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ABSTRACT 
Background: While antimicrobial resistance threatens the prevention, treatment, and control of 
infectious diseases, systematic analysis of routine microbiology laboratory test results worldwide 
can alert new threats and promote timely response. This study explores statistical algorithms for 
recognizing geographic clustering of multi-resistant microbes within a healthcare network and 
monitoring the dissemination of new strains over time. 
 
Methods: Escherichia coli antimicrobial susceptibility data from a three-year period stored in 
WHONET were analyzed across ten facilities in a healthcare network utilizing SaTScan’s spatial 
multinomial model with two models for defining geographic proximity. We explored geographic 
clustering of multiresistance phenotypes within the network and changes in clustering over time. 
Results: Geographic clustering identified from both latitude/longitude and non-parametric 
facility groupings geographic models were similar, while the latter was offers greater flexibility 
and generalizability. Iterative application of the clustering algorithms suggested the possible 
recognition of the initial appearance of invasive E. coli ST131 in the clinical database of a single 
hospital and subsequent dissemination to others. 
 
Conclusion: Systematic analysis of routine antimicrobial resistance susceptibility test results 
supports the recognition of geographic clustering of microbial phenotypic subpopulations with 
WHONET and SaTScan, and iterative application of these algorithms can detect the initial 
appearance in and dissemination across a region prompting early investigation, response, and 
containment measures. 
 

1.      Introduction 

1.1    Antimicrobial  resistance 

The emergence of antimicrobial resistance hinders our ability to treat infectious diseases 
with profound impacts on suffering, disability, death, and healthcare costs, and high rates of 



resistance are seen in bacteria causing common healthcare-associated and community-
acquired infections in all World Health Organization (WHO) regions [1]. Dr. Keiji Fukuda, 
WHO Assistant Director-General of Health Security, has warned that a ‘postantibiotic era 
– in which common infections and minor injuries can kill. . . is a very real possibility for the 
21st century’ [2]. 

To confront this urgent threat, a global action plan was endorsed by the sixty-eighth World 
Health Assembly in May 2015 to confront antimicrobial resistance [2]. The global action 
plan outlined five strategic objectives to ‘ensure, for as long as possible, continuity of 
successful treatment and prevention of infectious diseases with effective and safe 
medicines that are quality assured, used in a responsible way, and accessible to all who 
need them’ [1]. These goals include improving awareness and understanding of 
antimicrobial  resistance, strengthening surveillance and research, reducing the incidence of 
infection, optimizing the use of antimicrobial agents, and developing sustainable economic 
investments in new medicines, diagnostic tools, and other interventions for the needs of all 
countries [2]. 

Two key drivers impacting the epidemiology of microbial populations are: (1) selection 
pressure due to antimicrobial use and especially misuse in healthcare, agricultural, and 
industrial settings; and (2) transmission of resistant strains between individuals, 
communities, and nations due to local deficiencies in community and healthcare facility 
hygiene, and to domestic and international trade and travel [3]. In this work, we have 
explored  algorithms  for  recognizing  pathogen  transmission and dissemination in order to 
support early response and containment [4–6]. 

 
 

1.2       Cluster detection with routine microbiology laboratory  data 

WHO highlighted in the global action plan the importance of surveillance in tracking and 
confronting antimicrobial resistance [1], while the WHO Global Strategy for Containment of 
Antimicrobial Resistance recognizes the role of national reference laboratories and 
surveillance networks as a ‘fundamental priority’ for containment efforts [7]. 

The WHO Collaborating Centre for Surveillance of Antimicrobial Resistance, located at 
Brigham and Women’s Hospital in Boston, Massachusetts USA, has developed, 
disseminated, and supported WHONET as  a  surveillance  software for the management of 
microbiological laboratory data since 1989 – based on earlier work with mainframe 
computers initiated in 1964 – with a special focus on the analysis and interpretation of 
antimicrobial susceptibility test results [8–10]. WHONET supports surveillance of infectious 
diseases and antimicrobial resistance in over 2,000 clinical, public health, veterinary, and 
food laboratories in over 120 countries worldwide. BacLink, the data import module of 
WHONET, is used to reformat and standardize  data from diverse  laboratory information 
systems into WHONET format. Data to be entered or uploaded into WHONET is 
configurable by the user, but typically includes patient identifiers and demographics (age, 
gender), medical encounter details (healthcare facility, medical service or ward, date of 
admission), specimen identifier and details (date, anatomical sample site), and 
microbiological findings (organism identification and antimicrobial susceptibility test results). 

In addition to core descriptive statistics on organism frequency, distribution, and resistance 



data and automated alerts on findings of public health importance, WHONET offers a 
number of more sophisticated algorithms for the statistical detection of  case clusters 
suggestive of  disease outbreaks. A number of such algorithms are already implemented in 
WHONET through an integration with the free SaTScan software [11,12], a  free cluster  
detection tool  using purely temporal, purely spatial, and spatiotemporal scan statistics in 
either a prospective or retrospective setting, for either count or continuous data. Using 
Monte Carlo simulations, SaTScan utilizes temporal and/or spatial scanning  windows  to  
search for clusters in which the number of observed cases within a given time period 
and/or geographic entity exceeds to a statistically significant degree the expected  number  of  
cases for that time period and location, adjusting for the multiple testing inherent in the many 
cluster locations and sizes evaluated [13]. 

We have explored the detection of clusters using a number of routinely available data 
elements:  organism,  serotype, phage type, multi-resistance phenotype, biochemical 
phenotype, medical ward (or groups of wards), medical service (or groups of services), 
latitude and longitude of the testing laboratory or healthcare facility, as well as 
combinations of these variables, for example resistance phenotype + ward [14– 18]. Of all 
of these variables, we have repeatedly demonstrated the value of multi-resistance 
phenotypes (i.e. the set of antimicrobials to which a microbial isolate is non-susceptible) 
in improving specificity of alerts (as detected cases have homogeneous characteristics), 
sensitivity  (through  decreases in background noise), and timeliness (through improved 
specificity and sensitivity) [16]. 

In previous work, we have explored use of the WHONETSaTScan integrated  tool for 
the  detection of possible outbreaks in the community [14,15], within individual 
healthcare and long-term care facilities [16,17], and across facilities in healthcare 
networks [18]. Although outbreak detection is limited when relying on routinely 
collected laboratory data, as patients may not present to medical attention and there may 
be biases in clinical sampling and test practices, microbiology laboratories around the 
world demand that we examine them for events of public health importance with 
subsequent epidemiological and/or microbiological investigation as warranted. 

While the focus of our earlier work has been the detection of possible disease outbreaks 
meriting prompt recognition and response, in this study we explored the use of purely 
spatial, time-independent algorithms with alternate objectives in mind. The first was to 
explore the ability of spatial  algorithms to recognize static geographic clustering of 
microorganisms and strain phenotypes using routine microbiology laboratory data. Such 
geographic  clustering  would  be expected in some clinical settings, such as greater 
predominance of multi-resistant strains in intensive care units or tertiary care facilities, but 
unexpected in others, for example in general medical wards or certain long-term care 
facilities, but not others. The second objective was to explore whether the iterative 
application of these spatial algorithms over time could recognize the initial appearance and 
gradual dissemination of emerging threats that could be missed by analysis strategies 
optimized for the detection of acute changes  in case incidence. 

We explored the algorithms using the distribution of Escherichia coli (E. coli) across a 
multicenter network of healthcare facilities, in part because of E. coli’s importance in both 
community and healthcare-associated infections and in part because of important therapeutic 
challenges posed by  resistant strains. However, the approach developed is  generalizable to 



other pathogens and geographic settings, for example across wards within a healthcare 
facility [19]. High proportions of resistance in E. coli to third-generation cephalosporins, 
fluoroquinolones, and a number of other antimicrobial classes has required an increased 
reliance on reserve agents such as carbapenems, to which resistance is rapidly rising, and 
colistin. There is increased awareness of the threat posed by E. coli multi-locus sequence type 
131 (ST131), recognized as a major cause of invasive multidrug-resistant infections in the 
USA and elsewhere [20]. 

 
 
2.     Methods 
2.1.     Data sources and preparation 

Ten facilities affiliated with one healthcare system and subscribing to the SafetySurveillor 
infection prevention module of Premier, Inc. participated in this project. The facilities included 
both hospitals and long-term care facilities. Ethical  approval was received from the Partners 
Healthcare Institutional Review Board, as well as from the relevant Institutional Review 
Boards of each facility. Microbiological data covering a 3-year period included patient 
(study identifier), encounter (clinical  service and ward, date of admission), sample (identifier, 
collection date, type), and microbiological findings (organism identification, susceptibility 
test results). Data files included both quantitative antimicrobial susceptibility test results, 
notably disk diffusion zone diameters and minimal inhibitory concentrations (MICs), but 
within this study we focused on the qualitative interpretations of the test as ‘susceptible’ 
versus ‘nonsusceptible’ using the interpretation provided by the submitting laboratory, 
consistent with recent recommendations  of the Clinical and Laboratory Standards Institute 
(CLSI) guidelines [21]. This study was approved by the Partners Human Research  Committee. 

Results from all clinical isolates were available in the source analysis database, but only 
the first isolate of each species per patient in a 365-day period was included for study. 
Clinical isolates studied represented both community and healthcareassociated infections. 
The database included E. coli results for only diagnostic samples, no screening isolates. 
Consequently, the statistical clusters identified in this work reflect the patient populations 
(both inpatient and outpatient) served by particular hospital laboratories, and not necessarily 
patients hospitalized within those facilities. We have  explored  the application of the 
algorithms described in this application to presumptive isolates from healthcare-associated 
infections (based on the difference between the hospital admission date and the specimen 
collection date)  [19],  but  the  results are not presented here. 

In past work, we have consistently demonstrated the value of multi-drug resistance 
phenotypes to be meaningful and specific proxy indicators of strain relatedness. As the 
susceptibility test practices in each facility were not identical, we explored the availability of 
data for each antimicrobial tested from each facility in order to identify a subset of all 
antimicrobials for which results were consistently available for most isolates. To accomplish 
this, we utilized the ‘Number tested’ column of WHONET’s ‘%RIS and test measurements’ 
analysis (%RIS = %Resistant, %Intermediate, %Susceptible). Our goal was to identify 
antimicrobials tested throughout the network, for which at least 90% of relevant E. coli 
isolates were tested within each facility. This core set of commonly tested antimicrobials 
were utilized to define a ‘multi-resistance phenotype’ for each microbial isolate. 

 



2.2         Detection of geographic clusters 

In our previous work, we have relied primarily on SaTScan’s prospective space-time 
permutation model, integrated into WHONET, to identify outbreaks in time and space. In 
this study, we explored three probability models: Poisson (with hospital-based incidence of 
E. coli infection estimated with available ‘patient-day’ statistics), Bernoulli (comparing 
proportions of E. coli among all samples tested or organisms isolated between facilities), 
and multinomial (considering different  E. coli resistance categories). Based on our early 
explorations of these three models, we considered the multinomial to be most   promising   
and   robust   for   further   development   and generalizable to a variety of scenarios as it 
does not require external denominators (patient catchment population, facilityor ward-level 
patient days, or laboratory test volumes)  that may not always be available, reliable, or stable 
[22]. While the space-time permutation model and temporal Poisson models have been 
implemented within WHONET for several years, this is not yet the case with the 
multinomial model pending evaluation. Consequently, analyses were performed directly 
with SaTScan 9.4.2 [12,13]. 

SaTScan’s ‘spatial’ algorithms require a ‘spatial’ variable. Most frequently, this is a latitude 
and longitude coordinate associated with some aspect of the clinical case, for example, patient 
home residence or place of work, or site of clinical care. In the previous work, we have 
utilized grid coordinate-based spatial variables such as the latitude and longitude of the testing 
laboratory, nonparametric spatial variables such as medical ward or service, or conceptual 
spatial variables such as microbial species, resistance phenotype, serotype, or phage type [15–
18]. In this study, our focus was on the location of the patient’s medical facility. The 
relationship between geographic locations can be defined in two ways in SaTScan: (1) grid 
coordinates, such as latitude and longitude; and (2) nonparametric groupings utilizing 
SaTScan’s non-Euclidean ‘neighbor’ and ‘meta-location’ features. Both approaches were 
evaluated in this study. 

For grid coordinates, the SaTScan ‘coordinate location file’ was populated with the 
longitude and latitude of the healthcare facility associated with each patient isolate. 
Latitudes and longitudes were determined from the batch geocoding utility found at  
www.spatialepidemiology.net,  maintained  by Imperial College London and the Wellcome 
Trust [23]. 

For nonparametric geographic relationships, we utilized the SaTScan ‘meta-location’ file 
feature to create meaningful location groupings not defined by grid coordinates. Meaningful 
groupings can be defined based on similar type of care, geographic proximity, and known 
patient referral patterns between facilities. An example of a ‘meta’ location is the grouping 
of a hospital with its affiliated long-term care facilities, such as nursing homes and 
rehabilitation centers, as in the following example: [CityA] = Hosp1, Hosp2, LTC1, LTC2, 
LTC3. 

The multinomial model requires the identification of a ‘categorical’ variable, and explores 
whether cases within each category are randomly distributed or not across the geographical 
regions or entities. For our analyses, an isolate’s multi-resistance phenotype was the 
categorical variable used – in other words, we explored: (1) whether the distribution of 
different types of E. coli across the healthcare network as defined by their observed multi-
resistance phenotype was  consistent with  random variation or not; and (2) if not, which 
facility (or facility groupings) clusters were of greatest statistical  significance and which 



observed resistance phenotypes exceeded expectations  to the greatest degree as estimated by 
relative risk. 

SaTScan scan statistics use circular (or optionally elliptical) scan windows of varying radii 
in order to determine the most statistically significant clusters in geographic space involving 
one or more healthcare facility. The default SaTScan settings of 999 Monte Carlo replications 
and a geographic maximum scan window of 50% of cases were utilized. Clusters with the 
largest reported likelihood ratios indicate the most likely clusters, of either high or low 
incidence. 

2.     Results 

3.1.    Descriptive  statistics 

Institutional characteristics of the ten healthcare facilities studied are provided in Table 1, 
derived from the American Hospital Directory [24] and the institutional web page  of each 
facility. 

As indicated in Table 2, there were 54,651 unique patients with positive specimens in the 
entire network within the  3year study period, accounting for 73,705 microbial isolates in 
total. A total of 19,362 patients (35% of all patients) tested positive for E. coli with 28,377 
total isolates. The distribution of  E.  coli  isolates  by  healthcare  facility  is  displayed  in  
Figure  1  The largest facility was Hospital 3, the tertiary care teaching hospital for this network 
with 514 patient beds and its laboratory accounts for 42% of all isolates and 39% of all E. coli. 
Hospital 2 was the next largest facility with 155 patient beds accounting for 23% of all isolates 
and 24% of all E. coli. Samples collected in long-term care  facilities  contributed  1% of the 
total isolates and 0.7% of the E. coli. 

The categorization of strains by multi-resistance phenotypes depends on the identification of 
a core set of antimicrobials that consistently have data available for analysis. Over 15 distinct 
antimicrobials were tested by the laboratories of the various facilities, but the specific 
antimicrobial tested varied from facility to facility, as did their testing practices (e.g. only 
testing certain antimicrobials in urine) and reporting practices (e.g. suppress results for third-
line agents if an organism is found  to  be  susceptible  to a  number  of  first-line  agents).  In 

examining the number of test results for each antimicrobial for each  facility,  we  excluded  
from  further  consideration antimicrobials  that  were  infrequently  tested.  If the  
microbiological activity  and  testing  of  two  antimicrobials  were  substantially similar, for 
example ciprofloxacin and levofloxacin (LVX), only one of the two was included in the set 
of core antimicrobials. Given these considerations, we identified a core set of six 
antimicrobials suitable for assigning a multi-resistance phenotype to each strain: ampicillin 
(AMP), ceftriaxone (CRO), ceftazidime   (CAZ),   gentamicin   (GEN),   LVX,   and   
trimethoprim/ sulfamethoxazole (SXT). For example, a strain with phenotype ‘AMP CRO 
CAZ’ is non-susceptible to the three antimicrobials indicated, but susceptible to the 
remaining three. This set of six antimicrobials worked well for purposes of strain 
characterization with the exception of Hospital 4 (Table 2),  in  which case the CAZ result was 
frequently missing. Consequently, this facility was excluded from further analyses. Excluding 
Hospital 4, complete results for these six antimicrobial were available for 93% of the E. coli 
studied.  Because of this good level of data completeness and the lack of meaningful 
information provided by isolates missing test results, we utilized the WHONET feature 
‘exclude isolates missing results for one or more antimicrobials.’ The distribution of all 
resistance phenotypes by facility is provided in Table 3. 



Special public health concern about invasive, multi-resistant E. coli ST131 was noted above. 
Conveniently, there is a specific multi-resistance phenotype observed in a large proportion of 
E. coli ST131 isolates which can be used as a useful proxy phenotypic marker of this strain – 
specifically, these strains are often possess a CTX-M-15 or CTX-M-14 extended spectrum 
beta-lactamase, which confers resistance to CTX but 

 

 

 



 

 

 
Figure 1. Distribution by of all E. coli isolates (1a) and E. coli with the typical E. coli 
ST131 multi-resistance phenotype – non-susceptible to AMP, CTX, and LVX, but 
susceptible to CAZ (1b). 

 



 
 

not to CAZ, as well as typical mutations to the gyrA and parC conferring resistance to 
fluoroquinolones, such as  LVX  [25]. Not all E. coli isolates with this phenotype will have the 
ST131 sequence type, and not all E. coli ST131 isolates will display this phenotype, but a 
number of studies have highlighted a useful association of this phenotype with this genotype 
[26,27], including a study in two US states demonstrating that 48% of CTX-M-15 producing E. 
coli and 66% of CTX-M-14producing E.  coli  were indeed E.  coli  ST131 [28].  Multi-
resistance phenotypes that include this type of resistance  (‘AMP CRO  LVX’)  are  
highlighted  in  Table  3  as  consistent  with  the typical E. coli ST131 phenotype. As seen in 
Figure 1, only 28% of such isolates were from patients at the tertiary care center Hospital 3, 
whereas 81% were isolated from the much smaller Hospital 2. 

 

 

3.2. Cross-sectional multinomial analysis 

Table 4 presents the results of the multinomial analysis where relatedness of healthcare 
facilities was defined by geographic proximity through latitude and longitude. Three 
statistically significant   clusters   were   found:   Cluster   1   included   two 

  



 
hospitals and two long-term care facilities, and the relative risk associated with each 
resistance phenotype within  these groups of facilities is provided. For example, a patient 
within these four facilities (Hospital 1, Hospital 2, LTC 2, and LTC 3) has a 5.44 greater 
risk of testing positive for an E. coli isolate with multi-resistance phenotype ‘AMP CRO 
GEN LVX SXT’ compared to a patient in the remaining six facilities in the network . Cluster 
2 involves a single hospital and an associated long-term care facility providing psychiatric 
care, while Cluster 3 only involves a single hospital. A relative risk of ∞ indicates that this 
resistance phenotype was only seen in this facility/ facility grouping and no others, a finding 
which in itself should merit further investigation. 

Table 5 presents the corresponding results for the multinomial analysis utilizing 
facilities and facility groupings. The overall findings in Table 5 have many similarities to 
those of Table 4. For example, Cluster 1 in the latitude-longitude analysis is comparable 
to Cluster 1 in the meta-location analysis; Cluster 2 in the former is comparable to Cluster 
2 in the latter; and Cluster 3 in the former is comparable to Cluster 4 in the latter. The 
observed relative risks between the two analyses are also very similar, for example in 
reviewing the findings of Cluster 1 in the two analyses, the three resistance phenotypes 
consistent with the putative E. coli ST131 phenotype have relative risks of 2.27, 4.17, 
and 5.44 in the former and 2.96, 
3.95, and 5.45 in the latter. 

The meta-location analysis disclosed statistically significant findings in Hospital 5 
(Cluster 3) that were not seen in the latitude-longitude analysis. A noteworthy finding 
from this cluster is that the relative risk associated with phenotype ‘AMP CRO CAZ GEN 
SXT’ is 25.94, which should prompt investigation into the epidemiology and risk factors 
associated with this phenotype in the patient population served by Hospital 5. 

 

3.3. Iterative multinomial analysis 

Further analyses explored whether there were any changes in geographic clustering of E. coli 
resistance phenotypes during the 3 years of the study. We compared location clusters identified 
in Year 1 with those identified in Year 3 with results displayed in Table 6. As the previous 
section demonstrated that the clusters derived from latitude and longitude-based analyses were 
broadly similar to those of the meta-location analyses, only the latter are presented here. 
Cluster 1 was clearly seen in both years with similar resistance phenotypes, but if one 
considers the relative risks associated with the three E. coli ST131 phenotypes, these dropped 



from 4.89, 9.79, and 14.68 in Year 1 to 3.39, 3.14, and 5.03, respectively in Year 3 suggestive 
of either an overall decrease  in  the  frequency  of the phenotype (which was not the 
observation in this  situation) or more likely a dissemination from Hospital 2 to Hospital 1 such 
that the statistical significance of the clustering within the Hospital 2 patient population was 
less in Year 3 as the organism has become more dispersed across the network. 

The Hospital 5 cluster in Year 1 was associated with a high relative risk for phenotype 
‘AMP CRO CAZ SXT’ (RR = 11.64) and ‘AMP CRO CAZ GEN SXT’ (RR = 27.17), but this 
statistical cluster disappeared entirely by Year 3. In contrast, no statistically significant 
findings were associated with Hospital 1 or Long-term Care Facility 3 in Year 1, but in Year 3, 
they appear in Cluster 2 along with Hospitals 3 and 6. Three of these four facilities are in the 
same city of approximately 65,000 inhabitants, while the fourth is a neighboring community 7  
miles away suggesting possible dissemination of the indicated multi-resistant strain phenotypes 
between the population catchment areas of the four facilities  during  the  3  years  of the study. 

 

4. Discussion 

The traditional statistical approach for detecting infectious disease outbreaks is the application 
of temporal [29,30] or spatiotemporal algorithms [15–18] to identify significant increases in 
case number or incidence case cluster suggestive of a public health event meriting real-time 
investigation and timely response. In this study, we explored the use of purely 

 

 



 
 

spatial, time-independent algorithms with alternate objectives in mind. The first objective was to 
explore the ability of spatial algorithms to recognize purely geographic clustering of 
microorganisms and strain phenotypes using routine microbiology laboratory data. The second 
was to explore the iterative application of these spatial algorithms over time to recognize the 
initial appearance, subsequent movement and diffusion, and in some  instance disappearance of 
strain  phenotypes in a geographic region. Based solely on statistical findings, one cannot be 
certain whether the clusters identified are true or important, but we believe that many would 
suggest concerning issues and emerging threats that would merit further epidemiological and/or 
microbiological investigation and potentially  response. 

A key motivator to this work was the recognition that healthcare facilities often consider 
– incorrectly – that findings within their own facility are ‘typical’ of  those  in  their own area. 
Infection control staff often believe that similar nearby  facilities  have  the  same  types  of  
microorganisms  in a similar proportion and with similar epidemiology as  their own. Prior to 
this study, we found many examples where this was not the case, so we sought to develop 
algorithms for the systematic detection of such clustering. In some instances, geographic 
clustering of multidrug-resistant bacteria is to be expected, for example within intensive care and 



burn units or within tertiary care hospitals and long-term care facilities. However, in many cases, 
observed clustering does not have an obvious  explanation. Contributory factors may include 
poor  local  hygiene  measures,   inappropriate   antimicrobial use practices, chance historical 
events, or underlying population demographics of the community served by  the  laboratory. The 
recognition  that  the  challenges  faced  by  each facility are different is a first step toward 
targeted investigation, intervention, and control efforts. In  this  study,  we selected E. coli as a 
pathogen for study and the testing laboratory as the geographic unit of study, but the methods are 
generalizable and can be applied to other species and location  coordinates. 

 

4.1. Comparison of SaTScan multinomial model to traditional chi-square 

We applied spatial algorithms employing the multinomial probability model to compare the 
observed proportions of distinct multidrug-resistant phenotypes of E. coli  isolates among the 
network facilities. The SaTScan spatial multinomial model algorithm is conceptually similar to 
traditional chisquare statistics – quantifying whether the ‘observed’ distribution of cases is 
statistically consistent with the ‘expected’ distribution of cases, but with two crucial 
advantages: (1) the SaTScan approach  utilizes  configurable  scanning  windows,  so is not 
restricted to predefined geographic entities and groupings as traditional chi-square would be; 
and (2) critically, a traditional chi-square calculation provides only a simplistic ‘yes’ or ‘no’ 
response to the question of whether the observed distribution of cases in its entirety is or is not 
consistent with random variation – but without identifying particular rows or columns which 
deviate most from expectations.  In  contrast, the multinomial approach provides more granular 
details such as p-values for cluster significance and relative risk associated with each multi-
resistance phenotypes which facilitate the recognition of the major phenotypic strains and 
locations associated with statistically significant clusters. 

These characteristics are well highlighted in Table 3. A traditional chi-square based on the 
rows and columns of this table demonstrates a p-value of p < 0.00001, though the minimal data 
requirements for performing chi-square are not met and there is no obvious conclusion to be 
drawn as to which phenotypes and which locations deviate most significantly from 
expectations. Furthermore, this traditional approach cannot recognize clusters associated with 
facility groupings, for example Hosp1+Hosp2+LTC3, which can be explored with the SaTScan 
spatial multinomial model. 

The strengths of the multinomial approach can be seen in Table 4. A p-value is associated with 
each cluster (which could represent a single facility or multiple), and for each resistance 
phenotype within this cluster an associated relative risk is presented. For example, patients 
associated with Hospital 5 have nearly 26 times the risk of having an E. coli with multi-
resistant phenotype ‘AMP CRO CAZ GEN SXT’ than patients at other facilities, a finding 
probably unknown to staff members at Hospital 5, who perhaps consider this to be a ‘usual 
finding’ while staff members in other facilities are likely unaware of how frequent this 
particular strain is at one of the other facilities in their network. Table 4 highlights three rows 
with the resistance phenotype commonly associated with E. coli ST131, one row with the base 
phenotype of ‘AMP CRO LVX’ non-susceptibility, one row with additional SXT non-
susceptibility, and one row with nonsusceptibility to both SXT and GEN. Of note, all three of 
these rows were seen in Hospital 2 patients, suggesting an important clustering of distinct 
strains of possible E. coli ST131 in the patients served by the laboratory of this facility. As this 
was a retrospective analysis of clinical isolates, molecular confirmation of the E. coli ST131 



genotype was not possible, but in realtime monitoring, molecular confirmation and 
epidemiological investigation and response would be feasible. 

Table 7 is an extract of Table 3, but including only rows with this putative E. coli ST131 
phenotype. So the clustering of the putative E. coli ST131 in the Hospital 2 patient population 
(smaller than population served by Hospital 3) suggested by the multinomial analysis could 
potentially have been suspected from a thorough but tedious manual inspection of the original 
phenotype distributions and figures, but elucidated in a manner which is more comprehensive 
(addressing all locations and phenotypes, both high-priority concerns like 

E. coli ST131 and non-priority), systematic (amenable to automation and configurable  alerts), 
flexible  (considering both individual facilities and groups of facilities), and generalizable to 
other settings and data sources. 

 

4.2. Changes in geographical clustering over time 

While we did not utilize the space-time version of the multinomial scan statistic, it is 
meaningful to look at changes in these static snapshots of geographical clustering over time, 
especially to explore important changes in the distribution of strains over time that are too 
gradual to be recognized by algorithms optimized for the detection of abrupt and timelimited 
outbreaks. Using the clinical databases of the network facilities, one can distinguish three 
priority scenarios of public health relevance: 

 

● Stable geographic clustering: In this scenario, the underlying epidemiology of the 
involved microbial populations appears stable. The clustering of resistant strains may reflect 
higher risk populations, as in intensive care units or university hospitals, or unexpected 
findings in low-risk medical wards or certain long-term care facilities, but not others. 

● Early geographic clustering that disappears in time: The disappearance of clustering over 
time may simply reflect a decrease or disappearance in the number of  isolates with a given 
phenotype over time. This could be due to evolutionary fade-out or aggressive-targeted 
infection prevention measures. Of greater public health concern would be the progressive 
dissemination of a strain from an initial concentrated focus of infection (in which control 
efforts could be aggressive and locally targeted) across   a   geographic   region   so   that   the   
strain   is increasingly common but with a more diffusion distribution (in which targeted 
control efforts are less likely to be successful). 

● Geographic clustering that appears in time: Clustering of this type would suggest the 
incursion of  a  new  threat into the geographic region studied (or alternatively a concentration 
of a strain previously broadly disseminated). The appearance of new strains in a defined 
geographic unit should prompt timely investigation, confirmation, and where appropriate  
response  actions to limit spread to other geographic areas. 

  



 
Table 6 displays a comparison of the  most prominent  statistical clusters in Year 1 of the study 
to those of the Year 3, and the strong statistical association of isolates with the frequent 

E. coli ST131 resistance phenotype in the Hospital 2 population appears in both years. 
However, one can note the great drop in relative risks associated with these phenotypes 
between the two time periods – RR of 9.79, 14.68, and 4.89 in Year 1 dropping 3.14, 5.03, and 
3.39, respectively, in Year 3. This is consistent with a manual review of the facility-level 
statistics by year – notably 6 of 7 (86%) isolates with phenotype AMPCRO-LVX-SXT,  were  
seen  in  the  Hospital  2  population   in Year 1, but only 16 of 22 (73%) in Year 3. 

Despite the increased number of Hospital 2 patients in Year 3, there is also a greater number of 
Hospital 3 patients with this phenotype in Year 3: (1) suggesting a gradual movement of this 
phenotype across the region; and (2) explaining the decrease in statistical significance of the 
Hospital 2 clustering. The number of cases with this phenotype in the other hospitals is 
between 0 and 3 in the full 3year study suggesting that these are sporadic cases of infection, 
whereas by Year 3, the strain appears to be well established and endemic in both the  Hospital  
2  and Hospital 3 patient population. 

Of note, there were no isolates with the typical E. coli ST131 phenotype during the first 4 
months of 3-year data collection, so it is possible that we have observed the initial or early 
appearance of this strain in a clinical database in this network, beginning in the patient 
population covered  by  Hospital  2, but without data from earlier time periods, one cannot be 
certain of this. In fact, this type of observation suggests that there is value in the iterative 
monthly application of these algorithms to support prospective detection of strain emergence 
and gradual spread that might be missed by algorithms optimized for acute outbreak detection. 

It is useful to contrast the results  of  the  current  study with the findings of parallel work [17] 
conducted by  our group in which we applied the SaTScan space-time permutation model, an 
algorithm we have optimized for purposes of detecting acute outbreaks (over the course of 
several days to  a  few  months),  to  the  same  database studied here. In that work,  we  
identified  16  statistical clusters suggestive of possible  outbreaks  over  3  years  in the 10 
facilities, but only one was with E. coli, and that statistical  cluster  did  not  overlap  with  any  
of  the  clusters identified in this study. A useful conclusion is that different algorithms can 
serve different purposes – the space-time permutation model has been optimized for detecting 
acute/short-term clusters, often associated with  unwarranted transmission of microbes within 
and  between healthcare  facilities,  and  the   multinomial   model,   which we believe offers a 
new approach for identifying (1) stable geographic  clustering;  and  (2)  slow  movements  and 
changes  in  distributions  of  isolates. 

 

4.3. Comparison of latitude-longitude coordinates versus meta-location groups 

We explored two approaches for describing the geographic relatedness of healthcare facilities: 
(1) grid coordinates utilizing latitude and longitude; and (2) ‘meta-location’ meaningful 



groupings of facilities based on geographic proximity, types of medical care, or patient referral 
patterns. The findings in this study indicate that statistical findings between the two approaches 
were similar. 

Though there are merits in both approaches, the metalocation approach offers greater 
flexibility in defining the relationship between healthcare  facilities  utilizing  a  number of 
relevant dimensions beyond pure physical proximity. The approach is more robust with regard 
to the details of the geographic layout, for example if a healthcare  network involves both 
urban  and  community  facilities,  mountainous or island communities (in which latitude  and  
longitude  do not adequately capture the practical distance between facilities). Most 
importantly,  the meta-location  approach  is more generalizable to a broad variety of settings, 
for example permitting the application of these clustering algorithms to medical wards or 
groups of medical wards within a hospital, facilitating the detection and tracking of healthcare-
associated outbreaks [19]. 

 

5. Conclusions 

Previous work by us and others has demonstrated the value of statistical algorithms for the 
timely detection of emerging infectious disease threats and early response.  In this  study, we 
have aimed to expand the range of validated analytical approaches to incorporate nontemporal 
algorithms which identify unexpected spatial clustering in static snapshots. We found the 
SaTScan spatial multinomial model to be conceptually similar to traditional chi-square 
analyses, but with significant advantages in granularity of statistical detail and insights, 
flexibility with regard to location  definitions and groupings either utilizing latitude and 
longitude grid coordinators or meaningful hierarchical groupings of medical wards or 
geographical entities, robustness with regard to chi-square assumptions which often do not 
hold in practice, and generalizability. Based on the encouraging results obtained in this study 
and other work, our intent is to proceed with full integration of the multinomial model as a 
standard feature within WHONET. 

The iterative application of the geographical analyses permits the recognition of stable 
geographic clustering, both expected and non-expected, as well as the gradual appearance, 
disappearance, and dissemination of distinct microbial subpopulations that would be missed 
with algorithms optimized for the detection of acute, time-limited outbreaks. For example, in 
this study, we likely documented the early incursion of strains with the typical E. coli ST131 
resistance phenotype into the patient population served by  one  of  the hospitals of the network 
with later spread and endemic establishment in the referral center of the network, but only 
sporadic cases in the other centers. 

While the algorithms that we studied have very generalizable application, a number of 
studies  have  found  that  the use of antimicrobial resistance  phenotypes  as  meaningful proxy 
indicators  for  microbial  subpopulations  greatly improves the specificity of detected signals – 
since cases detected  are  phenotypically  homogeneous  – and  sensitivity – through 
decrease in background noise related to unrelated strains. It was necessary to exclude one 
facility from several of the analyses because of lack of availability of one of the key antibiotics 
studied, emphasizing the value of  coordination among facilities in  providing  consistently  
available  data  for at least a core set of antimicrobials. 

An important aspect of this work is its reliance on the widely used WHONET software 



to perform sophisticated statistical analyses for cluster recognition through its integration of a 
variety of statistical algorithms including those available within the free SaTScan software. 
WHONET is used to support surveillance of antimicrobial resistance in over 2,000 laboratories 
worldwide in over 110 countries. Thus, our aim is not only to evaluate and validate data 
management and alert strategies, such as those described in this paper, but also to support their 
real-time integration into routine practice by microbiologists, infection control practitioners, 
epidemiologists, and public health authorities at local, regional, and national levels worldwide 
to support early detection, response, and containment efforts. 

 

Key issues 

● Traditional statistical approaches for the detection of infectious clusters focus on the 
temporal component and deviations from a historical baseline. 

● In this work,  we  applied the  Monte  Carlo-based  spatial multinomial model available 
within SaTScan to explore geographic clustering of clinical isolates of multi-resistant E. coli in 
a healthcare network of six hospitals and four long-term care facilities. 

● SaTScan’s spatial multinomial model is conceptually similar to a classic chi-square RxC 
contingency table but with significant advantages in granularity of statistical feedback, 
flexibility in grouping geographic entities, and robustness with regards to underlying data 
assumptions. 

● We analyzed space utilizing both latitude and longitude grid coordinates as well as 
meaningful facility groupings based on geographic proximity and patient referral patterns with 
similar findings observed for the two approaches. The meta-location    approach    offers    
greater    robustness    to assumptions on meaningful ‘distances’, flexibility in defining 
relationships between locations, and generalizability to a number of clinical scenarios. 

● The iterative application of geographic cluster algorithms permits the recognition of 
stable clustering over time (both expected and unexpected) as well as the appearance, 
disappearance, and gradual dissemination of resistant populations that would be missed by 
statistical algorithms optimized for acute outbreak detection. 

● Antimicrobial multi-resistance test results are valuable phenotypic strain markers which 
improves the specificity, sensitivity, and epidemiological relevance of cluster detection. 

● WHONET and SaTScan software is utilized to support surveillance of infectious 
diseases and antimicrobial resistance in over 2000 microbiology laboratories in over 110 
countries, so the strategies elaborated within this paper have broad applicability by a range of 
non-statistician healthcare professionals worldwide. 
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