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Abstract
Background: Moving beyond pairwise significance tests to compare many microbial communities
simultaneously is critical for understanding large-scale trends in microbial ecology and community
assembly. Techniques that allow microbial communities to be compared in a phylogenetic context
are rapidly gaining acceptance, but the widespread application of these techniques has been
hindered by the difficulty of performing the analyses.

Results: We introduce UniFrac, a web application available at http://bmf.colorado.edu/unifrac, that
allows several phylogenetic tests for differences among communities to be easily applied and
interpreted. We demonstrate the use of UniFrac to cluster multiple environments, and to test
which environments are significantly different. We show that analysis of previously published
sequences from the Columbia river, its estuary, and the adjacent coastal ocean using the UniFrac
interface provided insights that were not apparent from the initial data analysis, which used other
commonly employed techniques to compare the communities.

Conclusion: UniFrac provides easy access to powerful multivariate techniques for comparing
microbial communities in a phylogenetic context. We thus expect that it will provide a completely
new picture of many microbial interactions and processes in both environmental and medical
contexts.

Background
Sequencing microbial genes directly from the environ-
ment has uncovered a vast diversity of microbial lineages
that had not been found by techniques that require culti-
vation [1,2]. The gene encoding the small subunit of
ribosomal RNA (SSU rRNA) has been especially useful as
a marker for phylogenetic diversity [1]. Although
sequences are often used to catalogue the types of micro-
organisms present in a single environment, comparisons
between sequences from multiple environments are

increasingly important because they can test whether
microbial community composition changes in response
to specific environmental variables. Such applications
include testing how disease affects oral or gut microbial
communities [3-5], understanding industrial processes
such as the different types of activated sludge in batch
reactors [6], understanding how pollution affects natural
ecosystems [7,8], and understanding the basic ecology
and distribution of microbes [7,9,10].
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When comparing microbial communities, researchers
often begin by determining whether each pair of commu-
nities is significantly different. However, to gain a broad
understanding of how and why communities differ, it is
essential to move beyond pairwise significance tests. For
example, we might want to know whether differences
between communities stem primarily from particular lin-
eages of the phylogenetic tree, or whether there are envi-
ronmental factors (such as temperature, salinity, or
diseases) that group multiple communities together.

Here we introduce UniFrac, a web application that allows
researchers to address many of these broader questions
about the composition and evolution of bacterial com-
munities. For example, symbiotic communities associated
with different animal species would be expected to show
differences correlating with the evolutionary distance
between the animals if most of the change is through
divergence and vertical inheritance. However, if diet or
geography influences the assembly of the communities
more, we would expect the community differences to cor-
relate more with these other factors. UniFrac uses phylo-
genetic information and multivariate statistical
techniques to determine whether microbial communities
are significantly different, identify individual lineages that
contribute to these differences, and reveal broad patterns
relating many environmental samples. Phylogenetic tech-
niques for comparing microbial communities have only
recently been introduced [11-13], and can be more
informative than traditional "species"-based methods
such as the Jaccard and Sörenson indices (described in
[14]). Unlike phylogenetic techniques, species-based
methods that measure the distance between communities
based solely on the number of shared taxa do not account
for the amount of evolutionary divergence between taxa,
which can vary widely in diverse microbial populations.
Among the first applications of phylogenetic information
to comparisons of microbial communities were the Phyl-
ogenetic (P) – test and the FST test [12]. These tests were
adapted from population genetics, and can be used to
determine whether pairs of microbial communities differ
significantly. The P-test, in particular, has been broadly
applied in microbial ecology [15-20] despite the absence,
until recently [21], of a convenient implementation.
However, pairwise tests are limited because they can only
reveal whether two samples differ from one another, and
cannot be used to relate many samples simultaneously.

We recently introduced a new phylogenetic diversity met-
ric called the UniFrac metric, which allows multiple com-
munities to be compared simultaneously [11]. The
UniFrac metric measures the distance between communi-
ties as the percentage of branch length that leads to
descendants from only one of a pair of environments rep-
resented in a single phylogenetic tree, i.e. the fraction of

evolution that is unique to one of the microbial commu-
nities. The metric thus reflects differences between the lin-
eages that are adapted to live specifically in one
environment or the others. The UniFrac metric has been
used to cluster many different environments according to
shared similarities in community composition [3,11]. In
this paper, we describe a web application that implements
the UniFrac metric and several other phylogenetic tests in
a form easily accessible to microbiologists and that does
not require any computer programming experience.

The UniFrac web application allows researchers to com-
pare many environments simultaneously using hierarchi-
cal clustering and/or principal coordinates analysis
(PCA)[22]. The significance of the clusters identified by
this method can be established using sequence jackknif-
ing, which tests whether the environments were sampled
sufficiently to support individual clusters. UniFrac can
also determine whether community differences are con-
centrated within particular lineages of the phylogenetic
tree by applying the G test for goodness of fit [23] to all
clades (subtrees) within a tree at a defined distance from
the tree root. The interface provides powerful graphics to
visualize the differences in PCA plots and phylogenetic
trees/environment clusters that are highlighted by signifi-
cance. Finally, UniFrac can determine whether microbial
communities are significantly different using both the
UniFrac significance test [11] and the P-test [12], allowing
direct comparisons of the two techniques. The UniFrac
interface makes the results of these procedures dramati-
cally easier to interpret by providing visual presentations
of the data rather than output files that must be plotted in
other programs. Thus, UniFrac makes these phylogenetic
methods far more broadly accessible to the community of
microbial ecologists.

Implementation
Design requirements
Based on user feedback and on our own experience using
the original command-line implementation of these anal-
yses, we identified six essential design requirements for
the UniFrac system. The system should:

1. Be widely useful and usable by biologists without pro-
gramming experience.

2. Be fast, scalable, and support multiple simultaneous
analyses on a dataset.

3. Support trees from several common phylogeny pro-
grams, including ARB [24], PHYLIP [25], PAUP* [26],
RAxML [27], MUSCLE [28] and Clustal W [29].

4. Combine a wide range of known and novel phyloge-
netic algorithms with powerful and easily understood vis-
Page 2 of 14
(page number not for citation purposes)



BMC Bioinformatics 2006, 7:371 http://www.biomedcentral.com/1471-2105/7/371
ualization tools. For example, scatterplots of principal
coordinates should be able to use either text labels or sym-
bols, and trees should display both branch length and,
where available, statistical support.

5. Allow pairwise comparisons between all pairs of envi-
ronments represented in the input phylogenetic tree to
determine which pairs are significantly different after cor-
recting for multiple comparisons.

6. Determine whether community differences are concen-
trated within particular lineages of the phylogenetic tree.

We were able to meet these design requirements by imple-
menting UniFrac as a web application on a Beowulf clus-
ter (a high-performance network of Linux-based servers).
In particular, we achieve scalability by distributing indi-
vidual components of the analysis to different CPUs in the
cluster, which also allows multiple analyses to be per-
formed simultaneously. The web interface also provides
an environment familiar to most potential users, and
allows the results to be visualized as trees or graphs
directly rather than requiring that the data be exported to
other programs. Unlike our earlier command-line imple-
mentation, the user need not install additional software to
run the web version of UniFrac, and the analysis is not
limited to a single CPU.

Data input
UniFrac requires two input files: a single rooted phyloge-
netic tree that contains sequences derived from at least
two different environmental samples, and a file describing
which sequences came from which sample. The phyloge-
netic tree can be in either Newick or Nexus format, and
can be generated by programs such as ARB [24], PHYLIP
[25], PAUP* [26], RAxML [27], MUSCLE [28] or Clustal
W [29]. The environment information must be provided
in a text file in which each line contains a sequence name
and an environment name separated by a tab. Optionally,
the environment file can include a third column describ-
ing the number of times the sequence was observed in
each environment. This abundance data can come from
Restriction Fragment Length Polymorphism (RFLP) data
or Operational Taxonomic Unit (OTU) counts.

Analyses
UniFrac displays the uploaded data on a page that allows
the user to choose among several analyses (Fig. 1). A text
representation of the input phylogenetic tree is displayed,
including the environments to which each sequence was
assigned and the number of times each sequence was
observed (Fig. 1). Detailed information on the number of
sequences in the tree that were assigned to each different
environment can be obtained by selecting Environment
Counts from the Select Analysis drop down menu (Fig. 2A).

Significance tests
UniFrac allows several different hypotheses about com-
munity structure to be tested, using two different methods
of calculating significance and three methods for choos-
ing the environments to be compared with one another
(Table 1).

UniFrac can calculate whether two communities differ sig-
nificantly using either the UniFrac significance test [11] or
the P-test [12]. The P-test estimates similarity between
communities using the number of changes from one envi-
ronment to another along a branch that is required to
explain the distribution of sequences between the differ-
ent environments in the tree (Fig. 3). The P-value is the
fraction of trials in which the true tree requires fewer
changes than trees in which the environment assignments
have been randomized. The UniFrac significance test
measures similarity between communities as the fraction
of branch length in the tree that is unique, meaning that it
leads to descendants in one environment or the other but
not both (Fig. 3). The P-value is the fraction of trials where
the true tree has more unique branch length than trees in
which the environment assignments have been rand-
omized.

In the UniFrac interface, the Number of permutations
option selects the number of random permutations of
environments used to calculate the P-values for the P-test
and the UniFrac significance test. Both tests can be per-
formed on All environments together or for Each pair of envi-
ronments. Performing the analysis on All environments
together tests whether the sequences from all of the differ-
ent environments in the tree are significantly different
from each other. For example, if there are sequences from
3 different environments in the tree, only one P-value is
returned. This P-value indicates the probability that the
sequences differ significantly across all 3 environments. A
significant P-value can arise even if only one environment
differs from the rest.

In contrast, performing the analysis on Each pair of envi-
ronments returns a P-value for each possible pair of envi-
ronments in the tree. This option can be used to test which
pairs of environments differ from one another. Sequences
present in neither of the two environments being com-
pared are removed from the tree before calculating the sig-
nificance. When making many comparisons, P-values
must be corrected in order to maintain the desired Type I
error rate (the probability of incorrectly rejecting the null
hypothesis when it is true). We correct for multiple com-
parisons by multiplying the P-values by the number of
comparisons that were made, otherwise known as the
Bonferroni correction [23], and report both the corrected
and uncorrected results of the analysis. This correction can
make it difficult to obtain a significant P-value for trees
Page 3 of 14
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with sequences from many different environments, even
if the environments have very divergent communities.
Pairwise comparisons between more than 3 samples
should use at least 1000 randomized trees, because the
minimum P-value that can be reported for 100 permuta-
tions is <= 0.01 (if none of the permuted labels gave a
score more extreme than the actual score). Because there
are six ways to choose pairs for four samples for compari-
son, we would need to correct for multiple comparisons
by multiplying this minimum value of 0.01 by 6, resulting
in a P-value of <= 0.06. Thus, no individual pair could be
shown to be significantly different at a 0.05 cutoff.

The UniFrac Significance test also has the option to ana-
lyze Each environment individually, which can determine if
a significant P-value for All environments together is due pri-
marily to a single environment. This could occur if one
environment contains only sequences that also appear in
the other (analogous to what can be detected using Lib-
Shuff [13,30]), or if the sequences in one environment are
more tightly clustered or are on longer branches. This
analysis returns a P-value for each environment, indicat-
ing whether that environment has more unique branch
length than would be expected if the sequences from that
environment were randomly distributed in the tree. The

Select analysis page that is displayed after loading a tree and environment fileFigure 1
Select analysis page that is displayed after loading a tree and environment file. Only part of the screen is shown with a text rep-
resentation of the tree. Each branch is labeled with the sequence name in black, the environment in which the sequence was 
found in blue, and the number of times that it was observed in red. The options for the Lineage-Specific Analysis are displayed. 
The dotted red bar is used to cut the tree into lineages.
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calculations are similar to those for the UniFrac signifi-
cance test with All environments together, except that the
fraction of unique branch length is calculated for each
environment individually and compared to a random dis-
tribution for that particular environment, thus testing
whether any single environment differs in phylogenetic
distribution from the rest of the sequences overall. The All

environments together option instead pools the unique
branches for all the environments in the tree, thus testing
whether any combination of environments is nonran-
domly distributed.

Note that whether or not sequences are dereplicated can
have substantial effects on the statistical significance of

Table 1: Different options in UniFrac allow different hypotheses to be tested.

Option Hypothesis

P-test There have been fewer transfers of lineages between environments than would be expected by chance, as 
measured by counting the number of transfers in a sample of trees in which sequences are randomly assigned to 
environments.

UniFrac There is less evolutionary history shared between a pair of environments than would be expected by chance, as 
measured by adding up the unique branch length (that leads to only one particular environment) in a sample of 
trees in which sequences are randomly assigned to environments.

Each environment individually When each environment is compared against all other environments taken together (i.e. all other environments are 
given the same label), the sequences from that environment alone are nonrandomly distributed on the tree when 
only changes to/from that environment are considered.

Each pair of environments When each environment is compared against each otherenvironment (removing all other environments except that 
pair from the tree), changes between that pair of environments occur less frequently than would be expected by 
chance.

All environments together When all environments are included in the same comparison, the total number of changes between environments 
is less than would be expected by chance, counting any change between different environments as a change.

Screenshots of analysis resultsFigure 2
Screenshots of analysis results. For the environment names, the letter before the underscore indicates whether the sequences 
were from the Columbia River (R), its estuary (E), or the adjacent coastal Ocean (O). The letters after the underscore indicate 
whether the sequences were from the particle-attached (PA), free-living (FL) bacteria or from unfiltered water (UN). A) Result 
of running the Environment Counts Analysis option with Use abundance weights set to No, so that the counts represent the 
number of OTUs rather than the total number of clones evaluated (which would sum to 236 instead of 163). B) Result of run-
ning Environment Distance Matrix. The values are colored by quartile; values in the 0–25% range are red, 25–50% are yellow, 50–
75% are green, and 75–100% are blue.
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the distance between samples, even though there will be
no effect on the distance itself. For example, suppose you
have two samples A and B. OTU X appears 10 times in
sample A, and does not appear in sample B. After derepli-
cation, only one sequence from X in sample A remains in
the data set. During the randomization, in which environ-
ment labels are assigned to each taxon independently, the
original set (with 10 copies of X) can have each of these
copies assigned either to A or to B. Because, on average,
half the copies will be found in each environment, in
most cases the branch length leading to X will be counted
towards both A and B, and so the original data set (which
assigns all this branch length to A) will appear to be highly
unusual and thus statistically significant. However, in the
dereplicated data set, in which there is only one copy of X,
all of its branch length will be assigned either to A or to B,
but never to both. Consequently, X will always count as
"unique branch length", and the real observations will
appear no different from randomized observations (see
Fig. 3C).

Lineage-specific analysis
If the communities from two environments are signifi-
cantly different, the next step is to determine which line-
ages contribute to the difference. This is commonly done
by binning the sequences by taxonomic group (e.g. by
division), and then comparing the percentage of
sequences from each group in each environment using bar
graphs or pie charts. For more detailed analysis, research-
ers often visually inspect the phylogenetic tree to identify
lineages that are overrepresented in one environment, but
this is seldom done with statistical rigor. UniFrac's line-
age-specific analysis determines whether particular line-
ages in the phylogenetic tree have an excess or deficit of
sequences from a particular environment by applying the
G test for goodness of fit to each lineage at a defined dis-
tance from the root. The G test is similar to the chi-
squared test for goodness of fit, but is more accurate for
small sample sizes [23].

To apply the G test, the lineages are first separated by cut-
ting the tree at a specified distance from the root, which
can be entered numerically or chosen by clicking on a
scale bar above the tree (Fig. 1). Choosing a small dis-
tance, which cuts close to the root, can perform a high-
level analysis at the division level. Choosing a large dis-
tance, which cuts far from the root, can perform a low-
level analysis at about the family or genus level. For each
lineage, we use the G test to generate a P-value that indi-
cates the probability that the actual count of sequences in
each environment is significantly different from the
counts that would be expected if sequences were ran-
domly distributed in the tree. As with the pairwise signifi-
cance tests, the P-values are multiplied by the number of
comparisons that were made (in this case the number of

lineages evaluated) in order to maintain the desired Type
I error rate [23]. Detecting significant differences is thus
difficult when a large distance from the root is specified
and many lineages are evaluated.

The lineage-specific analysis can use abundance informa-
tion provided in the environment file. For instance, if
RFLP data indicate that a particular sequence was repre-
sented by 15 different clones, the program will count that
sequence 15 times when performing the G test. After the
lineage-specific analysis, each lineage that was evaluated
is colored on the tree according to its level of significance.
A table summarizing the P-value and expected and
observed counts for each environment in each lineage is
also provided (Fig. 4).

Comparing many environments simultaneously
UniFrac can compare many communities simultaneously
using hierarchical clustering with the UPGMA
(Unweighted Pair Group Method with Arithmetic Mean)
algorithm [25] and PCA (Principal Coordinates Analy-
sis)[22]. We have previously described these techniques
and their application in detail [3,11]. Briefly, a distance
matrix between environments is made using the UniFrac
metric, calculating values for all possible pairs of environ-
ments in the tree. This environment distance matrix can
be viewed by selecting Environment Distance Matrix from
the Select Analysis menu (Fig. 2B). The environment dis-
tance matrix is the input both for clustering with UPGMA,
which is executed using the Cluster Environments analysis
option, and for PCA, which is executed using the PCA
analysis option. Cluster Environments outputs a text repre-
sentation of a tree in which similar environments will be
clustered together (Fig. 5).

The UniFrac interface also has the Jackknife Environment
Clusters option, which has been described in detail previ-
ously [11]. This option indicates how robust each envi-
ronment cluster is to sample size and evenness by
assessing how often it is recovered in randomly chosen
sets of sequences (note that this test is performed on
groups of environments in the cluster diagram, not mono-
phyletic groups in the phylogeny). To perform this analy-
sis, we randomly sample the same number of sequences
from each environment (the Number of sequences to keep),
re-cluster the environments using these sequences, and
calculate the fraction of times that each node in the cluster
was recovered. By default, Number of sequences to keep is set
to the minimum number of sequences found in any envi-
ronment in the tree. If an environment contains less than
the specified number of sequences, all the sequences from
that environment are removed, excluding that environ-
ment from the cluster output. Number of Permutations
determines how many random samples are generated (10,
100, or 1000). The output is a tree in which each node is
Page 6 of 14
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colored according to its jackknife support, i.e. fraction of

Comparison of the UniFrac Significance test and the P-test with raw and de-replicated dataFigure 3
Comparison of the UniFrac Significance test and the P-test with raw and de-replicated data. This figure illustrates how the 
same tree can have a significant P-test P-value and a non-significant UniFrac significance test P-value. The trees drawn in A and 
B have the same topology but different branch lengths. The boxes and triangles represent sequences from two different envi-
ronments. The trees on the left are being evaluated to determine whether the square and triangle communities are significantly 
different. The trees on the right are example trees in which the environment assignments have been randomized. The parsi-
mony changes that are calculated with the P-test are represented by red dots. The color of the branches represent calculations 
made for the UniFrac significance test; branches that lead to only one of the two environments are black and branches that 
lead to descendants of both environments are grey. A.) A tree that would have a significant P-test result and a non-significant 
UniFrac Significance test result. The sequences from the square and triangle environments are clustered together on the tree, 
and it thus only takes 2 changes between environments to explain their distribution. This is less than would be expected if the 
sequences were randomly distributed between environments as shown on the right, and thus the P-value is likely to be signifi-
cant (note that in practice, the true tree is compared to many randomized trees and not just one). The monophyletic lineages 
occur near the tips of the tree, however, and are not associated with a significant amount of unique branch length (black 
branches). The UniFrac metric value would thus be low and randomization of the tree could easily result in more unique 
(black) branch length as shown on right, resulting in a non-significant P-value. B.) A tree that would have a significant result for 
both the P-test and the UniFrac significance test. The P-test results are the same as for the tree in A because the topology is 
the same. However, because the monophyletic lineages in the square and triangle environment represent a substantial amount 
of branch length in the tree, the UniFrac value is high. The permutations of environment assignments would thus typically result 
in less unique branch length, leading to a significant result. C) The same analysis as B except that the diversity at the tips of the 
tree has been removed by choosing OTUs. The UniFrac distance is essentially unchanged, but randomization over the reduced 
number of taxa results in non-significant P-values for both the UniFrac Significance test and the P-test.
Page 7 of 14
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the random samples that they were recovered in (Fig. 5).

The environment distance matrix can also be used to clus-
ter the environments using PCA [22]. PCA is a multivari-
ate statistical technique for finding the most important
axes along which samples vary. Distances are converted
into points in a space with a number of dimensions one
less than the number of samples. The principal compo-
nents, in descending order, describe how much of the var-
iation each of the axes in this new space explains. The first
principal component separates out the data as much as

possible, the second principal component provides the
next most separation, and so forth. The UniFrac interface
returns information on all principal component axes in a
data table. It also allows easy visualization of that data in
scatterplots that compare all pairs of the first three princi-
pal components (Fig. 6). The points are either marked
with text or colored symbols. Symbols representing envi-
ronments with similar names are assigned the same color,
providing a convenient way to group environments visu-
ally by changing the names in the uploaded file. For exam-
ple, if Bin envs by: first underscore is selected, environments
that have names containing the same prefix before an
underscore will have the same color (for example,
"water_A" and "water_B" would get the same color). If
Assign series by: first letter is selected, environments starting
with the same first letter will have the same color (e.g.
"soil" and "sediment" would get the same color). Series
can also be labeled with the first letter of their names
rather than by different colors. PCA often reveals patterns
of similarity that are difficult to see on a tree, and the axes
along which variation occurs can sometimes be correlated
with environmental variables such as temperature or pH.
However, when no single principal component explains
much of the variance, the clusters generated with Cluster
environments can be a more useful guide to similarity than
the lower-dimensional projections found by PCA.

Parallelization
Many of the analyses in UniFrac can be parallelized and
distributed over multiple CPUs after loading the initial
tree and environment file. There are two types of paralleli-
zation used in UniFrac: using a single CPU to perform a
single analysis (e.g. PCA), and using multiple CPUs to
perform a single analysis (e.g. calculating the significance
of the differences between all pairs of environments).
Depending on the type of analysis requested by the user,
one or more CPUs are assigned to handle the request via
jobs submitted to the PBS queuing system on our Beowulf
cluster. Each analysis request is assigned a unique request
identifier, which is then used to track the overall progress
of the job or jobs that make up the request. Once all of the
jobs are finished running, the partial results are collected
from each CPU and are combined before being sent to the
user. A user may run several analyses at once (and each
request may use multiple CPUs).

Results and discussion
Comparing the P-test to the UniFrac significance test
Because the P-test and the UniFrac significance test are
evaluating different hypotheses, it is possible to get a sig-
nificant P-value for one and not the other. Fig. 3A
describes an example of a tree that would have a signifi-
cant P-test result and a non-significant UniFrac result. The
UniFrac interface allows these two methods to be com-
pared easily for the first time.

Partial output of the Lineage-Specific Analysis with Minimum descendants set to 6Figure 4
Partial output of the Lineage-Specific Analysis with Minimum 
descendants set to 6. The complete output consists of both a 
table and a tree. The table has a row for each environment in 
each evaluated lineage/node. The nodes are named arbitrarily 
but can be viewed in the tree. Each evaluated node is colored 
based on its P-value in both the table and the tree. P-values < 
0.001 are red, < .01 are yellow, < 0.05 are green, < .1 are 
blue and > 0.1 are gray. The table shows the observed and 
expected sequence counts for each environment for each 
evaluated node. The expected counts are what would be 
expected if the sequences were evenly distributed in the dif-
ferent lineages.
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The P-test tests the hypothesis that fewer changes from
one environment to another are required to explain the
actual distribution of modern sequences in environments
than would be required if sequences were randomly
assigned to environments. A tree in which the sequences
are clustered into monophyletic lineages would require

few parsimony changes to describe the distribution (Fig.
3). The P-test thus takes the tree topology, but not the
branch lengths, into account.

In contrast, the UniFrac significance test accounts for both
the tree topology and the branch lengths, and tests the
hypothesis that there has been more unique evolution
within each environment (more branch length leading to
descendants from only one environment) than would be
expected if the sequences were randomly distributed
among environments. A significant P-value thus indicates
that the sequences from a particular environment are clus-
tered into monophyletic lineages that represent a longer
history of adapting to life in one environment versus the
other.

Usage example
To illustrate the utility of the UniFrac interface, we reana-
lyzed sequence data generated in a study of bacterial com-
munities in the Columbia River, its estuary, and the
adjacent coastal ocean [31]. Crump et al, used filtration
techniques to separate particle-attached and free-living
bacteria from the three sites, and analyzed these popula-
tions separately. Because the particle-attached bacteria in
the estuary are 10–100 times more active than free-living
bacteria, and because particles have a much longer resi-
dence time in the estuary than water (2 to 4 weeks verses
1 to 2 days), Crump at al. hypothesized that the estuarial
particle-attached but not free-living bacteria would form a
unique community that is distinct from the river and
coastal ocean source communities.

In order to test this hypothesis, Crump et al. partially
sequenced 215 16S rRNA clones from the particle-
attached and free-living bacteria in the river, estuary, and
coastal ocean, and characterized an additional 24 clones
from the estuary using RFLP band patterns. We down-
loaded the sequences from GenBank, and used the
author's annotations to assign each sequence to one of the
6 environments. RFLP screening prior to sequencing was

Result of running PCA and choosing to output a ScatterPlot and the Bin envs by:first letter optionFigure 6
Result of running PCA and choosing to output a ScatterPlot 
and the Bin envs by:first letter option. Blue squares represent 
the estuary, green triangles represent the river, and red cir-
cles represent the ocean. All points on the left side of the x-
axis represent particle-associated bacteria (estuary and river) 
or bacteria in unfiltered water (ocean). All points on the right 
side of the x axis are from free-living bacterial communities. 
The full environment name can be seen by by moving the 
pointer over the symbols. The axes are labeled with the per-
cent of the variation explained by each principal component.

Result of running Jackknife Environment Clusters with Number of sequences to keep set to 12 and Number of Permutations set to 100Figure 5
Result of running Jackknife Environment Clusters with Number of sequences to keep set to 12 and Number of Permutations set to 
100. The environment abbreviations are the same as described for Fig. 2. Each node is colored by the fraction of times it was 
recovered in the jackknife replicates. Nodes recovered >99.9% of the time are red, 90–99.9% are yellow, 70–90% are green, 
50–70% are blue, and < 50% are grey. The fraction can also be viewed in the interface by moving the pointer over the colored 
bar.
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carried out only for the estuary. Whether or not sequences
are de-replicated can have substantial effects on the statis-
tical significance of UniFrac distances and the P-test, but
only a minimal effect on the UniFrac distances, so the PCA
and Cluster Environments (without jackknifing) analysis
results will be unchanged (see Fig. 3C). In order to make
the sequence collections comparable between the sam-
ples, we de-replicated the sequence data from each of the
6 environments individually by picking OTUs at 97%
sequence identity using the "Percent Sequence Identity
with gaps" algorithm of FastGroupII [32]. Alternatively,
we could have used the RFLP counts to produce a tree in
which the same sequence was repeated multiple times,
once for each RFLP count. This approach better accounts
for the abundance of particular types when assessing sig-
nificance between samples. (Fig. 3C). For the de-repli-
cated tree, we created an environment file that included
only one representative of each OTU, along with the
number of times that each OTU was observed. We aligned
the sequences using the NAST-alignment tool [33], and
used the parsimony insertion algorithm of the Arb pack-
age [24] to create a single phylogenetic tree that contained
all of the sequences. We exported this tree in Newick for-
mat for input into UniFrac.

We successfully assigned environment information to all
but 3 of the 239 clones using the authors' annotations.
After loading the tree and environment information into
the UniFrac interface, we selected the Environment Counts
analysis option to get detailed information on how many
OTUs from each environment are in the study (Fig. 2A).
This indicated that more OTUs from the estuary were eval-
uated than from the river or coastal ocean, and that
screening for OTUs reduced the number of sequences in
the tree from 215 to 163. UniFrac automatically removes
sequences in the input tree that are not assigned to an
environment before any analyses are performed.

In order to get an initial idea of how the 6 environments
related to one another, we calculated raw UniFrac values
for all pairs of environments with the Environment Dis-
tance Matrix analysis option (Fig. 2B). Small UniFrac val-
ues indicated communities that were more similar. A
quick glance at the distance matrix, for instance, showed
that the free-living bacteria in the Estuary (E-FL) were
more similar to the free-living bacteria in the river (R-FL;
UniFrac value = 0.6825) than in the ocean (O-FL; UniFrac
Value = 0.7685).

In order to better visualize the overall patterns of varia-
tion, we used this distance matrix to perform PCA by
selecting the PCA analysis option. We produced a scatter-
plot of the first two principal coordinates and colored the
points by environment (ocean, river, or estuary) by select-
ing the ScatterPlot and Assign series by: first letter option

(Fig. 6). PC1 and PC2 explained almost equal amounts of
the variation in the data (26.27 and 24.00% of the varia-
tion respectively). PC1 separated free-living bacterial
communities from particle-attached communities (Fig.
6). PC2 separated the environments from the estuary,
river, or ocean; Bacterial lineages in the estuary were more
similar to those in the river than to those in the ocean.

We also used the distance matrix to cluster the environ-
ments using UPGMA (Fig. 5). At the same time, we deter-
mined the robustness of the results to sampling effort and
evenness using the Jackknife Environment Clusters analysis
option with Number of sequences to keep set to the default
value of 12 and Number of Permutations set to 100. We set
Number of sequences to keep to 12 because this was the
number of sequences in the environment represented by
the fewest OTUs (O_UN) (Fig. 2A). If we had picked a
number greater than 12, all sequences from O_UN would
have been removed from the tree and O_UN would have
been excluded from the analysis.

Like the PCA results, the UPGMA results suggested that
the estuary and river sequences from both the particle-
attached and free-living bacteria were more similar to each
other than they were to sequences from the ocean, since
they clustered together to the exclusion of the ocean sam-
ples (Fig. 5). When only 12 OTUs from each environment
were considered, however, only the node that grouped the
free-living bacteria in the estuary and the river together
was supported > 50% of the time (Fig. 5). This lack of
bootstrap support indicated that more sampling would be
required for confidence in the results for the other nodes.

We next used the UniFrac Significance and P Test Signifi-
cance Analysis options to determine whether the commu-
nities in the different samples were significantly different
from each other. Performing UniFrac Significance and P
Test Significance on All environments together and Number of
Permutations set to 1000 resulted in a non-significant P-
value for UniFrac Significance (P = 0.648) and a signifi-
cant P-value for the P-test (P = 0.006). This result indicates
that the sequences were significantly clustered by environ-
ment overall, but that these clusters did not represent a
significant amount of unique branch length (see Fig. 3).
Performing UniFrac Significance and P Test Significance on
Each pair of Environments with Number of Permutations set
to 1000 resulted in a significant P-value only for the com-
parison of free-living bacteria in the ocean (O_FL) and
particle-associated bacteria in the estuary (E_PA) for both
tests after correcting for multiple comparisons. The level
of significance was much stronger with the P-test (P <
0.015, Fig. 7A) than the UniFrac Significance test (P =
0.030). To correct for multiple comparisons, all of the
pairwise P-values have been multiplied by 15, because
that is the number of comparisons that were made. In the
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case of the O_FL, E_PA comparison, the P-value of < 0.015
indicates that a lower number of parsimony changes was
never observed in the 1000 random permutations that
were performed.

In order to determine if any particular environment was
associated by more unique branch length than expected
by chance, we performed UniFrac Significance on Each
environment individually (Fig. 7B). Of the 6 environments,
only the particle-associated bacteria from the estuary
(E_PA) had a significant difference (P = 0.005). This result
indicated that the sequences from this sample are associ-
ated with more unique branch length than would be
expected if they were randomly distributed in the tree,
suggesting that bacteria adapted to this environment sel-
dom transfer to and survive in other environments (and
vice versa).

Finally, in order to identify lineages that are contributing
to differences between environments, we performed a Lin-
eage-Specific Analysis with a Branch length threshold of
0.252892 and Minimum Descendants set to 6. The branch
length threshold was chosen using the scale bar (Fig. 1) to
separate the tree into lineages that were at or slightly
below the division level. The split divided the tree into
nine nodes that each had at least six descendants (speci-
fied with the Minimum Descendants option). Of these, four
(nodes 21, 28, 73, and 146) had significant G test P-val-

ues. Significant values indicated that the node had an
excess or deficit of sequences in particular environments
relative to chance expectations. The part of the table that
describes the results for three of the four significant nodes
is shown in Fig. 4. By examining its descendant sequences,
we determined that Node 28, which had a G test P-value
of 0.00951, represented the β-proteobacteria. Comparing
the observed and expected counts demonstrated that there
were more β-proteobacterial sequences in the free-living
components of the estuary and river than expected, and
fewer in the other environments (Fig. 4). Node 21 had a
G test P-value of 0.00387, consisted of members of the
Oceanospirillum group of the γ-Proteobacteria, and only
had sequences from the estuary. Node 73 had a G test P-
value of 0.0000536, included more free-living ocean bac-
teria than expected by chance, and corresponded to the
SAR11 cluster within the α-proteobacteria. The rest of the
α-proteobacteria were represented by Node 62, and do
not show non-random distribution by the G test. The final
significant node, Node 146, was overrepresented in the
ocean samples and represented the cyanobacteria.

The analysis of these data using the UniFrac interface pro-
vided insights that were not apparent from the initial data
analysis by Crump et al. [31], which used other commonly
employed techniques. These included 1) evaluating the
identity of the top blast hit for each sequence in each envi-
ronment, 2) comparing pie charts describing the distribu-

Screenshots of selected significance test resultsFigure 7
Screenshots of selected significance test results. Environment abbreviations are the same as described for Fig. 2. A) Result of 
running P-Test Significance with the Each pair of environments option. The P-values have been colored by significance. P-values < 
0.001 are red, 0.001–0.01 are yellow, 0.01–0.05 are green and 0.05–0.1 are blue and >0.1 are grey. B) Result of running UniFrac 
Significance on Each environment individually with Number of Permutations set to 1000.
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tion of sequences between division and subdivision
groups in the different environments 3) visually inspect-
ing phylogenetic trees to qualitatively determine whether
sequences from the same environment clustered together,
and 4) estimating the percentage of sequences in the estu-
ary samples that clustered closely with river or ocean
source communities in the phylogenetic trees. Using these
techniques, Crump et al. concluded that the particle-
attached bacteria form a uniquely adapted estuarine com-
munity, since 75% of the particle-attached clones in the
estuary were rare or absent in the river or ocean (at a cutoff
of ~0.96 sequence identity). In contrast, they concluded
that the free-living estuarine community was more of a
sum of its source communities since about half of the free-
living bacteria were similar to clones in the river or coastal
ocean.

One conclusion that can be drawn from the UniFrac anal-
ysis that was not apparent in the initial analysis is that the
estuarine bacteria are more similar to the river bacteria
than to the ocean bacteria, both for the particle-attached
and free-living fractions. These relationships can be seen
in both the UPGMA cluster and the PCA plot. Because
UniFrac considers phylogenetic lineages and not just
shared OTUs, the results could not stem from the simple
explanation that more individual species have the ability
to live in both the river and the estuary. Instead, they are
consistent with the hypothesis that freshwater bacteria
can more easily adapt to the estuarine environment than
can ocean bacteria.

As suggested by Crump et al., there is some evidence that
the estuarine free-living bacteria are more similar to the
source communities than are the particle-attached bacte-
ria. However, the UniFrac analysis shows that this evi-
dence is limited to the river source. For instance, the
estuarine and riverine free-living bacteria (E_FL and R_FL)
formed the only jackknife-supported node in the UPGMA
cluster, clustering more closely together than the estuarine
and riverine particle-attached bacteria (E_PA and R_PA).
The oceanic bacteria, however, did not cluster with either
the free-living or the particle-attached estuarine bacteria.
The results of the UniFrac Significance test on Each environ-
ment individually also support the hypothesis that the estu-
arine particle-attached bacteria, in particular, form a
uniquely adapted community. Only this environment
resulted in a significant P-value when compared against
the rest of the tree, indicating that it has significantly more
unique branch length than the other environments.

The Lineage-Specific analysis identified many of the same
lineages that Crump et al. described as being important for
a particular environment. These lineages include the
SAR11 cluster for free-living marine bacteria, the β-Proteo-
bacteria for free-living freshwater bacteria, and the

Oceanospirillum group of the γ-Proteobacteria for the
estuary. Notably, the G test returned a non-significant P-
value (P = 1.0 after correcting for multiple comparisons)
for the Cytophaga-Flexibacter group, a group that Crump
et al. concluded to be particularly important for the estu-
ary. Although the estuary sequences are abundant in this
lineage, one would expect them to be abundant in any
particular environment by chance because about three
times as many sequences were sampled from the estuary
as from the other environments. There was thus no statis-
tical support for overrepresentation of estuarine
sequences in this lineage.

Conclusion
Phylogenetic comparisons among communities, espe-
cially those that allow the simultaneous comparison of
many different communities, have until now been una-
vailable to research groups that lack programming exper-
tise. By providing a convenient web interface, UniFrac
paves the way for a far broader application of these tech-
niques in microbial ecology. In particular, the ability to
cluster many communities according to the lineages they
contain without needing to choose arbitrary OTUs will
greatly enhance our ability to understand the factors that
underlie similarities and differences in microbial commu-
nity samples (we only de-replicated the Crump et al. data
because RFLPs had been used to select clones for sequenc-
ing from some, but not all, samples, and because we were
doing significance tests as well as clustering).

The UniFrac web interface contains many enhancements
over the command-line implementation of the UniFrac
metric we released last year [11]. These enhancements
include additional functionality, in particular the taxon
jackknifing and the lineage-specific analysis, improved
accessibility, powerful visualization tools, and improve-
ments in run-time both through parallelization and
through code optimizations. In particular, optimizing cer-
tain tree handling routines improved the speed of some
tests by a factor of 100 (data not shown). The new visual-
ization techniques, in particular, will greatly assist in
exploratory analyses by providing the output in a form
that can quickly be interpreted by researchers.

This web interface also provides the ability to compare sig-
nificance tests based on the UniFrac metric and the P-test
within a single interface. Future extensions will include
the addition of other significance tests for comparing
communities, such as those implemented by PhyloCom
[34]. The availability of different tests in the same conven-
ient interface will greatly assist the ability of researchers to
compare the plausibility of different hypotheses about
community structure. We thus expect UniFrac to usher in
a new era of community comparison studies, in which
hypotheses about the factors underlying similarities and
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differences in multiple environments can be conveniently
tested, and in which the lineages responsible can be rap-
idly unmasked.
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