
UCLA
UCLA Electronic Theses and Dissertations

Title
Novel 3D Imaging Algorithms and Applications

Permalink
https://escholarship.org/uc/item/8bh4h7gg

Author
Pryor, Alan Persons

Publication Date
2018
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8bh4h7gg
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA

Los Angeles

Novel 3D Imaging Algorithms and Applications

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Physics

by

Alan Persons Pryor, Jr

2018



c© Copyright by

Alan Persons Pryor, Jr

2018



ABSTRACT OF THE DISSERTATION

Novel 3D Imaging Algorithms and Applications

by

Alan Persons Pryor, Jr

Doctor of Philosophy in Physics
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Professor Jianwei Miao, Chair

Three-dimensional image reconstruction is a scientific undertaking of funda-

mental importance spanning numerous fields including molecular biology, physical

chemistry, materials science, physics, and medicine across length scales ranging

from the astronomical to the atomic. Despite the broad-reaching nature of this

topic, the underlying mechanics and core mathematics are shared, with the ulti-

mate objective being achieving an interpretable representation of some 3D struc-

ture from a series of 2D measurements, and, at the time of this writing, at least

three Nobel prizes have been awarded for quantitative 3D imaging applications.

Although enormous strides have been made over the past several decades in in-

strumentation, sample preparation, and experimental methodology, comparatively

few improvements have been made to tomgraphic reconstruction algorithms. With

the ever-increasing availability of high-performance computing resources, a more

compelling argument than ever before can be made for the value of developing

novel algorithms and the pursuit of accessible scientific software.

In this work, a set of such developments are reported along with several appli-

cations. A new tomographic reconstruction algorithm, termed Generalized Fourier

Iterative Reconstruction (GENFIRE), is described in detail. By combining pow-

erful, general constraints in both real and reciprocal space, GENFIRE is shown

to produce superior reconstructions compared to existing techniques and provides
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additional benefits including freedom from single-tilt axis restrictions, denoising

through a novel Fourier technique termed resolution extension/suppression, and

cross-validation through an adapted version of crystallographic Rfree. In subse-

quent chapters, GENFIRE is applied in a diverse range of experiments including

X-ray ptychographic imaging of cells, cryo-electron tomography of bacteria, cor-

relative X-ray fluorescence imaging of algae, and scanning transmission electron

microscopy (STEM) of bimetallic nanoparticles at atomic resolution. GENFIRE

is fully open-source with a graphical user interface and is freely-available online.

In the appendices, two additional parallel algorithms are described. The first

is an optimized graphics processing unit (GPU) implementation of traditional

multislice simulation for simulation of STEM image formation as well as the new

Plane Wave Reciprocal-space Interpolated Scattering Matrix (PRISM) algorithm

that is capable of reducing computation times of routine calculations from several

weeks to a few minutes, and the second is a parallel framework for large-scale 3D

phase retrieval of symmetric nanostructures from single diffraction patterns.
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tor the convergence of the iterative process. After several hundred

iterations, the algorithm converges to a 3D structure that is con-

currently consistent with the measured data in reciprocal space and

the physical constraints in real space. (Figure reprinted from [28]) 14

2.2 Numerical simulations on the 3D reconstruction of a biological vesi-

cle from 71 noisy projections using GENFIRE, EST, FBP and

SIRT. (a-c), Three 10-voxel-thick central slices of the vesicle model

in the XY, ZX and ZY planes, respectively. The corresponding

three reconstructed slices with GENFIRE (d-f), EST (g-i), FBP

(j-l), and SIRT (m-o), where the missing wedge axis is along the

z-axis. (p). The FSC between the reconstructions and the model,

showing that GENFIRE produces a more faithful reconstruction

than other algorithms at all spatial frequencies. (Figure reprinted
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2.3 Numerical simulations on atomic electron tomography. 1.2 Å-thick

central slices of a L10 phase FePt nanoparticle in the XY and ZX

planes, reconstructed from 27 noisy multislice STEM projections

with GENFIRE (a, e), EST (b, f), SIRT (c, g), and FBP (d,

h), where the z-axis is the missing wedge direction. The red arrow

indicates a Pt atom and the white arrow an Fe atom. A central

slice in the ZX plane after applying the Fourier transform to the

3D reconstruction obtained by GENFIRE (i), EST (j), SIRT (k),

and FBP (l), showing recovery of the Bragg peaks in the missing

wedge direction for GENFIRE, EST and SIRT (magenta arrows).

Artifacts due to missing wedge effects such as ghost atoms are visi-

ble in SIRT and FBP (c, d, g, and h), but are not present in EST

and GENFIRE (a, b, e and f). (Figure reprinted from [28]) . . . 22

2.4 Angular refinement simulations for the GENFIRE reconstruction

of the 27 multislice STEM projections used in Fig. 2.3. (a). The

angular difference between the initial angles and the refined ones

after 5 refinement iterations, improving an average angular error

from 2.1◦ to 1.3◦. (b), (c). 1.2 Å-thick central slices before and

after angular refinement, showing some Fe atoms in the lower left

region are better resolved and the boundary of the nanoparticle is

also better defined. (Figure reprinted from [28]) . . . . . . . . . . 23
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of porous Mo3Si alloy, annealed at 1100◦ C. (a), (b), 13.6-nm-
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the GENFIRE reconstruction. (c), (d). 13.6-nm-thick central

slices of the GENFIRE and SIRT reconstructions along the miss-

ing wedge direction, where GENFIRE shows significant improve-
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pore structures. (e), (f). Isosurface renderings of GENFIRE and

SIRT reconstructions, where elongation artifacts due to the missing

wedge are visible in the SIRT reconstruction, but are reduced by

GENFIRE. (Figure reprinted from [28]) . . . . . . . . . . . . . . 25

2.6 3D structure of a frozen-hydrated marine cyanobacterium, captur-

ing the penetration of a cyanophage into the cell membrane. a,

b, 5.43nm-thick slices of the cell in the XY plane reconstructed by

GENFIRE and FBP, respectively. Magnified views of the penetra-

tion of a cyanophage for the GENFIRE and FBP reconstructions in

the XY (c, d), XZ (e, f), and ZY (g, h) planes, respectively. The

top side of the membrane is visible in both reconstructions (ma-

genta arrows), but the bottom side is only visible with GENFIRE

(yellow arrow). (i, j). Isosurface renderings of the penetration of

the cyanophage to the cell membrane. Overall, GENFIRE exhibits

higher contrast, less peripheral noise, more easily detectable cell

boundaries than FBP. (Figure reprinted from [28]) . . . . . . . . 28
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2.7 (a). Reciprocal-space error vs iteration number for GENFIRE with

and without the use of the resolution extension/suppression tech-

nique. The abrupt dips in error over the first half of iterations cor-

respond to events where the Fourier constraint is expanded. (b–d)

Projections of the model vesicle are shown along the three princi-

ple axes, with corresponding views for GENFIRE reconstructions

with resolution extension/suppression (e–g) and without (h–j).

(k) Fourier shell correlation between each reconstruction and the

model indicating that GENFIRE with resolution extension pro-

duces a better reconstruction at all spatial frequencies despite the

larger reciprocal error. This claim is supported by the visual quality

of the reconstruction depicted in (b–j). (Figure reprinted from [28]) 30

2.8 Similar to Fig. 2.7 but with no noise. (Figure reprinted from [28]) 31

2.9 (left) A comparison of Rfree and Rk vs iteration number. Rfree is

highly correlated with, but slightly higher than, Rk and is indicative

of a good reconstruction. Divergence between the two indicates

overfitting. (right) average Rfree vs spatial frequency, indicating

higher resolution features are more difficult to recover. (Figure

reprinted from [28]) . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.10 Comparison of FFT/DFT gridding methods available in GENFIRE.

Central slices in xy, yz, and xz planes are displayed for (a-c) the

model, (d-f) GENFIRE with DFT gridding, and (g-i) GENFIRE

with FFT gridding. (j). Fourier Shell Correlation curve between

the model and reconstructions, indicating the DFT method pro-

duces superior reconstructions at all spatial frequencies. (k) Re-

ciprocal space error vs iteration with a deeper minimum found for

the DFT gridding method. (Figure reprinted from [28]) . . . . . . 36

xiv



2.11 Numerical simulations on the 3D reconstruction of a biological vesi-

cle from 71 noise-free projections using GENFIRE, EST, FBP and

SIRT. (a-c). Three 10-voxel-thick central slices of the vesicle model

in the XY, ZX and ZY planes, respectively. The corresponding

three reconstructed slices with GENFIRE (d-f), EST (g-i), FBP
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than other algorithms at all spatial frequencies. (Figure reprinted
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3.1 Comparison of STXM images on two different substrates. STXM

images of the edge of a HeLa cell on (a) 50 nm thick Si3N4 with

a 2 ms dwell time and (b) atomically thin graphene oxide with a

3 ms dwell time. The SNR, defined as the quotient of the average

intensity inside the sample and the standard deviation of the sur-

rounding region, is approximately 2.9 and 12.1, respectively, which

is well beyond the effect of the difference in exposure time. The

STXM probe was moved in 50 nm increments with a 100 nm focal

spot size. (Figure reprinted from [140]) . . . . . . . . . . . . . . . 47

3.2 Structural analysis of Fe3O4/SiO2 (core-shell) nanoparticles. (a)

TEM image of core-shell nanoparticles; scale bar, 200 nm. White

arrow points to Fe3O4 core, black arrow points to SiO2 shell.

(b) Quantitative analysis of distribution of Fe3O4 core sizes in a

nanoparticle preparation; histogram shows a fit based on a normal-

ized distribution with a mean of approximately 22 nm. (c) Quan-

titative analysis of core-shell nanoparticle sizes; histogram shows

a fit with a normalized distribution with a mean of approximately

73 nm. In panels (b) and (c), the y-axis shows counts and the x-

axis bin centers represent the size in nanometers. (Figure reprinted

from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.3 Experimental setup for correlative microscopy. (a) Composite flu-

orescent image of HeLa cells grown on graphene-oxide coated lacey

carbon TEM grid. Cells were labeled with CMPTX (red) to facil-

itate tracking and treated with FITC labeled core-shell nanopar-

ticles (green). (b) A magnified view of a region from this grid

shows cells labeled with a tracking dye as well as fluorescent core-

shell nanoparticles. White arrows point to cellular inclusions with

clusters of fluorescent nanoparticles. (c) Electron micrograph of a

portion of a HeLa cell covering an individual grid window, similar

to the region highlighted in (b). (d) Magnified view of the lacey

carbon grid. The black arrow points to empty regions of the grid

whilst the white arrow indicates thin layers of graphene-oxide. (e)

Experimental setup at BL 5.3.2.1 used for STXM/ptychographic

imaging with key components labeled. The X-ray beam is focused

using a Fresnel zone-plate (FZP) with all but the first order blocked

by an order-sorting aperture (OSA). The focused beam is rastered

across the sample using high-precision stages under interferometric

feedback and diffraction patterns are captured by a fast-CCD at

each scan point. (Figure reprinted from [140]) . . . . . . . . . . . 50

3.4 Electron diffraction from Au-Lacey graphene oxide grids. White ar-

rows point to reflections produced by individual graphene crystals.

The different contrast within the image is due to the differential

gain of the 4 tiled detector. (Figure reprinted from [140]) . . . . . 51

3.5 STXM tomographic tilt series ranging from -59◦ to +40◦ in equal

slope increments. (Figure reprinted from [140]) . . . . . . . . . . 51

3.6 Magnitude images of the ptychographic tomography tilt series rang-

ing from -59◦ to +38.7◦ in equal slope increments. (Figure reprinted

from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
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from -59◦ to +38.7◦ in equal slope increments. (Figure reprinted

from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
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in (a), (b), and (c), with corresponding views shown for filtered

back projection in (d), (e), and (f). (Figure reprinted from [140]) 55
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mity. (a) Initial reconstruction with a single probe showing several

artifacts due to the regular grid and the OSA interfering with the

probe. (b) Reconstruction from the same dataset using multiple

probes with a strip wise averaging kernel, most of the more obvious

artifacts have been removed. (c) Zoom in of the region highlighted

in (a) showing a clear grid pathology. (d) Corresponding region

from (b) showing that the gridding pathology has largely been re-

moved. (e–g) Probes from different regions of the reconstruction,

Left to right: first strip, middle strip, last strip. (Figure reprinted

from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Localization of functionalized nanoparticles in a cellular context

with correlative microscopy. (a) Part of a HeLa cell containing

functionalized nanoparticles was first identified using fluorescent

microscopy. (b) The same region imaged using a coarse STXM

scan. (c) A fine STXM scan was then performed on a region of in-

terest and a tomographic tilt series was acquired from this region.

(d) Ptychographic imaging of the same region as (c) to obtain a

higher resolution information. (e) Individual nanoparticles within

and around the leading edge of the cell identified by the ptycho-

graphic reconstruction. (Figure reprinted from [140]) . . . . . . . 59
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3.11 STXM tomography reconstruction of the leading edge of a HeLa
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eral high-density regions (orange) within the cell, viewed along the

z-, minus y- and x-axes, respectively. (d) High-resolution ptycho-
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views of two regions in (d) labeled with cyan and yellow rectangles,

respectively. (Figure reprinted from [140]) . . . . . . . . . . . . . 60

3.12 Phase and magnitude ptychographic images of cellular structure

with functionalized nanoparticles. (a) Phase image of the pty-

chographic reconstruction of a HeLa cell labeled with core-shell

nanoparticles showing high contrast for cellular features such as

membrane ruffles and fillipodia. (b) Magnified views of the re-

gions outlined by dashed boxes in (a), including (left to right)

nanoparticles alone, graphene-oxide coated lacey carbon, cell and

nanoparticles, and cell alone. The magnified view of the nanopar-

ticles also demonstrates the phases ability to discern the silica shell

(light gray halo around cores indicated by black arrows) as well as

the two different oxidation states (light and dark cores). A larger

version of this can be seen in Fig. 3.17. (c) Magnitude image of the

ptychographic reconstruction showing high contrast for the Fe3O4

cores of the nanoparticles. (d) Magnified views of the same re-

gions shown in (b), highlighting the different features that can be

sharply resolved between the phase and magnitude images. Scale

bars represent 500 nm (a and c) and 200 nm (b and d). (Figure

reprinted from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . 61
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3.13 Magnified view of nanoparticles from the phase of the ptycho-

graphic reconstruction. The two different oxidation states of nanopar-

ticles (light and dark) are indicated by black arrows. The silica shell

of the nanoparticles is also visible as a light grey annulus. (Figure

reprinted from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Increase in scattering power in regions containing nanoparticles.

Radial average profiles (top) and diffraction patterns (bottom) cor-

responding to the zoomed in regions shown in Fig. 3.12 demonstrat-

ing an increase in scattered photons at higher spatial frequency in

the presence of nanoparticles. (Figure reprinted from [140]) . . . . 64

3.15 Consistency of nanoparticle phase contrast across projections. Com-

parison of nanoparticles phase contrast between (a) -9.1◦ projec-

tions and (b) 0◦ projection. Corresponding zoomed regions are

shown in (c) and (d), demonstrating that the phase contrast is

consistent for each particle across multiple projections. (Figure

reprinted from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.16 Fourier Shell Correlation calculated from reconstructions of two

half sets of the STXM tomography data. The dashed line indicates

a resolution of 157 nm. (Figure reprinted from [140]) . . . . . . . 66
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3.17 Resolution estimates of ptychography reconstructions. (a) Zoom in

of a region with well isolated iron oxide cores from the magnitude

image of the -9.1◦ ptychography projection. (b) Line scan across

the dashed white line in (a) showing clearly resolved edge-to-edge

separation of 16.5 nm between individual nanoparticle cores. The

black arrow indicates the center of the first core in (a). (c) Average

phase retrieval transfer function (PRTF) calculated from all 7500

patterns in each dataset for the three principle projections used for

further analysis. The cut-off at 0.5 shows that the resolution of the

whole images lies somewhere between 25 nm and 15 nm. (Figure

reprinted from [140]) . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.18 Comparison of the 0◦ projection before and after tomography series

acquisition. (a) Phase image of the zero degree projection before

tomography. (b) Phase image of the zero degree projection after

tomography. The two images show clear differences (highlighted

by white arrows) mostly relating to an overall loss of mass of the

cell due to radiation damage. (c) and (d) Zoom in of the high-

lighted region in (a) and (b) respectively demonstrating that fine

features and nanoparticles remain largely unchanged during the full

exposure time. (Figure reprinted from [140]) . . . . . . . . . . . . 69
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4.1 Experimental schematics for simultaneous X-ray fluorescence and

ptychography measurements. A coherent monochromatic X-ray

beam was focused by a Fresnel zone plate into a small focal spot

on the sample. The sample preserved in the cryogenic environment

was raster fly-scanned in the x-y plane. During the scan fluores-

cence signals and diffraction patterns were simultaneously recorded

by a fluorescence detector and a pixel array detector, respectively.

After finishing a 2D scan, the sample was rotated to a new angle

until completing the whole 3D scan. (Figure reprinted from [171]) 77

4.2 GENFIRE X-ray fluorescence and ptychography tomography re-

constructions. (a) Zero-degree projection of reconstructed volume

of P, Ca, S, Cl and K channels, respectively. (b) rotated view

of the composite reconstructed volume, 60◦ apart in each image,

showing clear localization of pyrenoid (S channel) near the top and

polyphosphate bodies near the bottom (P and Ca channels). Scale

bar 4 µm. (c) slabs of ∼2 µm thickness through the ptychography

tomographic volume, showing various organelles and a damaged

spot in slab 7 due to overexposure. Scale bar 4 µm. (d) cut outs

of the entire reconstructed volume viewed along the 80◦ direction.

(Figure reprinted from [171]) . . . . . . . . . . . . . . . . . . . . 78
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4.3 GENFIRE and filtered back projection (FBP) reconstruction com-

parison and angular refinement. (a–e) FBP reconstructions for

ptychography phase contrast, P, S, Ca and K channels, respectively

(f–j) GENFIRE reconstructions of the corresponding volumes as

shown in a–e, showing excellent recovery of missing information in

the missing wedge direction. Scale bars 4 µm. (k) Angular re-

finement results revealing angular deviations from zero-degree tilt

axis along the and angles (Green: deviation, red: deviation, cyan:

deviation). (l) Improvements in P channel 3D reconstruction as re-

sult of angular refinement. Light-blue and green volumes are before

and after angular refinement, respectively. Red boxes highlight vol-

umes where angular refinement improved resolution of individual

polyphosphate bodies. (Figure reprinted from [171]) . . . . . . . . 81

4.4 Quantification of 3D resolution. (a) one-pixel thick layer of a re-

constructed polyphosphate body in P channel XFM volume along

x and y (top left) and z directions (top right). Line scan profiles

along the dash lines shown in the top images gives half-period res-

olutions of ∼125 nm, ∼125 nm and ∼140 nm in x, y, z, respectively

(bottom). (b) One-pixel layer through the burnt hole in ptychog-

raphy reconstruction in x and y (top left) and z (top right). Line

scan indicates resolution of ∼45 nm along x and y directions, and

∼55 nm along z. (c) 3D power spectrum analysis of XFM (top

row) and ptychography (bottom row) along 3 axial directions, with

cutoff spatial frequency at azimuthally averaged signal deviates,

showing good agreement in resolution. (Figure reprinted from [171]) 82

4.5 P channel XFM projections. (Figure reprinted from [171]) . . . . 87

4.6 Ca channel XFM projections. (Figure reprinted from [171]) . . . . 88

4.7 S channel XFM projections. (Figure reprinted from [171]) . . . . 89
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4.8 Cl channel XFM projections. (Figure reprinted from [171]) . . . . 90

4.9 K channel XFM projections. (Figure reprinted from [171]) . . . . 91

4.10 Ptychography projections after image pre-processing (i.e. back-

ground subtraction, alignment, masking). (Figure reprinted from

[171]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Residual aberrations in the STEM probe. Estimates of the residual

aberration coefficients as measured by the aberration corrector soft-

ware on a typical day preceding the ∼6-hour experimental tilt series

measurement. The 2-fold astigmatism was optimized manually by

the operator during the tilt series to avoid issues with drift of the

corrector lenses. All first-, second- and third-order aberration co-

efficients were tuned by the operator to be lower than the reported

95% measurement confidence reported by the software. Only one

fourth-order coefficient (D4), a factory alignment not tuned by the

operator, is reported as typically larger than the confidence error.

Such values will produce the best possible probe size for this mi-

croscope based on geometrical estimates. (Figure reprinted from [3]) 97

5.2 A representative tomographic tilt series from an FePt nanoparticle.

The 68 projection images with a tilt range from 65.6◦ to +64.0◦

(shown at top right of each panel) were measured using an ADF-

STEM. Careful examination of images taken before and after the

tilt series indicates the consistency of the structure throughout the

experiment. The total electron dose of the tilt series is 4.8x106

electrons per Å
2
. Scale bar at top left, 2nm. (Figure reprinted

from [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

xxiv



5.3 Measurements of 3D atomic displacements in the FePt nanopar-

ticle. (a-c), Atomic displacements along the [100] (a), [010] (b)

and [001] (c) directions, determined by quantitatively comparing

the measured atomic coordinates with an ideal fcc lattice. (d), 3D

atomic displacements in the nanoparticle. The displacement fields

indicate that the FePt nanoparticle does not contain substantial

strain; the only small strain is observed at the interface between

the nanoparticle and the substrate. The black lines in the images

show the grain boundaries, indicating that the grain boundaries

were not caused by the strain. (e-h), [100] facets of the FePt

nanoparticle (black arrows) that are dominated by Pt atoms. (i-l),

[111] facets of the FePt nanoparticle (white arrows) that are less

dominated by Pt atoms. This experimental observation confirms

previous Monte Carlo simulations, which suggested that when there

are excess Pt atoms in the fcc cuboctahedral FePt nanoparticle, the

[100] facets are more occupied by Pt atoms, while the [111] facets

are not. The aggregation of the Fe atoms on two opposite surfaces

of the nanoparticle is due to the missing wedge problem. (Figure

reprinted from [3]) . . . . . . . . . . . . . . . . . . . . . . . . . . 102
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5.4 3D determination of atomic coordinates, chemical species and grain

structure of an FePt nanoparticle. (a), Overview of the 3D posi-

tions of individual atomic species with Fe atoms in red and Pt

atoms in blue. (b). The nanoparticle consists of two large L12

grains, three small L12 grains, three small L10 grains and a Pt-rich

A1 grain. (c), Multislice images obtained from the experimental

3D atomic model along the [100], [010] and [001] directions, where

several L10 grains (magenta) appearing in the 2D images are de-

ceptive structural information. color bars indicate the degree of

ordering, from pure L12/L10 to chemically disordered fcc. Scale

bar, 2nm. (Figure reprinted from [3]) . . . . . . . . . . . . . . . . 104

5.5 3D identification of grain boundaries and chemical order/disorder.

(a) Atomic coordinates and species of the FePt nanoparticle di-

vided into slices one fcc unit-cell thick. The grain boundaries are

marked with black lines. (b-e) Four representative cut-outs of the

experimental atomic model, showing the most chemically ordered

L12 region of the particle (b). a grain boundary between the two

large L12 grains (c), the largest L10 grain (d), and the most chemi-

cally disordered region of the particle centred on a Pt-rich A1 grain

(e). The locations of the cut-outs are labelled in parentheses in (a),

and the SROP of each cut-out is averaged along the [010] viewing

direction and displayed as the background color (see color bar at

left of (b–e). (Figure reprinted from [3]) . . . . . . . . . . . . . . 105
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5.6 Validating the measured atomic model using multislice STEM sim-

ulations. (a), (b), Comparison between the experimental (a) and

multislice ADF-STEM simulation (b) images at 0◦ tilt. The mul-

tislice image was convolved with a Gaussian function to account

for the source size and other incoherent effects. Poisson-Gaussian

noise was then added to the multislice image. (c), Line-cut of (a)

and (b) along the dashed rectangle in (a), showing good agree-

ment between the experimental and multislice images. Note that a

slight in-plane rotation was applied to the images to make horizon-

tal line-cuts for a quantitative comparison. (d), Histogram of the

difference (deviation) in atomic positions between the experimental

atomic model and that obtained from 68 multislice images. 99.0%

of the atoms were correctly identified with a root-mean-square de-

viation of 22 pm. (Figure reprinted from [3]) . . . . . . . . . . . . 107

5.7 Observation of anti-site point and swap defects, and statistical anal-

ysis of the chemical order/disorder and anti-site density. (a-c) 3D

atomic positions overlaid on the 3D reconstructed intensity (color

scale at bottom) illustrating anti-site point defects (arrows): a Pt

atom occupying an Fe atom site (a), an Fe atom occupying a Pt

atom site (b), a pair of nearest-neighbour Fe and Pt atoms are

swapped (swap defect) (c). (d) 3D atomic structure of an ideal

L12 FePt3 phase for reference. The anti-site defect density (e)

and SROP (f) for a large L12 grain, inset in (e), as a function of

the distance from the grain surface (unit cell size=3.875Å). The

anti-site defect density (g) and SROP (h) for the other large L12

grain, inset in (g), as a function of the distance from the grain

surface. Smooth red trend lines are overlaid on the defect density

distribution as a guide for the eye. (Figure reprinted from [3]) . . 109
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A.1 Flow chart of STEM simulation algorithm steps. (a) All atoms are

separated into slices at different positions along the beam direction,

and (b) atomic scattering factors are used to compute projected

potential of each slice. (c) Multislice algorithm, where each con-

verged probe is initialized, (d) propagated through each of the

sample slices defined in (b), and then (e) output either as im-

ages, or radially integrated detectors. (f) PRISM algorithm where

(h) converged probes are defined in coordinate system downsam-

pled by factor f as a set of plane waves. (h) Each required plane

wave is propagated through the sample slices defined in (b). (i)

Output probes are computed by cropping subset of plane waves

multiplied by probe complex coefficients, and (j) summed to form

output probe, (k) which is then saved. (Figure reprinted from [202])114

A.2 Visualization of the computation model used repeatedly in the Pris-

matic software package, whereby a pool of GPU and CPU workers

are assigned batches of work by querying a synchronized work dis-

patcher. Once the assignment is complete, the worker requests more

work until no more exists. All workers record completed simulation

outputs in parallel. (Figure reprinted from [202]) . . . . . . . . . 118

A.3 (a) Sample profile of the GPU activities on a single NVIDIA GTX

1070 during a multislice simulation in streaming mode with (b) en-

larged inset containing a window where computation is occurring on

streams #1 and #5 while three separate arrays are simultaneously

being copied on streams #2-4. (Figure reprinted from [202]) . . . 119
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A.4 Comparison of the CPU/GPU implementations of the PRISM and

multislice algorithms described in this work. A 100x100x100 Å

amorphous carbon cell was divided slices of varying thickness and

sampled with increasingly small pixels in real space correspond-

ing to digitized probes of array size 256x256, 512x512, 1024x1024,

and 2048x2048, respectively. Two different PRISM simulations are

shown, a more accurate case where the interpolation factor f = 4

(left), and a faster case with f = 16 (right). The multislice simula-

tion is the same for both columns. Power laws were fit of the form

A+B qmax
n where possible. The asymptotic power laws for higher

scattering angles are shown on the right of each curve. (Figure

reprinted from [202]) . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.5 Comparison of the implementations of multislice and PRISM for

varying combinations of CPU threads and GPUs. The simulation

was performed on a 100x100x100 Å amorphous carbon cell with 5

Å thick slices, and 0.1 Å pixel size. All simulations were performed

on compute nodes with dual Intel Xeon E5-2650 processors, four

Tesla K20 GPUs, and 64GB RAM. Calculation time of rightmost

data point is labeled for all curves. (Figure reprinted from [202]) . 131

A.6 Comparison of (a) relative performance and (b) peak memory

consumption for single transfer and streaming implementations of

PRISM and multislice. (Figure reprinted from [202]) . . . . . . . 132
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A.7 Comparison of simulation results produced by computem and Pris-

matic. The sample is composed of 36x36x25 pseudocubic perovskite

unit cells, and images were simulated using 80 keV electrons, a 20

mrad probe convergence semi-angle, 0 Å defocus, and 1024x1024

pixel sampling for the probe and projected potential. A total of

720x720 probe positions were computed and the final images are

an average over 32 frozen phonon configurations. Separate PRISM

simulations were performed with interpolation factors 4, 8, and 16.

(Figure reprinted from [202]) . . . . . . . . . . . . . . . . . . . . 134

A.8 Images from one projection of an atomic electron tomography tilt

series, from (a) experiment, (b) linear projection of the reconstruc-

tion, (c) multislice simulation, and (d)-(f) PRISM simulations for

f = 8, 16, and 32 respectively. (Figure reprinted from [202]) . . . 137

B.1 Schematic layout of the single-shot 3D diffractive imaging set-up.

XFEL pulses with an energy of 6 keV and a pulse duration of 5-

6 fs were focused to a 1.5 m spot by a pair of K-B mirrors. A

four-way cross slit was used to eliminate the parasitic scattering

from the mirrors. Au/Pd core-shell nanoparticles with a monodis-

perse shape and size distribution (insets) were supported on a 100-

nm-thick Si3N4 membrane grid and raster scanned relative to the

focused beam. Each intense X-ray pulse produced a single-shot

diffraction pattern, recorded by an octal multi-port charge-coupled

device. A small hole was created on the Si3N4 membrane after a

single exposure (insets). (Figure reprinted from [270]) . . . . . . . 142
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B.2 Intensity correlation measurements of the pulse duration of SACLA

at 10 keV using an autocorrelation technique64. Gaussian fitting of

the intensity correlation curve gave a full width of half maximum

(FWHM) of 7.8 ± 0.3 fs. After considering a deconvolution factor,

the pulse duration was estimated to be 5.5 fs. The autocorrelation-

technique was also applied at 6 keV, resulting in an estimated pulse

duration of ∼5 fs (FWHM)65. Based on these experimental mea-

surements, we concluded that the pulse duration in our experiment

is ∼5-6 fs (FWHM). (Figure reprinted from [270]) . . . . . . . . . 143

B.3 Semi-automated data analysis and 3D reconstruction pipeline. (a).

A large number of diffraction patterns were experimentally col-

lected consisting of no, partial, single, and multiple hits by XFEL

pulses. High-quality single-hit diffraction patterns were selected

from these patterns. The different colors in the pattern are due to

the difference of the read-out noise of the detector segments. (b).

After background subtraction and center localization, each diffrac-

tion pattern was binned by 99 pixels to enhance the signal-to-noise

ratio and the orientation of the pattern was determined. (c). By

taking advantage of the curvature of the Ewald sphere and symme-

try intrinsic to the nanoparticle, a single-shot diffraction pattern

was used to produce a 3D Cartesian grid of the Fourier magnitudes

by a gridding method. (d). The 3D phase retrieval was performed

by the OSS algorithm. Among 1,000 independent reconstructions,

the top 10% with the smallest R-factors were averaged to obtain

a final 3D reconstruction for each single-shot diffraction pattern.

(Figure reprinted from [270]) . . . . . . . . . . . . . . . . . . . . 145
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B.6 Quantitative analysis of the 3D reconstruction. (a), Average Phase

Retrieval Transfer Function (PRTF) across all of the multiple ex-

perimental reconstructions for all 34 diffraction patterns. (b), Av-

erage Fourier shell correlation (FSC) between every pair of the 34

reconstructed nanoparticles, indicating a 3D resolution of 6 nm

based on the criterion of FSC = 0.5. (c), Central 32-nm-thick slice

of a final 3D reconstruction with an overlaid line scan plotted in

(d), showing the electron density variation of the Au core and Pd

shell. (Figure reprinted from [270]) . . . . . . . . . . . . . . . . . 149
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B.8 Experimental implementation of 3D super-resolution CDI of core-
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and shell thickness obtained from 34 single-shot diffraction pat-

terns. Each data point shows the mean and standard deviation of

the top 10% of 1,000 independent reconstructions for a single-shot
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(d), The core/shell distribution of the 34 nanoparticles, indicating
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independent reconstructions were averaged and the central 20 nm

sections are shown for the Au/Pd core-shell model (c) and the
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CHAPTER 1

Introduction to Tomography

Introduction

Tomography is the process of producing a 3D image from a series of 2D projection

images and to a general audience is most recognizable in the form of the computed

tomography (CT) scan. In addition to diagnostic medical imaging, tomography

has widespread quantitative applications including identification of atomic coor-

dinates and defects in nanoparticles, determination of protein and virus structure,

visualization of biological interactions, in-situ studies of materials such as batter-

ies, and many more [1–15].

1.1 Fundamental Principles

1.1.1 Projection-Slice Theorem

Arguably the most important mathematical formulation in tomography is the

Projection-slice theorem, also known as the Fourier slice theorem, which provides

a direct connection between a linear 2D projection image and the original 3D

object. Stated plainly, the theorem states that the Fourier transform of an object’s

2D projection is equivalent to a central slice of the 3D Fourier transform of the

same object at the orientation with normal vector parallel to the direction of

projection. Starting from a 3D density, ρ(x, y, z), one first defines the 2D linear
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projection along the z-axis, P (x, y), as

P (x, y) =

∫ ∞
−∞

ρ(x, y, z)dz (1.1)

on a parallel front, consider the 3D Fourier transform of ρ(x, y, z), F (u, v, w)

F (u, v, w) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z)e−2πi(ux+vy+wz)dxdydz (1.2)

For a projection along the z-direction, the central slice of Fourier space corre-

sponds simply to w = 0

F (u, v, 0) =

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ρ(x, y, z)e−2πi(ux+vy)dxdydz (1.3)

or, rearranging

F (u, v, 0) =

∫ ∞
−∞

∫ ∞
−∞

[

∫ ∞
−∞

ρ(x, y, z)dz]e−2πi(ux+vy)dxdy (1.4)

which upon substituting the above equation for P (x, y) yields

F (u, v, 0) =

∫ ∞
−∞

∫ ∞
−∞

P (x, y)e−2πi(ux+vy)dxdy (1.5)

The right hand side is the 2D Fourier transform of P (x, y). Q.E.D.

Thus, a 2D measurement provides a partial sampling of data in the 3D Fourier

space corresponding to ρ(x, y, z). If similar data can be obtained for multiple

orientations, for example by tilting the sample and acquiring multiple exposures,

a more complete sampling of the 3D Fourier space can be obtained. Achieving

complete sampling of all points in Fourier space would allow for determination of

ρ(x, y, z) through a simple inverse Fourier transform; however, in practice this is

an impossible task for several reasons that are described in the following sections.

2



1.1.2 Gridding

ρ(x, y, z) is sampled on a Cartesian grid, but the measured 2D Fourier slices ex-

tend radially from the origin and do not, in general, overlap with the desired grid

locations. This can be visualized by rotating a straight-edge around the center of a

chessboard and observing that achieving exact intersection with the center of each

grid point is not possible except for a few special cases such as 0◦ and multiples

of 90◦. To convert from the polar representation to a Cartesian one, some form of

convolution-based interpolation scheme or alternative mathematical formulation,

such as the pseudopolar Fourier transform used by the Equally Sloped Tomogra-

phy (EST), another Fourier based reconstruction algorithm that is in many ways

the predecessor of GENFIRE and is described shortly, is required [16, 17]. Con-

ceptually, gridding is achieved by convolving the continuous measurement with a

suitable choice of kernel and sampling this result at the location of the desired

grid points. The convolution theorem, which states that the Fourier transform of

a convolution of two functions is equal to the product of their individual Fourier

transforms, implies that this type of convolution gridding procedure introduces a

direct product in real space of the true density ρ(x, y, z) with the inverse Fourier

transform of the convolution kernel. Thus, a gridding correction is demanded [18].

1.1.3 Missing Wedge

Experimentally, the accessible tilt range for tomographic acquisition is almost

always limited due either to geometric constraints of the tilt stages or to thickness

requirements demanded to produce linear projection images [19, 20]. The result

is an unmeasured region of reciprocal space that introduces elongation artifacts

to the reconstruction with maximal degradation in the plane defined by the so-

called missing-wedge direction, which is the orientation vector at the center of

the unmeasurable region. For example, with common tilt limits of ±70◦ the
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missing-wedge direction corresponds to the 90◦ tilt. This forms the missing wedge

problem [19–21].

1.1.4 Projection Alignment

An important subtlety of the projection-slice theorem in the context of tomog-

raphy is that ρ(x, y, z) must be consistent across all acquisitions. Rotation of

the sample can be described by application of a suitable rotation matrix R the

coordinates (x, y, z), resulting in new coordinates (x′, y′, z′). In an ideal exper-

iment, the rotation axis would coincide with the center-of-mass of the sample;

however, inanimate objects are notoriously uncooperative in this regard. The re-

sult of a separation between the target sample and the geometric rotation axis

of the instrument is that the sample will translate as it rotates. This can be

seen by letting x → x − drot for a rotation about an axis displaced drot from

the sample. This translation by itself is not a violation of the projection-slice

theorem, as one could reconstruct the sample along with the surrounding area

encompassed by its “orbit”, but it has the undesirable effect of increasing the nec-

essary field-of-view, and, therefore, increasing computation times. Furthermore,

instrument inaccuracy, drift, and vibration will introduce additional translational

jitter to the projection images. The net effect of these inaccuracies is to introduce

phase shifts in Fourier space to the measured data points, which can be seen by

(x, y, z)→ (x−dx, y−dy, z−dz) in (Eq. 1.2). To obtain a high-quality reconstruc-

tion, the projections must be aligned to correct these translational shifts. Methods

for doing so include aligning to the center-of-mass [1–3,22], cross-correlation [19],

usage of fiducial markers [23], or Bayesian methods [24,25].

In addition to translational inaccuracies, errors may also exist in the angular

orientation of the projections. Methods for correction generally involve some sort

of refinement loop where a preliminary reconstruction is used to update orientation

parameters for the input projections [24,26–28].
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A few comments on these methods follow. The center-of-mass method aligns

the projections to a fixed point using conservation of mass and is very effective

if the signal-to-noise ratio is strong and, most importantly, the sample is well

isolated. If the sample is not isolated, as the stages are tilted additional density

will enter the edges of the field of view and violate conservation of mass. For

scanning transmission electron microscopy (STEM) imaging of nanoparticles, such

as in the field of atomic electron tomography (AET) [29], this is generally not a

problem as the signal-to-noise ratio is very high and the sample can be supported

on a very thin substrate or suspended using a needle-tip geometry [1,30]. However,

in transmission electron microscopy with cryo-preserved samples (cryo-TEM) this

is almost impossible to achieve due to the presence of an ice layer.

Cross-correlation aligns each projection to the following one by making the

assumption that the 2D projection of the sample density does not change much

for subsequent tilts. This assumption is very sample-dependent, depends on the

angular step-size between tilts, and, in general, lacks a solid mathematical basis. It

is fast and is suitable for rough alignment, but should not be used for a publication-

ready reconstruction.

Fiducial alignment methods require that the sample be seeded with high-

contrast markers such as gold nanoparticles. These markers then serve as mul-

tiple fixed reference points, and an alignment model can then be fit after semi-

automated selection [31,32]. This type of alignment is robust as long as the data

contains a single tilt axis that lies fully within the plane of the projections and

the density of fiducial markers is sufficiently high.

Bayesian methods have become the de facto standard in the growing field of

single-particle cryo-EM and some examples also exist of applications to X-ray

techniques [24, 33, 34]. These methods use prior information to optimize some

form of scoring function based upon posterior probability. This type of alignment

is very powerful, works with very low signal-to-noise ratios, and generally pro-
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duces the best final result of any of the methods listed here. The computational

complexity is high, however, as multiple 3D reconstructions must be produced

and each projection refined multiple times until refinement converges. Although

suitable for datasets with projection sizes on the order of 500 x 500, for large fields

of view this type of refinement becomes computationally infeasible with existing

hardware.

1.1.5 Radiation Dose

X-rays and electron imaging techniques are extremely violent and have the po-

tential to significantly damage or otherwise alter the sample during acquisition,

and great care must be taken to limit the total radiation dose to within tolerable

limits [8, 35–40]. This is of particular concern with biological samples such as

cells, proteins, and viruses as these “squishy” materials are composed primarily of

elements with low atomic numbers which are less robust to radiation than heavier

metals [40–44]. Frustratingly, increasing the radiation dose is the most straight-

forward way to increase signal-to-noise ratio. The conflicting goals of achieving

high resolution while also maintaining reconstruction fidelity present an enormous

challenge and are the source of significant ongoing research [9,45–49]. Developing

algorithms that are capable of producing quality reconstruction from a limited

number of high-quality pojections are one way to alleviate this problem, and this

observation represents one of the primary original motivating factors for the de-

velopment of GENFIRE.

1.2 Comments on Equally Sloped Tomography

Consideration of the problems described in previous sections provides strong mo-

tivation for an algorithm that is capable of producing quality reconstructions from

a limited number of measured projections. Equally sloped tomography (EST) pre-

6



sented the first case of a Fourier-based iterative algorithm for achieving this [17].

By iterating between real and reciprocal space through use of the pseudopolar fast

Fourier transform (PPFFT) [16] and applying positivity and support constraints

in real space and replacement of measured projection data in reciprocal space,

EST is capable of recovering missing data both in the missing wedge and between

measurements. EST is, in many ways, the predecessor of GENFIRE and has been

successfully used to produce atomic-resolution reconstructions in AET [1,2, 22].

GENFIRE, described in detail in Chapter 2, builds upon the core concepts of

EST and provides a number of additional advantages. By generalizing the orien-

tation parameterization of the projections using Euler angles (φ, θ, ψ), GENFIRE

is not limited to a single tilt-axis and does not require that the tilt angles be

equally-sloped [17]. Although single tilt-axis datasets are common, instrumen-

tation misalignment and vibration can result in a rotation axis that is not fully

confined to the plane of the projections. This effect cannot be accounted for with

an algorithm that assumes a single tilt-axis, and the correction of which can sig-

nificantly improve the reconstruction [3]. Additionally, this Euler representation

allows for generalized tomography of any projection acquisition method such as

multi-particle methods, dual-tilt tomography, or usage of symmetry.

The iteration process for GENFIRE is based on the Fast Fourier Transform

(FFT), which is computationally less complex than the PPFFT used by EST.

The result is that GENFIRE is typically 3-5x faster than an equivalent EST

reconstruction.

GENFIRE implements a novel way of enforcing the Fourier constraint termed

resolution extension/suppression that has been shown to improve reconstruction

quality in the presence of noise (Chapter 2). This works by dynamically adjusting

the resolution of the replaced projection data such that low resolution data with

less noise is initially enforced and high resolution data progressively introduced

(extension). This process is then reversed during final iterations, forming the
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suppression step, the motivation being to partially decouple the true signal, which

is correlated, from the uncorrelated noise components.

A cross-validation procedure for reconstruction validation is implemented using

an adapted version of Rfree from X-ray crystallography [50]. A small percentage

of the complex-valued Fourier data is withheld from reconstruction, and the re-

constructed values are compared with the measured ones, providing a method of

determining that the reconstruction is not overfit.

1.3 Conclusion

The subject of tomographic reconstruction is complex. Here we have described

the basic mathematics and several of the experimental challenges. EST was first

introduced to address these issues, and GENFIRE subsequently builds upon this

to create a more robust and generalized tomographic reconstruction algorithm.

In subsequent chapters, GENFIRE is described in more detail and a number of

applications across multiple imaging modalities with a diversity of sample types

will be explored.
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CHAPTER 2

GENFIRE : A generalized Fourier iterative

reconstruction algorithm for high-resolution 3D

imaging

Tomography has made a radical impact on diverse fields ranging from the study of

3D atomic arrangements in matter to the study of human health in medicine. The

core problem of tomography is that a mathematical method must be implement

to reconstruct the 3D structure of an object from a number of 2D projections.

In many scientific applications, however, the number of projections that can be

measured is limited due to geometric constraints, tolerable radiation dose and/or

acquisition speed. Thus it becomes an important problem to obtain the best pos-

sible reconstruction from a limited number of projections. Here, we present the

mathematical implementation of a tomographic algorithm, termed GENeralized

Fourier Iterative Reconstruction (GENFIRE). By iterating between real and re-

ciprocal space, GENFIRE searches for a global solution that is consistent with

both the measured data and general physical constraints. The algorithm requires

minimal human intervention and also incorporates angular refinement to reduce

the tilt angle error. We demonstrate that GENFIRE can produce superior results

relative to several other popular tomographic reconstruction techniques by nu-

merical simulations, and experimentally by reconstructing the 3D structure of a

porous material and a frozen-hydrated marine cyanobacterium. Equipped with a

graphical user interface, GENFIRE is freely available (www.genfire-em.com) and
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is expected to find applications across many disciplines.

Introduction

Tomography has found widespread applications in the physical, biological and

medical sciences [19, 29, 51–55]. Electron tomography, for example, is experienc-

ing a revolution in high-resolution 3D imaging of physical and biological samples.

In the physical sciences, the development of atomic electron tomography (AET)

has allowed for determination of 3D atomic structure of crystal defects such as

grain boundaries, anti-phase boundaries, stacking faults, dislocations, chemical

order/disorder and point defects, and to precisely localize the 3D coordinates of

individual atoms in materials without assuming crystallinity [1, 2, 22, 29, 56, 57].

The atomic coordinates measured by AET have been used as direct input to

density functional theory calculations to correlate crystal defects and chemical

order/disorder with material properties at the single atomic level [3]. In the bio-

logical sciences, single-particle cryo-electron microscopy (EM) has been applied to

achieve near atomic resolution of purified protein complexes [4,19,55,58,59], and

cryo-electron tomography allows for 3D imaging of pleomorphic samples such as

viral infection mechanisms of cells with resolutions on the order of a few nanome-

ters [5,6,37]. These advances are not limited to electron tomography. Tomographic

implementation of synchrotron X-ray absorption and phase contrast imaging has

found interdisciplinary applications [7–9,60–63]. Using the brilliance of advanced

X-ray sources, coherent diffractive imaging (CDI) methods [64] have been com-

bined with tomographic reconstruction for 3D quantitative imaging of thick sam-

ples with resolutions in the tens of nanometers [65–71].

Presently, a popular tomographic reconstruction method is filtered back pro-

jection (FBP) [19, 51, 52]. FBP works well when there are a large number of

projections with no missing data. However, when the data is inadequately sam-
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pled due to the radiation dose and geometric constraints, it suffers from artifacts,

potentially clouding interpretability of the final reconstruction. This difficulty

can be partially alleviated by real-space iterative algorithms such as the algebraic

reconstruction technique (ART) [72], simultaneous ART (SART) [73] and simul-

taneous iterative reconstruction technique (SIRT) [74], but these algorithms do

not fully exploit the correlated information among all the projections as the it-

eration process is implemented using localized information in real space [73, 74].

In contrast, Fourier-based iterative algorithms use information in both real and

Fourier space as part of the iterative process [3, 17, 75]. A major advantage of

these algorithms is that changes made in one space affect the other space glob-

ally. equally-sloped tomography (EST) [17], an example of such an algorithm,

has been successfully applied in AET to reconstruct the 3D arrangement of crys-

tal defects in materials, including recovery of Bragg peaks in the missing wedge

direction [1, 2, 22, 29]. Additionally, EST was shown to produce reconstructions

comparable to modern medical CT techniques but using significantly lower radia-

tion dose [8,9,37]. However, the drawback of EST is the requirement that the tilt

angles must follow equally-sloped increments along a single tilt axis, which limits

its broader applications

Recently, a generalized Fourier iterative reconstruction (GENFIRE) has been

successfully demonstrated for high-resolution 3D imaging with a limited number

of 2D projections [3]. GENFIRE first pads zeros to each 2D projection and cal-

culates its oversampled Fourier slice [76, 77]. The oversampled Fourier slices are

used to accurately compute a small fraction of points on a 3D Cartesian grid based

on gridding interpolation [78, 79]. The remaining grid points that cannot be de-

termined with sufficient accuracy are defined as unknown. The algorithm then

iterates between real and reciprocal space and enforces constraints in each space.

In real space, the negative valued voxels and the voxels in the zero-padding region

are set to zero. In reciprocal space, the small fraction of the known grid points
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are enforced in each iteration, while the unknown grid points are recovered by the

iterative process. After several hundred iterations, the algorithm converges to a

structure that is concurrently consistent with the measured data and the physical

constraints. Furthermore, GENFIRE implements an angular refinement routine

to reduce the tilt angle error and can be adapted to any tomographic data acqui-

sition geometry. In this article, we present the mathematical implementation of

the GENFIRE algorithm. Using both physical and biological samples, we demon-

strate that GENFIRE produces superior 3D reconstructions relative to several

other tomographic reconstruction algorithms.

2.1 Methods

2.1.1 Assembling a 3D Fourier grid with oversampling

GENFIRE first assembles a rectangular 3D Fourier grid from a set of measured

2D projections. According to the Fourier slice theorem, the Fourier transform of

each 2D projection represents a plane slicing through the origin of the Fourier

transform of a 3D object [51, 52]. Care should be taken that the Fourier slice

theorem requires each 2D image to be a linear projection of the 3D object at a

given angle. This requirement may not be satisfied in some experimental cases

due to the presence of nonlinear effects, which will be discussed in later sections.

To obtain a Fourier grid point, Fobs(~k), we compute its perpendicular distance to

the Fourier plane, where Dj represents the perpendicular distance and (uj, vj) the

foot of the perpendicular line to the jth projection. Since (uj, vj) are not integer

coordinates, we use the discrete Fourier transform (DFT) to compute the value

of (uj, vj). The use of the DFT to explicitly compute the (uj, vj) value is more

accurate than interpolating from the set of 2D FFTs of each projection at the

cost of being computationally slower. A faster, but less accurate, FFT gridding

method is also provided as an option in the GENFIRE package. After calculating
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the (uj, vj) values for all the projections, we determine the value of the Fourier

grid point by

Fobs(~k) =
∑

{j|Dj<Dth}

D−1
j∑

{j|Dj<Dth}D
−1
j

x=N
2
−1∑

x=−N
2

y=N
2
−1∑

y=−N
2

f jobs(x, y)e
−2πi(xuj+yvj)

NO (2.1)

where Dth is a predefined threshold, f jobs(x, y) is the jth 2D projection with a

size of N x N pixels and O is the linear oversmapling ratio [70, 76]. By properly

choosing Dth and O, we accurately determine a small fraction of the Fourier grid

points, while the remaining grid points are defined as unknown. In the GENFIRE

package, the default value for Dth and O is 0.5 and 3, respectively.

2.1.2 The Fourier based iterative algorithm

Due to radiation dose and/or geometric constraints, it is desirable in many tomog-

raphy applications to achieve high-resolution 3D imaging from a limited number

of projections. As a result, a significant amount of the assembled Fourier grid

points remain unknown after the gridding process. To recover the unknown grid

points, GENFIRE iterates between real and reciprocal space with general con-

straints enforced in each space (Fig. 2.1). For the 1st iteration, the values of the

unknown grid points are assigned to be zero, though in practice the output of the

algorithm is not very sensitive to the initial choice of values for the unknowns.

The jth GENFIRE iteration consists of following five steps Fig. 2.1.

(i) Apply the inverse FFT to Fi(~k) and obtain the ith image, ρi(~r).

(ii) Modify the image by applying the following constraints

p
′

i
~(r) =


0 (~r 6⊂ S) ∪ (ρi(~r) < 0)

ρi(~r) otherwise

(2.2)
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Figure 2.1: The GENFIRE algorithm. GENFIRE first computes oversampled

Fourier slices from a tilt series of 2D projections. The oversampled Fourier slices

are used to accurately calculate a small fraction of points on a 3D Cartesian grid

based on gridding interpolation. The algorithm then iterates between real and

reciprocal space. The support and positivity constraints are enforced in real space,

while the small fraction of grid points corresponding to the measured data are

enforced in reciprocal space. Error metrics are used to monitor the convergence of

the iterative process. After several hundred iterations, the algorithm converges to

a 3D structure that is concurrently consistent with the measured data in reciprocal

space and the physical constraints in real space. (Figure reprinted from [28])
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Where S represents a support, separating the zero-padding region from the

sample structure. The zero-padding region is due to oversampling. This step sets

the voxels outside the support or negative valued voxels inside the support to zero,

while retaining the values of the other voxels.

(iii) Apply the FFT to p
′
i
~(r) to obtain F

′
i
~(r).

(iv) Compute F
′
i+1
~(r) by enforcing the Fourier space constraint

Fi+1
~(r) =


Fobs(~k) Known Voxels

Fi~(r) Unknown Voxels

(2.3)

Fi+1
~(r) is used for the (j + 1)th iteration.

(v) Calculate two R-factors, Rk and Rfree

Rk =

∑
~kknown

|Fobs(~k)− Fi(~k)∑
~kknown

|Fobs(~k)|
(2.4)

Rk =

∑
~kwithheld

|Fobs(~k)− Fi(~k)∑
~kwithheld

|Fobs(~k)|
(2.5)

where ~kknown represents the known voxels and ~kwithheld is a small number of

randomly selected known voxels that are not used in the reconstruction. Rk is an

error metric to monitor the convergence of the iterative process, while Rfree is an

unbiased free parameter to evaluate the reconstruction, which is used in crystal-

lography [50]. Rfree is always larger than Rk, but for a good reconstruction the

two R-factors should be consistent, and significant deviation could indicate over-

fitting. The algorithm is reliable and usually converges within several hundred

iterations. In the GENFIRE package, there is also an option to use resolution

extension/suppression. For experimental data, the signal to noise ratio decreases

with the increase of the spatial frequency. To compensate the high noise level

at the high spatial frequency, we implement a resolution extension/suppression
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technique capable of partially decoupling signal and noise through a simple mod-

ification of the way the Fourier constraint is applied. For the first iteration, only

the lowest spatial frequency information is enforced. As iterations progress, higher

spatial frequency data is gradually applied. This continues, forming the extension

step, until half of the total number of iterations has been completed, at which

point all measured data is enforced. The process is then reversed for the sec-

ond half of the reconstruction, and the spatial resolution of the enforced data

is gradually reduced to form the suppression step until the final iteration when

only the lowest frequency information is constrained once again. While resolu-

tion extension has been implemented before [80,81], to our knowledge, resolution

extension/suppression has not been previously reported. We have performed ex-

tensive numerical simulations and observed that this technique can consistently

improve the 3D reconstruction with noisy data (Fig. 2.7). See later sections for a

more detailed analysis.

2.1.3 Angular refinement

The experimentally measured tilt angles may not always coincide with the true

orientations of the projections. This could be the result of many causes includ-

ing instrument misalignment, slipping, beam-induced motion, vibration, thermal

effects, or software error. To achieve high-resolution 3D reconstruction, we im-

plement an angular refinement procedure to reduce the tilt angle error, which

consists the following four steps.

(i) An initial 3D reconstruction is computed using the experimentally measured

tilt angles.

(ii) For the jth projection, a series of 2D projections are calculated from the

3D reconstruction by varying the three Euler angles: φ ⊂ [φj − δφ, φj + δφ],

φ ⊂ [θj − δθ, θj + δθ], ψ ⊂ [ψj − δψ, ψj + δψ], where (φj, θj, ψj) are the current
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best fit for the Euler angles of the jth projection and (δφ, δθ, δψ) are the user-

defined values for the angular search ranges. Each calculated 2D projection is then

compared with the corresponding measured projection, f jobs(x, y), and a quality-of-

fit metric is computed. The quality-of-fit metric can be implemented by either the

normalized cross-correlation or the real space R-factor. For the latter, additional

translational alignment between two projections have to be performed, whereas

using cross correlation the translational search is performed simultaneously. The

three Euler angles with either the largest cross correlation or smallest R-factor

are recorded as the refined angles for the jth projection.

(iii) Repeat step (ii) for all the projections and a series of the refined angles

are obtained.

(iv) Obtain a new 3D reconstruction with the refined angles for all the projec-

tions.

(v) Repeat steps (ii) (iv) until no further improvement can be made.

In practice, each projection is refined in parallel, and the calculation of 2D pro-

jections from the 3D reconstruction represents the bulk of the computation. This

calculation is expedited by applying the FFT to obtain an oversampled Fourier

transform from the 3D reconstruction. Central slices are computed from the 3D

Fourier transform using the C++ library splinterp for multithreaded linear inter-

polation. The inverse FFT is used to invert the central slices to the corresponding

2D projections. Care should be taken that while GENFIRE’s reconstruction can

find a global minimum, the current angular refinement approach may be trapped

into local minima. Further developments are needed to search for a global mini-

mum for angular refinement.
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2.2 Results

2.2.1 Numerical simulations on the reconstruction of a biological vesi-

cle

Numerical simulations on the 3D reconstruction of a 64x64x64 voxel vesicle model

(Figs. 2.2a-c) were performed using GENFIRE, EST, FBP and SIRT. Simulated

projections were obtained by first calculating 2D Fourier slices of the 3D model

for given angles. The corresponding real-space projections was then computed

by applying the inverse FFT to the Fourier slices. This code is also included

in the GENFIRE package and can be accessed graphically using the Projection

Calculator. To evaluate the performance of various reconstruction algorithms with

noise, we calculated 71 projections with the tilt angle ranging -70.1◦ to +70.1◦.

Noise was added to the projections at levels similar to that observed in cryo-

EM images of large biological samples. Each set of projections was reconstructed

using GENFIRE, EST, FBP and SIRT. The EST and GENFIRE reconstructions

were performed using a loose support, the positivity constraint and 250 iterations.

The SIRT reconstruction was achieved with the positivity constraint, long-object

compensation and 125 iterations.

Figures 2.2d, g, j and m show a 10-voxel-thick central slice of the 3D recon-

structions in the XY plane using GENFIRE, EST, FBP and SIRT, respectively,

where the z-axis is the missing wedge direction. Because there is no missing data

in this direction, the reconstructions from all methods exhibit good agreement

with the model (Fig. 2.2a). However, when viewed such that part of the recon-

struction lies along the missing wedge direction, both GENFIRE and EST recon-

structions (Figs. 2.2e, f, h and i) appear to be more isotropic and contain more

fine features than FBP and SIRT (Figs. 2.2k, l, n and o). The Fourier shell cor-

relation (FSC) between the reconstructions and the model further confirms that

the GENFIRE resconstruction is superior at all spatial frequencies than other
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Figure 2.2: Numerical simulations on the 3D reconstruction of a biological vesicle

from 71 noisy projections using GENFIRE, EST, FBP and SIRT. (a-c), Three

10-voxel-thick central slices of the vesicle model in the XY, ZX and ZY planes,

respectively. The corresponding three reconstructed slices with GENFIRE (d-f),

EST (g-i), FBP (j-l), and SIRT (m-o), where the missing wedge axis is along

the z-axis. (p). The FSC between the reconstructions and the model, showing

that GENFIRE produces a more faithful reconstruction than other algorithms at

all spatial frequencies. (Figure reprinted from [28])
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algorithms. This simulation was also performed with no noise and higher noise

(Figs. 2.11 and 2.12). In the case of noiseless data with equally-sloped angles,

EST produces slightly better results than GENFIRE as no interpolation is needed

in EST (Fig. 2.11). However, in practice this idealized scenario does not occur,

and our results show that for even moderate noise levels GENFIRE produces bet-

ter results. SIRT introduces a form of regularization to the reconstruction, which

reduces missing wedge artifacts but also appears to compromise the resolution.

By accurately assembling a small fraction of the Fourier grid points and using

an iterative algorithm with resolution extension/suppression, GENFIRE is able

to simultaneously reduce the effect of noise and retain higher resolution informa-

tion. This capability will be important as scientists continue to solve important

problems by pushing imaging systems to their limits.

2.2.2 Numerical simulations on atomic electron tomography

To quantify the GENFIRE reconstruction of 3D nanostructures at atomic resolu-

tion with noise and a missing wedge, we generated a 3D atomic model consisting

of a 4.3 nm FePt3 nanoparticle with a chemically ordered face-centered cubic

(L12) phase. Using this model, 27 annular dark field (ADF) projections were

computed with multislice simulation [82] (Energy: 300 keV, probe size: 0.5 Å,

C3: 0 mm, C5: 5 mm, probe convergence semi-angle: 30 mrad, and the inner

and outer detector angles: 48 mrad and 251 mrad). The angular tilt range was ±

70.1◦ and the pixel size was 0.4 Å. For each tilt angle, a total of 10 frozen phonon

configurations were averaged. To simulate the convolution effect resulting from

finite probe size and other incoherent effects, each image was convolved with a

2D Gaussian function with σ = 0.51Å. Poisson-Gaussian noise was then added to

the ADF scanning transmission electron microscopy (STEM) projections.

After denoising was applied to the projections [83], this tilt series was re-

constructed with GENFIRE, EST, SIRT and FBP, and the results are shown in
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Fig. 2.3. Visually, GENFIRE, EST, and SIRT all demonstrate reduction of recon-

struction artifacts, though the difference appears more substantial for GENFIRE

and EST (Figs. 2.3a-h). Both SIRT and FBP suffer from aliasing artifacts that

produce what appear to be atoms, but are not actually present in the model,

outside of the true boundary of the particle (Figs. 2.3c, d, g and h). These phan-

tom atoms would prove problematic for atom tracing and refinement in AET.

The iterative methods have also successfully recovered missing information as in-

dicated by the presence of Bragg peaks in the missing wedge (magenta arrows in

Figs. 2.3i-l). Determination of 3D atomic coordinates is most accurate when the

reconstruction is isotropic, thus it is important for the reconstruction algorithm

to be robust to noise and the missing wedge problem. Among the four algorithms,

GENFIRE produces the best reconstruction of the 3D atomic structure.

2.2.3 Angular refinement simulations

To demonstrate the improvement made by angular refinement, a simulation was

performed using the same 27 ADF-STEM projections from Fig. 2.3. The ori-

entation angle of each projection was randomly shifted by ± 2◦, and a random

translational shift of ±1 pixel was applied along the x and y-axes. A preliminary

GENFIRE reconstruction was performed and used as input to the refinement loop

which was run for a total of 5 iterations with an angular search range of ± 3◦ with

0.2◦ steps and normalized cross-correlation as the error metric. The results of this

simulation are shown in Fig. 2.4. The initial and refined angles were compared

with the true ones using a normalized angular distance [84] (Fig. 2.4a.), resulting

in an improvement from an initial average angular error of 2.1◦ to a refined value

of 1.3◦. The reconstruction is improved after angular refinement, shown in the

lower right in Figs. 2.4b and c. The boundary of the nanoparticle is also better

defined, with fewer artifacts around the periphery.
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Figure 2.3: Numerical simulations on atomic electron tomography. 1.2 Å-thick

central slices of a L10 phase FePt nanoparticle in the XY and ZX planes, recon-

structed from 27 noisy multislice STEM projections with GENFIRE (a, e), EST

(b, f), SIRT (c, g), and FBP (d, h), where the z-axis is the missing wedge

direction. The red arrow indicates a Pt atom and the white arrow an Fe atom. A

central slice in the ZX plane after applying the Fourier transform to the 3D recon-

struction obtained by GENFIRE (i), EST (j), SIRT (k), and FBP (l), showing

recovery of the Bragg peaks in the missing wedge direction for GENFIRE, EST

and SIRT (magenta arrows). Artifacts due to missing wedge effects such as ghost

atoms are visible in SIRT and FBP (c, d, g, and h), but are not present in EST

and GENFIRE (a, b, e and f). (Figure reprinted from [28])
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Figure 2.4: Angular refinement simulations for the GENFIRE reconstruction of

the 27 multislice STEM projections used in Fig. 2.3. (a). The angular difference

between the initial angles and the refined ones after 5 refinement iterations, im-

proving an average angular error from 2.1◦ to 1.3◦. (b), (c). 1.2 Å-thick central

slices before and after angular refinement, showing some Fe atoms in the lower

left region are better resolved and the boundary of the nanoparticle is also better

defined. (Figure reprinted from [28])
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2.2.4 GENFIRE reconstruction on experimental data of a porous ma-

terial

To perform a quantitative comparison between GENFIRE and other iterative

algorithms on experimental data, we acquired a tomographic tilt series of a Mo3Si

alloy annealed at 1100◦ C. Mo-Si and Mo-Si-B alloys are resistant to oxidation

and creep and are among potential candidates with high melting temperatures

to replace currently widely used Ni-based superalloys in jet engines and other

high-temperature environments [85, 86]. The experiment was conducted on an

FEI TitanX 60-300 in STEM mode equipped with a Gatan high-angle annular

dark field detector. The microscope was operated at 200 keV with electron beam

current 40 pA, a convergence semi-angle of 10 mrad, and a camera length of 91

mm. A total of 129 projections were collected with a tilt range from -58◦ and +70◦

in 1◦ increments. After background subtraction, the projections were aligned along

the tilt axis direction by cross-correlation and along the perpendicular direction

using the center-of-mass method [2, 22]. Reconstructions were performed with

GENFIRE and SIRT. The SIRT reconstruction was computed using Tomo3D [87]

Figures 2.5a and b show the 13.6-nm-thick central slice of the GENFIRE and

SIRT reconstruction of a fragment of the sample, revealing a complex 3D porous

structure. Along the 0◦ direction, both GENFIRE and SIRT produce good re-

constructions, although fine features are better resolved by GENFIRE (Figs. 2.5a

and b). However, in the missing wedge direction, GENFIRE exhibits significant

improvement over SIRT with sharper boundaries and more distinctive 3D pore

structures (Figs. 2.5c and d). Figures 2.5e and f show isosurface renderings of the

reconstructions, where elongation artifacts due to the missing wedge are clearly

visible in the SIRT reconstruction, but are reduced by GENFIRE.
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Figure 2.5: Comparison of GENFIRE and SIRT reconstructions of a fragment of

porous Mo3Si alloy, annealed at 1100◦ C. (a), (b), 13.6-nm-thick central slices

along 0◦ direction reconstructed by GENFIRE and SIRT, respectively, where fine

features are better resolved in the GENFIRE reconstruction. (c), (d). 13.6-n-

m-thick central slices of the GENFIRE and SIRT reconstructions along the missing

wedge direction, where GENFIRE shows significant improvement over SIRT with

sharper boundaries and more distinctive 3D pore structures. (e), (f). Isosurface

renderings of GENFIRE and SIRT reconstructions, where elongation artifacts due

to the missing wedge are visible in the SIRT reconstruction, but are reduced by

GENFIRE. (Figure reprinted from [28])
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2.2.5 GENFIRE reconstruction of a frozen hydrated cell

GENFIRE was also used to reconstruct the 3D structure of a frozen-hydrated

marine cyanobacterium in a late stage of infection by cyanophages [12]. A tilt

series of 42 projections ranging from -58◦ to +65◦ were acquired on a JEM2200FS

electron microscope equipped with a Zernike phase plate and recorded on a 4k x

4k Gatan CCD. The projections were binned by 4 x 4 pixels, resulting in images

with approximately 1.8 x 1.8 nm2 per pixel. The background was carefully re-

moved from each projection based on the average value in a flat region outside of

the cell. A marine cyanobacterium was then cropped out from the surrounding

regions by smoothing and thresholding each projection to produce a soft-edged

mask. Finally, each projection was aligned and normalized to have the same total

sum as the integrated density should be conserved. The tilt series was separately

reconstructed with GENFIRE and FBP (Fig. 2.6). The GENFIRE reconstruc-

tion consists with 100 iterations and a loose cubic support, while the FBP recon-

struction was performed using IMOD. Several low-contrast features are visible in

the GENFIRE reconstruction that are difficult, if not impossible, to identify with

FBP. Of particular interest in this dataset was the interactions between the marine

cyanobacterium and cyanophages. Fig. 2.6 shows a slice through the reconstructed

volumes capturing the penetration of a cyanophage into the cell membrane during

the infection process. This interaction has caused a local depression in the cell

membrane, and the shown cross section passes through this depression as well as

the viral capsid and appendage (Figs. 2.6c-j). Based on this geometry the cell

membrane should be visible on both sides of the interaction, similar to taking

a horizontal cross-section through a U-shape (Figs. 2.6c and d). Although the

top side of the membrane is visible in both reconstructions (magenta arrows), the

bottom side is only visible in the GENFIRE reconstruction (yellow arrow). Fig-

ures 2.6i and j show isosurface renderings of the penetration of the cyanophage

into the cell membrane, where GENFIRE exhibits higher contrast, less peripheral
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noise, more easily detectable cell boundaries than FBP.

2.2.6 Measured data enforcement via resolution extension/suppression

Most imaging methods are affected by noise to some extent, and, in many cases,

noise is a serious limiting factor in final reconstruction quality. For example,

single-particle cryo-electron microscopy often reports signal-to-noise ratios (SNRs)

as low as 0.1. The image noise is usually modeled as a combination of Poisson

(shot) noise and white Gaussian noise. Generally, the signal from the sample

will decrease with spatial frequency due to effects including sample drift, thermal

vibrations, energy spread of the electron beam, and lens transfer functions. There-

fore, in general the signal-to-noise ratio (SNR) decreases as a function of spatial

frequency. Maximization of resolution in the final reconstruction is desirable, but

one must be careful to avoid overfitting of the model to noise which can lead

to artificially enhanced resolution estimates and difficult density interpretation.

Most modern methods of avoiding this problem rely on accurate determination

of various metrics of the data such as spectral signal-to-noise ratio to determine

ideal low-pass filtering for noise suppression. However, these filters suppress both

the noise and the signal of the sample at high resolutions. Here we present a novel

idea that is capable of partially decoupling signal and noise and high resolutions

through a simple modification of the way the Fourier constraint is applied that

we have called resolution extension/suppression. To understand how this can be

achieved, consider the following model for the assembled frequency space

M(~k) = F (~k) + ε(~k) (2.6)

where F (~k) is the Fourier component of the sample at frequency ~k and ε(~k) is

an error component due to a combination of noise, projection misalignment, and

interpolation error. The key concept behind resolution extension/suppression is

that all frequency components F (~k) are correlated as they correspond to the same
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Figure 2.6: 3D structure of a frozen-hydrated marine cyanobacterium, capturing

the penetration of a cyanophage into the cell membrane. a, b, 5.43nm-thick slices

of the cell in the XY plane reconstructed by GENFIRE and FBP, respectively.

Magnified views of the penetration of a cyanophage for the GENFIRE and FBP

reconstructions in the XY (c, d), XZ (e, f), and ZY (g, h) planes, respectively.

The top side of the membrane is visible in both reconstructions (magenta arrows),

but the bottom side is only visible with GENFIRE (yellow arrow). (i, j). Iso-

surface renderings of the penetration of the cyanophage to the cell membrane.

Overall, GENFIRE exhibits higher contrast, less peripheral noise, more easily

detectable cell boundaries than FBP. (Figure reprinted from [28])
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object, whereas the ε(~k) are uncorrelated. For the true structure, ρ(~x), all of the

F (~k) can exist simultaneously and satisfy the appropriate real space constraints.

The presence of the error component ε(~k) changes this. For example, noisy high-

resolution datapoints can introduce spurious density known as “dust” throughout

the reconstruction which may disagree with the overall boundary of the sample

determined by the low resolution information, which is less noisy. However, this

high frequency data also contains true high-resolution signal, which is entirely

compatible with the low-frequency data from the sample, and may be partially

extracted by exploiting this disparity in the following way. For the first few iter-

ations, only the lowest frequency information is enforced in Fourier space. This

low-resolution recovery period establishes an initial sample boundary with as lit-

tle corruption from noise as possible. The resolution cutoff for enforcement is

then extended outward periodically until the full set of M(~k) are being enforced.

At this point the reconstruction contains both signal at all resolutions and noise.

The process is then reversed for the resolution suppression step until for the fi-

nal iterations only the lowest resolution information is being enforced once again.

Mathematically, we use Qk to represent the set of measured points that lie within

the kth resolution cutoff. By reconstructing in this way, priority is given to the

less-noisy, low resolution data wherever a conflict arises as previously described,

diminishing the higher frequency ε(~k) while partially preserving the correspond-

ing F (~k) yielding a stronger SNR at high spatial frequencies. This decoupling is

not perfect as it is possible that some high frequency F (~k) components are per-

turbed by changes made to intermediate F (~k) components during the resolution

suppression process; however, our results indicate the improvement made by this

technique at all resolutions is substantial for noisy data.

A comparison of GENFIRE’s performance with and without the use of reso-

lution extension/suppression is shown in Figs 2.7 and 2.8. The projection data

for this simulation is the same as from Fig. 2.2. A notable difference is that al-
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Figure 2.7: (a). Reciprocal-space error vs iteration number for GENFIRE with

and without the use of the resolution extension/suppression technique. The

abrupt dips in error over the first half of iterations correspond to events where

the Fourier constraint is expanded. (b–d) Projections of the model vesicle are

shown along the three principle axes, with corresponding views for GENFIRE

reconstructions with resolution extension/suppression (e–g) and without (h–j).

(k) Fourier shell correlation between each reconstruction and the model indicat-

ing that GENFIRE with resolution extension produces a better reconstruction at

all spatial frequencies despite the larger reciprocal error. This claim is supported

by the visual quality of the reconstruction depicted in (b–j). (Figure reprinted

from [28])
30



0

0.25

0.5

0.75

1

Iteration Number

R
e

c
ip

ro
c
a

l S
p

a
c
e

 E
rr

o
r

0 50 100 150 200 250

Spatial Frequency (% of Nyquist)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

0 0.25 0.5 0.75 1

with resolution extension/suppression
without

0.1

0.35

0.6

0.85

with resolution extension/suppression
without

Figure 2.8: Similar to Fig. 2.7 but with no noise. (Figure reprinted from [28])
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though the reconstruction is better across all spatial frequencies with resolution

extension/suppression, as indicated by the Fourier Shell Correlation (FSC), the

reciprocal error is higher. The small dips every few iterations correspond to each

increase in the resolution cutoff for the constraint set. The minimum error is

achieved at the end of the extension step, and then begins to rise again during

suppression. The reason for the increased error is that the true structure does not

match the values of the (noisy) measurements. By enforcing only the less noisy low

resolution values for the latter iterations, the structure is changed in a way that

improves the quality of the reconstruction with respect to the model but not to

the measurements. Therefore, although the reciprocal space error serves as a sign

of convergence, its value is not necessarily a measure of quality of reconstruction.

The same simulation for the noiseless case is shown in Fig. 2.8. Here the result

produced with resolution extension/suppression is slightly worse than without.

This is likely due to the previously mentioned phenomena of high frequency com-

ponents being perturbed during the suppression step. Although the technique of

resolution extension/suppression does not appear to be universally superior, it is

worth noting that the improvement for the noisy data is substantially larger than

the decrease in quality for the no-noise case. Some datasets may benefit more

than others from this method, and it may easily be turned on/off in the GUI.

Such a technique could find applications as a method of structure refinement in

fields where projection data is noisy, such as single-particle cryo-EM.

2.2.7 Complex free R factor

In crystallography it is common practice to prevent overfitting of the data during

refinement by using a free R factor where a small percentage, usually 5%, of the

data is withheld from refinement, and the refined values are compared to the

withheld ones. If the value of Rfree is too large, it is a good indicator that the

data has been overfit. Following similar logic, we note that avoiding overfitting
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of noise during an iterative reconstruction algorithm is an analogous problem,

and we introduce the slightly modified version in this manuscript. Whereas only

Fourier magnitudes are measured directly in crystallography, real-space imaging

methods detect phase information. In a real experiment the true structure is

never exactly known, so for GENFIRE Rfree serves as a cross-validation metric

for the self-consistency of the data by monitoring its ability to reconstruct itself.

If fault exists with either the reconstruction method used or the data, be it due to

noise, misalignment, or otherwise, then it would be difficult to faithfully recover

withheld data points. Therefore, reasonably low values of Rfree should be a strong

indicator that the reconstruction has not been overfit and the data quality is good.

Generally accepted limiting values for Rfree for magnitudes in crystallography are

around 0.4 in the highest shell, so one should expect a higher value for complex

Rfree at equivalent levels of reconstruction quality.

Fig. 2.9 summarizes the results of Rfree when applied to the simulation in

Fig. 2.2 above. For low-noise data the mean value of Rfree should mirror the

trend in the reciprocal error and be slightly higher. The value of Rfree vs. spatial

frequency generally trends upwards, as the low frequency information is easiest to

retrieve. In this simulation the value of Rfree is low at all spatial frequencies and

is indicative of a reconstruction that is not overfit.

2.2.8 Comparison of gridding with DFT and FFT

GENFIRE provides two variations of the gridding routine. The first method is

the most accurate, but is computationally slower. This method uses the Discrete

Fourier Transform (DFT) to calculate the value of the Fourier Transform at the

exact frequency corresponding to the nearest point-to-plane distance from the grid

point to the plane of the measured projection. Practically this is accomplished in

the following way. First, a unit-normal vector is defined along the z-axis for each

projection. These vectors are rotated by the corresponding Euler angles to form a
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Figure 2.9: (left) A comparison of Rfree and Rk vs iteration number. Rfree is

highly correlated with, but slightly higher than, Rk and is indicative of a good

reconstruction. Divergence between the two indicates overfitting. (right) average

Rfree vs spatial frequency, indicating higher resolution features are more difficult

to recover. (Figure reprinted from [28])

set of rotated vectors that define a series of continuous planes in 3D. Next, for each

grid point in the 3D Fourier space to be assembled, the scalar distance is computed

to each plane by a geometric projection of the vector location of the grid point onto

the corresponding rotated normal vector. For the subset of point-to-plane distance

pairs that lie within the chosen interpolation radius, the vector location of the

nearest point is determined, and a corresponding measured value F (~ki) is obtained

through evaluation of the DFT. The final gridded value M(~k) is determined from

this set of F (~ki) using the averaging scheme described previously. The second

method accelerates the gridding through use of the Fast Fourier Transform (FFT).

First, the 2D FFT of each projection is calculated to obtain a set of evenly spaced

Fourier components. The spatial frequency coordinates for each of these values

are rotated by the corresponding Euler angles to form a set of measurements in

3D. For each grid point, the Euclidean distance is computed to each measured

grid point, and the subset of points that lie within the interpolation kernel are

used to evaluate M(~k) in the same way as described previously. A comparison
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of these gridding methods is shown in Fig. 2.10. The DFT method produces

a reconstruction that is better across all spatial frequencies and converges to a

slightly lower reciprocal error value. The advantage of the DFT method is the

freedom to calculate the Fourier component at any frequency ~ki. Therefore the set

of F (~ki) produced with the DFT method will have interpolation distances that

are strictly less than or equal to those of the FFT method, producing a more

faithful representation of the true Fourier space. The FFT method, conversely,

produces a set of Fourier values arranged on a predefined grid from which the

3D Fourier space is assembled. The advantage of this method is one of speed.

The use of the DFT means the first method has complexity O(n2), while the

second has O(nlog(n)) complexity. The DFT method should always produce

better reconstructions, but for large array sizes becomes time-consuming. Thus,

a normal workflow can consist of preliminary reconstructions performed quickly

with FFT gridding with the potential for a final result from the DFT method.

The gridding process also could be accelerated with GPUs in future versions.

2.2.9 Comparison of reconstruction methods for additional noise levels

Additional simulations were performed following the same procedure used in

Fig. 2.2 with no noise (Fig. 2.11) and high noise (Fig. 2.12). The same equally-

sloped tilt angles and reconstruction parameters were used for each method. For

the no-noise case, EST slightly outperforms GENFIRE. This is because GENFIRE

uses a gridding routine, whereas the pseudopolar FFT used by EST is mathemati-

cally exact. However, the difference is quite small, indicating that the oversampled

interpolation routine used by GENFIRE is quite accurate. Both methods provide

a significant improvement over SIRT and FBP. SIRT produces a reconstruction

that is better than FBP at low resolution, but has the lowest FSC at higher spatial

frequencies, which is likely because the SIRT algorithm acts as a form of regular-

ization. With higher noise, both Fourier-based iterative methods still produce the
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Figure 2.10: Comparison of FFT/DFT gridding methods available in GENFIRE.

Central slices in xy, yz, and xz planes are displayed for (a-c) the model, (d-f)

GENFIRE with DFT gridding, and (g-i) GENFIRE with FFT gridding. (j).

Fourier Shell Correlation curve between the model and reconstructions, indicating

the DFT method produces superior reconstructions at all spatial frequencies. (k)

Reciprocal space error vs iteration with a deeper minimum found for the DFT

gridding method. (Figure reprinted from [28])
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best reconstructions, but the improvement of GENFIRE over EST is enhanced.

This is due to the use of resolution extension/suppression for enforcement of the

Fourier constraint as well as the capability of GENFIRE to combine multiple noisy

measurements into a single, less noisy grid point. SIRT performs better under this

circumstances relative to the other methods, and for the highest noise level used

here is actually slightly better than EST at high resolution. This is indicative

that the EST reconstruction has suffered from some degree of overfitting in the

presence of heavy noise. This issue can be alleviated by introducing regularization

methods like non-local total variation minimization or other denoising techniques.

However, these can limit resolution. The new techniques introduced by GENFIRE

appear to reduce the effect of the noise while preserving more of the high reso-

lution information, providing necessary tools for creating powerful reconstruction

algorithms for application towards solving difficult scientific problems.

2.2.10 Focused ion beam milling and denoising of frozen samples

Focused ion beam (FIB) milling is a technique traditionally used in materials

science with increasing applications to studies of biological samples in cryo-EM

[88–90]. Frozen samples naturally suffer reduced contrast due to the surrounding

ice, and this is a particular problem for tomography as an embedded sample is

not truly isolated, resulting in density moving into and out of the field of view

as the sample is tilted. One potential method for alleviating this problem is to

use a FIB to remove ice surrounding a frozen sample, forming a bridge parallel to

the tilt axis. If the ice layer is thin enough and the field of view large enough to

capture the full rotation of the milled sample as it rotates, the sample becomes

isolated and a 3D reconstruction can be obtained with improved contrast and

greater fidelity.

To demonstrate this, the following simulation was performed using an electron

density map of the human ribosome at 3.4 Å resolution (EMBD 4214). The
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Figure 2.11: Numerical simulations on the 3D reconstruction of a biological vesi-

cle from 71 noise-free projections using GENFIRE, EST, FBP and SIRT. (a-c).

Three 10-voxel-thick central slices of the vesicle model in the XY, ZX and ZY

planes, respectively. The corresponding three reconstructed slices with GENFIRE

(d-f), EST (g-i), FBP (j-l), and SIRT (m-o), where the missing wedge axis is

along the z-axis. p, The FSC between the reconstructions and the model, showing

that GENFIRE produces a more faithful reconstruction than other algorithms at

all spatial frequencies. (Figure reprinted from [28])
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Figure 2.12: Similar to Fig. 2.11, but with high levels of noise. (Figure reprinted

from [28])
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model was binned 2 x 2 and embedded in vitreous ice approximately 100nm thick.

Projections were then calculated with 29 evenly spaced tilt angles between ± 70◦.

A second model was then created by applying a mask to simulate the effect of

FIB milling, and a similar set of projections was produced. Poisson noise was

added to both sets of projections to levels comparable to experimental levels.

A third set of projections was produced by applying a modified version of the

BM3D algorithm intended to tolerate amorphous samples such as biological soft

tissue [83]. These datasets were reconstructed using FBP and GENFIRE, and the

results are summarized in 2.13.

A representative projection at 45◦ visually demonstrates the increased den-

sity at higher tilts due to the presence of ice outside of the original field of view

(Fig. 2.13a) as well as the positive effect of FIB milling (Fig. 2.13b). Denois-

ing significantly improves the quality of the projection (Fig. 2.13c). A compar-

ison of the Fourier shell correlation between the reconstructions and the model

(Fig. 2.13d) indicates significant reconstruction improvement as a result of apply-

ing GENFIRE, FIB, and the BM3D denoising technique. Even with the use of a

more primitive reconstruction algorithm like FBP the effect of FIB milling alone

improves reconstruction fidelity. Ultimately the resolution improved in this simu-

lation from using FBP on the original dataset to using GENFIRE with FIB and

BM3D from approximately 11.1Å to 6.8Å. We note that this denoising technique

is experimental, and for this simulation the noise model was well-defined; however,

the technique shows great promise and should be explored in future works.

2.3 Discussion

In this article, we present the mathematical implementation of GENFIRE for 3D

reconstruction from a limited number of projections with a missing wedge. Both

numerical simulation and experimental results of materials science and biological
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Figure 2.13: Application of GENFIRE in combination with focused ion beam

milling and BM3D denoising. 45◦ projection of ribosome (a) embedded in vir-

teous ice with noise, (b) with surrounding ice removed by FIB milling, and (c)

with denoising applied to the projection in (b). (d) Fourier shell correlation be-

tween reconstructions and the known model, indicating that significant resolution

improvement may be obtained through the combination of these methods.
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specimens indicate that GENFIRE produces superior 3D reconstruction to several

other tomographic algorithms. As a Fourier-based iterative method, GENFIRE

first computes a small fraction of Cartesian grid points with high precision from

2D projections using Fourier gridding and oversampling. It then iterates between

real and reciprocal space using the FFT and its inversion. Positivity and support

are enforced in real space, while the grid points calculated from the measured data

are applied in reciprocal space. As the Fourier data, positivity and support are

all convex constraint sets, GENFIRE belongs to the method of projections onto

convex sets, whose convergence has been mathematically proven [91, 92]. This

allows GENFIRE to search for a global solution that is concurrently consistent

with the measured data and physical constraints. One of the unique features

of Fourier-based iterative algorithms such as GENFIRE is that any changes in

real space globally affect all the points in reciprocal space and vice verse. This

global correlation between real and reciprocal space makes GENFIRE robust to

the missing data and missing wedge. In contrast, ART, SART and SIRT perform

all the iterations in real space through local interpolation. When there is a missing

wedge, the local interpolation in that region becomes less accurate. This explain

why GENFIRE achieves better 3D reconstructions than several other tomographic

algorithms. Furthermore, compared to EST that is only applicable to single tilt

axis data, GENFIRE can not only work with any tomographic geometry, but

also perfroms faster due to the use of the FFT and its inversion for iteration. It

must be cautioned, however, that GENFIRE users must be aware of the physical

implications of the conditions under which images are acquired with respect to the

linearity of the projection. Although nonlinear effects such as dynamical scattering

can be alleviated due to a rotational average in tomography [1], the exact extent

to which such nonlinear effects degrade GENFIRE needs to be explored in future

work.

Another class of tomographic reconstruction methods based on compressed
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sensing is presently under rapid developmenet [93, 94]. Compressed sensing as-

sumes that a physical meanful structure is sparse in some domain. If the sparse

domain can be found, the 3D structure can in principle be reconstructed from a

comparatively small measurement. Compressed sensing tomography typically in-

corpoartes mathematical regularization such as total variation minimization [95],

which requires extensive manual tuning of parameters [96]. This is acceptable

in applications such as medical magnetic resonance imaging, where the scope of

reconstruction targets is limited enough to permit a specialized set of parameters.

However, for a generalized tomographic reconstruction, it is not straightforward

to optimize these parameters, especially with the presence of missing data and

noise. For example, it would be very challenging, if not impossible, for compressed

sensing tomography to reconstruct the 3D distribution of point defects in a crys-

talline specimen. Conversely, GENFIRE uses very general physical constraints

and requires minimum manual tuning of parameters. It has recently been used

to determine crystal defects such as grain boundaries, chemcial order/disorder,

anti-phase boundaries and point defects with unprecendent 3D detail (Chapter

5) [1, 3]. Furthermore, GENFIRE can be easily adapted to incorporate mathe-

matical regularization to reconstruct 3D sparse objects from a small number of

projections. Looking forward, we expect GENFIRE can be applied to a plethora

of imaging modalities to address a wide range of scientific problems.

2.4 Software Availability

The GENFIRE software package with a graphical user interface is freely available

at www.genfire-em.com.
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CHAPTER 3

Correlative cellular ptychography with

functionalized nanoparticles at the Fe L-edge

Precise localization of nanoparticles within a cell is crucial to the understanding

of cell-particle interactions and has broad applications in nanomedicine. Here,

we report a proof-of-principle experiment for imaging individual functionalized

nanoparticles within a mammalian cell by correlative microscopy. Using a chemically-

fixed HeLa cell labeled with fluorescent core-shell nanoparticles as a model sys-

tem, we implemented a graphene-oxide layer as a substrate to significantly reduce

background scattering. We identified cellular features of interest by fluorescence

microscopy, followed by scanning transmission X-ray tomography to localize the

particles in 3D, and ptychographic coherent diffractive imaging of the fine features

in the region at high resolution. By tuning the X-ray energy to the Fe L-edge,

we demonstrated sensitive detection of nanoparticles composed of a 22 nm mag-

netic Fe3O4 core encased by a 25-nm-thick fluorescent silica (SiO2) shell. These

fluorescent core-shell nanoparticles act as landmarks and offer clarity in a cellular

context. Our correlative microscopy results confirmed a subset of particles to be

fully internalized, and high-contrast ptychographic images showed two oxidation

states of individual nanoparticles with a resolution of ∼16.5 nm. The ability to

precisely localize individual fluorescent nanoparticles within mammalian cells will

expand our understanding of the structure/function relationships for functional-

ized nanoparticles.
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3.1 Introduction

Functionalized nanoparticles are used in a broad array of nanomedicine applica-

tions for their utility as labels and drug delivery systems [97–100]. The ability

to localize individual nanoparticles within cells is critical as it allows interac-

tions between the nanoparticles and their target cells to be characterized, in-

forming of the biological effects imparted by the nanoparticles. One method ide-

ally suited to probe individual nanoparticles inside cells is coherent diffractive

imaging (CDI) as it can image thick specimens with high resolution and con-

trast [10, 38, 64, 66, 67, 101–113]. Since the first experimental demonstration in

1999 [64], various CDI methods have been developed [70] and a particularly pow-

erful approach for imaging extended objects such as whole cells is ptychographic

CDI (also known as ptychography) [114–129].

In ptychography, an extended sample is observed by illuminating with a co-

herent wave via a 2D raster scan. During such a 2D scan, diffraction patterns

are recorded from overlapping fields of views with a pre-defined trajectory. The

overlap between views can then be used as a strong constraint in phase retrieval

algorithms [118], leading to a unique, robust reconstruction of the complex exit

wave of the object and the illumination function [115, 117, 119–130]. Further-

more, by measuring diffraction intensity with a numerical aperture significantly

higher than that of X-ray lenses, ptychography can reach spatial resolution far

beyond those of conventional X-ray microscopy. However, this powerful capa-

bility is hampered in the case of weakly scattering objects such as biological

specimens, because the background scattering of the substrate and parasitic scat-

tering from X-ray optics can dominate the weak signals from a biological spec-

imen [117, 119, 125, 128, 130]. Here we demonstrate a correlative ptychographic

approach for high-resolution imaging of functionalized nanoparticles internalized

within an unsectioned mammalian cell. To achieve high spatial resolution and
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image contrast, we first adapt transparent graphene-oxide substrates [131] to sup-

port cells during the X-ray imaging process. Graphene and graphene-oxide films

have previously been shown to be an excellent support for high resolution electron

microscopy studies of cells and macromolecules, both frozen-hydrated [132] and

in-situ [133–135]. Graphene-oxide in particular shows excellent biocompatibility

promoting cellular adhesion [136–139] and growth. These substrates offer a sig-

nificant reduction in background scattering for X-rays in the soft X-ray regime

compared to conventional substrates. Next, we label HeLa cells with core-shell

nanoparticles, functionalized by the addition of a fluorescent moiety and a super-

paramagnetic core, and identify a region of interest using a fluorescence micro-

scope. Finally, we combine 3D localization of nanolabels within the cell, using

scanning transmission X-ray microscopy (STXM) tomography, with correlative

high-resolution ptychographic imaging, with enhanced contrast for the nanoparti-

cles by tuning the X-ray energy to the Fe L-edge. This correlative cellular imaging

method allows us to localize individual nanoparticles in a cellular context at mul-

tiple length-scales, ranging from tens of microns to the ten-nanometer level.

3.2 Results

3.2.1 Nano-labeling of HeLa cells with fluorescent nanoparticles on a

graphene-oxide substrate

HeLa cells were first grown on a substrate specifically engineered for high contrast

imaging, consisting of a commercially available gold TEM grid coated with lacey

carbon (Ted Pella) on top of which we deposited a few layers of graphene-oxide

(www.graphenesupermarket.com) using the drop casting method [131]. Graphene-

oxide is biocompatible and allows for the adherent growth of HeLa cells while being

effectively invisible to the soft X-ray probe (Fig. 3.3, Fig. 3.4). These grids provide

significantly enhanced contrast when using the Nanosurveyor endstation in both
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STXM and ptychography modes (Fig. 3.1). We attribute the improved stability

and contrast to the atomically thin composition of the graphene layers and to

the low density of graphene oxide relative to conventional silicon nitride-based

supports. Graphene-oxide and silicon nitride have approximate densities of 1.9

g/cm3 and 3.4 g/cm3, respectively.

Figure 3.1: Comparison of STXM images on two different substrates. STXM

images of the edge of a HeLa cell on (a) 50 nm thick Si3N4 with a 2 ms dwell

time and (b) atomically thin graphene oxide with a 3 ms dwell time. The SNR,

defined as the quotient of the average intensity inside the sample and the standard

deviation of the surrounding region, is approximately 2.9 and 12.1, respectively,

which is well beyond the effect of the difference in exposure time. The STXM

probe was moved in 50 nm increments with a 100 nm focal spot size. (Figure

reprinted from [140])

We imaged cells treated with fluorescent, core-shell mesoporous silica particles

with an iron oxide core (Fig. 3.2). Cells treated with nanoparticles were suspended

in growth media for 30 minutes before gentle washing to remove excess nanopar-

ticles, leaving mainly nanoparticles that had interacted with the cell surface or

had been internalized. All samples were chemically fixed with paraformaldehyde,

washed, and desiccated prior to imaging.
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Figure 3.2: Structural analysis of Fe3O4/SiO2 (core-shell) nanoparticles. (a)

TEM image of core-shell nanoparticles; scale bar, 200 nm. White arrow points

to Fe3O4 core, black arrow points to SiO2 shell. (b) Quantitative analysis of

distribution of Fe3O4 core sizes in a nanoparticle preparation; histogram shows a

fit based on a normalized distribution with a mean of approximately 22 nm. (c)

Quantitative analysis of core-shell nanoparticle sizes; histogram shows a fit with

a normalized distribution with a mean of approximately 73 nm. In panels (b)

and (c), the y-axis shows counts and the x-axis bin centers represent the size in

nanometers. (Figure reprinted from [140])
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3.2.2 STXM and Ptychography experiments

X-ray experiments were performed on the Nanosurveyor instrument at BL 5.3.2.1

of the Advanced Light Source [141]. The X-ray energy was fixed at approximately

710 eV, the Fe L-edge. Incident X-rays were focused using a Fresnel zone plate

with an outer diameter of 100 nm to give a total coherent flux of ∼5x105 coherent

photons s−1 at the sample position. An order-sorting aperture was placed slightly

upstream of the focal spot to remove all but the first order of the focused beam. To

facilitate a full range of rotation without obstructing the order-sorting aperture,

grids containing adhered cells and nano-labels were cut into strips thinner than

1mm using a zirconium nitride coated blade prior to transferring them to the

Nanosurveyor instrument for X-ray experiments (Fig. 3.3). Thin sample strips

allowed a greater range of accessible tilt angles for tomography experiments, which

are normally restricted by the approximately 1 mm distance to the order-sorting

aperture of the instrument (Fig. 3.3). We acquired a total of 58 STXM projections

with a 3 ms exposure and 50 nm step, giving a full field of view of 10x5 µm,

with tilt angles ranging between -59◦ and +40◦ (Fig. 3.5). Similarly, a total of 22

ptychography datasets, each consisting of 7,500 diffraction patterns, were collected

using a compact Fast CCD [142]. Each ptychography pattern was measured with

a dwell time of 200 ms and a step size of 60 nm, giving a full field of view of 9 x

3 µm with a pixel size of 5.5 nm (Figs. 3.6 and 3.7).

3.2.3 3D reconstruction of a HeLa cells leading edge by STXM to-

mography

STXM projections were aligned preliminarily by cross correlation. Background

was subtracted from each projection by removing the average value in an empty

region of the sample. The projections were normalized to have the same total sum,

as the integrated 3D density of the sample should be constant. This tilt series, ac-
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Figure 3.3: Experimental setup for correlative microscopy. (a) Composite fluo-

rescent image of HeLa cells grown on graphene-oxide coated lacey carbon TEM

grid. Cells were labeled with CMPTX (red) to facilitate tracking and treated

with FITC labeled core-shell nanoparticles (green). (b) A magnified view of a

region from this grid shows cells labeled with a tracking dye as well as fluorescent

core-shell nanoparticles. White arrows point to cellular inclusions with clusters

of fluorescent nanoparticles. (c) Electron micrograph of a portion of a HeLa cell

covering an individual grid window, similar to the region highlighted in (b). (d)

Magnified view of the lacey carbon grid. The black arrow points to empty regions

of the grid whilst the white arrow indicates thin layers of graphene-oxide. (e)

Experimental setup at BL 5.3.2.1 used for STXM/ptychographic imaging with

key components labeled. The X-ray beam is focused using a Fresnel zone-plate

(FZP) with all but the first order blocked by an order-sorting aperture (OSA).

The focused beam is rastered across the sample using high-precision stages under

interferometric feedback and diffraction patterns are captured by a fast-CCD at

each scan point. (Figure reprinted from [140])
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Figure 3.4: Electron diffraction from Au-Lacey graphene oxide grids. White ar-

rows point to reflections produced by individual graphene crystals. The different

contrast within the image is due to the differential gain of the 4 tiled detector.

(Figure reprinted from [140])

Figure 3.5: STXM tomographic tilt series ranging from -59◦ to +40◦ in equal slope

increments. (Figure reprinted from [140])
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Figure 3.6: Magnitude images of the ptychographic tomography tilt series ranging

from -59◦ to +38.7◦ in equal slope increments. (Figure reprinted from [140])
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Figure 3.7: Phase images of the ptychographic tomography tilt series ranging from

-59◦ to +38.7◦ in equal slope increments. (Figure reprinted from [140])

53



quired from a section of an extended object, imposes a unique challenge for the to-

mographic reconstruction, as the sample is not isolated. The field of view can drift

from one acquisition to the next, but the projection slice theorem, a fundamental

assumption of tomographic reconstruction techniques, assumes that the projected

density in each image results from the same 3D volume. Therefore, isolating the

same density in each projection presents a challenge and was overcome in the

following way. The preliminary angular alignment, translational center, cropping,

and intensity normalization parameters were used to make an initial set of projec-

tions. The tomographic reconstruction was performed using (GENFIRE) [3, 28],

originally developed for atomic electron tomography [29]. GENFIRE first pads

zeros to each STXM projection and calculates an oversampled Fourier slice. The

series of oversampled Fourier slices are interpolated to assemble a 3D Cartesian

grid of the Fourier magnitudes and phases. The use of oversampling allows for

accurate interpolation of grid points in the neighborhood of each Fourier slice [76],

and the remaining Fourier grid points are set as undefined. The algorithm then

iterates between reciprocal and real space using the fast Fourier transform (FFT)

and its inversion. In reciprocal space, the measured grid points are enforced in

each iteration, while undefined points are refined during the iterative process.

In real space, the negative values and the electron density outside a pre-defined

support are set to zero. An error metric, defined as the difference between the

measured and calculated grid points, is used to monitor the convergence of the

algorithm. The iterative process is then terminated when the error metric cannot

be further reduced. From this preliminary 3D reconstruction, the alignment and

cropping of each projection was optimized with another iterative refinement loop.

For each experimentally acquired projection, the reconstructed 3D volume was

back projected to a range of Euler angles about the current guess and aligned

to the experimental projection by normalized cross correlation. The alignment

with the maximum cross correlation yields updated values for the orientation and
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center of the projection. Next, a mask was made by smoothing and thresholding

the best-fitting back projection, and from this mask a new input projection was

obtained from the corresponding raw STXM projections. The purpose of this

remasking is to correct any inaccuracies in the initial cropping of the raw projec-

tions by utilizing the correlated information between the 3D reconstruction and

each of its projections. After renormalization of the total intensity, an updated

3D reconstruction was computed from the new projections and orientation param-

eters. This loop was repeated until convergence of the alignment was obtained

after 5 iterations. By using a Fourier based iterative process, GENFIRE produces

better 3D reconstructions than other tomographic methods for a limited number

of projections (Fig. 3.8). For a detailed comparison between GENFIRE and other

3D reconstruction methods see Chapter 2.

Figure 3.8: Comparison of tomographic reconstruction methods using STXM pro-

jections. Three orthogonal projections are shown for GENFIRE in (a), (b), and

(c), with corresponding views shown for filtered back projection in (d), (e), and

(f). (Figure reprinted from [140])
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3.2.4 High-resolution ptychographic reconstruction

To obtain the final ptychographic reconstructions, 7,500 raw diffraction patterns

were first corrected for differences in offset and gain among the 192 CCD readout

channels using software at BL 5.3.2.1. The corrected patterns were padded with

zeros to give an image pixel size that, based on the scan step, would produce

an integer number of pixels between scan positions to eliminate rounding errors.

The diffraction patterns were then reduced in size by binning to 128 x 128 pix-

els. To remove bad frames caused by readout errors, the patterns were sorted by

integrated intensity and frames with excessively high or low intensity removed.

Finally, an intensity-based threshold was applied to the remaining patterns and

used to provide an estimate of the incoherent background scattering. This aver-

age background was subtracted from the diffraction patterns and spuriously bright

pixels were set to zero. Initial ptychographic reconstructions were performed dur-

ing the experiment using the SHARP algorithm to monitor data quality [143].

Reconstructions were later refined using a strip wise probe relaxation to account

for artifacts introduced in some scans by the interaction of the beam with the

order-sorting aperture during data acquisition. This relaxation was implemented

within a reconstruction scheme based on the extended ptychographic iterative en-

gine (ePIE) [118]. The probe reconstructed via SHARP was used as an initial

guess. The probe was updated at each scan position and monitored during the

course of the reconstruction. After each macro cycle of ePIE, individual probes

were averaged along the axis parallel to the tilt axis. Then a weighted average was

performed between strips using a 1D Gaussian kernel to promote communication

between different strips and to avoid striping artifacts (Fig. 3.9). For these re-

constructions, a strip width of 5 pixels and Gaussian kernel of 1.5 times the strip

width gave the best results.

Phase normalization of the reconstructed images is necessary before compari-

son of neighboring ptychographic projections. A misalignment of the diffraction
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Figure 3.9: Removal of reconstruction artifacts by relaxation of probe uniformity.

(a) Initial reconstruction with a single probe showing several artifacts due to the

regular grid and the OSA interfering with the probe. (b) Reconstruction from

the same dataset using multiple probes with a strip wise averaging kernel, most

of the more obvious artifacts have been removed. (c) Zoom in of the region

highlighted in (a) showing a clear grid pathology. (d) Corresponding region from

(b) showing that the gridding pathology has largely been removed. (e–g) Probes

from different regions of the reconstruction, Left to right: first strip, middle strip,

last strip. (Figure reprinted from [140])
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pattern relative to its true center translates to a phase gradient in the recon-

struction of the object in real space [144]. Such a gradient can exist in both the

horizontal and vertical directions, and an additional constant phase shift can exist

without affecting the quality of fit of the reconstruction to the data. To perform

this normalization, a pair of empty regions on either side of the sample was se-

lected. A phase gradient in both the x- and y-axes was fit such that the standard

deviation in the phase within these two regions was minimized. The constant

phase term was then adjusted until the mean phase was zero within these regions.

3.2.5 Correlative cellular imaging using fluorescent microscopy, STXM

tomography and ptychography

We achieved high-resolution imaging of the leading edge of a HeLa cell treated

with fluorescent core-shell Fe3O4-SiO2 nanoparticles by correlative microscopy.

Fig. 3.10a shows part of an individual cell containing fluorescent nanoparticles.

This same region was imaged using a coarse STXM scan to identify a smaller

region of interest (Fig. 3.10b). A fine STXM scan was then performed on the

region of interest and a tilt series of 58 STXM projections were acquired from

this region. These projections were reconstructed to produce a 3D volume using

GENFIRE, shown in Figs. 3.11 a, b and c. A small section of the leading edge

of the HeLa cell was reconstructed in its entirety. Several regions within the

reconstructed 3D volume show high absorption. We attribute this high absorption

to the concentrated uptake of nanoparticles into the cell.

The resolution of our 3D reconstruction is sufficient to observe membrane ruf-

fles near the upper leading edge of the cell (Fig. 3.11a). Due to obstruction of

our sample by the TEM grid bars during rotation, our data suffers from a large

missing wedge of more than 80◦. Despite this, features in our reconstruction of

the sample along the missing wedge direction are still well defined, allowing for

precise 3D localization of the nanoparticles. Traditional tomographic reconstruc-
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Figure 3.10: Localization of functionalized nanoparticles in a cellular context

with correlative microscopy. (a) Part of a HeLa cell containing functionalized

nanoparticles was first identified using fluorescent microscopy. (b) The same

region imaged using a coarse STXM scan. (c) A fine STXM scan was then

performed on a region of interest and a tomographic tilt series was acquired from

this region. (d) Ptychographic imaging of the same region as (c) to obtain a

higher resolution information. (e) Individual nanoparticles within and around the

leading edge of the cell identified by the ptychographic reconstruction. (Figure

reprinted from [140])
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Figure 3.11: STXM tomography reconstruction of the leading edge of a HeLa cell.

(a–c) Iso-renderings of the 3D reconstruction showing several high-density regions

(orange) within the cell, viewed along the z-, minus y- and x-axes, respectively. (d)

High-resolution ptychographic image confirming that the internalized high-density

regions correspond to uptaken nanoparticles by the cell. (e, f) Magnified views of

two regions in (d) labeled with cyan and yellow rectangles, respectively. (Figure

reprinted from [140])

tion techniques, such as filtered back projection, suffer greatly from elongation

artifacts when viewed along angles corresponding to unmeasured projections due

to the anisotropic resolution of reciprocal space along this direction (Fig. 3.8).

The clarity of our results is attributed to our reconstruction algorithm, GEN-

FIRE, which produces quality tomographic reconstruction from a limited number

of measured projections. In this particular example, views along the missing

wedge provide extended context that is critical for drawing biologically relevant

conclusions regarding particle internalization.

To reveal the local distribution of fluorescent Fe3O4-SiO2 nanolabels in or

near the HeLa cell, we performed 2D ptychographic CDI on regions of interest

identified from the 3D reconstruction using STXM tomography (Fig. 3.11a, b and

c). Our ptychographic scans produced high-resolution images that allow visual-

ization of individual nanolabels in a correlative manner (Fig. 3.11 d, e and f).

The images also show, with high contrast, fine features such as membrane ruffles,
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Figure 3.12: Phase and magnitude ptychographic images of cellular structure with

functionalized nanoparticles. (a) Phase image of the ptychographic reconstruction

of a HeLa cell labeled with core-shell nanoparticles showing high contrast for

cellular features such as membrane ruffles and fillipodia. (b) Magnified views of

the regions outlined by dashed boxes in (a), including (left to right) nanoparticles

alone, graphene-oxide coated lacey carbon, cell and nanoparticles, and cell alone.

The magnified view of the nanoparticles also demonstrates the phases ability to

discern the silica shell (light gray halo around cores indicated by black arrows)

as well as the two different oxidation states (light and dark cores). A larger

version of this can be seen in Fig. 3.17. (c) Magnitude image of the ptychographic

reconstruction showing high contrast for the Fe3O4 cores of the nanoparticles.

(d) Magnified views of the same regions shown in (b), highlighting the different

features that can be sharply resolved between the phase and magnitude images.

Scale bars represent 500 nm (a and c) and 200 nm (b and d). (Figure reprinted

from [140]) 61



filopodia, and the thin lacey carbon support (Fig. 3.12). The enhanced contrast

in these images is facilitated by the transparency of the grapheneoxide substrate

and the presence of Fe3O4-SiO2 nanolabels. The scattering signal produced by

regions of cellular material containing these nanolabels is stronger than that pro-

duced by cellular material alone. The total scattered intensity in the presence

of nanolabels increases by almost an order of magnitude compared to cellular

material alone or the substrate (Fig. 3.14). This increased image contrast and

resolution facilitates localization of the nanolabels even when embedded within

the cell. Fig. 3.12 shows the phase and magnitude of the high-resolution ptycho-

graphic images. The phase images show fine cellular features such as membrane

ruffles [145] and filopodia [146] (Fig. 3.12a and b), while the magnitude images

exhibit high contrast for the fluorescent Fe3O4-SiO2 nanolabels. Further cellular

detail, such as cytoskeletal components, are however obscured due to the limited

resolution and poor contrast of subcellular structures in a background of other

cellular components in 2D projection. This combination of the phase and mag-

nitude images allows us to determine the accurate localization of the nanolabels

near the cell periphery of, and inside the HeLa cell.

By imaging close to an absorption edge, we also made possible the distinction

of multiple oxidation states based upon recovered phase and absorption contrast

of the nanoparticles. Our magnitude images allow the precise localization of the

core-shell nanoparticles (Fig. 3.12c and d). The phases of our ptychographic recon-

structions show the presence of nanoparticle cores in two possible states, indicat-

ing potential differences due to oxidation (Fig. 3.12b and Fig. 3.13). This remains

consistent across projections and is not an artifact of reconstruction (Fig. 3.15).

Particles in the Fe3+ state, with an absorption resonance at 710 eV, will present

zero phase shift relative to vacuum because of the value of the real part of the

refractive index at the absorption resonance. Thus, those particles appear to have

an annular structure in the phase images, which highlight the presence of the silica
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Figure 3.13: Magnified view of nanoparticles from the phase of the ptychographic

reconstruction. The two different oxidation states of nanoparticles (light and dark)

are indicated by black arrows. The silica shell of the nanoparticles is also visible

as a light grey annulus. (Figure reprinted from [140])
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Figure 3.14: Increase in scattering power in regions containing nanoparticles.

Radial average profiles (top) and diffraction patterns (bottom) corresponding to

the zoomed in regions shown in Fig. 3.12 demonstrating an increase in scattered

photons at higher spatial frequency in the presence of nanoparticles. (Figure

reprinted from [140])

shell having non-zero phase shift. Although the initial step of the nanoparticle

synthesis a single iron oxide is expected (Fe3O4). During the course of the storage

at room temperature and in an aqueous medium, a subset of nanoparticles may

naturally oxidize from Fe3O4 to Fe2O3 [147]. The iron-oxide nanoparticles then

exist as a mixture of these two oxides, each with distinct oxidative states and,

consequently, distinct absorption coefficients at the Xray energies used in this ex-

periment. This difference in the scattering properties of our iron-oxide nanolabels

is evident in the phase images (Fig. 3.12b and Fig. 3.13). While we did not fo-

cus on a spectroscopic analysis and did not image over a range of probe energies

required to quantitatively measure the iron X-ray absorption coefficient of each

species, our correlative technique is in principle capable of spectroscopic studies,

allowing discernment of chemical species for a given nanoparticle in a cellular

context.
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Figure 3.15: Consistency of nanoparticle phase contrast across projections. Com-

parison of nanoparticles phase contrast between (a) -9.1◦ projections and (b) 0◦

projection. Corresponding zoomed regions are shown in (c) and (d), demon-

strating that the phase contrast is consistent for each particle across multiple

projections. (Figure reprinted from [140])
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3.2.6 Resolution estimation

Figure 3.16: Fourier Shell Correlation calculated from reconstructions of two half

sets of the STXM tomography data. The dashed line indicates a resolution of 157

nm. (Figure reprinted from [140])

To estimate the 3D resolution in STXM tomography, we compared indepen-

dent reconstructions performed on two separate halves of the tilt-series. The

Fourier shell correlation (FSC) between the two reconstructions is an approach

commonly used in single-particle cryo-electron microscopy to estimate the 3D res-

olution [148]. Based on the criterion of FSC = 0.143, we determined the 3D

resolution of the STXM tomography reconstruction to be 157 nm (Fig. 3.16).

Next, we estimated the resolution of our ptychographic reconstructions in two

ways. First, we calculated the average phase retrieval transfer function (PRTF)

for all of the patterns in a particular scan [149]. This gave us an upper and

lower bound of the resolution as being between 25 and 15.5 nm in the full period

based on a threshold of 0.5 (Fig. 3.17). Second, we performed line scans across

individual nanoparticles, which are well resolved and of known size (∼73 nm with

∼22 nm core). Line scans across the nanoparticle cores show that spacing of 3
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pixels or greater can be easily distinguished, from which we estimate a resolution

of ∼16.5 nm in the full period (Fig. 3.17). Taking both of these into account, we

estimated the overall resolution in our images to be approximately 16.5 nm in the

full period.

Figure 3.17: Resolution estimates of ptychography reconstructions. (a) Zoom in

of a region with well isolated iron oxide cores from the magnitude image of the

-9.1◦ ptychography projection. (b) Line scan across the dashed white line in (a)

showing clearly resolved edge-to-edge separation of 16.5 nm between individual

nanoparticle cores. The black arrow indicates the center of the first core in (a). (c)

Average phase retrieval transfer function (PRTF) calculated from all 7500 patterns

in each dataset for the three principle projections used for further analysis. The

cut-off at 0.5 shows that the resolution of the whole images lies somewhere between

25 nm and 15 nm. (Figure reprinted from [140])
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3.2.7 Radiation dose and damage

Radiation dose is fundamentally limiting to high resolution imaging experiments.

Our current experiment does not benefit from the advantage of cryo-protection

and therefore directly suffers from the imparted X-ray dose at 710 eV. We limited

the total dose on the sample by first obtaining low-dose STXM images of the

sample. Each STXM projection imparts an estimated dose of only 25 Gy, with a

full tomogram imparting a dose of 1.45x103 Gy; this is well within the tolerable

limit for our desired resolution in 3D [39]. A single ptychography scan imparted

a dose of 1.17x103 Gy per projection on the sample, similar to the total dose

for the STXM tomography dataset. For this reason, while a full ptychographic

tomography series was captured, we limited our analysis to a subset of measured

projections suspecting that the high dose could lead to changes in sample mor-

phology during the course of the tomography series. The zero degree projections

taken before and after the ptychographic tomography series confirm these changes.

In contrast, the appearance and localization of nanoparticles, which are more tol-

erant to dose, remains unchanged (Fig. 3.18). Since the total dose imparted to

this cell is within the tolerable limit for cryogenically frozen samples [19], we be-

lieve that cryo-preservation alone will facilitate similarly high-resolution results

in 3D. Furthermore, cryo-preservation will alleviate some of the issues related to

interpreting cellular ultra-structure as the cells will be preserved in a more natu-

ral state. The combination of higher-resolution and more faithful preservation of

cellular material will significantly benefit this imaging method.

3.2.8 Synthesis and characterization of fluorescent Fe3O4-SiO2 core-

shell nanoparticles

The Nanoparticles (NPs) synthesis protocol was adapted from the literature [150,

151] to generate fluorescent Fe3O4-SiO2 NPs as follows. A mixture of hydrated
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Figure 3.18: Comparison of the 0◦ projection before and after tomography series

acquisition. (a) Phase image of the zero degree projection before tomography.

(b) Phase image of the zero degree projection after tomography. The two images

show clear differences (highlighted by white arrows) mostly relating to an overall

loss of mass of the cell due to radiation damage. (c) and (d) Zoom in of the

highlighted region in (a) and (b) respectively demonstrating that fine features

and nanoparticles remain largely unchanged during the full exposure time. (Figure

reprinted from [140])
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iron oxide (FeO(OH), 0.181 g), oleic acid (3.180 g) and docosane (5.016 g) was

prepared in a round flask and stirred under vacuum for 1 h. This mixture was re-

fluxed at 350◦C for 2 h in argon atmosphere. After cooling to room temperature,

the resulting black solid was dissolved in pentane, mixed with an ether:ethanol so-

lution (2:1) and centrifuged. The decomposed organic black solution was removed

and the Fe3O4 nanoparticles were re-dispersed in pentane and washed with the

ether:ethanol solution. After centrifugation, the NPs were stabilized with oley-

lamine (200 µL) and dispersed in chloroform. Then, 1.75 mL of 2 M NaOH

solution was added into 200 mL of a CTAB solution (25 g.L-1) and this mixture

was kept at room temperature for 1 h under constant stirring. This mixture was

heated up to 75 ◦C and 7.5 mL of Fe3O4 NPs chloroform suspension was slowly

added into the CTAB basic aqueous solution under vigorous stirring. The for-

mation of an oil-in-water microemulsion resulted in a turbid brown solution. The

resulting solution was vigorously stirred for 2 h at 75 ◦C resulting in a transparent

black Fe3O4/CTAB suspension. Then, 5 mL of tetraethylorthosilicate (TEOS)

and 5 mL of FTIC-APTES (10 mg of fluorescein isothiocynanate [FITC] was re-

acted with 250 µL of 3- aminopropyltriethoxysilane [APTES] in 10 mL of ethanol

for 2 h) were added to the Fe3O4/CTAB suspension and stirred for 3 h at 75 ◦C

to obtain the fluorescent Fe3O4-SiO2 NPs. These nanoparticles were washed 3

times with ethanol to remove the unreacted species and then dispersed in 20 mL

of ethanol. The remaining sample was refluxed twice with an alcoholic solution of

ammonium nitrate (6 g.L-1, NH4NO3) at 50◦C to remove CTAB from the NPs

pores. After washing them twice with ethanol, the fluorescent Fe3O4-SiO2 NPs

were dried under airflow for a few hours. All chemicals used along this protocol

were purchased from Sigma-Aldrich. The morphology of the nanoparticles was in-

vestigated on a JEM 2100 JEOL transmission electron microscope. The samples

were prepared by dropping a few drops of a highly diluted ethanolic nanoparticle

suspension on regular TEM grids. The corresponding particle size distribution
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was obtained by measuring the core and the nanoparticle diameters of more than

400 particles.

3.2.9 Preparation of graphene-oxide coated lacey carbon TEM grids

All the biological assays were performed on a substrate composed of a Gold 400

Mesh TEM grid with lacey carbon. Additionally, a graphene layer was deposited

on top of the lacey carbon to allow the culture of adherent cells on the TEM grid.

The graphene layer was created by deposition of graphene oxide on the TEM

grid by the drop-casting method. A solution composed of 50% ethanol in double

distilled water containing graphene oxide sheets is dropped on top of the TEM

grid. After drying, TEM grids were annealed at 150◦ C for 30 min creating a

homogeneous surface. This process also guarantees sterilization of the TEM grid.

The prepared TEM grid was submerged in Dulbeccos modified Eagles medium

(DMEM) supplemented with 10% fetal calf serum and placed on the bottom of

a cell culture dish. Next, suspended HeLa cells are dropped on the solution and

maintained at 37◦ C in a 5% CO2 atmosphere

3.2.10 Nanoparticle treatment

The HeLa cells that had adhered to the graphene TEM grid were treated with

the core-shell nanoparticles. The nanoparticles were suspended in distilled water

(100µg/ml), and a few drops were added to the solution and dispersed gently.

Cells were exposed to nanoparticles for 30 min, the medium was removed and

the cells were gently washed with medium. Finally, the cells were fixed with

paraformaldehyde.
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3.3 Discussion

The power of correlative microscopy lies in its potential to bridge the gap be-

tween complementary techniques, possibly expanding where a given method may

be limited. Ptychographic CDI can provide high contrast images with a spatial

resolution in the tens of nanometers from relatively thick, extended cells, partic-

ularly in the soft X-ray regime. As such, it is well suited to image in the regime

between visible light and electron microscopy and its incorporation into correla-

tive schemes is an area of active research [112, 113, 127, 152]. However, biological

specimens are a challenge to image with high resolution due to their sensitivity to

radiation. This sensitivity imposes strict limits on 3D imaging of cells, given the

high dose required to obtain multiple projections of a single cell. STXM tomog-

raphy complements ptychographic imaging, providing an opportunity to image a

radiation sensitive sample in 3D with a lower dose than a single ptychography

scan. In doing so, STXM tomography provides an overview of a large sample

region or an entire cell in 3D prior to high-resolution ptychographic imaging. In

the ideal correlative experiment, a labeled sample could be initially inspected by

fluorescence microscopy to identify temporal and spatial regions of interest. Then,

a STXM tilt series would provide an overview of the whole cell in 3D. Next, high-

resolution ptychographic imaging would provide near molecular details that could

be correlated with known cellular structures. Finally, electron microscopy could

be used to provide true molecular detail. The present revolution in imaging meth-

ods across the length scales will continue to benefit such correlative approaches. In

summary, we demonstrate a proof-of-principle correlative imaging method across

multiple length scales of mammalian cells treated with functionalized fluorescent

nanoparticles. Using a HeLa cell as a model system, we first identify cellular fea-

tures of interest by fluorescent microscopy and correlate them in 3D via STXM

tomography. We then image sub-regions of interest by ptychographic CDI with

a resolution of ∼16.5 nm. We observe fine biological features such as membrane
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ruffles and filopodia, and accurately localize individual fluorescent nanoparticles

near the cell periphery and inside the cell. By choosing X-ray energies near the Fe

L-edge, we enhance the image contrast of the coreshell Fe3O4-SiO2 nanoparticles

and identify them in two oxidation states. The ability to detect different oxida-

tion states is important when the magnetic properties of the nanoparticles play

a critical role in their function, such as magnetically induced heating of Fe3O4

nanoparticles in cancer therapy [99]. Although the nanoparticles were not targeted

to specific biological structures in this study, incorporation of targeting moieties

onto these nanoparticles is feasible and remains under investigation [153,154]. By

incorporating cryogenic techniques, the applicability and resolution of this method

can be further improved by removing the need for extensive fixation protocols [39].

Higher resolution would allow the visualization of subcellular organelles with much

greater detail, such that the interaction between nanoparticles and organelles can

be better understood. The ability to perform correlative cellular imaging and lo-

calize individual nanoparticles inside intact, unsectioned mammalian cells through

a combination of fluorescent microscopy, STXM tomography and ptychography

will not only yield a more comprehensive understanding of the cell as a complex

biological system, but also find applications in quantifying cellparticle interactions

in nanomedicine.
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CHAPTER 4

Correlative 3D X-ray fluorescence and

ptychographic tomography of un-labeled frozen

hydrated green algae

Accurate knowledge of elemental distributions within biological organisms is crit-

ical for understanding their cellular role. The ability to couple this knowledge

with overall cellular architecture in three-dimensional space deepens our mecha-

nistic understanding of cellular chemistry. Using an unsectioned, frozen-hydrated

Chlamydomonas reinhardtii cell as a model system, we report a new development

in three-dimensional correlative microscopy using cryogenic X-ray ptychography

and X-ray fluorescence microscopy. In combination with our recently developed

tomographic reconstruction algorithm (GENFIRE) we produce high quality tomo-

grams of the unlabeled alga’s cellular ultrastructure, alongside three-dimensional

distribution maps of key elements within the cell collected simultaneously. We

demonstrate GENFIRE’s ability to outperform conventional tomography algo-

rithms and also the improvements in reconstruction quality arising from GEN-

FIRE’s ability to self-correct inaccuracies in recorded experimental tomography

angles. We believe this application of correlative X-ray tomography will provide

biologists with a new tool to probe a myriad of biological specimen that can

provide new insights.
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4.1 Introduction

Imaging biological material in a native or near-native state is of fundamental

importance to modern high-resolution microscopy. Super resolution fluorescence

microscopy, for which the 2014 Nobel prize in Chemistry was awarded, allows

for the real-time imaging of cellular process at sub-wavelength resolutions [155,

156]. Cryo-electron tomography (cryo-ET) in combination with Focused Ion Beam

(FIB) milling now offers exquisite windows inside of cells, resolving organelles and

even individual protein complexes without the need for additional staining [157].

However, these techniques are not without limitations. The need for fluorescent

labels potentially removes the cellular context of observed events and, the penetra-

tion depth of electrons through soft matter limits cryo-ET to either small cells or

thin sections. Circumventing these difficulties require the use of additional tech-

niques. One promising approach currently under development is coherent diffrac-

tion imaging [64,70] (CDI). CDI requires the collection of oversampled diffraction

patterns from noncrystalline samples using bright coherent photons from sources

including synchrotron radiation [10,67,119,127,140,158–160], high harmonic gen-

eration [104,161,162] and X-ray free electron lasers [107,124,163–165]. These pat-

terns are then computationally inverted to produce an image using iterative phase

retrieval algorithms such as hybrid input output [166] or oversampling smooth-

ness [167]. Where hard X-rays are used as the illumination source, CDI permits

imaging of thick biological samples without chemical labeling, due to their high

penetration depth and natural contrast due to electron density. Ptychography, a

scanning variant of CDI, has proven a powerful method for imaging a wide range

of organic and inorganic materials such as whole cells, bone and integrated circuits

in 2D and 3D [68, 119, 127, 129, 140]. A significant advantage of ptychography is

that it does not require the sample to be isolated, and fields-of-view of more than

100 µm2 can be achieved while maintaining resolution below 20nm [140]. Due

to their short wavelength, hard X-rays also have the ability to stimulate X-ray
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fluorescence from many different elements. This is exploited in X-ray fluorescence

microscopy (XFM) to quantitatively map the distribution of trace elements within

cells [168–170]. Both ptychography and XFM provide different but complemen-

tary information regarding the specimen of interest, and when combined they can

offer deeper insights into relationship between structure and function in biological

organisms.

Previously simultaneous ptychography and XFM has been achieved in 2D

[127, 160], but its 3D extension has not been demonstrated. In this work, we

demonstrate this correlative 3D imaging method on unlabeled frozen-hydrated

green algae (Fig. 4.1 summarizes the experiment). The tomographic reconstruc-

tions were performed using using GENFIRE to reconstruct an intact, cryogenically

preserved Chlamydomonas reinhardtii alga cell acquired using ptychography and

XFM. Using ptychographic tomography we have mapped the three-dimensional

cellular location of polyphosphate bodies and the pyrenoid inside the alga and

then confirmed the identity of these structures using 3D elemental distribution

maps recorded by XFM.

4.2 Results

4.2.1 GENFIRE Reconstructions

Fig. 4.2a, b and Fig. 4.2c, d show GENFIRE 3D XFM and ptychography phase-

contrast reconstructions, respectively. The P and Ca XFM volumes are in excel-

lent agreement with each other [172], and 3D mappings show distribution of the

polyphosphate bodies along the cell wall in the lower half of the alga. Opposite the

polyphosphate bodies, the S volume indicates localization of the pyrenoid due to

high local concentration of the enzyme RuBisCo inside the organelle surrounded

by a low-density area that is indicative of the starch sheath. The Cl concentra-

tion is primarily at the periphery, while the K volume shows clear K localization
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Figure 4.1: Experimental schematics for simultaneous X-ray fluorescence and pty-

chography measurements. A coherent monochromatic X-ray beam was focused by

a Fresnel zone plate into a small focal spot on the sample. The sample preserved

in the cryogenic environment was raster fly-scanned in the x-y plane. During the

scan fluorescence signals and diffraction patterns were simultaneously recorded by

a fluorescence detector and a pixel array detector, respectively. After finishing a

2D scan, the sample was rotated to a new angle until completing the whole 3D

scan. (Figure reprinted from [171])
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within the alga, suggesting the cell is well-preserved during the freezing process.

The ptychography phase-contrast reconstruction shows similar localization of the

pyrenoid and polyphosphate bodies inside the cell. During data acquisition, the

focused X-ray beam was allowed to dwell on one spot of the cell for an extended

amount of time at the 0◦ position as the shutter was unintentionally left open,

which resulted in a burnt hole through areas of the cell. This burnt hole can be

seen in the 7th slab in Fig. 4.2c as a ∼0.6 µm wide and ∼2.2 µm long void near

the polyphosphate bodies within the cell.

Figure 4.2: GENFIRE X-ray fluorescence and ptychography tomography recon-

structions. (a) Zero-degree projection of reconstructed volume of P, Ca, S, Cl and

K channels, respectively. (b) rotated view of the composite reconstructed volume,

60◦ apart in each image, showing clear localization of pyrenoid (S channel) near

the top and polyphosphate bodies near the bottom (P and Ca channels). Scale

bar 4 µm. (c) slabs of ∼2 µm thickness through the ptychography tomographic

volume, showing various organelles and a damaged spot in slab 7 due to overex-

posure. Scale bar 4 µm. (d) cut outs of the entire reconstructed volume viewed

along the 80◦ direction. (Figure reprinted from [171])
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4.2.2 Comparison of GENFIRE with Other 3D Reconstruction Algo-

rithms

When the number of projections is limited, due to either the missing wedge prob-

lem at high tilt or the threshold on imparted dose before radiation damage, GEN-

FIRE produces better 3D reconstructions than other conventional tomographic

methods such as filtered back projection (FBP) [3, 28]. Fig. 4.3a-e show the

projections of FBP reconstructed volumes along the missing wedge direction for

ptychography, P, S, Ca and K channels, respectively, and Fig. 4.3f-j show the same

projection for GENFIRE reconstructed volumes. GENFIRE’s Fourier-based ap-

proach provides a better recovery of missing data and more detailed information

on cellular ultrastructure in all cases. For a more detailed comparison and analysis

of GENFIRE with other tomographic reconstruction algorithms, see Chapter 2.

4.2.3 Angular Refinement

Prior to alignment, unprocessed projection images showed noticeable out-of-plane

rotation and drift from tilt axis due to imperfect motor stage movement. Inaccu-

racies in projection alignment in any direction will result in lower reconstruction

resolution. In extreme cases, this may lead to misinterpretation of reconstruction

artifacts in the cell as true cellular features. To algorithmically correct this ex-

perimental error in projection tilt angles, an angular refinement procedure was

incorporated into the GENFIRE tomographic reconstruction workflow [28]. Be-

cause X-ray fluorescence and ptychography data were acquired simultaneously in

this work, the P channel projections were used for initial angular refinement as

they had the best signal-to-noise ratio, and the resulting updated angles were used

for all other reconstructions. Angular deviations were found to be between 2◦ in

and (i.e. out-of-plane of rotation) and 1.5◦ along the rotation axis (Fig. 4.3k).

Fig. 4.3l shows noticeable improvement in reconstruction quality after angular re-
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finement. The blue and green solid volumes represent the reconstructions before

and after angular refinement, respectively. Individual polyphosphate bodies in

close proximity are better differentiated and isolated after refinement.

4.2.4 Estimation of 3D resolution

We quantified the 3D resolution of the reconstructions by plotting the density

variations across a polyphosphate body in 3 axial directions (Fig. 4.4a, b) and

(2) 3D power spectrum analysis (Fig. 4.4c). Both analyses indicate a half-period

resolution of ∼125 nm along the x and y axes and ∼140 nm along the z direction

for 3D fluorescence reconstruction, and 3D ptychography reconstruction has a

half-period resolution of ∼45 nm along the x and y axes and ∼55 nm along the

z direction. The decrease in resolution along z direction is expected due to the

sparsity of data along this direction, i.e. the missing-wedge effect.

4.3 Discussion

4.3.1 Correlative imaging identifies cellular ultrastructure in 3D with-

out chemical labeling

Simultaneous tomography of X-ray fluorescence and ptychography provide com-

plementary structural information about the cell. In this experiment, phase imag-

ing via X-ray ptychography provided a high resolution 3D map of C. reinhardtii’s

ultrastructure with contrast dictated by its electron density, highlighted distri-

bution of polyphosphate bodies and pyrenoid in the cell, and even localized the

small cellular volume that is affected by beam-induced radiation damage. In a

complementary fashion, XFM confirms the identity of P-rich polyphosphate bod-

ies and pyrenoid based on the distribution of specific trace elements within them.

Importantly, all this mapping and identification is realized without sectioning and
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Figure 4.3: GENFIRE and filtered back projection (FBP) reconstruction compar-

ison and angular refinement. (a–e) FBP reconstructions for ptychography phase

contrast, P, S, Ca and K channels, respectively (f–j) GENFIRE reconstructions

of the corresponding volumes as shown in a–e, showing excellent recovery of miss-

ing information in the missing wedge direction. Scale bars 4 µm. (k) Angular

refinement results revealing angular deviations from zero-degree tilt axis along

the and angles (Green: deviation, red: deviation, cyan: deviation). (l) Improve-

ments in P channel 3D reconstruction as result of angular refinement. Light-blue

and green volumes are before and after angular refinement, respectively. Red

boxes highlight volumes where angular refinement improved resolution of individ-

ual polyphosphate bodies. (Figure reprinted from [171])
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Figure 4.4: Quantification of 3D resolution. (a) one-pixel thick layer of a recon-

structed polyphosphate body in P channel XFM volume along x and y (top left)

and z directions (top right). Line scan profiles along the dash lines shown in the

top images gives half-period resolutions of ∼125 nm, ∼125 nm and ∼140 nm in x, y,

z, respectively (bottom). (b) One-pixel layer through the burnt hole in ptychog-

raphy reconstruction in x and y (top left) and z (top right). Line scan indicates

resolution of ∼45 nm along x and y directions, and ∼55 nm along z. (c) 3D power

spectrum analysis of XFM (top row) and ptychography (bottom row) along 3 axial

directions, with cutoff spatial frequency at azimuthally averaged signal deviates,

showing good agreement in resolution. (Figure reprinted from [171])
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without the need for additional labeling and chemical interventions. To extend

this correlative imaging methodology to three dimensions, GENFIRE was used to

produce 3D reconstruction at sufficient resolutions to isolate individual organelles

in 3D. Tomograms provide more clarity about the alga’s structure as individual

organelles can be mapped in 3D. This type of 3D information can be valuable in

other studies where knowing precise distributions or localization of organelles and

its internal elemental composition can provide insights into the cell’s metabolic

state or cellular fate. GENFIRE may also be used as part of an angular refine-

ment procedure to optimize the 3D reconstruction. Our angular refinement result

shows small angular deviations in the initial 2/3 of the projections, suggesting

that the tomography stage appeared to be stable early on during data acquisi-

tion. However, detected angular deviations increased noticeably in the last 1/3

of projections, indicating that the stage is behaving more erratically toward the

end of the 3-day experiment. This type of diagnostic information can help devise

better data collection schemes to improve the quality of data obtained.

4.4 Conclusion

In this work we have demonstrated a novel application of the GENFIRE tomogra-

phy reconstruction algorithm by applying it to a correlative X-ray ptychography

and X-ray fluorescence microscopy imaging experiment of a frozen-hydrated cell.

The 3D fluorescence maps show clear localizations of P-rich polyphosphate bodies

and the pyrenoid within the alga, and 3D ptychography map reveals the sur-

rounding ultrastructure with enhanced elemental contrast. We also demonstrate

the superior capability of GENFIRE as a tomography reconstruction method and

showcased its angular refinement feature to computationally optimize tomogra-

phy angle inaccuracies due to stage imperfections during data acquisition. The

combination of ptychographic and fluorescence tomography can reveal detailed in-
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formation on cellular ultrastructure and intracellular trace element distributions.

Furthermore, X-ray’s high penetration depth and recent advancements in cryo-

genic sample preservation permit this method to image thick whole cells. This is

an especially desirable tool for biologists who are interested in visualizing whole

cells in their native state in 3D without any sectioning or chemical labeling. This

type of high resolution correlative 3D imaging cannot be achieved with cryo-

genic electron tomography, which is limited in sample thickness to ∼1 µm due

to absorption. Moreover, compared to super-resolution optical microscopy, which

allows for the selective fluorescent labeling of molecules or molecular assemblies,

X-ray diffraction microscopy is based on the natural density variations of biolog-

ical specimens, so it enables quantitative 3D imaging of whole cells and cellular

organelles. In the future this correlative imaging tool can be applied to construct

more sophisticated biological 3D models of cellular organisms. With the contin-

ued development of specialized beamlines for X-ray ptychography and XFM, we

believe this method will become a powerful tool for biologists to study cellular

processes and the changes in chemical distributions that govern them.

4.5 Materials and Methods

4.5.1 Sample Cryo-preparation

C. reinhardtii (about 10 um) were grown to the early exponential phase in Tris-

Acetate-Phosphate medium at 296 K on a rotary shaker (100 rpm). Five micro-

liters of cell suspensions were dropped onto a plasma treated Si3N4 window (200

nm thick, 1.5 mm x 1.5 mm membrane area). The window was then mounted to a

VitrobotTM Mark IV plunge freezer (FEI), where the temperature and humidity

were set and equilibrated at 22◦ C and 100%, respectively. The window was blot-

ted for 2 seconds at the blot force of 0, and then immediately plunged into a liquid

ethane bath cooled by liquid nitrogen. The cryogenically prepared samples were
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observed using a cryogenic light microscope and then stored in liquid nitrogen

until they were retrieved for scanning in the X-ray microscope. Cells embedded

in various thickness of ice layer were scanned.

4.5.2 Ptychography and XFM 2D Projection Acquisition

Our experiment was carried out at the Bionanoprobe, a hard X-ray nanoprobe

with cryogenic sample environment and transfer capabilities located at the Ad-

vanced Photon Source at Argonne National Laboratory [173]. For X-ray mea-

surements, a monochromatic X-ray beam at 5.5 keV photon energy was spectrally

filtered using a double-crystal Si < 111 > monochromator. Details of the exper-

imental setup (shown in Fig. 4.1) are as follows. A Fresnel zone plate with an

outermost zone width of 70 nm was used to focus the coherent X-ray beam down

to a spot size of approximately 90 nm. The cryogenically-preserved sample was

placed at the focus position, and was scanned in fly-scan mode for data collec-

tion [160, 174]. In this fly-scan mode, the fast scan was set along the horizontal

x direction, where a piezo scanning stage was set to move across a scan line at

a constant velocity by a Delta Tau Turbo PMAC2 Ultralite VME motion con-

trol system; the control system used feedback provided by a laser interferometer

system reading piezo scanning stage positions to match the desired position and

send triggers to detectors. As the sample was on-the-fly scanned, a collimated

four-element silicon drift detector (Hitachi Vortex-ME4, mounted at 90◦ to the

incident X-ray beam) and a Dectris Pilatus 100K hybrid pixel array detector (2 m

downstream of the sample) were simultaneously triggered for every 50 nm sample

motion to record both the fluorescence signals and ptychographic diffraction pat-

terns, respectively. The corresponding pixel time for each acquisition was 65 ms,

including 4 ms data readout time between triggers in Pilatus detector. A single

projection scan covered 10µm x 10µm field of view which took about 48 mins

to collect ∼40,000 data points. For tomography, the sample was rotated with 2◦
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angular spacing, a total of 63 projections at different angles were acquired in an

angular range of -68◦ to 56◦.

4.5.3 GENFIRE Tomographic XFM Reconstructions

For XFM tomography, the best 53 out of the 63 projections were manually selected

for the dataset from each of the 5 fluorescence channels (Fig. 4.5- 4.9). Hot pixels

in the fluorescence images caused by readout errors were removed. In addition,

a background subtraction was performed on each projection as follows. First the

image was smoothed with a Gaussian kernel and a threshold was applied to define

a region outside of the cell. This region was used to calculate a mean background

which was subsequently subtracted from each image. Center of mass alignment

was performed on the P channel to center the alga to the tilt axis, since the isolated

phosphate bodies in the P channel had relatively high signal-to-noise ratio, and

these parameters were used to align other channels’ projection images which were

acquired simultaneously and thus shared the same set of orientation parameters.

4.5.4 GENFIRE Ptychography Tomographic Reconstruction

2D ptychographic projections were reconstructed by a custom software developed

for fly-scan ptychography [174]. This code employs graphical-processing-units

(GPUs) to speed up data processing [175]. For reconstruction, a central area of 256

x 256 pixels of each diffraction pattern was used, resulting in an image pixel of 10.2

nm. Extended ptychographic iterative engine (ePIE) algorithm [118] was applied

with 200 iterations in each ptychography reconstruction. As the monochromator

was not stable at the beginning of the experiment, the reconstruction qualities of

the first few scans were poor due to an unstable beam function. After excluding

these scans and other low-quality projections, only 47 ptychographic projections

were used for tomography (Fig. 4.10). The real space 2D phase projection images
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Figure 4.5: P channel XFM projections. (Figure reprinted from [171])
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Figure 4.6: Ca channel XFM projections. (Figure reprinted from [171])
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Figure 4.7: S channel XFM projections. (Figure reprinted from [171])

89



Figure 4.8: Cl channel XFM projections. (Figure reprinted from [171])
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Figure 4.9: K channel XFM projections. (Figure reprinted from [171])
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Figure 4.10: Ptychography projections after image pre-processing (i.e. back-

ground subtraction, alignment, masking). (Figure reprinted from [171])
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were then background subtracted, aligned by the center-of-mass method [22], and

binned prior to tomographic reconstruction. For both tomographic reconstruc-

tions, 50 iterations of GENFIRE reconstruction were run with an oversampling

ratio of 2, followed by 5 iterations of angular refinement to obtain the final recon-

structed volumes.

4.5.5 Quantification of Radiation Dose

The X-ray flux after the FZP focusing was of the order of 3 x 108 photons/s. For

each projection the estimated radiation dose deposited to the sample with 65 ms

exposure time per 50 nm2 pixel was about 2.07 x 107 Gy. In the tomography

scan consisting of 63 projections, there was 1.30 x 109 Gy in total imparted to the

sample.

4.6 Acknowledgements

We thank NIH NIGMS for support of this work under grant 1R01GM104530.

The Bionanoprobe is funded by NIH/NCRR High End Instrumentation (HEI)

grant (1S10RR029272-01) as part of the American Recovery and Reinvestment

Act (ARRA). Use of the Advanced Photon Source, an Office of Science User

Facility operated for the U.S. Department of Energy (DOE) Office of Science by

Argonne National Laboratory, was supported by the U.S. DOE under Contract

No. DE-AC02-06CH11357.

93



CHAPTER 5

Deciphering chemical order/disorder and

material properties at the single-atom level

Perfect crystals are rare in nature. Real materials often contain crystal defects and

chemical order/disorder such as grain boundaries, dislocations, interfaces, surface

reconstructions and point defects [29, 176, 177]. Such disruption in periodicity

strongly affects material properties and functionality [29,176,177]. Despite rapid

development of quantitative material characterization methods [1,2,22,29,56,57,

178–187], correlating three-dimensional (3D) atomic arrangements of chemical or-

der/disorder and crystal defects with material properties remains a challenge. On

a parallel front, quantum mechanics calculations such as density functional theory

(DFT) have progressed from the modeling of ideal bulk systems to modeling “real”

materials with dopants, dislocations, grain boundaries and interfaces [188, 189];

but these calculations rely heavily on average atomic models extracted from crys-

tallography. To improve the predictive power of first-principles calculations, there

is a pressing need to use atomic coordinates of real systems beyond average crys-

tallographic measurements. Here we determine the 3D coordinates of 6,569 iron

and 16,627 platinum atoms in an iron-platinum nanoparticle, and correlate chem-

ical order/disorder and crystal defects with material properties at the single-atom

level. We identify rich structural variety with unprecedented 3D detail including

atomic composition, grain boundaries, anti-phase boundaries, anti-site point de-

fects and swap defects. We show that the experimentally measured coordinates

and chemical species with 22 picometre precision can be used as direct input for
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DFT calculations of material properties such as atomic spin and orbital mag-

netic moments and local magnetocrystalline anisotropy. This work combines 3D

atomic structure determination of crystal defects with DFT calculations, which is

expected to advance our understanding of structureproperty relationships at the

fundamental level.

5.1 Introduction

Intermetallic compounds such as FePt with an ordered face-centred tetragonal

(L10) phase are very promising candidates for next-generation magnetic data stor-

age media and permanent magnet applications [190–194]. As-synthesized, FePt

thin films and nanoparticles have a chemically disordered face-centred cubic (fcc)

structure (A1 phase). When annealed at high temperatures, they undergo a tran-

sition from an A1 phase to an L10 phase or to a chemically ordered fcc (L12)

phase, depending on the chemical composition [191–194]. Owing to the chemical

ordering and strong spin-orbit coupling, L10 FePt exhibits extremely large mag-

netocrystalline anisotropy energy (MAE) [190]. DFT calculations of model FePt

nanoparticles have been performed to elucidate the roles of morphology, capping

layers and surface segregation in determining the particles spin, orbital magnetic

moments and MAE [193,195,196], which were compared with experimental mea-

surements from electron microscopy, magnetometry and X-ray magnetic circular

dichroism [193, 197, 198]. However, despite extensive studies of this material sys-

tem, a fundamental understanding of 3D chemical order/disorder, crystal defects

and the resulting magnetic properties at the individual atomic level remains elu-

sive. Here we report the precise determination of the 3D coordinates and chemical

species of 23,196 atoms in a single 8.4-nm Fe0.28Pt0.72 nanoparticle using atomic

electron tomography (AET) [29].
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5.2 Methods

5.2.1 Sample preparation

FePt nanoparticles were synthesized following procedures published elsewhere

[199]. Briefly, 0.5 mmol platinum(II) acetylacetonate (Pt(acac)2) was mixed with

20 ml phenyl ether under a gentle flow of nitrogen (N2). The mixture was heated

to 120◦C, and kept at that temperature for 10 min with magnetic stirring. Under

a nitrogen blanket, 1 mmol iron pentacarbonyl (Fe(CO)5) was quickly injected,

followed by sequential addition of 15 mmol oleic acid and oleylamine. The solution

was heated to 220◦C in 20 min and kept at that temperature for one hour. Then

the mixture was further heated to 260◦C and refluxed for another hour. After the

solution was cooled down to room temperature, the nanoparticles were precipi-

tated and purified by centrifugation. The collected nanoparticles were dispersed

in hexane for storage.

5.2.2 Data acquisition

Samples were prepared by depositing a solution of the FePt nanoparticles in

ethanol onto a 5-nm-thick silicon nitride membrane using an atomizer. After

the particles were applied to the silicon nitride membrane, they were annealed

at 600◦C for 25 min in high vacuum. A thin, ultra-pure carbon layer was then

applied over the course of 5 min at 700◦C to enhance the conductivity of the mem-

branes and to protect the particles from damage under the electron beam. Several

tomographic tilt series were acquired from FePt nanoparticles using the TEAM I

microscope and TEAM stage [30] at the National Center for Electron Microscopy

in the Molecular Foundry. Images were acquired at 300 kV in ADFSTEM mode

with a 30-mrad convergence semi-angle (resulting in a probe size of ∼0.5 Å), 48

mrad and 251 mrad detector inner and outer semi-angles, and a beam current of

5055 pA (Fig. 5.1). A high-quality tilt series was selected for this study because
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of its rich structural variety (Fig. 5.2).

Figure 5.1: Residual aberrations in the STEM probe. Estimates of the resid-

ual aberration coefficients as measured by the aberration corrector software on

a typical day preceding the ∼6-hour experimental tilt series measurement. The

2-fold astigmatism was optimized manually by the operator during the tilt series

to avoid issues with drift of the corrector lenses. All first-, second- and third-order

aberration coefficients were tuned by the operator to be lower than the reported

95% measurement confidence reported by the software. Only one fourth-order

coefficient (D4), a factory alignment not tuned by the operator, is reported as

typically larger than the confidence error. Such values will produce the best

possible probe size for this microscope based on geometrical estimates. (Figure

reprinted from [3])

This tilt series was collected at 68 angles with a tilt range of 65.6◦ to +64.0◦.

Ten images per tilt angle were measured with 3 µs dwell time to minimize image

blurring. Owing to imperfections in the calibration of the x- and y- scanning coils

in the microscopes STEM scanning system, an additional correction was applied

to the images to ensure square pixels. This scan distortion was measured using a

standard sample under the same imaging conditions and corrected using Fourier

methods [200].
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Figure 5.2: A representative tomographic tilt series from an FePt nanoparticle.

The 68 projection images with a tilt range from 65.6◦ to +64.0◦ (shown at top

right of each panel) were measured using an ADF-STEM. Careful examination

of images taken before and after the tilt series indicates the consistency of the

structure throughout the experiment. The total electron dose of the tilt series is

4.8x106 electrons per Å
2
. Scale bar at top left, 2nm. (Figure reprinted from [3])
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5.2.3 Image denoising

The 10 acquired images for each tilt angle were aligned by cross-correlation with

0.1 pixel steps and averaged. The ADF-STEM images collected with the TEAM I

microscope exhibit Poisson-Gaussian mixed noise [1], and follow the noise model

of Y = αP (ne) + N(µb, σb), where Y is the measured counts of each pixel, α

is the gain parameter (counts per electron), P (ne) is the Poisson distribution of

ne electrons, and N(µb, σb) is the normal distribution of the mean µb and the

standard deviation σb. The noise parameters α, µb, σb were estimated from the

local mean and the variance based on spatial averaging of acquired images. The

images were de-noised by sparse 3D transform-domain collaborative filtering [83],

while Anscombe variance-stabilizing transformation and its inverse were applied

to the images before and after denoising with estimated noise parameters [201].

The robustness of this denoising method has been tested by other experimental

data sets and multislice simulations [1].

5.2.4 GENFIRE reconstruction

After denoising, the 68 images were projected onto the tilt axis (y-axis) to ob-

tain 1D curves, and the images were aligned along the tilt axis by using cross-

correlation among the 1D curves. During this process, the optimal background

of each image was determined by maximizing the crosscorrelation among the 1D

curves and was subsequently subtracted from each image. Alignment along the

x-axis was achieved by the centre of mass method [2]. From the aligned tilt

series, a 3D reconstruction was performed using GENFIRE. GENFIRE started

with assembling a rectangular 3D Fourier grid from the measured images. For

each image, its Fourier transform represents a plane slicing through the origin

of the 3D Fourier grid (that is, the Fourier slice theorem [51]). For any Fourier

grid point (kx, ky, kz), a perpendicular distance (Dj) to the jth Fourier plane and
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the foot of the perpendicular line, (uj, vj), were calculated with j = 1, 2, ... 68.

The value of (uj, vj) was computed from the jth image using the discrete Fourier

transform instead of the fast Fourier transform (FFT) as (uj, vj) are non-integer

coordinates. By repeating the above procedure, we calculated the values of all the

(uj, vj) points with Dj smaller than a predefined threshold Dth, from which the

value of the grid point, F (kx, ky, kz), was computed using (Eq 2.1). By properly

choosing a suitable oversampling ratio and predefined threshold (Dth = 0.05 vox-

els and O = 4 in this case), we accurately computed the values of a small fraction

of grid points from the images (Eq 2.1). For the remaining grid points without

any (uj, vj) point satisfying Dj<Dth, we set them as undefined. The algorithm

then iterated between real and reciprocal space using the FFT and its inverse.

In real space, a support and positivity were incorporated as constraints. In this

case, a 256 x 256 x 256 voxel cube with smoothed edges was used as a support.

In each iteration, the values outside the support and the negative values inside

the support were set to zero. In reciprocal space, the grid points with measured

data were enforced as constraints in each iteration, while the values of the unde-

fined grid points were iteratively updated by the algorithm. The algorithm was

monitored by an error metric in each iteration, defined as the difference between

the values of the measured and calculated grid points. After 500 iterations, the

error metric could not be further improved and an initial 3D reconstruction was

obtained. To identify atomic positions and species with high precision, we have

implemented a method to refine the tilt angles from the initial 3D reconstruc-

tion, which is routinely used in single-particle cryo-electron microscopy [19, 74].

For each tilt orientation, we found the corresponding three Euler angles (φ, θ, ψ)

and scanned each of the Euler angles with a small angular increment. At each

increment, the 3D reconstruction was projected back to calculate a 2D image. An

error metric, defined as the difference between the calculated and measured im-

ages, was computed. By scanning all the three angles, we obtained an optimal set
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of the Euler angles for the tilt orientation, corresponding to the minimum error

metric. This procedure was repeated for all the tilt orientations (angles). Because

it is computationally intensive to calculate 2D images from a 3D reconstruction,

we refined θ and φ sequentially. We first scanned θ and used GENFIRE with

the refined θ angles to compute a new 3D reconstruction. We then repeated this

procedure for the φ angles. The angular refinement and reconstruction procedure

were iterated until there was no further improvement, producing a final 3D re-

construction. Our numerical simulation and additional experimental results have

indicated that GENFIRE produces superior 3D reconstruction relative to other

iterative tomographic methods [17,73] (Chapter 2).

5.2.5 Atom Tracing and Analysis

From the 3D reconstruction, we developed an atom tracing and classification

method to determine the coordinates of all individual Fe and Pt atoms based

on their local intensity distribution (Methods). This process resulted in a 3D

atomic model of 16,627 Pt and 6,569 Fe atoms. To verify this atomic model,

we applied multislice simulations to calculate 68 ADF-STEM images from the

model using the same experimental parameters (Methods). Fig. 5.6ac shows good

agreement between a measured and a simulated (multislice) image. Using the

same reconstruction, atom tracing and classification procedures, we obtained a

new 3D model consisting of 16,577 Pt and 6,747 Fe atoms. Compared to the

experimental atomic model, 99.0% of all atoms are correctly identified in the new

3D model and the root-mean-square deviation of the common atom positions

is 22 pm. (Fig. 5.6d). To further confirm the precision of our atomic position

measurements, we performed a lattice and structural analysis of the experimental

3D atomic model and determined the atomic displacements of the nanoparticle

(Fig. 5.3).

By comparing the atomic positions to an ideal fcc lattice, we estimated an
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Figure 5.3: Measurements of 3D atomic displacements in the FePt nanoparti-

cle. (a-c), Atomic displacements along the [100] (a), [010] (b) and [001] (c)

directions, determined by quantitatively comparing the measured atomic coordi-

nates with an ideal fcc lattice. (d), 3D atomic displacements in the nanoparticle.

The displacement fields indicate that the FePt nanoparticle does not contain sub-

stantial strain; the only small strain is observed at the interface between the

nanoparticle and the substrate. The black lines in the images show the grain

boundaries, indicating that the grain boundaries were not caused by the strain.

(e-h), [100] facets of the FePt nanoparticle (black arrows) that are dominated by

Pt atoms. (i-l), [111] facets of the FePt nanoparticle (white arrows) that are less

dominated by Pt atoms. This experimental observation confirms previous Monte

Carlo simulations, which suggested that when there are excess Pt atoms in the

fcc cuboctahedral FePt nanoparticle, the [100] facets are more occupied by Pt

atoms, while the [111] facets are not. The aggregation of the Fe atoms on two

opposite surfaces of the nanoparticle is due to the missing wedge problem. (Figure

reprinted from [3]) 102



average 3D precision of 21.6 pm which agrees with the multislice result. Next, we

classified the 3D chemical order/disorder of the FePt nanoparticle by determining

the short-range order parameter (SROP) of all phases present in the 3D structure

(Methods). The nanoparticle consists of two large L12 FePt3 grains with inter-

locking concave shapes (Fig. 1). Seven smaller grains are located at the boundary

between the two large L12 grains, including three L12 FePt3 grains, three L10

FePt grains and a Pt-rich A1 grain (Fig. 5.4b). This level of complexity of the 3D

chemical order/disorder can only be fully revealed by AET [29]. To illustrate this

point, we used multislice ADF-STEM simulations to calculate 2D images from

the 3D atomic model along the [100], [010] and [001] directions (Fig. 5.4c). Sev-

eral L10 grain signatures appearing in the 2D images (magenta in Fig. 5.4c) are

actually deceptive structural information, derived from the overlapping of the two

large L12 grains.

Figure 5.5a shows the 3D grain boundaries (black lines) of the nanoparticle.

The grains are more ordered in their cores and become less ordered closer to their

surfaces. Four representative cut-outs of the atomic model are shown in Fig. 5.5be.

The most chemically ordered region of the nanoparticle is at the core of a large

L12 grain with a SROP close to 1 (Fig. 5.5b). Fig. 5.5c shows the grain boundary

width varying between two large L12 grains. Anti-phase boundaries between the

two L12 grains are also observed. The largest L10 grain is shown in Fig. 5.4b

(third grain from the left) and Fig. 5.5d. This L10 grain sits between the two

large L12 FePt3 grains (Fig. 5.5a) with each of its two Fe sub-lattices matching

the Fe sub-lattice of the neighbouring L12 grains, suggesting the shared Fe lattice

with its neighbouring grains may have facilitated the nucleation of the L10 phase.

The central region of the nanoparticle has the highest degree of chemical disorder,

including a Pt-rich A1-phase grain (Fig. 5.5e), with much lower SROP values than

those in the two large L12 grains.

With the exponential growth of computing power and improvements in ab ini-
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Figure 5.4: 3D determination of atomic coordinates, chemical species and grain

structure of an FePt nanoparticle. (a), Overview of the 3D positions of individual

atomic species with Fe atoms in red and Pt atoms in blue. (b). The nanoparticle

consists of two large L12 grains, three small L12 grains, three small L10 grains

and a Pt-rich A1 grain. (c), Multislice images obtained from the experimental 3D

atomic model along the [100], [010] and [001] directions, where several L10 grains

(magenta) appearing in the 2D images are deceptive structural information. color

bars indicate the degree of ordering, from pure L12/L10 to chemically disordered

fcc. Scale bar, 2nm. (Figure reprinted from [3])
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Figure 5.5: 3D identification of grain boundaries and chemical order/disorder.

(a) Atomic coordinates and species of the FePt nanoparticle divided into slices

one fcc unit-cell thick. The grain boundaries are marked with black lines. (b-e)

Four representative cut-outs of the experimental atomic model, showing the most

chemically ordered L12 region of the particle (b). a grain boundary between

the two large L12 grains (c), the largest L10 grain (d), and the most chemically

disordered region of the particle centred on a Pt-rich A1 grain (e). The locations

of the cut-outs are labelled in parentheses in (a), and the SROP of each cut-out is

averaged along the [010] viewing direction and displayed as the background color

(see color bar at left of (b–e). (Figure reprinted from [3])
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tio techniques, our measured atomic coordinates of the whole FePt nanoparticle

with 23,196 atoms could be used as direct input for first-principles calculations.

The local MAE and atomic magnetic moments extracted from the nanoparticle

could then be used as parameters for micromagnetic simulations33, whose preci-

sion is at present limited by parameters taken from either bulk or modelled values.

Looking forward, the ability to determine the chemical order/ disorder and crystal

defects with high precision and to correlate their 3D atomic arrangements with

material properties at the single-atom level is expected to find applications in

materials science, physics, chemistry, nanoscience and nanotechnology.

5.2.6 Multislice STEM simulations

A tilt series of 68 images with refined experimental Euler angles were calculated

using multislice simulations [20]. A total of 68 cubic super cells with a = 100

Å were created. The final 3D atomic model was placed within the super cells.

Individual super cells were divided into multiple 2.0-Å-thick slices along the z-axis,

with 1,800 x 1,800 pixels sampling in the x- and y-axes for both the specimen

and probe. The experimental parameters (300 keV electron energy, 0 mm C3

aberration, 5 mm C5 aberration, 30 mrad convergence semi-angle, 48 and 251

mrad detector inner and outer semi-angles) were used for the simulations, resulting

in a tilt series of ADF-STEM images with 255 x 255 pixels per image and a pixel

size of 0.37 Å. For each tilt angle, 16 frozen phonon configurations were simulated

and averaged to obtain a calculated image. Each multislice image was convolved

with a Gaussian function, whose width was determined by minimizing the error

between the measured and simulated images. This procedure was used to account

for the electron probe size and other incoherent effects. Fig. 5.6 compares the

measured and multislice simulated images at 0◦ tilt. A 3D volume was then

reconstructed from the simulated tilt series with GENFIRE, and a new 3D model

was obtained by using the same atom tracing procedure.
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Figure 5.6: Validating the measured atomic model using multislice STEM simu-

lations. (a), (b), Comparison between the experimental (a) and multislice AD-

F-STEM simulation (b) images at 0◦ tilt. The multislice image was convolved with

a Gaussian function to account for the source size and other incoherent effects.

Poisson-Gaussian noise was then added to the multislice image. (c), Line-cut of

(a) and (b) along the dashed rectangle in (a), showing good agreement between

the experimental and multislice images. Note that a slight in-plane rotation was

applied to the images to make horizontal line-cuts for a quantitative comparison.

(d), Histogram of the difference (deviation) in atomic positions between the ex-

perimental atomic model and that obtained from 68 multislice images. 99.0% of

the atoms were correctly identified with a root-mean-square deviation of 22 pm.

(Figure reprinted from [3])
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A total of 23,324 atoms were traced, comprising 16,577 Pt and 6,747 Fe atoms.

23,043 common pairs of the atoms between experimental and multislice 3D model

were selected based on the criterion that each pair should be within the radius

of the Fe atom. Among the common pairs, 6,401 common pairs were identi-

fied as Fe atoms (97.4%), and 16,562 common pairs were identified as Pt atoms

(99.6%), resulting in 99.0% of all atoms having been correctly identified. A his-

togram of the atomic deviation between the common pairs is shown in Fig. 5.6d,

indicating a root-mean-square deviation of 22.2 pm. This simulation requires

many days using an advanced computing cluster; however, a recently developed

software package called Prismatic demonstrates potential for alleviating this con-

cern [202](Appendix A).
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Figure 5.7: Observation of anti-site point and swap defects, and statistical analysis

of the chemical order/disorder and anti-site density. (a-c) 3D atomic positions

overlaid on the 3D reconstructed intensity (color scale at bottom) illustrating

anti-site point defects (arrows): a Pt atom occupying an Fe atom site (a), an Fe

atom occupying a Pt atom site (b), a pair of nearest-neighbour Fe and Pt atoms

are swapped (swap defect) (c). (d) 3D atomic structure of an ideal L12 FePt3

phase for reference. The anti-site defect density (e) and SROP (f) for a large

L12 grain, inset in (e), as a function of the distance from the grain surface (unit

cell size=3.875Å). The anti-site defect density (g) and SROP (h) for the other

large L12 grain, inset in (g), as a function of the distance from the grain surface.

Smooth red trend lines are overlaid on the defect density distribution as a guide

for the eye. (Figure reprinted from [3])
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APPENDIX A

A streaming multi-GPU implementation of

image simulation algorithms in scanning

transmission electron microscopy

Simulation of atomic resolution image formation in scanning transmission electron

microscopy can require significant computation times using traditional methods.

A recently developed method, termed PRISM, demonstrates potential for signif-

icant acceleration of such simulations with negligible loss of accuracy. Here we

present a software package called Prismatic for parallelized simulation of image

formation in STEM using both the PRISM and multislice methods. By distribut-

ing the workload between multiple CUDA-enabled GPUs and multicore proces-

sors, accelerations as high as 1000x for PRISM and 30x for multislice are achieved

relative to traditional implementations using a single 4-GPU machine. Prismatic

is freely available as an open-source CUDA/C++ package (http://prism-em.com)

with both a command line and graphical user interface.

A.1 Introduction

Scanning transmission electron microscopy (STEM) has had a major impact on

materials science [203, 204], especially for atomic-resolution imaging since the

widespread adoption of hardware aberration correction [205–207]. Many large-

scale STEM experimental techniques are routinely validated using imaging or

diffraction simulations, such as electron ptychography [208], 3D atomic recon-
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struction using dynamical scattering [209], high precision surface atom position

measurements on catalytic particles [210], de-noising routines [211], phase contrast

imaging with phase plates [212], new dynamical atomic contrast models [213], 3D

atomic electron tomography [3], and many others. The most commonly employed

simulation algorithm for STEM simulation is the multislice algorithm introduced

by Cowlie and Moodie [214]. This method consists of two main steps. The first

is calculation of the projected potentials from all atoms into a series of 2D slices.

Second, the electron wave is initialized and propagated through the sample. The

multislice method is straightforward to implement and is quite efficient for plane-

wave or single-probe diffraction simulations [215].

A large number of electron microscopy simulation codes are available, sum-

marized in Table A.1. Most of these codes use the multislice method, and many

have implemented parallel processing algorithms for both central processing units

(CPUs) and graphics processing units (GPUs). Recently some authors have be-

gun using hybrid CPU+GPU codes for multislice simulation [234]. Multislice

simulation relies heavily on the the fast Fourier transform (FFT) which can be

computed using heavily optimized packages for both CPUs [235] and GPUs [236].

The other primary computational requirement of multislice calculations is large

element-wise matrix arithmetic, which GPUs are very well-suited to perform [237].

Parallelization is important because STEM experiments may record a few inte-

grated values or even full probe images from thousands or even millions of probe

positions [212, 238]. Performing STEM simulations on the same scale as these

experiments is very challenging, because in the conventional multislice algorithm

the propagation of each STEM probe through the sample is computed separately.

Furthermore, if additional simulation parameters are explored the number of re-

quired simulations can become even larger, requiring very large computation times

even using a modern, paralellized implementation. To address this issue, we intro-

duced a new algorithm that offers a substantial speed increase for STEM image
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Table A.1: A non-exhaustive list of electron microscopy simulation codes. (Figure

reprinted from [202])

Code(s) Author(s) Reference(s) Comments

xHREM Ishizuka [216,217]

computem Kirkland [20,215] CPU parallelized

EMS, JEMS Stadelmann [218,219]

MacTempas Kilaas [220]

QSTEM Koch [221]

CTEMsoft De Graef [222]

Web-EMAPS Zuo et al. [223] deprecated

STEM CELL Carlino, Grillo et al. [224,225] CPU parallelized

STEMSIM Rosenauer and Schowalter [226]

MALTS Walton et al. [227] Lorentz TEM

Dr. Probe Barthel and Houben [228]

FDES Van den Broek et al. [229] GPU parallelized

µSTEM D’Alfonso et al. [230,231] GPU par., inelastic

STEMsalabim Oelerich et al. [232] CPU parallelized

Prismatic Pryor Jr. and Ophus [233], this work multi-GPU streaming
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simulations [233]. This algorithm is referred to as the plane-wave reciprocal-space

interpolated scattering matrix (PRISM) method.

In this manuscript, we introduce a highly-optimized multi-GPU simulation

code that can perform both multislice and PRISM simulations of extremely large

structures called Prismatic. We will briefly describe the multislice and PRISM

algorithms, and describe the implementation details for our parallelized CPU and

CPU+GPU codes. We perform timing benchmarks to compare both algorithms

under a variety of conditions. Finally, we demonstrate the utility of our new code

with typical use cases and compare with the popular package computem [20].

Prismatic includes a graphical user interface (GUI) and uses the cross-platform

build system CMake [239]. All of the source code is freely available. Throughout

this manuscript, we use the NVIDIA convention of referring to the CPU and

GPU(s) as the host and device(s), respectively.

A.2 Methods

A.2.1 Description of Algorithms

A flow chart of the steps performed in our code are given in Fig. A.1. Both

multislice and PRISM share the same initial steps, where the sample is divided

into slices which are used to compute the projected potential from the atomic

scattering factors give in [20]. This step is shown schematically in Figs. A.1a

and b, and is implemented by using a precomputed lookup table for each atom

type [212,233].

Figs.A.1c-e show the steps in a multislice STEM simulation. First the complex

electron wave Ψ representing the initial converged probe is defined, typically as

an Airy disk function shown in Fig. A.1c. This probe is positioned at the desired

location on the sample surface in realspace, as in Fig. A.1d. Next, this probe
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Figure A.1: Flow chart of STEM simulation algorithm steps. (a) All atoms

are separated into slices at different positions along the beam direction, and (b)

atomic scattering factors are used to compute projected potential of each slice.

(c) Multislice algorithm, where each converged probe is initialized, (d) propa-

gated through each of the sample slices defined in (b), and then (e) output either

as images, or radially integrated detectors. (f) PRISM algorithm where (h) con-

verged probes are defined in coordinate system downsampled by factor f as a set

of plane waves. (h) Each required plane wave is propagated through the sample

slices defined in (b). (i) Output probes are computed by cropping subset of plane

waves multiplied by probe complex coefficients, and (j) summed to form output

probe, (k) which is then saved. (Figure reprinted from [202])
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is propagated through the sample’s potential slices defined in Fig. A.1b. This

propagation is achieved by alternating two steps. The first step is a transmission

through a given potential slice V 2D
p over the realspace coordinates ~r

ψp+1(~r) = ψp(~r) exp
[
σV 2D

p (~r)
]

(A.1)

where σ is the beam-sample interaction constant. Next, the electron wave is

propagated over the distance t to the next sample potential slice, which is done

in Fourier space over the Fourier coordinates ~q

Ψp+1(~q) = Ψp(~q) exp(−iπλ|~q|2t) (A.2)

where λ is the electron wavelength. These steps are alternated until the elec-

tron probe has been propagated through the entire sample. Next, the simulated

output is computed, which is typically a subset of the probe’s intensity summed

in Fourier space as shown in Fig. A.1e. The steps given in Figs. A.1c-e are re-

peated for the desired probe positions, typically a 2D grid. The simulation result

can be a single virtual detector, an array of annular ring virtual detectors or the

entire probe diffraction pattern for each probe location, giving a 2D, 3D or 4D

output respectively. For more details on the multislice method we refer readers

to Kirkland [20].

The PRISM simulation method for STEM images is outlined in Figs. A.1f-

k. This method exploits the fact that an electron scattering simulation can be

decomposed into an orthogonal basis set, as in the Bloch wave method [20]. If

we compute the electron scattering for a set of plane waves that forms a complete

basis, these waves can each be multiplied by a complex scalar value and summed

to give a desired electron probe. A detailed description of the PRISM algorithm

is given in [233].

The first step of PRISM is to compute the sample potential slices as in

Figs.A.1a-b. Next, a maximum input probe semi-angle and an interpolation factor
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f is defined for the simulation. Fig. A.1g shows how these two variables specify

the plane wave calculations required for PRISM, where every f th plane wave in

both spatial dimensions inside the maximum scattering angle is required. Each

of these plane waves must be propagated through the sample using the multislice

method given above, shown in Fig. A.1h. Once all of these plane waves have been

propagated through the sample, together they form the desired basis set we refer

to as the compact S-matrix. Next we define the location of all desired STEM

probes. For each probe, a subset of all plane waves is cut out around the maxi-

mum value of the input STEM probe. The size length of the subset regions is d/f ,

where d is the simulation cell length. The probe coefficients for all plane waves are

complex values that define the center position of the STEM probe, and coherent

wave aberrations such as defocus or spherical aberration. Each STEM probe is

computed by multiplying each plane wave subset by the appropriate coefficient

and summing all wave subsets. This is equivalent to using Fourier interpolation

to approximate the electron probe wavefunction. As long as the subset region is

large enough to encompass the vast majority of the probe intensity, the error in

this approximation will be negligible [233]. Finally, the output signal is computed

for all probes as above, giving a 2D, 3D or 4D output array. As will be shown

below, STEM simulations using the PRISM method can be significantly faster

than using the multislice method.

A.3 Implementation Details

A.3.1 Computational Model

Wherever possible, parallelizable calculations in Prismatic are divided into indi-

vidual tasks and performed using a pool of CPU and GPU worker threads that

asynchronously consume the work on the host or the device, respectively. We

refer to a GPU worker thread as a host thread that manages work dispatched to a
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single device context. Whenever one of these worker threads is available, it queries

a mutex-synchronized dispatcher that returns a unique work ID or range of IDs.

The corresponding work is then consumed, and the dispatcher requeried until no

more work remains. This computational model, depicted visually in Fig. A.2,

provides maximal load balancing at essentially no cost, as workers are free to in-

dependently obtain work as often as they become available. Therefore, machines

with faster CPUs may observe more work being performed on the host, and if

multiple GPU models are installed in the same system their relative performance

is irrelevant to the efficiency of work dispatch. The GPU workers complete most

types of tasks used by Prismatic well over an order of magnitude faster than the

CPU on modern hardware, and if a CPU worker is dispatched one of the last

pieces of work then the entire program may be forced to unnecessarily wait on the

slower worker to complete. Therefore, an adjustable early stopping mechanism is

provided for the CPU workers.

GPU calculations in Prismatic are performed using a fully asynchronous mem-

ory transfer and computational model driven by CUDA streams. By default, ker-

nel launches and calls to the CUDA runtime API for transferring memory occur

on what is known as the default stream and subsequently execute in order. This

serialization does not fully utilize the hardware, as it is possible to simultaneously

perform a number of operations such as memory transfer from the host to the

device, memory transfer from the device to the host, and kernel execution con-

currently. This level of concurrency can be achieved using CUDA streams. Each

CUDA stream represents an independent queue of tasks using a single device that

execute internally in exact order, but that can be scheduled to run concurrently

irrespective of other streams if certain conditions are met. This streaming model

combined with the multithreaded work dispatch approach described previously al-

low for concurrent two-way host/device memory transfers and simultaneous data

processing. A snapshot of the output produced by the NVIDA Visual Profiler
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Figure A.2: Visualization of the computation model used repeatedly in the Pris-

matic software package, whereby a pool of GPU and CPU workers are assigned

batches of work by querying a synchronized work dispatcher. Once the assign-

ment is complete, the worker requests more work until no more exists. All workers

record completed simulation outputs in parallel. (Figure reprinted from [202])
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for a single device context during a streaming multislice simulation similar to

those described later in this work verifies that Prismatic is indeed capable of such

concurrency (Fig. A.3).

GPU Activities Over Time

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

Stream 1

Stream 2

Stream 3

Stream 4

Stream 5

5 ms0 ms 10 ms 15 ms

PRISM Kernel cuFFT

cudaMemcpy

cudaMemcpy

cudaMemcpy

cuFFT cuFFT

8.2 ms8.1 ms 8.3 ms 8.4 ms 8.5 ms

a

b

Figure A.3: (a) Sample profile of the GPU activities on a single NVIDIA GTX

1070 during a multislice simulation in streaming mode with (b) enlarged inset

containing a window where computation is occurring on streams #1 and #5 while

three separate arrays are simultaneously being copied on streams #2-4. (Figure

reprinted from [202])

To achieve maximum overlap of work, each CUDA-enabled routine in Pris-

matic begins with an initialization phase where relevant data on the host-side

is copied into page-locked (also called “pinned”) memory, which provides faster

transfer times to the device and is necessary for asynchronous memory copying as

the system can bypass internal staging steps that would be necessary for pageable
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memory [240]. CUDA streams and data buffers are then allocated on each device

and copied to asynchronously. Read-only memory is allocated once per device,

and read/write memory is allocated once per stream. It is important to perform

all memory allocations initially, as any later calls to cudaMalloc will implicitly

force synchronization of the streams. Once the initialization phase is over, a host

thread is spawned for each unique CUDA stream and begins to consume work.

A.3.2 Calculation of the Projected Potentials

Both PRISM and multislice require dividing the atomic coordinates into thin

slices and computing the projected potential for each. The calculation details are

described in Kirkland and require evaluation of modified Bessel functions of the

second kind, which are computationally expensive [20]. This barrier is overcome

by precomputing the result for each unique atomic species and assembling a lookup

table. Each projected potential is calculated on a supersampled grid, integrated,

and cached. The sample volume is then divided into slices, and the projected

potential for each slice is computed on separate CPU threads using the cached

potentials. In principle this step could be GPU accelerated, but even for a large

sample with several hundred thousand atoms the computation time is on the order

of seconds and is considered negligible.

A.3.3 PRISM Probe Simulations

Following calculation of the projected potential, the next step of PRISM is to

compute the compact S-matrix. Each plane wave component is repeatedly trans-

mitted and propagated through each slice of the potential until it has passed

through the entire sample, at which point the complex-valued output wave is

stored in real space to form a single layer of the compact S-matrix. This step

of PRISM is highly analogous to multislice except whereas multislice requires
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propagating/transmitting the entire probe simultaneously, in PRISM each initial

Fourier component is propagated/transmitted individually. The advantage is that

in PRISM this calculation must only be performed once per Fourier component

for the entire calculation, while in multislice it must be repeated entirely at ev-

ery probe position. Thus, in many sample geometries the PRISM algorithm can

significantly out-perform multislice despite the overhead of the S-matrix calcula-

tion [233].

The propagation step requires a convolution operation which can be per-

formed efficiently through use of the FFT. Our implementation uses the popu-

lar FFTW and cuFFT libraries for the CPU and GPU implementations, respec-

tively [235, 236]. Both of these libraries support batch FFTs, whereby multiple

Fourier transforms of the same size can be computed simultaneously. This allows

for reuse of intermediate twiddle factors, resulting in a faster overall computation

than performing individual transforms one-by-one at the expense of requiring a

larger block of memory to hold the multiple arrays. Prismatic uses this batch FFT

method with both PRISM and multislice, and thus each worker thread will actu-

ally propagate a number of plane waves or probes simultaneously. This number,

called the batch size, may be tuned by the user to potentially enhance performance

at the cost of using additional memory, but sensible defaults are provided.

In the final step of PRISM, a 2D output is produced for each probe position

by applying coefficients, one for each plane wave, to the elements of the compact

S-matrix and summing along the dimension corresponding to the different plane

waves. These coefficients correspond to Fourier phase shifts that scale and trans-

late each plane wave to the relevant location on the sample in real space. The

phase coefficients, which are different for each plane wave but constant for a given

probe position, are precomputed and stored in global memory. Each threadblock

on the device first reads the coefficients from global memory into shared memory,

where they can be reused throughout the lifetime of the threadblock. Components

121



of the compact S-matrix for a given output wave position are then read from global

memory, multiplied by the relevant coefficient, and stored in fast shared memory,

where the remaining summation is performed. This parallel sum-reduction is

performed using a number of well-established optimization techniques including

reading multiple global values per thread, loop unrolling through template spe-

cialization, and foregoing of synchronization primitives when the calculation has

been reduced to the single-warp level [241]. Once the realspace exit wave has

been computed, the modulus squared of its FFT yields the calculation result at

the detector plane.

A.3.4 Multislice Probe Simulations

The implementation of multislice is fairly straightforward. The initial probe is

translated to the probe position of interest, and then is alternately transmitted

and propagated through the sample. In practice this is accomplished by alternat-

ing forward and inverse Fourier transforms with an element-wise complex multi-

plication in between each with either the transmission or propagation functions.

Upon propagation through the entire sample, the squared intensity of the Fourier

transform of the exit wave provides the final result of the calculation at the detec-

tor plane for that probe position. For additional speed, the FFTs of many probes

are computed simultaneously in batch mode. Thus in practice batch size probes

are transmitted, followed by a batch FFT, then propagated, followed by a batch

inverse FFT, etc.

A.3.5 Streaming Data for Very Large Simulations

The preferred way to perform PRISM and multislice simulations is to transfer

large data structures such as the projected potential array or the compact S-

matrix to each GPU only once, where they can then be read from repeatedly
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over the course of the calculation. However, this requires that the arrays fit into

limited GPU memory. For simulations that are too large, we have implemented

an asynchronous streaming version of both PRISM and multislice. Instead of

allocating and transferring a single read-only copy of large arrays, buffers are al-

located to each stream large enough to hold only the relevant subset of the data

for the current step in the calculation, and the job itself triggers asynchronous

streaming of the data it requires for the next step. For example, in the streaming

implementation of multislice, each stream possesses a buffer to hold a single slice

of the potential array, and after transmission through that slice the transfer of

the next slice is requested. The use of asynchronous memory copies and CUDA

streams permits the partial hiding of memory transfer latencies behind compu-

tation (Fig. A.3). Periodically, an individual stream must wait on data transfer

before it can continue, but if another stream is ready to perform work the device

is effectively kept busy. Doing so is critical for performance, as the amount of

time needed to transfer data can become significant relative to the total calcula-

tion. By default, Prismatic uses an automatic setting to determine whether to use

the single-transfer or streaming memory model whereby the input parameters are

used to estimate how much memory will be consumed on the device, and if this

estimate is too large compared with the available device memory then streaming

mode is used. This estimation is conservative and is intended for convenience, but

users can also forcibly set either memory mode.

A.3.6 Launch Configuration

All CUDA kernels are accompanied by a launch configuration that determines

how the calculation will be carried out [240]. The launch configuration specifies

the amount of shared memory needed, on which CUDA stream to execute the

computation, and defines a 3D grid of threadblocks, each of which contains a 3D

arrangement of CUDA threads. It is this arrangement of threads and threadblocks
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that must be managed in software to perform the overall calculation. The choice

of launch configuration can have a significant impact on the overall performance

of a CUDA application as certain GPU resources, such as shared memory, are

limited. If too many resources are consumed by individual threadblocks, the total

number of blocks that run concurrently can be negatively affected, reducing overall

concurrency. This complexity of CUDA cannot be overlooked in a performance-

critical application, and we found that the speed difference in a suboptimal and

well-tuned launch configuration could be as much as 2-3x.

In the reduction step of PRISM, there are several competing factors that must

be considered when choosing a launch configuration. The first of these is the

threadblock size. The compact S-matrix is arranged in memory such that the

fastest changing dimension, considered to be the x-axis, lies along the direc-

tion of the different plane waves. Therefore to maximize memory coalescence,

threadblocks are chosen to be as large as possible in the x-direction. Usually

the result will be threadblocks that are effectively 1D, with BlockSizey and

BlockSizez equal to one; however in cases where very few plane waves need to

be computed the blocks may be extended in y and z to prevent underutiliza-

tion of the device. To perform the reduction, two arrays of shared memory are

used. The first is dynamically sized and contains as many elements as there are

plane waves. This array is used to cache the phase shift coefficients to prevent

unnecessary reads from global memory, which are slow. The second array has

BlockSizex*BlockSizey*BlockSizez elements and is where the actual reduction

is performed. Each block of threads steps through the array of phase shifts once

and reads them into shared memory. Then the block contiguously steps through

the elements of the compact S-matrix for a different exit-wave position at each

y and z index, reading values from global memory, multiplying them by the as-

sociated coefficient, and accumulating them in the second shared memory array.

Once all of the plane waves have been accessed, the remaining reduction occurs
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quickly as all remaining operations occur in fast shared memory. Each block of

threads will repeat this process for many exit-wave positions which allows efficient

reuse of the phase coefficients from shared memory.

The parallel reduction is performed by repeatedly splitting each array in half

and adding one half to the other until only one value remains. Consequently, if the

launch configuration specifies too many threads along the x-direction, then many

of them will become idle as the reduction proceeds, which wastes work. Conversely,

choosing BlockSizex to be too small is problematic for shared memory usage, as

the amount of shared memory per block for the phase coefficients is constant

regardless of the block size. In this case, the amount of shared memory available

will rapidly become the limiting factor to the achievable occupancy. A suitably

balanced block size produces the best results.

The second critical component of the launch configuration is the number of

blocks to launch. Each block globally reads the phase coefficients once and then

reuses them, which favors using fewer blocks and having each compute more exit-

wave positions. However, if too few blocks are launched the device may not reach

full occupancy. The theoretically optimal solution would be to launch the minimal

amount of blocks needed to saturate the device and no more.

Considering these many factors, Prismatic uses the following heuristic to

choose a good launch configuration. At runtime, the properties of the avail-

able devices are queried, which includes the maximum number of threads per

threadblock, the total amount of shared memory, and the total number of stream-

ing multiprocessors. BlockSizex is chosen to be either the largest power of two

smaller than the number of plane waves or the maximum number of threads per

block, whichever is smaller. The total number of threadblocks that can run con-

currently on a single streaming multiprocessor is then estimated using BlockSizex,

the limiting number of threads per block, and the limiting number of threadblocks

per streaming multiprocessor. The total number of threadblocks across the en-
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tire device is then estimated as this number times the total number of streaming

multiprocessors, and then the grid dimensions of the launch configuration are set

to create three times this many blocks, where the factor of three is a fudge factor

that we found produces better results.

A.4 Benchmarks

A.4.1 Algorithm Comparison

A total of four primary algorithms are implemented Prismatic, as there are opti-

mized CPU and GPU implementations of both PRISM and multislice simulation.

To visualize the performance of the different algorithms, we performed a number

of benchmarking simulations spanning a range of sample thicknesses, sizes, and

with varying degrees of sampling. Using the average density of amorphous carbon,

an atomic model corresponding to a 100x100x100 Å carbon cell was constructed

and used for image simulation with various settings for slice thickness and pixel

sampling. The results of this analysis are summarized in Fig. A.4. These bench-

marks are plotted as a function of the maximum scattering angle qmax, which

varies inversely to the pixel size.

The difference in computation time t shown in Fig. A.4 between traditional

CPU multislice and GPU PRISM is stark, approximately four orders of magnitude

for the “fast” setting where f = 16, and still more than a factor of 500 for the

more accurate case of f = 4. For both PRISM and multislice, the addition

of GPU acceleration increases speed by at least an order of magnitude. Note

that as the thickness of the slices is decreased, the relative gap between PRISM

and multislice grows, as probe calculation in PRISM does not require additional

propagation through the sample. We have also fit trendline curves of the form

t = A+B qmax
n, (A.3)
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2 Å slices

0.1

1

10

100

1000 4.371 qmax
2

0.147 qmax
2

0.456 qmax
2

0.021 qmax
2
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Figure A.4: Comparison of the CPU/GPU implementations of the PRISM and

multislice algorithms described in this work. A 100x100x100 Å amorphous car-

bon cell was divided slices of varying thickness and sampled with increasingly

small pixels in real space corresponding to digitized probes of array size 256x256,

512x512, 1024x1024, and 2048x2048, respectively. Two different PRISM simula-

tions are shown, a more accurate case where the interpolation factor f = 4 (left),

and a faster case with f = 16 (right). The multislice simulation is the same for

both columns. Power laws were fit of the form A + B qmax
n where possible. The

asymptotic power laws for higher scattering angles are shown on the right of each

curve. (Figure reprinted from [202])
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where A and B are prefactors and n is the asymptotic power law for high scattering

angles. We observed that most of the simulation types approximately approach

n = 2, which is unsurprising for both PRISM and multislice. The limiting oper-

ation in PRISM is matrix-scalar multiplication, which depends on the array size

and varies as qmax
2. For multislice the computation is a combination of multipli-

cation operations and FFTs, and the theoretical O(n log n) scaling of the latter is

only slightly larger than 2 and thus the trendline is an approximate lower bound.

The only cases that fall significantly outside the n = 2 regime were the multislice

GPU simulations with the largest slice separation (20 Å) and the “fast” PRISM

GPU simulations where f = 16. These calculations are sufficiently fast that the

relatively small overhead required to compute the projected potential slices, al-

locate data, etc., is actually a significant portion of the calculation, resulting in

scaling better than qmax
2. For the f = 16 PRISM case, we observed approximately

qmax
0.6 scaling, which translates into sub-millisecond calculation times per probe

even with small pixel sizes and slice thicknesses.

To avoid unnecessarily long computation times for the many simulations, par-

ticularly multislice, different numbers of probe positions were calculated for each

algorithm, and thus we report the benchmark as time per probe. Provided enough

probe positions are calculated to obviate overhead of computing the projected po-

tential and setting up the remainder of the calculation, there is a linear relation-

ship between the number of probe positions calculated and the calculation time

for all of the algorithms, and computing more probes will not change the time per

probe significantly. Here this overhead is only on the order of 10 seconds or fewer,

and the reported results were obtained by computing 128x128 probes for PRISM

CPU and multislice CPU, 512x512 for multislice GPU, and 2048x2048 for PRISM

GPU. All of these calculations used the single-transfer memory implementations

and were run on compute nodes with dual Intel Xeon E5-2650 processors, four

Tesla K20 GPUs, and 64GB RAM from the VULCAN cluster within the Lawrence
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Berkeley National Laboratory Supercluster.

A.4.2 Hardware Scaling

Modern high performance computing is dominated by parallelization. At the time

of this writing virtually all desktop CPUs contain at least four cores, and high end

server CPUs can have as many as twenty or more [242]. Even mobile phones have

begun to routinely ship with multicore processors [243]. In addition to powerful

CPUs, GPUs and other types of coprocessors such as the Xeon Phi [244] can

be used to accelerate parallel algorithms. It therefore is becoming increasingly

important to write parallel software that fully utilizes the available computing

resources.

To demonstrate how the algorithms implemented in Prismatic scale with hard-

ware, we performed the following simulation. Simulated images of a 100x100x100

Å amorphous carbon cell were produced with both PRISM and multislice using

5 Å thick slices, pixel size 0.1 Å, and 80 keV electrons. This simulation was re-

peated using varying numbers of CPU threads and GPUs. As before, a varying

number of probes was computed for each algorithm, specifically 2048x2048 for

GPU PRISM, 512x512 for CPU PRISM and GPU multislice, and 64x64 for CPU

multislice. This simulation utilized the same 4-GPU VULCAN nodes described

previously. The results of this simulation are summarized in Fig. A.5.

The ideal behavior for the CPU-only codes would be to scale as 1/x with

the number of CPU cores utilized such that doubling the number of cores also

approximately doubles the calculation speed. Provided that the number of CPU

threads spawned is not greater than the number of cores, the number of CPU

threads can effectively be considered the number of CPU cores utilized, and this

benchmark indicates that both CPU-only PRISM and multislice possess close to

ideal scaling behavior with number of CPU cores available.
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The addition of a single GPU improves both algorithms by approximately a

factor of 8 in this case, but in general the relative improvement varies depending

on the quality and number of the CPUs vs GPUs. The addition of a second GPU

improves the calculation speed by a further factor of 1.8-1.9 with 14 threads, and

doubling the number of GPUs to four total improves again by a similar factor. The

reason that this factor is less than two is because the CPU is doing a nontrivial

amount of work alongside the GPU. This claim is supported by the observation

that when only using two threads the relative performance increase is almost

exactly a factor of two when doubling the number of GPUs. We conclude that

our implementations of both algorithms scale very well with available hardware,

and potential users should be confident that investing in additional hardware,

particularly GPUs, will benefit them accordingly.

A.4.3 Data Streaming/Single-Transfer Benchmark

For both PRISM and multislice, Prismatic implements two different memory mod-

els, a single-transfer method where all data is copied to the GPU a single time

before the main computation begins, and a streaming mode where asynchronous

copying of the required data is triggered across multiple CUDA streams as it is

needed throughout the computation. Streaming mode reduces the peak memory

required on the device at the cost of redundant copies; however, the computational

cost of this extra copying can be partially alleviated by hiding the transfer latency

behind compute kernels and other copies (A.3). To compare the implementations

of these two memory models in Prismatic, a number of amorphous carbon cells

of increasing sizes were used as input to simulations using 80 keV electrons, 20

mrad probe convergence semi-angle, 0.1 Å pixel size, 4 Å slice thickness, and 0.4

Å probe steps. Across a range of simulation cell sizes the computation time of

the streaming vs. single-transfer versions of each code are extremely similar while

the peak memory may be reduced by an order of magnitude or more (Fig. A.6).
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Figure A.5: Comparison of the implementations of multislice and PRISM for

varying combinations of CPU threads and GPUs. The simulation was performed

on a 100x100x100 Å amorphous carbon cell with 5 Å thick slices, and 0.1 Å pixel

size. All simulations were performed on compute nodes with dual Intel Xeon

E5-2650 processors, four Tesla K20 GPUs, and 64GB RAM. Calculation time of

rightmost data point is labeled for all curves. (Figure reprinted from [202])
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For the streaming calculations, memory copy operations may become significant

relative to the computational work (Fig. A.3);however, this can be alleviated by

achieving multi-stream concurrency.
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Figure A.6: Comparison of (a) relative performance and (b) peak memory con-

sumption for single transfer and streaming implementations of PRISM and mul-

tislice. (Figure reprinted from [202])

A.4.4 Comparison to existing methods

All previous benchmarks in this work have measured the speed of the various

algorithms included in Prismatic against each other; however, relative metrics are

largely meaningless without an external reference both in terms of overall speed

and resulting image quality. To this end, we also performed STEM simulations of

significant size and compare the results produced by the algorithms in Prismatic
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and the popular package computem [20, 215].

We have chosen a simulation cell typical of those used in structural atomic-

resolution STEM studies, a complex RuddlesdenPopper (RP) layered oxide. The

RP structure we used contains 9 pseudo-cubic unit cells of perovskite strontium

titanate structure, with two stacking defects every 4.5 1x1 cells that modify the

composition and atomic coordinates. The atomic coordinates of this cell were

refined using Density Functional Theory and were used for very-large-scale STEM

image simulations [245]. This 9x1x1 unit cell was tiled 4x36x25 times resulting

in final sample approximately 14 x 14 nm in-plane and 10 nm thick, containing

roughly 1.4 million atoms.

Simulations were performed with multislice as implemented in computem (specif-

ically using the autostem module), multislice in Prismatic, and the PRISM method

with f values of 4, 8 and 16 using 80 keV electrons, 1024 x 1024 pixel sampling,

20 mrad probe convergence semi-angle, and 5 Å thick potential slices. A total of

720x720 evenly spaced probes were computed for each simulation, and a total of

32 frozen phonon configurations were averaged to produce the final images, which

are summarized in Fig. A.7. The PRISM algorithms were run on the VULCAN

GPU nodes while computem simulations utilized better VULCAN CPU nodes

with dual Intel Xeon E5-2670v2 CPUs and 64GB RAM.

The mean computation time per frozen phonon for the computem simulations

was 709.8 minutes resulting in a total computation time of 15.8 days. The use of

our GPU multislice code here provides an acceleration of about 28x, reducing the

computation from more than two weeks to just over one day. The PRISM f = 4

simulation is almost indistinguishable from the multislice results, and gives a 2.7x

speed up over our GPU multislice simulation. For the f = 8 PRISM simulation,

some intensity differences are visible in the two bright field images, but the relative

contrast of all atomic sites is still correct. This simulation required just over an

hour, providing a speedup of 25X relative to our GPU multislice simulation. The
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Figure A.7: Comparison of simulation results produced by computem and Pris-

matic. The sample is composed of 36x36x25 pseudocubic perovskite unit cells,

and images were simulated using 80 keV electrons, a 20 mrad probe convergence

semi-angle, 0 Å defocus, and 1024x1024 pixel sampling for the probe and projected

potential. A total of 720x720 probe positions were computed and the final images

are an average over 32 frozen phonon configurations. Separate PRISM simula-

tions were performed with interpolation factors 4, 8, and 16. (Figure reprinted

from [202])
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f = 16 PRISM result show substantial intensity deviations from the ideal result,

but require just 43 seconds per frozen phonon configuration. The total difference

in acceleration from CPU multislice to the fastest PRISM simulation shown in

Fig. A.7 is just under three orders of magnitude. Ultimately, the users purpose

dictates what balance of speed and accuracy is appropriate, but the important

point is that calculations that previously required days or weeks on a computer

cluster may now be performed on a single workstation in a fraction of the time. ‘

A.5 Application to atomic electron tomography

One potential application of STEM image simulations is atomic electron tomogra-

phy (AET) experiments. In previous studies, we have used multislice simulations

to validate the tomographic reconstructions, and estimate both the position and

chemical identification errors [1, 3]. However, the 3D reconstruction algorithm

assumes that the projection images are linearly related to the potential of the

reconstruction. This assumption was sufficient for atomic resolution tomographic

reconstruction, but the measured intensity has some non-linear dependence on

the atomic potentials, due to effects such as exponential decrease of electrons in

the unscattered STEM probe, channeling effects along atomic columns, coherent

diffraction at low scattering angles and other related effects [246–250].

One potentially important application of STEM image simulations is AET ex-

periments. One of the ADF-STEM images from an atomic-resolution tilt series of

a FePt nanoparticle [3] is shown in Fig. A.8a, with the corresponding linear pro-

jection from the 3D reconstruction shown in Fig. A.8b. In this study and others,

we have used multislice simulations to validate the tomographic reconstructions

and estimate both the position and chemical identification errors [1,3]. One such

multislice simulation is given in Fig. A.8c. This simulation was performed at 300

kV using a 30 mrad STEM probe, with a simulation pixel size of 0.0619 Å and
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a spacing between adjacent probes of 0.3725 Å. The image results shown are for

16 frozen phonon configurations using a 41159 mrad annular dark field detector.

This experimental dataset includes some postprocessing and was obtained freely

online [3].

The 3D reconstruction algorithm we have used, GENeralized Fourier Iterative

REconstruction (GENFIRE), assumes that the projection images are linearly re-

lated to the potential of the reconstruction [3,28]. This assumption was sufficient

for atomic-resolution tomographic reconstruction, but the measured intensity has

some non-linear dependence on the atomic potentials, due to effects such as expo-

nential decrease of electrons in the unscattered STEM probe, channeling effects

along atomic columns, coherent diffraction at low scattering angles, and other

related effects [213,246–250]. These effects can be seen in the differences between

the images shown in Fig. A.8b, c. The multislice simulation image shows sharper

atomic columns, likely due to the channeling effect along atomic columns that are

aligned close to the beam direction [248]. Additionally, there are mean intensity

differences between the center part of the particle (thickest region) and the regions

closed to the surfaces in projection (thinnest regions). Including these dynamical

scattering effects in the reconstruction algorithm would increase the accuracy of

the reconstruction.

However, Fig. A.8h shows that the computation time for the multislice sim-

ulation is prohibitively high. Even using the Prismatic GPU code, each frozen

phonon configuration for multislice require almost 7 hours. Using 16 configura-

tions and simulating all 65 projection angles would require months of simulation

time, or massively parallel simulation on a super cluster. An alternative is to

use the PRISM algorithm for the image simulations, shown in Fig. A.8d, e and

f for interpolation factors of f = 8, 16and32, respectively. Fig. A.8g shows the

relative errors of Fig. A.8bf, where the error is defined by the root-mean-square of

the intensity difference with the experimental image in Fig. A.8a, divided by the

136



root-mean-square of the experimental image. Unsurprisingly, the linear projection

shows the lowest error since it was calculated directly from the 3D reconstruction

built using the experimental data. The multislice and PRISM f = 8 and f = 16

simulations show essentially the same errors within the noise level of the exper-

iment. The PRISM f = 32 has a higher error, and obvious image artifacts are

visible in Fig. A.8f. Thus, we conclude that using an interpolation factor f = 16

produces an image of sufficient accuracy. This calculation required only 90 s per

frozen phonon calculation, and therefore computing 16 configurations for all 65 tilt

angles would require only 26 h. One could therefore imagine integrating this sim-

ulation routine into the final few tomography reconstruction iterations to account

for dynamical scattering effects and to improve the reconstruction quality.
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Figure A.8: Images from one projection of an atomic electron tomography tilt

series, from (a) experiment, (b) linear projection of the reconstruction, (c) multi-

slice simulation, and (d)-(f) PRISM simulations for f = 8, 16, and 32 respectively.

(Figure reprinted from [202])
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A.6 Conclusion

We have presented Prismatic, an asynchronous, streaming GPU implementation

of the PRISM and multislice algorithms for image formation in scanning trans-

mission electron microscopy. Both algorithms were described in detail as well as

our approach to implementing them in a parallel framework. Our benchmarks

demonstrate that this software may be used to simulate STEM images up to sev-

eral orders of magnitude faster than using traditional methods, allowing users to

simulate complex systems on a GPU workstation without the need for a computer

cluster. Prismatic is freely available as an open-source C++/CUDA package with

a graphical interface that contains convenience features such as allowing users

to interactively view the projected potential slices, compute/compare individual

probe positions with both PRISM and multislice, and dynamically adjust posi-

tions of virtual detectors. A command line interface is also provided. We hope

that the speed of this code as well as the convenience of the user interface will

have significant impact for users in the EM community.
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APPENDIX B

Quantitative Single-Shot 3D Coherent

Diffraction Imaging of Core-Shell Nanocubes

with Elemental Specificity

We report 3D coherent diffractive imaging (CDI) of Au/Pd core-shell nanoparti-

cles with 6.1nm spatial resolution with elemental specificity. We measured single-

shot diffraction patterns of the nanoparticles using intense X-ray free electron

laser pulses. By exploiting the curvature of the Ewald sphere and the symme-

try of the nanoparticle, we reconstructed the 3D electron density of 34 core-shell

structures from these diffraction patterns. To extract 3D structural information

beyond the diffraction signal, we implemented a super-resolution technique by

taking advantage of CDIs quantitative reconstruction capabilities. We used high-

resolution model fitting to determine the Au core size and the Pd shell thickness

to be 65.0 ± 1.0nm and 4.0 ± 0.5nm, respectively. We also identified the 3D

elemental distribution inside the nanoparticles with an accuracy of 3%. To fur-

ther examine the model fitting procedure, we simulated noisy diffraction patterns

from a Au/Pd core-shell model and a solid Au model and confirmed the validity

of the method. We anticipate this super-resolution CDI method can be generally

used for quantitative 3D imaging of symmetrical nanostructures with elemental

specificity.
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B.1 Introduction

Core-shell nanoparticles exhibit unique electronic, chemical, catalytic and optical

properties that have found applications across several disciplines [251–254]. Con-

ventional methods to characterize these nanoparticles rely on electron microscopy,

scanning probe microscopy, X-ray diffraction, scattering and spectroscopic tech-

niques [251–254]. Although atomic electron tomography has recently been used

to determine the 3D structure of nanoparticles at the single atom level, the sam-

ple has to be thin enough to mitigate the dynamical scattering effect [2, 3, 29].

Scanning probe microscopy is limited to studies of surface structures and X-

ray diffraction and scattering methods only provide average structural informa-

tion [251, 253, 254]. In contrast, CDI can be used to determine the 3D internal

electron density of thick samples at high resolution [70, 255]. Following the first

experimental demonstration in 1999 [64], a number of CDI methods have been

developed and applied to image a broad range of samples in physics, chemistry,

materials science, nanoscience and biology [10,67,68,71,111,114,115,119,124,141,

149,159,163,256–261].

With the advent of X-ray free electron lasers (XFELs) that produce extremely

intense and short X-ray pulses [70, 262, 263], CDI has opened the door for high-

resolution imaging of both physical and biological specimens based on the diffraction-

before-destruction scheme [40, 264]. However, because an intense XFEL pulse

destroys a specimen after one exposure, it would be desirable to find a way to ob-

tain 3D structure information from a single X-ray pulse. One method to achieve

3D structure determination from a single sample orientation is the use of the

curvature of Ewald sphere and additional constraints such as symmetry and spar-

sity [81,265–269]. Here, we implemented a super-resolution CDI technique to ex-

tract 3D structural information of core-shell nanoparticles beyond the diffraction

signal. We reconstructed the 3D electron density of individual Au/Pd core-shell
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nanoparticles from single-shot diffraction patterns with 6.1 nm resolution. By ex-

ploiting CDIs quantitative reconstruction, we used high-resolution model fitting

to determine the size of the Au core and the thickness of the Pd shell to be 65.0

± 1.0 nm and 4.0 ± 0.5 nm, respectively. We quantified the 3D elemental dis-

tribution inside the nanoparticle with an accuracy better than 3%. Finally, by

implementing a semi-automated data analysis and 3D reconstruction pipeline, we

established a general method for high-throughput, quantitative characterization

of symmetrical nanoparticles.

B.2 Results

B.2.1 XFEL experiment and 3D reconstruction of core-shell nanopar-

ticles

Au/Pd core-shell nanoparticles were synthesized by a seed mediated growth method

from soluble precursors [271]. Au nanoparticles with truncated cubic shapes were

prepared first as the cores. After the epitaxial growth of a Pd shell on the cubic

Au core, the composite nanoparticles adopted a perfect cubic shape. SEM and

TEM images shows a monodisperse shape and size distribution of the nanopar-

ticles (Fig. B.1 insets). The formation of Au/Pd core-shell structure was also

implicated by the alternating bright and dark fringes in the TEM image caused

by the superposition of two misfit crystalline lattices in a core-shell construction.

The XFEL experiment was conducted using the SPring-8 Angstrom Compact Free

Electron Laser [263].

Fig. B.1 shows the schematic layout of the single-shot 3D diffractive imaging

experiment. X-ray pulses with an energy of 6 keV and a repetition rate of 10 Hz

were focused to a 1.5 m spot by a pair of Kirkpatrick-Baez (K-B) mirror. Each

pulse contained ∼1011 photons with a pulse duration of 5-6 fs (Fig. B.2). Nanopar-

ticles were deposited onto a 100-nm-thick Si3N4 membrane grid and inserted into
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Figure B.1: Schematic layout of the single-shot 3D diffractive imaging set-up.

XFEL pulses with an energy of 6 keV and a pulse duration of 5-6 fs were focused

to a 1.5 m spot by a pair of K-B mirrors. A four-way cross slit was used to

eliminate the parasitic scattering from the mirrors. Au/Pd core-shell nanopar-

ticles with a monodisperse shape and size distribution (insets) were supported

on a 100-nm-thick Si3N4 membrane grid and raster scanned relative to the fo-

cused beam. Each intense X-ray pulse produced a single-shot diffraction pattern,

recorded by an octal multi-port charge-coupled device. A small hole was cre-

ated on the Si3N4 membrane after a single exposure (insets). (Figure reprinted

from [270])
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Figure B.2: Intensity correlation measurements of the pulse duration of SACLA

at 10 keV using an autocorrelation technique64. Gaussian fitting of the intensity

correlation curve gave a full width of half maximum (FWHM) of 7.8 ± 0.3 fs.

After considering a deconvolution factor, the pulse duration was estimated to

be 5.5 fs. The autocorrelationtechnique was also applied at 6 keV, resulting in

an estimated pulse duration of ∼5 fs (FWHM)65. Based on these experimental

measurements, we concluded that the pulse duration in our experiment is ∼5-6 fs

(FWHM). (Figure reprinted from [270])
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a multi-application X-ray imaging chamber where the sample was scanned relative

to the X-ray pulses [152]. Single-shot X-ray diffraction patterns were measured by

an octal multi-port charge-coupled device [272]. The nanoparticles were destroyed

after the impinging of X-ray pulses, leaving small holes on the Si3N4 membrane

(Fig. B.1 inset). A total of 39,151 diffraction patterns were acquired consisting of

no, partial, single, and multiple hits. Single-hits were separated from these pat-

terns based on a threshold of the average diffraction intensity. A good hit rate for

single-shot diffraction pattern is around a few percent. From the hit candidates,

we selected a subset of 34 diffraction patterns for further analysis.

The 34 diffraction patterns were processed and reconstructed by using a semi-

automated 3D data analysis pipeline, shown in Fig. B.3. From each diffraction

pattern, the background was subtracted based on the most recently available back-

ground exposure. An additional flat background subtraction was required, the

value of which was determined by first smoothing and thresholding each pattern

to determine the background region. The final subtracted value was determined

by the average nonnegative pixel intensity in the background region multiplied

by a single scaling factor, whose value was optimized based upon the quality of

the resulting reconstructions. The center of each diffraction pattern was deter-

mined based on the centro-symmetry of the diffraction intensity at the low spatial

frequency. Since the diffraction patterns have larger oversampling ratios [76],

each pattern was binned by 99 pixels to enhance the signal-to-noise ratio [273].

Figure B.4 shows the 34 processed single-shot diffraction patterns, in which the

diffraction signal is limited by the size of the detector. The orientation of each

single-shot diffraction pattern can in principle be determined by the self-common

arc method [267]. The 34 diffraction patterns in this experiment were oriented

close to the four-fold symmetry axis as the majority of nanocubes sit flat on the

surface of Si3N4 membranes (Fig. B.1 insets). This allowed us to develop a simpler

approach to refine the orientation of each diffraction pattern. We first estimated
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Figure B.3: Semi-automated data analysis and 3D reconstruction pipeline. (a). A

large number of diffraction patterns were experimentally collected consisting of no,

partial, single, and multiple hits by XFEL pulses. High-quality single-hit diffrac-

tion patterns were selected from these patterns. The different colors in the pattern

are due to the difference of the read-out noise of the detector segments. (b). Af-

ter background subtraction and center localization, each diffraction pattern was

binned by 99 pixels to enhance the signal-to-noise ratio and the orientation of

the pattern was determined. (c). By taking advantage of the curvature of the

Ewald sphere and symmetry intrinsic to the nanoparticle, a single-shot diffraction

pattern was used to produce a 3D Cartesian grid of the Fourier magnitudes by a

gridding method. (d). The 3D phase retrieval was performed by the OSS algo-

rithm. Among 1,000 independent reconstructions, the top 10% with the smallest

R-factors were averaged to obtain a final 3D reconstruction for each single-shot

diffraction pattern. (Figure reprinted from [270])
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the size of a nanocube based on the speckle size and experimental parameters. We

then slightly changed the orientation of the nanocube and calculated the corre-

sponding diffraction pattern. By minimizing the difference between the calculated

and measured diffraction patterns, we determined the orientation of each diffrac-

tion pattern with an angular precision of ∼0.5◦.

Figure B.4: 34 processed single-shot diffraction patterns, each of which was mea-

sured by impinging a very intense and short XFEL pulse on a Au/Pd core-shell

nanocube. The orientation of these selected patterns is close to the four-fold

symmetry axis as the majority of nanocubes sit flat on the surface of a Si3N4

membrane. (Figure reprinted from [270])

Each diffraction pattern was then projected onto the surface of the Ewald

sphere [81]. By taking into account of the curvature of the Ewald sphere and the

48 octahedral symmetry operations, a 3D Cartesian grid of the Fourier magnitudes
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was assembled by the following interpolation approach,

|Fobs~(k)| =

∑
i
|F (~ki)|W (~ki)

∆Ωi|~ki−~k|∑
i
W (~ki)

|~ki−~k|

(B.1)

W (~ki) =


1, |~ki−~k|

∆p
< dc.

0, |~ki−~k|
∆p
≥ dc.

(B.2)

where |Fobs~(k)| is the interpolated Fourier magnitudes on the 3D Cartesian grid

point (~k), |F (~ki)| is the measured Fourier magnitudes of the ith pixel projected

onto the surface of the Ewald sphere, W (~ki) represents a spherical interpolation

kernel of radius dc (where dc = 0.7 voxels in this case), ∆Ωi is the solid angle

subtended by the ith pixel of the detector and ∆p is the pixel size in reciprocal

space. When the diffraction pattern has a large oversampling ratio and the Fourier

magnitudes change smoothly [76], this interpolation approach is computationally

efficient and accurate. Using Eq. (B.1), we produced a 3D Cartesian grid of the

Fourier magnitudes for each single-shot diffraction pattern. A fraction of the grid

points were filled in by the measured data and the remaining points were set as

undefined. The phase retrieval was carried out by the oversampling smoothness

(OSS) algorithm [167]. A total of 1,000 independent, randomly seeded 3D re-

constructions were performed for each 3D grid of the Fourier magnitudes. Each

reconstruction consisted of 1,000 iterations of OSS with ten progressive filters,

positivity constraint, and a loose support. The algorithm iterated between real

and reciprocal space. The positivity and support constraints were applied in real

space and the measured grid points were enforced in reciprocal space, while the un-

defined points were iteratively determined by the algorithm. An R-factor, defined

as the sum of difference between measured and calculated Fourier magnitudes

normalized by the sum of measured Fourier magnitudes, was used to monitor the

convergence of the iterative algorithm. After 1,000 iteration, the majority of 1,000
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independent reconstructions had converged and the top 10% with the smallest R-

factors were averaged to obtain a final 3D reconstruction. The Phase Retrieval

Transfer Function (PRTF) was also monitored across reconstructions to further

validate quality (Fig. B.5).

Figure B.5: Average Phase Retrieval Transfer Function (PRTF) across all of

the multiple experimental reconstructions for all 34 diffraction patterns. (Fig-

ure reprinted from [270])

Because the quantity of data obtained during an XFEL experiment is so high,

we have implemented a semi-automated pipeline for diffraction pattern selection,

data analysis and 3D reconstruction (Fig. B.3), allowing the visualization of the

final 3D reconstructions during the experiment. By using this semi-automated

pipeline, we obtained the final reconstructions of the 34 single-shot diffraction

patterns (Fig. B.7). Figure B.6a show the iso-surface renderings of a representa-

tive final reconstruction, in which the core and shell structures are clearly visible.

To quantify the resolution, we calculated the Fourier shell correlation (FSC) be-

tween the final reconstructions of different single-shot diffraction patterns, which

has been widely used to estimate the resolution in single-particle cryo-electron

microscopy [19]. Based on the criterion of FSC = 0.5, we estimated a 3D reso-
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lution of 6.1 nm was achieved for the reconstructions (Fig. B.6b). The sudden

drop of the FSC curve corresponds to the cut-off of the diffraction intensity by

the detector edge, indicating that either the use of a larger detector or shortening

the distance between the sample and the detector will improve the resolution.

Figure B.6: Quantitative analysis of the 3D reconstruction. (a), Average Phase

Retrieval Transfer Function (PRTF) across all of the multiple experimental recon-

structions for all 34 diffraction patterns. (b), Average Fourier shell correlation

(FSC) between every pair of the 34 reconstructed nanoparticles, indicating a 3D

resolution of 6 nm based on the criterion of FSC = 0.5. (c), Central 32-nm-thick

slice of a final 3D reconstruction with an overlaid line scan plotted in (d), show-

ing the electron density variation of the Au core and Pd shell. (Figure reprinted

from [270])

To precisely determine the size and elemental specificity of the core-shell

nanoparticles, we implemented a super-resolution 3D CDI technique. This tech-

nique exploited the quantitative 3D reconstruction and used model fitting to

achieve resolution beyond the diffraction signal. Specifically, for each of the top

10% independent reconstructions resulting from a single-shot diffraction pattern,
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Figure B.7: Central 32-nm-thick slices of the final 3D reconstructions for the 34

single-shot diffraction patterns. The red color represents the Au core and yellow

is the Pd shell. (Figure reprinted from [270])
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a 3D model was created at five times the voxel resolution of the reconstructed

structure. The model was binned and compared with the reconstruction using an

error metric,

Err =

∑
~r |ρrec(~r)− ρmod(~r)|∑

~r ρmod(~r)
(B.3)

where ρrec(~r) and ρmod(~r) are the electron intensity of the reconstruction and

model, respectively. By varying the core size, shell thickness, and ratio of core

to shell density, a series of errors were computed using Eq. (B.3) and the model

with the lowest error was recorded for the reconstruction. For all the top 10%

independent reconstructions from a single-shot diffraction pattern, the parameters

of the recorded models were averaged to obtain the core size, shell thickness, and

ratio of core to shell density. To validate this technique, we applied it to 34

single-shot diffraction patterns, each of which was measured from a different core-

shell nanoparticle. Figure B.8 shows the distribution of the average core size,

shell thickness, and ratio of core to shell density for the 34 nanoparticles. The

core size is between 64 and 67 nm, while the shell thickness is within 3-5 nm. By

statistically averaging the 34 nanoparticles, we obtained a 4.0 ± 0.5 nm thick shell

of Pd surrounding a uniform 65.0 ± 1.0 nm Au core, indicating that we can achieve

resolution better than the diffraction signal (6.1 nm). The average intensity ratio

between the Au core and Pd shell was 1.69, which is within 3% agreement of

the tabulated scattering factor ratio of 1.64 [274]. A validation simulation was

performed to verify that such precision could be obtained and that a distinction

could be made between a model with a thin shell and one without B.9.

Finally, we performed numerical simulations on single-shot 3D imaging of in-

dividual viruses without the requirement of multiple-particle averaging. The faus-

tovirus of ∼200 nm in diameter was chosen as a model system in our simulations.

The 3D structure of the virus was obtained from the Electron Microscopy Data

Bank (EMDB ID 8144) and converted to 3D electron density. Figures B.10(a-
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Figure B.8: Experimental implementation of 3D super-resolution CDI of core-shell

nanoparticles. (a) and (b), The distribution of the core size and shell thickness

obtained from 34 single-shot diffraction patterns. Each data point shows the mean

and standard deviation of the top 10% of 1,000 independent reconstructions for a

single-shot diffraction pattern. The horizontal red lines indicate the average core

size and shell thickness across all 34 nanoparticles. (c) and (d), The core/shell

distribution of the 34 nanoparticles, indicating the Au core size and the Pd shell

thickness are 65.0 ± 1.0 nm and 4.0 ± 0.5 nm, respectively, which are beyond the

diffraction signal resolution (6.1 nm). (Figure reprinted from [270])
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Figure B.9: Numerical simulations on 3D super-resolution CDI of nanoparticles.

Noisy diffraction patterns were calculated from a core/shell model with a 65 nm

Au core and a 4 nm Pd shell (a) and a solid cubic model of 73 nm Au (b). The

central data in the diffraction pattern were removed to simulate a beam stop. The

top 10% of 1,000 independent reconstructions were averaged and the central 20

nm sections are shown for the Au/Pd core-shell model (c) and the solid Au model

(d). (e), Line scans through the center of the corresponding reconstructions of

the Au/Pd core-shell and the solid Au model. (Figure reprinted from [270])
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c) show three 6-nm-thick central slices of the virus capsid along the 2-, 3-, and

5-fold symmetry, respectively. XFEL pulses were simulated based on the Linac

Coherent Light Source (LCLS) parameters with E = 1.8 keV and 1013 photons

per pulse [262]. Each XFEL pulse was focused to a spot of 1 µm in diameter

and impinged on a single virus aerosolized by a particle jet using a diffraction-

before-destruction data collection scheme [40, 264]. The diffraction intensity was

collected by a simulated LCLS detector with 760 x 760 pixels, a pixel size of 110 x

110 µm, and a quantum efficiency of 80%. The detector was placed at a distance

of 0.75 m downstream of the sample. To simulate real experimental conditions,

both Poisson and detector readout noise were added to the diffraction intensity.

Figure B.10(d) shows a representative single-shot diffraction pattern of a faus-

tovirus capsid, which has a missing center slightly larger than the central speckle

and a diffraction angle at the edge of 2Θ = 3.26◦. This diffraction pattern was

sampled onto the detector in the same way as the core-shell nanocubes except

with icosahedral instead of octahedral symmetry. A total of 1,000 independent

OSS reconstructions were performed using a loose spherical support. The best 100

reconstructions with smallest R-factors were averaged to obtain a tighter support.

Another round of 1,000 iterations were performed with this tighter support, and

the top 100 reconstructions were averaged to produce the final reconstruction.

Figures B.10(e-g) show the three corresponding slices of the faustovirus capsid

reconstructed from the noisy diffraction pattern (Fig. B.10d), which are in good

agreement with the original model (Fig. B.10(a-c)). By computing the Fourier

shell correlation between the model and the reconstruction (Fig. B.10(h)), we es-

timated a 3D resolution of 12.4 nm was achieved in our simulations. The spatial

resolution can in principle be improved by focusing the XFEL pulse to a smaller

than 1 µm spot, coupled with a larger detector.
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Figure B.10: Simulation of 3D CDI of the icosahedral faustovirus. (a) A noisy

diffraction pattern along the three-fold axis was used as input to the reconstruction

process. Representative slices through the center of the reconstruction along the

five-fold, three-fold, and two-fold axes are shown for the model (b, d, f) and

for the reconstruction (c, e, g). (h) The Fourier shell correlation between the

reconstruction and the model, indicating a 3D resolution of approximately 12.4

nm was obtained.
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B.3 Conclusions

We demonstrated quantitative 3D imaging of Au/Pd core-shell nanoparticles with

elemental specificity using single XFEL pulses. These core-shell structures are

representative of a vast library of nanoparticles with varying chemical, catalytic,

optical and electronic properties [251–254]. We developed a semi-automated and

quantitative routine for analyzing nanostructures, and applied it to 34 isolated

nanoparticles. Using the curvature of the Ewald sphere and symmetry intrinsic to

the nanoparticle, we reconstructed highly reproducible 3D structures from single-

shot diffraction patterns with a 3D resolution of 6.1 nm on 5-6 fs timescales.

Furthermore, we implemented a 3D super-resolution CDI technique to extract

structural information beyond the diffraction signal. By taking advantage of the

quantitative 3D reconstruction, our super-resolution technique precisely deter-

mined the size of the Au core and the thickness of the Pd shell to be 65.0 ±

1.0 nm and 4.0 ± 0.5 nm, respectively. The quantified electron density of the

core and shell structure matches the tabulated scattering factor ratio of Au/Pd

within a 3% deviation. The effectiveness of this super-resolution technique was

validated by using 34 independently reconstructed nanoparticles. While in this

work we demonstrated our super-resolution technique by using core-shell nanopar-

ticles, the high-resolution model fitting procedure could in principle be combined

with 3D CDI methods to image other samples with spatial resolution beyond the

diffraction signal. Finally, we performed numerical simulations on single-shot 3D

imaging of individual virus particles using XFEL pulses. Although single-particle

cryo-electron microscopy has been routinely applied to image the 3D structure of

the virus particles at near atomic resolution, it requires averaging many identical

copies [19]. On the other hand, our single-shot CDI method promises to determine

the 3D structure of a single virus, which can potentially be used to distinguish

structure variation among the same type of virus particles.
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