {homotopies of paths in X} = Top(I × I,X)

(π∞X)3 := {homotopies of homotopies in X} = Top(I×3,X)

...

(π∞X)n := Top(I×n,X)

Intuitively this is an ∞-groupoid since for any n ≥ 1, an n-simplex is a map

I×n→ X, which has an inverse formed by homotoping in the reverse direction.

One can exhibit homeomorphisms I×n ≈ |∆n| and use the singular complex

Sing(X) (2.1.15) as a definition of the fundamental∞-groupoid of X.

Definition 2.1.36. [opposite simplicial set][K, 1.3.2.2]

Let S be a simplicial set.

The opposite simplicial set Sop ∈ sSet is the simplicial set defined with:

• (simplices): For any n ∈N,

(Sop)n := Sn.

• (face and degeneracy maps): For any n ∈N, and any i = 0,1, . . . ,n

di = dSn−i : Sn→ Sn−1,

si = sSn−i : Sn→ Sn+1,
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where dS• and sS• are the face and degeneracy maps of the sset S.

Proposition 2.1.37. [K, 1.3.2.4, 1.3.2.6]

If C is an∞-category, then Cop is an∞-category.

If C is an ordinary category, then N (Cop) ≃ (NC)op.

The following diagram of categories lays out what is a nerve of what so far:

Gpd Cat

Kan qCat sSet

N N

N

2.1.3 Connected components

An important construction in topology and homotopy theory is the notion of

connected components.

Definition 2.1.38. [connected components of a simplicial set]

There is a functor π0 : sSet→ Set called the connected components func-

tor that sends a simplicial set X to the set

π0X := X0/ ∼

whereX0 is the set of 0-simplices, and∼ is the relation generated by the relation

d1(f ) ∼ d0(f )

for all edges f ∈ X1; ie. two points are in the same connected component if they

are connected by an edge.

Remark 2.1.39. [K, 1.1.9.10]
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When X ∈ sSet is a Kan complex, the connected components has a simpler

description. Points x,y ∈ X0 belong to the same connected component iff there

is an honest edge f : x→ y in X1.

This is different than the definition for an arbitrary sset, in which points

of a are identified iff there is a finite string of edges connecting them. It may

happen that a simplicial set has a string of edges connecting two points, but

not an honest edge; eg. the horn Λ2
1.

Remark 2.1.40. [K, 1.1.7.4]

Take a space X ∈ Top. We can form its connected components πtop0 (X) =

{points x ∈ X} / , with points x ∼ y iff there is a path f : I → X with f (0) =

x,f (1) = y.

Considering the singular complex Sing(X) ∈ sSet and taking connected com-

ponents as a simplicial set agrees with the usual connected components. That

is, the following commutes:

Top Set

sSet

π
top
0

πsset0Sing

Proposition 2.1.41. [K, 1.1.6.21]

There’s an adjunction:

π0 : sSet⇄ Set : (−)•

where (−)• is the constant simplicial set functor (2.1.14).

Proposition 2.1.42. The functor π0 : sSet→ Set preserves coproducts. It also

preserves finite products of ssets, and preserves all products of Kan complexes.
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Proof. Preserving coproducts follows from π0 being a left adjoint.

Preserving finite products of arbitrary simplicial sets is [K, 1.1.6.26].

The statement that π0 preserves all products of Kan complexes can be done

component-wise. Say X =
∏
i∈I Xi is a product of Kan complexes. Then

π0X =

(x0,x1, . . . ) ∈
∏
i

Xi

 / ∼
where ∼ is the relation (xi)i ∼ (yi)i iff there’s an edge (xi)i → (yi)i in

∏
iXi .

Products of simplicial sets are defined component-wise; in particular, edges

are products of edges (
∏
iXi)1 =

∏
i(Xi)1. So an edge f : (xi)i → (yi)i can be

represented by a collection of edges (xi
fi−→ yi)i ∈

∏
i(Xi)1.

So (xi)i ∼ (yi)i iff there exist edges fi : xi → yi for all i – ie. xi ∼ yi in each Xi

respectively. We can define a bijection π0
∏
iXi →

∏
iπ0Xi by:

[(xi)i] 7→ ([xi])i

where square brackets denote equivalence classes.

Remark 2.1.43. Connected components don’t preserve all products of arbitrary

simplicial sets. Let X be the simplicial set:

X =
(
0
f1−−→ 1

f2−−→ . . .

)

ie. X has points indexed by N, and has a single nondegenerate edge between

n→ (n+ 1) for all n ∈N. This sset is contractible, since any two points i, j ∈ X0

are connected by a finite string i→ i + 1→ ·· · → j.

Now let X :=
∏
NX = X×X× . . . , an infinite product of X indexed byN. This
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has vertices and edges given by collections of points and edges in X:

X0 = {x :N→ X,i 7→ xi}

X1 =
{

(xi−1
fi−→ xi)i∈N

}
.

Taking connected components,

π0X = (X)0/ ∼,

where ∼ is the equivalence relation generated by the relation (i 7→ xi) ∼ (i 7→

xi+1) for any point x = (i 7→ xi) ∈ X. That is, x = y iff there exist finitely many

points

x ∼ z1 ∼ z2 ∼ · · · ∼ zk ∼ y

where each zj ∈ X0 (so each zj is a function N→ X,i 7→ z
j
i ) is related to zj−1 in

the following way: given a string of numbers (zi)i , the next string should consist

of adding or subtracting 0 or 1 to each ith entry. The finiteness condition means

that under this equivalence relation, two points x = (i 7→ xi) and y = (i 7→ yi)

are identified iff {|xi − yi |}i∈N is bounded.

In particular, take the points x = (i 7→ 0) and y = (i 7→ i). Since

{|xi − yi |}i∈N =N

is unbounded, x and y live in separate connected components, making π0(X) ,

{∗}, even though
∏
iπ0(X) =

∏
i {∗} = {∗}.
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2.2 Travelling between different models of∞-categories

In this section we will describe some other models of ∞-categories and how

they relate to quasi-categories. A good exposition for this is [HTT, Ch.1] as

well as [Ber06], which also mentions other models not included here.

Remark 2.2.1. We will take the theory of enriched categories for granted; for

details see [Kel82] and [Mac78].

Given a monoidal category V we can consider a category enriched in V –

a structure C which is like a category, but instead of hom-sets, hom-objects.

So for any x,y ∈ ob(C), there exists an object HomC(x,y) ∈ ob(V ), along with

morphisms describing composition, identities, and so on.

Definition 2.2.2. [topologically enriched categories]

A topologically enriched category C is a category enriched over Top (com-

pactly generated weakly Hausdorff spaces, with monoidal structure given by

cartesian product and unit given by the point); ie. C consists of the following:

• A class of objects ob(C).

• For each X,Y ∈ ob(C), a space HomC(X,Y ) ∈ Top.

• For each X,Y ,Z ∈ ob(C), a continuous function

HomC(X,Y )×HomC(Y ,Z)→HomC(X,Z)

describing composition.

• For each X ∈ ob(C), a point idX ∈HomC(X,X).

Remark 2.2.3. Topologically enriched categories, along with lax-monoidal func-

tors and natural transformations form a 2-category that we call tCat.
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One way to think of a homotopy theory is as a category enriched over spaces.

That is, between any two objects, there is a hom-space, in which maps are en-

coded as points and homotopies are encoded as paths. That is two maps x⇒ y

(ie. points in the space C(x,y)) are homotopic iff there exists a path I → C(x,y)

between them.

In this sense, the above gets the job done. One can use topologically en-

riched categories as a foundation for a theory of ∞-categories, but it has some

drawbacks. For example, it’s not so easy to define a topologically enriched cat-

egory of functors between two topologically enriched categories. (On the other

hand, it is relatively straightforward to define a quasi-category of functors be-

tween quasi-categories (2.8.2).)

We want to translate somehow between topologically enriched categories

and quasi-categories. To do this, it turns out that a nice go-between is given by

simplicially enriched categories; ie. categories enriched over sSet.

Definition 2.2.4. [simplicially enriched categories]

A simplicially enriched category C is a category enriched over sSet (with

tensor product × and unit ∆0); ie. C consists of:

• A class of objects ob(C).

• For any objects X,Y ∈ C, a simplicial set called HomC(X,Y ) ∈ sSet.

• A simplicial map encoding composition for any X,Y ,Z ∈ C:

HomC(X,Y )×HomC(Y ,Z)→HomC(X,Z).

• A point idX ∈HomC(X,X)0 for any X ∈ C.
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Remark 2.2.5. We sometimes refer to simplicially enriched categories as simply

“simplicial categories”. This is an abuse of notation, since there is another

notion of a simplicial category which means “a simplicial object in the category

Cat”.

We collect simplicial categories, along with lax-monoidal functors and nat-

ural transformations into a 2-category sCat.

Proposition 2.2.6. [[Lan21, Lem. 1.2.3.7]

A lax-monoidal functor f : V →W induces a 2-functor

f∗ : CatV → CatW

where CatV and CatW are the 2-categories of V -enriched categories and W -

enriched categories respectively. An adjunction between monoidal categories

induces an adjunction of 2-categories.

Remark 2.2.7. Any ordinary category can be thought of as a simplicially en-

riched category via the constant functor (−)• : Set→ sSet (2.1.14). The induced

functor we call

c = ((−)•)∗ : Cat→ sCat.

This is fully-faithful:

Proof. A functor F : C• → D• between simplicial categories corresponds to an

assignment of objects, along with simplicial maps for each x,y ∈ C between

constant simplicial sets:

Fx,y : HomC(x,y)•→HomD(Fx,Fy)•.
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By definition this sends identities to identities and is compatible with compo-

sition. Since composition on constant hom-ssets are determined by the com-

position in the ordinary categories, this describes a unique ordinary functor

F : C→D.

This recognizes Cat ⊆ sCat as a full subcategory.

The adjunction (π0 ⊣ (−)•) (2.1.41) induces an adjunction

π = (π0)∗ : sCat⇄ Cat : ((−)•)∗ = c.

Proposition 2.2.8. [HTT, 1.1.4]

The Quillen equivalence (| − |,Sing) : sSet ⇄ Top (, induces an adjunction

(an equivalence) on enriched categories:

(| − |∗,Sing∗) : sCat⇄ tCat.

On objects, they are identities, and on morphisms they apply geometric real-

ization and singular simplices on Hom-simplicial sets and Hom-spaces respec-

tively:

(C ∈ sCat) 7→ |C| :=


ob(|C|) = ob(C)

Hom|C|(x,y) = |HomC(x,y)|

(C ∈ tCat) 7→ Sing(C) :=


ob(Sing(C)) = ob(C)

HomSing(C)(x,y) = Sing(HomC(x,y))

On the other side, we want to translate between simplicially enriched cat-

egories and simplicial sets. We will do this by extending the nerve N : Cat→
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sSet to a “simplicial” or “homotopy coherent” nerve N∆ : sCat→ sSet (some-

times simply also denoted N ). This was originally done by Jean-Marc Cordier

[Cor82].

Remark 2.2.9. The naive option in defining a simplicial nerve may be to just

take strings of vertices HomC(x,y)0 of the hom-sset. But this ignores all higher

structure of the hom-sset. We can see this by focusing on the simplest example:

a category [n]. The ordinary nerve sends [n] 7→ N [n] ≃ ∆n. Taking the constant

simplicial category c[n] ∈ sCat has hom-ssets:

Homc[n](i, j)k = Hom[n](i, j)

for all k. That is, they are constant simplicial sets. This illuminates our prob-

lem: [n], being an ordinary category, lacks any meaningful higher-order struc-

ture. The constant simplicial category just encodes a bunch of degenerate sim-

plices.

To construct a thicker nerve, we will first define a thick version of [n] called

C[∆n] — one that has non-trivial higher-order information (namely homotopies

witnessing each string of compositions). For example, the thicker version of [2],

called C[∆2], includes an explicit homotopy (0→ 1→ 2)⇒ (0→ 2):

[2] : 1 C[∆2] : 1

0 2 0 2

=

Higher versions will need to include more and more homotopies (and ho-

motopies between homotopies, and so on).
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Definition 2.2.10. [thickened simplicial categories]

For each n ∈ N, the simplicial category C[∆n] (also written C[n]) has ob-

jects {0,1, . . . ,n} and hom-simplicial-sets:

HomC[∆n](i, j) :=


N (Pi,j) i ≤ j

∅ i > j.

where Pi,j is the partially ordered set Pi,j = {I ⊆ [n] of the form {i, . . . , j}} (consid-

ered as a category with maps given by ⊇).1

Sanity check 2.2.11. In our example, C[∆2], when i = 0, j = 1, Pi,j = {{0,1}},

so the nerve has just one vertex: HomC[∆2](0,1) = NP0,1 = {(0→ 1)}. When

i = 0, j = 2,

P0,2 = {{0,1,2} ⊇ {0,2}} ,

so the nerveNP0,2 has two vertices (the strings (0→ 1→ 2) and (0→ 2)) and an

edge between them (the homotopy (0→ 1→ 2)⇒ (0→ 2) that we saw above).

Remark 2.2.12. Given a monotone map f : [n] → [m], we have a map C(f ) :

C[∆n]→ C[∆m] sending i 7→ f (i) and HomC[∆n](i, j)→ HomC[∆m](f (i), f (j)) in-

duced (via the nerve) by the map Pi,j → Pf (i),f (j), I 7→ f (I). This forms a functor

C : sSet→ sCat,

which we may call the Cordier map.

Remark 2.2.13. Under the Bergner model structure on sCat (4.0.10), these

1Sometimes these Pi,j are defined with morphisms given by inclusion instead of reverse-
inclusion. All this does is “reverse the direction” of homotopies in C[∆n]. Since all homotopies
ought to be invertible in an (∞,1)-category, the direction of these shouldn’t matter. Just be
careful which is being used.
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C[∆n] can be thought of as cofibrant replacements (4.0.13) of [n]. In fact, for an

ordinary category C considered as a simplicial category, the simplicial category

C(C) is a cofibrant replacement. See [Rie11].

Definition 2.2.14. [homotopy coherent nerve]

Given a simplicial category C ∈ sCat, its nerve is the simplicial set N∆(C)

defined:

N∆(C)n := HomsCat(C[∆n],C)

with face/degeneracy maps induced from the coface and codegeneracies; ie. by

precomposing:

di = −◦C(δi),

si = −◦C(σi).

Remark 2.2.15. Given a functor of simplicial categories F : C→D, composing

with F forms a simplicial map N∆F : N∆(C)→ N∆(D), componentwise defined

by composing wth F:

N∆(C)n︸  ︷︷  ︸
sCat(C[n],C)

F◦−−−−→ N∆(D)︸ ︷︷ ︸
sCat(C[n],D)

.

This forms a functor N∆ : sCat→ sSet, which is right adjoint to C (2.2.12).

Sanity check 2.2.16. Sometimes the coherent nerve may be denoted simply

N – this has the potential to cause confusion with the ordinary nerve N :

Cat → sSet, but is justified since one of our motivations was to factor the

nerve through simplicial categories. That is, the following diagram of cate-

35



gories should commute:

sCat

Cat sSet

c N∆

N

?

Given an ordinary category C, the constant functor interprets it as a sim-

plicial category cC, with all hom- simplicial sets given by constant simplicial

sets:

HomcC(x,y)n := HomC(x,y)

for any x,y ∈ C and for all n. We can represent these as trivial commuting

diagrams in C; eg. an n-simplex in HomcC(x,y)• corresponding to a map f :

x→ y can be represented by a commuting diagram of the form:

x y

x y

...
...

x y

f

f

f

with n strings of identities forming the verticals.

Taking the coherent nerve of this forms a simplicial set N∆(cC) whose sim-

plices are given by:

N∆(cC)n = sCat(C[∆n], cC).

A map of simplicial categories C[∆n]→ cC will pick out objects x0,x1, . . . ,xn ∈
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C, and for each i ≤ i′ a map of simplicial sets:

C[∆n](i, i′)︸       ︷︷       ︸
NPi,i′

→ cC(xi ,xi′ )︸     ︷︷     ︸
C(xi ,xi′ )

An n-simplex α ∈NPi,i′ is a string of subsets of [n] of the form

S0 =
{
i, j1, j2, . . . , jk , i

′} ⊇ S1 ⊇ . . . ⊇ Sn.

with i and i′ included in each subset. For simplicity, we can assume that α is

nondegenerate. In this case, that means that all subset inclusions are proper.

Let’s label the objects in the image of S0 = {i, j1, . . . , jk , i′} as follows:

i 7→ x

jℓ 7→ cℓ for ℓ = 1, . . . , k

i′ 7→ y.

Then the image of S0 can be interpreted as a string of composable morphisms

in C:
S0 = {i, j1, . . . jk , i′}

C : x c1 . . . ck y
f1 fk+1

Each proper inclusion throws away some elements in between i and i′,

which we can interpret as composing over the skipped elements. For exam-

ple, a subset inclusion throwing away a single element

{
i, . . . , jℓ, . . . , i

′}
⊋

{
i, . . . , ĵℓ, . . . , i

′
}
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(a non-degenerate 1-simplex in NPi,i′ ), corresponds to the following diagram

in C (representing a 1-simplex in cC(x,y)•):

x y

x y

fnfn−1...f1

fn...(fℓ+1fℓ)...f1

Similarly our nondegenerate n-simplex S0 ⊋ · · · ⊋ Sn maps to an n-simplex

in cC(x,y), where each successive row is a string of morphisms with the skipped

elements “composed over”.

For clarity, we can look at some small cases. When n = 2, i = 0, i′ = 2, and the

edge α ∈ (C[∆2](0,2))1 given by {0,1,2} ⊇ {0,2}, then the image of α in cC(x,y)

can be represented by a commutative diagram in C:

x c1 y

x y

f g

g◦f

which is a triangle witnessing simple composition.

When n = 3, i = 0, i′ = 3, and α ∈ (C[∆n](0,3))2 the 2-simplex given by:

{0,1,2,3} ⊇ {0,1,3} ⊇ {0,3}

the corresponding image in cC(x,y) can be represented by a commutative dia-
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gram in C:

x c1 c2 y

x c1 y

x y

f g h

(h◦g)◦f

f h◦g

which encodes some associativity. Neat!

So a map of simplicial sets C[∆n]→ N∆(cC) picks out a string of n compos-

able morphisms in C and equates all the different ways of associating them.

This is precisely the ordinary nerve NC.

This sets us up to make precise the relation between simplicial sets and sim-

plicially enriched categories, and more specifically between quasi-categories

and Kan-enriched categories.

Proposition 2.2.17. [HTT, 2.2.5.1]

The adjunction

C : sSetJoyal ⇄ sCatBergner :N∆

is a Quillen equivalence (4.1.5).

Remark 2.2.18. Fibrant objects (4.0.13) in sSetJoyal are precisely the quasi-

categories, and the fibrant objects in sCatBergner are precisely Kan-enriched cat-

egories. This makes us make precise the relationship between quasi-categories

and Kan-enriched categories as equivalent models of∞-categories.

The following lays out the situation between simplicial sets, simplicial cat-

egories, and topologically enriched categories, and the adjunctions between

them (left adjoints on the left):
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sSet

sCat

tCat Cat

C N∆

Sing∗

|−|∗

π

c

N

2.2.1 Other models of∞-categories

An (∞,1)-category comes with varying degrees of morphisms, with those above

degree 1 all invertible. There are many ways of encoding or approximating

such a construction. We talked about three: quasi-categories, simplicially en-

riched categories, and topologically enriched categories. But there are others

(see [Ber06] for a survey), of varying degrees of complexity / equivalence to

∞-categories.

• Rezk spaces (a.k.a. complete Segal spaces)

• Segal categories (a generalization of simplicial categories)

• 1-complicial sets

• Cubical sets

2.3 Morphism spaces

We showed that∞-categories are the same as Kan-enriched categories (2.2.18).

Given points x,y ∈ X0 in an∞-category, we can construct a Kan complex whose

points correspond to edges of the form (x→ y) ∈ X1.

Definition 2.3.1. [mapping complex][K, 4.6.1.1]

Let S be a simplicial set, and let x,y ∈ S0 be points.
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The mapping space of S between x and y is a simplicial set MapS(x,y),

defined as a fiber product of simplicial sets:

MapS(x,y) := {x}• ×S∆{0} S
∆1
×
S∆
{1} {y}• ,

where {x}• and {y}• are constant simplicial sets (2.1.14).

Alternatively one can define a mapping space as a pullback of simplicial

sets:
MapS(x,y) Fun(∆1,S)

∆0 S × S
(x,y)

(source,target)

⌜

Remark 2.3.2. [K, 4.6.1.1] When S is an ∞-category, MapS(x,y) forms a Kan

complex, hence the name mapping space.

Sanity check 2.3.3. Limits in simplicial sets are calculated “pointwise” (on the

level of sets), so we can draw out some of the low-dimensional simplices of this

mapping space by hand and check that they match our intuition of what we

think they should be. Namely points in a mapping space MapS(x,y) should

correspond to edges (x → y) ∈ S1, and edges in MapS(x,y) should correspond

to homotopies.
MapS(x,y)n

{x}n (S∆
1
)n {y}n

Sn Sn
i∗0 i∗1

{x}n consists of a single degenerate constant n-simplex (x = x = · · · = x) (simi-

larly {y}n). The guy in the middle (S∆
1
)n = HomsSet(∆n ×∆1,S).
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(0-simplices): We’d expect points of the mapping space between x and y to

be maps of the form (x→ y) ∈ S1.

MapS(x,y)0 = {x}0 ×S0
(S∆

1
)0 ×S0

{y}0

=
{
f : ∆1→ S : f (0) = x,f (1) = y

}
= {(f : x→ y) ∈ S1}

1-simplices: Edges should be homotopies f ∼ g between maps x⇒ y:

MapS(x,y)1 = {x}1 ×S1
(S∆

1
)1 ×S1

{y}1 .

Edges of the function complex (S∆
1
)1 = Fun(∆1 ×∆1,S) (these look like square-

shaped diagrams), and edges of constant simplicial sets are degenerate (eg.

{x}1 =
{
x

id−−→ x
}
). So edges of MapS(x,y) are squares ∆1 ×∆1→ S of the form:

x y

x y

f

g

ie. three maps f ,g,h from x→ y, and homotopies id◦f = f ∼ h and g ◦ id = g ∼

h, which exhibit f ∼ h ∼ g as homotopic.

Sanity check 2.3.4. What about when our quasi-category is the nerve of a cat-

egory? Then MapNC(x,y) is a pullback:

MapNC(x,y) NC∆1

∆0 NC ×NC
(x,y)

(source,target)
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By the pullback, n-simplices of the mapping space MapNC(x,y) look like

diagrams ∆n ×∆1→NC such that

∆n × {0}

∆n ×∆1 NC

∆n × {1}

x

y

where x,y : ∆n ⇒ NC are degenerate n-simplices constant at x and y respec-

tively.

Simplices of the function complex NC∆1
look like

(NC∆1
)n = HomsSet(∆

n ×∆1,NC)

�HomsSet(N ([n]× [1]),NC)

�HomCat([n]× [1],C),

ie. diagrams in C of the form

c0 c1 . . . cn

c′0 c′1 . . . c′n

So n-simplices of MapNC(x,y) correspond to diagrams in C of the form:

x x . . . x

y y . . . y

which are really just the data of a single morphism x→ y in C. So we have an
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equivalence

MapNC(x,y) ≃HomC(x,y)•

where HomC(x,y)• is the constant simplicial set (2.1.14).

2.4 Homotopy categories

The bare minimum required to present a homotopy theory is an ordinary cat-

egory with a class of weak equivalences. One would like to study how such a

category behaves if these weak equivalences were honest isomorphisms. This

construction is known as a homotopy category.

Definition 2.4.1. [homotopy category of a category with weak equivalences]

Let (C,W ) consist of an ordinary category C with a collection W ⊆Hom(C)

of “weak equivalences”. The homotopy category (also called the localization

of C at W ) is a functor

γ : C→ hC = C[W −1]

that:

• inverts all maps in W ; and

• is universal with this property: that any functor C→D sending all maps

in W to isomorphisms in D factors through γ .

Example 2.4.2. The primordial homotopy category is the localization of Top at

weak homotopy equivalences.

Example 2.4.3. Another example is the homotopy category of chain complexes

over a commutative ring R. Let Ch(R) be the category of chain complexes of

R-modules.
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The homotopy category is a localization

Ch(R)→ Ch(R)[(h.e.)−1] = K(R),

of chain complexes at homotopy equivalences of chain complexes.

The derived category is a localization

Ch(R)→ Ch(R)[(q.iso′s)−1] =D(R),

of chain complexes at quasi-isomorphisms.

2.4.1 Of model categories

Remark 2.4.4. More generally, if M is a model category (4.0.10), there is an ex-

plicit description of its homotopy category hM by taking the same objects and

taking hom-sets to be hM(X,Y ) := M(Xc,Y f ), where Xc and Y f are cofibrant

and fibrant replacements respectively (4.0.13). This exhibits hM = M[W −1] as

the localization of M at its weak equivalences [Qui67].

Remark 2.4.5. A Quillen equivalence forms an equivalence (as ordinary cate-

gories) of homotopy categories (4.1.5).

• In particular the Quillen equivalence sSetQuillen ≃Q TopQuillen describes

an equivalence of categories hsSetQuillen ≃ hTopQuillen. Since bifibrant ob-

jects in sSetQuillen are Kan complexes and in TopQuillen are CW-complexes,

we have isomorphisms hsSetQuillen ≃ hKan and hTopQuillen ≃ hCW, where

Kan ⊆ sSet and CW ⊆ Top are the full subcategories of Kan complexes

and CW-complexes. That is, the homotopy theory of Kan complexes is

the same as the homotopy theory of CW-complexes.
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• Similarly, the Quillen equivalence sSetJoyal ≃Q sCatBergner forms an equiv-

alence hsSet ≃ hsCat. Bifibrant objects in sSetJoyal are quasi-categories

and in sCatBergner are Kan-enriched categories, forming an equivalence

of homotopy categories hqCat ≃ hKCat where KCat ⊆ sCat is the full

subcategory of Kan-enriched categories.

2.4.2 Of topologically/simplicially enriched categories

We can model a homotopy theory as a topologically or simplicially enriched

category. Here homotopies are encoded as paths/edges in hom-spaces/ssets.

Definition 2.4.6. [homotopy category of a topologically/simplicially enriched

category]

Let C be a topologically or simplicially enriched category.

The homotopy category hC is an ordinary category whose objects are the

objects of C, and hom-sets:

HomhC(x,y) := π0 HomC(x,y),

where π0 is the connected components (2.1.3) of the hom-space or hom-sset. If

f ∈ C(x,y) is a point in the mapping-space/sset, we call its image in the homo-

topy category [f ] ∈ hC(x,y).

Identities and composition come from the enriched category C. That is idx

in hC is [idx], and composition is:

hC(x,y)× hC(y,z)→ hC(x,z)

([f ], [g]) 7→ [g] ◦ [f ] := [g ◦ f ].
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Sanity check 2.4.7. Let f , f ′ ∈ C(x,y) be points in a hom-space/sset. By defi-

nition, [f ] = [f ′] in the homotopy category iff they live in the same connected

component of the mapping-space/sset C(x,y). That is, if there is a path I →

C(x,y) or an edge ∆1 → C(x,y) connecting them. In other words, [f ] = [f ′] in

the homotopy category iff f and f ′ are homotopic.

If f : x→ y is a weak equivalence in C, by definition there is a map f −1 : y→

x such that f −1 ◦ f is homotopic to idx (and f ◦ f −1 is homotopic to idy). That

is, there exists a path/edge f −1f → idx in the space/sset C(x,x). That is, f −1f

and idx live in the same path-component of C(x,x), ie.

[f −1] ◦ [f ] = [f −1f ] = [idx]

(similarly [f ]◦[f −1] = [idy]) in the homotopy category. So indeed a weak equiv-

alence f ∈ C is sent to an isomorphism in hC.

Remark 2.4.8. [Rez22, Def. 43.11][HTT, 1.1.3]

There is another construction also called the “homotopy category” of a topo-

logically enriched category. Let C ∈ tCat.

Let HC2 be the category enriched over H = hKan (ie. enriched over homo-

topy types) as follows: objects of HC are objects of C. Hom-homotopy types

are:

HomHC(x,y) := [Sing(C(x,y))] ∈H,

where C(x,y) ∈ Top is the mapping-space, and Sing is the singular complex

functor Top→Kan (2.1.22)

2In [HTT] this is also denoted hC, which can cause some confusion between the H-enriched
homotopy category versus the ordinary homotopy category hC, which is why we have called it
HC.
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The two notions of the homotopy category (HC and hC) of a topologically

enriched category C are related. Taking X := HomC(c,c′) ∈ Top for objects

c,c′ ∈ C, then [X] = HomHC(c,c′) ∈ H and π0X = HomhC(c,c′) by definition.

Connected components are a homotopy invariant, so connected components of

the homotopy type π0[X] are the same as π0X.

2.4.3 Of simplicial sets

In the case of simplicial sets, the nerve N : Cat → sSet (2.1.18) admits a left

adjoint h : sSet→ Cat, which sends a simplicial set S to a category hS, called

its homotopy category.

Definition 2.4.9. [K, 1.2.5.4]

[homotopy category of a simplicial set]

Let S ∈ sSet. Its homotopy category hS is an ordinary category consisting

of:

• (objects): Objects are vertices of S, so ob(hS) := S0;

• (morphisms): Any edge f ∈ S1 determines a morphism [f ] : d1(f )→ d0(f )

in hS. These generate morphisms of hS under composition, so any string

of edges in S:

x0
f1−−→ x1

f2−−→ . . .
fn−−→ xn

forms a map [fnfn−1 . . . f1] ∈ hS(x0,xn).

Identities and composition are defined by:

[s0(x)] = idx, [d1(σ )] = [d0(σ )] ◦ [d2(σ )].
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for any x ∈ S0 and any σ ∈ S2. That is, identities are given by degenerate

edges, and [g] ◦ [f ] = [h] iff there is a 2-simplex in S of the form:

•

• •

f g

h

Proposition 2.4.10. [K, 1.2.5.5] The construction S 7→ hS described above forms

a functor h : sSet→ Cat, and this functor h is left adjoint to the nerve functor

N : Cat→ sSet.

Remark 2.4.11 (K, 1.2.5.7). It is not true that every map in hS comes from

a single edge in S1. Generally, a map x → y in hS can be represented by a

sequence of edges [fn . . . f1]. This makes it not so easy to describe the homotopy

category of an arbitrary simplicial set.

When S is an∞-category, this problem disappears. A sequence of edges in

an∞-category

•
f1−−→ •

f2−−→ . . .
fn−−→ •

forms the spine (2.1.17) of an (n+ 1)-simplex which we can fill in (2.1.29) and

take the edge ∆{0,n+1} ⊆ ∆n+1 as the composite.

2.4.4 Of∞-categories

Remark 2.4.12. Let C be a quasi-category, x,y ∈ C0, and edges

f ,g ∈ C1(x,y) := {ϕ ∈ C1 : ϕ(0) = x,ϕ(1) = y} .

49



There are two ways we may describe when f and g are homotopic; call them ∼ℓ

and ∼r for “left” and “right” homotopic.

(f ∼ℓ g) : x (f ∼r g) : y

y x

x y

f

g

idx

f

g

idy

These form two different relations ∼ℓ and ∼r on HomC(x,y). We can define

two hom-ssets

HomL
C(x,y) := HomC(x,y)/ ∼ℓ

HomR
C(x,y) := HomC(x,y)/ ∼r .

If C is an ∞-category, the two equivalence relations are the same [Cis19,

Lem. 1.6.4], and we can define a mapping space HomC(x,y) that is weakly

equivalent to both the left and right hom-ssets [HTT, 4.2.1.8]

HomL
C(x,y) ≃HomC(x,y) ≃HomR

C(x,y).

Definition 2.4.13. [homotopy category of a quasi-category]

Given a quasi-category C, its homotopy category hC has objects given by

vertices C0, and morphisms given by HomhC(x,y) := C1(x,y)/ ∼, where

C1(x,y) := {f ∈ C1 : d1(f ) = x,d0(f ) = y}

and ∼ is the equivalence relation of homotopy. That is, maps [f ] = [g] in hC iff
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f ∼ g in C.

Remark 2.4.14. Since the nerve construction N : Cat → sSet is fully faithful

(2.1.20), for any ordinary category C, the counit hNC
∼−→ C is an equivalence.

For an ∞-category C, the unit C→ NhC is an isomorphism iff C is the nerve of

some category [Cis19, Prop. 1.4.11].

Proposition 2.4.15. [homotopy category of a Kan-enriched category][Cis19,

Prop. 3.7.2]

An ∞-category C can be realized as a Kan-enriched category (2.2.18) by

the functor C : sSet→ sCat (2.2.12). We can construct its homotopy category

hscatC(C) as described for simplicial categories (2.4.6).

Then there is an isomorphism of homotopy categories

hscatC(C) � hC,

where hC is the homotopy category as a quasi-category (2.4.13).

That is, we can describe the homotopy category hC as:

HomhC(X,Y ) = π0 MapC(X,Y ),

as the connected components (2.1.3) of the mapping space (2.3.1).

Sanity check 2.4.16. Let C be an∞-category.

The homotopy category of the opposite ∞-category Cop (2.1.37) is equiva-

lent to the opposite of the homotopy category:

h(Cop) ≃ (hC)op.
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Objects in both are just objects of C. A morphism in h(Cop) is an equivalence

class of a morphism f op : x→ y, which corresponds to an edge f : y → x in C.

The edge f corresponds to an equivalence class [f ] : y → x in hC, which forms

a morphism [f ]op : x→ y in (hC)op. Any morphism in (hC)op can be described

in this way.

We’ve introduced a number of different “homotopy categories”:

• (of an ordinary category with weak equivalences): as an ordinary category

formed by inverting weak equivalences.

• (of a model category): as a localization inverting weak equivalences, or

equivalently described as a category where hom-sets are restricted to cofi-

brant replacements in the source and fibrant ones in the targets.

• (of a topologically enriched category): as an H-enriched category formed

by taking homotopy classes of mapping spaces.

• (of a topologically enriched category): as an ordinary category formed by

taking connected components of mapping spaces.

• (of a simplicially enriched category): as an ordinary category formed by

taking connected components of mapping simplicial sets.

• (of a simplicial set): as an ordinary category with morphisms generated

by edges of the simplicial set (sometimes this is called the fundamental

category).

• (of a quasi-category): as an ordinary category formed by taking equiva-

lence classes of edges via homotopy.
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2.5 ∞-categories of spaces and∞-categories

We will construct two ∞-categories: (1) an ∞-category of spaces called S, and

(2) an∞-category of∞-categories called Cat∞.

(1)

Definition 2.5.1. [HTT, 1.2.16.1] The category of Kan complexes is natu-

rally simplicially enriched3 by taking the mapping complex (2.8.2):

MapKan(X,Y )n = sSet(X ×∆n,Y ).

Taking the coherent nerve forms an ∞-category of spaces S =N∆(Kan).

Remark 2.5.2. We could have started with CW. Two CW complexes X

and Y form a CW complex Y X , whose points are maps X→ Y and which

is also a CW-complex. with Kan-enrichment given by singular complexes

of mapping spaces, and then taken the simplicial nerve of this to get an

alternate version of an ∞-category of spaces. There is an equivalence of

∞-categories N∆(Kan) =N∆(CW) = S (see [Lan21, Obs. 1.3.43]).

Remark 2.5.3. This is a crucial ∞-category, playing the role that the cat-

egory of sets plays in ordinary category theory. For example, instead of

hom- sets we have hom- spaces (2.3.1), which live in S. And presheaves

of a ordinary category C are functors Cop → Set, while presheaves of an

∞-category C are (∞-) functors Cop→ S.

(2)

3In fact, Kan-enriched (2.3.2).
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Definition 2.5.4. [core/maximal groupoid]

Let C be a category.

The maximal groupoid is a subcategory C≃ ⊆ C formed by restricting

hom-sets to isomorphisms

HomC≃(X,Y ) :=
{
isomorphisms X

∼−→ Y
}
⊆HomC(X,Y ).

Using this we can find a maximal∞-groupoid inside an∞-category C by

a pullback of simplicial sets:

C≃ C

N ((hC)≃) NhC

Definition 2.5.5. [the∞-category of∞-categories] [HTT, 3.0.0.1]

Let Cat∆∞ be the simplicial category whose objects are quasi-categories,

and whose hom simplicial sets are Kan complexes formed by taking the

maximal Kan complexes of the usual function complexes:

Cat∆∞(X,Y ) = (Y X)≃ ⊆ Y X .

Taking the simplicial nerve of this Kan-enriched category forms an ∞-

category Cat∞ :=N∆(Cat∆∞).

Remark 2.5.6. Note that this process throws away some information. In

particular, we lose the information of any non-invertible functors be-

tween ∞-categories. In analogy with how Cat really wants to form a
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2-category, we can see that Cat∞ wants to form something like an “(∞,2)-

category”. But we will not pursue this.

We want to form an ∞-category, ie. a category enriched in ∞-groupoids

(2.1.32). The category of quasi-categories qCat ⊆ sSet is simplicially en-

riched (2.8.2), but a priori the mapping-sset of functors between two ∞-

categories need not be an ∞-groupoid. This is the reason for taking the

maximal subgroupoid in the construction above.

2.6 Subcategories

Definition 2.6.1. [(∞-) subcategories]

A subcategory D of an∞-category C is defined via a pullback (of simplicial

sets):
D C

N (D) N (hC)

⌜

where D ↪→ hC is a subcategory in the ordinary sense.

Remark 2.6.2. Defining subcategories in this way means that many properties

of subcategories of an ∞-category C depend only the level of homotopy cate-

gories. For example, a subcategory C′ ⊆ C is called full if hC′ ⊆ hC is full in the

usual sense.

2.7 Fibrations

Fibrations show up often in this world, as they allow us a certain level of control

rather than working directly with simplicial sets, which often involves keeping

track of large amounts of coherence data.
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It’s easy to lose track of all the various types of fibrations, so we collect

these here for reference. A good reference for fibrations in ∞-category theory

is [BS16].

Recall that a map p in a category is said to have the right lifting property

(RLP) (4.0.6) against a map f if there exists a lift of the form:

• •

• •
f p

Definition 2.7.1. [fibrations, fibrations, fibrations]

A map p : X→ Y of simplicial sets is called...

• a Kan fibration if it has the RLP against all horn inclusions Λn
i ↪→ ∆n for

0 ≤ i ≤ n, for all n ∈N.

• a trivial fibration if it has the RLP against all boundary inclusions ∂∆n ↪→

∆n, for all n ∈N.

• an isofibration if it has the RLP aginst the map ∆0→ J , where J =
{
• ∼−→ •

}
is the walking isomorphism (ie. the preimage of any isomorphism in Y is

an isomorphism in X).

• an inner fibration if it has the RLP against inner-horn inclusions Λn
i ↪→

∆n for 0 < i < n.

• a left fibration (resp. right fibration) if it has the RLP against horn in-

clusions Λn
i ↪→ ∆n for 0 ≤ i < n (resp. 0 < i ≤ n).

• a cocartesian fibration (resp. cartesian fibration) if it’s an inner fibration

and has the RLP with respect to the inclusion {0} ↪→ ∆1 (rep. {1} ↪→ ∆1),
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and the resulting edge ∆1→ X is p-cocartesian (resp. p-cartesian).

These sit in relation to each other as follows:

{trivial Kan fibrations}

{Kan fibrations}

{left fibrations} {right fibrations}

{isofibrations}

{inner fibrations}

2.7.1 Co/cartesian fibrations

Definition 2.7.2. [co/cartesian morphisms in ordinary categories]

Let p : C → D be a functor of ordinary categories. A map f : [1] → C is

called:

• p-cartesian if there’s a unique solution to the lifting problem:

(1→ 2)

(1→ 2← 0) C

[2] D

p
∃!

f

57



• p-cocartesian if there’s a unique solution to the lifting problem:

(0→ 1)

(1← 0→ 2) C

[2] D

p
∃!

f

This formulation is intended to be analagous to the ∞-version, but we can

draw out what this looks like in terms of concrete morphisms in C and D. A

map f : c1→ c2 in C is p-cartesian if for any map (c0→ c2) ∈ C and a commut-

ing triangle

(p(c0)→ p(c1)
p(f )
−−−→ p(c2)) ∈D,

there exists a unique map (c0→ c1) filling in the triangle in C:

C : c1

c0 c2

D : p(c1)

p(c0) p(c2)

f

p(f )

∃!

Definition 2.7.3. [HTT, 2.4.1.4]

[co/cartesian morphisms in∞-categories]

Let p : X→ Y be an inner fibration between simplicial sets.

An edge f : ∆1→ X is called:

58



• p-cartesian if for any n ≥ 2, any lifting problem

∆{n−1,n}

Λn
n X

∆n Y

f

p

has a solution.

• p-cocartesian if for any n ≥ 2, any lifting problem

∆{0,1}

Λn
0 X

∆n Y

f

p

has a solution.

Remark 2.7.4. Note that the lifts in the∞-version are not required to be unique,

unlike the ordinary version.

Sanity check 2.7.5. Let p : C→ D be a functor of ordinary categories and Np :

NC → ND the image under the nerve. Then a morphism f ∈ Hom(C) is p-

cartesian (2.7.2) iff it is Np-cartesian (2.7.3) as an edge in NC.

Proof. ⇒: Suppose f : x → y is a p-cartesian map of C. This defines an edge

f ∈ NC1, and we can ask if this is Np-cartesian in the ∞-sense. Form a lifting
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problem:

∆{n−1,n}

Λn
n NC

∆n ND

Np

f

An n-simplex of NC is a string [n]→ C. In particular, take the face

∆{0,1,...,̂n−1,n} →Λn
n.

This is a string in C:

c0 c1 . . . cn−2 cn

that skips cn−1. This string is such that it forms an n-simplex in ND, ie. a

string in D of the form p(c0)→ ·· · → p(cn−1)
p(f )
−−−→→ p(cn). That is, we have the

following strings in C and D:

cn−1

C : c0 c1 . . . cn−2 cn

D : p(c0) p(c1) . . . p(cn−2) p(cn−1) p(cn)
p(f )

f

If f is p-cartesian, there exists a map cn−2→ cn−1 making the triangle commute

and mapping to the edge p(cn−2)→ p(cn−1) inD. This forms a simplex ∆n→NC

making the diagram commute.

⇐: On the other hand, suppose f ∈ NC1 is Np-cartesian. Is it p-cartesian?
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Since h(∆n) = h(N [n]) ≃ [n], and

h(Λn
n) = h

⋃
i,n

∆

{
0,...,̂i,...,n

}
≃

⋃
i

h(∆n−1)

≃
⋃
i

[n− 1],

we can translate the lifting problem via adjunction (h ⊣ N ) (2.4.10) to get a

lifting problem in Cat:

∆{n−1,n} [1]

Λ2
2 NC (0→ 2← 1) C

∆2 ND [2] D

Np

f

p

f

A solution exists since f is Np-cartesian. But it is not necessarily unique. Sup-

pose we had two such solutions g and g ′:

c1

c0 c2ϕ

f

g ′

g
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We can organize these into a horn Λ3
3→NC formed by the three faces:

c0 c1 c0 c1

c0 c2 c2

c0 c1

c0 c2 c0 c2

g

g ′
f

ϕ

ϕ

g

f
ϕ

f
g ′

ϕ

ϕ

ϕ

Since f is Np-cartesian the following admits a solution:

∆{1,2}

Λ3
3 NC

∆3 ND

Np

f

the filled-in face ∆{0,1,2} ↪→ ∆3→NC is the one witnessing:

c0 c1

c0

g ′

g

ie. [g ′] = [g ′◦id] = [g] in the homotopy category hNC ≃ C. In other words g ′ = g

in C.

Definition 2.7.6. [cartesian and cocartesian fibrations]

An inner fibration p : X→ Y between simplicial sets is a:
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• cartesian fibration if any lifting problem

{1} X

∆1 Y

p

has a solution which is p-cartesian.

• cocartesian fibration if any lifting problem

{0} X

∆1 Y

p

has a solution which is p-cocartesian.

2.7.2 The straightening-unstraightening equivalence

The straightening-unstraightening equivalence is the ∞-categorical analogue

of the “Grothendieck construction” in ordinary category theory. We will de-

scribe the Grothendieck construction and briefly describe the straightening-

unstraightening equivalence.

Definition 2.7.7. A Grothendieck fibration (or categorical fibration) is a func-

tor p : E → B such that the fibers Eb := p−1(b) depend contravariantly functo-

rially on b for all b ∈ B; ie. a map b→ b′ in B gives rise to a functor Eb′ → Eb

between fibers.

The dual notion where the fibers depend covariantly functorially on b (ie. a

map b→ b′ forms a map Eb→ Eb′ ) is called a Grothendieck opfibration .
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Proposition 2.7.8. The Grothendieck construction refers to an equivalence of

2-categories

Fun(Bop,Cat) ≃ Fib(B)

where the left is a 2-category of functors Bop → Cat, and the right is a 2-

category of Grothendieck fibrations over B.

(Dually, there is an equivalence Fun(B,Cat) ≃ opFib(B) between covariant

functors B→ Cat and opfibrations over B.)

Remark 2.7.9. Let’s unpack this.

The Grothendieck construction starts with a functor F : Bop → Cat and de-

termines uniquely a fibration p : E→ B. A functor Bop→ Cat is a collection of

categories indexed by B:

{F(b) ∈ Cat : b ∈ B}

with functors F(b)→ F(b′) for any map b← b′ in B.

A fibration p : E → B is a category consisting of subcategories formed by

fibers Eb = p−1(b) for each b ∈ B. Each map b→ b′ determines a functor between

subcategories Eb← Eb′ .

Grothendieck’s construction defines the fibers as Eb := F(b) for each b ∈ B.

One nice thing about this is that we can translate between:

 functors between

B-indexed categories

 ↔

morphisms in a fibered category

E→ B


Let’s describe how this looks: pick a map f : b→ b′. This forms a functor

Ff : F(b′)→ F(b).

Since p is a cartesian fibration, for any e′ ∈ Eb′ , there is a corresponding
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element Ff (e′) ∈ Eb and a p-cartesian map Ff (e′)→ e′ in E:

Ff (e′)→ e′ E

B Cat

b
f
−→ b′

F(b)← F(b′)

Ff (e′)←[ e′

F

p

Let e ∈ Eb ≃ F(b), and let e→ e′ be a morphism in E. Then e→ e′ lives over f ,

and since Ff (e′)→ e′ is p-cartesian, e→ e′ factors uniquely through Ff (e′):

Ff (e′) e′

e E

B Cat F(b) F(b′)

b b′ Ff (e′) e′

b e

F

p

f

Ff

∃!

∃!id
f

Since Eb ≃ F(b), a map e→ Ff (e′) in Eb corresponds to a map e→ Ff (e′) in F(b).

That is,

HomE(e,e′) ≃HomEb(e,Ff (e′)) ≃HomF(b)(e,Ff (e′)).

That is, we can study the functor Ff by looking at maps in E.

Remark 2.7.10. The straightening-unstraightening equivalence is an equiva-
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lence of∞-categories

Fun(Bop,Cat∞) ≃ cart(B)

between the ∞-category of functors Bop → Cat∞ and an ∞-category of carte-

sian fibrations over B. (Dually, an equivalence Fun(Bop,Cat∞) ≃ cocart(B).)

Remark 2.7.11. This is the analagous statement to (2.7.9). The straightening-

unstraightening equivalence allows us to translate between

 functors between

B-indexed∞-categories

 ↔

edges in an∞-category

fibered over B


This is useful already in ordinary category theory, and is particularly useful in

∞-category theory, where the large amounts of data involved make it often dif-

ficult to make∞-categorical statements or to work with simplicial sets directly.

For more, see [Maz15], [BS16], and [HTT, §3].

2.8 Functors

Remark 2.8.1. The categories Top and Cat can be thought of as being “enriched

over themselves”.

• Given topological spaces X and Y , one can topologize the set of maps

HomTop(X,Y ) by equipping the set with the “compact-open” topology.

This forms a space often called Y X . Points in this space are continuous

maps X→ Y and paths in this space are homotopies between maps.

• Given categories C and D, one builds a category Fun(C,D), whose objects

are functors C→D and whose morphisms are natural transformations.
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We can do a similar construction in the category of simplicial sets, in which

we can form a simplicial set whose vertices are simplicial maps between two

fixed simplicial sets.

Definition 2.8.2. [function complexes]

Let X and Y be simplicial sets.

The function complex is a simplicial set denoted Fun(X,Y )• (sometimes

written Fun(X,Y ), Hom(X,Y ), or Y X), which is defined as follows:

• (simplices):

Fun(X,Y )n := HomsSet(∆
n ×X,Y ).

• (face and degeneracy maps):

si : (∆n ×X
f
−→ Y ) 7→ (∆n+1 ×X

si×id
−−−−→ ∆n ×X

f
−→ Y )

di : (∆n ×X
f
−→ Y ) 7→ (∆n−1 ×X

di×id
−−−−→ ∆n ×X

f
−→ Y )

Proposition 2.8.3. [K, 1.4.3.7] Given a simplicial set X and an ∞-category C,

the function complex Fun(X,C)• is an∞-category.

Proposition 2.8.4. [K, 1.4.3.3] There’s an equivalence of∞-categories:

NCat(C,D) ≃ Fun(NC,ND).

On the left: Cat(C,D) is the category whose objects are functors between or-

dinary categories C → D, and whose morphisms are natural transformations.

Taking the nerve forms an ∞-category NCat(C,D). On the right: since ND is

an∞-category, the function complex Fun(NC,ND)• is an∞-category.
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Sanity check 2.8.5. Let X be a simplicial set and Y be an∞-category.

The homotopy category hFun(X,Y ) has:

• (objects): simplicial maps f : X ≃ X ×∆0→ Y .

• (morphisms): for two such simplicial maps f ,g : X⇒ Y , morphisms [H] ∈

HomhFun(X,Y )(f ,g) are equivalence classes of simplicial mapsH : X×∆1→

Y of the form:
X ×∆{0}

X ×∆1 Y

X ×∆{1}

H

f

g

with two such morphisms [H], [H ′] : X ×∆1⇒ Y being equal in the hom-

set HomhFun(X,Y )(f ,g) iff there’s a map α : X ×∆2→ Y of the form:

g

f g
H ′

H or

f

f g
H ′

H

Proposition 2.8.6. If X and Y are ∞-categories, and Y = NC is the nerve of a

category, then there is an equivalence of categories:

hFun(X,Y ) ≃ Cat(hX,hY ),

where hFun(X,Y ) is the homotopy category of the function complex (2.8.2)

between X and Y , and Cat(hX,hY ) is the ordinary functor category between

the ordinary categories hX and hY .

Proof. We can define a functor hFun(X,Y )→ Cat(hX,hY ) as follows:
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• (on objects): An object f ∈ Fun(X,Y ) forms a functor hf : hX → hY of

homotopy categories.

Since Y is the nerve of some category, Y ≃ NhY , so by the adjunction

(h ⊣N ) (2.4.10), we have a bijection

HomsSet(X,Y ) �HomsSet(X,NhY ) �HomCat(hX,hY ).

We want to relate the set on the left to the set HomsSet(X,Y ); ie. we want

to relate NhY to Y . In general the unit gives us a map NhY ← Y , which

is an equivalence iff Y is the nerve of an ordinary category.

• (on morphisms): Let f and g be objects in Fun(X,Y ). By definition a

morphism [H] : f → g in hFun(X,Y ) is represented by a mapH : X×∆1→

Y .

Given an edge ϕ : ∆1 → X of the form (x
ϕ
−→ x′), we can form a square

ϕ × id : ∆1 × ∆1 → X × ∆1, which we can postcompose with H to get a

square ∆1 ×∆1→ Y :

∆1 ×∆1 ϕ×id
−−−−→ X ×∆1 H−→ Y

which we can draw as follows:


• •

• •

 7→

x x

x′ x′

id

ϕ

id

ϕ

 7→

f (x) g(x)

f (x′) f (x′)

H(id)

gϕ

H(id)

f ϕ
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The diagram ∆1 ×∆1→ Y corresponds to a diagram in hY

h(∆1 ×∆1) ≃ [1]× [1]→ hY

This is a commutative square in hY (square brackets [−] denote equiva-

lence classes):

f (x) g(x)

f (x′) f (x′)

Hx=[H(idx)]

hg(ϕ)

Hx′

hf (ϕ)=[f (ϕ)]

These Hx maps, along with the square above for all x,x′ ∈ hX, describes a

natural transformation we can call hH : hf ⇒ hg.

So a morphism [H] ∈Hom(hFun(X,Y )) corresponds to a morphism hH ∈

Hom(Cat(hX,hY )).

Let’s check that this is actually a functor:

• (on identities): This sends an identity [idf ] ∈ HomhFun(X,Y )(f , f ) to the

natural transformation, consisting of component maps in hY :

h idf =
{
(idf )x = [idf (idx)] = idf (x)

}
x∈X

,

which is precisely the identity idhf ∈HomCat(hX,hY )(hf ,hf ).

• (on composition): When Y is an ∞-category, we can write a composable

pair in hFun(X,Y ) as f0
[H1]
−−−→ f1

[H2]
−−−→ f2.

This forms a horn f0
H1−−→ f1

H2−−→ f2 in Fun(X,Y ), which fills in with a mor-

phism we callH2H1. The corresponding natural transformation h(H2H1) :
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hf0→ hf2 is defined

{
f0(x)

H1|x−−−−→ f1(x)
H2|x−−−−→ f2(x)

}

which by definition is just hH2 ◦ hH1.

In the other direction, can we form a functor Cat(hX,hY ) → hFun(X,Y )?

Given a functor f : hX → hY can we lift this to (an equivalence class of) a

map X → Y ? If Y = NC is the nerve of a category, then consider a functor

f : hX→ hY as an object in the functor category:

f ∈ ob(Cat(hX,hY )) = HomCat(hX,hNC)

�HomsSet(X,NhNC)

�HomsSet(X,Y ).

That is f ∈ Cat(hX,hY ) corresponds bijectively to a simplicial map f : X → Y ,

forming an object f ∈ hFun(X,Y ).

Pick a morphism (α : f → g) in Cat(hX,hY ). This is a natural transformation

– a collection of morphisms (αx : f (x)→ g(x)) ∈ hY for all x ∈ X, such that for

each (ϕ : x→ x′) ∈ hX, the following square in hY commutes:

f (x) g(x)

f (x′) g(x′)

αx

αx′

f (ϕ) g(ϕ)

We want a morphism in hFun(X,Y ) between f → g, ie. (an equivalence class

of) a simplicial map ∆1 ×X → Y . By cartesian-closedness of sSet, a simplicial

map ∆1 ×X→ Y corresponds to a simplicial map X→ Y ∆1
. On objects x 7→ αx.
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On morphisms (ϕ : x → x′) maps to a square ∆1 ×∆1 → Y of the form above

(witnessing naturality of α). In general, an n-simplex

(x0→ x1→ ·· · → xn) ∈ Xn

is mapped to an n-simplex in

(Y ∆1
)n = sSet(∆1 ×∆n,Y )

of the form:
f (x0) f (x1) · · · f (xn)

g(x0) g(x1) · · · g(xn)

αx0 αx1 αxn

This defines a map α ∈ Fun(X,Y )1, which forms a morphism [α] ∈ hFun(X,Y ).

Two morphisms α,α′ ∈ Fun(X,Y )1 determine the same equivalence class in the

homotopy category iff there is a 2-simplex in Fun(X,Y )2 = sSet(X×∆2,Y ) of the

form:
g

f g

α

α′

Such a 2-simplex corresponds to a map X → Y ∆2
, which forms for each object

x ∈ X0, a 2-simplex in Y :

g(x)

f (x) g(x)

αx

(α′)x

which corresponds precisely to the equality of the morphisms α = α′ in Cat(hX,hY ).
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So given a morphism (α : f → g) ∈ Cat(hX,hY ) we can find a unique equiv-

alence class [α] : f → g in hFun(X,Y ).

Remark 2.8.7. In general, if Y is not the nerve of some category, then it is

not true that Cat(hX,hY ) ≃ hFun(X,Y ). In this case, we do not have an equiva-

lenceNhY ; Y , so functors hX→ hY do not correspond bijectively to simplicial

maps X→ Y .

2.8.1 Equivalences of∞-categories

Remark 2.8.8. When are two categories “the same”? One can describe an “iso-

morphism of categories” as a functor f for which there exists an inverse f −1

such that the composites f f −1 and f −1f are identity functors. This turns out

to be too strict. Instead, the more useful notion is a weaker one that we call

an equivalence of categories. Instead of the composites f f −1 and f −1f being

strictly equal to identity functors, we require a natural isomorphism between

them. In practice one often exhibits an equivalence “pointwise”: a functor F

is an equivalence of categories iff it is (i) essentially surjective and (ii) fully

faithful.

Similarly, the right notion of an equivalence of∞-categories is weaker than

an isomorphism of simplicial sets. We will define what an equivalence of ∞-

categories means and describe a similar pointwise criterion for checking equiv-

alences of∞-categories.

Definition 2.8.9. [Rie17, Def. 1.5.4]

[equivalence of ordinary categories]

Let C and D be ordinary categories.

A functor f : C→D is an equivalence of categories if there exists a functor

73



g :D→ C, along with natural isomorphisms:

idC
∼
⇒ gf , and

f g
∼
⇒ idD .

Remark 2.8.10. This is a form of “homotopy equivalence”. Instead of requir-

ing the composites be strictly equal to identities (gf = idC and f g = idD), we

require them to be homotopic via natural isomorphisms.

Proposition 2.8.11. [Rie17, Thm. 1.5.9]

A functor f : C→D is an equivalence of categories iff it is both:

• essentially surjective : For any object d ∈ D there exists an object c ∈ C

and an isomorphism f (c) � d.

• fully faithful: For any pair of objects c,c′ ∈ C, there is a bijection of hom-

sets:

HomC(c,c′) �HomD(f (c), f (c′)).

Definition 2.8.12. [K, 4.5.1.10]

[equivalence of∞-categories]

Let C and D be∞-categories.

A functor f : C→D is an equivalence of∞-categories if there exist equiv-

alences in the functor∞-categories:

(idC
∼−→ gf ) ∈ Fun(C,C)1

(f g
∼−→ idD ∈ Fun(D,D)1.
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Note that this is equivalent to saying that hF : hC→ D is an equivalence of

homotopy categories in the ordinary sense (2.8.9).

Definition 2.8.13. [(∞-) fully faithful and essentially surjective functors]

Let C and D be∞-categories and f : C→D be a functor. This induces a map

MapC(x,y)→MapD(f (x), f (y))

between mapping spaces. We say that f is:

• fully faithful if the map MapC(x,y)→MapD(f (x), f (y)) is an equivalence

in the sense of (2.8.12);

• essentially surjective if for any d ∈D0 there exists a c ∈ C0 and an equiv-

alence f (c) ≃ d in D1. In other words, if hf : hC → hD is essentially

surjective in the ordinary sense.

Proposition 2.8.14. [Rez22, Prop. 44.3, Prop. 44.7]

[pointwise criterion for equivalences of∞-categories]

A map f : C→ D between ∞-categories is an equivalence of ∞-categories

(2.8.12) iff it is fully faithful and essentially surjective (2.8.13).

Proposition 2.8.15. [K, 4.5.1.12]

A functor f : C → D between ordinary categories is an equivalence of cat-

egories (2.8.9) iff the induced functor Nf : NC → ND is an equivalence of

∞-categories (2.8.12).

Proposition 2.8.16. [Rez22, Prop. 22.3]

If f : C → D is an equivalence of ∞-categories, then the induced functor

hf : hC→ hD is an equivalence of ordinary categories.
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Remark 2.8.17. It is not true that an equivalence of ∞-categories can be de-

tected on the homotopy level.

Remark 2.8.18. Recall that a weak homotopy equivalence of simplicial sets

(the weak equivalences in sSetJoyal (4.0.10)) is a map f : X → Y such that for

any ∞-category C, the induced functor hFun(Y ,C)→ hFun(X,C) is an equiva-

lence of ordinary categories.

There is a finer notion of “categorical equivalence” that lets one work with

simplicial sets that may not be∞-categories.

Definition 2.8.19. [Rez22, Def. 22.5]

[categorical equivalence]

Let X and Y be simplicial sets, and let f : X→ Y be a map.

The map f is a categorical equivalence if for any∞-category C, the functor

Fun(Y ,C)→ Fun(X,C)

is an equivalence of∞-categories in the sense of (2.8.12).

Proposition 2.8.20. [Rez22, Prop. 25.13]

[equivalent conditions for a categorical equivalence]

Let f : X→ Y be a map of simplicial sets. The following are equivalent:

(1) The map f is a categorical equivalence in the sense of (2.8.19).

(2) The map f is a weak homotopy equivalence in the sense of (2.8.18).

(3) For any quasi-category C, the map

π0(Fun(Y ,C)≃)→ π0(Fun(X,C)≃)
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is a bijection of sets. (Here π0 : sSet→ Set is the connected components

functor (2.1.3) and (−)≃ denotes taking the core (2.5.4).)

(4) The functor Cf : CX→ CY (2.2.12) is a Dwyer-Kan equivalence (4.0.10).

[HTT 2.2.5.8]

Remark 2.8.21. An equivalence between two∞-categories (2.8.12) is a categor-

ical equivalence in the sense of (2.8.19).

This weaker notion of categorical equivalence lets us work with simpli-

cial sets that are not ∞-categories, eg. if we want to work in sSetJoyal , which

presents the homotopy theory of∞-categories (4.0.10, 4.1.5).

2.9 Limits and Colimits

In ordinary category theory, there are many ways to formulate definitions of

limits and colimits. We will first lay out the one that will look like our eventual

definition of∞-limits.

Definition 2.9.1. [ordinary slice category over an object]

Let C be an ordinary category and x ∈ C an object.

The slice category of C over x is a category C/x defined as follows:

• (objects): An object in C/x is a morphism f : c→ x whose target is x. We

can denote such an object as a pair (c, f ).

• (morphisms): A map (c, f )→ (c′, f ′) is given by a map u : c→ c′ in C such

that f ′u = f ; ie. the following commutes in C:

c c′

x
f f ′

u
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Remark 2.9.2. We can “forget” slices to form a functor forget : C/x→ C

(c, f ) c

(c′, f ′) c′

uu 7→

Example 2.9.3. Let p : I → C be a diagram in an ordinary category C. We can

consider p as an object in the functor category Fun(I,C).

The slice category Fun(I,C)/p has as objects pairs (F,α), where F : I → C is

a diagram of shape I , and α : F ⇒ p is a natural transformation. Morphisms

(F,α)→ (F′,α′) are natural transformations ϕ : F ⇒ F′ such that the following

commutes:
F F′

p
α α′

ϕ

Definition 2.9.4. [ordinary cone over a diagram]

A cone over the diagram p is an object in the slice category Fun(I,C)/p of

the form (cx,α), where cx : I → C is the constant diagram at an object x ∈ C, ie.

cx : (i→ j) 7→ (x
id−−→ x)

for all (i → j) ∈ I . Since all the information is contained within α, we may

sometimes refer to a cone α : cx→ p as the cone with apex x.

Definition 2.9.5. [ordinary slice category over a diagram]

Let p : I → C be a diagram in an ordinary category.

The slice category over p (or the “over-category”) is a category C/p defined
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by a pullback:

C/p Fun(I,C)/p

C Fun(I,C)

ϕ

forget

constant

In other words, objects of C/p are pairs (x,α) where x ∈ ob(C) and α : cx ⇒ p is

a cone.

Remark 2.9.6. We can recover the slice over an object C/x by considering x as a

constant diagram x : [0]→ C.

Remark 2.9.7. There are dual notions of slice categories under a diagram Cp/

or under an object Cx/ .

Definition 2.9.8. An object x ∈ C in an ordinary category is called final if for

any other object c ∈ C, there is exactly one map c→ x; ie. HomC(x,c) = {∗}.

Dually, x is initial if HomC(x,c) = {∗} for any c ∈ C.

Definition 2.9.9. [limits and colimits in ordinary categories]

Given a diagram p : I → C in an ordinary category, its limit (if it exists) is

a final object (limI p,α) ∈ C/p.

Dually, a colimit colimI p is an initial object of the under-category

(colimI p,α) ∈ Cp/ .

There’s a related construction called the join of categories:

Definition 2.9.10. [join of categories]

Given ordinary categories C and D, their join is the category C ⋆ D with

• (objects): The objects of C ⋆ D are the objects of C along with the objects

of D.
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• (morphisms): For any x,y ∈ C ⋆ D,

HomC⋆D(x,y) :=



HomC(x,y) x,y ∈ C

HomD(x,y) x,y ∈D

{∗} x ∈ C,y ∈D

∅ x ∈D,y ∈ C.

Remark 2.9.11. The join C⋆D contains both C andD as full subcategories, and

includes a single morphism c→ d for each c ∈ C,d ∈D.

We call the inclusions iC : C ↪→ C ⋆ D and iD : D ↪→ C ⋆ D. We can consider

these inclusions as objects (C⋆D,iC) ∈ CatC/ and (C⋆D,iD) ∈ CatD/ respectively.

Example 2.9.12. Taking either C or D to be the one object category [0], we get

cone categories C▷ := C ⋆ [0] and D◁ := [0] ⋆ D.

A functor F :D▷→ E is a cone (cx,α) ∈ Fun(D,E)/F|D over F|D = F ◦ iD .

Proposition 2.9.13. [K, 4.3.2.17]

Let C and D be ordinary categories.

There is an adjunction:

− ⋆ D : Cat⇄ CatD/ : slice

C 7→ (C ⋆ D,iD)

E/G← [ (E,D
G−→ E).

(Dually, we have an adjunction (C ⋆ −,slice) : Cat⇄ CatC/ , where the slice

this time is defined (E,C
G−→ E) 7→ EG/ .)

Spelling this out, this means that for any functor G : D → E, there is a
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bijection

{functors C ⋆ D→ E extending G} ↔ {functors C→ E/G} ,

where a functor extending G is a functor G such that the following commutes:

D E

C ⋆ D

G

G

Remark 2.9.14. Let C and I be ordinary categories and CI = Cat(I,C) be the

functor category.

Let c : C→ CI be the formation of constant functors x 7→ cx (2.9.4). If C has

I-shaped limits/colimits, then the formation of limits/colimits form left/right

adjoints to c:
C

CI

c
limI colimI

2.9.1 (∞-) Limits and Colimits

Definition 2.9.15. [join of simplicial sets]

Let A and B be simplicial sets.

The join A⋆ B is the simplicial set with

• (simplices):

(A⋆ B)n := An ∪Bn ∪ (
⋃

i+j+1=n

Ai ×Bj),

• (face and degeneracy maps): for an n-simplex σ , which either looks like

an ordinary n-simplex of An or Bn, or a pair σ = (σA,σB) ∈ Ai ×Bj for some
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i, j.

sk : (A⋆ B)n→ (A⋆ B)n+1

σ 7→



sAk (σ ) σ ∈ An

sBk (σ ) σ ∈ Bn

(sAk (σA),σB) σ < (An ∪Bn), k ≤ i

(σA, s
B
k (σB)) σ < (An ∪Bn), k > i

dk : (A⋆ B)n→ (A⋆ B)n−1

σ 7→



dAk (σ ) σ ∈ An

dBk (σ ) σ ∈ Bn

(dAk (σA),σB) σ < (An ∪Bn), k ≤ i

(σA,d
B
k (σB)) σ < (An ∪Bn), k > i,

where sAk and dAk are the face and degeneracy maps of A (and similarly for

B).

Sanity check 2.9.16. Intuitively, the joinA⋆B includes bothA and B as subcom-

plexes, along with a simplex of dimension n joining each pair (α,β) ∈ Ai × Bj .

In particular, vertices, edges and faces of A⋆ B are given by:

• Points of A⋆ B are the points of both A and B.

• Edges are edges of both A and B, together with a single edge joining each

pair of points (a ∈ A0,b ∈ B0).

• Faces are faces of A and B, along with a single face for each pair (a ∈

A0, f ∈ B1) and each pair (f ∈ A1,b ∈ B0).
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For example, for each point a ∈ A0 and edge (b
f
−→ b) ∈ B1, we form a face

in A⋆ B of the form:
b

a

b′

f

We can think of these faces as joining simplices of different dimensions

(namely, a point in A and an edge in B).

In general, for a pair (α,β) ∈ Ai ×Bj , if α is spanned by the points (a0, . . . , ai)

and β is spanned by the points (b0, . . . , bj), the join A⋆ B includes an (i + j + 1)-

simplex4 ϕ ∈ (A⋆ B)i+j+1 that is spanned by all the points in order

(a0, . . . , ai ,b0, . . . , bj).

Suppose we want to describe a k-subsimplex ψ = ∆{i0,...,ik} =⊆ ϕ. Subsimplices

come in two flavors:

• All the i0, . . . , ik live in either A or B, in which case ψ is a subsimplex of A

or B.

• The collection splits as:

{i0, . . . , im︸   ︷︷   ︸
⊆A

} ∪ {im+1, . . . , ik︸      ︷︷      ︸
⊆B

}

4The +1 appearing here is same +1 that appears in, eg. ∆n ⋆ ∆m ≃ ∆n+m+1 (2.9.18).
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and then the subsimplex

α := ∆{i0,...,im} ≃ ∆m→ A

is an m-simplex of A, and the subsimplex

β : ∆{im+1,...,ik} ≃ ∆k−m−1→ B

is a (k −m− 1)-simplex of B. The pair (α,β) ∈ Am ×Bk−m−1 corresponds to

a k-simplex in the join, which is ψ in this case.

This explains why the face and degeneracy maps in the definition appear as

they do.

Pick a σ ∈ (A⋆ B)n. The kth face map picks out an (n− 1)-simplex. If σ lives

entirely in An or lives entirely in Bn, this is simply taking the face within A or

B as usual. The geometric intuition is that the kth face is formed by deleting

the kth vertex, and taking the face living across from it. If the simplex σ lives

partly in Ai and Bj (for some i, j such that i + j = n − 1), then whether k ≤ i or

k > i determines whether the vertex lives in the A-side or the B-side of A ⋆ B.

Then faces are the faces formed by the join, formed by deleting the kth vertex

in whichever side it lives in.

For example, here are two 3-simplices inA⋆B: one formed by joining ∆2
A⋆∆

0
B

(a 2-simplex in A and a point in B, and the other formed by joining ∆1
A ⋆∆

1
B (an

edge each in A and B):

a a′′

a′ b

a b

a′ b′
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The face s3(σ ) picks out the face (a→ a′→ a′′) ∈ A, and the face s0(σ ) picks out

the face a′→ a′′→ b joining (a′→ a′′) to b.

Proposition 2.9.17. [K, 4.3.3.22]

Let C and D be ordinary categories.

There is an isomorphism of simplicial sets:

N (C ⋆ D) ≃NC ⋆ ND

where C ⋆ D is the join as ordinary categories (2.9.10) and NC ⋆ ND is the join

of simplicial sets (2.9.15).

Proof. The nerve of the join N (C ⋆ D) has n-simplices

N (C ⋆ D)n = Fun([n],C ⋆ D).

These are strings (x0
f1−−→ x1

f2−−→ . . .
fn−−→ xn) in C ⋆ D. We can find such strings in a

few different ways. Either

• all fi are in C, in which case this is an element of NCn;

• all fi are in D, in which case this is an element of NDn;

• the string breaks apart as

(x0→ ·· · → xi︸          ︷︷          ︸
∈NCi

)
fi+1−−−→ (xi+1→ ·· · → xn︸             ︷︷             ︸

∈NDn−i−1

),

in which case the map fi+1 is the unique map of the join C ⋆ D.
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Now let’s take nerves first and then join them as simplicial sets: NC ⋆ ND.

Simplices look like:

(NC ⋆ ND)n := (NCn)∪ (NDn)∪ (
⋃

i+j=n−1

NCi ×NDj).

We can see that these correspond to breaking apart n-simplices of N (C ⋆ D).

We can think of an n-simplex σ ∈ (NC ⋆ ND)n as either an n-simplex of NC or

ND, or a pair

((x0→ ·· · → xi︸          ︷︷          ︸
∈NCi

), (xi+1→ ·· · → xn︸             ︷︷             ︸
∈NDn−i−1

))

with i+j = n−1 and an edge fi+1 : xi → xi+1 joining them. This gives us levelwise

bijections (NC ⋆ ND)n �N (C ⋆ D)n.

We can describe face and degeneracy maps for an n-simplex σ = (x0
f1−−→

x1
f2−−→ . . .

fn−−→ xn) in either N (C ⋆ D)n or (NC ⋆ ND)n (here we write (x0
...−→ xn) :=

(x0→ x1→ ·· · → xn) to denote a monotonically increasing sequence).

sk :N (C ⋆ D)n→N (C ⋆ D)n+1

σ 7→ (x0
...−→ xk = xk

...−→ xn)

dk :N (C ⋆ D)n→N (C ⋆ D)n−1

σ 7→ (x0
...−→ xk−1

fk+1fk−−−−−→ xk+1
...−→ xn)
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and

sk :(NC ⋆ ND)n→ (NC ⋆ ND)n+1

σ 7→


(x0

...−→ xk = xk
...−→ xn) σ ∈NCn ∪NDn

(x0
...−→ xk = xk

...−→ xi)→ (xi+1
...−→ xn) σ ∈NCi ×NDj , k ≤ i

(x0
...−→ xi)→ (xi+1

...−→ xk = xk
...−→ xn) σ ∈NCi ×NDj , k > i

dk :(NC ⋆ ND)n→ (NC ⋆ ND)n−1

σ 7→


(x0

...−→ xk−1
fk+1fk−−−−−→ xk+1

...−→ xn) σ ∈NCn ∪NDn

(x0
...−→ xk−1

fk+1fk−−−−−→ xk+1
...−→ xi)→ (xi+1

...−→ xn) σ ∈NCi ×NDj , k ≤ i

(x0
...−→ xi)→ (xi+1

...−→ xk−1
fk+1fk−−−−−→ xk+1

...−→ xn) σ ∈NCi ×NDj , k > i.

Under our bijections, we can see that these are the same, making this an iso-

morphism N (C ⋆ D) � (NC ⋆ ND) of simplicial sets.

Example 2.9.18. [K, 4.3.3.22] Taking C := [n],D := [m] for some n,m ∈N, then

∆n ⋆ ∆m ≃N [n] ⋆ N [m]

≃N ([n] ⋆ [m])

≃N [n+m+ 1]

≃ ∆n+m+1.

Proposition 2.9.19. Let A and B be∞-categories.

There is an equivalence of categories:

h(A⋆ B) ≃ hA⋆ hB
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where the left is the join of ssets (2.9.15) and the right is the join of homotopy

categories (2.9.10).

Proof. Both categories consist of the points of A together with the points of B.

Each edge f ∈ (A⋆ B)1 determines a morphism in [f ] ∈ h(A⋆ B). These come

in two flavors:

• The edges living on either side of the join. That is, factoring through A

(resp. through B):
A

∆1 A⋆ B
f

Such an edge f corresponds to a homotopy class [f ] : [1] = h∆1→ h(A⋆B).

Alternately, f corresponds uniquely to an edge ∆1 → A which corre-

sponds to a homotopy class in hA ⊆ hA ⋆ hB. Similarly, those factoring

through B correspond to homotopy classes in hB ⊆ hA⋆ hB.

We also have for each a ∈ A,b ∈ B a single unique edge a → b. These corre-

spond to the unique morphisms in the ordinary join construction. Two such

morphisms (f , f ′ : a⇒ b) correspond iff there exist 2-simplices in A⋆ B:

a

b

a

f

f ′
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and any face of the forms

a b

b or a

a′ b′

form commuting triangles in h(A⋆B). Such triangles correspond to commuting

triangles in the ordinary join hA⋆ hB.

Remark 2.9.20. In particular, take A = I◁ = ∆0 ⋆ I , a cone over some diagram

sset I , and B = NC, the nerve of an ordinary category C. The homotopy cat-

egory hA = h(∆0 ⋆ I) = [0] ⋆ hI . Then the homotopy-nerve adjunction (2.4.10)

says there is a bijection

Cat([0] ⋆ hI,C) � sSet(∆0 ⋆ I,NC).

That is, ordinary cones (hI)◁→ C (2.9.12) are the same as a cone of ssets I◁→

NC (2.9.22) in the nerve.

Proposition 2.9.21. [K, 4.3.3.24] If C and D are∞-categories, their join C⋆D is

an∞-category.

Example 2.9.22. In particular, taking B := ∆0 forms a simplicial set we denote

A▷ := A⋆ ∆0, which looks like

(A▷)n =


A0 ∪∆0 n = 0

An ∪ (An−1 ×∆0) otherwise.
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That is, it has one extra vertex given by the ∆0 (we will denote this point∞),

and an extra n-simplex for each (n−1)-simplex of A (these witness joining each

σ ∈ An−1 to ∞). All together, we get something like a (simplicially thickened)

cone under A (compare with 2.9.12). Similarly, taking A := ∆0 gives us B◁,

forming a cone over B.

For example, taking A := (a→ a′) ≃ ∆1, the cone A▷ looks like:

a

a′ ∞

where σ is a 2-simplex filling in the edges in (A▷)1. That is, all together, (∆1)▷ ≃

∆2.

Definition 2.9.23. [slice simplicial sets]

Given a map of simplicial sets p : I → S, the slice simplicial set S/p is de-

fined by:

• (simplices):

(S/p)n := HomsSetI/ ((∆
n ⋆ I, iI ), (S,p)),

where iI is the inclusion I ↪→ ∆n ⋆ I , so n-simplices are natural transfor-

mations (iI → p).

In particular, vertices of S/p are cones ∆0 ⋆ I → S extending p.

• (face and degeneracy maps): for an n-simplex (f : ∆n ⋆ I → S), we can

pullback (along the join) via the maps si : ∆n+1 → ∆n and di : ∆n−1 → ∆n
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to form composites:

si : f 7→ (∆n+1 ⋆ I
si⋆id
−−−−→ ∆n ⋆ I

f
−→ S)

di : f 7→ (∆n−1 ⋆ I
di⋆id
−−−−→ ∆n ⋆ I

f
−→ S).

Notation 2.9.24. For simplicial sets I,Y ,S, and a diagram p : I → S, we will

write:

Homp(Y ⋆ I,S) := HomsSetI/ ((Y ⋆ I, iI ), (S,p)),

to denote the set of simplicial maps Y ⋆ I → S factoring p:

I

Y ⋆ I S

p

Remark 2.9.25. The simplicial set S/p satisfies an analagous universal property

to that of the slice construction of ordinary categories (2.9.13):

HomsSet(Y ,S/p) �Homp(Y ⋆ I,S).

Proposition 2.9.26. [K, 4.3.6.1] If S is an∞-category, then S/p is an∞-category

that we call the over-category of S over p (similarly Sp/ the under-category).

Proposition 2.9.27. Let C be an ordinary category, and x ∈ C an object. Then:

N (C/x) ≃ (NC)/x

where the left is the nerve of the ordinary over-category (2.9.1), and the right

is the over-category of the nerve (2.9.26).
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Proof. The nerve of the over-categoryN (C/x) is an∞-category, with n-simplices

given by N (C/x)n := Fun([n],C/x). Objects in C/x are maps (c → x) in C and

morphisms (c→ x)→ (c′→ x) are given by commuting diagrams of the form:

c c′

x x

An n-simplex σ ∈ N (C/x)n is a string of composable morphisms in C/x, ie. a

commutative diagram in C of the form:

σ : c0 c1 . . . cn

x x . . . x

Face and degeneracy maps look like:

di(σ ) : c0 . . . ci−1 ci+1 . . . cn

x . . . x x . . . x

si(σ ) : c0 . . . ci ci . . . cn

x . . . x x . . . x

id

On the other hand, we can take the nerve first, and then consider the ∞-

version of the overcategory: (NC)/x. By definition n-simplices are:

(NC)/x|n = Homx(∆
n ⋆ ∆0,NC).

Since ∆n ⋆ ∆0 = ∆n+1, and the ∆0 corresponds to the final vertex of ∆n+1, the
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above consists of (n+1)-simplices σ ∈ (NC)n+1 whose final vertex is d0 . . .d0(σ ) =

x. Explicitly these correspond to diagrams in C of the form

c0 c1 . . . cn

x

which we can see are precisely what we said n-simplices of N (C/x) were. Face

and degeneracy maps turn out to be the same as well, making the two isomor-

phic simplicial sets: N (C/x) ≃ (NC)/x.

Proposition 2.9.28. More generally, for a diagram F : I → C in an ordinary

category,

N (C/F) ≃NC/NF .

Proof. Let F : I → C be a diagram in an ordinary category C. We can form the

slice category C/F , whose objects are pairs (y ∈ C,α : cy → F) of objects in C

along with natural transformations from their constant functors. The nerve is

an∞-category N (C/F).

Alternately, F lifts to NF : NI → NC, a diagram in the∞-category NC. We

can form the slice simplicial set NC/NF :

(NC/NF)n = HomsSetNI/ ((∆
n ⋆ NI, iNI ), (NC,NF)),

ie. maps f : ∆n ⋆ NI →NC extending NF:

NI NC

∆n ⋆ NI
f

NF
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Since ∆n ≃N ([n]) and N (A⋆ B) ≃NA⋆ NB,

∆n ⋆ NI ≃N ([n]) ⋆ NI

≃N ([n] ⋆ I)

so (NC/NF)n consists of maps f : N ([n] ⋆ I) → NC extending NF. By fully-

faithfulness of the nerve, the diagram of simplicial sets corresponds to a dia-

gram of categories:

NI NC I C

N ([n] ⋆ I) [n] ⋆ I
f

NF F

[f ]
↭

so our map f extending NF corresponds to a functor [f ] : [n]⋆ I → C extending

F. By our join/slice adjunction,

HomCatI/ (([n] ⋆ I, iI ), (C,F)) � Fun([n],C/F),

which are n-simplices of N (C/F).

Proposition 2.9.29. Let F : I → NC be a diagram in the nerve of a category.

Then there is an equivalence of categories:

C/hF ≃ h(NC/F)

where C/hF is the ordinary over-category (2.9.5) and NC/F is the ∞-version

(2.9.26).
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Proof. Objects in the over-category C/hF are cones

x : [0] ⋆ hI → C

(we use x to denote the cone with apex x ∈ C). These correspond bijectively to

cones in the nerve (2.9.20):

x : ∆0 ⋆ I →NC.

Morphisms in ChF are natural transformations x → y. In other words, a

single morphism x→ y that commutes with the cones over hF.

A morphism in the slice sset NC/F is a map H : ∆1 ⋆ I →NC as on the left:

∆{0} ⋆ I hI

∆1 ⋆ I NC [1] ⋆ hI C

∆{1} ⋆ I hI

x

y

H

x

y

H

By adjunction this corresponds to a diagram as on the right. But a map [1] ⋆

hI → C is precisely a map x→ y commuting with the cones.

We also want a notion of initial/final objects (2.9.8) in an∞-category.

Definition 2.9.30. [initial/final objects in a simplicial set]

An object x in a simplicial set C is initial if the mapping space MapC(x,y)

is contractible for any object y ∈ C0. This means (equivalently):

• The mapping space MapC(x,y) ∼ ∆0 in Kan, where ∼ means weak ho-

motopy equivalent as a simplicial set (4.0.10). That is, taking the geo-
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metric realization (2.1.16) gives us a space |MapC(x,y)| ∈ Top which is

contractible in the usual sense.

• The homotopy-type of the mapping-space [MapC(x,y)] ∈ H = hKan is

equivalent to the point ∗ ∈H.

Dually, x is final if for all y ∈ C0, either of the following equivalent condi-

tions hold:

• The mapping space MapC(y,x) ∼ ∆0 in Kan.

• The homotopy-type of the mapping-space [MapC(y,x)] ∈ H = hKan is

equivalent to the point ∗ ∈H.

Remark 2.9.31. Note that the mapping space being contractible is the correct

uniqueness statement in higher-categorical terms.

This is the analogue of the statement that there exists a unique map into

(resp. out of) a final object (resp. initial object) in an ordinary category.

Proposition 2.9.32. An initial object in a simplicial set is initial when consid-

ered as an object in the homotopy category.

Proof. Say x ∈ C0 is an initial object. Then MapC(x,y) ≃ ∗ for any y ∈ C0. Taking

connected components, this forms an isomorphism π0 MapC(x,y) � {∗}, exhibit-

ing x as initial in hC.

Remark 2.9.33. [K, 4.6.6.19] It is not true that if an object x is initial in the

homotopy category of an∞-category C, then x is initial in the∞-sense.

Take C := Sing(S2) (2.1.16). This is a Kan complex. An object in a Kan

complex is initial iff the Kan complex is contractible [K, 4.6.6.12], so Sing(S2)

has no initial objects as an∞-category.
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But every point is initial in the homotopy category (this can be shown by

the fact that any two paths I ⇒ S2 with fixed endpoints are homotopic.)

Proposition 2.9.34. [K, 4.6.6.15]

[uniqueness of initial/final objects]

Let C be an∞-category, and let Cinit ⊆ C be the full subcategory spanned by

the initial objects of C (resp. Cf inal ⊆ C spanned by the final objects.)

Then Cinit and Cf inal are both contractible Kan complexes. That is, every

object in Cinit (resp. Cf inal) is equivalent up to contractible choice of equiva-

lence.

(Note that this is the ∞-categorical way of saying “unique up to unique

isomorphism”.)

Remark 2.9.35. If C is an ∞-category, there is an alternate formulation of be-

ing initial/final. This was Joyal’s definition of initial/final objects in quasi-

categories [Joy02], which is sometimes called “strongly initial/final” to differ-

entiate from initial/final objects in arbitrary ssets [HTT, 1.2.12.3].

Definition 2.9.36. [strongly initial/final objects in∞-categories]

An object x ∈ C0 of an∞-category C is strongly initial if the forgetful map

Cx/ → C is a trivial fibration (2.7.1); that is, any diagram of the form below

admits a lift:
∂∆n Cx/

∆n C

Proposition 2.9.37. [HTT, 1.2.12.5] If C is an ∞-category, then any object is

initial (resp. final) (2.9.30) iff it is strongly initial (resp. strongly final) (2.9.36).

Proposition 2.9.38. Let C be an ordinary category, and x ∈ C an object. Then
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x is initial in C in the ordinary sense (2.9.8) iff it is initial in the nerve in the

sense of (2.9.30).

Proof. Suppose x ∈ C is initial in the ordinary sense. For any y ∈ C there’s a

unique morphism f : x→ y. Consider the singleton {f } ⊆ Fun([1],C).

Considering {f }• as a constant simplicial set, this sits in a diagram of sim-

plicial sets:

{f }• Cat([1],C)• ≃NC∆1

∆0 NC ×NC

(source,target)

(x,y)

This square is a pullback: take a simplicial set S with a map F : S→NC∆1
and

a map S→ ∆0 making the square commute. So F maps a σ ∈ Sn to some

Fσ ∈ (NC∆1
)n = sSet(∆1 ×∆n,NC).

A map ∆1 ×∆n→NC is a square:

• •

• •

...
...

• •

and commutativity of the square says that {0} ×∆n = (x = x = · · · = x) and {1} ×

98



∆n = (y = y = · · · = y). That is, Fσ corresponds to a diagram in C of the form:

x y

x y

...
...

x y

Since HomC(x,y) = {f }, there’s only one choice of diagram as above. That is,

F : X → NC∆1
= Cat([1],C)• has no choice but to factor through {f }•, making

the square above a pullback.

But this pullback square defines the mapping space. So MapNC(x,y) ≃

{f }• ≃ ∗, making x initial in NC. The argument can be run in reverse for the

backwards direction.

Definition 2.9.39. [limits and colimits in∞-categories]

Let p : I → C be a diagram in an∞-category C.

The limit (if it exists) is a final object of C/p. A colimit is an initial object of

Cp/ .

Example 2.9.40. Let C be an∞-category.

An object x ∈ C0 is initial (2.9.30) iff it is the limit of the empty diagram

∅→ C. (Dually, x is final iff it’s the colimit of ∅→ C.)

Proof. The object x is initial iff for any y ∈ C, the mapping space MapC(y,x) is

contractible. There is an equivalence C/∅ ≃ C formed from the equivalences
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∆n ⋆ ∅ ≃ ∆n, so:

∆0 ≃MapC(y,x)

≃MapC/∅
(y,x),

ie. x is final in the over-category C
∅

, ie. x is the limit of the diagram ∅→ C.

Example 2.9.41. [K, 7.6.3.1]

An important example for us of limits/colimits are pullback and pushout

squares. Let I = ∆1 ∪∆{1} ∆1:

I =


0′

0 1


Then a diagram p : I → C in an∞-category is of the form:

y

x z

The pullback is the limit (2.9.39)

x ×z y = lim
I
p.

Explicitly, the pullback is a cone ∆0 ⋆ I → C (2.9.22). Drawing out the join
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∆0 ⋆ I (with the apex labelled 0̂):

0̂ 0′

0 1

this is isomorphic as a simplicial set to the square ∆1 × ∆1 (2.1.13). So alter-

nately, a pullback in C is a square ∆1 ×∆1→ C that forms a limit.

Dually, a pushout is a square ∆1 ×∆1→ C that forms a colimit.

Note that pullbacks and pushouts are not preserved in the passage to the

homotopy category [K, 7.6.3.3].

Proposition 2.9.42. Let C be an ordinary category, and p : I → C,i 7→ xi a

diagram. Suppose the limit exists and call it x = limI p ∈ C. Then

x = lim
NI

Np ∈NC

where the limit is in the sense of (2.9.39).

Proof. The limit satisfies the universal property (a bijection of hom-sets):

lim
i∈I

HomC(w,xi) �HomC(w,x).

Taking nerves, we get a diagram Np :NI →NC. Elements of

NIn = Fun([n],NI) = {strings (i0→ i1→ ·· · → in) ∈ I} .

and we expect that a cone x : NI◁ → NC over Np, sending the vertex to x,

should define a limit cone in the∞-sense above.
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Let’s start with another cone w : NI◁ → NC, with vertex w ∈ C. For any

string σ = (i0 → ·· · → in) ∈ NIn, the composite we have an (n + 1)-simplex in

NC corresponding to a commutative diagram in C of the form:

w

x0 x1 . . . xn

That is to say, this w (along with all its maps) forms a cone in the homotopy

category hNC ≃ C. The universal property of the limit x = limI xi then induces

a unique map f : w→ x making all relevant diagrams involving subdiagrams

of I commute. That is, for any string i0→ ·· · → in in I , we have a commutative

diagram in C:

w x

x0 x1 . . . xn

f

This lifts by definition to an (n+ 2)-simplex in NC.

We want to show that

π0 MapNC/NI (w,x) � {∗} .

This is a set generated by 1-simplices (NC/NI )1(w,x), with an equivalence re-

lation determined by 2-simplices (NC/NI )2. A 1-simplex in NC/NI between w

and x is a map ∆1 ⋆ NI → NC restricting to w and x on ∆{0} ⋆ NI and ∆{1} ⋆ NI

respectively. Our unique map f : w→ x (with all the diagrams it makes com-

mute) induces a unique 1-simplex f : ∆1 ⋆ NI → NC sending an n-simplex in
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∆1 ⋆ NI to an n-simplex in NC of the form created by f :

0 1 w x

i0 i1 . . . in−2 x0 x1 . . . xn−2

ff

By uniqueness of the map f , f is the only 1-simplex in the mapping space

MapNC/NI (w,x) =
{
f
}
≃ ∗; ie. x is final, making x = limNI xi ∈NC.

On the other hand, suppose we start with a diagram in the nerve I →

NC, and say x = limI xi in the ∞-sense. That is, x ∈ NC/p is a final object;

ie. HomhNC/p(w,x) ≃ ∗. Since there is an equivalence of categories hNC ≃ C

(2.1.20), the cone [x] ∈ hNC/p is final in the ordinary over-category C/p; ie.

x = limI xi in C.

Proposition 2.9.43. [HTT, 4.2.4.3] Let F : I → C be a diagram in an∞-category

C.

Then x = limI F is the limit iff there is a weak equivalence of mapping

spaces:

MapC(w,x) ≃MapCI (cw,F),

where cw : I → C is the constant diagram at w ∈ C.

Proposition 2.9.44. [K, 7.1.1.16]

[limits/colimits as adjoint functors]

Let C be an∞-category, and let I ∈ sSet be a diagram sset.

The constant functor

c : C→ Fun(I,C)

sends an object X 7→ cX , the constant functor I → C at X. Then:
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• The ∞-category C admits all I-indexed limits iff the constant functor c

admits a right adjoint:
C

Fun(I,C)

c
limI

• The∞-category C admits all I-indexed colimits iff the constant functor c

admits a left adjoint:
C

Fun(I,C)

c
colimI

Remark 2.9.45. The above proposition is reminiscent of the construction of

homotopy limit and homotopy colimit functors on a model category (4.2.1).

Remark 2.9.46. Unless an ∞-category is the nerve of a category, translating

limits in ∞-land to limits in homotopy-land is in general difficult. That is, a

limit of a diagram I → C in an arbitrary ∞-category C does not, in general,

produce a limit limhI hF ∈ hC. In general, homotopy categories may not have

many limits and colimits.

But we might consider the simpler case of products. A product in an ∞-

category is a limit of a diagram I that is discrete; ie. a simplicial set whose

nondegenerate simplices are only vertices. This simplifies much of the coher-

ence requirements, and indeed the case of products is as nice as we can hope

for.

Proposition 2.9.47. A product x =
∏
i∈I xi (resp. a coproduct) in an∞-category

C is a product (resp. coproduct) in the homotopy category hC.

Proof. The universal property of a product in an ∞-category (2.12.11) looks
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like:

MapC(w,x)
∼−→

∏
i∈I

MapC(w,xi).

Taking this down to connected components, using that π0 preserves products

of spaces, we have:

HomhC(w,x) = π0 MapC(w,x)
∼−→ π0

∏
I

MapC(w,xi)

�
∏
I

π0 MapC(w,xi)

=
∏
I

HomhC(w,xi),

satisfying the universal property of the ordinary product.

Dually, one can show the corresponding statement for coproducts.

Proposition 2.9.48. There is another case of a sequential colimit: the colimit of

a diagram of the form:

X0→ X1→ . . .

This can be constructed by taking a coequalizer :

∐
I ci

∐
I ci hocolimci

id∐
I fi

The universal property of the coequalizer:

C(hocolimI ci , y) C(
∐
I ci , y)

C(
∐
I ci , y) C(

∐
I ci , y)

−◦id

−◦(
∐
I fi )

⌜

ie. a map (hocolimI ci → y) corresponds to a pair Φ ,Φ ′ :
∐
I ci ⇒ y such that
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Φ ◦ id = Φ ′ ◦shift. Both Φ and Φ ′ are just collections (Φi : ci → y)i and (Φ ′i : ci →

y)i , so Φ = Φ ′ ◦ shift is the condition that for all i, Φi = Φ ′i+1 ◦ fi+1.

We can interpret this as a colimit (in the∞-sense) of the nerve. Let I ∈ sSet

be the simplicial set:

I := ∆1 ∪∆0 ∆1 ∪∆0 · · · = (•→ •→ •→ . . . )

Let F : I →NC be the resulting diagram, which forms a sequential diagram

in C:

c0
f1−−→ c1

f2−−→ c2
f3−−→ . . .

Then the sequential colimit colimhI ci calculated as a coequalizer is the same

as the colimit colimI F as an∞-category.

Proof. The colimit colimI F ∈NC is defined by an equivalence of spaces:

MapNC(colimI F,y) ≃MapNCI (F,cy).

Since I = (∆1 ∪∆0 ∆1 ∪∆0 . . . ), the function complex

NCI = Fun(I,C)

≃NC∆1
×NC NC∆1

×NC . . .

so a map (colimI F→ y) is the same as a natural transformation (F→ cy), ie. an

edge in NCI . By the above, edges of NCI are

(NCI )1 = (NC∆1
)1 ×NC1

(NC∆1
)1 ×NC1

. . .
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so an edge F→ cy is a collection of squares (∆1 ×∆1→NC) of the form:

c0 c1 c1 c2

y y y y

ϕ1

f1

ϕ0

f2

ϕ2ϕ1 ...

ie. a collection of maps (ϕi : ci → y)i∈I along with homotopies ϕi+1fi+1 ∼ ϕi

for all i. Down in the homotopy category hNC ≃ C, these are commuting tri-

angles witnessing ϕi+1fi+1 = ϕi . This is precisely the universal property of the

coequalizer above.

2.10 Adjunctions

We know that ordinary category is actually just a specific case of a 2-category;

that a category of categories, Cat, wants to include natural transformations as

2-morphisms. One idea in ordinary categories which is 2-categorical in nature

is the notion of an adjunction between categories.

Accordingly, we can formulate adjunctions more generally using the lan-

guage of 2-categories.

Definition 2.10.1. [adjunctions in a 2-category] [K, 6.1.1.1]

Let C be a 2-category.

An adjunction in C consists of a pair of objects

x,y ∈ C,

a pair of 1-morphisms

f : x⇄ y : g,
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and a pair of 2-morphisms

(η : idx→ gf ) ∈Hom(C(x,x))

(ε : f g→ idy) ∈Hom(C(y,y)),

that we call the unit and counit respectively. These must form commutative

triangles in hom-categories:

f gf

f = f ◦ idx idy ◦f = f in C(x,y)

gf g

g = idx ◦g g ◦ idy = g in C(y,x)

idf ◦η ε◦idf

idf

idg

η◦idg idg ◦ε

Remark 2.10.2. [Rie17, Prop. 4.2.6] An ordinary adjunction between (1-) cate-

gories is an adjunction in the above sense in the 2-category Cat.

Given an adjunction F : C ⇄ D : G between ordinary categories, the con-

ditions on the unit and counit making the triangles commute is equivalent to

exhibiting bijections

HomC(c,Gd) �HomD(Fc,d)

that are natural in both variables c and d.

Definition 2.10.3. [adjunctions of∞-categories] [K, 6.2.1.2]

Let C and D be∞-categories, and let F and G be functors between them:

F : C⇄D : G.
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An adjunction between F and G is a pair of edges in functor categories

(natural transformations)

(η : idC→ GF) ∈ Fun(C,C)1,

(ε : FG→ idD) ∈ Fun(D,D)1

that are compatible up to homotopy [K, 6.2.1.1] in the sense that there exist

2-simplices α : ∆2→ Fun(C,D) and β : ∆2→ Fun(D,C) of the form:

F ◦G ◦F

α : F = F ◦ idC idD◦F = F in Fun(C,D)2

G ◦F ◦G

β : G = idC◦G G ◦ idD = G in Fun(D,C)2

idF

ε◦idFidF ◦η

idG

η◦idG idG ◦ε

In this case, we again call η the counit and ε the unit of an adjunction.

Remark 2.10.4. We can describe adjunctions in terms of fibered categories.

Recall Grothendieck’s construction (2.7.8), equivalences of 2-categories:

Fib(B) ≃ Fun(Bop,Cat)

opFib(B) ≃ Fun(B,Cat)

identifying fibrations (resp. opfibrations) over B and contravariant functors

(resp. covariant functors) B→ Cat.

Then an adjunction in the sense of (2.10.1) is a functor of 2-categories p :

E → [1] (considering [1] = {0→ 1} as a 2-category) that is both a fibration and
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an opfibration (2.7.7).

Proof. The functor p determines two functors [1] ⇒ Cat, one covariant and

one contravariant. That is, it determines a pair of categories C and D and two

functors between them in opposite directions

F : C⇄D : G,

along with equivalences of categories with the fibers: C ≃ E0 and D ≃ E1.

We want to exhibit a unit η and a counit ε.

We want a natural transformation η : idC → GF forming a commutative

triangle in the functor category Fun(C,C):

FGF

F = F ◦ idC idD ◦F = F

idF ◦η ε◦idF

idF

By our discussion in (2.7.9), we have bijections of hom-sets for any c ∈ C ≃

E0 and d ∈D ≃ E1:

HomC(c,Gd) �HomE(c,d) �HomD(Fc,d)

Fixing c ∈ C, the bijection above gives us:

HomC(c,GFc) �HomE(c,Fc) �HomD(Fc,Fc).

Let ηc : c→ GFc be the image under bijection to the map idFc ∈ HomD(Fc,Fc).

By the bijection, the naturality square on the left corresponds to a square in D
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on the right:

c GFc Fc Fc

c′ GFc′ Fc Fc

in C in D

ηc

ηc′

ϕ GFϕ Fϕ Fϕ

idFc

idFc

The square on the right commutes so the naturality square we need commutes.

We form a counit ε : FG → idD in an analagous way – fixing a d ∈ D and

using the bijections on hom-sets to take the image of idGd to form εd : FGd→ d.

Showing this is natural proceeds in the same way.

Definition 2.10.5. An adjunction is a map E→ ∆1 that is both a cartesian and

a cocartesian fibration (2.7.1).

Remark 2.10.6. The process of constructing an ∞-categorical adjunction be-

tween∞-categories C⇄D proceeds analagously to (2.10.4).

We say that a functor F : C→D between∞-categories is left adjoint (equiv-

alently, admits a right adjoint) if there is a bicartesian fibration E→ ∆1 along

with equivalences of∞-categories C ≃ E0 and D ≃ E1.

Given a bicartesian fibration E → ∆1, we can show that both fibers E0 =

p−1(0) and E1 = p−1(1) are ∞-categories by describing them as pullbacks of

simplicial sets:
Ei E

{i} ∆1

p

⌜

Since bicartesian fibrations are in particular inner fibrations, one can show

inner-horn lifting for both E0 and E1. So these fibers form∞-categories.

By straightening-unstraightening (2.7.10), a bicartesian fibration p corre-
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sponds to a pair of (∞-) functors

E0⇄ E1

which we can compose with the equivalences C ≃ E0 and D ≃ E1 to get an

adjunction of∞-categories:

C E0 E1 D≃ ≃

F

G

Proposition 2.10.7. Let C and D be ordinary categories.

Then a pair of functors

F : C⇄D : G

forms an adjoint pair in the sense of (2.10.1) iff the pair of functors between

their nerves

NF :NC⇄ND :NG

forms an (∞-) adjunction in the sense of (2.10.3).

Proof. Suppose we have an ordinary adjunction F : C⇄D : G. This comes with

a pair of natural transformations η : idC → G ◦F and ε : F ◦G→ idD .

Taking nerves, we get edges

(Nη :N idC →N (GF)) ∈N Fun(C,C)1

(Nε :N (FG)→N idD) ∈N Fun(D,D)1.
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Since N Fun(D,D) ≃ Fun(ND,ND) (2.8.4) these correspond to edges

(η : idNC →NG ◦NF) ∈ Fun(NC,NC)1

(ε :NF ◦NG)→ idND) ∈ Fun(ND,ND)1.

By definition, these form a commutative triangle in Fun(C,D) correspond-

ing to a 2-simplex in N Fun(C,D) ≃ Fun(NC,ND):

NF ◦NG ◦NF

NF ≃NF ◦ idNC idND ◦NF ≃NFidNF

ε◦idNFidNF ◦η

A similar argument gets the other relevant 2-simplex in Fun(ND,NC). These

define precisely the 2-simplices needed to exhibit η and ε as the unit and counit

of an adjunction of∞-categories NF :NC⇄ND :NG.

The equivalence N Fun(C,D) ≃ Fun(NC,ND) lets us run this argument in

the backwards direction.

Proposition 2.10.8. [K, 6.2.1.14]

Say F : C→ D is a left adjoint of ∞-categories. Given a functor G : D→ C

and a natural transformation η : idC→ G◦F, then the following are equivalent:

(i) The map η is the unit of an adjunction between ∞-categories, exhibiting

G as right adjoint to F.

(ii) The induced map η′ : idhC→ hG◦hF is the unit of an ordinary adjunction

(hF,hG) : hC⇄ hD.

Remark 2.10.9. Beware that the assumption above that F admits an adjoint in

the ∞-sense is necessary for the implication (ii)⇒ (i). It is not true in general
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that adjoints are detectable on the homotopy level. That is if F is a functor of

∞-categories and hF admits an adjoint, it is not true in general that F admits

an adjoint.

Nonetheless, there are some things we can say in this direction. (1) While

we can’t test adjoints on the level of ordinary homotopy categories, we can on

the level of enriched homotopy categories (2.4.8). (2) If D and G satisfy some

completeness conditions, we can detect adjoints on the ordinary category.

Definition 2.10.10. [adjunction between enriched categories]

Let V be a monoidal category and let C and D be categories enriched over

V (2.2.1).

An enriched adjunction between V -enriched categories C and D is a pair

of V -enriched functors

F : C⇄D : G

along with natural isomorphisms between the hom-functors D ×C→ V :

C(F(−),−) ≃D(−,G(−)).

Proposition 2.10.11. [HTT, 5.2.2.9, 5.2.2.12]

Let C be an∞-category. Recall the enriched homotopy category HC, which

is enriched over H = hKan (2.4.8).

Then a (∞-) functor F : C→ D admits a (∞-) right adjoint iff the induced

functor HF : HC→HD admits an enriched adjoint (2.10.10).

Theorem 2.10.12. [NRS20, Thm. 3.3.1]

Let G : D→ C be a functor between ∞-categories. Suppose D admits finite

limits and G preserves them.
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Then G admits a left adjoint iff hG : hD→ hC does.

2.11 ∞-categories underlying model categories

The fundamental construction associated to an∞-category is its homotopy cat-

egory. As we know, the passage from an ∞-category to its homotopy category

represents a massive loss of higher-order information. For example, we lose a

lot of information needed to describe homotopy limits/colimits, which are not

often easy to get a hold of in the homotopy category, but are described easily in

the∞-categorical level.

Before ∞-categories, we could describe a homotopy theory via a model

structure (4.0.10). More generally, realizing that the weak equivalences are

the important part of a homotopy theory, we can describe a more general idea

of a category with weak equivalences only. These are sometimes called cate-

gories with weak equivalences, relative categories, or homotopical categories.5

(For more on the relation between ∞-categories and relative/homotopical cat-

egories, see [BK11] and [Rie20].)

Given either a model category or a relative category M, there is a way to

construct an ∞-category M∞ that describes the same homotopy theory. This

∞-category we call the underlying∞-category of M, and “having the same ho-

motopy theory” means that there is an isomorphism of homotopy categories:

ho(M) ≃ h(M∞),

where ho(M) is the homotopy category of the model category (4.0.2) and h(M∞)

5There may be different conditions about closure properties of the weak equivalences, so
beware.
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is the homotopy category of the∞-category (2.4.13).

This section will be devoted to constructing the underlying M∞, as well as

a related construction called Dwyer-Kan localization.

2.11.1 Dwyer-Kan localization

Historically, this type of construction was done first in the language of simpli-

cial model categories6 – model categories that are simplicially enriched (2.2.4)

in a way that’s compatible with the model structure.

In a series of papers [DK80c; DK80a; DK80b] William Dwyer and Daniel

Kan described a process of simplicial localization (a.k.a. Dwyer-Kan localiza-

tion or DK localization), which takes a simplicial model category and builds

a simplicial category that records the higher-order homotopical information.

This construction goes as follows:

(i) Starting with a model/relative category M (4.0.3);

(ii) realize it as a simplicial model category via simplicial (a.k.a. Dwyer-Kan)

localization, to form a simplicial category LHM ∈ sCat (2.2.4);

(iii) taking the homotopy category (2.4.6) recovers the homotopy category of

the model category (4.0.2), ie. there are isomorphisms:

Homho(M)(x,y) � π0(LHM(x,y)•)

for all x,y ∈M.
6Many model categories we care about are already naturally simplicial model categories; eg.

sSetQuillen and TopQuillen. Although there are many model categories that aren’t naturally sim-
plicially enriched, Dugger [Dug01] showed that for a certain class of particularly nice model
categories, there is a way to construct a Quillen equivalence from each to a simplicial model
category.
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Definition 2.11.1. [Dwyer-Kan localization]

Let M be a model category (4.0.3) or, more generally, a relative category.

The Dwyer-Kan localization (or hammock localization) functor

LH : RelCat→ sCat

takes a model/relative category to a simplicially enriched category LHM, which

is defined as follows:

• (objects): Objects are zig-zags (4.0.2) inM: a zig-zag of length i is a string

in M of the form:

x→m1
∼←−m2→ ·· ·mi−1→ y

where each leftwards map is a weak equivalence. Note that, although we

have drawn them as above, there is no reason that the first and last maps

need be as above. These are precisely the same objects as in the homotopy

category ho(M) (4.0.2).

• (hom-ssets): Given objects x,y ∈ M, the hom-sset LHM(x,y)• ∈ sSet is

defined with n-simplices given by reduced hammocks of height n – dia-

grams of the form

m0,1 · · · m0,i−1

x m1,1 · · · m1,i−1 y

...
...

mn,1 · · · mn,i−1

∼∼

∼ ∼

∼∼
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such that:

– The horizontal strings are zig-zags between x and y of any length i.

Backwards (left-facing) maps in a zig-zag are by definition required

to be weak equivalences. The zig-zags are “parallel” in the sense that

maps in the same column face the same direction.

– All vertical maps are weak equivalences (marked with ∼).

– No column consists of only identity maps.

Face maps are given by deleting and composing over a row, and degen-

eracies are given by repeating a row. For example, given a 2-simplex

α ∈ LHM(x,y)2 of the form below, its 1st face and 0th degeneracy look

like:

α : a a′

x b b′ y

c c′ a a′

d1α : a a′ s0α : a a′

x y x b b′ y

c c′ c c′

∼

∼

∼

∼

∼

∼

∼

∼

∼

Remark 2.11.2. Dwyer and Kan actually construct a different version first in

[DK80c], and then construct the hammock localization in [DK80a] where they

show that the two constructions form equivalent simplicial categories [DK80a,

Prop. 2.2]

Proposition 2.11.3. [DK80a, Prop. 3.1]
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There is an equivalence of categories:

h(LHM) ≃ ho(M),

where h(LHM) is the homotopy category of the simplicial category (2.4.6) and

ho(M) is the homotopy category of the model category (4.0.2).

Remark 2.11.4. Since simplicial categories are a model of ∞-categories, we

could take Dwyer-Kan localization as one description of an underlying ∞-

category of M.

If we want to describe the underlying as an quasi-category, there are two

constructions. Both will be shown to be equivalent.

Definition 2.11.5. [underlying∞-category of a model category (def. 1)]

Let M be a model category.

The underlying∞-category of M (we may also call it simply “the underly-

ing of M”) is a quasi-category we call M∞ that is constructed as follows:

(−)∞ : RelCat
LH−−→ sCat

(−)f
−−−→ sCat

N∆−−→ sSet

To break this down:

• LH is Dwyer-Kan localization (2.11.1).

• (−)f is fibrant replacement in sCatBergner (4.0.10). Recall that fibrant ob-

jects (4.0.13) in sCatBergner are Kan-enriched categories (4.0.20) (ie. ∞-

categories (4.1.6)).

• Taking the coherent nerve (2.2.14) of a Kan-enriched category forms a

fibrant object in sSetJoyal , ie. quasi-category (4.0.20) M∞ =N∆(LHM)f .
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Remark 2.11.6. [HTT, A.2]

If one is starting with a simplicial model category, there is a construction of

the underlying∞-category as follows :

(i) Restrict to the subcategory of bifibrant objects Mcf ⊆M.

(ii) Take the coherent nerve (2.2.14) N∆(Mcf ) to get a quasi-category.

Remark 2.11.7. [HA, 1.3.4.15]

We can describe the underlying ∞-category via universal property as fol-

lows: let M be a model category and Mc ⊆ M the subcategory of cofibrant

objects (4.0.18).

A functor of∞-categories

N (Mc)→ C

is said to exhibit C as the underlying∞-category of M if it induces an equiva-

lence

N (Mc)[W −1] ≃ C,

where W ⊆ N (Mc) is the subcategory spanned by weak equivalences, and the

term on the left represents localization of N (Mc) at W (2.14.1).

Proposition 2.11.8. [HA, 1.3.4.20]

Let M be a simplicial model category (2.2.4, 4.0.3). Then the ∞-category

N∆(Mcf ) (2.11.6) is the underlying∞-category of M in the sense of (2.11.7).

Proposition 2.11.9. Taking the homotopy category exhibits hM∞ = ho(M) =

M[W −1], as the usual model-categorical localization.
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Proposition 2.11.10. [Hin15, Prop. 1.5.1]

A Quillen adjunction (4.1.2)

f :M⇄N : g

between model categories induces an adjunction (2.10.3)

Lf :M∞⇄N∞ :Rg

between their underlying∞-categories.

2.12 Yoneda embedding

Definition 2.12.1. [presheaves on ordinary categories]

Let C be an ordinary category.

A presheaf on a category C is a functor Cop→ Set.

The category of presheaves on C is the functor category

P(C) := Fun(Cop,Set).

Remark 2.12.2. We can recognize a category C as a full subcategory of its

presheaves by the Yoneda embedding

j : C→ P(C),

X 7→HomC(−,X).

The Yoneda lemma says that the functor j is fully faithful.
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Remark 2.12.3. The category of presheaves P(C) is complete and cocomplete

— just take limits/colimits of sets, eg. for a collection {Fi}I of presheaves on C,

the colimit presheaf is defined by

colimI Fi : X 7→ colimI Fi(X).

This defines a universal property on presheaves: any colimit-preserving func-

tor F : C→D, from a category C to a cocomplete categoryD will factor through

the Yoneda emedding and a colimit-preserving map F:

C D

P(C)

F

j F

So forming a presheaf category can be thought of as formally sticking in all

limits and colimits to a category.7

Definition 2.12.4. [presheaves on simplicial sets]

Let X be a simplicial set. Then the simplicial set of presheaves on X is the

function complex (2.8.2):

Fun(Xop,S).

When X is an∞-category, then P(X) is an∞-category. (2.8.3).

Definition 2.12.5. [(∞-) Yoneda embedding] [HTT, 5.1.3]

Let C be an∞-category.

The adjoint to the coherent nerve (2.2.12) forms a Kan-enriched category

7This sometimes destroys honest limits/colimits one might have had in the original cate-
gory. To rectify this, one can shift to sheaves, imposing “relations” to recover colimits from the
original category as colimits in the presheaf category. See [Dug].
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C(C) ∈ sCat (2.2.18). There is a simplicial functor

C(C)op ×C(C)→Kan

(X,Y ) 7→HomC(C)(X,Y ),

where Kan is the simplicially enriched category of Kan complexes. Composing

with the natural map C(Cop ×C)→C(C)op ×C(C) gives a simplicial functor:

C(Cop ×C)→Kan,

which corresponds by adjunction (C ⊣N∆) (2.2.17) to a map of∞-categories:

Cop ×C→N∆(Kan) = S.

Since sSet is cartesian-closed, we can identify this with a map

j : C→ Fun(Cop,S) = P(C),

which we call the ∞-categorical Yoneda embedding .

Proposition 2.12.6. [(∞-) Yoneda lemma] [HTT, 5.1.3.1]

Let C be an ∞-category. The Yoneda embedding j : C → P(C) (2.12.5) is

fully-faithful (2.8.13).

Proposition 2.12.7. [HTT, 5.1.3.2]

The Yoneda embedding j : Cop→ P(C) preserves all small limits.

Remark 2.12.8. [HTT, 5.1.2.4]

Let C be an∞-category. Then the∞-category of presheaves P(C) is complete
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and co-complete (it has all small limits and colimits).

Remark 2.12.9. Let X be an object in an∞-category C.

There is an evaluation map evX : P(C)→ S that sends a presheaf F 7→ F(X).

Composing with the Yoneda embedding j (2.12.5) forms a functor

jX := evX ◦j : C→ S,

which we call the functor corepresented by X. Explicitly, on objects, this sends

Y ∈ C0 to the mapping space MapC(X,Y ).

Dually, there is a functor:

jX := evX ◦j : Cop→ S

called the functor represented by X. Explicitly, on objects this sends Y ∈ C0 to

the mapping space MapC(Y ,X).

Proposition 2.12.10. [K, 7.4.5.12]

Let X be an object in an∞-category C.

The functors corepresented and represented by X:

hX : C→ S

hX : Cop→ S

both preserve I-indexed limits, for any simplicial set I .

Remark 2.12.11. In particular, suppose F : I → C was a diagram with a limit

limI F. Then the proposition (2.12.10) says that there is an equivalence of
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spaces:

hX(lim
I
F) = MapC(X, lim

I
F) ≃ lim

I
MapC(X,F(i)).

Dually, there is an equivalence of spaces:

MapC(colimI F,X) ≃ lim
I

MapC(F(i),X).

2.13 Presentability, Accessibility

Size issues arise in ordinary category theory (eg. when do certain construc-

tions form proper sets?), leading to the notion of a locally presentable category

[GU71]. A standard reference for these in English is Adámek and Rosický’s

book [AR94]. There is an analagous class of ∞-categories called presentable8

∞-categories. For a reference, see [HTT, A.1.1, Ch.5].

Definition 2.13.1. [regular cardinals]

A regular cardinal is a cardinal α such that given a collection of cardinals

{βi}i∈I with each βi < α and the cardinality of the indexing set |I | < α, then the

sum
∑
i∈I βi < α.

Example 2.13.2. The simplest example of a regular cardinal is the smallest

infinite cardinal ω = ℵ0 = |N|.9 In this case the statement above says that a

finite sum of finite cardinals is always less than ℵ0.

Definition 2.13.3. [small ordinary categories]

Let α be a regular cardinal.

8This is the terminology used in [HTT], which we will stick to. To avoid confusion, some
people may still say “locally presentable∞-categories”.

9Sometimes people will make a distinction between ω = {0,1,2, . . . } as an ordinal and ℵ0 =
|ω| as the corresponding cardinal. To us ω = ℵ0, and we’ll use both interchangeably.
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A category C is called α-small if C has fewer than α morphisms; ie. the

cardinality |Hom(C)| < α.

(Note that this implies that C has < α objects.)

Definition 2.13.4. [filtered ordinary categories]

A category I is called α-filtered if for any subset I<α ⊆ I with cardinality

|I<α | < α, there exists a co-cone of Iα – ie. an element i ∈ I with morphisms j→ i

for all j ∈ I<α that commute with the morphisms in I<α.

An α-filtered diagram is a diagram I → C such that the indexing category

I is α-filtered.

Definition 2.13.5. [filtered ordinary colimits]

Let C be an ordinary category.

A α-filtered colimit is the colimit of a diagram I → C, where the diagram

category I is α-filtered (2.13.4).

Definition 2.13.6. [compact objects in an ordinary category]

Let C be an ordinary category with small colimits and x ∈ C be an object.

Let α be a regular cardinal.

We say that x is α-compact if for any α-filtered diagram I → C,i 7→ yi

(2.13.4) with colimit colimi∈I yi , the induced map

colimI HomC(x,yi)
∼−→HomC(x,colimI yi)

is a bijection.

We say that x is small if it is α-compact for some regular cardinal α.

We call x compact if it’s ω-compact.

Definition 2.13.7. [generation under colimits]
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Let C be an ordinary category. Let α be a regular cardinal (2.13.1).

A set of objects G ⊆ ob(C) is said to generate C under α-filtered colimits if

any x ∈ C can be written as a α-filtered colimit (2.13.5)

x = colimi∈I gi

where I is α-filtered (2.13.4) and gi ∈ G for all i ∈ I .

This leads to a related, weaker notion of inductive limits:

Definition 2.13.8. [Ind-objects of a category]

We can form a category called Ind(C) , defined as:

• (objects): are Ind-objects, ie. diagrams X : I → C. We may call these such

a diagram [lim−−→i
Xi]. This is meant to suggest that Ind-objects are kind of

formal colimits.

• (morphisms):

HomInd(C)

[lim−−→
i

Xi], [lim−−→
j

Yj]

 := lim←−−
i

lim−−→
j

HomC(Xi ,Yj).

where the colimit and limit on the right are taken in Set.

For an arbitrary regular cardinal α, the category Indα(C) is defined as above,

with Indα-objects being α-filtered diagrams I → C (2.13.4).

Remark 2.13.9. Taking the indexing category I := [0] gives us the objects of C

as the Ind-objects, and morphisms given by the morphisms in C. That is C can

be thought of as a full subcategory C ↪→ Ind(C). This is kind of like a weaker

Yoneda embedding (compare 2.12.2).
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Remark 2.13.10. We think of Ind(C) as a formal cocompletion (along filtered or

α-filtered diagrams). The category Indα(C) satisfies a similar universal prop-

erty as the category of presheaves (2.12.3): given a category D with α-filtered

colimits (2.13.5), any α-filtered-colimit preserving functor C→D factors as

C D

Indα(C)

Now we can talk about a more general notion of accessibility. We broaden

the generating set to include α-compact objects, and allow them to generate via

α-filtered colimits.

Definition 2.13.11. [accessible 1-categories/functors]

A category C is α-accessible if it’s generated by a set of α-compact (2.13.6)

objects and has all α-filtered colimits (2.13.5). That is, C = Indα(S) (2.13.8) for

some small category S.

We’ll say C is accessible if it’s α-accessible for some α.

If C and D are α-accessible categories, then a functor F : C→D is called an

α-accessible functor if it preserves all α-filtered colimits.

If our category contains not just α-filtered colimits, but all small colimits

(ie. it is cocomplete), we have a stronger (and much nicer) notion of local pre-

sentability:

Definition 2.13.12. [locally presentable 1-categories]

A category C is called locally presentable if it’s accessible and cocomplete.

In other words:

(i) C is locally small.
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(ii) C is cocomplete.

(iii) There’s a regular cardinal α and a small set of objects S ⊆ ob(C) that are

α-small and that generate C under α-filtered colimits.

Remark 2.13.13. In the case of α = ω, the above says that C is ω-accessible (ie.

finitely accessible) if it’s generated by a small set of compact objects and closed

under finite colimits.

Remark 2.13.14. Presentability is a stronger version of accessibility: we’ve

strengthened the filtered colimit condition to include all small colimits. Pre-

sentable categories are better behaved in a number of ways. A simple example:

an α-presentable category is α′-presentable for all α′ > α, but the analagous

statement in terms of accessibility is not true.

A meatier example are the Adjoint Functor Theorem(s). First the “ordinary”

adjoint functor theorems:

Proposition 2.13.15. [(General) Adjoint Functor Theorems]

A functor F : C→D out of a small and complete category C is a

(i) left adjoint iff

• F preserves all colimits.

• F satisfies the solution set condition: for any d ∈D, there’s a set I and

a family of maps {fi : F(ci)→ d}i∈I in D such that any map ϕ : F(c)→

d factors as:
F(c) d

F(ci)

ϕ

fiF(gi )

for some i ∈ I and a gi ∈HomC(c,ci).
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(ii) right adjoint iff

• F preserves all limits.

• F satisfies the solution set condition: for any d ∈D, there’s a set I and

a family of maps {fi : d→ F(ci)}i∈I in D such that any map ϕ : d →

F(c) factors as:

d F(c)

F(ci)

ϕ

F(gi )fi

for some i ∈ I and a gi ∈HomC(ci , c).

The solution set conditions can be interpreted as some kind of smallness

condition. The fact that the family {fi}i∈I is indexed by a set I is important

here.

The punchline here is that when C and D are both locally presentable, the

above reduces to:

Proposition 2.13.16. [(Presentable) Adjoint Functor Theorem]

A functor F : C→D between locally presentable categories (2.13.12) is a

(i) left adjoint iff it preserves all small colimits;

(ii) right adjoint iff it preserves all small limits and is accessible (ie. preserves

α-filtered colimits for some α).

There is an∞-version of this theorem that is worded exactly the same (HTT

5.5.2.9), but we need to unpack it a little bit.

Definition 2.13.17. [small simplicial sets]

Let α be a regular cardinal (2.13.1).
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A simplicial set X ∈ sSet is called α-small if it has < α nondegenerate

simplices.

A diagram in an ∞-category K → C is called α-small if K is α-small. For

example, a colimit of a diagram K → C is called an α-small colimit if K is an

α-small diagram.

Definition 2.13.18. [filtered∞-categories &∞-colimits]

Let C be an∞-category.

We say that C is α-filtered if for any α-small diagram p : K → C (2.13.17),

the slice category Cp/ (2.9.26) is nonempty. [HTT, 5.3.1.9]

Equivalently, C is α-filtered if for any α-small simplicial set K , a map K → C

extends to a map K▷→ C (2.9.22). [HTT, 5.3.1.7]

We’ll call C filtered if its ω-filtered.

We can generalize inductive limits/colimits (2.13.8) to∞-categories:

Definition 2.13.19. [(∞-) inductive limits]

An Ind-object of an∞-category C is a small filtered diagram X : I → C.

We can collect these into an ∞-category Ind(C) , where morphism spaces

are defined analagously as before; for (X : I → C), (Y : J → C) in Ind(C),

MapInd(C)(X,Y ) := lim←−−
I

lim−−→
J

MapC(Xi ,Yj),

where the limit and colimit on the RHS are co/limits in the ∞-category of

spaces S.

This gives us a notion of accessibility (compare to 2.13.11):

Definition 2.13.20. [accessible∞-categories/functors]
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An ∞-category C is α-accessible if there exists a small ∞-category C0 and

an equivalence

Indα(C0)→ C

We say that C is accessible if it’s α-accessible for some α.

When α =ω, we say that C is finitely accessible if it is ω-accessible.

A theorem of Carlos Simpson gives a list of equivalent conditions for an

∞-category to be presentable, which we can take as a definition.

Definition 2.13.21. [presentable∞-category] [HTT, 5.5.1.1, Simpson]

The following are equivalent for an∞-category C:

(1) C is presentable .

(2) C is accessible, and for every regular cardinal α, the full subcategory Cα ⊆

C (of α-compact objects) admits α-small colimits.

(3) There exists some regular cardinal α such that C is α-accessible and Cα

admits α-small colimits.

(4) There’s an equivalence C ≃ Indα(C0), where C0 is a small ∞-category ad-

mitting α-small colimits.

(5) C is the accessible localization of a presheaf category P(D) for some small

∞-category D.

(6) C is locally small, admits small colimits, and there’s a regular cardinal α

and a small set of α-compact objects S ⊆ Cα such that any object x ∈ C can

be written as a colimit of a small diagram landing in the full subcategory

S ⊆ C spanned by S.
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Definition 2.13.22. [compactly generated∞-categories]

Let C be an∞-category and let α be a regular cardinal (2.13.1).

We say that C is α-compactly generated if it is:

• presentable (2.13.21); and

• α-accessible (2.13.20).

Equivalently, C is α-compactly generated iff there is a small ∞-category C0

which admits α-small colimits (2.13.17), and there is an equivalence

C ≃ Indα(C0)

(2.13.19, 2.13.20).

When α = ω, we say that C is compactly generated . In other words, C is

compactly generated if it is:

• presentable; and

• finitely accessible.

Equivalently,C is compactly generated iff there is a small∞-category C0 which

admits finite colimits, and there is an equivalence C ≃ Ind(C0).

Proposition 2.13.23. [(Presentable) Adjoint Functor Theorem] [HTT, 5.5.2.9]

A functor F : C→D between presentable∞-categories is a

(i) left adjoint iff it preserves all small colimits;

(ii) right adjoint iff it preserves all small limits and is accessible (2.13.20) (ie.

preserves α-filtered colimits for some α).
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Another nice quality of presentable∞-categories is that it is straightforward

to tell if a presheaf on a presentable category is representable:

Proposition 2.13.24. [HTT, 5.5.2.2]

If C is a presentable∞-category, then a presheaf F : Cop→ S is representable

iff it preserves small limits.

Finally, an important characterization of presentable∞-categories as essen-

tially equivalent to combinatorial model categories:

Proposition 2.13.25. [Cis19, Thm. 7.11.16, Rk. 7.11.17], [HTT, A.3.7.6]

An ∞-category C is presentable (2.13.21) iff it underlies a combinatorial

(4.4.1) model category M; ie. there’s an equivalence C ≃M∞, where M∞ is the

underlying∞-category (2.11.5) of M.

Remark 2.13.26. See also [Pav21] for the stronger statement that an∞-category

of presentable∞-categories is (∞-) equivalent to an∞-category of combinato-

rial model categories.

2.14 Localization

Localization is crucial in studying homotopy theories. We can localize a cat-

egory with weak equivalences by formally turning them into isomorphisms

(4.0.1). Given a homotopy theory, we can also localize further, with respect

to some morphisms which are not already weak equivalences. There exists an

analagous processes in∞-category theory. In this section we lay these out and

compare them.

Definition 2.14.1. [localization via universal property] [HA, 1.3.4.1]

Let C be an∞-category and W ⊆ C1 some collection of morphisms.
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There exists an∞-category C[W −1] along with a functor f : C→ C[W −1] that

exhibits C[W −1] as the∞-category obtained from C by inverting morphisms in

W . This means that precomposing with f induces a fully faithful embedding

(2.8.13)

−◦ f : Fun(C[W −1],E)→ Fun(C,E)

for any∞-category E, and the essential image of −◦f is functors C→ E sending

all maps in W to equivalences in E.

Remark 2.14.2 (HA, 1.3.4.2). One can construct C[W −1] by considering (C,W )

as a “marked simplicial set”. A marked simplicial set is a simplicial set with

some edges identified. These form a category that Lurie denotes sSet+. One

can give this a model structure and realize such a localization as a fibrant re-

placement.

Theorem 2.14.3. [Cis19, Thm. 7.9.8]

Let C be a model category and let C = NC be its nerve. The collection of

weak equivalences in C forms a collection of edges W ⊆ C1. Let I be a diagram

category.

There is an equivalence of∞-categories:

Fun(NI,C)[W
−1

]
∼→ Fun(NI,C[W −1])

where W ⊆ Fun(NI,C)1 is the collection of “fiberwise weak equivalences”10:

W : =
{
f :NI ×∆1→ C : f (i ×∆1) ∈W for all i ∈ I

}
⊆ Fun(NI,C)1

10This is analagous to how for a model category M, the category of functors MI has an in-
duced model structure.
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That is, localizing the functor category

Fun(NI,C)→ Fun(NI,C)[(W )−1]

with respect to the fiberwise weak equivalences is the same as considering

functors from NI into the localization C[W −1].

2.14.1 Bousfield localization

Categories obtained as localizations in the sense of (2.14.1) are not always so

easy to get a handle on. For example, it may happen that C is locally small

but C[W −1] is not. In certain cases, we can get a nicer description of C[W −1]

as a full subcategory sitting inside of C. This is called reflective localization or

Bousfield localization.

Definition 2.14.4. [reflective/Bousfield localization of∞-categories]

A functor l : C → D between ∞-categories is a reflective localization (or

Bousfield localization) if it admits a fully-faithful right adjoint r.

Remark 2.14.5. Given a reflective localization (l, r) : C⇄ D as above, we con-

sider the localization as the subcategory formed by the essential image r(D) ⊆ C.

Remark 2.14.6. We will usually call L := r ◦ l : C→ C a localization functor. For

an ordinary category C we may call L(C) := L(NC) the localization of the nerve.

Definition 2.14.7. [accessible localization] [HTT, 5.5.1.2]

A localization

L : C→ C

is called accessible if either of the following (equivalent) conditions hold:
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(1) L is an accessible functor (preserves κ-filtered colimits for some κ).

(2) The essential image L(C) ⊆ C is an accessible subcategory.

(3) There’s an equivalence L ≃ r ◦ l, where (l, r) form an adjoint pair:

l : C⇄D : r,

and D is accessible.

Remark 2.14.8. If (l, r) : C⇄ D is a reflective localization, then l : C→ D ex-

hibits D as a localization D = C[S−1] of C by the class

S = {f ∈ C1 sent to equivalences under l} .

In [HTT], this type of localization is called simply a localization. While

reflective/Bousfield localization is a localization in the sense of inverting some

morphisms, the converse is not true. That is, not every localization can be

described as a reflective localization; ie. not every C→ C[S−1] admits a fully-

faithful right adjoint.

There are partial things in the opposite direction, assuming conditions on

C and on the collection S ⊆ C1.

Definition 2.14.9. [S-local objects]

Let C be an∞-category, and S ⊆ C1 a collection of morphisms.

An object Z ∈ C is called S-local if for any map s : X→ Y in S, precompos-

ing induces an equivalences of spaces:

−◦ s : MapC(Y ,Z)
∼−→MapC(X,Z).
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We can collect all S-local objects into a full subcategory we call S−1C .

A map f : X → Y is called an S-equivalence if precomposing induces an

equivalence MapC(Y ,Z)→MapC(X,Z) as above, for any Z ∈ S−1C.

Definition 2.14.10. [strong saturation]

Let C be an∞-category with small colimits, and S ⊆ C1 a collection of mor-

phisms.

The collection S is strongly saturated if it satisfies the following:

(i) S is closed under pushouts.

(ii) The full subcategory S ′ ⊆ C∆1
spanned by S is closed under small colimits.

(iii) S satisfies a 2-out-of-3 property.

Remark 2.14.11. Given a collection S in an∞-category with small colimits, one

can always find a smallest saturated collection containing S – we will usually

call such a set the saturated closure, denoted S.

If S is a small collection (a set), then we say that S is of small generation .

Proposition 2.14.12. [HTT, 5.5.4.15]

Let C be a presentable ∞-category, S ⊆ C1 a small collection of morphisms,

and S the saturated set generated by S.

(i) The full subcategory S−1C ⊆ C of S-local objects is a Bousfield localization

C→ LC.

(ii) S−1C is presentable.

(iii) There is an equivalence:

S−1C ≃ C[(S)−1],
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where the left is Bousfield localization with respect to S, and the right

is ordinary localization with the saturated closure S, which is precisely

S = {f : Lf is an equivalence}.

3 Stable∞-categories and triangulated categories

We worked on this book with the disquieting feeling
that the development of homological algebra is
currently in a state of flux, and that the basic
definitions and constructions of the theory of
triangulated categories, despite their widespread use,
are of only preliminary nature (this applies even more
to homotopic algebra).

Sergei I. Gelfand, Yuri I. Manin,
“Methods of Homological Algebra” [GM11]

3.1 Stable∞-categories

There are special homotopy theories called stable homotopy theories. The pro-

totypical example of a stable homotopy theory is the stable homotopy category

of spectra SHC. As ∞-categories present homotopy theories, there is a notion

of a stable ∞-category which presents a stable homotopy theory. This section

will be devoted to the theory of stable ∞-categories. The primary source for

this is Chapter 1 of [Lur17].

Definition 3.1.1. [zero objects, pointed∞-categories]

An object in an ∞-category is called a zero object if it is both initial and

terminal (2.9.30).

An∞-category is called pointed if it has a zero object.

Definition 3.1.2. [HTT, 7.2.2.1]
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Let C be an∞-category with a final object ∗ ∈ C0.

The category of pointed objects of C is the subcategory

C∗ ⊆ Fun(∆1,C)

spanned by edges ∆1→ C of the form (∗ → X).

Note that C∗ is a pointed category (3.1.1), with zero object given by the iden-

tity (∗ id−−→ ∗).

Definition 3.1.3. [pointed functors]

A functor between pointed ∞-categories is called a pointed functor if it

preserves zero objects. That is f : C→ D is pointed iff f (0C) is a zero object in

D.

Remark 3.1.4. An initial object (resp. a final object) in an ∞-category can be

described as a colimit (resp. a limit) of an empty diagram (2.9.30). As lim-

its and colimits are unique up to equivalence, zero objects are unique up to

equivalence.

Remark 3.1.5. Let C be an∞-category. A zero object 0 ∈ C in the sense of (3.1.1)

is a zero object (in the ordinary sense) in the homotopy category hC.

Proof. This follows immediately from (2.9.32).

Remark 3.1.6. Note that the converse is not true, since initial/final objects in

the homotopy category may not be initial/final in the∞-category (2.9.33).

Definition 3.1.7. [co/fiber sequences in∞-categories]

Let C be an∞-category.
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A triangle in C is a diagram ∆1 ×∆1→ C of the form:

• •

0 •

where 0 is a zero object of C.

A fiber sequence in C is a triangle that forms a pullback square in C. A

cofiber sequence in C is a triangle that forms a pushout square. Note these are

pullbacks and pushouts in the sense of (2.9.41).

Remark 3.1.8. We draw a diagram ∆1 ×∆1→ C as a square as in the definition

above, but it should be noted that we are hiding some information. A more

accurate picture of a triangle that includes all non-degenerate simplices might

look like:

• •

0 •

f

gh

That is, a triangle consists of:

• A pair of maps, along with a 2-simplex witnessing composition:

• •

•

f

g
h

• A 2-simplex witnessing a “null-homotopy” of the map h:

•

0 •

h
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Such a diagram corresponds to an ordinary commutative square [1]× [1]→

hC in the homotopy category.

A pushout (resp. pullback) square in an ∞-category corresponds to a “ho-

motopy pushout” (resp. homotopy pullback) (4.2.1) in the homotopy category.

Pushing out along a zero map means that this corresponds to a “homotopy

cokernel” (resp. homotopy kernel), ie. a “weak cokernel” (resp. weak kernel).

Definition 3.1.9. Let C be an∞-category with a morphism f ∈ C1.

A fiber of f is a fiber sequence in C (3.1.7) of the form:

• •

0 •
f

Recall a fiber sequence is a pullback square. We may use the term “fiber of

f ” when referring to the pullback object in the square above, and denote the

object fib(f ).

A cofiber of f is a fiber sequence in C of the form:

• •

0 •

f

Similarly to the fiber, we may refer to the pushout object in the square above as

the “cofiber of f ”, denoted cofib(f ).

Definition 3.1.10. [HA, 1.1.1.9]

[stable∞-categories]

An∞-category C is called stable if

(i) it’s pointed (3.1.1), ie. has a zero object 0 ∈ C0;
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(ii) every map f ∈ C1 admits a fiber and cofiber (3.1.9);

(iii) fiber sequences are the same as cofiber sequences (3.1.7).

Remark 3.1.11. The final condition that fiber and cofiber sequences are the

same is precisely what makes the stable homotopy category SHC stable. The

definition of a stable∞-category axiomatizes this stable behavior.

Example 3.1.12. [examples of stable∞-categories]

(a) Starting from an abelian category A, [HA, 1.3] constructs a construction

of a stable∞-category called D(A), whose homotopy category is the usual

derived category of A. [HA, 1.3]

(b) In [HA, 1.4] there is constructed a stable∞-category of spectra, Sp, whose

homotopy category is the stable homotopy category SHC of stable homo-

topy theory.

3.1.1 Functoriality of cofibers, loops and suspensions

Let C be a stable∞-category (3.1.1), and let f ∈ C1 be a morphism. We defined

a cofiber of f (3.1.9) as a (∞-) pushout:

• •

0 cofib(f )

f

We can make this construction functorial. That is, we construct a functor of

∞-categories

cofib : C∆1
→ C,

which takes an edge f ∈ C1 to the cofiber cofib(f ).
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First we will the following statement, [HTT, 4.3.2.15], which is used regu-

larly and unceremoniously throughout the rest of [HTT] and [HA]. The state-

ment in [HTT] is written more generally than we need, so we present a simpli-

fied version.

Proposition 3.1.13. [HTT 4.3.2.15] (simplified)

Let C and D be ∞-categories, and C0 ⊆ C a full subcategory. Let K ⊆

Fun(C,D) be the full subcategory

K := {functors F : C→D that are left Kan extensions of functors F|C0} ,

(respectively one can take right Kan extensions) and K0 ⊆ Fun(C0,D) the full

subcategory of functors F0 : C0 → D such that for any x ∈ C, the induced dia-

gram

C0
/x→D

has a colimit (resp. C0
x/ → D has a limit). (Here C0

/x is the slice category re-

stricted to the subcategory C0 – if you like, the pullback C/x ×C C0.)

Then the restriction K→K0 is a trivial fibration (2.7.1) of simplicial sets. In

other words, its fibers are contractible Kan complexes. That is, we can extend

such a functor from a subcategory C0 to a functor on the whole category C→D,

and such an extension is unique up to homotopy (which is the right notion of

uniqueness in∞-categories).

The dual version

Remark 3.1.14. [HA, 1.1.1.7], [Gar12]

Let D be a stable∞-category.
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We construct a functor cofib : D∆1 →D that sends a map

(f : X→ Y ) ∈ (D∆1
)0 = D1

to its cofiber cofib(f ) (3.1.9).

We’ll do this using (3.1.13) twice:

(1) Take C0 := ∆1 and C := ∆1∪∆{0}∆1. Then we will Kan extend edges ∆1→D

to diagrams ∆1 ∪∆{0} ∆1→D of the form:

• •

0D

where 0D ∈D is a zero object.

In this case,

K =
{
diagrams ∆1 ∪∆{0} ∆1→D as above that are Kan extensions

}
K0 =

{
edges in D such that (∆1)x/ →D has a limit for any x ∈ ∆1 ∪∆{0} ∆1

}

In this case C only has three objects (the two objects of C0 and the object

mapping to 0D), and diagrams C0
x/ = ∆1

x/ →D are 2-simplices of D. Since

D is stable, it has all finite limits, so K0 = Fun(C0,D) = D1 is simply the

collection of all edges of D.

The theorem then says that the restriction K→ K0 is a trivial fibration.

In other words, we can extend an edge (• → •) ∈ D to a diagram (0D ←

•→ •) ∈D, and this extension is unique (up to homotopy).
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(2) Kan extending diagrams K0 :=
{
∆1 ∪∆{0} ∆1→D

}
of the form:

• •

0D

to diagrams K =
{
∆1 ×∆1→D

}
of the form:

• •

0D •

Left Kan extensions of this type are colimits, ie. pushout squares. In

other words, K0 consists of diagrams that want to be completed to cofiber

sequences (3.1.7), and K consists of those cofiber sequences. Cofibers al-

ways exist in a stable∞-category, so the restriction K→K0 is also a trivial

fibration. That is, these homotopy cofibers are unique up to homotopy.

These trivial fibrations compose to a trivial fibration


• •

0D •

→

• •

0D

→ {•→ •} = D∆1

In other words, we can extend an edge in D to an exact triangle, which is

unique up to homotopy. Let s : D∆1 → Fun(∆1×∆1,D) be a section representing

such an extension. And let i be the inclusion:

i : ∆{1} ×∆{1} ↪→ ∆1 ×∆1
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Pulling back by i forms a functor

i∗ : Fun(∆1 ×∆1,D)→ Fun(∆0,D) ≃D

that “evaluates” a square in D by sending it to the bottom-right object. In

particular, it sends an exact triangle diagram to the cofiber object.

Composing these gives us our functor

cofib = ev◦s : D∆1
→D.

Remark 3.1.15. Using the dual version of (3.1.13), one can construct a similar

functor

fib : D∆1
→D

that forms fibers (3.1.9).

Remark 3.1.16. [HA, 1.1.2.6]

[suspension and loops functors on a pointed∞-category]

Let C be a pointed∞-category (3.1.10) with fibers and cofibers (3.1.9).

LetMΣ ⊆ Fun(∆1×∆1,C) be the subcategory spanned by pushout squares of

the form:
• 0

0′ •

⌜

with 0 and 0′ both zero-objects in C. In other words, MΩ consists of cofibers

of 0-maps. The same argument as in (3.1.14) shows MΣ → C to be a trivial

fibration. Let s : C→MΣ be a section and e :MΣ→ C be evaluation at the final

vertex (the object Y in the diagram above). We call the composite functor the
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suspension functor Σ : C→ C.

Similarly, taking MΩ ⊆ Fun(∆1 × ∆1,C) to be the subcategory spanned by

fibers of 0-maps, ie. pullback squares of the form:

• 0

0′ •

⌜

lets us define a loops functor Ω : C→ C.

For example, the suspension and loops of an object X ∈ C0 are described by

pushout and pullback squares respectively of the form:

X 0 ΩX 0

0′ ΣX 0′ X

⌜

⌜
3.1.2 Stabilization

Given an ∞-category C, there is a way to construct a stable ∞-category, called

the stabilization of C, and denoted Sp(C).

This section will lay out the process of constructing the stabilization of an

∞-category. The ∞-category of spectra Sp then can be constructed as the sta-

bilization of the ∞-category S of spaces (2.5.1). A reference for this section is

[HA, 1.4].

Definition 3.1.17. [excisive functors]

Let f : C→D be a functor of∞-categories.

Then f is called excisive if it takes pushouts to pullbacks. That is, if α :

∆1 ×∆1→ C is a pushout square (2.9.41), the diagram f ◦α : ∆1 ×∆1→ D is a

pullback square.
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Remark 3.1.18. Let C and D be pointed ∞-categories. Define the following

subsets of Fun(C,D):

Fun∗(C,D) = {pointed functors C→D}

Exc(C,D) = {excisive functors C→D}

Exc∗(C,D) = {pointed, excisive functors C→D}

Definition 3.1.19. [HA, 1.4.2.5]

Recall the∞-category of spaces S (2.5.1).

There is a final object in S given by the point ∆0. Let S∗ be the ∞-category

of pointed objects of S (3.1.2). Explicitly, S∗ is the full subcategory of Fun(∆1,S)

spanned by morphisms of the form (∆0→ X).

Let Sf in ⊆ S be the smallest full subcategory that contains the final ob-

ject ∗ and is closed under finite colimits. We will call Sf in the ∞-category of

finite spaces.

Let Sf in∗ ⊆ S∗ be the ∞-category of pointed objects of Sf in (that is, the sub-

category of Fun(∆1,S) spanned by morphisms of the form (∗ → X), where X is

a finite space.

For each n ∈N, we call Sn ∈ S∗ a representative for the pointed n-sphere. For

example, using the description S = N∆(Kan) (2.5.1), we can take the n-sphere

to be the Kan complex formed by the singular complex (2.1.15) of the ordinary

n-sphere in Top.

Definition 3.1.20. [spectrum objects]

A spectrum object of an∞-category C with finite limits is a pointed, exci-

sive functor Sf in∗ → C.
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The collection of spectrum objects in C forms an∞-category

Sp(C) := Exc∗(S
f in
∗ ,C) ⊆ Fun(Sf in∗ ,C).

Remark 3.1.21. One way of describing a spectrum object that is useful is as a

functor X :N (Z×Z)→ C such that:

• X(i, j) = 0 whenever i , j;

• For each i, the square

X(i, i) =: Xi 0

0 Xi+1

is a pullback in C (ie. Xi ≃ΩXi+1).

Proposition 3.1.22. [HA, 1.4.2.16]

Let C and D be∞-categories, with C admitting finite limits and D admitting

finite colimits.

Then Exc∗(D,C) ⊆ Fun(D,C) is a stable∞-category (3.1.10).

In particular, taking D = S
f in
∗ (3.1.19), then Exc∗(S

f in
∗ ,C) = Sp(C) is stable.

Remark 3.1.23. [HA, 1.4.2.18]

Let C be an ∞-category with finite limits, and let C∗ be its category of

pointed objects (3.1.2). The forgetful functor C∗ → C induces an equivalence

of∞-categories Sp(C∗)→ Sp(C).

Definition 3.1.24. [Ω∞ functor]

Let C be a pointed ∞-category, and Sp(C) be the category of spectrum ob-

jects.
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We define a functor

Ω∞ : Sp(C)→ C

sending an object in Sp(C) (a functor f : Sf in∗ → C) to the functor evaluated at

the 0-sphere f (S0) ∈ C.

Proposition 3.1.25. [HA, 1.4.2.21]

Let C be an∞-category admitting finite limits.

Then C is stable iff the functor Ω∞ : Sp(C) → C is an equivalence of ∞-

categories.

Proposition 3.1.26. [HA, 1.4.2.23]

Let C be an ∞-category with finite limits. We can describe Sp(C) with the

following universal property.

Let D be a stable∞-category (3.1.10), and define the subcategories:

Fun′(D,C) ⊆ Fun(D,C)

Fun′(D,Sp(C)) ⊆ Fun(D,Sp(C))

to be those spanned by functors which preserve finite limits. Then composition

with Ω∞ forms an equivalence of∞-categories:

Ω∞ ◦− : Fun′(D,Sp(C))
∼−→ Fun′(D,C).

That is, given a stable∞-category D and a fiber-preserving (3.1.9) map D→ C,
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it factors uniquely through Sp(C):

Sp(C)

D C

Ω∞
∃!

Informally, Sp(C) is the closest stable∞-category to C.

Proposition 3.1.27. [HA 1.4.2.24]

Let C be a pointed∞-category admitting finite limits. Then Ω∞ : Sp(C)→ C

can be lifted to an equivalence of∞-categories:

Sp(C) ≃ lim(· · · → C
Ω−−→ C).

Example 3.1.28. [the∞-category of spectra Sp]

The ∞-category of spectra is the stabilization (3.1.20) of the∞-category of

spaces S. We denote it

Sp := Sp(S).

An object in Sp is a pointed, excisive functor X : Sf in∗ → S. Denote Xi :=

X(S i) for each i ∈ N. By excision (3.1.17) X sends the pushout square on the

left to a pullback square on the right:

S i ∗ Xi ∗

∗ ΣS i ≃ S i+1 ∗ Xi+1

⌜

⌜7→

The square on the right being a pullback square forms an equivalence Xi ≃

ΩXi+1. This is precisely the data of an Ω-spectrum.

The functor Ω∞ : Sp→ S (3.1.24) sends a spectrum X to X(S0) = X0.
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3.1.3 As spectrally enriched

One perspective of an ∞-category is as a category weakly enriched in spaces

(2.2.18). Spectra are the stable analogue of spaces (3.1.28), and accordingly

there is an analagous perspective on stable ∞-categories, as categories weakly

enriched in spectra.

Definition 3.1.29. [BGT13, Def. 2.15]

Let C be a stable∞-category.

The spectral Yoneda embedding is the composite:

C ≃ Sp(C∗)→ Sp(Fun(Cop,S)∗) ≃ Fun(Cop,Sp).

Here the equivalence

C ≃ Sp(C) ≃ Sp(C∗)

follows from (3.1.25, 3.1.23), the functor in the middle

Sp(C∗)→ Sp(Fun(Cop,S)∗)

is induced from the ∞-categorical Yoneda embedding (2.12.5), and the last

equivalence

Sp(Fun(Cop,S)∗) ≃ Fun(Cop,Sp)

follows from the fact that limits in a functor category are calculated pointwise.

Remark 3.1.30. There is a mapping spectrum functor

Cop ×C→ Sp
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that sends a pair of objects (X,Y ) 7→ MapC(X,Y )• ∈ Sp to the mapping spec-

trum. Informally, we can describe the mapping spectrum by:

MapC(X,Y )n ≃MapC(X,ΣnY )

3.1.4 Some useful facts

Here we collect some useful assorted facts about stable∞-categories.

Proposition 3.1.31. [HA, 1.4.2.21]

There are many equivalent conditions for an∞-category to be stable.

Let C be a pointed∞-category. Then the following are equivalent:

(i) C is stable.

(ii) Every map in C admits a fiber (3.1.9) and Σ : C→ C (3.1.16) is an equiva-

lence (2.8.12).

(iii) Every map in C admits a cofiber and Ω : C→ C is an equivalence.

(iv) C has finite co/limits, and a diagram ∆1 ×∆1 → C is a pullback iff it’s a

pushout (2.9.41) [HA, 1.1.3.4].

(v) Every map in C admits a fiber and cofiber (3.1.9), and a triangle (3.1.7) is

a fiber sequence iff it’s a cofiber sequence (3.1.7).

(vi) The functor Ω∞ : Sp(C) → C (3.1.24) is an equivalence of ∞-categories.

(3.1.25)

Proposition 3.1.32. [HA, 1.4.4.1]

(1) A stable∞-category has small colimits iff it has small coproducts.
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(2) A functor between stable∞-categories preserves small colimits iff it pre-

serves small coproducts.

(3) An object X in a stable∞-category C is compact (3.2.37) iff for any small

coproduct
∐
I Yi ∈ C, any map X →

∐
I Yi factors through a finite subco-

product – that is, there exists a finite subcomplex I0 ⊆ I and a 2-simplex

∆2→ C of the form:

X
∐
I Yi

∐
I0 Yi

Proposition 3.1.33. [HA, 1.4.4.4]

Let C be a presentable∞-category (2.13.21).

• The∞-category Sp(C) (3.1.20) is stable.

• The functor Ω∞ : Sp(C)→ C (3.1.24) admits a left adjoint Σ∞+ : C→ Sp(C).

Proposition 3.1.34. [HA, 1.1.3.1]

Let C be a stable ∞-category and K a simplicial set. Then the functor cate-

gory Fun(K,C) is a stable∞-category.

Proposition 3.1.35. [BGT13, Prop. 5.10, 5.11]

A functor F : C→D between stable∞-categories is fully faithful (2.8.13) iff

the induced functor hF : hC→ hD is fully faithful in the ordinary sense.

The functor F is an equivalence of∞-categories (2.8.12) iff hF is an equiva-

lence of ordinary categories.
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3.2 Triangulated categories

3.2.1 Basics of triangulated categories

Definition 3.2.1. [triangulated categories] (Verdier)

A triangulated category is a triple (T ,Σ,∆), where:

• T is an additive category;

• Σ : T → T is a self equivalence called suspension (sometimes (−)[1] is also

used to denote suspension);

• ∆ ⊆ T [3] is a collection of diagrams in T of the form:

X→ Y → Z→ ΣX

called distinguished triangles (or exact triangles). These exact triangles

satisfying the following:

(TR0) – The collection of distinguished triangles is stable under isomor-

phism. That is, given a distinguished triangle (X → Y → Z →

ΣX), along with isomorphisms:

X Y Z ΣX

X ′ Y ′ Z ′ Σ(X ′)

∼∼ ∼ ∼

then the triangle (X ′ → Y ′ → Z ′ → Σ(X ′)) is a distinguished tri-

angle.
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– For any X ∈ T , the string

X
id−−→ X→ 0→ ΣX

is a distinguished triangle.

(TR1) Every morphism X
f
−→ Y in T can be extended to a distinguished

triangle:

X
f
−→ Y → Z→ ΣX.

(TR2) Distinguished triangles can be “shifted.” That is, a string

X
f
−→ Y

g
−→ Z

h−→ ΣX

is a distinguished triangle iff the “shift”

Y
g
−→ Z

h−→ ΣX
−Σf
−−−−→ ΣY

is distinguished.

(TR3) Given a commuting diagram between two distinguished triangles

X Y Z ΣX

X ′ Y ′ Z ′ ΣZ ′

Σff

then there exists a map Z→ Z ′ making the diagram commute.
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(TR4) Given three distinguished triangles

X
f
−→ Y → Y /X→ ΣX

Y
g
−→ Z→ Z/Y → ΣY

X
g◦f
−−−→ Z→ Z/X→ ΣX

Then there exists a distinguished triangle

Y /X→ Z/X→ Z/Y → Σ(Y /X)

making the following commute:

X Z Z/Y Σ(Y /X)

Y Z/X ΣY

Y /X ΣX

f g

g◦f

Σf

Remark 3.2.2. Exact triangles are a generalization of exact sequences, and also

of fiber and cofiber sequences in homotopy theory. They can be thought of as

“weak exact sequences” or ”homotopy exact sequences.”

In an exact triangle (X
f
−→ Y → Z→ ΣX), the morphism Y → Z is sometimes

called the cofiber of the morphism f , and the object Z is called the cone of f .

One can think of this cone as a “weak cokernel” or “homotopy cofiber” of f

(this suggests the notation, eg. Y /X, used in (TR4)).

Remark 3.2.3. Our labelling and formulation of the axioms differ from some

sources. We follow mostly the numbering in [HA, 1.1.2.5].
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Remark 3.2.4. The axiom (TR4) is called the “octahedral axiom”11, so called

because it can be described by an octahedron-shaped diagram. One picture

that is sometimes drawn is:

X Y Z

Y /X Z/Y

Z/X

f g

+1 +1

+1

gf

+1

(in which a map marked A
+1−−→ B denotes a map A→ ΣB). There are three exact

triangles (the two small ones, and the larger one on the outside), and the axiom

forms a fourth (dotted). We can form an diagram in the shape of an octahedron

by rearranging terms as follows (by “picking up Y ”):

Y

X Z

Y /X Z/Y

Z/X

f
g

+1

+1

+1

gf

+1

The idea is not as complicated as it looks. Given composable maps X
f
−→ Y and

Y
g
−→ Z with composite X

g◦f
−−−→ Z, one can extend each into an exact triangle

11Also “Verdier’s axiom”.
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by (TR1). These triangles should fit together in a coherent way, which is what

the octahedral axiom is describing. Distinguished triangles are like weak ex-

act sequences, which motivates the notation (3.2.2) Y /X,Z/Y ,Z/X, which we

can think of as “weak cokernels”. The octahedral axiom forms another distin-

guished triangle involving the cones

Y /X→ Z/X→ Z/Y → Σ(Y /X),

which exhibits Z/Y = cone(Y /X → Z/X), which we can think of as a “weak

cokernel” (Z/X)/(Y /X). This is reminiscent of an isomorphism theorem.

Proposition 3.2.5. [HA, 1.1.2.14]

Let C be a stable∞-category (3.1.10).

Then its homotopy category hC (2.4.13) has a canonical triangulated struc-

ture described as follows:

• The homotopy category is additive by [HA, 1.1.2.9].

• Let ΣC : C→ C denote the suspension functor (3.1.16) on C. The suspen-

sion functor on hC is the functor formed by taking the image of ΣC under

the homotopy functor h : qCat→ Cat (2.4.10):

ΣhC = h(ΣC) : hC→ hC.

The functor h(ΣC) is an equivalence of categories since ΣC is an equiva-

lence of∞-categories (3.1.31).

• A string in hC

X
f
−→ Y

g
−→ Z

h−→ ΣX
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is an exact triangle iff there exists a diagram ∆1 ×∆2→ C of the form:

X Y 0

0′ Z X ′

f

h

g

where:

– The objects 0 and 0′ are zero objects (3.1.1) in C;

– The maps f = [f ] and g = [g] (that is, the maps f and g in the homo-

topy category are represented by f and g respectively);

– Both squares are pushout squares (2.9.41) in C.

– Since both inner squares are pushouts, the outer square is also a

pushout; this forms an equivalence ϕ : X ′ ≃ ΣX. The map h : Z →

ΣX is given by:

h = [ϕ] ◦ [h].

Example 3.2.6. (a) LetA be an abelian category. Then its derived∞-category

D(A) [HA, 1.3] is a stable ∞-category, and its homotopy category is the

ordinary derived category: hD(A) = D(A). Since D(A) is stable, the usual

derived category D(A) has triangulated structure.

(b) The ∞-category of spectra Sp (3.1.28) is a stable ∞-category, and its ho-

motopy category is the stable homotopy category: SHC = hSp. This gives

the stable homotopy category a triangulated structure.

Remark 3.2.7. While every stable ∞-category forms a canonical triangulated

structure on its homotopy category, it is not true that all triangulated categories
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arise in this way. It’s often said that essentially all triangulated categories aris-

ing “in nature” arise in this way, but as far as this author knows there is not a

precise characterization.

There are advantages and disadvantages of working on the level of the “un-

derlying” stable ∞-category rather than that of on the triangulated homotopy

level. One of the advantage is that being stable is a property whereas being

triangulated is a structure. That is, an ∞-category is either stable or it’s not,

and one knows how to check this (3.1.31). But given an additive category C, it

doesn’t make sense to ask “Is C triangulated?” without specifying some addi-

tional data – namely, what suspension is, what exact triangles look like, etc.

Let us look at some inconveniences with triangulated categories that one

finds mentioned:

• non-functoriality of mapping cones (3.2.8);

• non-existence of homotopy limits/colimits;

• given triangulated categories T and T ′, the functor category Fun(T ,T ′)

doesn’t form a triangulated category;

• hard to doing gluing/descent arguments.

The ∞-category holds more information – in particular homotopical in-

formation. This makes problems like non-functoriality of the cone and non-

existence of homotopy limits/colimits go away: it is relatively easy to describe

a cone functor on the∞-level, and homotopy limits/colimits are the only type

of limits/colimits one can talk about on the ∞-level (2.9.39) and a stable ∞-

category comes with all finite limits/colimits (3.1.31).
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Remark 3.2.8. The most often cited inconvenience with triangulated categories

is the fact that “cones are not functorial”. That is, given a triangulated category

T , there is no functor

T [1]→ T

that takes a map f to its cone cone(f ) (3.2.2).

However, if T = hC is the homotopy category of a stable ∞-category C, we

constructed the cofiber as a functor between∞-categories (3.1.14)

cofib : C∆1
→ C.

A distinguished triangle (X
f
−→ Y → Z→ ΣX) in hC lifts to a diagram ∆1×∆2→

C:

X Y 0

0′ Z X ′

f

where f = [f ], and both squares are pushout squares. In particular, the square

on the left being a pushout is the definition of a cofiber sequence (3.1.9). This

means Z ≃ cofib(X
f
−→ Y ), the image of f in C∆1

under the cofiber functor.

3.2.2 Higher triangulation

The octahedral axiom [TR4] (3.2.1, 3.2.4) is formulated to relate the cones of a

pair of composable morphisms to the cone of their composite. But what if we

wanted to make a similar statement about a string of n composable morphisms

for n > 2?

We will describe what these “higher octahedra” or n-triangles, look like,

leading to the notion of an n-triangulated category (one that satisfies octahe-
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dral axioms up to level n) and show that the homotopy category of a stable

∞-category is n-triangulated for all n.

For this section we follow [Bal11].

Definition 3.2.9. [suspended categories]

A suspended category is an additive category C with an auto-equivalence

Σ : C
∼−→ C that we call the suspension.

Example 3.2.10. The homotopy category of a stable∞-category is a suspended

category, with suspension induced from suspension on the∞-category (3.1.16).

Definition 3.2.11. [n-triangles]

Let C be a suspended category (3.2.9) with a suspension Σ.

For any n ≥ 1, an n-triangle α in C is a commutative diagram α : [n]×[n]→

C of the form:

a0,1 a0,2 a0,3 · · · a0,n 0

0 a1,2 a1,3 · · · a1,n Σ(a0,1)

0 a2,3 . . . a2,n Σ(a0,2)

0 . . .
...

...

0 an−1,n Σ(a0,n−1)

0 0 Σ(a0,n)

h

Σf

g

f

. . .

Here we’ve omitted indexing on the morphisms for legibility, but the ones to

keep track of are f (horizontal), g (vertical), and h (into the suspensions). No-
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tice that all objects in the bottom left half are zero objects (we will often omit

all the zeros entirely), and that the row of (n− 1) morphisms along the top

a0,1
f
−→ a0,2→ ·· · → a0,n

corresponds to the vertical string of suspensions on the very right

Σa0,1
Σf
−−→ Σa0,2→ ·· · → Σa0,n.

We call the row (a0,1
f
−→ a0,2 → ·· · → a0,n) along the top the base of the n-

triangle.

To make this very precise, we may draw a picture of the category [n] × [n]

with objects (i, j) for 0 ≤ i, j ≤ n, and maps H and V (horizontal and vertical)

organized into a commutative diagram as follows:

(0,0) (0,1) · · · (0,n)

(1,0) (1,1) · · · (1,n)

...
...

. . .
...

(n,0) (n,1) · · · (n,n)

H0,0

V0,0

i

j

Then we have the following conditions on the diagram α : [n]× [n]→ C:
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• (on objects):

σ (i, j) =



0 i > j

ai,j+1 i < j, j , n

0 i = 0, j = n

Σa0,i i , 0, j = n

• (on maps):

σ (Vi,j) =



0 i ≥ j

gi,j+1 i < j, j < n

0 i = 0, j = n

Σf0,i i , 0, j = n

, σ (Hi,j) =


0 i > j

fi,j+1 i ≤ j, j < n− 1

0 i = 0, j = n− 1.

Remark 3.2.12. Given an n-triangle α : [n]× [n]→ C as in (3.2.11), we can “ex-

tend” the diagram α down and to the right indefinitely, forming a commutative
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diagram in C of the form:

a0,1 a0,2 · · · a0,n 0

0 a1,2 · · · a1,n Σ(a0,1) 0

0 · · · a2,n Σ(a0,2) Σ(a1,2) · · ·

. . .
...

...
...

an−1,n Σ(a0,n−1) Σ(a1,n−1) · · ·

0 Σ(a0,n) Σ(a1,n) · · ·

...

h

Σf

g

f

Σg

This is like extending a cofiber sequence in stable homotopy theory. In [Bal11],

n-triangles are defined in this way, as diagrams Z × Z → C. The two notions

are equivalent, but we’ve defined it this way since such a construction is deter-

mined by the finite diagram α.

Sanity check 3.2.13. For example, when n = 1:

a0,1 0

0 Σa0,0
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When n = 2:

a0,1 a0,2 0

0 a1,2 Σa0,1

0 0 Σa0,2

f

g

h

Σf

in which we can see something that looks like a distinguished triangle (3.2.1)

of a triangulated category: (a0,1 → a0,2 → a1,2 → Σa0,1). In particular, the two

pushout squares along the top look like the type of diagram in a stable ∞-

category that forms distinguished triangles in the homotopy category (3.2.5).

When n = 3:

a0,1 a0,2 a0,3 0

0 a1,2 a1,3 Σa0,1

0 a2,3 Σa0,2

0 Σa0,3

f

g

Σf

h

Here we have omitted the 0’s in the bottom left corner. If we squint, we may

be able to see the octahedral axiom in this. Rename the objects to match the
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notation of (TR4) (3.2.4):

X Y Z 0

0 Y /X Z/X ΣX

0 Z/Y ΣY

0 ΣZ

f

Σf

f ′

The base of our triangle is the string X
f
−→ Y

f ′

−−→ Z. We can pick out the three

triangles that the axiom requires, starting with f , f ′, and f ′ ◦ f respectively:

X Y Y Z

Y /X ΣX

Z/Y ΣY

X Z

Z/X ΣX

f f ′

f ′◦f

along with the triangle that the axiom produces:

Y /X Z/X

Z/Y Σ(Y /X)

Note that this required extending the diagram as in (3.2.12) to get a map ΣY →

Σ(Y /X).
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Remark 3.2.14. [Bal11, Rk. 5.3]

There is a simplicial structure on these n-triangles. Given an n-triangle α

in a category C, the face map dk forms an (n−1)-triangle by deleting all objects

ai,j with i or j equal to k, and composing over the gaps. The degeneracy map

sk forms an (n + 1)-triangle by sticking in a row and a column of identities in

the kth place. For example, given an n-triangle as in (3.2.11), its kth face is a

diagram [n− 1]× [n− 1]→ C:

a0,1 · · · a0,k−1 a0,k+1 · · · a0,n 0

0 · · · a1,k−1 a1,k+1 · · · a1,n (a0,1)′

. . .
...

...
. . .

...
...

ak−1,k−1 ak−1,k+1 · · · ai−1,n−1 (a0,k−1)′

0 ak+1,k+1 · · · ak+1,n−1 (a0,k+1)′

. . .
...

...

0 (a0,n)′
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and its kth degeneracy is a diagram [n+ 1]× [n+ 1]→ C:

a0,1 · · · a0,k a0,k · · · a0,n 0

0 · · · a1,k a1,k · · · a1,n Σ(a0,1)

. . .
...

...
. . .

...
...

ak−1,k ak−1,k · · · ak−1,n−1 Σ(a0,k−1)

0 0 · · · ak,n−1 Σ(a0,k)

0 0 · · · ak,n−1 Σ(a0,k)

. . .
...

...

0 Σ(a0,n)

Definition 3.2.15. [symmetric and translate of an n-triangle]

Let (C,Σ) be a suspended category (3.2.9) and let α be an n-triangle (3.2.11)

in C.

The symmetric of α is an n-triangle denoted σ (α) formed by applying the

suspension Σ to every object and changing the sign of every horizontal mor-
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phism in the last column:

Σ(a0,1) Σ(a0,2) · · · Σ(a0,n) 0

Σ(a1,2) · · · Σ(a1,n) Σ2(a0,1)

. . .
...

...

an−1,n Σ2(a0,n−1)

Σ2(a0,n)

Σf

−Σh

Σg

The translate is an n-triangle τ(α) formed by shifting the indices of every-

thing up by 1. In other words, extending the triangle (3.2.12) by one row and

one column, and then truncating the first row and column:

a1,2 a1,3 · · · a1,n Σ(a0,1) 0

a2,3 · · · a2,n Σ(a0,2) Σ(a1,2)

. . .
...

...
...

an−1,n Σ(a0,n−1) Σ(a1,n−1)

Σ(a0,n) Σ(a1,n)

Σ2(a0,1)

h

Σf

Σg
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Definition 3.2.16. [N -triangulated categories]

Let N ≥ 2 and let C be a suspended category (3.2.9).

We say that C is N -triangulated (or N -angulated) if it is equipped with a

collection of distinguished n-triangles for all 2 ≤ n ≤N satisfying the axioms:

(TC 3.1) (Bookkeeping:)

(TC 3.1.a) Any n-triangle isomorphic to a distinguished n-triangle is itself dis-

tinguished. That is, given two n-triangles α,β : [n] × [n]⇒ C along

with a natural isomorphism α ≃ β, then α is distinguished iff β is

distinguished. A natural transformation α→ β can be described by

a diagram [n]× [n]× [1]→ C:

◦ ◦ · · · ◦

◦ · · · ◦ ◦

...
...

• • · · · • ◦ ◦

• · · · • • ◦

. . .
...

...

• •

•

where the •’s are the diagram α and the ◦’s are the diagram β, and the

dashed lines are the maps forming a natural transformation α→ β.
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(TC 3.1.b) Distinguished triangles are preserved by the simplicial structure à la

Waldhausen (3.2.14): degeneracies of distinguished (n− 1)-triangles

are distinguished n-triangles and faces of distinguished n-triangles

are distinguished (n− 1)-triangles.

(TC 3.1.c) A n-triangle α is distinguished iff its symmetric σ (α) and translate

τ(α) (3.2.15) are both distinguished n-triangles.

(TC 3.2) Every (n−1)-tuple of composable morphisms is the base of a distinguished

n-triangle.

(TC 3.3) Given two distinguished n-triangles, every morphism between bases ex-

tends to a morphism of n-triangles. That is, given two triangles with a

map of bases (drawn with solid lines below):

◦ ◦ · · · ◦

◦ · · · ◦ ◦

...
...

• • · · · • ◦ ◦

• · · · • • ◦

. . .
...

...

• •

•

extends to a map of triangles (the dotted lines).
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We say that C is ∞-triangulated if it’s N -triangulated for all N ≥ 2.12

Remark 3.2.17. [n-angulated structure on the homotopy category of a stable

∞-category]

Let C be a stable ∞-category, and hC its homotopy category. We’ll call a

diagram α : [n]× [n]→ hC of the form:

a0,1 a0,2 · · · a0,n

a1,2 · · · a1,n Σa0,1

. . . a2,n Σa0,2

...
...

an−1,n Σa0,n−1

Σa0,n

[h]

Σ[f ]

[g]

[f ]

a distinguished n-triangle if it arises as the image under the homotopy functor

12Note that the∞ in “∞-triangulated” has nothing to do with the∞ in “∞-category”.
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h of a diagram α̃ : ∆n ×∆n→ C of the form:

a0,1 a0,2 · · · a0,n 0

0 a1,2 · · · a1,n (a0,1)′

0 . . . a2,n (a0,2)′

. . .
...

...

an−1,n (a0,n−1)′

0 (a0,n)′

h′

f ′

g

f

satisfying the conditions:

• Each square making up α̃ is a (∞-) pushout square (2.9.41). Note that this

forms equivalences for each i = 1, . . . ,n:

(a0,i)
′ ≃ Σ(a0,i),

which induce isomorphisms in hC.

• For each i = 1, . . . ,n, each map f ′ : (a0,i)′ → (a0,i+1)′ in C forms the follow-

ing commutative diagram hC:

(a0,i)′ Σa0,j

(a0,i+1)′ Σa0,j

∼

∼

ΣhC[f ]=[ΣCf ][f ′]
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• For each i = 1, . . . ,n, for each map [h] : ai,n → Σ(a0,i) in hC, there is a 2-

simplex ∆2→ C of the form

a′0,i

ai,n Σa0,ih

h′ ∼

where (a0,j)′
∼−→ a0,j[1] is the induced equivalence as above. That is, in the

homotopy category, the map [h′] composes with the equivalence to give

the map [h] of the n-triangle.

Example 3.2.18. [A “3-triangulated” category]

Let C be a stable∞-category.

Given a composite, X → Y → Z in the homotopy category hC, a 3-triangle

in hC looks like:

X Y Z

Y /X Z/X X[1]

Z/Y Y [1]

Z[1]

where X[1],Y [1],Z[1] are the suspensions of X,Y ,Z.

This 3-triangle is distinguished if we have a diagram ∆3 ×∆3→ C:
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X Y Z 0

0 Y /X Z/X X ′

0 Z/Y Y ′

0 Z ′

where each square is a pushout square in C, each morphism is a representative

of the corresponding morphisms in the triangle, and the (homotopy classes of)

maps Z/X → X ′,Z/Y → Y ′ should compose with the isomorphisms X ′ � X[1]

and Y ′ � Y [1] in hC to give us the corresponding maps in our triangle.

It may be helpful to have pictures for the axioms:

(TC 3.1.a) Any 3-triangle isomorphic to a distinguished 3-triangle is itself distin-

guished:

(TC 3.1.b) Degeneracies of distinguished 2-triangles (regular old triangles) are dis-

tinguished 3-triangles and faces of distinguished 3-triangles are distin-

guished 2-triangles:

Given a (2-)triangle X→ Y → Z→ X[1], its degeneracies are:

0 X Y

X Y 0

Z X[1]

Y [1]

X X Y

0 Z X[1]

Z X[1]

Y [1]

X Y Y

Z Z X[1]

0 Y [1]

Y [1]

178



and given a 3-triangle as above, its faces are:

X→ Y → Y /X→ X[1]

Y → Z→ Z/Y → Y [1]

X→ Z→ Z/X→ X[1]

Y /X→ Z/X→ Z/Y → (Y /X)[1]

(TC 3.1.c) A 3-triangle α is distinguished iff its symmetric σ (α) and translate τ(α)

are both distinguished:

X[1] Y [1] Z[1]

Y /X[1] Z/X[1] X[2]

Z/Y [1] Y [2]

Z[2]

,

Y /X Z/X X[1]

Z/Y Y [1] Y /X[1]

Z[1] Z/X[1]

X[2]

(TC 3.2) Every pair of composable morphisms X → Y → Z is the base of a distin-

guished 3-triangle.

X Y Z

Y /X Z/X X[1]

Z/Y Y [1]

Z[1]
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(TC 3.3) Given two distinguished 3-triangles, every morphism between bases ex-

tends to a morphism of 3-triangles.

◦ ◦ ◦

◦ ◦ ◦

• • • ◦ ◦

• • • ◦

• •

•

Proposition 3.2.19. Given a stable ∞-category C, its homotopy category hC is

∞-triangulated, with distinguished n-triangles as in.

Proof. Bookkeeping:

(TC 3.n.a) Isomorphisms in hC lift to equivalences in C. Then we can translate the

corresponding diagram ∆n ×∆n→ C to the one we want via these equiva-

lences.

(TC 3.n.b) Given an n-triangle induced by a diagram of pushouts C as in Def 3.2,

extending by pushout squares extends the diagram by one row and one
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column of identities:

a0,1 · · · a0,i a0,i a0,i+1 · · · a0,n 0

0 · · · a1,i a1,i a1,i+1 · · · a1,n (a0,1)′

. . .
...

...
...

. . .
...

...

ai−1,i ai−1,i ai−1,i+1 · · · ai−1,n−1 (a0,i−1)′

0 0 ai,i+1 · · · ai,n−1 (a0,i)′

0 0 ai,i+1 · · · ai,n−1 (a0,i)′

. . .
...

...

0 (a0,n)′

making the ith degeneracy a distinguished (n+ 1)-triangle.

On the other hand, a face of the n-triangle deletes one row and one col-

umn, by composing over the gap. Say we take the ith face; ie. delete the

ith row and column.

When i = 0, this is just deleting the top row. Extending what’s left by
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pushouts as follows:

0 a1,2 · · · a1,n (a0,1)′ 0

0 . . . a2,n (a0,2)′ (a1,2)′

. . .
...

...
...

an−1,n (a0,n−1)′ (a1,n−1)′

0 (a0,n)′ (a1,n)′

0 (a0,1)′′

we get equivalences (a1,j)′ ≃ Σa1,j for each j = 2, . . . ,n, and (a0,n)′′ ≃ Σ2a0,n,

making the induced triangle distinguished in hC.
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This will affect the following subdiagram of the larger diagram in C:

a0,i−1 a0,i a0,i+1

...
...

...

aj−1,i−1 aj−1,i aj−1,i+1

aj,i−1 aj,i aj,i+1

...
...

...

0 ai−1,i ai−1,i+1 · · · ai−1,k ai−1,k+1 · · · (a0,i−1)′

0 ai,i+1 · · · ai,k ai,k+1 · · · (a0,i)′

0 · · · ai+1,k ai+1,k+1 · · · (a0,i+1)′

Each square is already a pushout, so the “pushout pairs” make pushout

rectangles

ai−1,k ai−1,k+1

aj−1,i−1 aj−1,i aj−1,i+1 ai,k ai,k+1

aj,i−1 aj,i aj,i+1 ai+1,k ai+1,k+1

for 0 ≤ j < i < k ≤ n.

But these outer rectangles are precisely what is left after applying the face
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maps:

a0,1 a0,2 · · · a0,i−1 a0,i+1 a0,i+2 · · · 0

0 a1,2 · · · a1,i−1 a1,i+1 a1,i+2 · · · (a0,1)′

. . .
...

...
. . .

...

ai−2,i−1 ai−2,i+1
. . . (a0,i−2)′

0 ai−1,i+1 ai−1,i+2 · · · (a0,i−1)′

0 ai+1,i+2 · · · (a0,i+1)′

. . .
...

(a0,n)′

making the induced (n− 1)-triangle in hC distinguished.

(TC 3.n.c) ⇒ : Given a distinguished triangle induced by the same diagram, we can
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extend by pushouts (the dashed arrows):

a0,1 a0,2 · · · a0,n 0

0 a1,2 · · · a1,n (a0,1)′ 0

0 . . . a2,n (a0,2)′ (a1,2)′ 0

. . .
...

...
...

. . .

an−1,n (a0,n−1)′ (a1,n−1)′

0 (a0,n)′ (a1,n)′ · · · 0

0 (a0,1)′′ · · · (a0,n)′′

with equivalences (ai,j)′ ≃ Σai,j , and (a0,i)′′ ≃ Σ2a0,i . We can see the sym-

metric hiding in the above – the chain of suspensions (a0,1)′→ ·· · → (a0,n)′

forms the base of an n-triangle “turned on its side”. The fact that it’s

turned on its side is what will give us the negative −h[1] maps that ap-

pear in the symmetric via [HA, 1.1.2.10].

Collapsing relevant pushout squares gives us these pushouts hiding in

the above:
ai,n (a0,i)′ 0

0 (a0,n)′ (ai,n)′

0 (a0,i)′′

The morphisms above induce a map between pushout squares (the rect-

angle on top, and the rectangle on the right), meaning the map (ai,n)′ →
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(a0,n)′′ classifies the map −h[1] : ai,n[1]→ a0,n[2] in hC. All other maps are

suspensions of the relevant maps from the original triangle. The resulting

diagram then makes the symmetric σ (Θ) a distinguished triangle.

The translate is easier. Extend by pushouts:

a0,1 a0,2 · · · a0,n 0

0 a1,2 · · · a1,n (a0,1)′ 0

0 . . . a2,n (a0,2)′ (a1,2)′

. . .
...

...
...

an−1,n (a0,n−1)′ (a1,n−1)′

0 (a0,n)′ (a1,n)′

0 (a0,1)′′

and the diagrams will induce equivalences (a1,i)′ ≃ a1,i[1] for i = 1, . . . ,n,

and (a0,1)′′ ≃ a0,1[2] playing well with the morphisms in the original tri-

angle. The diagram induces the translate τ(Θ) as a distinguished triangle.

⇐ : If the symmetric σ (Θ) is distinguished, we can translate by Σ−2 to get
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a distinguished triangle Σ−2σ (Θ):

a0,1[−1] a0,2[−1] · · · a0,n[−1] 0

0 a1,2[−1] · · · a1,n[−1] (a0,1)′[−1]

0 . . . a2,n[−1] (a0,2)′[−1]

. . .
...

...

an−1,n[−1] (a0,n−1)′[−1]

0 (a0,n)′[−1]

−h[−1]

f ′[−1]

g[−1]

f [−1]

and then see that the symmetric of the above is just what we want:

σΣ−2σ (Θ) = Θ.

187



(TC 3.2) Let E ⊆ Fun(∆n ×∆n,C) consist of diagrams in C of the form:

E =



• • · · · • 0

0 • · · · • •

0 . . . • •

. . .
...

...

• •

0 •


with n nonzero objects forming the base at the top, and all squares being

pushouts.

Let evaluation e : E→ Fun(∆n−1,C) pick out the base of a diagram in E.

We can play the same game as in (3.1.14), using (3.1.13) to decompose

e as a bunch of trivial fibrations and full inclusions, showing e to be a

trivial fibration itself. In particular, any element in Fun(∆n−1,C) lifts to

a diagram in E; ie. any string of (n − 1) composable morphisms in hC

extends to a distinguished n-triangle.

(TC 3.3) Let α,β ∈ E denote diagrams of n-triangles. Let ai,j ,bi,j denote the objects

in α and β respectively.

A morphism between bases is a bunch of maps a0,i → b0,i (1 ≤ i ≤ n)
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forming a commutative rectangle in hC:

a0,1 a0,2 · · · a0,n

b0,1 b0,2 · · · b0,n

This lifts to a morphism ϕ : e(α)→ e(β) in Fun(∆n−1,C) . Since e is a trivial

fibration, this lifts to a morphism of triangles α→ β in E.

Since n was arbitrary, this makes hC in fact∞-triangulated.

3.2.3 Exact functors

Definition 3.2.20. [exact functors between triangulated categories]

Let T and T ′ be triangulated categories with suspensions ΣT and ΣT ′ .

An exact functor is an additive functor F : T → T ′ along with natural iso-

morphisms F ◦ΣT ≃ ΣT ′ ◦ F, that preserves triangles. That is, given a distin-

guished triangle in T :

X→ Y → Z→ ΣTX,

the induced string in T ′:

F(X)→ F(Y )→ F(Z)→ F(ΣTX) ≃ ΣT ′ (F(X))

is a distinguished triangle in T ′.

The corresponding∞-version is also called an exact functor:

Definition 3.2.21. [exact functors between stable∞-categories]

An exact functor F : C→ C′ between stable∞-categories is a functor that:
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• is pointed;

• sends fiber sequences to fiber sequences (3.1.7): that is, sends a (∞-) pull-

back square in C of the form on the left to a pullback square in C′:

X Y FX FY

0 Z F0 FZ

7→

Remark 3.2.22. Notice that we do not require natural isomorphisms F ◦ΣC ≃

ΣC′ ◦F. This is absorbed into the preservation of fiber sequences.

Remark 3.2.23. [HA, 1.1.4.1]

Stable ∞-categories have all finite limits and colimits (3.1.31). An exact

functor F : C→ D between stable ∞-categories preserves all finite limits and

colimits.

Sanity check 3.2.24. An exact functor of stable∞-categories F : C→D induces

an exact functor of triangulated categories hF : hC→ hD.

Proof. • (additivity): The exact functor F preserves zero objects by defini-

tion, and zero objects of an ∞-category are zero objects in the homotopy

category (2.9.32), so hF preserves zero objects on the homotopy-level.

We need to check that it preserves direct sums. We can interpret di-

rect sum as a product/coproduct X ⊕ Y = X ⊔ Y ∼−→ X × Y . Since prod-

ucts/coproducts are preserved under formation of the homotopy category

(2.9.47), this is the same as the direct sum in the homotopy category.

Exact functors preserve finite limits and colimits (3.2.23), so there are

isomorphisms F(X ⊕Y ) ≃≃ FX ⊕FY in hC for all X,Y ∈ C0.
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• (respects suspensions): We want a natural isomorphism ΣhDhF ≃ hf ΣhC.

Let X be an object in C. Suspension in a stable ∞-category is a fiber se-

quence ∆1 ×∆1→ C (3.1.7) of the form:

X 0

0 ΣX

The functor F sends this to a fiber sequence in D, forming an equivalence

F(ΣCX) ≃ ΣD(FX). Since suspension on the homotopy-level is simply in-

duced from the∞-category (3.2.5), this is an isomorphism in hC:

F(ΣhCX) ≃ ΣhD(FX).

To check naturality, let [f ] : X → Y be a map in hC. This forms a map in

hC:

ΣCX
ΣhC[f ]=[ΣCf ]
−−−−−−−−−−−−→ ΣCY ,

which under hF is sent to a map in hD:

F(ΣCX)
hF[ΣCf ]=[FΣCf ]
−−−−−−−−−−−−−−−→ F(ΣCY )

On the other hand, [f ] is sent under hF to a map in hD:

FX
F[f ]=[Ff ]
−−−−−−−−→ FY ,

which suspends to:

ΣDFX
ΣhD[Ff ]=[ΣDFf ]
−−−−−−−−−−−−−−−→ ΣDFY .
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All together, the square we want to commute for naturality is a square in

hD:

F(ΣCX) F(ΣCY )

ΣD(FX) ΣD(FY )

[FΣCf ]

∼
[ΣDFf ]

∼

which corresponds to a square ∆1 ×∆1→D:

F(ΣCX) F(ΣCY )

ΣD(FX) ΣD(FY )

FΣCf

∼
ΣDFf

∼

ie., an edge ΣDFf → FΣCf in Fun(∆1,D).

Since ΣD is a self-equivalence, the induced edge ΣD◦− : Ff → ΣD◦Ff is an

equivalence in the functor category Fun(∆1,D). This forms the following

horn Λ2
1→ Fun(∆1,D):

ΣDFf

Ff FΣCf

∼

which fills in to a 2-simplex by Joyal’s theorem (2.1.33), giving us the edge

ΣDFf → FΣCf that we want.

• (preserves triangles): Since F preserves zero objects and fiber sequences,

it maps a diagram of interated fiber sequences in C to a similar diagram
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in D:

X Y 0C FX FY 0D

0C Z X ′ 0D FZ F(X ′)

7→

By stability of D, the outer rectangle of the diagram on the right is a

pushout, giving an equivalence F(X ′) ≃ ΣD(FX), so the diagram repre-

sents a distinguished triangle FX→ FY → FZ→ ΣD(FX) in hD.

Remark 3.2.25. More generally, for n ≥ 2, we can consider functors on n-

angulated categories (3.2.16).

Let T and T ′ be n-angulated categories for some n ≥ 2.

An n-angulated functor is an additive functor f : T → T ′ along with a nat-

ural isomorphism f ◦ΣT ≃ ΣT ′ ◦f that preserves i-triangles for all i = 1,2, . . . ,n.

That is, given a distinguished i-triangle α : [i] × [i]→ T , the induced triangle

f ◦α is a distinguished i-triangle in T ′.

If T = hC and T ′ = hD for stable∞-categories C and D, and F : C→D is an

exact functor, then the induced functor hF : hC→ hD is n-angulated.

Proof. We proved additivity and suspension isomorphisms above. We only

need to show that it preserves i-triangles for all i = 1,2, . . . ,n.

Pick i ∈ {1,2, . . . ,n}. An i-triangle in hC lifts to a diagram ∆i × ∆i → C, in

which every square is a pullback square (3.2.17). An exact functor F : C→ D

preserves pullbacks, forming a diagram ∆i ×∆i →D which forms an i-triangle

in hD.
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3.2.4 Subcategories

Recall that full subcategories of an∞-category C are defined via (ordinary) full

subcategories of its homotopy category hC (2.6.1).

Definition 3.2.26. [Nee01, Def. 1.5.1]

[triangulated subcategories]

Let T be a triangulated category and T 0 ⊆ T a full, replete (closed under

isomorphism) subcategory.

We call T 0 ⊆ T a triangulated subcategory if it satisfies the following:

• it’s closed under suspensions and desuspensions; and

• given an exact triangle X → Y → Z → X[1] in T , if two out of three of

{X,Y ,Z} are in T 0, then so is the third. (Note that this implies that T 0 ⊆ T

is an additive subcategory.)

Alternately, T 0 is a triangulated subcategory of T if the inclusion T 0 ↪→ T

is an exact functor.

The corresponding notion for stable∞-categories is that of a stable subcat-

egory:

Definition 3.2.27 (HA, 1.1.3.2). [stable subcategories]

Let C be a stable∞-category, and let C0 ⊆ C be a full subcategory.

We call C0 a stable subcategory if it contains a zero object (3.1.1) and is

closed under fibers and cofibers (3.1.9).

Remark 3.2.28. There are also weaker conditions one can consider to check

that a subcategory is stable. Equivalently, a stable subcategory is a full subcat-

egory that’s either
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• closed under suspensions and desuspensions and cofibers [HA, 1.1.3.3];

or

• closed under finite limits and colimits (this implies closed under suspen-

sions and desuspensions, as well as under cofibers).

Remark 3.2.29. Let C be a stable∞-category. Then there is a correspondence:

{triangulated subcategories of hC} ↭ {stable subcategories of C}

In other words, given a subcategory C0 ⊆ hC, and letting C0 ⊆ C be the

corresponding (∞-) subcategory (a pullback of simplicial sets):

C0 C

N (C0) NhC
⌜

Then C0 is a triangulated subcategory of hC iff C0 is a stable subcategory of C.

Proof. ⇒ : Suppose C0 ⊆ hC is a triangulated subcategory. Then since suspen-

sion on the ∞-level and the homotopy-level are the same (3.2.5), C0 is closed

under suspension and desuspension iff C0 is.

Let f : X → Y be an edge in C0. This forms a cofiber sequence in C (3.1.7),

ie. a pushout square:

X Y

0 cofib(f )

f
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which we can extend to a diagram ∆1 ×∆2→ C:

X Y 0

0 cofib(f ) X ′

f

in which both squares are pushout squares, and there is an equivalence X ′ ≃

ΣX. This forms a distinguished triangle in hC

X
[f ]
−−→ Y → cofib(f )→ ΣX.

Since f was taking from C0, the map [f ] is in C0, and since C0 is a triangulated

subcategory, it contains the cofiber cofib(f ), meaning C0 contains cofib(f ).

⇐ : Suppose C0 is a stable subcategory of C.

• (closed under suspension/desuspension): Since suspension and desus-

pension were defined as fibers and cofibers respectively (3.1.16) of a zero

map over a zero-object, and a stable subcategory C0 is closed under fibers

and cofibers, then it contains its suspensions and desuspensions (and so,

so does C0).

• (two-out-of-three): Say (X → Y → Z → ΣX) was a distinguished triangle

in hC. That is, we have a diagram ∆1 ×∆2→ C:

X Y 0

0 Z X ′

with and both inner squares pushouts (and so the outer square also a

pushout, giving an equivalence ΣX ≃ X ′). Suppose that two out of three
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of {X,Y ,Z} are in hC0 – that is, two out of three are vertices in C0.

If X and Y are the two objects, then since C0 is closed under cofibers,

the pushout Z is also in C0, ie. is an object in the homotopy category.

Since pushout squares are pullback squares in a stable quasi-category,

the other cases are proven similarly, using closedness of fibers/cofibers

appropriately.

Definition 3.2.30. [thick subcategories]

(1-): A triangulated subcategory T 0 ⊆ T is called thick if it’s closed under

retracts. In other words, if Y ∈ T 0 and there are maps in T :

X
i−→ Y

p
−→ X

such that p ◦ i = idX , then X is in T 0. Equivalently, a thick subcategory is a full

subcategory that’s closed under direct summands.

(∞-): A stable (∞-) subcategory C0 ⊆ C is called thick if it’s closed under

retracts. In other words, given a 2-simplex in C of the form:

Y

X X
id

i p

if Y ∈ C0, then X ∈ C0.

Remark 3.2.31. Let C be a stable∞-category. Then there is a correspondence:

{thick subcategories of hC} ↭ {thick subcategories of C} .
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Proof. A retract diagram in hC, ie. a commutative diagram:

Y

X X
id=[idX ]

[i] [p]

corresponds precisely to a 2-simplex ∆2→ C:

Y

X X
id

i p

Definition 3.2.32. [localizing subcategories]

(1-): A localizing subcategory in a triangulated category is a subcategory

that is:

• a thick subcategory (as a triangulated subcategory) (3.2.30); and

• is closed under small coproducts (direct sums).

(∞-): A localizing subcategory in a stable∞-category is a subcategory that

is:

• a thick subcategory (as a stable subcategory); and

• is closed under small colimits.

More generally, for an infinite cardinal α, a subcategory is α-localizing if

it’s thick and is closed under α-small coproducts. So a subcategory is localizing

if it’s α-localizing for all α.
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Remark 3.2.33. Let C be a stable∞-category. There is a correspondence:

{localizing subcategories of hC} ↭ {localizing subcategories of C} .

Proof. We showed that thick subcategories in the∞-category vs. the homotopy

category correspond (3.2.31).

If a subcategory C0 ⊆ C is closed under small colimits, it’s in particular

closed under small coproducts, and so hC0 ⊆ hC is closed under small coprod-

ucts (2.9.47). In the reverse direction, hC0 is closed under small coproducts iff

C0 is closed under small coproducts. A stable∞-category C0 has small coprod-

ucts iff it has small colimits [HA, 1.4.4.1].

By definition localizing (3.2.32) =⇒ thick (3.2.30) =⇒ triangulated/stable

(3.2.26, 3.2.27). So we have the following correspondence for a stable ∞-

category C:

{triangulated subcategories of hC} {stable subcategories of C}

{thick subcategories of hC} {thick subcategories of C}

{localizing subcategories of hC} {localizing subcategories of C}

3.2.5 Compactly-generated categories

There is a nice class of triangulated categories that are called compactly gen-

erated. These have some nice properties – for example, Brown representability

holds in them [Nee01].

The original “Brown representability theorem” [Bro62] was in the case of

the stable homotopy category of spectra SHC. In his paper, he showed that
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SHC is compactly generated by the sphere spectrum, and then used this to

show that it satisfies representability – namely that any cohomology theory

can be represented by a spectrum.

In his book [Nee01], Neeman introduces a generalization of compactly gen-

erated categories which he calls well-generated triangulated categories. He

shows that Brown representability holds for well-generated categories, and

shows that they are nice in some ways. For example, Bousfield localization

(3.2.76) of a well-generated triangulated category is well-generated, but the

corresponding statement in terms of compactly-generated triangulated cate-

gories is not true.

For us, starting with a stable∞-category, we can ask of the relation between

the homotopy category being compactly-generated or well-generated, and the

underlying∞-category. The main theorems of this section are:

• (3.2.49), in which we show that a stable ∞-category is compactly gener-

ated as an ∞-category iff its homotopy category is compactly-generated

as a triangulated category.

• (3.2.55), in which we show that the homotopy category of a presentable

(2.13.21) stable∞-category is well-generated.

Definition 3.2.34. [compactness in ordinary categories]

Let C be a locally small category with (α-) filtered colimits (2.13.5).

An object X ∈ C is called (α-) compact if the functor

C(X,−) : C→ Set

preserves (α-)filtered colimits, ie. given a map F : I → C from a filtered cate-
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gory I , the induced map

colimI C(X,F(i))
∼→ C(X,colimI F)

is an isomorphism.

Definition 3.2.35. [compactness in triangulated categories]

Let T be a triangulated category (3.2.1), and let α be a regular cardinal

(2.13.1).

The full subcategory T α ⊆ T is the maximal subcategory satisfying the con-

ditions:

• (α-smallness): The objects in T α are α-small: that is, for X ∈ T α, a map

X→
∐
i∈I Yi into an abitrary coproduct factors through an α-small subco-

product:
X

∐
i∈I Yi

∐
i∈I<α Yi

where I<α ⊆ I with cardinality |I<α | < α.

• (α-perfectness): The objects in T α are α-perfect: that is, for X ∈ T α, any

map X→
∐
i∈I Yi with |I | < α factors as:

X
∐
i Yi

∐
iXi

∐
i ϕi

where each Xi ∈ T α and each ϕi ∈ T (Xi ,Yi).

Neeman shows that there’s a unique maximal subcategory T α ⊆ T satisfying

201



these conditions, and we say that the objects in T α are α-compact . If T = T α,

we say that T is α-compact .

Remark 3.2.36. [(ω-) compactness in triangulated categories]

Let T be a triangulated category, and pick an object X ∈ ob(T ) which is

ω-compact (3.2.35).

The first condition (ω-smallness) says that any map of the form X →
∐
i Yi

factors through a coproduct of finitely many of the Yi ’s.

The second condition (ω-perfectness) turns out to be trivial: a finite coprod-

uct in a triangulated category is a direct sum
⊕

i Yi , and a map X→
⊕

i Yi can

be written as a collection (fi)i∈I with each fi : X→ Yi . This factors as:

X
∆−→

⊕
i

X(i)



f1 0
. . .

0 fn


−−−−−−−−−−−−−→

⊕
i

Yi

where each X(i) = X so
⊕

iX
(i) = X ⊕ · · · ⊕X, a direct-sum of n copies of X, and

∆ : x 7→ (x,x, . . . ) is the diagonal map.

We will often refer to ω-compact objects as simply compact . Equivalently,

an object X in a triangulated category T is compact if for any coproduct
∐
I Yi ∈

T , the induced map ∐
I

T (X,Yi)
∼−→ T (X,

∐
I

Yi)

is an isomorphism of abelian groups. This recovers the original notion of com-

pactness (2.13.6).

Definition 3.2.37. [compactness in∞-categories] [HTT, 5.3.4.5]
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An object X in an ∞-category C admitting (α-)filtered colimits is called

(α-)compact if the functor corepresented by X (2.12.9)

jX : C→ Ŝ

preserves (α-)filtered colimits. That is, given an (α-) filtered sset I , for any

functor F : I → C, the induced map

colimI MapC(X,F(i))
∼−→MapC(X,colimI F)

is an equivalence of spaces.

Remark 3.2.38. [(ω-) compactness in stable∞-categories]

Let C be a stable ∞-category which is (ω-) compact (which we simply call

“compact”).

In a stable∞-category C, we can simplify compactness similarly to (3.2.35),

as a statement about coproducts.

An object X in a stable ∞-category C is compact if and only if any map

X →
∐
i∈I Yi into an arbitrary coproduct factors (up to homotopy) through a

finite sub-coproduct – that is, there exists a 2-simplex in C of the form:

X
∐
I Yi

∐
I0
Yi

where I0 ⊆ I is a finite subset. (3.1.32)

Remark 3.2.39. Comparing (ω-) compactness in stable ∞-categories (3.2.38)

versus in triangulated categories (3.2.36), we can see that they are essentially
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the same. That is, an object X in a stable ∞-category C is compact in the ∞-

sense in C iff it is compact in the triangulated-sense in the homotopy category

hC.

However, the story for larger cardinals α > ω is unclear. It is less clear

how to relate being α-compact in an ∞-category versus being α-compact in a

triangulated category. While α-smallness may look the same, it is not clear how

α-perfectness should translate.

There are some varying notions of “generation” in the literature. In [Nee01]

Neeman uses two notions of generation. We will only use the following.

Definition 3.2.40. [generation in triangulated categories]

Let T be a triangulated category

A collection of objects G ⊆ ob(T ) is said to generate T if it’s closed under

suspensions and desuspensions, and for all t ∈ T :

T (g, t) = 0 for all g ∈ G =⇒ t = 0.

Intuitively, this says that if t is “orthogonal” to every g ∈ G, then t = 0.

Remark 3.2.41. [other notions of generation in triangulated categories]

There are other forms of generation that are sometimes conidered, stronger

than the above. We will not use these, but mention them briefly here for com-

pleteness.

Let T be a triangulated category and let G ⊆ ob(T ). For a cardinal α, we

denote a subcategory

Locα(G) ⊆ T

which is defined to be the smallest α-localizing subcategory (3.2.32) containing
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G – ie. the smallest thick subcategory (3.2.30) containing G, and that is closed

under taking coproducts of less than α objects.

We call

Loc(G) :=
⋃
α

Locα(G)

the smallest localizing subcategory (3.2.32) containing G – ie. the smallest

thick subcategory containing G that is closed under taking arbitrary small co-

products.

Then we say that G:

• “classically generates” T if T = Loc(G).

• “strongly generates” T if T = Locn(G) for some finite n.

Definition 3.2.42. [generation in∞-categories]

Let C be a stable∞-category, and G ⊆ C0 a collection of objects.

We say that G generates C if it is closed under suspension and desuspen-

sions (3.1.16), and for all Y ∈ C:

π0 MapC(g,Y ) ≃ {∗} for all g ∈ G =⇒ Y ≃ 0C.

where MapC(X,Y ) is the mapping space (2.3.1), π0 : sSet→ Set is the connected

components functor (2.1.3), {∗} is the singleton set, and 0C ∈ C is a zero object

(3.1.1).

An object X ∈ C0 is said to generate C if for all Y ∈ C0, a similar statement

holds:

π0 MapC(X,Y ) � {∗} =⇒ Y ≃ 0C.
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Remark 3.2.43. A set G generates C iff the object

X :=
∐

i∈Z,g∈G
Σig

formed by taking all suspensions and desuspensions of objects of G and taking

their coproduct generates C as an object.

Proof. Pick an object Y ∈ C0. The mapping space:

MapC(X,Y ) = MapC(
∐

i∈Z,g∈G
Σig,Y )

≃
∏

i∈Z,g∈G
MapC(Σig,Y )

and since connected components preserve products (2.1.3),

π0 MapC(X,Y ) ≃
∏

i∈Z,g∈G
π0 MapC(Σig,Y ).

Then π0 MapC(X,Y ) ≃ {∗} iff π0 MapC(Σig,Y ) ≃ {∗} for all i ∈ Z, g ∈ G.

Remark 3.2.44. A collection of objects G ⊆ C0 in a stable ∞-category C gener-

ates in the sense of (3.2.42) iff it generates hC in the sense of (3.2.40).

Since for any objects X,Y ∈ C, the hom-set of the homotopy category can be

calculated as

hC(X,Y ) = π0 MapC(X,Y ),

(2.4.13), the statements in the stable∞-setting (3.2.42) agree precisely with the

statement in the triangulated-setting (3.2.40).

Now we can define what “compactly generated” means, both in the world
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of triangulated categories and of∞-categories.

Definition 3.2.45. [compactly generated triangulated categories]

Let T be a triangulated category which has small coproducts.

We say that T is compactly generated if there exists a set G ⊆ ob(T ) of

compact generators:

• (compactness): Objects X ∈ G are compact (3.2.36). (T (X,−) : T → Set

preserves coproducts.)

• (generation): The set G generates T (3.2.40). (G is closed under Σ,Σ−1,

and T (X,Y ) = 0 for all Y means Y = 0.)

Definition 3.2.46. [compactly generated stable∞-categories]

Recall that an∞-category C is compactly generated (2.13.22 if it’s accessible

(2.13.20) and presentable (2.13.21). In other words, there is a set of compact

objects that generate C under finite colimits.

In the case that C is stable, we can re-state this as follows:

A stable ∞-category C is compactly generated if there is a set G ⊆ C0 of

objects such that:

• (compactness): For any X ∈ G, any map X→
∐
I Yi factors through a finite

sub-coproduct. (3.1.32)

• (generation): Any X ∈ G satisfies the property that for any Y ∈ C,

π0 MapC(X,Y ) � {∗} =⇒ Y ≃ 0C.

Proposition 3.2.47. [HA, 1.4.4.2]

Let C be a stable∞-category.
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Then C is presentable (2.13.21) iff the following are satisfied:

• The∞-category C admits all small coproducts.

• The homotopy category hC is locally small.

• There exists a regular cardinal α (2.13.1) and an α-compact object X ∈ C0

that generates C as an object (3.2.42).

Remark 3.2.48. In the proof of [HA, 1.4.4.2], starting from a presentable sta-

ble ∞- category C, he constructs the α-compact generator X as follows. A

presentable ∞-category C can be written as the localization of a presheaf ∞-

category (2.13.21) P(C0) where C0 is a small ∞-category. Consider the compo-

sition:

C0 j
−→ P(C0)

l−→ C

where j is the Yoneda embedding (2.12.5) and l is the localization functor

(2.14.4). Each object c ∈ C0 forms an object l ◦ j(c) ∈ C. Then the α-compact

generator X is constructed as:

X =
∐

i∈Z,c∈C0

Σil ◦ j(c)

as a coproduct of all suspensions and desuspensions of objects in C0. In other

words, we can rephrase the above to say that C is generated by the collection of

objects (3.2.42)

G :=
{
l ◦ j(c) : c ∈ C0

}
.

In particular, if C is compactly generated (2.13.22), it is both presentable

and finitely accessible.
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Then the proposition above (3.2.47) says that there exists an (ω-) compact

object X ∈ C0 (3.2.38) that generates C, ie. a collection of objects G ⊆ C0 that are

compact and generate C.

Proposition 3.2.49. [HA, 1.4.4.3]

A stable∞-category C is compactly generated in the∞-sense (3.2.46) if and

only if its homotopy category hC is compactly generated as a triangulated cate-

gory (3.2.45).

Proof. Let G ⊆ C0 be a set of objects, and pick an object X ∈ G. We want to

show that G consists of compact generators in the∞-sense iff it is compact and

generates in the ordinary sense.

(i) (compactness):

⇒: Coproducts are the same in an∞-category and its homotopy category.

So a map in the homotopy category [f ] : X →
∐
I Yi lifts to an edge f :

X→
∐
I Yi in C. Since X is compact in the∞-sense, we can fill the edge f

to a 2-simplex in C:

X
∐
I Yi

∐
I0
Yi

f

where I0 ⊆ I is a finite subset forming a finite subcoproduct. Since co-

products in an∞-category and its homotopy category agree, the 2-simplex

above forms a commutative triangle in hC, factoring [f ] through a finite

subcoproduct
∐
I0
Yi ↪→

∐
I Yi .

⇐: The same argument can be run backwards. Suppose G consists of

compact objects in hC. Then an edge (f : X →
∐
I Yi) ∈ C1 corresponds
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to a morphism [f ] : X →
∐
I Yi in hC. By compactness we can factor [f ]

through a finite subcoproduct
∐
I0
Yi ↪→

∐
I Yi . This forms a commutative

triangle, which lifts to a 2-simplex in C.

(ii) (generation): If C is compactly generated, then there exists a set G of com-

pact objects that generates C (3.2.42). We showed in (3.2.44) that genera-

tion on the stable∞-level and the triangulated-level agree.

Remark 3.2.50. In [Nee09, Rk. 0.4], Neeman describes that satisfying Brown

representability is a condition that’s preserved under localization of triangu-

lated categories, but being compactly-generated is not. So it was clear that

Brown representability in fact holds for a larger class of triangulated categories.

It was the search to understand this that led Neeman [Nee01] to describe the

more general notion of well-generated triangulated categories:

Definition 3.2.51. [Nee01, Rk. 8.17]

[well-generated triangulated categories (Neeman)]

Let T be a triangulated category that has small coproducts.

The triangulated category T is called well-generated if there is a regular

cardinal α (2.13.1) and an α-generating set G ⊆ ob(T) (3.2.40). That is:

• (G is weakly generating): G is closed under suspensions and desuspen-

sions, and (T(G,Y ) = 0) iff (Y = 0), where T(G,Y ) = 0 means that T(X,Y ) =

0 for all X ∈ G.

• (objects in G are α-small): All X ∈ G are α-small: ie. any map X →
∐
I Y

factors as X→
∐
I0⊆I Yi ↪→

∐
I Yi , where |I0| < α.

210



• (objects in G are α-perfect): For any X ∈ G, any map X →
∐
I0
Yi with

|I0| < α factors as
X

∐
I0
Yi

∐
I0
Xi

with all the Xi ∈ G.

A simpler version shown to be equivalent by Krause [Kra01]:

Definition 3.2.52. [well-generated triangulated categories (à la Krause)]

Let T be a triangulated category that has small coproducts.

Then T is well-generated if

• There’s a weakly generating set G ⊆ ob(T ) (3.2.40).

• All objects of G are α-small (3.2.35) for some regular cardinal α.

• Given a collection of maps (fi : Yi → Zi)i∈I (where the index I is a set),

then (fi)∗ : T (X,Yi) → T (X,Zi) surjective for all X ∈ G implies that the

induced map (
∐
i fi)∗ : T (X,

∐
i Yi)→ T (X,

∐
i Zi) is surjective.

Remark 3.2.53. Let C be a stable∞-category. We saw that being compactly gen-

erated (3.2.46) depends only on the homotopy category (3.2.49). In light of this,

we might ask if we can we get a similar result for well-generated categories.

In other words, when is the homotopy category of a stable ∞-category well-

generated, or conversely, given a homotopy category that is well-generated, can

we say anything about the underlying∞-category?

The answer is not so straightforward, due to the fact that it is unclear how

to translate the condition of α-perfectness (3.2.35) to the ∞-categorical level

(see 3.2.39).
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There are, however some partial results in this direction.

Theorem 3.2.54. [Ros09, Thm. 4.9]

If M is a model category (4.0.3) that is stable (4.3.1) and combinatorial

(4.4.1), then its homotopy category ho(M) (4.0.2) is a well-generated triangu-

lated category (3.2.51).

Combinatorial model categories are “the same as” presentable∞-categories

(2.13.25). And stable model categories model stable∞-categories (4.3.3).

Proposition 3.2.55. Let C be a presentable stable∞-category (2.13.21, 3.1.10).

Then its homotopy category hC is well-generated (3.2.51).

Proof. Since any presentable ∞-category arises as the underlying ∞-category

of a combinatorial model categories (2.13.25), and stable∞-categories underly

stable model categories (4.3.3), if C is presentable and stable, we can write it as

C ≃ M∞, where M∞ is the underlying ∞-category (2.11.5) of a combinatorial

stable model category M (4.4.1, 4.3.1). Then by the proposition above (3.2.54),

the homotopy category

ho(M) � h(M∞) ≃ hC

is well-generated.

3.2.6 Brown representability and adjoint functor theorems

Definition 3.2.56. [representable functors in ordinary categories]

Let C be an ordinary category.

A functor f : Cop → Set is representable if there’s an object x ∈ C and a

natural isomorphism f ≃ C(−,x).
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Definition 3.2.57. [Nee01, Def. 8.2.1]

[Brown representability in triangulated categories]

Let T be a triangulated category with small coproducts.

We say that T satisfies Brown representability if any functor F : T op→ Ab

is representable iff the following conditions are satisfied:

(i) The functor F is cohomological: it sends a distinguished triangle

X→ Y → Z→ ΣX

to an exact sequence of abelian groups

F(Z)→ F(Y )→ F(X);

(ii) The functor F sends coproducts in T to products in Ab: for any
∐
I Xi ∈ T ,

there is an isomorphism of abelian groups

F(
∐
I

Xi) �
∏
I

F(Xi).

Theorem 3.2.58. [Nee01, Prop. 8.4.2]

If T is a triangulated category that is well-generated (3.2.51), then it satisfies

Brown representability (3.2.57).

Definition 3.2.59. [NRS20, Def. 5.1]

[representable functors on∞-categories]

Let C be an∞-category. For any object x ∈ C, let

hC(−,x) : C
jx−→ S

π0−−→N (Set)
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be the functor which sends an object y ∈ C to the set π0 MapC(y,x) = HomhC(y,x)

A functor f : Cop→N (Set) is called representable if there is an object x ∈ C

and a natural isomorphism f ≃ hC(−,x).

Sanity check 3.2.60. A functor f : Cop→N (Set) is representable in the∞-sense

(3.2.59) iff it is representable in the ordinary sense (3.2.56).

Proof. A functor f : Cop→ N (Set) is representable iff there is a natural isomor-

phism f ≃ hC(−,x) in the functor category Fun(Cop,N (Set)). This corresponds

to an isomorphism in the homotopy category

hFun(Cop,N (Set)) ≃ Cat(hCop,Set)

(2.8.6) between

hf ≃ hC(−,x).

Definition 3.2.61. [NRS20, Def. 5.1.1]

[Brown representability in∞-categories]

Let C be an∞-category with small colimits.

We say that C satisfies Brown representability if any functor F : Cop →

N (Set) is representable (3.2.59) iff the following conditions are satisfied:

• For any pushout diagram in C (2.9.41):

A B

C D
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the induced map of sets

F(D)→ F(B)×F(A) F(C)

is surjective.

• For any small coproduct
∐
I Xi in C, the induced map

F(
∐
I

Xi)→
∏
I

F(Xi)

is an isomorphism.

Theorem 3.2.62. [NRS20, Thm. 5.2.7]

Every∞-category that is compactly generated (2.13.22) satisfies Brown rep-

resentability.

Theorem 3.2.63. [NRS20, Thm. 5.3.2]

Every presentable stable∞-category (2.13.21, 3.1.10) satisfies Brown repre-

sentability.

Proposition 3.2.64. [NRS20, Cor. 5.3.3]

Let C be a stable presentable∞-category, and hC its homotopy category.

Then a cohomological functor H : hCop → Ab is representable iff it sends

coproducts to products.

A corollary of Brown representability is of the form of an adjoint functor

theorem.

Proposition 3.2.65. [Nee96, Thm. 4.1]

[representability as an adjoint functor theorem]
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Let S and T be triangulated categories, and suppose S is well-generated

(3.2.51). Let f : S → T be a triangulated functor (3.2.20) that respects coprod-

ucts.

Then f has a right adjoint.

Definition 3.2.66. Let C be an ordinary category.

A weak pushout in C is a diagram [1]× [1]→ C:

A B

C D

which satisfies the existence, but not the uniqueness property of an ordinary

pushout. That is, for any object X ∈ C with maps B→ X and C → X making

the square commute, there exists at least one map D→ X making the diagram

commute:
A B

C D

X

∃

Proposition 3.2.67. [NRS20, Prop. 5.1.3]

Let F : C→D be a functor between stable∞-categories. Suppose that C has

all small colimits and satisfies Brown representability (3.2.61).

Then the induced functor hF : hC→ hD admits a right adjoint iff F satisfies

the following:

• F sends small coproducts in C to coproducts in hD.
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• F sends a pushout square (2.9.41) in C:

A B

C D

to a weak pushout (3.2.66) in hD:

F(A) F(B)

F(C) F(D)

Remark 3.2.68. Given a functor F : C → D, right adjoints on the homotopy-

level (that is, a right adjoint of hF : hC→ hD) do not, in general, lift to right

adjoints on the∞-level, unless the functor on the∞-level is known already to

admit an (∞-) adjoint (2.10.9). But if C satisfies Brown representability, we can

say a bit more.

Proposition 3.2.69. [NRS20, Cor. 5.1.5]

Let C and D be ∞-categories, suppose C has small colimits and satisfies

Brown representability (3.2.61).

Then a functor F : C→D admits a right adjoint iff it preserves small colim-

its.

3.2.7 Localization

Definition 3.2.70. [kernel of an exact functor]

Let f : T → T ′ be an triangulated functor (3.2.20) of triangulated categories.
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The kernel of f is the collection of objects:

ker(f ) := {x ∈ T : f (x) � 0T ′ } .

Lemma 3.2.71. [Nee01, Lem. 2.1.4]

Let f : T → T ′ be an exact functor of triangulated categories (3.2.20).

The kernel ker(f ) ⊆ T is a thick triangulated subcategory (3.2.26, 3.2.30).

That is, it’s closed under suspensions, triangles, and direct summands.

Definition 3.2.72. [Verdier localization (triangulated)]

Let T be a triangulated category and S ⊆ T a triangulated subcategory.

The Verdier localization of T by S is a triangulated functor γ : T → T /S,

such that S ⊆ ker(γ), and γ is universal with this property; that is, any exact

functor f : T → T ′ such that S ⊆ ker(f ) factors uniquely through γ :

T T ′

T /S

γ

f

The triangulated category T /S is called the Verdier quotient of T by S and

the map γ : T → T /S is called the Verdier localization functor .

Theorem 3.2.73. [Nee01, Thm. 2.1.8]

Let T be a triangulated category, and let S ⊆ T be a triangulated subcategory

(3.2.26).

Then there exists a Verdier localization γ : T → T /S (3.2.72) with S ⊆ ker(γ).

Remark 3.2.74. If γ : T → T /S is a Verdier localization, then ker(γ) ⊆ T is the

smallest thick subcategory containing S.
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Remark 3.2.75. The definition above is reminiscent of the universal property of

a categorical localization T → T [W −1] (4.0.1), where W consists of morphisms

f in T that can be completed to an exact triangle of the form:

•
f
−→ •→ s→•

where f forms the base of the triangle and s ∈ S. In other words, W consists of

morphisms whose cone lies in S. One can define a Verdier quotient in this way

[Kra09, Def. 4.6]. This will look like our∞- interpretation below.

In certain cases, Verdier quotients can be realized as part of a nicer notion

of Bousfield/reflective localization:

Definition 3.2.76. [Bousfield/reflective localization (triangulated)]

Let S ⊆ T be a thick subcategory of a triangulated category. Let γ : T → T /S

be the Verdier localization functor of T at S (3.2.72).

The Bousfield localization (if it exists) is a fully-faithful right adjoint to the

map γ : T → T /S.

Given a Bousfield localization L : T → T , its kernel forms a thick subcate-

gory, and one can take a Verdier quotient T → T / ker(L). One can ask: which

thick subcategories of T arise in this way? This was the same question we asked

of Bousfield localizations of∞-categories (2.14.4).

Proposition 3.2.77. [Kra09, Prop. 4.9.1]

Let S ⊆ T be a thick subcategory (3.2.30) of a triangulated category. The

following are equivalent.

(i) There is a Bousfield localization L : T → T with S = ker(L).

219



(ii) The inclusion S ⊆ T admits a right adjoint.

(iii) For each X ∈ T , there is an exact triangle

XS → X→ X⊥→ ΣX

where XS ∈ S, and X⊥ is “orthogonal to S”:

X⊥ ∈ S⊥ = {t ∈ T : HomT (s, t) = 0 for all s ∈ S} .

Equivalently, X⊥ is W -local, where W is the collection of morphisms in T

whose cone lives in S. (This will look like our∞- version below.)

Definition 3.2.78. [BGT13, Def. 5.4]

[Verdier localization (stable∞-)]

Let f : C→D be a fully faithful functor (2.8.13) between presentable stable

∞-categories (2.13.21, 3.1.10).

The Verdier quotient of D by C is the cofiber D/C := cofib(f ), where the

cofiber (3.1.9) is taken in the∞-category PrLst of presentable stable∞-categories

and left-exact functors between them.

In [BGT13], they show that this agrees with ordinary Verdier localization, if

the triangulated categories come from presentable stable∞-categories.

Proposition 3.2.79. [BGT13, Prop. 5.9]

Let C and D be presentable stable∞-categories (2.13.21, 3.1.10).

Given a fully faithful functor (2.8.13) C→D, there is an equivalence

hD/hC
∼−→ h(D/C),
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where the left is the ordinary Verdier localization of triangulated categories

(3.2.72) and the right is the homotopy category of the Verdier localization of

stable∞-categories (3.2.78).

They also show that forming a Verdier quotient (3.2.78) agrees with Bous-

field localizing (2.14.4):

Proposition 3.2.80. [BGT13, Prop. 5.6]

Let C → D be a fully faithful functor (2.8.13) between presentable stable

∞-categories (2.13.21, 3.1.10). Let

W := {f ∈D1 : cone(f ) ∈ C} .

Then W is strongly saturated (2.14.10) and of small generation (2.14.11), so

we can Bousfield localize (2.14.4) D→W −1D.

Then there is an equivalence:

D/C ≃W −1D,

where the left is the (∞-) Verdier quotient (3.2.78), and the right is Bousfield

localization (2.14.4).

Sanity check 3.2.81. With C,D as above, we can describe this equivalence in a

diagram:
D

D/C W −1D

L

∼

where D→D/C is the Verdier quotient (3.2.78), and L is Bousfield localization
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at the collection

W = {f ∈D1 : cone(f ) ∈ C} .

Taking homotopy categories, we get a diagram of categories:

hD

hD/hC h(W −1D)

hL

∼

using the fact that h(D/C) ≃ hD/hC (3.2.79). The functor hD→ hD/hC in the

diagram is the ordinary Verdier quotient (3.2.72) of hD at hC.

Since an adjunction on the ∞-level forms an adjunction on the homotopy

level (2.10.8), and a fully faithful functor of ∞-categories is fully faithful on

the homotopy-level (3.1.35), then the functor hL : hD→ h(W −1D) is a Bousfield

localization of hD at

W1 := {[f ] ∈Hom(hD) : f ∈W } .

This forms an equivalence h(W −1D) ≃ (W1)−1(hD), which composes with the

equivalence hD/hC ≃ h(W −1D):

hD

hD/hC h(W −1D) (W1)−1hD

hL

∼ ∼

to form an equivalence

hD/hC ≃ (W1)−1(hD)

where hD/hC is ordinary Verdier localization (3.2.72) and the right is Bous-
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field localization at the set of maps in hD whose cone lies in hC (3.2.76). This

recovers the result from triangulated categories.

3.2.8 t-structures

A reference for this section is [HA, 1.2.1].

Definition 3.2.82. [t-structures]

(on triangulated categories): Let T be a triangulated category with a sus-

pension Σ : T → T .

A t-structure on T is a pair of full, replete subcategories

T≥0,T≤0 ⊆ T

such that:

(i) The subcategory T≥0 is stable under suspensions:

Σ(T≥0) ⊆ T≥0,

and T≤0 is stable under desuspensions:

Σ−1(T≤0) ⊆ T≤0.

(ii) For X ∈ T≥0,Y ∈ T≤0,

T (X,Σ−1Y ) = 0.

(iii) For any A ∈ T , there exists a distinguished triangle

X→ A→ Σ−1Y → ΣX
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where X ∈ T≥0,Y ∈ T≤0.

(Equivalently, there exists a triangleX→ A→ Y → ΣX whereX ∈ T≥0,Y ∈

T≤1.)

(on stable ∞-categories): Let C be a stable ∞-category. A t-structure on C

is a t-structure on hC in the sense above. The subcategories C≥0,C≤0 ⊆ C are

defined to be the full subcategories spanned by (hC)≥0 and (hC)≤0 respectively.

Remark 3.2.83. The above definition uses homological indexing. One can sim-

ilarly define a notion of a t-structure with cohomological indexing, with sub-

categories usually labelled C≤0,C≥0 ⊆ C and the conditions re-indexed appro-

priately.

Remark 3.2.84. For a stable∞-category C, let

C≥n := Σn(C≥0)

C≤n := Σn(C≤0).

Example 3.2.85. A motivating example is the derived category of an abelian

category A. A t-structure lets one consider objects with homology in non-

negative or non-positive degrees. Suspension is given by shifting, so the sub-

category D(A)≥n ⊆ D(A) consists of objects with homology in degrees ≥ n. The

inclusion D(A)≥n ⊆D(A) admits a right adjoint

τ≥n :D(A)→D(A)≥n

given by “truncating” – taking a chain complex in D(A)

X = (· · · ← Xi−1
di← Xi ← . . . )i∈Z
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to the chain complex:

τ≥nX = (· · · ← 0← ker(dn)← Xn+1← . . . ),

ie. killing homology groups in degrees < n.

Proposition 3.2.86. [HA, 1.2.1.5]

Let C be a stable ∞-category, with a t-structure given by (C≥0,C≤0). We can

define, for any n ∈N, full subcategory inclusions:

C≥n ↪→ C

C≤n ↪→ C,

with adjoints:
C≥n C≤n

C C

τ≥n τ≤n

(left adjoints on the left).

The truncations τ≥n, τ≤n are fully-faithful; ie. the subcategories C≥n,C≤n are

localizations of C (2.14.4).

Definition 3.2.87. [the heart]

Let C be a stable∞-category with a t-structure (C≥0,C≤0). The heart of the

t-structure is a subcategory C♥ ⊆ C defined as:

C♥ := C≥0 ∩C≤0.

Remark 3.2.88. We can generalize homology functors to homotopy functors
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πn : C→ C♥ for all n ∈ Z:

π0 := τ≤0 ◦ τ≥0 ≃ τ≥0 ◦ τ≤0,

πn := π0 ◦Σ−n

Remark 3.2.89. The heart T ♥ of a t-structure on a triangulated category is an

abelian category, and there is an equivalence C♥ ≃N (hC♥).

Example 3.2.90. (a) In the case T =D(A) = hD(A), the derived category of an

abelian category A, then for any n ∈ Z there is a t-structure given by:

D(A)≥n = {objects with homology only in degrees ≥ n} ,

D(A)≤n = {objects with homology only in degrees ≤ n} .

(b) The analagous t-structure in the case C = Sp the category of spectra:

Sp≥n = {spectra whose nonzero homotopy groups are only in degree ≥ n}

Sp≤n = {spectra whose nonzero homotopy groups are only in degree ≤ n}

Remark 3.2.91. We saw that every t-structure determines certain localizations

(3.2.86).

Not every localization arises in this way, and not every localization deter-

mines a t-strucutre. But we can characterize those localizations that do form

t-structures as t-localizations (3.2.93).

For a stable∞-category C, there is a bijection:

{
t-structures on hC

}
↔

{
t-localizations of C

}
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This is mentioned briefly in the introduction to [HA, 1.2], but he doesn’t

fully commit to using the terminology of “t-localizations”. Nonetheless he ex-

hibits some equivalent conditions describing a t-localization in [HA, 1.2.1.16].

First a preliminary definition.

Definition 3.2.92. [quasisaturated sets]

Let C be an∞-category. A set S ⊆ C1 is called quasisaturated if it:

(i) contains all equivalences of C;

(ii) satisfies a 2-out-of-3 property: given a 2-simplex in C:

•

• •

f g

h

if any two of {f ,g,h} are in S, then so is the third;

(iii) is closed under pushouts: given a pushout square in C:

• •

• •

f

f ′

if f ∈ S, then f ′ ∈ S.

For any set S ⊆ C1, the set

S := {the smallest quasisaturated set containing S}

is called the quasisaturated set generated by S .
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Definition 3.2.93. [t-localizations]

Let C be a stable∞-category and L : C→ C a localization (2.14.4).

We call L : C → C a t-localization if either of the following (equivalent)

conditions are satisfied:

(1) The image of L is closed under extension: given a fiber sequence (3.1.7)

X→ Y → Z (a triangle in hC), if X,Z ∈ L(C), then Y ∈ L(C).

(2) The full subcategories

C≥0 = {X : LX ≃ 0}

C≤−1 = {X : LX ≃ X}

describe a t-structure (3.2.82) on C.

(3) The class

S := {f ∈ C1 : Lf is an equivalence}

is generated as a quasisaturated set by some collection of morphisms of

the form {0→ X}.

(4) The class S as above is generated as a quasisaturated set by the collection

{0→ X : LX ≃ 0} .
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4 Appendix (Model categories)

I find some of this exchange truly depressing. There is
a subject of “brave new algebra”and there are myriads
of past and present constructions and calculations that
depend on having concrete and specific constructions.
People who actually compute anything do not use
(∞,1) categories when doing so. To lay down a
challenge, they would be of little or no use there. One
can sometimes use (∞,1) categories to construct things
not easily constructed otherwise, and then one can
compute things about them (e.g. work of Behrens and
Lawson). But the tools of computation are not (∞,1)
categorical, and often not even model categorical.
People should learn some serious computations, do
some themselves, before totally immersing themselves
in the formal theory. Note that (∞,1) categories are in
principle intermediate between the point-set level and
the homotopy category level. It is easy to translate into
(∞,1) categories from the point-set level, whether from
model categories or from something weaker. Then one
can work in (∞,1) categories. But the translation back
out to the “old-fashioned” world that some writers
seem to imagine expendable lands in homotopy
categories. That is fine if that is all that one needs, but
one often needs a good deal more. One must be
eclectic. Just one old man’s view.

Peter May
(Mathoverflow post) [MM]

Model categories were introduced by Daniel Quillen in [Qui67] as a way to

formalize the notion of an abstract homotopy theory. The typical situation of

a homotopy theory is this: one has a category C with a class W ⊆ Hom(C) of

“weak equivalences” which one would like to formally invert (eg. weak homo-

topy equivalences in topology, or quasi-isomorphisms in homological algebra).

One wants to form a “homotopy category” – one in which the weak equiva-

lences have been formally inverted.
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For us, model categories are relevant in two ways:

1. Model categories and∞-categories are both ways of modelling homotopy

theories. Underlying any model category is an∞-category which models

the same homotopy theory (2.11).13

2. We turn homotopy theory on itself to study a “homotopy theory of homo-

topy theories,” or in other words, a homotopy theory of∞-categories. For

example, an equivalence of∞-categories (eg. as simplicial sets or as sim-

plicially enriched categories) does not want to be an isomorphism, which

turns out to be too strong. Instead we would like a weaker equivalence

(resp. “weak categorical equivalence” or “Dwyer-Kan equivalence”). The

homotopy theory of ∞-categories can be described in model-categorical

terms. This is useful for example when travelling between models of ∞-

categories.

Definition 4.0.1. [localization of a category with weak equivalences]

Let (C,W ) be a pair where C is a category and W ⊆ Hom(C) is a collection

of morphisms that one would like to formally invert. In particular, they should

contain all the isomorphisms of C.

The localization of C atW is a functor γ : C→ C[W −1] (we may sometimes

also refer to the category C[W −1] as the localization) such that for any mor-

phism w ∈ W , the image γ(w) ∈ Hom(C[W −1]) is an isomorphism, and which

satisfies the universal property that given any functor F : C → D such that for

13Not all∞-categories arise in this way.
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all w ∈W the image F(w) ∈D is an isomorphism, then F factors through γ :

C D

C[W −1]

F

γ

Definition 4.0.2. [homotopy category as a localization]

Let (C,W ) be a category C with weak equivalences.

The homotopy category ho(C) = C[W −1], which localizes C at its weak

equivalences. In other words, it turns weak equivalences into isomorphisms.

One can construct a localization of a category with weak equivalences by

hand [Bal21, Def. 2.2.9] by first forming a free category F(C,W −1), whose ob-

jects are objects of C, and in which there is a morphism x→ y for every zig-zag:

a string in C of the form

x→• ∼←− •→ ·· · → • ∼←− •→ y,

where each backwards map (marked with a ∼) is a weak equivalence.

Then C[W −1] is a quotient category of F(C,W −1) by the relations:

• idx = (x
id−−→ x) for all x ∈ C;

• (x
f
−→ y

idy
←−− y

g
−→ z) = (x

gf
−−→ z) for all (f : x→ y) and (g : y→ z) in C;

• idx = (x
w−→ y

w←− x) for all (w : x→ y) ∈W ;

• idy = (y
w←− x w−→ y) for all (w : x→ y) ∈W .

Here the functor γ : C → C[W −1] sends a morphism f : x → y to a string of

length 1. Notice that by the latter two relations above, for every w ∈ W , the
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map γ(w) is made an isomorphism. In fact there is an isomorphism in C[W −1]

for any string in C where all the morphisms are in W :

• ∼−→ • ∼←− ·· · ∼−→ • ∼←− •.

The problem with defining a homotopy category in this way is that C[W −1]

may not form an actual category: since zig-zags are defined with arbitrary

length, it may happen that HomC[W −1](x,y) may not form sets for all objects.

If C has some extra structure of a model category, there is an alternate de-

scription of the homotopy category, which is equivalent as a category to the

above construction, and involves zig-zags only of length 3. This will mean that

localizing a model category forms an honest category (4.0.31).

Definition 4.0.3. [model categories]

A model category M is a category with three distinguished classes of mor-

phisms:

• weak equivalences: WM (denoted
∼−→),

• cofibrations: CofM (denoted ↪→ or↣),

• fibrations: FibM (denoted↠).

These are allowed to overlap, and we call maps inW ∩Fib acyclic fibrations (or

trivial fibrations) and maps in W ∩Cof acyclic cofibrations (or trivial cofibra-

tions).

The categoryM along with the classesW,Fib,Cof ⊆Hom(M) should satisfy

the following axioms (MC1-5):

(MC1) (completeness/co-completeness): M has all small limits and colimits.
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(MC2) (2-out-of-3): Weak equivalences satisfy the “2-out-of-3” property: given

composable maps f and g in M, if any two maps in {f ,g,gf } are in W ,

then so is the third.

(MC3) (retracts): Each of the three classes {W,Fib,Cof } is closed under retracts:

given a diagram in M of the form:

• • •

• • •
g f g

id

id

then f ∈W (resp. ∈ Fib,Cof ) implies g ∈W (resp. ∈ Fib,Cof ).

(MC4) (weak factorization): Any map f in M can be factored as either an acylic

cofibration followed by a fibration, or a cofibration followed by an acyclic

fibration:

• •

•

f

∼ or
• •

•

f

∼

(MC5) (weak factorization lifting): Given a commutative square in M, a “lift”

(the dotted diagonal maps below) exists if the vertical maps are either an

acyclic cofibration on the left and a fibration on the right, or a cofibration

on the left and an acyclic fibration on the right:

• •

• •
∼ or

• •

• •
∼
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Remark 4.0.4. Quillen’s (MC1) [Qui67] actually only requires M to have finite

limits and colimits, but in practice it helps to have all small (co-) limits. Most

authors now choose to require completeness and co-completeness as part of the

axioms.

Remark 4.0.5. Most people [Bal21, Rk. 2.1.4] assume that the factorizations of

(MC4) are functorial.

Definition 4.0.6. [lifting properties] Let M be a category.

A lifting problem for a pair (i, j) of morphisms in M is a commutative

square in M of the form
• •

• •
ji

A solution or lift to the lifting problem is a morphism (the dotted arrow above)

making the diagram commute.

If such a lift exists we say that i has the left lifting property (LLP) with

respect to j, or equivalently that j has the right lifting property (RLP) with

respect to i.

We can write this succinctly as

i l j,

which may be read as “i has the LLP with respect to j and (equivalently) j has

the RLP with respect to i”. Given classes of maps I, J ⊆Hom(M), we write

i l J

to mean that “i has the LLP with respect to any map j ∈ J” (I l j is defined
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similarly). We denote by RLP(I) and LLP(J) the following:

RLP(I) := {j ∈Hom(M) : I l j}

LLP(J) := {i ∈Hom(M) : i l J} .

Definition 4.0.7. [weak factorization systems]

Let M be a category, and let A,B ⊆Hom(M).

The pair (A,B) forms a weak factorization system on M if

• Any map f ∈Hom(M) factors as a map in A followed by a map in B.

• •

•

f

A∋ ∈B

• A = LLP(B) (equivalently B = RLP(A)). That is, a lift exists in any square

of the form:
• •

• •
∈BA∋

Remark 4.0.8. Consider a collection

(M,W ,Cof ,Fib)

whereM is a category andW,Cof ,Fib ⊆Hom(M) are collections of morphisms.

Such a collection is a model category (4.0.3) iff it has all small limits and col-

imits, and has a model structure, which is defined as the following:

• The collection of weak equivalencesW is closed under retracts and 2-out-

of-3.
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• The pairs (Cof∩W,Fib) and (Cof,Fib∩W ) are both weak factorization sys-

tems on M.

Remark 4.0.9. A category may have more than one model structure. Some-

times one takes a weaker/stronger kind of weak equivalence. More interest-

ingly, there can even be more than one model structure on a category with

the same weak equivalences.

Example 4.0.10. Often model structures are named after people, and we de-

note categories with a certain model structure by a subcript. For example Top

with the Quillen model structure will be written TopQuillen.

(i) TopQuillen [Bal21, §7.1]:

• W = {weak homotopy equivalences}

A map f : X → Y is a weak homotopy equivalence if it induces iso-

morphisms on homotopy groups f∗ : πn(X)
∼−→ πn(Y ) for all n ∈N.

• Fib = {Serre fibrations} = RLP({Dn × {0} ↪→Dn × I}n∈N)

HereDn is the n-disk, and so a Serre fibration is a map with the right

lifting property against the inclusion of any n-disk to one end of a

cylinder.

• Cof = LLP(Fib∩W ).

(ii) TopStrøm (or sometimes TopHurewicz) [Bal21, §7.2]:

• W = {(strong) homotopy equivalences}

A map f : X → y is a homotopy equivalence of spaces if there is a

map g : Y → X such that gf ∼ idX and f g ∼ idY , where ∼ is the

relation of homotopy.
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• Fib = {Hurewicz fibrations} = RLP({X × {0} ↪→ X × I}X∈Top)

A Hurewicz fibration is a map with right lifting against the inclusion

of any space into a cylinder. (In particular, a Hurewicz fibration is a

Serre fibration.)

• Cof = {closed Hurewicz cofibrations} = LLP(Fib∩W ).

[Bal21, Rk. 7.2.4].

(iii) sSetQuillen (or sSetKan−Quillen) [Bal21, §6.1]:

• W = {weak homotopy equivalences, a.k.a. Kan equivalences}

A Kan equivalence is a map of simplicial sets F : X → Y whose geo-

metric realization |F| : |X | → |Y | (2.1.16) is a weak homotopy equiva-

lence of spaces (a weak equivalence in TopQuillen).

• Fib = {Kan fibrations (2.7.1)} = RLP
({
Λn
i ↪→ ∆n : 0 ≤ i ≤ n

})
.

• Cof = {monomorphisms} :

A simplicial map f : X → Y is a monomorphism iff it is levelwise

injective; ie. each function fn : Xn→ Yn is injective.

(iv) Catcanonical [Bal21, §9.1]:

• W = {equivalences of categories}

• Fib = {isofibrations} = RLP([0]→ J)

Here J is the walking isomorphism: a category consisting of two ob-

jects and an isomorphism between them. Drawing out the lifting

diagram,
[0] C

J D

F
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this means that a functor F : C → D is an isofibration iff any iso-

morphism in D whose source or target has pre-image in C lifts to an

isomorphism in C.

• Cof = {functors that are injective on objects}

(v) sCatBergner [Bal21, §11.1]:

• W = {Dwyer-Kan equivalences}

A Dwyer-Kan equivalence [DK80b] is a map f : C → D between

simplicially enriched categories such that (1) the induced functor

hf : hC→ hD (2.4.6) is an equivalence of categories, and (2) for ev-

ery hom-sset C(c,c′)•, the induced map

C(c,c′)•→D(f c, f c′)•

is a Kan equivalence of simplicial sets (a weak equivalence in the

Quillen model structure sSetQuillen).

• Fib: A map f : C→ D of simplicially enriched categories is a fibra-

tion in sCatBergner if (1) hf : hC → hD (2.4.6) is an isofibration (a

weak equivalence in Catcanonical), and (2) for every hom-sset C(c,c′)•,

the map

C(c,c′)•→D(f c, f c′)•

is a Kan fibration (a fibration in sSetQuillen).

(vi) sSetJoyal [Bal21, §6.2]:

• W = {weak categorical equivalences}
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A weak categorical equivalence is a map between simplicial sets f :

X→ Y such that for any∞-category C, the induced map

hFun(Y ,C)→ hFun(X,C)

is an ordinary equivalence of categories, where Fun(•,•) is the func-

tor ∞-category (2.8.2) and h is the homotopy construction (2.4.9).

Equivalently, f is a weak categorical equivalence iff the functor Cf :

CX→CY formed by the functor C : sSet→ Cat (2.2.12) is a Dwyer-

Kan equivalence (a weak equivalence in sCatBergner).

• Cof = {monomorphisms of ssets}

• Fib = RLP(Cof ∩W ).

Remark 4.0.11. Given a class of weak equivalences and any one of the other

two classes (either fibrations or cofibrations) completely determines the other

via lifting properties. For example, if we are given a category M with classes

W,Fib, then cofibrations are completely determined as being those maps with

the left lifting property against acyclic fibrations: Cof = LLP(W ∩Fib).

It’s sometimes the case that only one of the classes of either fibrations or

cofibrations is actually easily describable. It’s often the case that one will define

only weak equivalences and either fibrations or cofibrations, and then define

the rest in terms of lifting properties.

Remark 4.0.12. Model structures present homotopy theories.

• The model structures TopQuillen and sSetQuillen both present the homo-

topy theory of spaces.
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• The model structures sCatBergner and sSetJoyal both present the homotopy

theory of∞-categories.

Armed with notions of fibrations and cofibrations in a model category M,

we identify particularly nice objects that we call “fibrant” or “cofibrant”.

Definition 4.0.13. [fibrant and cofibrant objects]

Let M be a model category. Let 0 ∈ M be an initial object, and 1 ∈ M be a

final object.

We call an object X ∈M...

• fibrant if the unique map X→ 1 is a fibration;

• cofibrant if the unique map 0→ X is a cofibration.

If X is both fibrant and cofibrant, we will call it fibrant-cofibrant or bifibrant.

Definition 4.0.14. [fibrant/cofibrant replacement]

For any object X ∈ M, we can factor the maps 0 → X and X → 1 using

(MC4):

0 X

Xc
∼ and

X 1

Xf
∼

resulting in an object Xc that we call a cofibrant replacement of X, and an

object Xf that we call a fibrant replacement of X.14

Remark 4.0.15. Cofibrant and fibrant replacements of an object X ∈M are not

strictly unique, but unique up to homotopy. That is, any two cofibrant replace-

ments Xc and (Xc)′ (resp. fibrant replacements Xf and (Xf )′) are connected by

14Some authors use the notation QX for cofibrant replacement and RX for fibrant replace-
ment, but we won’t.
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a zig-zag of weak equivalences:

Xc
∼−→ X

∼←− (Xc)′ (resp. Xf
∼←− X ∼−→ (Xf )′)

In the homotopy category (4.0.30), such zig-zags form isomorphisms, so

cofibrant and fibrant replacements are unique when considered as objects in

the homotopy category.

Remark 4.0.16. Any morphism between objects in a model category induces

a morphism between (co-) fibrant replacements. For example, given a map

ϕ : X→ Y in M, it sits inside a lifting problem:

0 Y c

Xc X Y

∼

∼ ϕ

ϕc

which admits a solution ϕc : Xc→ Y c. (Similarly we get a map ϕf : Xf → Y f .)

Assuming functorial factorization (4.0.5), we can form cofibrant and fibrant

replacement functors

(−)c :M→M

(−)f :M→M.

Remark 4.0.17. We can further factor Xc → 1 (resp. 0→ Xf ) to get an object
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(Xc)f , a fibrant replacement of the cofibrant replacement of X (resp. (Xf )c).

X X

0 Xc 1 0 Xf 1

(Xc)f (Xf )c

∼

∼

∼

∼

Both (Xc)f and (Xf )c are fibrant-cofibrant, and both are connected via zig-zags

of weak equivalences to X. We call such objects fibrant-cofibrant replacements

of X. Since (Xc)f and (Xf )c are connected to each other via a zig-zag of weak

equivalences, these fibrant-cofibrant replacements are unique up to homotopy

– ie. unique in the homotopy category.

Remark 4.0.18. Restricting to fibrant/cofibrant objects of M forms full subcat-

egories:

• Mc ⊆M is the subcategory of cofibrant objects.

• Mf ⊆M is the subcategory of fibrant objects.

• Mcf ⊆M is the subcategory of fibrant/cofibrant objects.

Remark 4.0.19. These cofibrant and fibrant replacements represent particu-

larly nice versions of objects in a given model category. For example they fa-

cilitate the calculations of homotopy limits and colimits, as well as derived

functors.

By the way that lifting problems are organized, we can think of cofibrations

as morphisms that are nice to map along, and fibrations as morphisms that are

nice to factor through. In particular, cofibrant objects are nice to map out of,

and fibrant objects are nice to map into.
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Example 4.0.20. [examples of fibrant and cofibrant objects]

• TopQuillen: Every object is fibrant and the cofibrant objects are retracts of

cell complexes [Bal21, Prop. 7.1.3].

In particular, CW-complexes are fibrant-cofibrant, and CW approxima-

tion can be thought of as a cofibrant replacement.

• sSetQuillen: Every object is cofibrant and the fibrant objects are precisely

the Kan complexes [Bal21, Def. 6.1.4].

• sSetJoyal : Every object is cofibrant and the fibrant objects are precisely the

quasi-categories, ie. ∞-categories [Bal21, Prop. 6.2.4].

• sCatBergner : Fibrant objects are Kan-enriched categories, ie. ∞-categories

[Bal21, Prop. 11.1.6].

Remark 4.0.21. The homotopy theory of topological spaces hinges on the unit

interval I = [0,1]. We define a homotopy between two maps X ⇒ Y as a map

out of a cylinder object (X × I → Y ), or alternatively as a map into a path object

(X→ Y I ), both of which are mediated by the interval I . We have corresponding

constructions more generally in a model category.

Definition 4.0.22. [cylinder and path objects]

Let X be an object in a model category M.

• A cylinder object of X is a factorization of the codiagonal

id

id

 : X ⊔X→
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X:

X ⊔X X

Cyl(X)


i0

i1


∼


id

id



• A path object of X is a factorization of the diagonal (id, id) : X→ X ×X:

X X ×X

Path(X)

(id,id)

∼ (p0,p1)

Example 4.0.23. [examples of cylinder and path objects]:

• In TopQuillen, Cyl(X) = X × I and Path(X) = XI = Top(I,X).

• In sSetQuillen, Cyl(X) = X ×∆1 and Path(X) = X∆1
= sSet(∆1,X).

Remark 4.0.24. Path and cylinder objects are, like fibrant/cofibrant replace-

ments, unique up to homotopy. Any two choices of a cylinder/path object for a

given object are connected by zig-zags:

Cyl(X)
∼−→ X

∼←− Cyl(X)′, and Path(X)
∼←− X ∼−→ Path(X)′.

Definition 4.0.25. [left and right homotopy]

Let f ,g : X⇒ Y be maps in a model category M.

• A left homotopy between f and g is a map H : Cyl(X)→ Y so that the
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following commutes:
X

Cyl(X) Y

X

i0

i1

H

f

g

In this case we say “f is left-homotopic to g” and write f ∼ℓ g. Note that

although we have defined this as a map H , there is a choice of cylinder

object involved.

• A right homotopy between f and g is a map H : X→ Path(Y ) so that the

following commutes:
Y

X Path(Y )

Y

p0

p1

H

f

g

In this case we say “f is right-homotopic to g” and write f ∼r g. Note that

although we have defined this as a map H , there is a choice of path object

involved.

If f is both right- and left- homotopic to g, then we say that f is homotopic

to g, and write f ∼ g.

Proposition 4.0.26. Let f ,g : X⇒ Y be maps in a model category M.

• If X is cofibrant, then (f ∼ℓ g) =⇒ (f ∼r g).

• If Y is fibrant, then (f ∼r g) =⇒ (f ∼ℓ g).

• If X is cofibrant and Y is fibrant, then (f ∼ℓ g) iff (f ∼r g) iff (f ∼ g). In

this case, homotopy forms an equivalence relation on HomM(X,Y ).
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Definition 4.0.27. [homotopy equivalence]

Let f : X→ Y be a morphism in a model category.

We call f a homotopy equivalence if there exists a map f ′ : Y → X such

that f ′f ∼ idX and f f ′ ∼ idY .

Proposition 4.0.28. [Whitehead’s Theorem][Bal21, Prop. 2.2.7]

Let f : X → Y be a map between fibrant-cofibrant objects in a model cate-

gory. Then f is a weak equivalence iff it’s a homotopy equivalence.

Remark 4.0.29. In the specific case of the model category TopQuillen, this recov-

ers the original Whitehead theorem: a weak homotopy equivalence between

bifibrant objects (in particular between CW-complexes) is a weak homotopy

equivalence iff it is a (strong) homotopy equivalence.

Definition 4.0.30. [homotopy category of a model category]

Let M be a model category.

The homotopy category ho(M) is determined, up to equivalence of cate-

gories, as the category defined by:

• (objects) : Fibrant-cofibrant objects of M, ie. ob(ho(M)) := ob(Mcf );

• (morphisms): For any X,Y ∈ ho(M),

Homho(M)(X,Y ) := HomM(X,Y )/ ∼,

where ∼ is the equivalence relation of homotopy (4.0.25).

Theorem 4.0.31. [Bal21, Thm. 2.2.10]

LetM be a model category, and γ :M→M[W −1] the localization at its weak

equivalences (4.0.1).
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• There is an equivalence of categories ho(M) ≃M[W −1] given by:

ho(M) ≃Mcf [W −1] ↪→M[W −1]

• There are natural isomorphisms for all X,Y ∈M:

HomM(Xcf ,Y cf )/ ∼ �HomM(Xf c,Y f c)/ ∼

�HomM[W −1](γ(X),γ(Y ))

where ∼ is the relation of homotopy (4.0.25).

In particular, this shows that the localizationM[W −1] of a model category

forms an honest category (without size issues).

• The functor γ : M → M[W −1] identifies left- or right- homotopic mor-

phisms.

• Given a morphism f ∈ Hom(M) such that γ(f ) ∈ Hom(M[W −1]) is an

isomorphism, then f is a weak equivalence.

4.1 Quillen adjunctions and Quillen equivalences

Remark 4.1.1. In practice, functors of model categories come in adjoint pairs.

To see why, notice that in an adjunction (F,G) : C⇄D, given maps (A
f
−→ B) ∈ C

and (X
g
−→ Y ) ∈D, we have a correspondence between lifting problems and their
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solutions:
A GX FA X

B GY FB Y

(in C) (in D)

Ggf Ff g↭

When C andD are model categories, such lifts exist if f and Ff are cofibrations

and g and Gg are fibrations (and one of the maps in either lifting problem is a

weak equivalence).

Definition 4.1.2. [Quillen adjunctions, Quillen functors]

Let M and N be model categories and suppose there is an adjunction:

F :M⇄N : G.

We say that (F,G) is a Quillen adjunction if either of the following (equiv-

alent) conditions are satisfied:

• F preserves cofibrations and acyclic cofibrations;

• G preserves fibrations and acyclic fibrations;

• F preserves cofibrations and G preserves fibrations;

• F preserves acyclic cofibrations and G preserves acyclic fibrations.

In this case, we call F a left Quillen functor andG a right Quillen functor.

Definition 4.1.3. [derived functors]

Let F :M⇄N : G be a Quillen adjunction.
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• The left derived functor of F is the composite:

LF : ho(M)
ho((−)c)
−−−−−−→ ho(M)

ho(F)
−−−−→ ho(N ).

• The right derived functor of G is the composite:

RG : ho(N )
ho((−)f )
−−−−−−−→ ho(N )

ho(G)
−−−−−→ ho(M).

Remark 4.1.4. A Quillen adjunction

F :M⇄N : G

forms an adjunction on homotopy categories:

LF : ho(M)⇄ ho(N ) :RG.

Definition 4.1.5. [Quillen equivalences]

A Quillen adjunction (F,G) is called a Quillen equivalence if the derived

adjunction (LF,RG) is an equivalence of homotopy categories.

Example 4.1.6. [Quillen equivalences]

• (| − |,Sing) : sSetQuillen⇄ TopQuillen is a Quillen equivalence [Qui67].

These model the homotopy theory of spaces up to weak equivalence.

• (C,N∆) : sSetJoyal ⇄ sCatBergner is a Quillen equivalence [HTT 2.2.5.1].

These model the homotopy theory of∞-categories up to weak categorical

equivalence.
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4.2 Homotopy limits and colimits

Definition 4.2.1. [homotopy limits/colimits in a model category]

Let M be a model category and let I be a diagram category. Let MI =

Cat(I,M) be the category whose objects are functors I →M (I-shaped diagrams

in M), and whose morphisms are natural transformations.

The constant functor c : M →MI sends any object to its constant diagram.

Just as ordinary colimits can be described with left and right adjoints:

M

MI

c
colimI limI

We can consider MI as a category with weak equivalences by taking the weak

equivalences WMI ⊆ Hom(MI ) to be those natural transformations whose ob-

jectwise maps are in WM . That is a weak equivalence in MI is a natural trans-

formation α : F→ G such that (Fm
αm−−→ Gm) ∈WM for all m ∈M.

The homotopy colimit and limit then (if they exist) are the left- and right-

derived functors respectively:

MI M MI M

ho(MI ) ho(M) ho(MI ) ho(M)

colim

hocolim=Lcolim

lim

holim=R lim

4.3 Stable model categories

[SS03]

Among homotopy theories, there are certain special ones that are stable.
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These are presented by stable∞-categories (3.1.10), or their model-categorical

analogue, stable model categories.

Definition 4.3.1. [stable model categories]

A model category is called stable if:

• it is pointed (has a zero object);

• suspension and loop functors are self-equivalences on the homotopy cat-

egory.

Remark 4.3.2. This definition corresponds precisely to one of the equivalent

conditions defining a stable∞-category (3.1.31).

Proposition 4.3.3. If M is a stable model category (4.3.1), then its underlying

∞-category M∞ (2.11.5)is a stable∞-category (3.1.10).

Proof. A stable ∞-category is one which admits cofibers and on which sus-

pension was an equivalence (3.1.31). An equivalence of stable ∞-categories

is detectable on the level of homotopy categories [BGT13, Cor. 5.11]. Taking

C = D = M∞, if suspension forms an equivalence Σ : ho(M) = hM∞ → hM∞,

this lifts to an equivalence of stable∞-categories M∞→M∞.

4.4 Combinatorial model categories

A combinatorial model category is one that is determined by a sufficiently

small amount of data – in particular it is generated from a small set of cofi-

brations between small objects. This allows one a certain amount of control

with them.

They are closely related to presentable∞-categories (2.13) which, similarly,

are∞-categories determined by a sufficiently small amount of data.
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Definition 4.4.1. [combinatorial model categories]

A model category M is called combinatorial if the following are satisfied:

(i) M is locally presentable (2.13.12) – that is:

• M has all small colimits (this is baked into our definition of a model

category);

• M is accessible (2.13.11) – that is, it is locally small (this is also baked

into our definition of a model category), and there exists a regular

cardinal κ (2.13.1) and a set G ⊆ ob(M) of κ-small objects that gen-

erate M under κ-filtered colimits (2.13.5).

(ii) M is cofibrantly generated – that is:

• There exists a set of cofibrations I ⊆ CofM that generate all cofibra-

tions in M in the following way:

CofM = LLP(RLP(I));

• There exists a set of acyclic cofibrations J ⊆WM∩CofM that generate

all acyclic cofibrations in M in the following way:

CofM ∩WM = LLP(RLP(J)).

Note that this is equivalent to saying that Fib = RLP(J).

Proposition 4.4.2. [Dugger’s theorem][Dug00, Cor. 1.2]

Any combinatorial model category is Quillen equivalent to a simplicial com-

binatorial model category.

252



In particular, this means that the underlying∞-category of a combinatorial

model category is presentable.

4.5 Homotopy limits/colimits

Limits and colimits in an ∞-category (2.9.39) do not, in general, correspond

to those in the corresponding homotopy category (2.4.13) (where limits and

colimits often don’t exist). There are related notions of homotopy limits and

homotopy colimits in the context of model categories (4.2.1) as well as in sim-

plicially enriched categories [BK72].

This section will explore some of the ways in which these homotopy lim-

its/colimits are related to limits/colimits in∞-categories.15

Proposition 4.5.1. [HA, 1.3.4.23, 1.3.4.24]

LetM be a combinatorial model category (4.4.1), F : I →Mc a small diagram

of cofibrant objects (4.0.14, 4.0.18). Since a model category is assumed to be

complete, the limit limI F ∈M exists. Let ϕ : x→ limI F be a map in M.

Then x is a homotopy limit of F (in the model-categorical sense) iff the in-

duced map

(NI)◁→N (Mc)→N (Mc)[W −1] =M∞

is a (∞-) limit in the underlying∞-category M∞ (2.11.5).

Dually, a map colimI F → x exhibits x as homotopy colimit of F iff the in-

duced map (NI)▷→M∞ is a (∞-) colimit in the underlying.

Proposition 4.5.2. [Cis19, Thm. 7.9.8, Rk. 7.9.10]

15Some people will even refer to limits/colimits in an ∞-category as “homotopy lim-
its/colimits” to distinguish them from ordinary limits/colimits in the homotopy category (eg.
[HTT, 1.2.13]). We will not use this terminology, opting instead to say “(∞-) limits/colimits,”
or simply “limits/colimits in an∞-category”.
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[homotopy limits in a model category vs. (∞-) limits in the underlying]

Let M be a model category and M∞ its underlying∞-category (2.11.5). Let

I be a diagram category.

If it exists, the homotopy limit functor (4.2.1)

holimI =R limI : ho(MI )→ ho(M)

can be recovered from the (∞-) limit functor (2.9.44)

limNI : (M∞)NI →M∞

by taking its image under formation of homotopy categories (taking the image

via h : sSet→ Cat).

In other words

holimI = h(limNI ) : h((M∞)NI )→ h(M∞).

Proof. The homotopy limit of a model category was defined as a right adjoint

of the (derived) constant functor (4.2.1):

ho(M)

ho(MI )

c holimI

On the other hand we can look at the constant functor on the underlying

∞-category M∞:
M∞

(M∞)NI

c
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where (M∞)NI = Fun(NI,M∞) is the∞-category of functors NI →M∞.

There is an equivalence (2.14.3):

Fun(NI,M∞) = Fun(NI,NM[W −1])

∼← Fun(NI,NM)[(W )−1]

=N (MI )[(W )−1]

= (MI )∞

where W ⊆ Fun(NI,NM)1 is the set of fiberwise weak equivalences. That is,

the ∞-category of functors NI → M∞ is equivalent to the underlying of the

model category MI .

The underlying M∞ and M have the same homotopy category: h(M∞) ≃

ho(M). And the homotopy category of

(M∞)NI ≃N (MI )[W −1]

is equivalent to the homotopy category ho(MI ).

So the image of the constant

c :M∞→ (M∞)NI

under forming homotopy categories h : sSet→ Cat is a map:

h(c) = const : ho(M)→ ho(MI )

the usual constant map. And since adjoints on∞-categories induce adjoints on
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homotopy categories, we can consider a right adjoint

holimI : ho(MI )︸  ︷︷  ︸
=h(M∞)NI

→ ho(M)︸ ︷︷ ︸
=hM∞

as the image h(limI ) of the limit functor in∞-land.

M∞ ho(M)

Fun(NI,M∞) ho(MI )

c limI h(limI )=holimI

In the case that our model category is combinatorial (4.4.1), we can compute

limits/colimits in the underlying ∞-category by homotopy limits/colimits in

the model category.

Proposition 4.5.3. [Hin15, Cor. 1.5.2]

Let M be a combinatorial model category (4.4.1), and let M∞ be its under-

lying∞-category (2.11.5).

Then limits/colimits in M∞ can be calculated as homotopy limits/colimits

in M. That is, the Quillen adjunctions

colimI :MI ⇄M : c

c :M⇄MI : lim
I

(if they exist) induce adjunctions on the underlying ∞-categories, and since
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(MI )∞ ≃ (M∞)NI , we can write these as:

colimNI : (M∞)NI ⇄M∞ : c

c :M∞⇄ (M∞)NI : lim
NI

Proposition 4.5.4. [HTT, 4.2.4.1]

[(∞-) limits vs. homotopy limits of simplicial categories]

Let C,I be fibrant simplicial categories (ie. Kan-enriched), and F : I → C

be a functor. Let X be an object of C and say we have a family of maps α =

{αi : F(i)→ X}i∈I .

Then the following are equivalent:

(1) The maps α = {αi}i∈I describe a natural transformation exhibiting X =

hocolimI F, as a homotopy colimit of simplicial categories.

(2) The maps α = {αi}i∈I induce a map F : (NI)▷→NC:

NI

(NI)▷ NC

∆0

NF

F

X

exhibiting X = colimNINF ∈NC (a (∞-) colimit).
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from “L’Ete” (1968) – Marcel Hanoun
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